Science.gov

Sample records for energy efficient air

  1. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  2. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  3. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  4. Energy-Efficient Air Conditioning

    SciTech Connect

    Krigger, J.; Stewart, K.

    1999-06-30

    Many people buy or use air conditioners without understanding their designs, components, and operating principles. Proper sizing, selection, installation, maintenance, and correct use are keys to cost-effective operation and lower overall costs. This publication discusses both central and room air conditioners. Heat pumps, which provide both home cooling and heating, are not covered in this publication. Contact www.eren.doe.gov/consumerinfo for more information.

  5. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  6. Energy saving opportunities of energy efficient air nozzles

    NASA Astrophysics Data System (ADS)

    Slootmaekers, Tim; Slaets, Peter; Bartsoen, Tom; Malfait, Lieven; Vanierschot, Maarten

    2015-12-01

    Compressed air is a common energy medium. The production of compressed air itself is not a very efficient process. Avoiding any unnecessary losses of air can lead to large reductions in electricity consumption. Since blowing applications are one of the main domains were compressed-air is used, any reduction in the mass flow needed for operation can lead to significant energy savings. In this paper the normal volumetric flow rate and generated impact force are compared between a stepped nozzle and a so called energy saving nozzle which allows extra air from the surroundings to be entrained. These two different nozzle geometries are used in industrial blowing applications. Until now there was no study available which compares the impact forces and volumetric flow rates for these types of nozzles. The flow field of the two nozzles was calculated by CFD simulations. The impact forces and volumetric flow rates are calculated out of this flow field. Each nozzle was simulated with three different input pressures. The nozzles were simulated with an input pressure of 3, 4 and 5 barg. The energy saving nozzle consumes only 1 % less volumetric flow rate then the stepped nozzle at the same inlet pressure. The replacement of a stepped nozzle with an energy saving nozzle will not immediately result in a decrease in input volumetric flow rate. The pressure at the inlet of the energy saving nozzle has to be reduced as well. After reducing the input pressure the energy saving nozzle generates the same impact force than the stepped nozzle. Hereby a decrease of 4.5 % in input volumetric flow rate was possible. The energy cost will decrease with 4.5 % as well because the normal volumetric flow rate is directly proportional to the energy cost. The replacement of a stepped nozzle with an energy saving nozzle while maintaining the same inlet pressure is only useful when the impact force from the stepped nozzle is not sufficient. The energy saving nozzle can generate 5.6 % more impact

  7. States Address Air Pollution from Energy through Energy Efficiency and Renewable Energy Programs

    SciTech Connect

    Not Available

    2007-12-01

    This fact sheet highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics.

  8. Air exchange rates in new energy-efficient manufactured housing

    SciTech Connect

    Hadley, D.; Bailey, S.

    1990-10-01

    During the 1989--1990 heating season, Pacific Northwest Laboratory, for the Bonneville Power Administration, measured the ventilation characteristics of 139 newly constructed energy-efficient manufactured homes and a control sample of 35 newer manufactured homes. A standard door fan pressurization technique was used to estimate shell leakiness, and a passive perfluorocarbon tracer technique was used to estimate overall air exchange rates. A measurement of the designated whole-house exhaust system flow rate was taken as well as an occupant and structure survey. The energy-efficient manufactured homes have very low air exchange rates, significantly lower than either existing manufactured homes or site-built homes. The standard deviation of the effective leakage area for this sample of homes is small (25% to 30% of the mean), indicating that the leakiness of manufactured housing stock can be confidently characterized by the mean value. There is some indication of increased ventilation due to the energy-efficient whole-house ventilation specification, but not directly related to the operation of the whole-house system. The mechanical systems as installed and operated do not provide the intended ventilation; consequently indoor air quality could possibly be adversely impacted and moisture/condensation in the living space is a potential problem. 6 refs., 6 figs., 5 tabs.

  9. High-Efficiency Rooftop Air Conditioners: Small Commercial ACs Could Add Up to Big Energy Savings

    SciTech Connect

    Hollomon, J Bradford; Gilbride, Theresa L.

    2003-04-01

    This paper describes a technology procurement conducted by DOE, PNNL, and the Defense Logistics Agency to increase the availability of energy-efficient, packaged, unitary ''rooftop'' air conditioners. The procurement encourages air conditioner manufacturers to produce equipment that exceeds federal energy efficiency standards by at least 25 percent at a lower first cost. Program developers have also sought to aggregate market demand by organizing groups of large-volume buyers of air conditioning equipment. A Cost Estimator tool developed by PNNL to help consumers determine the cost effectiveness, based on local climate conditions, of purchasing energy efficient air conditioners for their own facilities is also described.

  10. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    SciTech Connect

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements. The

  11. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  12. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... efficiency of commercial warm air furnaces. 431.76 Section 431.76 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.76 Uniform test method for the measurement of energy efficiency...

  13. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... efficiency of commercial warm air furnaces. 431.76 Section 431.76 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.76 Uniform test method for the measurement of energy efficiency...

  14. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... efficiency of commercial warm air furnaces. 431.76 Section 431.76 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.76 Uniform test method for the measurement of energy efficiency...

  15. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial... energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains...

  16. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial... energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains...

  17. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... efficiency of commercial warm air furnaces. 431.76 Section 431.76 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.76 Uniform test method for the measurement of energy efficiency...

  18. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency of commercial warm air furnaces. 431.76 Section 431.76 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.76 Uniform test method for the measurement of energy efficiency...

  19. A pilot study of energy efficient air cleaning for ozone

    SciTech Connect

    Gundel, Lara A.; Sullivan, Douglas P.; Katsapov, Gregory Y.; Fisk, William J.

    2002-11-01

    A laboratory pilot study has been undertaken with the material that showed the most promise (high capacity and low pressure drop) based on the literature review and associated calculations. The best-performing air cleaner was a commercially available pleated filter that contained a thin layer of small activated carbon particles between two sheets of non-woven fibrous webbing. We will refer to this unit as the ''ozone filter'' although it is marketed for removal of volatile organic compounds (VOCs) from automobile passenger compartments. This pilot study strongly suggests that ozone air cleaning can be practical in commercial air handling systems; however, further tests are needed to assess air cleaner performance under a wider range of conditions.

  20. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    PubMed

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. PMID:27423771

  1. Indoor air-quality measurements in energy-efficient residential buildings

    SciTech Connect

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  2. Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation

    SciTech Connect

    Alkadi, Nasr E; Kissock, Professor Kelly

    2011-01-01

    The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

  3. Effects of air tightness of the building envelope as witnessed through an energy efficiency retrofit program

    NASA Astrophysics Data System (ADS)

    Ryzak, Adam

    Air leakage through the building envelope has been identified as a major factor affecting the energy consumption of buildings. This study explored homes located in Central Indiana that were recipients of government-sponsored grants to perform energy efficient upgrades. To combat the issue of air leakage, many homes were retrofitted with air sealing packages. A certified energy auditor performed before and after blower door tests to measure the air leakage of each home. An analysis of the 63 homes measured resulted in the conclusion that the overall improvement in blower door test results was greater than 20%. In addition to blower door tests, the energy auditor inspected each home and generated a list of recommended energy efficient upgrades (within the scope of the grant) as well as their respective installation costs. An analysis was performed investigating the auditor's accuracy at estimating these costs. Based on data from 33 homes, the conclusion was made that the energy auditor was not proficient in the role of a construction estimator. The disparity between estimated and actual costs was not within the 10-15% target range.

  4. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy

  5. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  6. Technical and economic analysis of energy efficiency of Chinese room air conditioners

    SciTech Connect

    Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

    2001-02-01

    China has experienced tremendous growth in the production and sales of room air conditioners over the last decade. Although minimum room air conditioner energy efficiency standards have been in effect since 1989, no efforts were made during most of the 1990's to update the standard to be more reflective of current market conditions. In 1999, China's State Bureau of Technical Supervision (SBTS) included in their annual plan the development and revision of the 1989 room air conditioner standard, and experts from SBTS worked together with LBNL to analyze the new standards. Based on the engineering and life cycle-cost analyses performed, the most predominant type of room air conditioner in the Chinese market (split-type with a cooling capacity between 2500 and 4500 W (8500 Btu/h and 15,300Btu/h)) can have its efficiency increased cost-effectively to an energy efficiency ratio (EER) of 2.92 W/W (9.9 Btu/hr/W). If an EER standard of 2.92 W/W became effective in 2001, Chinese consumers would be estimated to save over 3.5 billion Yuan (420 million U.S. dollars) over the period of 2001-2020. Carbon emissions over the same period would be reduced by approximately 12 million metric tonnes.

  7. Improving Energy Efficiency of Compressed Air System Based onSystem Audit

    SciTech Connect

    Shanghai, Hongbo Qin; McKane, Aimee

    2007-06-01

    Industrial electric motor systems consume more than 600billion kWh annually, accounting for more than 50 percent of China selectricity use. The International Energy Agency estimates thatoptimizing motor systems results in an improvement of 20-25 percent,which is well-supported by experience in both the U.S. and China.Compressed air systems in China use 9.4 percent of all electricity.Compressed air use in China is growing rapidly, as new industrial plantsare built and the production processes of existing plants expand andchange. Most of these systems, whether existing or new, are not optimizedfor energy efficiency. This paper will present a practitioner'sperspective on theemergence of compressed air auditing services inChina, specifically as it pertains to Shanghai and surrounding areas.Both the methodology used and the market development of these compressedair system services will be addressed. Finally, the potential for energysaving opportunities will be described based on highlights from over 50compressed air system energy audits completed by Shanghai EnergyConservation Service Center, both during the United Nations IndustrialDevelopment Organization (UNIDO) China Motor System Energy ConservationProgram, and after this training program was completed.

  8. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  9. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  10. Dual fan, dual-duct system meets air quality, energy-efficiency needs

    SciTech Connect

    Schuler, M.

    1996-03-01

    Canada`s Space Centre in Saint-Hubert Quebec is a 300,000 ft{sup 2} (27,871 m{sup 2}) complex that houses the headquarters of the Canadian Space Agency, the Canadian Astronaut Training Centre, mission ground control installations, research facilities, offices and the required support facilities. A comfortable, pleasant research environment was a primary concern for the Space Centre, given its elite clientele. The objectives were high indoor-air quality, design flexibility, energy efficiency and low capital costs. Dual duct systems which are the heart of the mechanical concept allowed the designers to meet these objectives. The Space Centre`s offices, laboratories and conference center are all served by dual-duct systems. All operate using an air economizer cycle. Gas boilers provide them with hot water for heating and steam for humidification while centrifugal chillers provide chilled water for cooling. This article describes the design.

  11. Integrating affordability, energy and environmental efficiency, air quality and disaster resistance into residential design and construction

    SciTech Connect

    Cook, G.D.

    1995-12-31

    Much has been researched and written about the individual qualities of good home design and construction in terms of: energy efficiency; affordability; indoor air quality; sustainability; and wind, fire, and flood resistance. The real challenge is to integrate all these characteristics into the ideal house. The purpose of this paper is to review the characteristics of each of the above features and explore the integration of them into the ideal residential structure. The house would take the shape of a compact two story structure. A geometrically compact structure uses less construction materials per floor area, presents less area for improved thermal efficiency, and less profile for wind and flood resistance. The first floor would be constructed using insulated strong high thermal mass masonry system resistant to flood, wind, fire, and termite damage. The second story would be constructed using a lighter reinforced wood frame system with between stud insulation coupled with exterior insulated sheathing to minimize thermal bridging across studs. Optimizing floor plan such as separating living and sleeping areas present opportunities for efficient split HVAC zoning, natural ventilation, and solar passive adaptation. The design would emphasize the 4, 8, and 12 foot dimensioning for waste reduction; selection of environmentally friendly building materials, such as cellulose insulation; and efficient lighting and appliances. Features providing improved indoor air quality such as prudent duct selection, design and location, use of radon barriers, omission of carpeting, and control of moisture would be addressed. The design philosophy, concepts and rationale for the integration of these and many other features of the ideal residence will be addressed and illustrated.

  12. Interactions between energy efficiency and emission trading under the 1990 Clean Air Act Amendments

    SciTech Connect

    Hillsman, E.L.; Alvic, D.R.

    1994-08-01

    The 1990 Clean Air Act Amendments affect electric utilities in numerous ways. The feature that probably has received the greatest attention is the provision to let utilities trade emissions of sulfur dioxide (SO{sub 2}), while at the same time requiring them to reduce S0{sub 2} emissions in 2000 by an aggregate 43%. The emission trading system was welcomed by many as a way of reducing the cost of reducing emissions, by providing greater flexibility than past approaches. This report examines some of the potential interactions between trading emissions and increasing end-use energy efficiency. The analysis focuses on emission trading in the second phase of the trading program, which begins in 2000. The aggregate effects, calculated by an emission compliance and trading model, turn out to be rather small. Aggressive improvement of end-use efficiency by all utilities might reduce allowance prices by $22/ton (1990 dollars), which is small compared to the reduction that has occurred in the estimates of future allowance prices and when compared to the roughly $400/ton price we estimate as a base case. However, the changes in the allowance market that result are large enough to affect some compliance decisions. If utilities in only a few states improve end-use efficiency aggressively, their actions may not have a large effect on the price of an allowance, but they could alter the demand for allowances and thereby the compliance decisions of utilities in other states. The analysis shows how improving electricity end-use efficiency in some states can cause smaller emission reductions in other states, relative to what would have happened without the improvements. Such a result, while not surprising given the theory behind the emission trading system, is upsetting to people who view emissions, environmental protection, and energy efficiency in moral rather than strictly economic terms.

  13. Energy efficiency assessment methods and tools evaluation. Bolling Air Force Base. Revision 1

    SciTech Connect

    McMordie, K.L.; Richman, E.E.; Keller, J.M.; Dixon, D.R.

    1995-05-01

    The goal of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) is to facilitate energy-efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools, software, and procedures used to identify and evaluate energy-efficiency technologies and improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy use efficiency. To assist in procurement of energy-efficiency measures, FEMP helps federal agencies devise and implement performance contracting and utility demand-side management strategies. Pacific Northwest Laboratory (PNL) supports the FEMP mission of energy systems modernization. Under this charter, the Laboratory and its contractors work with federal facility energy managers to assess and implement energy-efficiency improvements at federal facilities nationwide.

  14. Energy Efficiency in Libraries.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; And Others

    1993-01-01

    Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…

  15. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  16. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  17. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  18. The feasibility of using a photoelectric cigarette smoke detector for energy-efficient air quality control

    SciTech Connect

    Nelson, R.M.; Alevantis, L.E.

    1985-01-01

    The object of this study was to determine the feasibility of using a smoke sensor to monitor and control cigarette smoke levels in occupied spaces and also to determine whether the use of such a detector could result in energy savings. A smoke detector was built and tested. The experimental results show that the smoke sensor output is a function of cigarette smoke concentration and that the smoke sensor gives a rapid and continuous response. In addition, a computer program that simulates the transient mass and energy interactions in buildings was modified so that the impact of ventilation strategies on indoor air quality and energy consumption could be studied when smokers are present. The results of the numerical modeling for an arbitrary test case show that the use of a smoke sensor to detect cigarette smoke particulates and to control ventilation can allow indoor air quality to be continuously maintained at acceptable levels while minimizing energy consumption.

  19. Sara Lee: Improved Compressed Air System Increases Efficiency and Saves Energy at an Industrial Bakery

    SciTech Connect

    Not Available

    2005-07-01

    This case study was prepared for the Industrial Technologies Program of the U.S. Department of Energy (DOE); it describes the energy and costs savings resulting from improving the compressed air system of a large Sara Lee bakery in Sacramento, California. The compressed air system supports many operations of the bread-making machines, and it had been performing poorly. A specialist from Draw Professional Services, a DOE Allied Partner, evaluated the system, and his suggestions included repairing a controller, fixing leaks, and replacing a compressor with a new one fitted with an energy-saving variable-speed drive. As a result, the bakery has reduced its energy use by 471,000 kilowatt-hours annually and is saving $50,000 per year in operating and maintenance costs.

  20. Energy Efficiency and Indoor Environmental Quality in Schools. A Joint EPA Working Paper from Energy Star[R] and Indoor Air Quality.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This paper describes how to protect and enhance indoor environmental quality without sacrificing energy performance, lists the common pollutants and their sources, and explores how energy efficiency projects affect indoor environmental quality. Also highlighted are study figures showing the energy costs of outdoor air ventilation and an…

  1. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  2. Interactions Between Energy Efficiency and Emission Trading Under the 1990 Clean Air Act Amendments

    SciTech Connect

    Hillsman, E L

    1994-01-01

    Title IV of the 1990 Clean Air Act Amendments (P.L. 101-549) requires electric utilities to reduce emissions of precursors of acid precipitation, specifically sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}), starting at 261 generating units in 1995 and covering most fossil-fired units in 2000. The Amendments take a conventional command-and-control approach to reducing NO{sub x}, but they established a market-based regulatory system to reduce SO{sub 2}. Under this system, utilities that own fossil-fired power plants in the conterminous 48 states and the District of Columbia are granted the right, in the form of allowances, to emit a specified number of tons of SO{sub 2}. A utility that wants to do so may reduce emissions more than required by the number of allowances it receives and then either sell its excess allowances to other utilities or bank them for future use. Alternatively, it can buy additional allowances from other utilities who may wish to sell, and emit more than its original allocation would have permitted, provided that it holds enough allowances from some source to cover emissions. The research described here attempts to estimate how large these interacting effects might be and how they might affect the choices that utilities make when complying with Title IV of the Amendments. They do so using a model that was designed to estimate what options electric utilities might choose in complying with Title IV, and what effects compliance would have on electricity costs. The model assumes that the allowance trading system would work as smoothly as the economic theory on which the system is based. Actual compliance decisions announced to date have been somewhat different from what theory and the model project. They discuss some of the reasons for these differences and the likely effects these differences may have on the interaction between allowance trading and energy efficiency.

  3. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  4. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    SciTech Connect

    Ritschard, R.

    1993-02-01

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO{sub x}) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  5. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    SciTech Connect

    Ritschard, R.

    1993-02-01

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO[sub x]) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  6. Compressed Air System Enhancement Increase Efficiency and Provides Energy Savings at a Circuit Board Manufacturer

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the circuit board manufacturer (Sanmina Plant) project.

  7. Energy-efficient windows

    SciTech Connect

    1994-10-01

    This fact sheet describes energy efficient windows for the reduction of home heating and cooling energy consumption. It discusses controlling air leaks by caulking and weatherstripping and by replacing window frames. Reducing heat loss and condensation is discussed by describing the types of glazing materials, the number of glass and air spaces, frame and spacer materials, and the use of movable insulation (shutters, drapes, etc.). A resource list is provided for further information.

  8. Efficient Vent Unloading of Air Compressors

    NASA Technical Reports Server (NTRS)

    Muhonen, Alvin J.

    1987-01-01

    Method for unloading one-and two-stage reciprocating air compressors increases energy efficiency and inhibits deterioration of components. In new unloader configuration, compressor vented to atmosphere on downstream side. Method implemented expeditiously as modification of existing systems.

  9. Energy efficiency of engines and appliances for transport on land, water, and in air.

    PubMed

    Furfari, Samuele

    2016-01-01

    The transport sector is fundamental for the economy but also for personal life. With a growing population and the globalization process, it is not surprising that the demand of transport is set to grow in the near future and certainly until 2050. This paper focuses on the huge potential of progress in the sector of technology for transport. As the principal sector for transport will remain on roads, the paper emphasizes the progress in the automotive sector. Since car manufacturers are investing massively into research and technology development to offer ever more efficient cars--not only energy efficient but also efficient in terms of safety and comfort--the car of tomorrow will be very different from the present one. The increasing role of electronics in cars will synergistically cooperate with that of so-called smart cities. The potential development of methane in the transport sector, mainly used for heavy transportation is discussed. PMID:26667061

  10. Energy cost of speec skating and efficiency of work against air resistance.

    PubMed

    Di Prampero, P E; Cortili, G; Mognoni, P; Saibene, F

    1976-04-01

    The energy expenditure during speed ice skating (PB=650 mmHg; T=-5 degrees C) was measured on 13 athletes (speed range: 4-12 m/s) from VO2 and (for speeds greater than 10 m/s) from blood lactic acid concentration. The energy spent (O2 equivalents) per unit body wt and unit distance (Etot/V, ml/kg-min) increases with the speed (v, m/s): Etot/v=0.049 + 0.44 X 10(-3) V2. At 10 m/s, Vtot/v amounts then to 0.093 ml/kg-m: about half the value of running. The constant 0.049 ml/kg-m is interpreted as the energy spent against gravitational and inertial forces. The term 0.44 X 10(-3) v2 indicates the energy spent against the wind, the constant 0.44 X 10(-3) ml-s2-kg-1-m-3 being a measure of k/e, where k is the coefficient relating drag to v2, and e the efficiency of work against the wind. From a direct estimate of k in a wind tunnel, e was calculated as 0.11. In running, skating, and cycling k/e is similar (approximately 0.020 ml-s2-m-3 per m2 body area), hence at a given speed the energy spent against the wind is equal. On the contrary, the energy spent against other forces decreases in the above order: 0.19, 0.05, 0.018 ml-m-1 per kg body wt. This explains the different speeds attained in these exercises with the same power output. PMID:931878

  11. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  12. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  13. Energy-efficient wastewater treatment via the air-based, hybrid membrane biofilm reactor (hybrid MfBR).

    PubMed

    Aybar, M; Pizarro, G; Boltz, J P; Downing, L; Nerenberg, R

    2014-01-01

    We used modeling to predict the energy and cost savings associated with the air-based, hybrid membrane-biofilm reactor (hybrid MfBR). This process is obtained by replacing fine-bubble diffusers in conventional activated sludge with air-supplying, hollow-fiber membrane modules. Evaluated processes included removal of chemical oxygen demand (COD), combined COD and total nitrogen (TN) removal, and hybrid growth (biofilm and suspended). Target concentrations of COD and TN were based on high-stringency water reuse scenarios. Results showed reductions in power requirements as high as 86%. The decrease mainly resulted from the dramatically lower air flows for the MBfR, resulting from its higher oxygen-transfer efficiencies. When the MBfR was used for COD and TN removal, savings up to US$200/1,000 m(3) of treated water were predicted. Cost savings were highly sensitive to the costs of the membrane modules and electrical power. The costs were also very sensitive to membrane oxidation flux for ammonia, and the membrane life. These results suggest the hybrid MBfR may provide significant savings in energy and costs. Further research on the identified key parameters can help confirm these modeling predictions and facilitate scale-up. PMID:24759536

  14. EER, COP, and the Second Law Efficiency for Air Conditioners

    ERIC Educational Resources Information Center

    Leff, Harvey S.; Teeters, William D.

    1978-01-01

    Describes the relationship existing between coefficient of performance (COP) and energy efficiency ratio (EER) in air conditioning units and introduces new efficiency parameters measured relative to the energy extracted from the primary energy source. (SL)

  15. Effects of energy-efficient ventilation rates on indoor air quality at an Ohio elementary school

    NASA Astrophysics Data System (ADS)

    Berk, J. V.; Young, R.; Hollowell, C. D.; Turiel, I.; Pepper, J.

    1980-04-01

    A mobile laboratory was used to monitor air outdoors and at three indoor sites (two classrooms and a large multipurpose room); tests were made at three different ventilation rates. The parameters measured were outside air flow rates, odor perception, microbial burden, particulate mass, total aldehydes, carbon dioxide, ozone, and nitrogen oxides. The results of these measurements are given and compared with the existing outdoor air quality standards. Carbon dioxide concentrations increased as the ventilation rate decreased, but still did not exceed current standards. Odor perceptibility increased slightly at the lowest ventilation rate. Other pollutants showed very low concentrations, which did not change with reductions in ventilation rate.

  16. Radon water to air transfer measured in a bathroom in an energy-efficient home with a private well.

    PubMed

    Harley, Naomi H; Chittaporn, Passaporn; Cook, Gordon B; Fisenne, Isabel M

    2014-07-01

    Monthly measurements of radon in kitchen and bath tap water along with indoor air concentrations were made from 1994 to 1996 in an energy-efficient home with a private well. The well supplies all water to the home. The radon in cold and hot kitchen water averaged 69±2 and 52±2 Bq l(-1), respectively. Radon in cold and hot water from the bath/shower room shower head averaged 60±1 and 38±2 Bq l(-1), respectively, whereas hot water collected in the shower at the tub base averaged 5±1 Bq l(-1) or a 92% radon loss to air. While the calculated transfer factor of 1/10,000, i.e. radon concentration in air to radon in water, conventionally applies to the whole house, measurements for the specific water release during showering in a bathroom exhibit a larger transfer factor of 1/2300, due to smaller room volume. PMID:24803512

  17. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    NASA Astrophysics Data System (ADS)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  18. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  19. Improving Air Quality with Solar Energy

    DOE R&D Accomplishments Database

    2008-04-01

    This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

  20. Improvement of energy efficiency: the use of thermography and air-tightness test in verification of thermal performance of school buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2011-05-01

    The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.

  1. Improving Air Quality with Solar Energy

    SciTech Connect

    2008-04-01

    This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics.

  2. Design and optimization of personalized ventilation for overall improvement of thermal comfort, air quality, and energy efficiency

    NASA Astrophysics Data System (ADS)

    Metzger, Ian Dominic

    This paper presents a simple and repeatable CFD-based method that can accurately predict the optimal operating conditions of personalized ventilation systems. In contrast to previous studies, the optimal performance of the PV system includes the influences of various operation characteristics (supply air velocity, PV flow rate, PV temperature, PV distance from face, turbulence intensity, relative humidity, central system flow rate, central system temperature, central system type, and PV on/off operation) on three critical performance factors: thermal comfort, indoor air quality, and energy savings. This method is able to predict more achievable and comprehensive operating performance of PV systems. It is found for the computer perimeter grill air terminal device that supply temperatures, central flow rate, and PV flow rate are the most influential factors on performance in terms of thermal comfort, IAQ, and energy. Using the Taguchi design of experiment and optimal performance prediction method, the computer perimeter grill personalized ventilation system is optimized in conjunction with under-floor and overhead central systems, separately.

  3. High efficiency novel window air conditioner

    DOE PAGESBeta

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  4. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  5. Landscaping for energy efficiency

    SciTech Connect

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

  6. Energy Conservation vs. Energy Efficiency

    SciTech Connect

    Somasundaram, Sriram

    2010-09-30

    Energy conservation is considered by some as synonymous with energy efficiency, but to others, it has a meaning of getting fewer or lower quality energy services. The degree of confusion between these meanings varies widely by individual, culture, historic period and language spoken. In the context of this document, energy conservation means to keep from being lost or wasted; saved, and energy efficiency means the ability to produce a desired effect or product with a minimum of effort, expense or waste.

  7. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  8. Efficient Use of Energy

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Explains efficiency in terms of thermodynamics, and states specific ways in which energy efficiency can be increased in the following areas: automobiles, industrial processes, and indoor use in the home. (MLH)

  9. Energy 101: Energy Efficient Data Centers

    SciTech Connect

    2011-01-01

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components—up to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  10. Energy 101: Energy Efficient Data Centers

    ScienceCinema

    None

    2013-05-29

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components?up to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  11. Improving air handler efficiency in houses

    SciTech Connect

    Walker, Iain S.

    2004-05-01

    Although furnaces, air conditioners and heat pumps have become significantly more efficient over the last couple of decades, residential air handlers have typical efficiencies of only 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. Substantial increases in performance could be obtained through improved air handler design and construction. A prototype residential air handler intended to address these issues has recently been developed. The prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that the prototype air handler had about twice the efficiency of the standard air handler (averaged over a wide range of operating conditions) and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the clearance between the air handler and cabinet it was placed in. These test results showed that in addition to the large scope for performance improvement, air handler fans need to be tested in the cabinets they operate in.

  12. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  13. Microporous coordination polymers as efficient sorbents for air dehumidification.

    PubMed

    Guo, Ping; Wong-Foy, Antek G; Matzger, Adam J

    2014-03-01

    Air drying is a widespread and critical industrial process. Removal of water from air is commonly accomplished by passage through a desiccant such as alumina; modest water capacity and energy intensive regeneration are limitations of currently used sorbents. Microporous coordination polymers (MCPs) are demonstrated here to be efficient desiccants for the dehumidification of air, and a comparison of their capacity, regenerability, and efficiency with commercial activated alumina is conducted. Complete regeneration using dry air with mild heating is achieved. The attainment of high capacity for the adsorption of water coupled to facile regeneration indicates that gas dehumidification may be an important application for MCPs. PMID:24517543

  14. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  15. ENERGY EFFICIENT LAUNDRY PROCESS

    SciTech Connect

    Tim Richter

    2005-04-01

    With the rising cost of energy and increased concerns for pollution and greenhouse gas emissions from power generation, increased focus is being put on energy efficiency. This study looks at several approaches to reducing energy consumption in clothes care appliances by considering the appliances and laundry chemistry as a system, rather than individually.

  16. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  17. Energy Efficient Supercomputing

    SciTech Connect

    Anypas, Katie

    2014-10-17

    Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  18. Energy Efficiency of LEDs

    SciTech Connect

    2013-03-01

    Solid-state lighting program technology fact sheet on energy efficiency of LEDs, characterizing the current state of the market and discussing package efficacy, luminaire efficacy, and application efficacy.

  19. Improving air handler efficiency in residential HVAC applications

    SciTech Connect

    Walker, Iain S.; Mingee, Michael D.; Brenner, Douglas E.

    2003-08-01

    In continuing the development of energy efficiency standards, consideration has turned to air handlers used for heating and air conditioning of consumer residences. These air handlers have typical efficiencies of about 10% to 15% due to poor electric motor performance and aerodynamically poor fans and fan housings. This study was undertaken to examine some of these performance issues, under carefully controlled laboratory conditions, to support potential regulatory changes. In addition, this study examined the performance of a prototype air handler fan assembly that offers the potential for substantial increases in performance. This prototype and a standard production fan were tested in a full-scale duct system and test chamber at LBNL which was specifically designed for testing heating, ventilation, and air conditioning systems. The laboratory tests compared efficiency, total airflow, sensitivity to duct system flow resistance, and the effects of installation in a smaller cabinet. The test results showed that, averaged over a wide range of operating conditions, the prototype air handler had about twice the efficiency of the standard air handler and was less sensitive to duct system flow resistance changes. The performance of both air handlers was significantly reduced by reducing the space between the air handler and the cabinet it was installed in. Therefore any fan rating needs to be performed using the actual cabinet it will be used in.

  20. Energy Efficiency Project Development

    SciTech Connect

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through

  1. Junior High Gets Energy Efficient VAV System

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    Minnesota's Isanti Junior High, designed with an energy efficient variable air volume system, is an innovative school selected for display at the 1977 Exhibition of School Architecture in Las Vegas. (Author/MLF)

  2. Energy efficiency buildings program, FY 1980

    SciTech Connect

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  3. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  4. Energy efficient drivepower: An overview

    NASA Astrophysics Data System (ADS)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    Energy efficiency is a major concern to industry for a variety of reasons. Operating expenses and public relations are just two of these. While a lot of effort has been expended in the area of electrical energy efficiency, the area of concern in the report, most papers use a limited approach when examining the opportunities for efficiency improvement. However, use of a systems approach--examining the entire power train system from when electrical power first enters a facility to the final output is presented. This type of approach to electrical energy efficiency can improve the overall efficiency by a significant amount. There are many methods of driving mechanical loads such as waste steam (steam turbine), centralized hydraulic systems, and compressed air. Only electric-drive systems were analyzed. Depending on the application and facilities, these other methods may be a viable alternative to electric drivepower systems. The document assumes that the reader has an understanding of the basic concepts, practices, and terminology used in electrical and mechanical engineering. The reader should be familiar with terms such as voltage, current, dc power, ac power, power factor, horse power, torque, angular velocity, kilowatt-hours, efficiency, harmonics, and gear ratio.

  5. Energy, energy efficiency, and the built environment.

    PubMed

    Wilkinson, Paul; Smith, Kirk R; Beevers, Sean; Tonne, Cathryn; Oreszczyn, Tadj

    2007-09-29

    Since the last decades of the 19th century, technological advances have brought substantial improvements in the efficiency with which energy can be exploited to service human needs. That trend has been accompanied by an equally notable increase in energy consumption, which strongly correlates with socioeconomic development. Nonetheless, feasible gains in the efficiency and technology of energy use in towns and cities and in homes have the potential to contribute to the mitigation of greenhouse-gas emissions, and to improve health, for example, through protection against temperature-related morbidity and mortality, and the alleviation of fuel poverty. A shift towards renewable energy production would also put increasing focus on cleaner energy carriers, especially electricity, but possibly also hydrogen, which would have benefits to urban air quality. In low-income countries, a vital priority remains the dissemination of affordable technology to alleviate the burdens of indoor air pollution and other health effects in individuals obliged to rely on biomass fuels for cooking and heating, as well as the improvement in access to electricity, which would have many benefits to health and wellbeing. PMID:17868820

  6. Energy Efficiency I: Automobiles

    SciTech Connect

    Martin, Peter M.

    2003-11-15

    Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.

  7. Energy efficient data centers

    SciTech Connect

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case

  8. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  9. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  10. Energy Efficiency and Electric Utilities

    SciTech Connect

    2007-11-15

    The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

  11. No maintenance -- no energy efficiency

    SciTech Connect

    Szydlowski, R.F.; Schliesing, J.S.; Winiarski, D.W.

    1994-12-01

    Field investigations illustrate that it is not realistic to expect new high-tech equipment to function for a full life expectancy at high efficiency without significant operations and maintenance (O&M). A simple walk through inspection of most buildings reveals extensive equipment that is being operated on manual override, is incorrectly adjusted and operating inefficiently, or is simply inoperative. This point is illustrated with two examples at Robins Air Force Base, Georgia. The first describes development of a comprehensive, base-wide, steam trap maintenance program. The second describes a measured evaluation from a typical office building. The objective of both examples was to assess the importance of proper O&M. The proposed ``O&M First`` philosophy will result in more efficient building HVAC operation, provide improved services to the building occupants, and reduce energy consumption and unscheduled equipment repair/replacement. Implementation of a comprehensive O&M program will result in a 15--25% energy savings. The O&M foundation that is established will allow other energy conservation activities such is demand side management or energy management and control systems, to achieve and maintain their expected energy savings.

  12. 75 FR 30014 - Office of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice. SUMMARY... Efficiency and Renewable Energy (EERE), has experienced historic growth and unprecedented workload...

  13. Energy efficient engine

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Sabla, P. E.; Bahr, D. W.

    1980-01-01

    The feasibility of meeting or closely approaching the emissions goals established for the Energy Efficient Engine (E3) Project with an advanced design, single annular combustor was determined. A total of nine sector combustor configurations and one full-annular-combustor configuration were evaluated. Acceptable levels of carbon monoxide and hydrocarbon emissions were obtained with several of the sector combustor configurations tested, and several of the configurations tested demonstrated reduced levels of nitrogen oxides compared to conventional, single annular designs. None of the configurations tested demonstrated nitrogen oxide emission levels that meet the goal of the E3 Project.

  14. Energy efficiency improvements in Chinese compressed airsystems

    SciTech Connect

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2007-06-01

    Industrial compressed air systems use more than 9 percent ofall electricity used in China. Experience in China and elsewhere hasshown that these systems can be much more energy efficient when viewed asa whole system and rather than as isolated components.This paper presentsa summary and analysis of several compressed air system assessments.Through these assessments, typical compressed air management practices inChina are analyzed. Recommendations are made concerning immediate actionsthat China s enterprises can make to improve compressed air systemefficiency using best available technology and managementstrategies.

  15. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  16. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  17. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  18. Eastern States Harness Clean Energy to Promote Air Quality

    SciTech Connect

    Not Available

    2007-10-01

    States on the East Coast are including renewable energy and energy efficiency projects into their air quality plans that they submit to the EPA to address nonattainment for nitrogen oxides and other pollutants.

  19. The energy dilemma and its impact on air transportation

    NASA Technical Reports Server (NTRS)

    Dyer, C. R. (Editor); Sincoff, M. Z. (Editor); Cribbins, P. D. (Editor)

    1973-01-01

    The dimensions of the energy situation are discussed in relation to air travel. Energy conservation, fuel consumption, and combustion efficiency are examined, as well as the proposal for subsonic aircraft using hydrogen fuel.

  20. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  1. Energy efficient passenger vehicle

    SciTech Connect

    Dessert, R.

    1983-02-22

    An energy efficient passenger carrying vehicle for road use. The vehicle basically comprises a long, narrow body carrying two passengers in a back-to-back relationship. The vehicle is basically a battery powered electric vehicle that can be charged by all free energy sources; namely, the sun, the wind, human muscles and momentum. The vehicle comprises four modules, namely body, solar, and two power modules. An electric power module is located within each end of the body module. This module includes electric motors driving the vehicle supporting wheels and rechargeable batteries to power the motors. Pedals, similar to those on a bicycle, located at each power module, drive generators to help recharge the batteries during operation of the vehicle, or directly help drive the vehicle wheels. A solar module comprising a large electricity generating solar cell panel covers most of the vehicle roof to aid in charging the batteries. Means are provided to tilt the solar cell panel toward the sun about a longitudinal axis. A unique flexible duct below the solar panel serves to cool the cells and, if desired, heat the passenger compartment. Further energy savings are obtained by canting the rear wheels while steering with the front wheels, so that the vehicle moves down the road at a crab angle which provides a sail effect when wind is from the vehicle beam or aft of the beam. Regenerative braking means can be used when slowing down, on a long down grade, when sailing speed is greater than required, or any other time when vehicle momentum is greater than necessary for vehicle operation, to use the excess forward momentum to drive generators to charge the batteries. Thus, a single battery charge will be conserved and vehicle operation will be assisted in a manner giving maximum vehicle range and speed.

  2. Energy efficient passenger vehicle

    SciTech Connect

    Dessert, R.

    1980-01-01

    An energy efficient passenger carrying vehicle for road use comprised of a long, narrow body carrying two passengers in a back-to-back relationship is described. The vehicle is basically a battery powered electric vehicle that can be charged by all free energy sources; namely, the sun, the wind, human muscles and momentum. The vehicle comprises four modules: body, solar, and two power modules. An electric power module is located within each end of the body module. This module includes electric motors driving the vehicle supporting wheels and rechargeable batteries to power the motors. Pedals, similar to those on a bicycle, located at each power module, drive generators to help recharge the batteries during operation of the vehicle, or directly help drive the vehicle wheels. A solar module comprising a large electricity generating solar cell panel covers most of the vehicle roof to aid in charging the batteries. Means are provided to tilt the solar cell panel toward the sun about a longitudinal axis. A unique flexible duct below the solar panel serves to cool the cells and, if desired, heat the passenger compartment. Further energy savings are obtained by canting the rear wheels while steering with the front wheels, so that the vehicle moves down the road at a crab angle which provides a sail effect when wind is from the vehicle beam or aft of the beam. Regenerative braking means can be used when slowing down, on a long down grade, when sailing speed is greater than required, or any other time when vehicle momentum is greater than necessary for vehicle operation, to use the excess forward momentum to drive generators to charge the batteries. Thus, a single battery charge will be conserved and vehicle operation will be assisted in a manner giving maximum vehicle range and speed.

  3. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  4. Energy efficient laboratory fume hood

    DOEpatents

    Feustel, Helmut E.

    2000-01-01

    The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.

  5. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  6. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    SciTech Connect

    Authors, Various

    1981-05-01

    The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

  7. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  8. Thermodynamic Analysis of a Novel Liquid Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Xue, X. D.; Wang, S. X.; Zhang, X. L.; Cui, C.; Chen, L. B.; Zhou, Y.; Wang, J. J.

    In this study, a novel liquid air energy storage system for electrical power load shifting application is introduced. It is a combination of an air liquefaction cycle and a gas turbine power generation cycle without fuel combustion. Thermodynamic analysis is conducted to investigate the performance of this system. The results show that liquid air energy storage systems could be very effective systems for electrical power storage with high efficiency, high energy density and extensive application prospects.

  9. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  10. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  11. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  12. University of Arizona Compressed Air Energy Storage

    SciTech Connect

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  13. Improving aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.

    1976-01-01

    Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.

  14. Energy efficient building design

    SciTech Connect

    Not Available

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  15. Energy efficient perlite expansion process

    SciTech Connect

    Jenkins, K.L.

    1982-08-31

    A thermally efficient process for the expansion of perlite ore is described. The inlet port and burner of a perlite expansion chamber (Preferably a vertical expander) are enclosed such that no ambient air can enter the chamber. Air and fuel are metered to the burner with the amount of air being controlled such that the fuel/air premix contains at least enough air to start and maintain minimum combustion, but not enough to provide stoichiometric combustion. At a point immediately above the burner, additional air is metered into an insulated enclosure surrounding the expansion chamber where it is preheated by the heat passing through the chamber walls. This preheated additional air is then circulated back to the burner where it provides the remainder of the air needed for combustion, normally full combustion. Flow of the burner fuel/air premix and the preheated additional air is controlled so as to maintain a long luminous flame throughout a substantial portion of the expansion chamber and also to form a moving laminar layer of air on the inner surface of the expansion chamber. Preferably the burner is a delayed mixing gas burner which materially aids in the generation of the long luminous flame. The long luminous flame and the laminar layer of air at the chamber wall eliminate hot spots in the expansion chamber, result in relatively low and uniform temperature gradients across the chamber, significantly reduce the amount of fuel consumed per unit of perlite expanded, increase the yield of expanded perlite and prevent the formation of a layer of perlite sinter on the walls of the chamber.

  16. LEDs for Efficient Energy

    ERIC Educational Resources Information Center

    Guerin, David A.

    1978-01-01

    Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)

  17. Aircraft energy efficiency. Overview

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Six advanced technology development projects that could cut fuel consumption of future civil air transports by as much as 50 percent are highlighted. These include improved engine components; better engine design; thin short blades for turboprop aircaft; using composite primary structures for weight reduction; the use of supercritical wings, higher aspect ratio, and winglets for improved aerodynamics; active controls; and laminar flow control. The time span of each of the six efforts and NASA's expected expenditures are also discussed.

  18. Cleanroom Energy Efficiency: Metrics and Benchmarks

    SciTech Connect

    International SEMATECH Manufacturing Initiative; Mathew, Paul A.; Tschudi, William; Sartor, Dale; Beasley, James

    2010-07-07

    Cleanrooms are among the most energy-intensive types of facilities. This is primarily due to the cleanliness requirements that result in high airflow rates and system static pressures, as well as process requirements that result in high cooling loads. Various studies have shown that there is a wide range of cleanroom energy efficiencies and that facility managers may not be aware of how energy efficient their cleanroom facility can be relative to other cleanroom facilities with the same cleanliness requirements. Metrics and benchmarks are an effective way to compare one facility to another and to track the performance of a given facility over time. This article presents the key metrics and benchmarks that facility managers can use to assess, track, and manage their cleanroom energy efficiency or to set energy efficiency targets for new construction. These include system-level metrics such as air change rates, air handling W/cfm, and filter pressure drops. Operational data are presented from over 20 different cleanrooms that were benchmarked with these metrics and that are part of the cleanroom benchmark dataset maintained by Lawrence Berkeley National Laboratory (LBNL). Overall production efficiency metrics for cleanrooms in 28 semiconductor manufacturing facilities in the United States and recorded in the Fabs21 database are also presented.

  19. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2013-02-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  20. Affordable Energy-Efficient New Housing Solutions

    SciTech Connect

    Chandra, Subrato; Widder, Sarah H.; Bartlett, Rosemarie; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen; Abbott, , K.; Fonorow, Ken; Eklund, Ken; Lubliner, Michael; Salzberg, Emily; Peeks, B.; Hewes, T.; Kosar, D.

    2012-05-31

    Since 2010, the U.S. Department of Energy’s Building America has sponsored research at PNNL to investigate cost-effective, energy-saving home-building technologies and to demonstrate how high-performance homes can deliver lower utility bills, increased comfort, and improved indoor air quality, while maintaining accessibility for low-income homeowners. PNNL and its contractors have been investigating 1) cost-effective whole-house solutions for Habitat for Humanity International (HFHI) and specific HFH affiliates in hot-humid and marine climates; 2) cost-effective energy-efficiency improvements for heating, ventilation, and air-conditioning (HVAC) systems in new, stick-built and manufactured homes; and 3) energy-efficient domestic hot-water systems.

  1. Nonprofit Energy Efficiency Act

    THOMAS, 113th Congress

    Sen. Klobuchar, Amy [D-MN

    2013-04-11

    06/25/2013 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 113-70. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  3. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  4. Energy Efficient Economists.

    ERIC Educational Resources Information Center

    Silverman, Judy; Lamp, Nancy

    This interdisciplinary economics project helped first and second graders learn how to conserve energy and save money. The project started because of an announcement by the elementary school principal that, if school utility bills could be lowered, the Board of Education would give the school half the money saved. Students were first introduced to…

  5. Polish Foundation for Energy Efficiency

    SciTech Connect

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  6. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. PMID:24723188

  7. Improving energy efficiency in the transportation sector

    SciTech Connect

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  8. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  9. Monitoring and evaluation of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached houses in Austin, Texas

    SciTech Connect

    Burns, R.; Hough, R.E. and Associates, Inc., Syracuse, NY )

    1991-10-01

    The US DOE initiated this project to evaluate the performance of an air conditioner retrofit program in Austin, Texas. The City's Austin's Resource Management Department pursued this project to quantify the retrofit effect of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached homes. If successfully implemented, this retrofit program could help defer construction of a new power plant which is a major goal of this department. The project compares data collected from 12 houses during two cooling seasons under pre-retrofit and then post-retrofit air conditioner units. The existing low-efficiency air conditioners were monitored during the 1987 cooling season, replaced during the 1987--88 heating season with new, smaller sized, high-efficiency units, and then monitored again during the 1988 cooling season. Results indicated that the air conditioner retrofits reduce the annual air conditioner electric consumption and peak electric demand by an average of 38%. When normalized to the nominal capacity of the air conditioner, average demand savings were 1.12 W/ft{sup 2} and estimated annual energy savings were 1.419 kWh/ft{sup 2}. Individual air conditioner power requirements were found to be a well defined function of outdoor temperature as expected. In the absence of detailed data, estimates of the peak demand reductions of new air conditioners can be made from the manufacturer's specifications. Air conditioner energy consumption proved to be strongly linear as a function of the outdoor temperature as expected when taken as an aggregate. No noticeable differences in the diversity factor of the air conditioner usage were found. Analysis of the retrofit effect using PRISM yields estimates of the reduction in normalized annual consumption (NAC) and annual cooling consumption of 12% and 30%. 2 refs., 11 figs., 17 tabs.

  10. Energy efficiency, renewable energy and sustainable development

    SciTech Connect

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  11. Jcpenney Buying into Energy Efficiency

    SciTech Connect

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air- Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  12. Cleanroom Energy Efficiency Workshop Proceedings

    SciTech Connect

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  13. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  14. Energy Efficiency for Electrical Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in electrical technology. The following topics are examined: where to look for energy waste; conservation methods for electrical consumers, for…

  15. New Orleans and Energy Efficiency

    ScienceCinema

    Rosenburg, Zachary

    2013-05-29

    The Saint Bernard Project works tirelessly with volunteers, veterans and homeowners to continue the rebuilding. With the help of the Department of Energy and the Department of Housing and Urban Development they will be able to apply a greater energy efficiency strategy to help New Orleans and the country reduce our dependence on foreign oil.

  16. New Orleans and Energy Efficiency

    SciTech Connect

    Rosenburg, Zachary

    2010-01-01

    The Saint Bernard Project works tirelessly with volunteers, veterans and homeowners to continue the rebuilding. With the help of the Department of Energy and the Department of Housing and Urban Development they will be able to apply a greater energy efficiency strategy to help New Orleans and the country reduce our dependence on foreign oil.

  17. Bright, Light and Energy Efficient.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)

  18. Emissions and energy efficiency assessment of baseload wind energy systems.

    PubMed

    Denholm, Paul; Kulcinski, Gerald L; Holloway, Tracey

    2005-03-15

    The combination of wind energy generation and energy storage can produce a source of electricity that is functionally equivalent to a baseload coal or nuclear power plant. A model was developed to assess the technical and environmental performance of baseload wind energy systems using compressed air energy storage. The analysis examined several systems that could be operated in the midwestern United States under a variety of operating conditions. The systems can produce substantially more energy than is required from fossil or other primary sources to construct and operate them. By operation at a capacity factor of 80%, each evaluated system achieves an effective primary energy efficiency of at least five times greater than the most efficient fossil combustion technology, with greenhouse gas emission rates less than 20% of the least emitting fossil technology currently available. Life-cycle emission rates of NOx and SO2 are also significantly lower than fossil-based systems. PMID:15819254

  19. Implementing energy efficient embedded multimedia

    NASA Astrophysics Data System (ADS)

    Silven, Olli; Rintaluoma, Tero; Jyrkkä, Kari

    2006-02-01

    Multimedia processing in battery powered mobile communication devices is pushing their computing power requirements to the level of desktop computers. At the same time the energy dissipation limit stays at 3W that is the practical maximum to prevent the devices from becoming too hot to handle. In addition, several hours of active usage time should be provided on battery power. During the last ten years the active usage times of mobile communication devices have remained essentially the same regardless of big energy efficiency improvements at silicon level. The reasons can be traced to the design paradigms that are not explicitly targeted to creating energy efficient systems, but to facilitate implementing complex software solutions by large teams. Consequently, the hardware and software architectures, including the operating system principles, are the same for both mainframe computer system and current mobile phones. In this paper, we consider the observed developments against the needs of video processing in mobile communication devices and consider means of implementing energy efficient video codecs both in hardware and software. Although inflexible, monolithic video acceleration hardware is an attractive solution, while software based codecs are becoming increasingly difficult to implement in an energy efficient manner due to increasing system complexity. Approaches that combine both the flexibility of software and energy efficiency of hardware remain to be seen.

  20. The general efficiency curve for air propellers

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report presents a formula which may be used to obtain a "general efficiency curve" in addition to the well-known maximum efficiency curve. These two curves, when modified somewhat by experimental data, enable performance calculations to be made without detailed knowledge of the propeller. The curves may also be used to estimate the improvement in efficiency due to reduction gearing, or to judge the performance of a new propeller design.

  1. Energy planning and energy efficiency assistance

    SciTech Connect

    Markel, L.

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  2. Energy Efficiency Indicators Methodology Booklet

    SciTech Connect

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  3. Efficiency at Sorting Cards in Compressed Air

    PubMed Central

    Poulton, E. C.; Catton, M. J.; Carpenter, A.

    1964-01-01

    At a site where compressed air was being used in the construction of a tunnel, 34 men sorted cards twice, once at normal atmospheric pressure and once at 3½, 2½, or 2 atmospheres absolute pressure. An additional six men sorted cards twice at normal atmospheric pressure. When the task was carried out for the first time, all the groups of men performing at raised pressure were found to yield a reliably greater proportion of very slow responses than the group of men performing at normal pressure. There was reliably more variability in timing at 3½ and 2½ atmospheres absolute than at normal pressure. At 3½ atmospheres absolute the average performance was also reliably slower. When the task was carried out for the second time, exposure to 3½ atmospheres absolute pressure had no reliable effect. Thus compressed air affected performance only while the task was being learnt; it had little effect after practice. No reliable differences were found related to age, to length of experience in compressed air, or to the duration of the exposure to compressed air, which was never less than 10 minutes at 3½ atmospheres absolute pressure. PMID:14180485

  4. Market barriers to energy efficiency

    SciTech Connect

    Howarth, R.B.; Andersson, B.

    1992-06-01

    Discussions of energy policy in an environmentally constrained world often focus on the use of tax instruments to internalize the external effects of energy utilization or achieve specified reductions in energy use in the most cost-effective manner. A substantial literature suggests, however, that significant opportunities exist to reduce energy utilization by implementing technologies that are cost-effective under prevailing economic conditions but that are not fully implemented by existing market institutions. This paper examines the theory of the market for energy-using equipment, showing that problems of imperfect information and transaction costs may bias rational consumers to purchase devices that use more energy than those that would be selected by a well-informed social planner guided by the criterion of economic efficiency. Consumers must base their purchase decisions on observed prices and expectations of postpurchase equipment performance. If it is difficult or costly for individuals to form accurate and precise expectations, the level of energy efficiency achieved by competitive markets will vary from the socially efficient outcome. Such ``market barriers`` suggest a role for regulatory intervention to improve market performance at prevailing energy prices.

  5. Market barriers to energy efficiency

    SciTech Connect

    Howarth, R.B. ); Andersson, B. )

    1992-06-01

    Discussions of energy policy in an environmentally constrained world often focus on the use of tax instruments to internalize the external effects of energy utilization or achieve specified reductions in energy use in the most cost-effective manner. A substantial literature suggests, however, that significant opportunities exist to reduce energy utilization by implementing technologies that are cost-effective under prevailing economic conditions but that are not fully implemented by existing market institutions. This paper examines the theory of the market for energy-using equipment, showing that problems of imperfect information and transaction costs may bias rational consumers to purchase devices that use more energy than those that would be selected by a well-informed social planner guided by the criterion of economic efficiency. Consumers must base their purchase decisions on observed prices and expectations of postpurchase equipment performance. If it is difficult or costly for individuals to form accurate and precise expectations, the level of energy efficiency achieved by competitive markets will vary from the socially efficient outcome. Such market barriers'' suggest a role for regulatory intervention to improve market performance at prevailing energy prices.

  6. Compressed air energy storage system

    SciTech Connect

    Ahrens, F.W.; Kartsounes, G.T.

    1981-07-28

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  7. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  9. Energy Efficient Drivepower: An Overview.

    SciTech Connect

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  10. Technology for aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  11. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  12. Mobile Energy Laboratory energy-efficiency testing programs

    NASA Astrophysics Data System (ADS)

    Parker, G. B.; Currie, J. W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at Federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the U.S. Department of Energy, U.S. Army, U.S. Air Force, U.S. Navy, and other Federal agencies.

  13. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G.B.; Currie, J.W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  14. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  15. Building Energy Efficiency in Rural China

    SciTech Connect

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  16. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  17. PARTICLE-SIZE DEPENDENT EFFICIENCY OF AIR CLEANERS

    EPA Science Inventory

    The paper gives results of tests with media filters, electrostatic filters, and electronic air cleaners. t also discusses results from system qualification tests to detect system artifacts. he collection efficiency of air cleaners as a function of particle diameter must be known ...

  18. Efficient energy use in manufacturing.

    PubMed Central

    Ross, M

    1992-01-01

    The potential for improved industrial efficiency is great and a substantial part of that potential is being realized in the course of events. With new technology and increasing affluence, the composition of production is changing such that energy and materials consumption is growing more slowly than the economy. Through new technologies and appropriate public policies, the energy intensities of all production processes should also continue to decline. Potential difficulties facing this relatively rosy scenario are also discussed. PMID:11607261

  19. Compressed air system upgrade results in substantial energy savings

    SciTech Connect

    None, None

    2002-01-01

    This case study highlights a compressed air system upgrade at BWX Technologies manufacturing plant in Lynchburg, Virginia, which replaced antiquated compressors and dryers and implemented an improved control strategy, resulting in improved energy efficiency and savings in energy and maintenance costs.

  20. Energy Efficiency for Automotive Instructors.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.; Lay, Gary, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains six units on energy efficiency that were designed to be incorporated into an existing program in automobile mechanics. The following topics are examined: drivers and public awareness (relationship between driving and fuel consumption); ignition…

  1. Guide to Energy-Efficient Lighting

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Lighting accounts for about 15% of an average home’s electricity use, so it pays to make energy-efficient choices.

  2. 7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain a..., replacements, and retirements of energy efficiency related equipment and activities; (b) An energy......

  3. Southern Energy Efficiency Center (SEEC)

    SciTech Connect

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  4. Energy efficiency in passenger transportation: What the future may hold

    SciTech Connect

    Plotkin, S.

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  5. Energy Efficiency and Renewable Energy Program

    NASA Astrophysics Data System (ADS)

    Vaughan, K. H.

    1993-06-01

    The bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of the bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; and continuous fiber ceramic composite technology.

  6. Aerodynamics/ACEE: Aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  7. Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, V.; Bhargava, A.

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  8. Improving Regional Air Quality with Wind Energy

    SciTech Connect

    Not Available

    2005-05-01

    This model documentation is designed to assist State and local governments in pursuing wind energy purchases as a control measure under regional air quality plans. It is intended to support efforts to draft State Implementation Plans (SIPs), including wind energy purchases, to ensure compliance with the standard for ground-level ozone established under the Clean Air Act.

  9. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold its inaugural meeting to..., Office of Energy and Environmental Technologies Industries (OEEI), International Trade Administration,...

  10. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...; ] DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency Advisory... Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a...: Ryan Mulholland, Office of Energy and Environmental Industries (OEEI), International...

  11. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  12. Lighting quality and energy efficiency

    SciTech Connect

    Benya, J.R.

    1996-01-01

    Ten design actions result in good lighting quality if applied intelligently. These actions are to: conceal the light source; provide enough light; relate to the architecture; relate to the human mood; utilize and manage the color of light; utilize and manage contrast; relate to the human being; solve technical problems created by other light sources; relate to the quality of the space; and realize the creative potential of the space. The starting characteristics for energy-efficient lighting include dimming capability, color capabilities, and optical capabilities. The most efficacious light source for the job should be used. This includes daylight, although it is not always reliable. Energy-efficient quality lighting is evident, but to make it persistent, to give it staying power, there must be some changes, such as: minor product improvements; two to a few major product breakthroughs; better education for the designers and specifiers; lower prices for key components and systems; higher value placed on environmental quality; ongoing applications research; doing it right; more industry awards and recoginition for energy-efficient designs; continuation of utility efforts in rebates, education programs, and technology centers; unification of the industry and avoidance of duplication; more positive governmental response and less arbitrary product-oriented legislation until this issue is better understood.

  13. Energy efficiency public service advertising campaign

    SciTech Connect

    Gibson-Grant, Amanda

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  14. 10 CFR 431.97 - Energy efficiency standards and their compliance dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency standards and their compliance dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy...

  15. 10 CFR 431.97 - Energy efficiency standards and their effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy...

  16. 10 CFR 431.97 - Energy efficiency standards and their effective dates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy...

  17. 10 CFR 431.97 - Energy efficiency standards and their compliance dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency standards and their compliance dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy...

  18. 10 CFR 431.97 - Energy efficiency standards and their effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy...

  19. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2003-07-28

    This is the fourth quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period of April 1, 2003 to June 30, 2003. However, IEUA is preparing a Supplemental report that will be mailed to the Department of Energy (DOE) by August 1, 2003, that provides additional information regarding IEUA's plan to expedite certain project activities. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings, discussions, and engineering and design activities that took place to finalize the project scope of work and complete the Request for Proposal (RFP) for the RP-5 Renewable Energy Efficiency Project. IEUA has decided to invite three more consulting engineering firms besides CH2M Hill, the Public Interest Energy Research (PIER) Consultant, to submit proposals for the design of the energy efficiency project. The proposals are currently in the evaluation phase and a decision is expected by the end of July. IEUA moved to its new headquarters building on June 13, 2003. The central plant is the system that supplies cooling and heating water to the headquarters building, and it primarily consists of equipment listed in the cooperative agreement under ''Chiller and Heater''. The central plant equipment was successfully installed and started. Other activities include gas analysis of three sources of low quality digester gas and foul air which could be used as fuel for an innovative flex microturbine. IEUA is also working with Stirling Energy Systems to determine if the Agency should be a host site for their equipment for testing the engine's operation on digester and natural gas. A matching funds update is also included in the Results and Discussion section, which presents the work effort performed by the PIER Consultant and the associated costs that serve as matching funds for the RP-5 Project during

  20. Industrial energy efficiency opportunities in Ukraine

    SciTech Connect

    Somasundaram, S.; Parker, S.; Evans, M.; Brown, D.

    1999-07-01

    plants were chosen for a more detailed energy audit and financial assessment. Results of a detailed engineering analysis and a financial assessment of each plant led to prioritized list of recommended energy efficiency measures. The recommendations made to the plant management at two of these facilities are reported here. In addition, audits were conducted at some of the secondary plants and their results are reported as well. Some specific technologies recommended in the course of this work have included installing a new Western glass furnace at the Gostomel glass plant, which not only saves energy but also increases the volume and quality of glass production. The gas turbine cogeneration plant proposed for the coke-chemical plant will use coke-oven gas, a by-product of the coking process, as the primary fuel. Some of the more generic energy saving measures that could apply to a majority of the industrial facilities include replacing an existing compressed-air system with high-efficiency equipment, upgrading the lighting system, and installation of heat recovery systems. This paper describes the process of identifying opportunities and discusses some of the recommendations made to the plant management at some of these facilities. The paper also provides an update on the implementation plans for some of the recommended energy efficiency measures.

  1. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  2. Standard Energy Efficiency Data Platform

    Energy Science and Technology Software Center (ESTSC)

    2014-07-15

    The SEED platform is expected to be a building energy performance data management tool that provides federal, state and local governments, building owners and operators with an easy, flexible and cost-effective method to collect information about groups of buildings, oversee compliance with energy disclosure laws and demonstrate the economic and environmental benefits of energy efficiency. It will allow users to leverage a local application to manage data disclosure and large data sets without the ITmore » investment of developing custom applications. The first users of SEED will be agencies that need to collect, store, and report/share large data sets generated by benchmarking, energy auditing, retro-commissioning or retrofitting of many buildings. Similarly, building owners and operators will use SEED to manage their own energy data in a common format and centralized location. SEED users will also control the disclosure of their information for compliance requirements, recognition programs such as ENERGY STAR, or data sharing with the Buildings Performance Database and/or other third parties at their discretion.« less

  3. Energy efficiency through integrated environmental management.

    PubMed

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented. PMID:25850743

  4. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  5. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  6. Best Practice for Energy Efficient Cleanrooms: Fan-FilterUnits

    SciTech Connect

    Xu, Tengfang

    2005-06-15

    The HVAC systems in cleanrooms may use 50 percent or more of the total cleanroom energy use. Fan energy use accounts for a significant portion (e.g., over 50%) of the HVAC energy use in cleanrooms such as ISO Classes 3, 4, or 5. Three types of air-handling systems for recirculating airflows are commonly used in cleanrooms: (1) fan-tower systems with pressurized plenum, (2) ducted HEPA systems with distributed-fans, and (3) systems with fan-filter units. Because energy efficiency of the recirculation systems could vary significantly from system type to system type, optimizing aerodynamic performance in air recirculation systems appears to be a useful approach to improve energy efficiency in cleanrooms. Providing optimal airflows through careful planning, design and operation, including air change rate, airflow uniformity, and airflow speed, is important for controlling particle contamination in cleanrooms. In practice, the use of fan-filter units (FFUs) in the air-handling system is becoming more and more popular because of this type of system may offer a number of advantages. Often modular and portable than traditional recirculation airflow systems, FFUs are easier to install, and can be easily controlled and monitored to maintain filtration performance. Energy efficiency of air handling systems using fan-filter units can, however, be lower than their counterparts and may vary significantly from system to system because of the difference in energy performance, airflow paths, and the operating conditions of FFUs.

  7. Energy efficiency and the environment: Forging the link

    SciTech Connect

    Vine, E.; Crawley, D.; Centolella, P.

    1991-12-31

    Energy efficiency in homes, the workplace and transportation provides one of the most immediate and valuable solutions to the environmental problems that endanger the world. This book addresses the direct correlation between conserving energy and mitigating environmental hazards such as global warming, air pollution, acid rain, and ozone depletion. Twenty chapters focus on how energy efficiency measures and programs can reduce pollutant emissions, and how planners can incorporate environmental externalities in the allocation of natural resources. Based on papers presented at the ACEEE 1990 Summer Study on Energy Efficiency in Buildings, the book is written by leading researchers, program analysts and policymakers. Topics include: global warming--public perspectives and CO{sub 2} reduction potential; efficiency improvements as an acid rain compliance strategy; efficiency and regulatory policy options; environmental externality costs; integrating energy and environmental planning; trees, landscaping and urban heat islands; and CFCs, energy use in buildings.

  8. Sustainable Energy - Without the hot air

    NASA Astrophysics Data System (ADS)

    MacIsaac, Dan

    2009-11-01

    Reader John Roeder writes about a website associated with David MacKay's book Sustainable Energy-Without the hot air. The book is a freely downloadable PDF (or purchasable) book describing an analysis detailing a low-carbon renewable energy transformation route for a large, modern first world industrial country (the United Kingdom). Written for the layman, the work uses vernacular language, e.g., energy consumption and production in a series of bar charts detailing the impacts of necessary strategies such as population reduction, lifestyle changes, and technology changes. MacKay notes that most reasonable plans have large nuclear and ``clean coal'' or other carbon capture components, lots of pumped heat, wind, and much efficiency improvement. He debunks some sacred cows (roof-mounted micro-turbines; hydrogen-powered cars) while pointing out simple effective technologies such as roof-mounted solar water heaters. Similar modest changes in the U.S. (painting roofs white in the southern half of the country) have strong impacts. MacKay claims that he ``doesn't advocate any particular plan or technology,'' but ``tells you how many bricks are in the lego box, and how big each brick is'' so readers can start making planning decisions.

  9. The energy efficient engine project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine Project is directed at providing, by 1984, the advanced technologies which could be used for a generation of fuel conservative turbofan engines. The project is conducted through contracts with the General Electric Company and Pratt and Whitney Aircraft. The scope of the entire project and the current status of these efforts are summarized. A description of the preliminary designs of the fully developed engines is included and the potential benefits of these advanced engines, as well as highlights of some of the component technology efforts conducted to date, are discussed.

  10. Energy efficient sensor network implementations

    SciTech Connect

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M; Kulathumani, Vinod; Rosten, Ed; Wolinski, Christophe; Wagner, Charles; Charot, Francois

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  11. Improving Energy Security for Air Force Installations

    NASA Astrophysics Data System (ADS)

    Schill, David

    Like civilian infrastructure, Air Force installations are dependent on electrical energy for daily operations. Energy shortages translate to decreased productivity, higher costs, and increased health risks. But for the United States military, energy shortages have the potential to become national security risks. Over ninety-five percent of the electrical energy used by the Air Force is supplied by the domestic grid, which is susceptible to shortages and disruptions. Many Air Force operations require a continuous source of energy, and while the Air Force has historically established redundant supplies of electrical energy, these back-ups are designed for short-term outages and may not provide sufficient supply for a longer, sustained power outage. Furthermore, it is the goal of the Department of Defense to produce or procure 25 percent of its facility energy from renewable sources by fiscal year 2025. In a government budget environment where decision makers are required to provide more capability with less money, it is becoming increasingly important for informed decisions regarding which energy supply options bear the most benefit for an installation. The analysis begins by exploring the field of energy supply options available to an Air Force installation. The supply options are assessed according to their ability to provide continuous and reliable energy, their applicability to unique requirements of Air Force installations, and their costs. Various methods of calculating energy usage by an installation are also addressed. The next step of this research develops a methodology and tool which assesses how an installation responds to various power outage scenarios. Lastly, various energy supply options are applied to the tool, and the results are reported in terms of cost and loss of installation capability. This approach will allow installation commanders and energy managers the ability to evaluate the cost and effectiveness of various energy investment options.

  12. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  13. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call on January... renewable energy and energy efficiency (RE&EE) products and services. DATES: January 23, 2014, from 2:00...

  14. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: U.S... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call to... expand the competitiveness of the U.S. renewable energy and energy efficiency industries,...

  15. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30

    stringent utility, gas, power, and air quality rules and regulations. Coordination with the Southern California Gas Company (SCGC), Southern California Edison (SCE), and South Coast Air Quality Management District (SCAQMD) was continuous and extensive. The interconnecting agreement and the permit to construct and operate were major obstacles despite the early start and coordination with the utility companies and regulatory agencies. The RP-5 REEP is part of a unique RP-5 Complex approach where several facilities are tied and connected with each other; where energy and gas can be transferred from one facility to another (see attached RP-5 Complex Ultimate Energy Balance Diagram). The REEP also incorporated new technologies, such as TES and ORC, along with using heat recovery for the platinum-LEED headquarter buildings heating and cooling via efficient absorption chillers. Through the conceptual design phase, numerous innovative technologies were researched and evaluated, with the most proven and efficient selected to be part of the RP-5 REEP.

  16. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  17. The compatibility of energy conservation and indoor air quality

    SciTech Connect

    Grimsrud, D.T.; Turk, B.H.; Prill, R.J.; Revzan, K.L.

    1988-10-01

    Two studies of indoor air quality in residences are described. In the first air quality measurements are reported in 111 unweatherized houses followed by careful observation of changes in ventilation rates and air quality in a subset of forty of the houses that received staged weatherization. A large fraction of the houses sampled in the eastern portion of the state of Washington contained high concentrations of radon gas. The major change in air quality seen in the sample as the result of weatherization was a substantial decrease in radon concentration in houses having crawlspaces. A second study reported compares ventilation and air quality in 62 new residences. Half were built using Model Conservation Standards to promote energy efficiency; the other half were built using conventional techniques for the region. Little difference was seen in ventilation rates in spite of significant design differences. Larger variations in air quality were seen between houses in different regions than between the Control and test houses in the same region. We conclude that changes in housing design and construction to promote energy efficiency are not incompatible with good indoor air quality. 20 refs., 13 figs.

  18. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  19. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  20. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  1. Buildings energy efficiency in the Southeast

    SciTech Connect

    Not Available

    1993-01-01

    In June 1992, energy service providers from around the Southeastern United States gathered at the Shenandoah Environment and Education Center of Georgia Power Company, to discuss issues related to energy efficiency buildings in the region. The meeting was organized by an ad hoc planning committee under the auspices of the Atlanta Support Office of the DOE. The objectives of the Workshop were to provide a forum for regional energy service providers to discuss matters of mutual concern and to identify issues of particular relevance to the Southeast. What characterizes energy use in the Southeast Most lists would include rapid population growth, high temperatures and humidity, a large air conditioning load on utilities, a relatively clean environment, and regulatory processes that seek to keep energy prices low. There was less unanimity on what are the priority issues. No definitive list of priorities emerged from the workshop. Participants did identify several areas where work should be initiated: networking, training/certification/education, performance of technical measures, and studies of market forces/incentives/barriers. The most frequently mentioned context for these work areas was that of utility programs. Presentations given during the first morning provided attendees an overview of energy use in the region and of building energy conservation programs being implemented both by state agencies and by utilities. These were the base for breakout and plenary sessions in which attendees expressed their views on specific topics. The regional need mentioned most often at the workshop was for networking among energy service providers in the region. In this context, this report itself is a follow up action. Participants also requested a regional directory of energy program resources. DOE agreed to assemble a preliminary directory based upon input from workshop attendees. Because the response was quick and positive, a directory is part of this document.

  2. Environmental assessment. Energy efficiency standards for consumer products

    SciTech Connect

    McSwain, Berah

    1980-06-01

    The Energy Policy and Conservation Act of 1975 requires DOE to prescribe energy efficiency standards for 13 consumer products. The Consumer Products Efficiency Standards (CPES) program covers: refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment, kitchen ranges and ovens, central air conditioners (cooling and heat pumps), furnaces, dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers. This Environmental Assessment evaluates the potential environmental and socioeconomic impacts expected as a result of setting efficiency standards for all of the consumer products covered by the CPES program. DOE has proposed standards for eight of the products covered by the Program in a Notice of Proposed Rulemaking (NOPR). DOE expects to propose standards for home heating equipment, central air conditioners (heat pumps only), dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers in 1981. No significant adverse environmental or socioeconomic impacts have been found to result from instituting the CPES.

  3. High efficiency, down flow air filter sealing and support system

    SciTech Connect

    Mattison, A.H.

    1986-07-15

    An assembly of high efficiency air filter units through which essentially all air entering a clean space below the units must pass to remove particulate matter down to sub-micron size from the air, the assembly comprising: (a) a plurality of air filter units each having a filter core of pleated media sealed in air-tight engagement on four sides to a surrounding, box-like, rigid frame, having side and end members; (b) means for supporting the filter units adjacent the upper surfaces thereof from structure above the space with adjacent units having the side and end members thereof providing adjoining vertical surfaces in closely spaced relation with the lower surfaces of the units in essentially the same horizontal plane to form at least a portion of the top of the space; and (c) a caulking material filling all spaces between the adjoining vertical surfaces of adjacent filter units, effectively sealing the spaces and providing the sole means preventing passage of air around the units.

  4. Energy efficiency at the University of Miami

    SciTech Connect

    Atherton, V.; Anzoategui, F.

    1996-07-01

    The University of Miami (UM) has embarked on a very important and worthwhile mission: ``To make UM one of the most energy efficient universities in the nation by the year 2000``. In order for the University to meet this goal the authors knew they would need to take advantage of all the available technologies and address the freon issues. In June 1990 the Coral Gables Campus had five chilled Water Production Plants, each representing small independent systems serving from four to ten buildings. Because of energy conservation measures of the past, each plant had excess capacity. At that time they also had identified about 600 tons of old falling-apart air conditioning equipment. The Capital Construction Program was beginning design efforts for a new Music Recital Hall and an addition to the Law Library. With all this considered it made sense to develop a common chilled water loop to connect these plants and provide a vehicle to capitalize on available capacity. In early 1991 Florida Power and Light offered a new CILC rate with criteria that the chilled water plants met. It allowed them to produce air conditioning at 5.8 cents a kWh, compared to 7.5 cents a kWh, at the buildings. This, added to the reality of not having to maintain or replace the old systems, made this the number 1 priority project. They were convinced that this could give them a competitive edge over other institutions because it insured that they could produce air conditioning at the least cost per square foot.

  5. Industrial energy efficiency policy in China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-05-01

    Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

  6. Dirty air conditioners: Energy implications of coil fouling

    SciTech Connect

    Siegel, Jeffrey; Walker, Iain; Sherman, Max

    2002-03-01

    Residential air conditioning is responsible for a substantial amount of peak electrical demand and energy consumption throughout most of the United States. Coil fouling, the deposition of indoor dusts and other particulate matter on evaporator heat exchangers, increases system pressure drop and, correspondingly, decreases system air flow and air conditioner performance. In this paper, we apply experimental and simulation results describing particle deposition on evaporator coils as well as research about indoor particle and dust concentrations to determine coil fouling rates. The results suggest that typical coils foul enough to double evaporator pressure drop in about 7.5 years, much sooner than the expected 15-30 year life time for an evaporator coil. The most important parameters in determining coil fouling times are the efficiency of the filter and indoor particle concentrations, although filter bypass and duct and coil design are important as well. The reduced air flows that result from coil fouling cause typical efficiency and capacity degradations of less than 5%, however they can be much greater for marginal systems or extreme conditions. These energy issues, as well as possible indoor air quality issues resulting from fouling by biological aerosols, suggest that regular coil cleaning to ameliorate low flow and the elimination of filter bypass should be an important part of residential air conditioning commissioning and maintenance practices.

  7. Assessment of Selected Energy Efficiency Policies

    EIA Publications

    2005-01-01

    This report responds to a request from Senator Byron L. Dorgan, asking the Energy Information Administration (EIA) to undertake a quantitative analysis of a variety of energy efficiency policies using assumptions provided by the Alliance to Save Energy (ASE).

  8. The high efficiency steel filters for nuclear air cleaning

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs.

  9. State-Level Benefits of Energy Efficiency

    SciTech Connect

    Tonn, Bruce Edward

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  10. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy...

  11. Energy Efficiency in India: Challenges and Initiatives

    ScienceCinema

    Ajay Mathur

    2010-09-01

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  12. Energy Efficiency in India: Challenges and Initiatives

    SciTech Connect

    Ajay Mathur

    2010-05-20

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  13. Best Practices Guide for Energy-Efficient Data Center Design

    SciTech Connect

    O. VanGeet: NREL

    2010-02-24

    This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery.

  14. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  15. High energy hadrons in extensive air showers

    NASA Technical Reports Server (NTRS)

    Tonwar, S. C.

    1985-01-01

    Experimental data on the high energy hadronic component in extensive air showers of energies approx. 10 to the 14 to 10 to the 16 eV when compared with expectations from Monte Carlo simulations have shown the observed showers to be deficient in high energy hadrons relative to simulated showers. An attempt is made to understand these anomalous features with more accurate comparison of observations with expectations, taking into account the details of the experimental system. Results obtained from this analysis and their implications for the high energy physics of particle interactions at energy approx. 10 to the 15 eV are presented.

  16. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  17. Indian Renewable Energy and Energy Efficiency Policy Database (Fact Sheet)

    SciTech Connect

    Bushe, S.

    2013-09-01

    This fact sheet provides an overview of the Indian Renewable Energy and Energy Efficiency Policy Database (IREEED) developed in collaboration by the United States Department of Energy and India's Ministry of New and Renewable Energy. IREEED provides succinct summaries of India's central and state government policies and incentives related to renewable energy and energy efficiency. The online, public database was developed under the U.S.- India Energy Dialogue and the Clean Energy Solution Center.

  18. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to deliver a letter... administration of programs and policies to enhance the competitiveness of the U.S. renewable energy and...

  19. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call on May 2... Trade Subcommittees that address issues affecting U.S. competitiveness in exporting renewable energy...

  20. 76 FR 26695 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet to hear briefings on the state of renewable energy finance and to discuss the development of recommendations on increasing...

  1. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold its inaugural meeting under... expected to develop recommendations on improving the competitiveness of U.S. renewable energy and...

  2. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to hear presentations from the Departments of Energy and Commerce on how their programs support the competitiveness of...

  3. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting on December 3, 2013... NW., Washington, DC 20230. FOR FURTHER INFORMATION CONTACT: Ryan Mulholland, Office of Energy...

  4. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting on May 1, 2013. The... NW., Washington, DC 20230. FOR FURTHER INFORMATION CONTACT: Ryan Mulholland, Office of Energy...

  5. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to deliver 11... administration of programs and policies to enhance the competitiveness of the U.S. renewable energy and...

  6. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  7. Energy efficiency of a dynamic glazing system

    SciTech Connect

    Lollini, R.; Danza, L.; Meroni, I.

    2010-04-15

    The reduction of air-conditioning energy consumptions is one of the main indicators to act on when improving the energy efficiency in buildings. In the case of advanced technological buildings, a meaningful contribution to the thermal loads and the energy consumptions reduction could depend on the correct configuration and management of the envelope systems. In recent years, the architectural trend toward highly transparent all-glass buildings presents a unique challenge and opportunity to advance the market for emerging, smart, dynamic window and dimmable daylighting control technologies (). A prototype dynamic glazing system was developed and tested at ITC-CNR; it is aimed at actively responding to the external environmental loads. Both an experimental campaign and analyses by theoretical models were carried out, aimed at evaluating the possible configurations depending on different weather conditions in several possible places. Therefore, the analytical models of the building-plant system were defined by using a dynamic energy simulation software (EnergyPlus). The variables that determine the system performance, also influenced by the boundary conditions, were analysed, such as U- and g-value; they concern both the morphology of the envelope system, such as dimensions, shading and glazing type, gap airflow thickness, in-gap airflow rate, and management, in terms of control algorithm parameters tuning fan and shading systems, as a function of the weather conditions. The configuration able to provide the best performances was finally identified by also assessing such performances, integrating the dynamic system in several building types and under different weather conditions. The dynamic envelope system prototype has become a commercial product with some applications in facade systems, curtain walls and windows. The paper describes the methodological approach to prototype development and the main results obtained, including simulations of possible applications on

  8. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  9. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect

    Not Available

    2005-04-01

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  10. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  11. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  12. Promotion of Efficient Use of Energy

    SciTech Connect

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  13. Energy efficiency, market failures, and government policy

    SciTech Connect

    Levine, M.D.; Koomey, J.G.; McMahon, J.E.; Sanstad, A.H.; Hirst, E.

    1994-03-01

    This paper presents a framework for evaluating engineering-economic evidence on the diffusion of energy efficiency improvements. Four examples are evaluated within this framework. The analysis provides evidence of market failures related to energy efficiency. Specific market failures that may impede the adoption of cost-effective energy efficiency are discussed. Two programs that have had a major impact in overcoming these market failures, utility DSM programs and appliance standards, are described.

  14. Energy efficient circuit design using nanoelectromechanical relays

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, Ramakrishnan

    Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area. In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 - 10nm has been developed taking into account all the electrical, mechanical and dispersion effects. This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures. A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS

  15. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  16. Brandon RHA recognized for energy efficiency.

    PubMed

    Waddington, Kent; Neal, Gordon

    2002-01-01

    In a recent national competition recognizing leadership in energy efficiency and greenhouse gas education, Brandon Regional Health Authority was recognized for conscientious use of resources. PMID:12357581

  17. National Action Plan for Energy Efficiency Report

    SciTech Connect

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  18. Suitable scheme study of Chinese Building Energy Efficiency CDM Projects

    NASA Astrophysics Data System (ADS)

    Huang, Beijia; Yang, Haizhen; Wang, Shaoping; Wang, Feng

    2010-11-01

    China has great potential to develop Building Energy Efficiency Clean Development Mechanism (BEE CDM) projects, although have many challenges. Our results show that large-scale public buildings and urban residential buildings have relatively high BEE CDM potential, when comparing their characteristics to the CDM project requirements. The building enclosure, illumination energy conservation, air condition energy saving, solar thermal, and solar photovoltaic technology have relatively high application potential while considering the energy saving potential and marginal emission reduction cost. Case study of large-scale buildings shows that technology integration of building enclosure, illumination energy conservation, air condition energy saving, solar thermal can reduce required building number to 130 in order to meet the 1×105 tCO2 e/a reduction criteria. Some suggestions are also given in this paper.

  19. 78 FR 17890 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... standards for packaged terminal air conditioners and packaged terminal heat pumps. 78 FR 12252. The document... Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy....

  20. Indoor Air Pollution: An Energy Management Problem?

    ERIC Educational Resources Information Center

    Cousins, David M.; Kulba, John W.

    1987-01-01

    Energy conservation measures have led to airtight buildings and reduced levels of ventilation resulting in indoor air pollution. Five kinds of contaminants--tobacco smoke, combustion products, microorganisms, organic compounds, and radon--are described, their hazards considered, and countermeasures outlined. (MLF)

  1. Modeling new approaches for electric energy efficiency

    SciTech Connect

    Munns, Diane

    2008-03-15

    To align utilities and consumers' interests, three incentive methods have emerged to foster efficiency: shared savings, bonus return on equity, and energy service company. A fourth incentive method, virtual power plant, is being proposed by Duke Energy. (author)

  2. Energy efficiency: major issues and policy recommendations

    SciTech Connect

    Not Available

    1981-01-01

    The Advisory Committee on Energy Efficiency has investigated strategies for improving energy efficiency in all sectors of the economy - industrial, agricultural, residential, and commercial, and transportation - and has considered the contributions of local government and utility companies, as well as the state, in encouraging its efficient use. The state may exercise several policy options to encourage energy efficiency: information transfer, financial aids and incentives, and building conservation standards. The Committee believes that the major objectives for state legislative and administrative actions should be to facilitate the efforts of consumers to improve energy efficiency and to set an example of efficiency in its own buildings and operations. The state can realize these objectives with programs that: provide accurate and unbiased information on energy efficiency technologies and practices; provide consumers with information to evaluate products and vendor claims of efficiency and thereby to protect against consumer fraud; identify and remove institutional and legislative barriers to energy efficient practices; provide economic incentives to help meet the capital requirements to invest in energy efficiency technologies; and advance research, development, and demonstration of new technologies.

  3. Selecting windows for energy efficiency

    SciTech Connect

    1997-05-01

    New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

  4. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2014-06-26

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  5. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  6. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to hear... of Commerce on efforts to address issues that affect the competitiveness of U.S. renewable ]...

  7. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    SciTech Connect

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  8. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts. PMID:23787304

  9. Risk Assessment of Energy-Efficient Walls

    SciTech Connect

    Pallin, Simon B.; Hun, Diana E.; Jackson, Roderick K.; Kehrer, Manfred

    2014-12-01

    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  10. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of small, large, and very large...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL... measurement of energy efficiency of small, large, and very large commercial package air conditioning and... section contains test procedures for measuring, pursuant to EPCA, the energy efficiency of any...

  11. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of small, large, and very large...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL... measurement of energy efficiency of small, large, and very large commercial package air conditioning and... section contains test procedures for measuring, pursuant to EPCA, the energy efficiency of any...

  12. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of small, large, and very large...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL... measurement of energy efficiency of small, large, and very large commercial package air conditioning and... section contains test procedures for measuring, pursuant to EPCA, the energy efficiency of any...

  13. Appliance energy efficiency in new home construction. Final report

    SciTech Connect

    Not Available

    1980-11-30

    A survey of 224 builders was conducted to which 160 builders responded. Each respondent completed between one and seven separate questionnaires. Each of the seven questionnaires were designed to collect information about one type of equipment or major appliance. These are: heat pump; heating system; air conditioner; domestic water heater; dishwasher; range; and refrigerator. Analysis of the resulting 406 questionnaires indicated that builders were primarily responsible for brand selection. These choices were made primarily without regard for the energy efficiency of the product. A similar apparent lack of consideration of energy efficiency during brand and model selection was found among home buyers and specialized subcontractors.

  14. Energy Efficient Legged Robotics at Sandia Labs

    SciTech Connect

    Buerger, Steve

    2014-12-16

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  15. Urban air pollution and solar energy

    NASA Technical Reports Server (NTRS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  16. The Study on Energy Efficiency in Africa

    NASA Astrophysics Data System (ADS)

    Wu, Jinduo

    This paper is dedicated to explore the dynamic performance of energy efficiency in Africa, with panel data in country level, taking energy yield, power consumption, electricity transmission and distribution losses into account, the paper employ stochastic frontier mode,highlighting a dummy variable in energy output in terms of net imports of energy and power, which minify the deviation of estimated variables. The results show that returns of scale did not appear in energy and power industry in Africa, electricity transmission and distribution losses contribute most to GDP per unit of energy. In country level, Republic of Congo and Botswana suggest an obvious energy efficiency advantage. Energy efficiency in Mozambique and Democratic Republic of Congo are not very satisfying during the studying year

  17. Building America Top Innovations 2012: Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research supporting Thermal Bypass Air Barrier requirements. Since these were adopted in the 2009 IECC, close to one million homes have been mandated to include this vitally important energy efficiency measure.

  18. 1986 Governor's energy efficiency plan

    SciTech Connect

    Not Available

    1986-10-01

    Wisconsin is an energy-poor state which must import petroleum, natural gas and coal for its home, business, farm, and transportation needs. Because 95% of its energy is imported, the state is vulnerable to price hikes and supply disruptions. The Governor has formulated five overall goals plus specific goals for each economic sector to reduce Wisconsin's vulnerability to supply disruptions and to reduce the economic drain on the state caused by the price of imported fuel. The goals also seek to increase the use of in-state resources and to improve the quality of the environment. The recommendations in the plan are designed to help meet the Governor's goals by removing the barriers to increased energy conservation caused by lack of capital and information. Timely and effective implementation of the recommendations will determine how close Wisconsin can come to reducing its energy consumption 20% by the year 2000.

  19. Efficient high voltage pulser for piezoelectric air coupled transducer.

    PubMed

    Svilainis, Linas; Chaziachmetovas, Andrius; Dumbrava, Vytautas

    2013-01-01

    The design of high voltage pulser for air coupled ultrasound imaging is presented. It is dedicated for air-coupled ultrasound applications when piezoelectric transducer design is used. Two identical N-channel MOSFETs are used together with 1200V high and low side driver IC. Simple driving pulses' delay and skew circuit is used to reduce the cross-conduction. Analysis of switch peak current and channel resistance relation to maximum operation frequency and load capacitance is given. PSPICE simulation was used to analyze the gate driver resistance, gate pulse skew, pulse amplitude influence on energy consumption when loaded by capacitive load. Experimental investigation was verified against simulation and theoretical predictions. For 500pF capacitance, which is most common for piezoelectric air coupled transducers, pulser consumes 650μJ at 1kV pulse and 4μJ at 50V. Pulser is capable to produce up to 1MHz pulse trains with positive 50V-1kV pulses with up to 10A peak output current. When loaded by 200kHz transducer at 1kV pulse amplitude rise time is 40ns and fall time is 32ns which fully satisfies desired 1MHz bandwidth. PMID:22742963

  20. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  1. Toward an energy efficient community

    NASA Astrophysics Data System (ADS)

    Horn, M.

    1980-10-01

    The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.

  2. Energy Efficiency for Architectural Drafting Instructors.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in architectural drafting. The following topics are examined: energy conservation awareness (residential energy use and audit procedures); residential…

  3. Financial Planning for Energy Efficiency Investments.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Financing options for energy efficiency investments by colleges are outlined by the Energy Task Force of three higher education associations. It is suggested that alternative financing techniques generate a positive cash flow and allow campuses to implement conservation despite fiscal constraints. Since energy conservation saves money, the savings…

  4. State Energy Efficiency Program Evaluation Inventory

    EIA Publications

    2013-01-01

    The focus of this inventory, some of which has been placed into a searchable spreadsheet, is to support the National Energy Modeling System (NEMS) and to research cost information in state-mandated energy efficiency program evaluations – e.g., for use in updating analytic and modeling assumptions used by the U.S. Energy Information Administration (EIA).

  5. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  6. Moving around efficiently: Energy and transportation

    NASA Astrophysics Data System (ADS)

    Hermans, L. J. F.

    2013-06-01

    Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  7. Creating Energy-Efficient Buildings.

    ERIC Educational Resources Information Center

    Burr, Donald F.

    This paper was presented during the time the author was president of the Council of Educational Facility Planners, International, (CEFP/I). The presentation begins with a summary of the state of the world's natural gas and petroleum supplies and states that since one-third of all energy consumed in the United States is to heat and cool buildings,…

  8. Research on Load Energy Efficiency of DC Power Supply

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Sun, Yiwei; Li, Ke; Li, Mengyu

    Traditional distribution network based on AC current has severely suffered from low efficiency in actual application, especially when an increasing numbers of home appliances are technically rely on DC current. In this paper, the energy efficiency of DC distribution system was analysed by means of comparison with traditional AC system. Firstly four types of typical appliances were discussed in terms of energy efficiency, which are the server, air conditioner, laptop computer and lighting. And then Models were further built up to perform the case study of three familiar situations in modern life, namely a typical living apartment, an office building and a data center. Finally, the power efficiencies of the three buildings were sorted up for comparison and analysis.

  9. Something Special from SEED: Energy Efficiency for Educators and Students. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Tenneco, Inc., Houston, TX.

    The goal of the Schoolhouse Energy Efficiency Demonstration (SEED) was to assist schools in reducing the impact of the rising cost of energy by defining good energy management programs and by implementing quick-fix, low-cost energy efficiency improvements. Twenty schools in 15 states participated in the demonstration program. This report covers…

  10. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  11. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  12. Productivity benefits of industrial energy efficiency measures

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  13. Productivity benefits of industrial energy efficiency measures.

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the mode ling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  14. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  15. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  16. Energy 101: Heavy Duty Vehicle Efficiency

    SciTech Connect

    2015-05-14

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  17. Determinants of energy efficiency across countries

    NASA Astrophysics Data System (ADS)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  18. Jcpenney is Sold on Energy Efficiency

    SciTech Connect

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  19. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  20. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  1. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  2. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  3. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  4. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  5. Alcoa Lafayette Operations Energy Efficiency Assessment

    SciTech Connect

    2001-01-01

    The energy efficiency assessment performed at Alcoa's Lafayette Operations aluminum extrusion plant identified potential annual savings of $1,974,300 in eight high-energy-use areas with an estimated initial capital requirement of $2,308,500.

  6. Energy Efficiency for Building Construction Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units of materials on energy efficiency that were designed to be incorporated into an existing program in building construction. The following topics are examined: conservation measures (residential energy use and methods for reducing…

  7. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    In 1976 NASA initiated the Aircraft Energy Efficiency (ACEE) Program to assist in the development of technology for more fuel-efficient aircraft for commercial airline use. The Energy Efficient Engine (EEE) Project of the ACEE program is intended to lay the advanced-technology foundation for a new generation of turbofan engines. This project, planned as a seven-year cooperative government-industry effort, is aimed at developing and demonstrating advanced component and systems technologies for engines that could be introduced into airline service by the late 1980s or early 1990s. In addition to fuel savings, new engines must offer potential for being economically attractive to the airline users and environmentally acceptable. A description is presented of conceptual energy-efficient engine designs which offer potential for achieving all of the goals established for the EEE Project.

  8. Small airblast fuel nozzle with high efficiency inner air swirler

    SciTech Connect

    Koblish, T.R.; Bell, L.D.

    1992-09-08

    This patent describes a gas turbine engine wherein upon cold ignition a stagnation air pressure of generally about 1 to about 1 [1/2] inches of water is supplied by the compressor to airblast fuel nozzles communicating with the combustor, means for introducing fuel into the chamber and air inlet passages space apart around the nozzle body upstream of the fuel discharge orifice and extending from the chamber to the exterior of the nozzle body for receiving air at the the stagnation air pressure, each air passage having converging sections canted relative to one another effective to provide an air pressure in the inner air swirl chamber of at least about 70% of the stagnation air pressure for enhancing inner air swirl strength for fuel atomization and cold ignition of the engine.

  9. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    SciTech Connect

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  10. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and

  11. Energy efficient affordable housing. Final report

    SciTech Connect

    1995-07-01

    In 1994, the Southface Energy Institute, working with support from US DOE, initiated a program to provide technical assistance to nonprofit organizations developing affordable housing in the Olympic target communities of Atlanta. The specific project goals were: Identify the barriers that nonprofit affordable housing providers face in increasing the energy and resource efficiency of affordable housing; Assist them in developing the resources to overcome these barriers; Develop specific technical materials and program models that will enable these affordable housing groups to continue to improve the energy efficiency of their programs; and, To transfer the program materials to other affordable housing providers. This report summarizes the progress made in each of these areas.

  12. Energy Efficient America Act of 1984

    SciTech Connect

    Not Available

    1984-01-01

    A draft of the Energy Efficient America Act of 1984 was prepared by the Energy Conservation Coalition as a way to promote energy conservation and eliminate waste. The Act is divided into four titles dealing with low-income weatherization, a solar and conservation bank, applicance efficiency, and automobile fuel economy. The sponsors of this initiative describe specific provisions, the background, and the program they would include under the Act. The report includes a form for comment and an opportunity to contribute financial support to the effort.

  13. Functional materials for energy-efficient buildings

    NASA Astrophysics Data System (ADS)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  14. Prototype dining hall energy efficiency study

    SciTech Connect

    Mazzucchi, R.P.; Bailey, S.A.; Zimmerman, P.W.

    1988-06-01

    The energy consumption of food service facilities is among the highest of any commercial building type, owing to the special requirements for food preparation, sanitation, and ventilation. Consequently, the US Air Force Engineering and Services Center (AFESC) contracted with Pacific Northwest Laboratory (PNL) to collect and analyze end-use energy consumption data for a prototypical dining hall and make specific recommendations on cost-effective energy conservation options. This information will be used to establish or update criteria for dining hall designs and retrofits as appropriate. 6 refs., 21 figs., 23 tabs.

  15. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    SciTech Connect

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M; Nutaro, James J; Kuruganti, Teja

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, where the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.

  16. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  17. Financing energy efficiency via the Mortgage Corporation

    SciTech Connect

    Schaefer, M.L.

    1980-07-01

    Residential housing in the United States consumes more than 20% of all the energy used nationally each year. Home-mortgage lenders are in a position to assist homeowners in reducing this high level of energy consumption by taking advantage of a variety of financing methods now available to them. The Federal Home Loan Mortgage Corporation has taken several innovative steps to help support lenders' efforts to aid the homeowners of America in their quest to make their properties more energy-efficient.

  18. How energy efficient is your car?

    NASA Astrophysics Data System (ADS)

    Roura, Pere; Oliu, Daniel

    2012-07-01

    A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.

  19. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  20. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  1. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  2. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  3. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  4. Research and development conference: California Institute for Energy Efficiency (CIEE) program

    SciTech Connect

    Not Available

    1991-01-01

    CIEE's first Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: building energy efficiency, air quality impacts of energy efficiency, and end-use resource planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured.

  5. Energy Efficient Florida Educational Facilities: Phase VI. Progress Report: Phase I and II.

    ERIC Educational Resources Information Center

    Callahan, Michael P.; Parker, Danny S.

    A Florida study examined differences in energy uses in two adjacent portable classrooms to determine if these types of facilities can be made more energy efficient through retrofitting. Retrofitting included an efficient lighting system, new air conditioners, and reflective white metal roofs. Data show the white metal roofing reduced roof,…

  6. Energy efficiency opportunities in the brewery industry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  7. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  8. Efficiency evaluation of oxygen enrichment in energy conversion processes

    SciTech Connect

    Bomelburg, H.J.

    1983-12-01

    The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

  9. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  10. Small airblast fuel nozzle with high efficiency inner air swirler

    SciTech Connect

    Koblish, T.R.; Bell, L.D.

    1992-02-11

    This patent describes a airblast fuel nozzle for a gas turbine engine. It comprises: a nozzle body having a longitudinal inner air swirl chamber with a downstream discharge orifice, means for discharging fuel from the nozzle body and a plurality of air inlet passages circumferentially spaced apart around the nozzle body upstream of the fuel discharge orifice and extending from the inner air swirl chamber to the exterior of the nozzle body for receiving air flow, each air inlet passage having an inner section converging toward and intersecting with the inner air swirl chamber and an outer section converging toward and intersecting with the inner section, the inner section having an outlet communicating with the inner air swirl chamber and an inlet communicating with the outer section, the outer section having an outlet communicating with the inlet of the inner section and an inlet on the exterior of the nozzle body for receiving the air flow, the convergence of the outer section and inner section being selected to provide an effective air flow area through the outer section greater than the effective air flow area through the inner section, the inner section and outer section of each air inlet passage being relatively canted in the same circumferential direction and oriented relative to the air swirl chamber to, in effect, provide a distance X between centerlines of the air swirl chamber and the inner section that increases the air swirl strength achievable in the air swirl chamber at a given air pressure value at the inlet of the outer section.

  11. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  12. Short-Term Test Results. Multifamily Home Energy Efficiency Retrofit

    SciTech Connect

    Lyons, James

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. This report describes the Bay Ridge project, a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). Findings from the short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach.

  13. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    PubMed

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number. PMID:25225935

  14. Efficiencies of free-air gas fumigation devices

    SciTech Connect

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called ``fertilization`` effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  15. Efficiencies of free-air gas fumigation devices

    SciTech Connect

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called fertilization'' effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  16. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient...

  17. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient...

  18. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient...

  19. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient...

  20. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient...

  1. Energy-efficient rehabilitation of multifamily buildings in the Midwest

    SciTech Connect

    Katrakis, J.T.; Knight, P.A.; Cavallo, J.D.

    1994-09-01

    This report addresses the opportunities available to make multifamily housing more affordable by using energy efficiency practices in housing rehabilitation. Use of the energy conservation measures discussed in this report enables developers of multifamily housing to substantially reduce annual energy costs. The reduction in natural gas usage was found to be approximately 10 Btu per square foot per heating degree-day. The study focuses on a number of Chicago multifamily buildings. The buildings were examined to compare energy efficiency measures that are commonly found in multifamily building rehabilitation with the high-energy-efficiency (HE) techniques that are currently available to community developers but are often unused. The HE measures include R-43 insulation in attics, R-19 insulation in exterior walls, low-emissivity coatings on windows, air infiltration sealing, and HE heating systems. The report describes the HE features and their potential benefits for making housing more affordable. It also describes the factors influencing acceptance. This report makes recommendations for expanding cost-effective energy conservation in the multifamily building sector. Among the recommendations are: expand HE rehab and retrofit techniques to multifamily building rehabs in which demolition of the interior structures is not required (moderate rehabs) or buildings are not vacant (e.g., weatherization upgrades); and expand research into the special opportunities for incorporating energy conservation in low-income communities.

  2. Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Not Available

    2013-06-01

    This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  3. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  4. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect

    Parker, G.B.

    1991-01-01

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  5. ACEEE 1990 summer study on energy efficiency in buildings: Proceedings. Volume 4, Environment

    SciTech Connect

    Not Available

    1990-12-31

    This panel of the 1990 Summer Study examines the potential contribution of energy efficiency in buildings to environmental protection. The Panel also covers other aspects of the relationship between building efficiency and the environment, including indoor air quality, radon exposure, and urban heat island effects. Global environmental risks, growing interest in market-based environmental regulation, and the integration of environmental and energy planning have focused attention on energy efficiency as a low-cost pollution prevention strategy. This combination of factors is making public concern over the environment a driving force for improvements in energy efficiency. The environmental issues that are related to air pollution include the group of problems that have been in the public consciousness for two decades: acid rain, urban smog, ozone depletion, and general outdoor air pollution. Indoor air quality is also an air pollution problem. Whereas indoor air pollution causes direct health impacts on occupants of the space in question, outdoor air pollution affects others, often at remote locations, in ways that are more difficult to quantify. There is an immediacy to the indoor pollution issue that has important policy implications. The papers in the indoor air quality and radon sessions focus on several of the important issues in this area. For these conference proceedings, individual papers are processed separately for the Energy Data Base.

  6. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  7. Energy efficiency: Perspectives on individual behavior

    SciTech Connect

    Kempton, W.; Neiman, M.

    1986-01-01

    A collection of research papers on the personal behavior and attitudes that affect residential energy use. Articles in the first section address the factors that affect decision-making by consumers; convenience and personal opinions often override rational economic choices. The research in the second section uses aggregate survey data to gain insight into energy behavior. Papers in the third section use detailed monitoring of individual households to analyze personal behavior and home energy management, and the fourth section includes papers on the interaction of building systems with occupants. These papers demonstrate that, to be successful, energy conservation programs must consider the ''human factor'' in addition to the conventional energy parameters (e.g. weather, insulation, and appliance efficiencies). Main emphasis was given to: energy conservation; consumers; personal behavior; economic decision-making; buildings; energy policy; hot water use; thermostats; attitudes; applied anthropology.

  8. 75 FR 35766 - Establishment of the Renewable Energy and Energy Efficiency Advisory Committee and Solicitation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... International Trade Administration Establishment of the Renewable Energy and Energy Efficiency Advisory.... ACTION: Notice of establishment of the Renewable Energy and Energy Efficiency Advisory Committee and... establishment of the Renewable Energy and Energy Efficiency Advisory Committee (the Committee) by the...

  9. 75 FR 35450 - Establishment of the Energy Efficiency and Renewable Energy Advisory Committee and Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... of Energy Efficiency and Renewable Energy Establishment of the Energy Efficiency and Renewable Energy Advisory Committee and Request for Member Nominations AGENCY: Office of Energy Efficiency and Renewable... Renewable Energy Advisory Committee and request member nominations. SUMMARY: Pursuant to Section...

  10. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  11. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    . This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  12. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  13. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  14. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  15. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  16. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  17. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle...

  18. 78 FR 37995 - Energy Efficiency Standards for Manufactured Housing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Part 460 RIN 1904-AC11 Energy Efficiency Standards for Manufactured Housing AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information (RFI). SUMMARY: The U.... Mohammed Khan, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy,...

  19. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  20. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  1. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  2. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  3. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle...

  4. Parking, energy consumption and air pollution.

    PubMed

    Höglund, Paul G

    2004-12-01

    This paper examines the impacts of different ways of parking on environmental effects, mainly vehicle emissions and air pollution. Vehicle energy consumption and the urban air quality at street level, related to location and design of parking establishments, need to be assessed and quantified. In addition, the indoor parking environment needs attention. This paper gives a description of a methodological approach when comparing different parking establishments. The paper also briefly describes a Swedish attempt to create methods and models for assessing and quantifying such problem. The models are the macrolevel model BRAHE, for regional traffic exhaust emission, and the micromodel SimPark, a parking search model attempt combined with emission models. Until now, very limited knowledge exists regarding the various aspects of vehicle parking and environmental effects in the technical field as well as in the social and human behaviour aspects. This requires an interdisciplinary approach to this challenging area for research, development and more directly practically implemented surveys and field studies. In order to illustrate the new evaluation methodology, the paper also contains some results from a pilot study in Stockholm. Given certain assumptions, a study of vehicle emissions from parking in an underground garage compared with kerbside parking has given an emission reduction of about 40% in favour of the parking garage. This study has been done using the models mentioned above. PMID:15504491

  5. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    SciTech Connect

    Bollinger, Benjamin

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  6. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  7. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  8. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  9. Energy efficiency in military housing: Monitoring to support revitalization guidebook

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-11-01

    Oak Ridge National Laboratory is working with the US Army, the US Air Force, and the US Department of Energy to develop a guidebook to be used by architectural and engineering firms in the design phases of military family housing revitalization projects. The purpose of the guidebook is to ensure that energy efficiency is properly addressed in revitalization projects. Monitoring space-heating and cooling energy used in houses both before and after they are revitalized is necessary in order to assess the amount of energy saved by the revitalization process. Three different methods of conducting monitoring experiments are discussed, as well as the methods of data analysis to be used. Houses will be monitored individually using standard gas and electric meters to obtain heating and cooling data for the houses. The authors recommend conducting monitoring programs at Altus Air Force Base, Oklahoma, and Fort Monmouth, New Jersey, because of their project schedules and potential for savings. They do not recommend doing any monitoring at Malmstrom Air Force Base, Montana, because of the relatively small savings that they expect revitalization to accomplish there. They do not recommend seeking out alternative sites for monitoring because of the time required to become familiar with the installation and also because revitalization schedules at alternative sites may be no better than those at the sites they inspected.

  10. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc; Kissock, Professor Kelly

    2013-01-01

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  11. Residential energy use in Lithuania: The prospects for energy efficiency

    SciTech Connect

    Vine, E.; Kazakevicius, E.

    1998-06-01

    While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.

  12. Who Should Administer Energy-Efficiency Programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen L.

    2003-05-01

    The restructuring of the electric utility industry in the US created a crisis in the administration of ratepayer-funded energy-efficiency programs. Before restructuring, nearly all energy-efficiency programs in the US were administered by utilities and funded from utility rates. Restructuring called these arrangements into question in two ways. First, the separation of generation from transmission and distribution undermined a key rationale for utility administration. This was the Integrated Resource Planning approach in which the vertically integrated utility was given incentives to provide energy services at least cost. Second, questions were raised as to whether funding through utility rates could be sustained in a competitive environment and most states that restructured their electricity industry adopted a system benefits charge. The crisis in administration of energy-efficiency programs produced a variety of responses in the eight years since restructuring in the US began in earn est. These responses have included new rationales for energy-efficiency programs, new mechanisms for funding programs, and new mechanisms for program administration and governance. This paper focuses on issues related to program administration. It describes the administrative functions and some of the options for accomplishing them. Then it discusses criteria for choosing among the options. Examples are given that highlight some of the states that have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. The conclusion attempts to summarize lessons learned.

  13. PRODUCTIVITY BENEFITS OF INDUSTRIAL ENERGY EFFICIENCY MEASURES

    EPA Science Inventory

    A journal article by: Ernst Worrell1, John A. Laitner, Michael Ruth, and Hodayah Finman Abstract: We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published dat...

  14. Energy Efficiency for the Nunamiut People

    SciTech Connect

    Goodman, Dan

    2014-04-09

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  15. Guidelines for Energy-Efficient Sustainable Schools.

    ERIC Educational Resources Information Center

    Nicklas, Michael; Bailey, Gary; Rosemain, Pascale; Olin, Samuel

    These guidelines present optional strategies to be considered in designing schools to be more energy efficient and sustainable. The guidelines are organized by the following design and construction process: site selection; selection of A & E design team; programming and goal setting; schematic design; design development; construction documents;…

  16. Study on an Efficient Dehumidifying Air-conditioning System utilizing Phase Change of Intermediate Pressure Refrigerant

    NASA Astrophysics Data System (ADS)

    Maeda, Kensaku; Inaba, Hideo

    The present study has proven a new dehumidifying system that aimed to reduce the sensible heat factor(SHF) of cooling process without using additional heat to relieve the internationally indicated conflict between energy saving and dehumidification necessary for keeping adequate indoor air quality (IAQ). In this system, we used intermediate pressure refrigerant in a vapor compression refrigerating cycle as heat transfer medium of a characteristic heat exchanger to precool the process air entering into an evaporator as well as to reheat the process air leaving from the evaporator. By this system, the present results achieved higher moisture removal and consequently higher efficiency of dehumidifying process. In addition to this fact, since this system has capability of integration into air-conditioning apparatus(HVAC system), it will be able to work for wide range of cooling load by variable SHF function. In the present paper, technical information, experimental results, and simulation results which assumed to apply this system into HVAC system are reported.

  17. Who should administer energy efficiency programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2003-08-01

    The restructuring of the U.S. electricity industry created a crisis for ratepayer-funded energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities-utilities, state agencies, and non-profit corporations-that might be administrators. Four criteria are developed for choosing among program administration options: Compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved.We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition.

  18. Teaching the Fundamentals of Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Meier, Alan

    2010-02-01

    A course on energy efficiency is a surprisingly valuable complement to a student's education in physics and many other disciplines. The Univ. of California, Davis, offers a 1-quarter course on ``understanding the other side of the meter.'' Lectures begin by giving students a demand-side perspective on how, where, and why energy is used. Students measure energy use of appliances in their homes and then report results. This gives students a practical sense of the difference between energy and power and learn how appliances transform energy into useful services. Lectures introduce the types of direct conservation measures--reducing demand, reducing fixed consumptions, and increasing efficiency. Practical examples draw upon simple concepts in heat transfer, thermodynamics, and mechanics. Graphical techniques, strengthened through problem sets, explain the interdependence of conservation measures. Lectures then examine indirect energy savings from measures and consider questions like ``where can one achieve the greatest fuel savings in a car by removing one gram of mass?'' Finally, students learn about conservation measures that circumvent physical limits by adopting new processes. By the end of the course, students have a gained a new perspective on energy consumption and the opportunities to reduce it. )

  19. Energy Efficient Community Development in California: Chula Vista Research Project

    SciTech Connect

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy

  20. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  1. Energy efficiency assessment methods and tools evaluation

    SciTech Connect

    McMordie, K.L.; Richman, E.E.; Keller, J.M.; Dixon, D.R.

    1994-08-01

    Many different methods of assessing the energy savings potential at federal installations, and identifying attractive projects for capital investment have been used by the different federal agencies. These methods range from high-level estimating tools to detailed design tools, both manual and software assisted. These methods have different purposes and provide results that are used for different parts of the project identification, and implementation process. Seven different assessment methods are evaluated in this study. These methods were selected by the program managers at the DoD Energy Policy Office, and DOE Federal Energy Management Program (FEMP). Each of the methods was applied to similar buildings at Bolling Air Force Base (AFB), unless it was inappropriate or the method was designed to make an installation-wide analysis, rather than focusing on particular buildings. Staff at Bolling AFB controlled the collection of data.

  2. Ventilation and moisture in new energy-efficient manufactured homes

    SciTech Connect

    Hadley, D.L.; Bailey, S.A.; Parker, G.B.

    1991-06-01

    In order to establish a database of infiltration and ventilation characteristics in current practice manufactured housing, a multiyear field testing program was undertaken by the Bonneville Administration beginning in the mid-1980s. This program was later expanded to include 20 homes that had been upgraded to meet the regional Model Conversion Standards (MCS) for energy efficiency. The results from these initial studies indicates that significant improvement in shell tightness are possible. In fact, these new manufactured homes were also tighter than site-built homes constructed during the same time period that were tested as part of the Northwest Residential Infiltration Survey (NORIS). During the 1989--1990 heating season, Pacific Northwest Laboratory (PNL) for the Office of Energy Resources, Bonneville Power Administration (Bonneville), measured the ventilation characteristics in 139 newly constructed energy-efficient manufactured homes and a sample of 35 current practice manufactured homes not built to the energy efficient standards. The new energy- efficient homes were built to the MCS. This phase of the program was part of Bonneville's Residential Construction Demonstration Program (RCDP). A standard blower door test was used to estimate shell leakiness, and a passive perfluorocarbon tracer (PFT) technique was used to estimate overall air exchange rates. In addition, one-time measurements of the designated whole-house exhaust system flow rate was taken. An occupant and structure survey was conducted at the time of the testing to obtain information on house characteristics, daily occupant activities and ventilation system operation. The homes were located in Oregon, Washington, Idaho, and western Montana. This paper summarizes the infiltration/ventilation characteristics in this sample of new and energy-efficient manufactured homes built and situated in the Pacific Northwest. 13 refs., 6 tabs.

  3. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  4. The energy efficient industrialized housing research program

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    The United states housing industry is undergoing a metamorphosis from hand built to factory built products. Virtually all new housing incorporates manufactured components; indeed, an increasing percentage is totally assembled in a factory. The factory-built process offers the promise of houses that are more energy efficient, of higher quality, and less costly. To ensure that this promise can be met, the US industry must begin to develop and use new technologies, new design strategies, and new industrial processes. However, the current fragmentation of the industry makes research by individual companies prohibitively expensive, and retards innovation. This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: the formation of a steering committee; the development of a multiyear research plan; analysis of the US industrialized housing industry; assessment of foreign technology; assessment of industrial applications; analysis of computerized design and evaluation tools; and assessment of energy performance of baseline and advanced industrialized housing concepts. Our goal is to develop techniques to produce marketable industrialized housing that is 25% more energy efficient that the most stringent US residential codes now require, and that costs less. Energy efficiency is the focus of the research, but it is viewed in the context of production and design. 63 refs.

  5. Building an Efficient Model for Afterburn Energy Release

    SciTech Connect

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  6. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    SciTech Connect

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  7. Field assessment of induction motor efficiency through air-gap torque

    SciTech Connect

    Hsu, J.S.; Sorenson, P.L.

    1995-11-01

    Induction motors are the most popular motors used in industry. This paper further suggests the use of air-gap torque method to evaluate their efficiency and load changes. The fundamental difference between Method E and the air-gap torque method is discussed. Efficiency assessments conducted on induction motors under various conditions show the accuracy and potential of the air-gap torque method.

  8. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement

  9. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of... of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public Law......

  10. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature

  11. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  12. Energy Efficiency Adult Tracking Report - Final

    SciTech Connect

    Gibson-Grant, Amy

    2014-09-30

    Postwave tracking study for the Energy Efficiency Adult Campaign This study serves as measure of key metrics among the campaign’s target audience, homeowners age 25+. Key measures include: Awareness of messages relating to the broad issue; Recognition of the PSAs; Relevant attitudes, including interest, ease of taking energy efficient steps, and likelihood to act; Relevant knowledge, including knowledge of light bulb alternatives and energy efficient options; and Relevant behaviors, including specific energy-saving behaviors mentioned within the PSAs. Wave 1: May 27 – June 7, 2011 Wave 2: May 29 – June 8, 2012 Wave 3: May 29 – June 19, 2014 General market sample of adults 25+ who own their homes W1 sample: n = 704; W2: n=701; W3: n=806 Online Survey Panel Methodology Study was fielded by Lightspeed Research among their survey panel. Sample is US Census representative of US homeowners by race/ethnicity, income, age, region, and family status. At least 30% of respondents were required to have not updated major appliances in their home in the past 5 years (dishwasher, stove, refrigerator, washer, or dryer).

  13. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  14. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  15. Microbial battery for efficient energy recovery.

    PubMed

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800

  16. Improving Energy Efficiency in CNC Machining

    NASA Astrophysics Data System (ADS)

    Pavanaskar, Sushrut S.

    We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

  17. The Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, Victoria

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency. The report covers critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  18. Experimental Study on Efficiency Improvement of R410A Scroll Compressor for Air Conditioner

    NASA Astrophysics Data System (ADS)

    Sawai, Kiyoshi; Sakuda, Atsushi; Iida, Noboru; Hiwata, Akira; Morimoto, Takashi; Ishii, Noriaki

    In scroll compressors, an increase in oil flow rate into thecompression chamber improves sealing effectsand decreases refrigerant leakage. On the other hand, as the oil supplies the heat energy, the suction refrigerantis heated and the volumetric efficiency degreases. In the present study, we made an apparatus which suppliesthe oil into the compression chamber while measuring the mass flow rate, thus investigating the relationshipbetween the oil flow rate and the compressor performance. Experimental results indicated that the presentR410A scroll compressor provided higher performance as the oil flow rate decreased under the rated conditionof the air-conditioner. In addition, based on the experimental results, we discussed that the oil flow in thecapillary installed in the orbiting scroll was considered to be a laminar flow, and the volumetric efficiencywould degrease by the effect of a quarter of the oil heat energy.

  19. Study on the Efficient Drive of a Desiccant Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Jeong, Jong-Soo; Saito, Kiyoshi; Kawai, Sunao

    This paper constructs the static simulation model of a desiccant air conditioning system and gives the guidelines for the efficient drive of the desiccant air conditioning system. The desiccant air conditioning system is composed of a desiccant wheel, a heat exchanger, two evaporative coolers and a heater. The process air and regeneration air are supplied to this system. The desiccant is Silica gel. In the simulation model, two-dimensional model in space is adopted for the desiccant wheel. As the simulation result, it is clarified that optimum outlet temperature of the regeneration air in the heater, rotational speed of the desiccant wheel, the rejected air flow rate of the regeneration air, the process and regeneration air flow rate that maximize COP exist. For example, in case that the regeneration temperature is 63°C and relative humidity is 55% maximum COP is about 0.62.

  20. Barriers to electric energy efficiency in Ghana

    NASA Astrophysics Data System (ADS)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  1. Energy Efficient Engine acoustic supporting technology report

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.

    1985-01-01

    The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.

  2. Energy Efficient Engine Exhaust Mixer Model Technology

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Larkin, M.

    1981-01-01

    An exhaust mixer test program was conducted to define the technology required for the Energy Efficient Engine Program. The model configurations of 1/10 scale were tested in two phases. A parametric study of mixer design options, the impact of residual low pressure turbine swirl, and integration of the mixer with the structural pylon of the nacelle were investigated. The improvement of the mixer itself was also studied. Nozzle performance characteristics were obtained along with exit profiles and oil smear photographs. The sensitivity of nozzle performance to tailpipe length, lobe number, mixer penetration, and mixer modifications like scalloping and cutbacks were established. Residual turbine swirl was found detrimental to exhaust system performance and the low pressure turbine system for Energy Efficient Engine was designed so that no swirl would enter the mixer. The impact of mixer/plug gap was also established, along with importance of scalloping, cutbacks, hoods, and plug angles on high penetration mixers.

  3. Power Measurement Methods for Energy Efficient Applications

    PubMed Central

    Calandrini, Guilherme; Gardel, Alfredo; Bravo, Ignacio; Revenga, Pedro; Lázaro, José L.; Toledo-Moreo, F. Javier

    2013-01-01

    Energy consumption constraints on computing systems are more important than ever. Maintenance costs for high performance systems are limiting the applicability of processing devices with large dissipation power. New solutions are needed to increase both the computation capability and the power efficiency. Moreover, energy efficient applications should balance performance vs. consumption. Therefore power data of components are important. This work presents the most remarkable alternatives to measure the power consumption of different types of computing systems, describing the advantages and limitations of available power measurement systems. Finally, a methodology is proposed to select the right power consumption measurement system taking into account precision of the measure, scalability and controllability of the acquisition system. PMID:23778191

  4. New Methods of Energy Efficient Radon Mitigation

    SciTech Connect

    Fisk, W.J.; Prill, R.J.; Wooley, J.; Bonnefous, Y.C.; Gadgil, A.J.; Riley, W.J.

    1994-05-01

    Two new radon mitigation techniques are introduced and their evaluation in a field study complemented by numerical model predictions is described. Based on numerical predictions, installation of a sub gravel membrane at the study site resulted in a factor of two reduction in indoor radon concentrations. Experimental data indicated that installation of 'short-circuit' pipes extending between the subslab gravel and outdoors, caused an additional factor of two decrease in the radon concentration. Consequently, the combination of these two passive radon mitigation features, called the membrane and short-circuit (MASC) technique, was associated with a factor of four reduction in indoor radon concentration. The energy-efficient active radon mitigation method, called efficient active subslab pressurization (EASP), required only 20% of the fan energy of conventional active subslab depressurization and reduced the indoor radon concentration by approximately a factor of 15, including the numerically-predicted impact of the sub-gravel membrane.

  5. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  6. Energy efficient operation of aluminum furnaces

    SciTech Connect

    King, Paul E.; Golchert, B.M.; Li, T.; Hassan, M.; Han, Q.

    2005-01-01

    Secondary Aluminium melting offers significant energy savings over the production of Aluminium from raw resources since it takes approximately 5% of the energy to re-melt the Aluminium for product than it does to generate the same amount of Aluminium from raw material. However, the industry faces technical challenges for further improving the efficiency of the secondary Aluminium melting furnaces and lacks tools that can aid in helping to understand the intricate interactions of combustion and heat transfer. The U. S. Dept. of Energy, Albany Research Center (ARC), in cooperation with the Argonne and Oak Ridge National Labs, the University of Kentucky, and with industrial support through Secat, Inc. of Lexington, KY (representing 8 Aluminium re-melt companies) built and operates a test-bed reverberatory furnace to study efficiency issues in Aluminium melting. The experimental reverberatory furnace (ERF) is a one ton nominal capacity research furnace capable of melting 1000 lbs per hour with its twin 0.8 MMBtu/hr burners. Studies in the ERF include melt efficiency as a function of combustion space volume, power input and charge alloy. This paper details the experimental equipment, conditions, procedures, and measurements and includes results and discussions of melt efficiency studies. Specific results reported include an analysis of the efficiency of the furnace as a function of power input and the effect that changing combustion space volume has on melting efficiency. In conjunction with this, a computational fluid dynamics (CFD) model has been developed to simulate fuel combustion, heat transfer, gaseous product flow and the production/transport of pollutants and greenhouse gases in an Aluminium furnace. Data from the ERF is utilized for computational model validation in order to have a high degree of confidence in the model results. Once validated, the CFD code can then be used to perform parametric studies and to investigate methods to optimize operation in

  7. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  8. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  9. Advanced Energy Efficiency and Distributed Renewables

    NASA Astrophysics Data System (ADS)

    Lovins, Amory

    2007-04-01

    The US now wrings twice the GDP from each unit of energy that it did in 1975. Reduced energy intensity since then now provides more than twice as much service as burning oil does. Yet still more efficient end-use of energy -- explained more fully in a companion workshop offered at 1245 -- is the largest, fastest, cheapest, most benign, least understood, and least harnessed energy resource available. For example, existing technologies could save half of 2000 US oil and gas and three-fourths of US electricity, at lower cost than producing and delivering that energy from existing facilities. Saving half the oil through efficiency and replacing the other half with saved natural gas and advanced biofuels would cost an average of only 15/barrel and could eliminate US oil use by the 2040s, led by business for profit. Efficiency techniques and ways to combine and apply them continue to improve faster than they're applied, so the ``efficiency resource'' is becoming ever larger and cheaper. As for electricity, ``micropower'' (distributed renewables plus low-carbon cogeneration) is growing so quickly that by 2005 it provided a sixth of the world's electricity and a third of its new electricity, and was adding annually 4x the capacity and 11x the capacity added by nuclear power, which it surpassed in capacity in 2002 and in output in 2006. Together, micropower and ``negawatts'' (saved electricity) now provide upwards half the world's new electrical services, due to their far lower cost and lower financial risk than the central thermal power stations that still dominate policy discussions. For oil and electricity, each of which adds about two-fifths of the world's energy-related carbon dioxide emissions, efficiency plus competitive alternative supplies can stabilize the earth's climate at a profit, as well as solving the oil and (largely) the nuclear proliferation problems. Conversely, costlier and slower options, notably nuclear power, would displace less carbon emission per

  10. Summary of selected compressed air energy storage studies

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1985-01-01

    A descriptive summarily of research and development in compressed air energy storage technology is presented. Research funded primarily by the Department of Energy is described. Results of studies by other groups and experience at the Huntorf plant in West Germany are included. Feasibility studies performed by General Electric are summarized. The feasibility of air storage in dissolved salt cavities is also demonstrated. (BCS)

  11. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... 1904-AC17 Updating State Residential Building Energy Efficiency Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of proposed determination. SUMMARY: The... the 2006 version of the IECC would achieve greater energy efficiency than the 2003 IECC. Finally,...

  12. 75 FR 25121 - Revisions to Energy Efficiency Enforcement Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Parts 430 and 431 RIN 1904-AC23 Revisions to Energy Efficiency Enforcement Regulations AGENCY: Office of Energy Efficiency and Renewable Energy and Office of the General Counsel, Department of Energy. ACTION... ``Department'') intends to expand and revise its existing energy efficiency enforcement regulations for...

  13. Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy

    NASA Astrophysics Data System (ADS)

    Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si

    In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.

  14. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  15. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  16. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  17. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    SciTech Connect

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits and environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.

  18. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE PAGESBeta

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  19. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  20. CO2 - The Canary in the Energy Efficiency Coal Mine

    NASA Astrophysics Data System (ADS)

    Somssich, Peter

    2011-04-01

    While much of the discussion surrounding CO2 is focused on its role as a GHG (green house gas) and its affect on Climate Change, CO2 can also be viewed as an indicator for reductions in fossil fuel use and increased energy efficiency. Much as the canary in a mine was used to warn miners of unsafe health conditions in a mine, CO2 can be seen as allowing us to effectively track progress towards energy efficiency and sustainability. Such an effort can best be achieved by either a Carbon Tax or a Cap and Trade system which was highly effective as part of the 1992 Clean Air Act, contributing to a significant reduction of SO2 and acid rain. A similar attempt has been made using the 1997 Kyoto Protocol to reduce carbon emissions. The mechanisms of how this treaty was intended to work will be explained, and examples will be given, both in the USA and Europe, of how the protocol was used to reduce energy consumption and energy dependence, while also reducing CO2 emissions. Regardless of how strong an impact CO2 reduction may have for Climate Change issues, a reduction of CO2 is guaranteed to produce energy benefits, monetary benefits and can even enhance national security. For all of these reasons, we need the CO2 canary.

  1. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  2. Heterogeneous photocatalysis for air and water treatment: Fundamental needs for quantum efficiency enhancement

    SciTech Connect

    Ollis, D.F.

    1996-09-01

    In the remediation industries, a useful treatment technology must be {open_quotes}general, robust, and cheap{close_quotes}. Among oxidation processes, heterogeneous photocatalysis is now broadly demonstrated to destroy common water and air contaminants. The potential process uses of highly stable titania, long lived lamps (one year), and room temperature operation, indicating a simple and robust process. We are left to address the third criterion: Can photocatalysis be {open_quotes}cheap{close_quotes}? In both liquid phase and gas phase treatment and purification by photocatalysis, it is established that the primary barrier to commercialization is often cost. Cost in return is dominated by the efficiency with which solar or lamp photons are harvested for productive light, and subsequent dark, reactions. This paper therefore defines fundamental needs in photocatalysis for pollution control in terms of activities which could lead to quantum efficiency enhancement. We first recall three related definitions. The quantum yield (QY) is the ratio of molecules of reactant converted per photon absorbed, a fundamental quantity. A less fundamental, but more easily measured variable is the quantum efficiency (QE), the ratio of molecules converted per photon entering the reactor. A third variable is the energy required per order of magnitude pollutant reduction, or EEO, a definition which provides for easy energy cost comparisons among different technologies. Each measure cited here reflects the photon, and thus the electrical, cost of this photochemistry.

  3. Energy Efficient Industrialized Housing Research Program

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  4. Economics and utility energy-efficiency programs: Energy-efficient manufactured housing

    SciTech Connect

    Lee, A.D.; Onisko, S.A.

    1992-10-01

    As utilities investigate ways to implement conservation programs, the differences between customer and utility economic perspectives become more important. Because utilities bear the cost of new energy sources, energy efficiency investments that are cost-effective to them may not be cost-effective to their customers who pay average energy prices and have different economic parameters. The Bonneville Power Administration (BPA) and other parties in the Pacific Northwest have initiated an innovative manufactured (mobile) home energy conservation program. Because manufactured homes are regulated by the Department of Housing and Urban Development (HUD), are exempt from local regulations, and comprise up to 50% of new housing starts in some parts of the United States, utilities and energy planners need to find creative ways to make the economics of manufactured housing energy-efficiency investments more attractive. Differences between the economic criteria and perspectives of consumers and utilities can be used to design energy-efficiency programs. This paper discusses life-cycle cost (LCC) analysis as a framework for highlighting these differences and examines other economic criteria. It then presents information from the Pacific Northwest manufactured housing program to illustrate the application of this framework to a real-world program. Findings from this program should,be of interest to utility and government planners who are designing innovative energy-efficiency programs.

  5. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  6. Membrane Dehumidifier: High-Efficiency, On-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

    SciTech Connect

    2010-09-01

    BEETIT Project: ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products’s metal foil-like membrane consists of a paper thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes and at the same time, blocks air penetration efficiently resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-coast compact dehumidification device

  7. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  8. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving. PMID:14727304

  9. Energy storage by compressed air. [using windpowered pumps

    NASA Technical Reports Server (NTRS)

    Szego, G. C.

    1973-01-01

    The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.

  10. Efficiency of dust sampling inlets in calm air.

    PubMed

    Breslin, J A; Stein, R L

    1975-08-01

    Measurement of airborne dust concentrations usually involves drawing a sample of the dust-laden air into the measuring instrument through an inlet. Even if the surrounding air is calm, theoretical calculations predict that large particles may not be sampled accurately due to the combined effects of gravity and inertia on the particles near the sampling inlet. Tests were conducted to determine the conditions of particle size, inlet radius, and flow rare necessary for accurate dust sampling. A coal-dust aerosol was sampled simultaneously through inlets of different diameters at the same volume flow-rate and collected on filters. The dust was removed from the filters and the particles were counted and sized with a Coulter counter. Results showed that published criteria for inlet conditions for correct sampling are overly restrictive and that respirable-size particles are sampled correctly in the normal range or operation of most dust sampling instruments. PMID:1227283

  11. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings

    PubMed Central

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F.; Hutter, Hans-Peter

    2015-01-01

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality. PMID:26561823

  12. Theoretical efficiency limits for thermoradiative energy conversion

    SciTech Connect

    Strandberg, Rune

    2015-02-07

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m{sup 2} has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  13. Energy Efficient Transport - Technology in hand

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1984-01-01

    Technologies developed through NASA's Energy Efficient Transport Program are described. The program was charged with research in advanced aerodynamics and active controls, with the goal of increasing the fuel efficiency of transport aircraft by 15 to 20 percent. Research in aerodynamics was directed toward the development of high-aspect-ratio supercritical wings, winglets, computational design methodology, high-lift devices, propulsion airframe integration, and surface coatings. The active control portion of the program investigated Wing Load Alleviation (WLA) through the use of active controls, drag reduction, and the effect of active pitch controls on fuel consumption. It was found that applying active control functions at the beginning of the aircraft design cycle brings the best benefit, and that if active control and advanced aerodynamic airframe configurations are applied to transport aircraft design concurrently with new lightweight materials, fuel consumption can be reduced by as much as 40 percent.

  14. Efficient sensitivity computations in 3D air quality models

    NASA Astrophysics Data System (ADS)

    Kioutsioukis, Ioannis; Melas, Dimitrios; Zerefos, Christos; Ziomas, Ioannis

    2005-04-01

    The prediction of ground level ozone for air quality monitoring and assessment is simulated through an integrated system of gridded models (meteorological, photochemical), where the atmosphere is represented with a three-dimensional grid that may include thousands of grid cells. The continuity equation solved by the Photochemical Air Quality Model (PAQM) reproduces the atmospheric processes (dynamical, physical, chemical and radiative), such as moving and mixing air parcels from one grid cell to another, calculating chemical reactions, injecting new emissions. The whole modeling procedure includes several sources of uncertainty, especially in the large data sets that describe the status of the domain (boundary conditions, emissions, chemical reaction rates and several others). The robustness of the photochemical simulation is addressed in this work through the deterministic approach of sensitivity analysis. The automatic differentiation tool ADIFOR is applied on the 3D PAQM CAMx and augments its Fortran 77 code by introducing new lines of code that additionally calculate, in only one run, the gradient of the solution vector with respect to its input parameters. The applicability of the approach is evaluated through a sensitivity study of the modeled concentrations to perturbations at the boundary conditions and the emissions, for three essentially dissimilar European Metropolises of the Auto-Oil II programme (Athens, Milan, and London).

  15. Affordable housing through energy efficiency: The Northgate story

    SciTech Connect

    Diamond, R.C.; McAllister, J.A.; Feustel, H.E.; Patullo, C.; Buckley, T.

    1992-03-01

    In this paper we evaluate a comprehensive retrofit and rehabilitation effort to improve the comfort, affordability, and energy efficiency of 336 low-income housing units. The units had complete shell retrofits, including new siding, air-infiltration barriers, new windows and doors, and both roof and foundation insulation. In addition, the existing electric-baseboard heating system was replaced with a new gas-fired boiler for each apartment. New programmable thermostats, refrigerators, and tenant education were also included in the retrofit package. The evaluation of the project included pre- and post-retrofit utility bill analysis, computer simulation to evaluate the cost and saving of the individual measures, and a comprehensive survey of the residents regarding their comfort, behavior, and satisfaction with the retrofits. The analysis has shown energy savings of more than 20% for the shell measures, with a reduction in utility bills of nearly 50% from the combined measures. The resident survey shows high tenant satisfaction with the retrofits.

  16. Investigation of Energy-Efficient Supermarket Display Cases

    SciTech Connect

    Walker, D.H.

    2005-01-21

    Supermarkets represent one of the largest energy-intensive building groups in the commercial sector, consuming 2 to 3 million kWh/yr per store (ES-1). Over half of this energy use is for the refrigeration of food display cases and storage coolers. Display cases are used throughout a supermarket for the merchandising of perishable food products. The cases are maintained at air temperatures ranging from -10 to 35 F, depending upon the type of product stored. The operating characteristics and energy requirements of the refrigeration system are directly related to the refrigeration load. The sources of the display case refrigeration load consist of: (1) Moist and warm air infiltration through the open front of the case--air curtains are employed to inhibit this infiltration, but some ambient air is entrained, which adds a substantial portion to the refrigeration load. (2) Heat conduction through case panels and walls. (3) Thermal radiation from the ambient to the product and display case interior. (4) Internal thermal loads--the use of lights, evaporator fans, periodic defrosts, and antisweat heaters adds to the refrigeration load of the display case as well as directly consuming electric energy. The impact of each of these elements on the refrigeration load is very dependent upon case type (Figure ES-1). For example, air infiltration is the most significant portion of the refrigeration load for open, multi-deck cases, while radiation is the largest part of the load for tub-type cases. The door anti-sweat heaters represent a major share of the refrigeration load for frozen food door reach-in cases. Figure ES-2 shows the distribution of display cases in a typical supermarket (ES-2). Open, multi-deck, medium temperature display cases typically comprise about half of the refrigerated fixtures in a store (ES-3). In addition, medium temperature fixtures and storage coolers account for roughly 70 to 75 percent of the total store refrigeration load with open, multi-deck cases

  17. Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit

    SciTech Connect

    Lyons, J.

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ≥ 50% compared to pre-retrofit, and the short-term testing supports this estimate.

  18. 77 FR 5770 - Energy Efficiency Trade Mission to Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... International Trade Administration Energy Efficiency Trade Mission to Russia AGENCY: International Trade... Energy (DOE) are organizing an Energy Efficiency Trade Mission to Moscow and St. Petersburg on June 4-7... market for the sale of U.S. energy efficiency products and services. Russia presents...

  19. High-energy metal air batteries

    SciTech Connect

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  20. High-energy metal air batteries

    SciTech Connect

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  1. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  2. Process study and exergy analysis of a novel air separation process cooled by LNG cold energy

    NASA Astrophysics Data System (ADS)

    Xu, Wendong; Duan, Jiao; Mao, Wenjun

    2014-02-01

    In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to 113K-283K by high-efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t·h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.

  3. Measuring energy efficiency in economics: Shadow value approach

    NASA Astrophysics Data System (ADS)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also

  4. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  5. Energy Efficiency of Distributed Environmental Control Systems

    SciTech Connect

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23

    s thermal dissatisfaction below a given threshold. The DECS energy usage was calculated using the simplified thermal model. OSFA control; providing a uniform temperature to the entire building, and occupant-selected HIYW control with a thermostat at each workstation were implemented for 3 cities representing 3 different climatic regions and control scenarios. It is shown that optimization allows DECS to deliver a higher level of individual and population thermal comfort while achieving annual energy savings between 14 and 26% compared to OSFA. The optimization model also allowed us to study the influence of the partitions’ thermal resistance and the variability of internal loads at each office. These influences didn’t make significant changes in the optimized energy consumption relative to OSFA. The results show that it is possible to provide thermal comfort for each occupant while saving energy compared to OSFA Furthermore, to simplify the implementation of this approach, a fuzzy logic system has been developed to generalize the overall optimization strategy. Its performance was almost as good as the gradient system. The fuzzy system provided thermal comfort to each occupant and saved energy compared to OSFA. The energy savings of the fuzzy system were not as high as for the gradient-optimized system, but the fuzzy system avoided complete connectivity, and the optimization did not have to be repeated for each population. 3. We employed a detailed CFD model of adjacent occupied cubicles to extend the thermal-circuit model in three significant ways: (a) relax the “office wall” requirement by allowing energy to flow between zones via advection as well as conduction, (b) improve the comfort model to account both for radiation as well as convection heat transfer, and (c) support ventilation systems in which the temperature is stratified, such as in underfloor air distribution systems. Initially, three-dimensional CFD simulations of several cubicle configurations, with

  6. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  7. Design of energy efficient building with radiant slab cooling

    NASA Astrophysics Data System (ADS)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  8. 75 FR 12743 - Office of Energy Efficiency and Renewable Energy; Request for Information; Weatherization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... of Energy Efficiency and Renewable Energy; Request for Information; Weatherization Assistance Program; Sustainable Energy Resources for Consumers Grants AGENCY: Office of Energy Efficiency and Renewable Energy... Program for residential buildings to include materials, benefits, and renewable and domestic...

  9. Electrorheology for Efficient Energy Production and Conservation

    NASA Astrophysics Data System (ADS)

    Tao, R.; Du, Enpeng; Tao, Hong; Xu, Xiaojun; Liu, Yun

    2011-03-01

    At present, most of our energy comes from liquid fuels. The viscosity plays a very important role in liquid fuel production and conservation. For example, reducing the viscosity of crude oil is the key for oil extraction and its transportation from off-shore via deep water pipelines. Currently, the dominant method to reduce viscosity is to raise oil's temperature, which does not only require much energy, but also impacts the environment. Recently, based on the basic physics of viscosity, we proposed a new theory and developed a new technology, utilizing electrorheology to reduce the viscosity of liquid fuels. The method is energy-efficient, and the results are significant. When this technology is applied to crude oil, the suspended nanoscale paraffin particle, asphalt particles, and other particles are aggregated into micrometer-size streamline aggregates, leading to significant viscosity reduction. When the temperature is below 0circ; C and the water content inside the oil becomes ice, the viscosity reduction can be as high as 75%. Our recent neutron scattering experiment has verified the physical mechanism of viscosity reduction. In comparison with heating, to reach the same level of viscosity reduction, this technology requires less than 1% of the energy needed for heating. Moreover, this technology only takes several seconds to complete the viscosity reduction, while heating takes at least several minutes to complete.

  10. Achieving energy efficiency during collective communications

    SciTech Connect

    Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao

    2012-09-13

    Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although little attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run

  11. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE). ACTION: Submission for Office of... Energy Efficiency and Renewable Energy (EE- 2G), U.S. Department of Energy, 1000 Independence Avenue...

  12. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice...

  13. Environmental efficiency of energy, materials, and emissions.

    PubMed

    Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke

    2015-09-15

    This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency. PMID:26182994

  14. Feasibility study of porous media compressed air energy storage in South Carolina, United States of America

    NASA Astrophysics Data System (ADS)

    Jarvis, Alexandra-Selene

    Renewable Energy Systems (RES) such as solar and wind, are expected to play a progressively significant role in electricity production as the world begins to move away from an almost total reliance on nonrenewable sources of power. In the US there is increasing investment in RES as the Department of Energy (DOE) expands its wind power network to encompass the use of offshore wind resources in places such as the South Carolina (SC) Atlantic Coastal Plain. Because of their unstable nature, RES cannot be used as reliable grid-scale power sources unless power is somehow stored during excess production and recovered at times of insufficiency. Only two technologies have been cited as capable of storing renewable energy at this scale: Pumped Hydro Storage and Compressed Air Energy Storage (CAES). Both CAES power plants in existence today use solution-mined caverns as their storage spaces. This project focuses on exploring the feasibility of employing the CAES method to store excess wind energy in sand aquifers. The numerical multiphase flow code, TOUGH2, was used to build models that approximate subsurface sand formations similar to those found in SC. Although the aquifers of SC have very low dips, less than 10, the aquifers in this study were modeled as flat, or having dips of 00. Cycle efficiency is defined here as the amount of energy recovered compared to the amount of energy injected. Both 2D and 3D simulations have shown that the greatest control on cycle efficiency is the volume of air that can be recovered from the aquifer after injection. Results from 2D simulations showed that using a dual daily peak load schedule instead of a single daily peak load schedule increased cycle efficiency as do the following parameters: increased anisotropy, screening the well in the upper portions of the aquifer, reduced aquifer thickness, and an initial water displacement by the continuous injection of air for at least 60 days. Aquifer permeability of 1x10-12 m2 produced a cycle

  15. Compressed Air System Improvement Project Saves Foundry Energy and Increases Production

    SciTech Connect

    2002-05-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  16. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell. PMID:20177608

  17. Get Started: Energy Efficiency Makes More Sense Than Ever.

    ERIC Educational Resources Information Center

    Alban, Josh; Drabick, J. R.

    2003-01-01

    Describes the benefits of making school building more energy efficient. Provides examples of physical retrofits and behavioral changes to save energy costs. Describes four-step process to create an energy efficiency plan. Includes resources and information such as U.S. Department of Energy's Energy STAR program (www.energystar.gov). (PKP)

  18. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  19. ABB`s LEBS technologies: Practical solutions for controlling air emissions and increasing efficiency

    SciTech Connect

    Regan, J.W.; Hein, R.J. von; Wesnor, J.D.

    1997-07-01

    When evaluating candidate technologies for controlling air emissions and increasing thermal efficiency the main criteria used by most utility and industrial decision makers are: (1) total installed cost of the system and (2) the impact the system may have on O&M costs, on unit forced outage rate/availability and on unit efficiency. Generally speaking, simpler is better. Designs which have fewer and simpler process steps and components will almost always have lower first cost, reduced maintenance cost, reduced operating labor cost, and fewer forced outages/higher availability. This paper describes technologies developed for the control of NO{sub x}, SO{sub 2} and particulate emissions and for increased efficiency in the designs prepared by the ABB team for the U.S. Department of Energy (DOE) project titled {open_quote}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} (LEBS). The primary objectives of the LEBS project are to reduce emissions to approximately one-fifth of current new source performance standards and to increase efficiency, all without increasing the cost of electricity. The project encompasses the use of Pulverized coal combustion and development of near-term technologies. The team selected an advanced low-NO{sub x} firing system and an advanced dry scrubber system to meet the emissions objectives and a Kalina cycle to achieve the efficiency and cost of electricity objectives. The development and design of these technologies, witch are suited to new or retrofit applications, are described in the paper.

  20. Curriculum for Commissioning Energy Efficient Buildings

    SciTech Connect

    Webster, Lia

    2012-09-30

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  1. Production of Energy Efficient Preform Structures (PEEPS)

    SciTech Connect

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  2. Three essays on energy efficiency policy

    NASA Astrophysics Data System (ADS)

    Kabiri, Maryam

    This thesis is comprised of three essays which explore selected aspects of demand side energy efficiency policy of International Energy Conservation Codes (IECC). The first essay models the adoption of IECC in the U.S. between 1998 and 2010. An ordered probit model with IECC adoption as the dependent variable is used to test if a set of socio-economics, political, spatial, and environmental factors predict the residential building energy code adoption. The results show that higher energy price, relative political extraction, climate extremes, pollution level, and population growth predict IECC adoption in the sample. The diffusion variable (share of neighbor states with IECC) is shown to have large impacts on the probability of IECC adoption. The next two essays examine the effect of IECC on residential electricity consumption. The second essay investigates the impact of International Energy Conservation Codes (IECC) on per-capita residential electricity consumption for 44 U.S. states from 1981-2008. Applying the pooled mean group (PMG) model developed by Pesaran et al. (1999), and controlling for energy specific demand factors such as: prices, income, heating degree days, and cooling degree days, I find that there is an overall 2% decrease in new residential buildings per-capita electricity consumption in the states which adopted any version of IECC. The new residential buildings per-capita electricity consumption has decreased by about 2.5% and 5% in the states with IECC 2000 and IECC 2003 respectively. The third essay examines the impact of building energy code on the household electricity consumption in three states in U.S. To do so; I construct a pseudo panel using household level data from the American Community Survey (ACS) over the period 2005-2010. By constructing pseudo panel, we are able to track cohorts of relatively homogeneous individuals over time, and control for cohort unobserved heterogeneity that may bias the results of cross sectional estimates

  3. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and

  4. Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011 (Brochure)

    SciTech Connect

    Not Available

    2011-03-01

    This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery. IT system energy efficiency and environmental conditions are presented first because measures taken in these areas have a cascading effect of secondary energy savings for the mechanical and electrical systems. This guide concludes with a section on metrics and benchmarking values by which a data center and its systems energy efficiency can be evaluated. No design guide can offer 'the most energy-efficient' data center design but the guidelines that follow offer suggestions that provide efficiency benefits for a wide variety of data center scenarios.

  5. BMEWS Capture and Analysis of Reflected Energy Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMEWS Capture and Analysis of Reflected Energy - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2004-01-29

    This is the sixth quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period from October 1, 2003 through December 31, 2003. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. In coordination with the DOE, IEUA has revised the original Cooperative Agreement to reflect the actual and current project scope of work. The original Agreement statement of work (SOW) included conceptual and preliminary equipment and systems, which were further evaluated for feasibility and suitability for the project. As a result, some of the equipment was taken out of the project scope. In response to questions from the DOE, IEUA has submitted a summary report on the Organic Rankine Cycle (ORC) secondary power generation units for availability and suitability for this project and associated safety concerns pointed out by the DOE. IEUA has awarded the consulting engineering contract to Parsons Water and Infrastructure, Inc. to provide the project's design and construction services. The project's pre-design kickoff meeting was held at IEUA's headquarters on December 11, 2003. IEUA has submitted a proposal for a grant offered by California Energy Commission (CEC) which if awarded to IEUA, will add value to this project. IEUA has finalized and signed the agreement with Stirling Energy Systems (SES) to host a 25 kW Stirling Engine at the RP-5 plant site for reliability and performance testing using digester and natural gas. As a result of further evaluation of the flexible microturbine system, IEUA has decided to take it out of the project's scope of work; however, it may be considered in future projects at other locations. IEUA has installed a 60 kW Photovoltaic (PV) power generation system on the roof of the new headquarters building. A matching funds update is also included in the Results and Discussion section. The update presents the

  7. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  8. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  9. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter. PMID:26726459

  10. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  11. Weatherization and Intergovernmental Program - State Energy Program Helps States Plan and Implement Energy Efficiency

    SciTech Connect

    2010-06-01

    State energy offices use SEP funds to develop state plans that identify opportunities for adopting renewable energy and energy efficiency technologies, and implementing programs to improve energy sustainability.

  12. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4

  13. 77 FR 43723 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... procedures for loan and guarantee financial assistance in support of energy efficiency programs (EE Programs... implementing demand side management, energy efficiency and conservation programs, and on-grid and...

  14. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Small Business Energy Efficiency Program. 101.500 Section 101.500 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The Administration has developed and coordinated...

  15. Technologies for the Energy Efficient Data Center

    SciTech Connect

    Cader, Tahir; Westra, Levi; Marquez, Andres

    2007-07-17

    Although semiconductor manufacturers have provided temporary relief with lower-power multi-core microprocessors, OEMs and data center operators continue to push the limits for individual rack power densities. It is not uncommon today for data center operators to deploy multiple 20 kW racks in a facility. Such rack densities are exacerbating the major issues of power and cooling in data centers. Data center operators are now forced to take a hard look at the efficiencies of their data centers. Malone and Belady (2006) have proposed three metrics, i.e., Power Usage Effectiveness (PUE), Data Center Efficiency (DCE), and the Energy-to-Acquisition Cost ratio (EAC), to help data center operators quickly quantify the efficiency of their data centers. In their paper, Malone and Belady present nominal values of PUE across a broad crosssection of data centers. PUE values are presented for data centers at four levels of optimization. One of these optimizations involves the use of Computational Fluid Dynamics (CFD). In the current paper, CFD is used to conduct an in-depth investigation of a liquid-cooled data center that would potentially be housed at the Pacific Northwest National Labs (PNNL). The boundary conditions used in the CFD model are based upon actual measurements on a rack of liquid-cooled servers housed at PNNL. The analysis shows that the liquid-cooled facility could achieve a PUE of 1.57 as compared to a PUE of 3.0 for a typical data center (the lower the PUE, the better, with values below 1.6 approaching ideal). The increase in data center efficiency is also translated into an increase in the amount of IT equipment that can be deployed. At a PUE of 1.57, the analysis shows that 91% more IT equipment can be deployed as compared to the typical data center. The paper will discuss the analysis of the PUE, and will also explore the impact of the raising data center efficiency via the use of multiple cooling technologies and CFD analysis. Complete results of the

  16. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  17. Hadronic multiparticle production at ultrahigh energies and extensive air showers

    SciTech Connect

    Ulrich, Ralf; Engel, Ralph; Unger, Michael

    2011-03-01

    Studies of the nature of cosmic ray particles at the highest energies are based on the measurement of extensive air showers. Most cosmic ray properties can therefore be obtained only from the interpretation of air shower data and are thus dependent on predictions of hadronic interaction models at ultrahigh energies. We discuss different scenarios of model extrapolations from accelerator data to air shower energies and investigate their impact on the corresponding air shower predictions. To explore the effect of different extrapolations by hadronic interaction models we developed an ad hoc model. This model is based on the modification of the output of standard hadronic interaction event generators within the air shower simulation process and allows us to study the impact of changing interaction features on the air shower development. In a systematic study we demonstrate the resulting changes of important air shower observables and also discuss them in terms of the predictions of the Heitler model of air shower cascades. It is found that the results of our ad hoc modifications are, to a large extent, independent of the choice of the underlying hadronic interaction model.

  18. Systematic experimental study on a highly efficient terahertz source based on two-color laser-induced air plasma

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Fan, Wen-Hui; Chen, Xu

    2016-05-01

    In this paper, highly efficient terahertz radiation generated by two-color femtosecond laser-induced air plasma is reported. A number of variables that can obviously influence terahertz generation and detection have been investigated systematically. The dependence on experimental parameters, including pulse energy, the rotation angle of beta-barium boron oxide (BBO) crystal, the distance between BBO crystal and laser-induced plasma, focal length, chopper frequency, and detection angle are presented, and the optimal values of these parameters have also been obtained experimentally. Finally, a highly efficient terahertz source has been achieved and can be utilized to carry out further investigation on terahertz sensing, spectroscopy, and imaging.

  19. The drive for Aircraft Energy Efficiency

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  20. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  1. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  2. Limits to Photovoltaic Energy Conversion Efficiency

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2015-10-01

    The following sections are included: * Introduction * Photovoltaic converters: essential requirements * Thermodynamic properties of sunlight * `Top-down' thermodynamic efficiency limits * Single-cell efficiency limits * Multiple-junction devices * Other high-efficiency options * Summary * Acknowledgement * References

  3. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  4. Nano-textured copper oxide nanofibers for efficient air cooling

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Jo, Hong Seok; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2016-02-01

    Ever decreasing of microelectronics devices is challenged by overheating and demands an increase in heat removal rate. Herein, we fabricated highly efficient heat-removal coatings comprised of copper oxide-plated polymer nanofiber layers (thorny devil nanofibers) with high surface-to-volume ratio, which facilitate heat removal from the underlying hot surfaces. The electroplating time and voltage were optimized to form fiber layers with maximal heat removal rate. The copper oxide nanofibers with the thorny devil morphology yielded a superior cooling rate compared to the pure copper nanofibers with the smooth surface morphology. This superior cooling performance is attributed to the enhanced surface area of the thorny devil nanofibers. These nanofibers were characterized with scanning electron microscopy, X-ray diffraction, atomic force microscopy, and a thermographic camera.

  5. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  6. Will drivers for home energy efficiency harm occupant health?

    PubMed

    Bone, Angie; Murray, Virginia; Myers, Isabella; Dengel, Andy; Crump, Derrick

    2010-09-01

    The U.K. government has committed to an 80% reduction in carbon emissions by 2050, with housing accounting for 27% of total current emissions. There are several drivers both to reduce emissions from homes and to reduce fuel poverty, promoting a range of building and behavioural measures in homes. The health benefits of warmer homes in winter have been described, but there has been less consideration of the potential negative impacts of some of these measures. We examine the changes in U.K. homes, and the possible consequences for health. The main concerns for health surround the potential for poor indoor air quality if ventilation is insufficient and the possible risks of overheating in heatwave conditions. This paper notes a limited evidence base and the need for further research on the health effects of energy-efficient homes, particularly with regard to ventilation. PMID:21086820

  7. Efficient pumping of inertial fusion energy lasers

    NASA Astrophysics Data System (ADS)

    Wessling, C.; Rübenach, O.; Hambücker, S.; Sinhoff, V.; Banerjeea, S.; Ertel, K.; Mason, P.

    2013-02-01

    Solid-state lasers have been demonstrated as attractive drivers for laser-plasma interaction and have presently been developed for various applications like inertial confinement fusion (ICF) [1], particle acceleration and intense X-ray generation [3]. Viable real world applications like power production at industrial scale will require high laser system efficiency, repetition rate and lifetime which are only possible with semiconductor diode pumping. The paper describes the work conducted with two 20 kW diode laser sources pumping an ytterbium:YAG laser amplifier. The set-up acts as a small scale prototype for the DiPOLE project [2]. This project aims to develop scalable gas cooled cryogenic multi-slab diode pumped solid state lasers capable of producing KJ pulse energy. A scale-down prototype is currently under development at the Central Laser Facility (CLF) designed to generate 10 J at 10 Hz. To secure an efficient pumping process the sources have to fulfill aside power requirement in the spectral and time domain, the claim for high homogenization and low divergence of the spatial and angular beam distribution as well as a minimization of losses within the optical path. The existing diode laser sources designed and built by INGENERIC deliver 20 kW pulsed power, concentrated on a plateau of FWHM dimension of 20 x 20 mm² with a homogeneity of more than 90 %. The center wavelength of 939.5 nm is controlled in a range of ± 0.1 nm. The time and area integrated spectrum of at least 76 % of the total energy is contained within a 6 nm wide wavelength band around the center wavelength. Repetition rates can be adjusted between 0.1 Hz up to 10 Hz with rise and fall times less than 50 μs and pulse durations from 0.2 ms to 1.2 ms. The paper describes the impact of different designs on the performance of pump sources and puts special emphasis on the influence of the optical components on efficiency and performance. In addition the influence of the measuring principle is

  8. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    Not Available

    2005-05-01

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant's compressed air system to enhance its performance while saving energy and improving production. After plant staff identified opportunities for system improvements, a qualified instructor from a U.S. Department of Energy (DOE) Allied Partner, Scales Air Compressor Corporation, helped to clarify several of them. The resulting improvement measures are yielding energy savings for compressed air of more than 1 million kWh; energy and maintenance cost savings total $165,000. The total cost of planned upgrades and other measures was $336,000, for a 2-year simple payback.

  9. Energy-efficient incandescent lamp. Final report

    SciTech Connect

    Not Available

    1982-04-01

    The status of the Energy Efficient Light Bulb (EELB) development at the beginning of the subcontract was characterized by a newly introduced lamp construction based on an optimum optical quality envelope consisting of two hemispheres or hemi-ellipsoids bonded together. Considerable progress was made concerning the output of the continuous process heat mirror coating machine, the reproducibility of the film characteristics, and the durability of the coating over long periods of lamp operation. The bonding assembly processes were improved to the point where they are suitable for full mechanization and high speed production. A new concept for dimensioning the required compact and mechanically stable filaments was introduced by using diodes in series that reduce the effective operating voltage to 83 volts. This has led to filament designs of greater stability and greater compactness than any obtained before. The efficacy and energy saving data of the prototype lamps delivered at the end of the subcontract were close to the target values established at the beginning.

  10. Energy audits reveal significant energy savings potential in India`s commercial air-conditioned building sector

    SciTech Connect

    Singh, G.; Presny, D.; Fafard, C.

    1997-12-31

    The United States Agency for International Development (USAID) began its Energy Management Consultation and Training (EMCAT) project in India. The EMCAT project began in 1991 as a six-year (1991--1997) project to improve India`s technological and management capabilities for both the supply of energy and its efficient end use. The end-use component of EMCAT aims for efficient energy utilization by industries and other sectors such as the commercial sector. A specific task under the end-use component was to conduct energy surveys/audits in high energy-use sectors, such as air-conditioned (AC) buildings in the commercial sector, and to identify investment opportunities that could improve energy utilization. This article presents results of pre-investment surveys that were conducted at four commercial air-conditioned facilities in 1995. The four facilities included two luxury hotels in New Delhi, and one luxury hotel and a private hospital in Bombay. Energy conservation opportunities (ECOs) were explored in three major energy-using systems in these buildings: air-conditioning, lighting, and steam and domestic hot water systems.

  11. AET's new energy-efficient facility gears up for production

    SciTech Connect

    Pucci, A.

    1993-01-01

    American Energy Technologies, Inc. (AET), a company based just north of Green Cove Springs, Florida, has become the largest manufacturer of solar thermal products in the U.S. Phase 1 of the construction of AET's new manufacturing facility, which commenced in October 1992, was completed in April 1993. It houses high-output tooling designed by AET to ensure affordable, high-quality solar thermal hardware which is rated among the most efficient in the world today. The AET facility has integrated a number of energy-efficient design considerations and conservation measures. The passive-solar design of the building minimizes direct solar gain in the summer and maximizes tropical winds for passive cooling. Strategically placed native landscaping requires minimal maintenance, thus reducing water consumption, and provides natural shading for the offices. The exterior walls are constructed of Poly Steel hollow-core styrofoam forms filled with pumped concrete. This design provides an insulation rate of R-22, a wind load of 160 mph, and a two-hour fire rating. The light-colored office and the plant's exterior skin assist in reducing the cooling load with the protection of Lomit, a spray-applied radiant barrier manufactured by SOLEC Corporation, which coats the office roof decks. Climate control for the manufacturing area is provided by an AET solar heating system which works in tandem with two LPG Amana Command Aire 80s for back up. Office space heating is supplied by a warm forced-air system by US Solar Corporation which utilizes a 320-square-foot solar array with a 1,000-gallon storage tank. Circulation is powered by a Siemens Solar Pro photovoltaic array and the thermal system also provides solar hot water for the manufacturing process.

  12. Competency Based Education Curriculum for Energy Efficient Building Construction.

    ERIC Educational Resources Information Center

    Cole, John; And Others

    This competency-based curriculum for energy-efficient building construction is intended to educate students in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. Each of the eight units is based on one to five competencies. For…

  13. Coeur d'Alene Tribe Energy Efficiency Feasibility Study

    SciTech Connect

    Allgood, Tiffany L.; Sorter, Andy

    2015-01-13

    The Coeur d'Alene Tribe's Energy Efficiency Feasibility Study (EEFS) is the culminating document that compiles the energy efficiency and building performance assessment and project prioritization process completed on 36 Tribally owned and operated facilities within Tribal lands. The EEFS contains sections on initial findings, utility billing analyses, energy conservation measures and prioritization and funding sources and strategies for energy project implementation.

  14. RP-5 RENEWABLE ENERGY EFFICIENCY PROJECT

    SciTech Connect

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2003-04-30

    This is the third quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period of January 1, 2003 to March 31, 2003. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings, discussions, and engineering and design activities that took place to complete the conceptual design phase and finalize the scope of work for the project. As indicated in the previous reports, CH2M Hill, the Public Interest Energy Research (PIER) Consultant, is in charge of the analysis and evaluation of the innovative equipment and systems for the project. The PIER Consultant has submitted to Inland empire Utilities Agency (IEUA) the draft Conceptual Design Report for review and comments. IEUA has prepared a detailed scope of work for the whole project, which will be used by the consultant as a basis and a reference for submitting their proposal for the engineering and design services. This report also includes engineering work and procurement of vital equipment which is part of the new IEUA Headquarters Building's chilled water system. IEUA has performed a detailed technical and economical analysis to evaluate several potential options and scenarios for the configuration of the power generation equipment and systems for the project. Other activities in this report include meeting with Ormat, the manufacturer and potential supplier of the innovative organic bottoming cycle, which operates on heat recovered from engines exhaust system, to go over their scope of work and evaluate the system for the anticipated plant conditions and configurations. A matching funds update is also included in the Results and Discussion section, which presents the work effort performed by the PIER Consultant and the associated costs that serve as matching funds for the RP-5 Project.

  15. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    PubMed

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency. PMID:25842538

  16. Opportunities and prospects for energy efficiency in Asian countries

    SciTech Connect

    Kuliasha, M.A.

    1992-01-01

    Energy efficiency and economic growth are examined in Asia. Progress in improving energy efficiency has slowed recently. This trend has resulted from population growth, expansion of leisure time, improvements in the standard of living, and increased mobility in the domestic and transportation sectors. Barriers to efficiency improvement are analyzed, along with new technology developments. The paper concludes with an argument that energy efficiency is good business.

  17. Opportunities and prospects for energy efficiency in Asian countries

    SciTech Connect

    Kuliasha, M.A.

    1992-12-31

    Energy efficiency and economic growth are examined in Asia. Progress in improving energy efficiency has slowed recently. This trend has resulted from population growth, expansion of leisure time, improvements in the standard of living, and increased mobility in the domestic and transportation sectors. Barriers to efficiency improvement are analyzed, along with new technology developments. The paper concludes with an argument that energy efficiency is good business.

  18. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    SciTech Connect

    Reese, Ronald

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  19. Ablation efficiency of α-Al2O3 in liquid phase and ambient air by nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Sajti, Csaba László; Sattari, Ramin; Chichkov, Boris; Barcikowski, Stephan

    2010-07-01

    Ablation efficiency and influences of laser parameters on a material removal rate by a nanosecond laser irradiation of α-Al2O3 are studied in gas and liquid phases. The laser ablation in the air yields maximum material removal rate of 12 ng/pulse using a 4.6-mJ pulse energy at 4-kHz repetition rate, compared to 88 ng/pulse in the water flow. Using a specific interpulse distance and a laser repetition rate further increase material removal rate by factor of 3 and 65, respectively, owing to an optimized lattice temperature and laser pulse interactions with the generated cavitation bubble. For the ablation in the air, these parameters do not significantly affect the ablation efficiency.

  20. 76 FR 54224 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: The purpose of the ERAC is to..., and deployment priorities within the field of energy efficiency and renewable energy. The...

  1. 76 FR 80355 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open teleconference/Webinar. SUMMARY: The purpose of ERAC..., demonstration and deployment priorities within the field of energy efficiency and renewable energy. The...

  2. 78 FR 16443 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC87 Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans and Ceiling Fan Light Kits AGENCY: Office of Energy Efficiency and... INFORMATION CONTACT: Ms. Lucy deButts, U.S. Department of Energy, Office of Energy Efficiency and...

  3. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and Renewable Energy and Office of the General Counsel... mechanisms by grantees of the State Energy Program (SEP) and Energy Efficiency and Conservation Block...

  4. Hydrogen-air energy storage gas-turbine system

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  5. A cost-efficiency and health benefit approach to improve urban air quality.

    PubMed

    Miranda, A I; Ferreira, J; Silveira, C; Relvas, H; Duque, L; Roebeling, P; Lopes, M; Costa, S; Monteiro, A; Gama, C; Sá, E; Borrego, C; Teixeira, J P

    2016-11-01

    When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way - i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3M€·y(-1). The largest net benefit is obtained for the scenario considering the conversion of 50% of open fire places into heat recovery wood stoves. Although the implementation costs of this measure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for policy decision support on air quality improvement strategies, and could be applied to other urban areas where AQP need to be implemented and monitored. PMID:27348699

  6. 75 FR 27227 - Energy Conservation Program: Energy Conservation Standards for Residential Central Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Renewable Energy. ACTION: Proposed rule; notice of extension of public comment period. SUMMARY: On March 25... CONTACT: Mr. Wes Anderson, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy..., Assistant Secretary, Energy Efficiency and Renewable Energy. BILLING CODE 6450-01-P...

  7. Relative dose efficiencies of antiscatter grids and air gaps in pediatric radiography

    SciTech Connect

    McDaniel, D.L.; Cohen, G.; Wagner, L.K.; Robinson, L.H.

    1984-07-01

    The relative dose efficiencies (RDE) of various antiscatter grids and air gaps were determined for conditions simulating those found in pediatric radiography, using phantoms representing a newborn child, a 5-yr-old and a 10-yr-old child. Our data indicate than an air gap is best for the newborn, due to the low levels of scatter. The 8:1 fiber grid or 15.2-cm air gap without a grid can improve dose efficiency (DE) for the 5-yr-old child by 20%--25% relative to the 3.3-cm air gap and no-grid technique, while for the 10-yr-old child, DE can be improved by 40% with an 8:1 fiber grid.

  8. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  9. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    PubMed

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  10. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. PMID:26172593

  11. 78 FR 14024 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Federal Register on February 22, 2013 (78 FR 12252), concerning an announcement of a public meeting and... Equipment: Public Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Correction AGENCY: Office of Energy Efficiency and Renewable...

  12. Best Practicefor Energy Efficient Cleanrooms: Variable SpeedPumping

    SciTech Connect

    Xu, Tengfang

    2005-06-15

    Cleanroom energy benchmarking data shows that chiller plant designs and operating efficiencies varied significantly from cleanroom to cleanroom. While system optimization is critical to the overall energy efficiency of chiller plants, the operating efficiency of chilled water and condenser pumps, along with chiller efficiency and cooling tower efficiency, is a major factor in the overall system efficiency. The design and operating efficiency of water pumps directly affects energy use for such facilities. Figure 1 shows benchmarked HVAC energy end use in a semiconductor cleanroom facility. In this case, the water pumps collectively accounted for 17% of the total energy use. Figure 2 shows the electric power demand of the components in a chiller plant system. Pumps accounted for 18% of the total power demand for the whole chiller plant. It is important to design, select, operate, and control water-pumping systems to achieve high efficiency and to lower life-cycle costs for cleanrooms and their adjacent spaces.

  13. High-Efficiency Variable Dehumidification for Air Conditioners: ClimaStat

    SciTech Connect

    West, Michael K., Ph.D. P.E.

    2006-04-30

    Advantek has successfully developed the first low-cost technology offering significant improvement in both Seasonal Energy Efficiency (SEER) and comfort & humidity control. A production prototype was constructed based on a commercial roof top package unit. The prototype was operated under a wide range of psychrometric conditions. Test data was analyzed to identify refinements, which were implemented to further improve performance in an iterative procedure that resulted in a fully optimized technology. The latest results show an increase in dehumidification capacity of 56% with ClimaStat™ in full dehumidify mode vs. with ClimaStat™ off. Dehumidification improved by a factor of 1.7 to 1.9 – meaning that the unit can provide nearly twice the water removal per unit of sensible cooling load. Performance testing results have been consistent, verifiable and repeatable. . ClimaStat™ cost-effectively controls humidity on-demand and improves indoor air quality while reducing annual energy costs. Test data clearly shows that ClimaStat™ costs 20% to 60% less to operate. ClimaStat™ is ready for market.

  14. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  15. How to buy energy-efficient distribution transformer

    SciTech Connect

    1998-07-01

    Section 161 of the Energy Policy Act of 1992 (EPACT) encourages energy-efficient federal procurement. Executive Order 12902 and FAR section 23.704 direct agencies to purchase products in the upper 25% of energy efficiency. Agencies that use these guidelines to buy efficient products can realize substantial operating cost savings and help prevent pollution. As the world`s largest consumer, the federal government can help pull the entire US market towards greater energy efficiency, while saving taxpayer dollars. The efficiency levels in this Recommendation are the same as those in NEMA`s TP-1 standard. Additionally, the EPA/DOE ENERGY STAR{reg_sign} program identifies efficient low-voltage distribution transformers with the ENERGY STAR{reg_sign} label. Complying models meet the same efficiency criteria specified in this Recommendation (and TP-1).

  16. Energy Efficiency and Renewable Energy Network (EREN): Customer satisfaction survey

    SciTech Connect

    Anderson, A.V.; Henderson, D.P.

    1996-04-22

    The Energy Efficiency and Renewable Energy Network (EREN) Customer Satisfaction Survey was developed and executed in support of EREN`s continuous quality improvement (CQI) plan. The study was designed to provide information about the demographic make up of EREN users, the value or benefits they derive from EREN, the kinds and quality of services they want, their levels of satisfaction with existing services, their preferences in both the sources of service and the means of delivery, and to provide benchmark data for the establishment of continuous quality improvement measures. The survey was performed by soliciting voluntary participation from members of the EREN Users Group. It was executed in two phases; the first being conducted by phone using a randomly selected group; and the second being conducted electronically and which was open to all of the remaining members of the Users Group. The survey results are described.

  17. Draft Regulatory Analysis. Technical support document No. 1: energy efficiency standards for consumer products

    SciTech Connect

    1980-06-01

    A Draft Regulatory Analysis is presented that describes the analyses performed by DOE to arrive at proposed energy efficiency standards for refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, kitchen ranges and ovens, central air conditioners (cooling only), and furnaces. Standards for dishwashers, television sets, clothes washers, and humidifiers and dehumidifiders are required to be published in the Federal Register no later than December 1981. Standards for central air conditioners (heat pumps) and home heating equipment are to be published in the Federal Register no later than January 1982. Accordingly, these products are not discussed in this Draft Regulatory Analysis.

  18. Weyerhaeuser: Compressed Air System Improvement Saves Energy and Improves Production at a Sawmill

    SciTech Connect

    2004-11-01

    In 2000, Weyerhaeuser Company, a U.S. Department of Energy Allied Partner in the Industrial Technologies Program, increased the efficiency of the compressed air system at its sawmill facility in Coburg, Oregon. This improved the system's performance and will save about 1.3 million kWh annually. Total project costs were $55,000; because annual energy cost savings were also $55,000, the simple payback period was only 1 year. Subsequent improvements at six other company plants and mills are yielding 6.8 million kWh in energy savings and reducing annual energy costs by $250,000.

  19. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  20. Enzyme catalysis: Cleaner, safer, energy efficient

    SciTech Connect

    Lalonde, J.

    1997-09-01

    Protein catalysts, more commonly referred to as enzymes, are the driving force behind the myriad of chemical reactions occurring in living organisms. By using their ability to distinguish between similar biochemical compounds and optical isomers (enantiomers), with virtually complete discrimination, enzymes are efficient catalysts, making them an attractive alternative for synthetic ones. Tapping into the natural abilities of enzymes, the chemical process industries (CPI) are beginning to realize that enzymes are not only effective for catalyzing reactions of natural compounds within living systems, but that they can also be used to catalyze reactions of unnatural compounds. Enzymes are novel among catalysts in that they are capable of directing asymmetric transformations with complete activity under ambient conditions. As a result, bioconversions, such as the hydroxylation of unactivated hydrocarbon centers, to give alcohols in high optical purity, have few counterparts in traditional chemical catalysis. And unlike most chemical manufacturing catalysts, enzymes work in water, at ambient temperature and near neutral pH. Also, they are easy to dispose of, since they are composed of biodegradable protein. Thus, biocatalysts are the ideal green catalyst, producing less waste and consuming less energy.