Science.gov

Sample records for energy helium-neon laser

  1. [The effect of helium-neon laser radiation on the energy metabolic indices of the myocardium].

    PubMed

    Chizhov, G K; Koval'skaia, N I; Kozlov, V I

    1991-03-01

    It was shown in experiments on white rats, that intravenous and direct myocardium helium-neon laser irradiation leads to the some activation of lactate, glucose-6-phosphate, succinate and reduced NAD degydrogenases. During direct myocardium irradiation these changes are in a less degree. It is suggested that helium-neon laser irradiation displays some active influence on the energy metabolism enzymes of the myocardium, and the mechanisms of this action are discussed. PMID:2054512

  2. Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes

    SciTech Connect

    Haas, A.F.; Isseroff, R.R.; Wheeland, R.G.; Rood, P.A.; Graves, P.J. )

    1990-06-01

    Helium-neon (HeNe) laser irradiation is known to stimulate wound healing. We investigated whether the biostimulatory effects of HeNe irradiation result from enhancement of keratinocyte proliferation or motility. HeNe effects on keratinocyte motility were evaluated by irradiating a wounded culture with 0.8 J/cm2 3 times over a 20-h period. At 20 h post-irradiation, videocinemicroscopy and sequential quantitative measurements of the leading edge were taken over a 6-h period. There was a significant difference in migration of the leading edge in irradiated wounds compared to non-irradiated wounded controls (12.0 microns/h vs 4.0 microns/h, p less than 0.0001). To determine if the increase in migration observed in irradiated cultures resulted from a proliferative effect of HeNe irradiation, subconfluent human keratinocyte cultures were irradiated with single or multiple doses of different fluences of HeNe irradiation (0.4 to 7.2 J/cm2) and evaluated 72 h post-irradiation. Irradiated and non-irradiated keratinocyte cultures grown on a microporous membrane surface were co-cultured with irradiated and non-irradiated fibroblasts to determine if HeNe irradiation induced a paracrine effect on keratinocyte proliferation. No significant increase in keratinocyte proliferation was demonstrated in any of these treatments. The biostimulatory effects of HeNe irradiation may now be extended to include enhancement of keratinocyte motility in vitro; this may contribute to the efficacy of HeNe irradiation in wound healing.

  3. [Intravenous use of low-energy helium-neon laser irradiation in unstable angina].

    PubMed

    Ionin, A P; Volkova, E G

    1989-01-01

    The effects of low-energy He/Ne laser on some functional characteristics of cardiac activity have been examined in 90 patients with unstable angina pectoris. Altogether 618 sessions of venous blood irradiation have been carried out. A random-sample reference group consisted of 25 patients. Antianginal effect has been assessed by the number of anginal attacks and by the number of daily nitroglycerin tablets. Exercise tolerance has been examined by paired bicycle ergometry; the ventricular rate activation parameters have been examined by the ECG technique and its first derivative. The data evidence a true antianginal clinical effect of intravenous laser therapy, increase of exercise tolerance in respect of both the total exercise performed and the time increment, and an essential acceleration of the ventricular activation in the patients with unstable angina. PMID:2683136

  4. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  5. Helium-neon laser improves skin repair in rabbits.

    PubMed

    Peccin, Maria Stella; Renno, Ana Claudia Muniz; de Oliveira, Flavia; Giusti, Paulo Ricardo; Ribeiro, Daniel Araki

    2012-12-01

    The purpose of this study was to evaluate the influence of helium-neon laser on skin injury in rabbits. For this purpose, 15 New Zealand rabbits underwent bilateral skin damage in leg. Helium-neon laser light, at a fluence of 6 J∕cm2 and wavelength of 632.8 nm, was applied on the left legs (laser group). The right leg lesions (control group) served as negative control. All sections were histopathologically analyzed using HE sections. The results showed little infiltration of inflammatory cells, with proliferation of fibroblasts forming a few fibrous connective tissue after 1 week post-injury. The lesion on the 3rd week was characterized by granulation tissue, which formed from proliferated fibrous connective tissue, congested blood vessels and mild mononuclear cell infiltration. On the 5th week, it was observed that debris material surrounded by a thick layer of connective tissue and dense collage, fibroblasts cells present in the dermis covered by a thick epidermal layer represented by keratinized epithelium. Taken together, our results suggest that helium-neon laser is able to improve skin repair in rabbits at early phases of recovery. PMID:23057697

  6. Polarization of a Helium-Neon Laser.

    ERIC Educational Resources Information Center

    Jones, Edwin R.

    1996-01-01

    Describes an experiment that involves measuring the intensity of laser light passed by a linear polarizer. Discusses polarization effects, orthogonal polarizations, instrumentation, and further experiments. (JRH)

  7. Helium-neon laser treatment transforms fibroblasts into myofibroblasts.

    PubMed Central

    Pourreau-Schneider, N.; Ahmed, A.; Soudry, M.; Jacquemier, J.; Kopp, F.; Franquin, J. C.; Martin, P. M.

    1990-01-01

    The differentiation of myofibroblastic cells from normal human gingival fibroblasts in vitro has been established by transmission electron microscopy and quantitated by immunohistochemistry, using antigelsolin monoclonal antibodies. Untreated control cultures were compared to cultures exposed to Helium-Neon (He-Ne) laser irradiation. A direct and massive transformation of the cultured fibroblasts into myofibroblasts was observed as early as 24 hours after laser treatment, whereas control cultures were comprised of only resting fibroblasts and active fibroblasts. This in vitro induction of myofibroblasts may be analogous to that which occurs in vivo. Therefore we undertook a similar study using biopsies from gingival tissues after wisdom tooth extraction. Myofibroblasts were present in the connective tissue of laser-treated gums 48 hours after irradiation, but not in untreated contralateral control tissues. These data provide evidence that the primary biologic effect of the Helium-Neon laser on connective tissue is the rapid generation of myofibroblasts from fibroblasts. The induction of a phenotype with contractile properties may have clinical significance in the acceleration of the wound-healing process. Images Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2372040

  8. Effect of helium-neon laser on musculoskeletal trigger points

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.; Bourbon, B.; Trumbore, D.

    1986-07-01

    Cold lasers have been proposed recently as a therapeutic tool for treating a wide variety of pathological conditions, including wounds, arthritis, orthopedic problems, and pain. These proposed therapeutic effects largely have been unsubstantiated by research. A randomized, double blind study was undertaken to ascertain the effect of a helium-neon (He-Ne) laser on the resistance of areas of skin overlying musculoskeletal trigger points. These areas usually demonstrate decreased skin resistance when compared with the surrounding tissue. Thirty patients with musculoskeletal trigger points were assigned randomly to either an experimental or a placebo group. In addition to standard physical therapy, each patient received three 15-second applications of a He-Ne laser or placebo stimulation from an identical unit that did not emit a laser. The results of a two-way analysis of covariance with one repeated measure showed a statistically significant increase (p less than .007) in skin resistance. This increase in an abnormal skin resistance pattern may accompany the resolution of pathological conditions.

  9. Biostimulation of wound healing in vivo by a helium-neon laser

    SciTech Connect

    Lyons, R.F.; Abergel, R.P.; White, R.A.; Dwyer, R.M.; Castel, J.C.; Uitto, J.

    1987-01-01

    Clinical observations have suggested that low-energy lasers might stimulate wound healing. To understand the mechanism of the biostimulation, we previously examined the effects of low-energy lasers on collagen production by human skin fibroblasts and reported an increase of collagen synthesis in vitro. To examine the effects of low-energy lasers in vivo, hairless mice were experimentally wounded, sutured, and subjected to laser irradiation by a helium-neon laser with a power output of 1.56 mW and an energy fluence of 1.22 Joules/cm2. Experimental wounds were subjected to laser treatment every other day for 2 months; control wounds remained untreated. Specimens from the wounds were then examined for histological findings, tensile strength, and total collagen content. Results demonstrated a considerable improvement in the tensile strength of the laser-irradiated wounds at 1 and 2 weeks. Furthermore, the total collagen content was significantly increased at 2 months when compared with control wounds. These results suggest a beneficial effect of the helium-neon laser on wound healing in vivo.

  10. Low-energy helium-neon laser therapy induces repigmentation and improves the abnormalities of cutaneous microcirculation in segmental-type vitiligo lesions.

    PubMed

    Wu, Chieh-Shan; Hu, Stephen Chu-Sung; Lan, Cheng-Che E; Chen, Gwo-Shing; Chuo, Wen-Ho; Yu, Hsin-Su

    2008-04-01

    Segmental vitiligo (SV) is a special form of vitiligo occurring in a dermatomal distribution, and an abnormality involving the sympathetic nerves supplying the affected dermatome is known to underlie this disorder. Previously, we have shown that SV is associated with an abnormal increase in cutaneous blood flow and adrenoceptor responses in the affected areas. Since SV is resistant to conventional forms of therapy, its management represents a challenge for dermatologists. Low energy helium-neon lasers (He-Ne laser, wavelength 632.8 nm) have been employed as a therapeutic instrument in many clinical situations, including vitiligo management and repair of nerve injury. The purpose of this study was to evaluate the effectiveness and safety of He-Ne lasers in treating SV, and determine their effects on the repair of sympathetic nerve dysfunction. Forty patients with stable-stage SV on the head and/or neck were enrolled in this study. He-Ne laser irradiation was administered locally at 3.0 J/cm2 with point stimulation once or twice weekly. Cutaneous microcirculatory assessments in six SV patients were performed using a laser Doppler flowmeter. The sympathetic adrenoceptor response of cutaneous microcirculation was determined by measuring cutaneous blood flow before, during and after iontophoresis with sympathomimetic drugs (phenylephrine, clonidine and propranolol). All measurements of microcirculation obtained at SV lesions were simultaneously compared with contralateral normal skin, both before and after He-Ne laser treatment. After an average of 17 treatment sessions, initial repigmentation was noticed in the majority of patients. Marked repigmentation (> 50%) was observed in 60% of patients with successive treatments. Cutaneous blood flow was significantly higher at SV lesions compared with contralateral skin, but this was normalized after He-Ne laser treatment. In addition, the abnormal decrease in cutaneous blood flow in response to clonidine was improved by He

  11. Helium-neon laser therapy in the treatment of hydroxyapatite orbital implant exposure: A superior option

    PubMed Central

    XU, QI-HUA; ZHAO, CHEN; ZHU, JIAN-GANG; CHEN, MEI-JUAN; LIU, QING-HUAI

    2015-01-01

    The aim of the present study was to evaluate the efficacy of helium-neon laser therapy in the treatment of hydroxyapatite orbital implant exposure and compare the results with those of a combined drugs and surgery regimen. A total of 70 patients with hydroxyapatite orbital implant exposure in 70 eyes were randomly divided into two groups: Helium-neon laser therapy (group A) and drugs plus surgery (group B). Each group contained 35 patients. The healing rates and times of the conjunctival wound were recorded and compared following helium-neon laser treatment or the drugs plus surgery regimen. Changes in the hydroxyapatite orbital implant prior to and following helium-neon laser irradiation were analyzed. A similar animal study was conducted using 24 New Zealand white rabbits, which received orbital implants and were then received drug treatment or helium-neon therapy. In the human experiment, the rates for conjunctival wound healing were 97.14% in group A and 74.29% in group B, with a significant difference between the groups (χ2=5.71, P<0.05). Patients with mild exposure were healed after 7.22±2.11 days of helium-neon laser therapy and 14.33±3.20 days of drugs plus surgery. A statistically significant difference was found between the groups (t=8.97, P<0.05). Patients with moderate to severe exposure were healed after 18.19±2.12 days of helium-neon laser therapy and 31.25±4.21 days of drugs plus surgery. The difference between the groups was statistically significant (t=7.91, P<0.05). Enhanced magnetic resonance imaging showed that the helium-neon laser therapy significantly promoted vascularization of the hydroxyapatite orbital implant. These results, combined with pathological findings in animals, which showed that a helium-neon laser promoted vascularization and had anti-inflammatory effects, suggest that helium-neon laser irradiation is an effective method for treating hydroxyapatite orbital implant exposure, thereby avoiding secondary surgery. PMID

  12. Photobiomodulation by helium neon and diode lasers in an excisional wound model: A single blinded trial

    PubMed Central

    Dixit, Snehil; Maiya, Arun; Rao, Laxmi; Rao, M. Arjun; Shastry, Barkur Ananthakrishna; Ramachandra, L.

    2012-01-01

    Background: Application of different kinds of lasers in clinical and experimental studies causes photobiomodulation that works at localized cellular and humoral level on various biological systems. Increased numbers of fibroblasts, myofibroblast, and degranulation of mast cells have been the observed benefits post-irradiation. Objective: Was to find out the effect of irradiation with energy densities of 3.38 J/cm2, 8 J/cm2, and 18 J/cm2 on animal tissue (albino wistar rats) in an excisional wound model and to assess changes in biochemical (hydroxyproline) and histopathological levels in excisional wound model. Materials and Methods: The animals were divided into 4 groups, which were labeled as L1, diode laser (18 J/cm2), L2 Helium-neon (He-Ne, 8 J/cm2), L3 diode laser (3.38 J/cm2), and sham treatment for control was depicted by C, respectively. Histological and hydroxyproline analysis was performed on 7, 14, 21 days of post-wounding. One-way analysis of variance, ANOVA and Bonferroni's multiple comparison tests were done for tissue hydroxyproline levels. Results: There was no significant increase in the hydroxyproline content (P < 0.005) when observed in study group and compared to controls. Whereas significant epithelizations was seen in group treated with He-Ne laser of intensity of 8 J/cm2. Conclusion: The experimental observations suggest that low intensity helium-neon laser of 8 J/cm2 intensity facilitated photo stimulation by tissue repair, but failed to show significant tissue hydroxyproline levels in excisional wound model. PMID:23326769

  13. Helium-neon laser improves bone repair in rabbits: comparison at two anatomic sites.

    PubMed

    Peccin, Maria Stella; de Oliveira, Flavia; Muniz Renno, Ana Claudia; Pacheco de Jesus, Gustavo Protasio; Pozzi, Renan; Gomes de Moura, Carolina Foot; Giusti, Paulo Ricardo; Ribeiro, Daniel Araki

    2013-07-01

    The purpose of this study was to evaluate the influence of helium-neon laser on bone repair of femur and tibia in rabbits. For this purpose, 15 New Zealand rabbits underwent bilateral bone damage (tibia and femur) using a spherical bur. Helium-neon laser light, at a fluency of 6 J∕cm(2) and wavelength of 632.8 nm was applied on the left legs (laser group). The right tibia or femur lesions (control group) served as negative control. All sections were histopathologically analyzed using HE sections and the morphometric data from bone tissue and hyaline cartilage were achieved. Histopathological analysis showed regular bone trabeculae covered by osteoblastic cells after 1 week in the group exposed to laser therapy from femur and tibia indistinctly. After 3 weeks, the laser group showed new bone formation coming from the bony walls in the femur and tibia as well. On the 5th week, well-defined trabecula undergoing remodeling process was detected for the most intense pattern in tibia only. Morphometric analysis revealed significant statistical differences (p < 0.05) in the bone tissue for the laser-exposed group on 1st and 3rd weeks. After 5th week, bone formation was increased to tibia only. Taken together, such findings suggest that helium-neon laser is able to improve bone repair in rabbits being the most pronounced effect in tibia. PMID:23053246

  14. [Combined helium-neon laser therapy in patients with ischemic heart disease].

    PubMed

    Korochkin, I M; Kartelishev, A V; Babushkina, G V; Kapustina, G M

    1990-03-01

    The paper describes the combined helium-neon-laser (HNL) therapy (intravenous and topical) developed by the authors to treat patients with coronary heart disease. A high efficacy of this therapy mode was demonstrated in patients over 70 years of age with Functional Classes III-IV angina refractory to antianginal agents. The mechanisms responsible for therapeutic efficiency of laser irradiation were studied at the membraneous and cellular levels. There is evidence that the combined HNL-therapy had advantages over topical HNL exposure in terms of higher clinical efficiency and patterns of abnormal chemical changes. PMID:2381119

  15. Safe Helium--Neon Lasers Advance Understanding of Light

    ERIC Educational Resources Information Center

    Knowles, C. Harry

    1972-01-01

    Experimental data, Federal and State regulations, and user data are presented to assess the safety factors of low-power lasers. General safety precautions, basic laser theory, the place of the laser in the classroom, and some introductory exercises are also presented. (Author/TS)

  16. Experimental study of the effects of helium-neon laser radiation on repair of injured tendon

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Qing; Li, Zhu-Yi; Weng, Long-Jiang; An, Mei; Li, Kai-Yun; Chen, Shao-Rong; Wang, Jian-Xin; Lu, Yu

    1993-03-01

    Despite extensive research into the biology of tendon healing, predictably restoring normal function to a digit after a flexor tendon laceration remains one of the most difficult problems facing the hand surgeon. The challenge of simultaneously achieving tendon healing while minimizing the peritendinous scar formation, which limits tendon gliding, has captured the attention of investigators for many years. It has been said that low-power density helium-neon laser radiation had effects on anti-inflammation, detumescence, progressive wound healing, and reducing intestinal adhesions. This experimental study aims at whether helium-neon laser can reduce injured tendon adhesions and improve functional recovery of the injured tendon. Fifty white Leghorn hens were used. Ten were randomly assigned as a normal control group, the other forty were used in the operation. After anesthetizing them with Amytal, a half of the profundus tendons of the second and third foretoes on both sides of the feet were cut. Postoperatively, the hens moved freely in the cages. One side of the toes operated on were randomly chosen as a treatment group, the other side served as an untreated control group. The injured tendon toes in the treatment group were irradiated for twenty minutes daily with a fiber light needle of helium-neon laser therapeutic apparatus (wavelength, 6328 angstroms) at a constant power density of 12.74 mW/cm2, the first exposure taking place 24 hours after the operation. The longest course of treatment was 3 weeks. The control group was not irradiated. At 3 days, 1, 2, 3, and 5 weeks after surgery, 8 hens were sacrificed and their tendons were examined. The experimental results: (1) active, passive flexion and tendon gliding functional recovery were significantly better in the treatment group (p < 0.01); (2) width and thickness of the tendon at the cut site were significantly smaller in the treatment group (p < 0.01); (3) degrees of tendon adhesions were significantly lighter

  17. Chronic myofascial pain: management by low-output helium-neon laser therapy.

    PubMed

    Waylonis, G W; Wilke, S; O'Toole, D; Waylonis, D A; Waylonis, D B

    1988-12-01

    Therapeutic benefits of low-output helium-neon laser therapy have not been established, but laser therapy has been suggested as an effective means of treating many acute and chronic musculoskeletal pain syndromes. Although not released for general clinical use by the FA, the helium-neon laser has been promoted to physical therapists and athletic trainers as potentially useful for the treatment of pain syndromes. In particular, it has been proposed that it may be more effective than conventional measures such as medication and conventional physical therapy in the treatment of myofascial pain syndromes (fibrositis, fibromyalgia). The citations in the literature include only case reports. Sixty-two patients were treated by using acupuncture points. Two sessions of five treatments were given six weeks apart. A crossover double-blind technique was used in the treatments. The clinical responses were assessed using portions of the McGill Pain Questionnaire. No statistical difference between the treatment and the placebo groups could be determined. PMID:3063230

  18. Chicago sky blue and a helium neon laser abolish endothelium dependent relaxation in vivo in the microcirculation

    SciTech Connect

    Nishimura, H.; Nelson, G.H.; Rosenblum, W.I. )

    1989-12-01

    Chicago sky blue, also known as Niagara sky blue, is a vital dye that can successfully be used as an intravascular energy absorbing target for the light from a helium-neon (HeNe) laser. The result of this light/dye interaction is endothelium damage which can be controlled by adjusting the duration of the laser exposure and the amount of dye injected intravenously. The endothelial damage probably is the result of the heat generated by the dyes absorption of energy at the interface between plasma and endothelium. The most minimal damage resulted in selective loss of the dilation normally produced by acetylcholine and bradykinin, two endothelium dependent dilators. The dilation produced by sodium nitroprusside, a dilator acting directly on vascular smooth muscle, was preserved. More severe injury (i.e. more prolonged exposure to light and/or more dye), resulted in local platelet aggregation at the site of laser impact.

  19. Effect of helium-neon laser irradiation on peripheral sensory nerve latency

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.E.

    1988-02-01

    The purpose of this randomized, double-blind study was to determine the effect of a helium-neon (He-Ne) laser on latency of peripheral sensory nerve. Forty healthy subjects with no history of right upper extremity pathological conditions were assigned to either a Laser or a Placebo Group. Six 1-cm2 blocks along a 12-cm segment of the subjects' right superficial radial nerve received 20-second applications of either the He-Ne laser or a placebo. We assessed differences between pretest and posttest latencies with t tests for correlated and independent samples. The Laser Group showed a statistically significant increase in latency that corresponded to a decrease in sensory nerve conduction velocity. Short-duration He-Ne laser application significantly increased the distal latency of the superficial radial nerve. This finding provides information about the mechanism of the reported pain-relieving effect of the He-Ne laser.

  20. Infrared transmission at the 3.39 micron helium-neon laser wavelength in liquid-core quartz fibers

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Hinkley, E. D.; Menzies, R. T.

    1979-01-01

    Infrared transmission at the 3.39 micron helium-neon laser wavelength has been measured in a tetrachloroethylene-filled fused-quartz fiber. The loss measurements were taken for three different settings of laser light intensity using a series of neutral density filters. The average value of transmission loss at this wavelength was found to be 56 dB/km.

  1. Molecular iodine fluorescence spectra generated with helium-neon lasers for spectrometer calibration.

    PubMed

    Williamson, J Charles

    2010-12-01

    Gas-phase molecular iodine laser-induced fluorescence (LIF) spectra were recorded out to 815 nm at 1 cm(-1) resolution using green, yellow, and red helium-neon (HeNe) lasers as excitation sources. Nine previously unreported I(2) B←X absorption transitions accessed by these lasers were identified, and specific rovibronic transition assignments were made for two hundred LIF peaks--more than sixty per laser. These I(2) LIF peaks can be used to calibrate the vacuum wavenumber coordinate of spectrometers to better than 0.1 cm(-1) accuracy. In particular, green HeNe excitation of the I(2) R(106) 28-0 transition leads to strong fluorescence well suited for calibration, with a rotational doublet spacing of 15 cm(-1) and a doublet-to-doublet spacing of 190 cm(-1). Calibration by HeNe I(2) LIF may be an especially valuable technique for Raman spectroscopy applications. PMID:21144161

  2. Solid-state ring laser gyro behaving like its helium-neon counterpart at low rotation rates.

    PubMed

    Schwartz, Sylvain; Gutty, François; Feugnet, Gilles; Loil, Eric; Pocholle, Jean-Paul

    2009-12-15

    Nonlinear couplings induced by crystal diffusion and spatial inhomogeneities of the gain have been suppressed over a broad range of angular velocities in a solid-state ring laser gyro by vibrating the gain crystal at 168 kHz and 0.4 microm along the laser cavity axis. This device behaves in the same way as a typical helium-neon ring laser gyro, with a zone of frequency lock-in (or dead band) resulting from the backscattering of light on the cavity mirrors. Furthermore, it is shown that the level of angular random-walk noise in the presence of mechanical dithering depends only on the quality of the cavity mirrors, as is the case with typical helium-neon ring laser gyros. PMID:20016646

  3. PHOTO-STIMULATORY EFFECT OF LOW ENERGY HELIUM-NEON LASER IRRADIATION ON EXCISIONAL DIABETIC WOUND HEALING DYNAMICS IN WISTAR RATS

    PubMed Central

    Maiya, Arun G; Kumar, Pramod; Nayak, Shivanand

    2009-01-01

    Background: Generally, the significances of laser photo stimulation are now accepted, but the laser light facilitates wound healing and tissue repair remains poorly understood. Aims: We have examined the hypothesis that the laser photo stimulation can enhance the collagen production in diabetic wounds using the excision wound model in the Wistar rat model. Methods: The circular wounds were created on the dorsum of the back of the animals. The animals were divided into two groups. The study group (N = 24) wound was treated with 632.8 nm He-Ne laser at a dose of 3-9 J/cm2 for 5 days a week until the wounds healed completely. The control group was sham irradiated. Result: A significant increase in the hydroxyproline content and reduction in the wound size were observed in the study group. The pro-healing actions seem to be due to increased collagen deposition as well as better alignment and maturation. Conclusion: The biochemical analysis and clinical observation suggested that 3-6 J/cm2 laser photo stimulation facilitates the tissue repair process by accelerating collagen production in diabetic wound healing. PMID:20101331

  4. Effect of helium-neon and infrared laser irradiation on wound healing in rabbits

    SciTech Connect

    Braverman, B.; McCarthy, R.J.; Ivankovich, A.D.; Forde, D.E.; Overfield, M.; Bapna, M.S.

    1989-01-01

    We examined the biostimulating effects of helium-neon laser radiation (HeNe; 632.8 nm), pulsed infrared laser radiation (IR; 904 nm), and the two combined on skin wound healing in New Zealand white rabbits. Seventy-two rabbits received either (1) no exposure, (2) 1.65 J/cm2 HeNe, (3) 8.25 J/cm2 pulsed IR, or (4) both HeNe and IR together to one of two dorsal full-thickness skin wounds, daily, for 21 days. Wound areas were measured photographically at periodic intervals. Tissue samples were analyzed for tensile strength, and histology was done to measure epidermal thickness and cross-sectional collagen area. Significant differences were found in the tensile strength of all laser-treated groups (both the irradiated and nonirradiated lesion) compared to group 1. No differences were found in the rate of wound healing or collagen area. Epidermal growth was greater in the HeNe-lased area compared to unexposed tissue, but the difference was not significant. Thus, laser irradiation at 632.8 nm and 904 nm alone or in combination increased tensile strength during wound healing and may have released tissue factors into the systemic circulation that increased tensile strength on the opposite side as well.

  5. [The application of helium-neon laser radiation for the combined treatment of the patients with atrophic rhinitis].

    PubMed

    Sharipov, R A; Sharipova, E R

    2012-01-01

    The objective of the present study was to improve the efficacy of the treatment of the patients presenting with atrophic rhinitis (ozena) of the upper respiratory tract by the application of helium-neon laser radiation. A total of 120 patients aged from 15 to 53 years were treated based at the Department of Otorhinolaryngology, G.G. Kuvatov Republican Clinical Hospital, Ufa. All these patients underwent routine clinical, roentgenological, microbiological, and rheographic examination. The method for the treatment of atrophic rhinitis is described; it includes the application of helium-neon laser radiation in combination with the administration of the purified preparation of liquid polyvalent Klebsiella bacteriophage. The positive results of the treatment by the proposed method were documented in 90% of the patients. PMID:23268248

  6. Treatment of buttocks scleroma by intramuscular injection of helium-neon laser: clinical observance of 42 cases

    NASA Astrophysics Data System (ADS)

    Shen, Hong; Chen, Lan-Hui

    1998-11-01

    Repeated clinical intramuscular injection often cause buttock scleroma together with swelling pain scleroma, even more serious walking difficulty. Such cases not only bring great pain to the patients but also influence the original treatment. They are usually treated by hot compress but with no ideal effect. In the past few years 42 patients have been treated by Helium-Neon laser to be irradiated on intramuscular injection buttocks scleroma. The curative effect is satisfying. Now it is reported.

  7. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    PubMed

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. PMID:20016249

  8. Helium-neon laser radiation effect on fish embryos and larvae

    NASA Astrophysics Data System (ADS)

    Uzdensky, Anatoly B.

    1994-09-01

    Helium-neon laser irradiation (HNLI) is an effective biostimulating agent but its influence on embryonal processes is almost unknown. We have studied fish embryos and larvae development, viability, and growth after HNLI of fish eggs at different stages. With this aim carp, grass carp, sturgeon, and stellared sturgeon eggs were incubated in Petri plates or in fish-breeding apparatuses and were irradiated in situ with different exposures. Then we studied hutchling percentage, larvae survival and growth dynamics, and morphological anomalies percentage. HNLI effect depended on irradiation exposures and intensity, embryonal stages, and fish species. Laser eggs irradiation essentially affected larvae viability and growth in the postembryonal phase. For example, HNLI of sturgeon spawn at cleavage stage or grass carp at organogenesis decreased larvae survival rate. On the contrary HNLI at gastrulation or embryonal motorics stages markedly increased larvae survival rate and decreased the morphological anomalies percentage. We determined most effective irradiation regimes depending of fish species which may be used in practical fish-breeding.

  9. Changes in mouse Leydig cell steroidogenesis following infrared and helium-neon laser irradiation.

    PubMed

    Celani, M F; Grandi, M; Gilioli, G

    1987-03-01

    The effects on mouse Leydig cell steroidogenesis of infrared (IR) laser rays, in the presence or absence of helium-neon (He-Ne) radiations, were investigated. Testosterone (T) production in response to luteinizing hormone (LH) by mouse Leydig cells exposed to IR (4.2 X 10(-3) J/cm2/min) plus He-Ne (8.0 X 10(-7) J/cm2/min) laser radiations was significantly higher than that by control Leydig cells. The Leydig cell responsiveness to LH (T delta %), as well as the secretion of cyclic AMP (cAMP) and androstenedione (A) in response to the highest dose of LH (0.5 mIU), were also significantly increased by the IR plus He-Ne irradiation. In contrast, the He-Ne irradiation (8.0 X 10(-7) J/cm2/min) in the absence of IR rays failed to affect T production by mouse Leydig cells. Similar results were obtained by adding to the He-Ne rays a low dose of IR radiation (3.4 X 10(-3) J/cm2/min), whereas higher doses of IR radiations (4.2 X 10(-3) and 5.1 X 10(-3) J/cm2/min) elicited a similar significant increase of T production by mouse interstitial cells. PMID:3595730

  10. The effect of low-level helium-neon laser on oral wound healing

    PubMed Central

    Sardari, Farimah; Ahrari, Farzaneh

    2016-01-01

    Background: The effectiveness of low power lasers on incisional wound healing, because of conflicting results of previous studies, is uncertain. Therefore, the aim of this study was to evaluate the effects of low-level helium-neon (He-Ne) laser irradiation on wound healing in rat's oral mucosa. Materials and Methods: Sixty-four standardized incisions were carried out on the buccal mucosa of 32 male Wistar divided into four groups of eight animals each. Each rat received two incisions on the opposite sides of the buccal mucosa by a steel scalpel. On the right side (test side), a He-Ne laser (632 nm) was employed on the incision for 40 s. Laser radiation was used just in 1st day, 1st and 2nd day, 1st and 3rd day, and continuous 3 days in groups of A, B, C, and D of rats, respectively. The left side (control side) did not receive any laser. Histological processing and hematoxylin and eosin staining were done on tissue samples after 5 days. Wilcoxon and Kruskal-Wallis tests were used for statistical analysis. Results: Histological analysis showed that the tissue healing after continuous 3 days on the laser irradiated side was better than the control side, but there was no difference between the two sides in each groups (P > 0.05). Conclusion: This study showed that He-Ne laser had no beneficial effects on incisional oral wound healing particularly in 5 days after laser therapy. Future research in the field of laser effects on oral wound healing in human is recommended. PMID:26962312

  11. Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser

    SciTech Connect

    Passarella, S.; Ostuni, A.; Atlante, A.; Quagliariello, E.

    1988-10-31

    To gain some insight into the mechanism of cell photostimulation by laser light, measurements were made of the rate of ADP/ATP exchange in mitochondria irradiated with the low power continuous wave Helium Neon laser (energy dose 5 Joules/cm2). To do this a method has been developed to continuously monitor ATP efflux from phosphorylating mitochondria caused by externally added ADP, by photometrically following the NADP+ reduction which occurs in the presence of glucose, hexokinase, glucose-6-phosphate dehydrogenase and effluxed ATP. The NADP+ reduction rate shows hyperbolic dependence on ADP concentration (Km and Vmax values 8.5 +/- 0.87 microM and 20.7 +/- 0.49 nmoles NADP+ reduced/min x mg mitochondrial protein, respectively), and proves to measure the activity of the ADP/ATP translocator as shown by inhibition experiments using atracyloside, powerful inhibitor of this carrier. Irradiation was found to enhance the rate of ADP/ATP antiport, with externally added ADP ranging between 5 and 100 microM. As a result of experiments carried out with mitochondria loaded with either ATP or ADP, the increase in the activity of the ADP/ATP translocator is here proposed to depend on the increase in the electrochemical proton gradient which occurs owing to irradiation of mitochondria.

  12. Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality.

    PubMed

    Iaffaldano, N; Paventi, G; Pizzuto, R; Di Iorio, M; Bailey, J L; Manchisi, A; Passarella, S

    2016-08-01

    This study examines whether and how helium-neon laser irradiation (at fluences of 3.96-9 J/cm(2)) of cryopreserved ram sperm helps improve semen quality. Pools (n = 7) of cryopreserved ram sperm were divided into four aliquots and subjected to the treatments: no irradiation (control) or irradiation with three different energy doses. After treatment, the thawed sperm samples were compared in terms of viability, mass and progressive sperm motility, osmotic resistance, as well as DNA and acrosome integrity. In response to irradiation at 6.12 J/cm(2), mass sperm motility, progressive motility and viability increased (P < 0.05), with no significant changes observed in the other investigated properties. In parallel, an increase (P < 0.05) in ATP content was detected in the 6.12 J/cm(2)-irradiated semen samples. Because mitochondria are the main cell photoreceptors with a major role played by cytochrome c oxidase (COX), the COX reaction was monitored using cytochrome c as a substrate in both control and irradiated samples. Laser treatment resulted in a general increase in COX affinity for its substrate as well as an increase in COX activity (Vmax values), the highest activity obtained for sperm samples irradiated at 6.12 J/cm(2) (P < 0.05). Interestingly, in these irradiated sperm samples, COX activity and ATP contents were positively correlated, and, more importantly, they also showed positive correlation with motility, suggesting that the improved sperm quality observed was related to mitochondria-laser light interactions. PMID:27036659

  13. [The state of autonomic homeostasis during the use of a low-intensity helium-neon laser as a component of combined anesthesia].

    PubMed

    Avrutskiĭ, M Ia; Musikhin, L V; Finkel'shteĭn, I E; Katkovskiĭ, D G; Guseĭnov, T Iu

    1992-01-01

    The effect of intravenous blood irradiation, using helium-neon laser, on vegetative homeostasis during surgery was studied. It has been established that the introduction of low-intensity laser blood irradiation into a complex of anesthesiologic procedures ensures a more effective protection of patients from the surgical stress. PMID:1524243

  14. Sensing earth's rotation with a helium-neon ring laser operating at 1.15  μm.

    PubMed

    Ulrich Schreiber, K; Thirkettle, Robert J; Hurst, Robert B; Follman, David; Cole, Garrett D; Aspelmeyer, Markus; Wells, Jon-Paul R

    2015-04-15

    We report on the operation of a 2.56  m2 helium-neon based ring laser interferometer at a wavelength of 1.152276 μm using crystalline coated intracavity supermirrors. This work represents the first implementation of crystalline coatings in an active laser system and expands the core application area of these low-thermal-noise cavity end mirrors to inertial sensing systems. Stable gyroscopic behavior can only be obtained with the addition of helium to the gain medium as this quenches the 1.152502 μm (2s4→2p7) transition of the neon doublet which otherwise gives rise to mode competition. For the first time at this wavelength, the ring laser is observed to readily unlock on the bias provided by the earth's rotation alone, yielding a Sagnac frequency of approximately 59 Hz. PMID:25872053

  15. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits.

    PubMed

    Gul, Nihal Y; Topal, Ayse; Cangul, I Taci; Yanik, Kemal

    2008-02-01

    The aim of this study was to compare the clinical and histopathological effects of tripeptide copper complex (TCC) and two different doses of laser application (helium-neon laser, 1 and 3 J cm(-2)) on wound healing with untreated control wounds. Experimental wounds were created on a total of 24 New Zealand white rabbits and topical TCC or laser was applied for 28 days. The wounds were observed daily, and planimetry was performed on days 7, 14, 21 and 28 to measure the unhealed wound area and percentage of total wound healing. Biopsies were taken weekly to evaluate the inflammatory response and the level of neovascularization. The median time for the first observable granulation tissue was shorter (P < 0.05) in the low and high dose laser groups than in the control group (3 and 2.66 vs. 4.5 days), but was not different between the TCC and control groups (4.16 vs. 4.5 days). Filling of the open wound to skin level with granulation tissue was faster (P < 0.05) in the TCC and high dose laser groups than in the control group (14 and 16 vs. 25 days), but was not different between the low dose laser and control groups (23 vs. 25 days). The average time for healing was shorter (P < 0.05) in the TCC and high dose laser groups (29.8 and 30.2 vs. 34.6 days), but was not different between the low dose laser and control groups (33.8 vs. 34.6 days). Histopathologically, wound healing was characterized by a decrease in the neutrophil counts and an increase in neovascularization. The TCC and high dose laser groups had greater neutrophil and vessel counts than in the control group, suggesting a more beneficial effect for wound healing. PMID:18177285

  16. High-power helium-neon laser irradiation inhibits the growth of traumatic scars in vitro and in vivo.

    PubMed

    Shu, Bin; Ni, Guo-Xin; Zhang, Lian-Yang; Li, Xiang-Ping; Jiang, Wan-Ling; Zhang, Li-Qun

    2013-05-01

    This study explored the inhibitory effect of the high-power helium-neon (He-Ne) laser on the growth of scars post trauma. For the in vitro study, human wound fibroblasts were exposed to the high-power He-Ne laser for 30 min, once per day with different power densities (10, 50, 100, and 150 mW/cm(2)). After 3 days of repeated irradiation with the He-Ne laser, fibroblast proliferation and collagen synthesis were evaluated. For in vivo evaluation, a wounded animal model of hypertrophic scar formation was established. At postoperative day 21, the high-power He-Ne laser irradiation (output power 120 mW, 6 mm in diameter, 30 min each session, every other day) was performed on 20 scars. At postoperative day 35, the hydroxyproline content, apoptosis rate, PCNA protein expression and FADD mRNA level were assessed. The in vitro study showed that the irradiation group that received the power densities of 100 and 150 mW/cm(2) showed decreases in the cell proliferation index, increases in the percentage of cells in the G0/G1 phase, and decreases in collagen synthesis and type I procollagen gene expression. In the in vivo animal studies, regions exposed to He-Ne irradiation showed a significant decrease in scar thickness as well as decreases in hydroxyproline levels and PCNA protein expression. Results from the in vitro and in vivo studies suggest that repeated irradiation with a He-Ne laser at certain power densities inhibits fibroblast proliferation and collagen synthesis, thereby inhibits the growth of hypertrophic scars. PMID:22678421

  17. Direction sensitive laser velocimeter. [determining the direction of particles using a helium-neon laser

    NASA Technical Reports Server (NTRS)

    Franke, J. M. (Inventor)

    1981-01-01

    A laser velocimeter is described which determines the direction of movement of particles. A laser produces a transmitted beam that illuminates the volume under investigation. The backscattered light is divided into two equal intensity beams. A first part of a sample of the transmitted beam is mixed with one of the two equal intensity beams and applied to a first photodetector. A second part of the sample is phase shifted by 90 deg, mixed with the other of the two equal intensity beams and applied to a second photodetector. The output of the first photodetector is phase shifted by 90 deg and then multiplied with the output of the second photodetector to produce a signal indicative of direction of movement.

  18. Helium-neon effects of laser radiation in rats infected with thromboxane B2

    NASA Astrophysics Data System (ADS)

    Juri, Hugo; Palma, J. A.; Campana, Vilma; Gavotto, A.; Lapin, R.; Yung, S.; Lillo, J.

    1991-06-01

    In previous investigations it was found that prostaglanding E1 (PGE1) and Bradiquinine (B), liberated in the inflammatory process, produced a significant increment on the Plasma fibrition Level (PFL), indicative of inflammatory process. The mentioned increment was completely abolished by the irradiation with HeNe laser in the area of infection of the mentioned substances. In the current investigation it was studied the effect of HeNe laser radiation on the P.F.L. of rats injected with another substance related with the inflammatory process and tissular injury: Thromboxane (Tx). It is though that the signal to increase P.F.L. is though an adrenal and an extra adrenal pathways. To study it we injected normal and medullectomized animals and both showed marked increment of P.F.L. Then we repeated the experiment but followed immediately by HeNe laser radiation and we noted a complete blockage of the P.F.L. increment in both groups which suggest that the effect is extra-adrenal. All substances were injected I.M. once daily X 3 days. Immediately after injection the area was irradiated with HeNe laser, 1.5 J total energy. In the normal, non injected non irradiated animals the P.F.L. reached 210.3 + 1.15 mg%. The single injection of Tx did not modify the P.F.L. compared with the previous group. The HeNe irradiation alone did not modify the P.F.L. in the animals injected with Tx only. The animals injected with PGE1+B showed a marked increment of P.F.L. to 337.6 + 14.5 mg%; the HeNe laser radiation completely abolished the increment (231 + 22.3 mg%). But in the animals injected with PGE1+B+Tx, the P.F.L. reached even larger values: 375.2 + 15.3 mg%. The HeNe laser radiation produced a partial blockage in P.F.L. increment (270.3 +/- 13.4 mg%). Showing a significant difference (p < 0.001) compared with normal rats or with rats injected with PGE1+B+Tx without radiation. In conclusion Tx potentiate the effect of PGE+B on the P.F.L. The HeNe laser blocks completely the interaction

  19. [Mechanisms of action of intravenous helium-neon laser irradiation in anesthesia].

    PubMed

    Avrutskiĭ, M Ia; Azizov, Iu M; Musikhin, L V; Guseĭnov, T Iu; Koloskov, V V

    1993-01-01

    Intravenous exposure to He-Ne laser was added to the anesthesiologic schemes of 26 patients during surgery on the intestine. The reference group consisted on 23 patients. Comparison of the blood antioxidant activities (from the levels of ceruloplasmin and transferrin) and the endogenic intoxication levels (from the medium molecule test) showed that intravenous laser exposure at a wavelength of 630 nm stabilized the blood antioxidant activity and prevented the development of endogenous intoxication. PMID:8116900

  20. [Helium-neon laser therapy in the combined treatment of unstable stenocardia].

    PubMed

    Korochkin, I M; Kapustina, G M; Babenko, E V; Zhuravleva, N Iu

    1990-01-01

    He-Ne laser therapy included in complex of therapeutic methods for patients with unstable angina pectoris is a highly effective treatment modality; it helps essentially reduce the risk of acute myocardial infarction in these patients. Clinical efficacy of laser therapy is confirmed by its favorable action on hemostasis plasma factors, consisting in reduction of fibrinogen level, normalization of antithrombin-III (AT-III), decrease of the level of soluble fibrinomonomer complexes, this indicating a lowering of the blood coagulation potential. Absence of significant changes in plasminogen level may be an indicator of the nonenzymic route of fibrinogen system activation. Sessions of intravenous laser therapy should be administered 2-3 times a week to unstable angina pectoris patients with low AT-III levels, whereas for patients with initially high or normal AT-III levels combined laser therapy is advisable (4-5 daily invasive procedures and 6-8 skin surface ones on the Zakharyin-Head's zones). Measurements of endogenic anticoagulants is an effective means for monitoring laser therapy in this patient population. PMID:1973307

  1. [The use of helium-neon laser in drug-resistant cardiac arrhythmias].

    PubMed

    Gel'fgat, E B; Abdullaev, R F; Babaev, Z M; Musabekov, S Sh

    1992-02-01

    Out of 85 patients with cardiac arrhythmias in the presence of chronic coronary heart disease, 28 who were resistant to ethacisine and allapinine were included into the study. They had frequent and persistent arrhythmias. The patients were divided into 2 groups: (1) the patients receiving intravenous He-Ne laser therapy in combination with one of the above drugs; (n = 17) and (2) those taking He-Ne laser therapy alone (n = 11). The efficacy of the therapies were controlled by 24-hour monitoring. An antiarrhythmic effect was more frequently observed when He-Ne laser was combined with one of the above drugs than when it was given alone (67.4 and 36.3%, respectively). PMID:1527940

  2. Effect of helium neon laser irradiation on the bactericidal and digestive function of macrophages

    NASA Astrophysics Data System (ADS)

    Ren, Mingji; Yuan, Weizhong; Hong, Zheng; Lan, Xin

    1996-09-01

    The effect of He-Ne laser on the intracellular bactericidal and digestive function to C albicans of mice peritoneal M(theta) has been studied with the fluorescence microscope after acridine organge staining. The results indicated that the bactericidal and digestive function of M(theta) in irradiated groups, expressed more active than that in the non-irradiated group, and showed significant difference. The comparison between the different irradiated groups also showed marked difference. Ultrastructure changes of M(theta) were observed under the E/M and the content of a-Acetate Naphthy esterase in lysosome were measured by image analysis, the results demonstrated that M(theta) in the irradiated groups present marked change in ultrastructure and the GN, GA, GA/CA, IOD of esterase increased significantly. The results suggested that the He-Ne laser with appropriate dosage could activate M(theta) , and enhance anti-infection immunity.

  3. Treatment of TMJDS with helium-neon laser beam irradiation on the acupoints

    NASA Astrophysics Data System (ADS)

    Li, Ping

    1993-03-01

    Through He-NE laser stimulation of acupuncture points, we treated and observed 50 cases of Temporomandibular Joint Dysfunction Syndrome (TMJDS). The results proved that this treatment was very effective for relieving the patient's pain. In cases which had structural disturbances and organic damage such as limitation of mouth-opening and joint clink, there was less improvement of symptoms and no relief for joint clink.

  4. Relationship between cardiovascular system response and adrenocortical glucocorticoid function on exposure to diffuse, low-intensity helium-neon laser emission

    NASA Astrophysics Data System (ADS)

    Ushkova, I. N.; Pokrovskaya, L. A.; Stepanov, G. S.; Suvorov, I. M.; Kogan, M. Y.; Grishina, Y. F.

    1984-06-01

    The effect of light from a low intensity helium neon laser on the formation of a series of adaptive processes in the body is investigated. The study is carried out on 32 chinchilla rabbits, weighing from two to two point five kilograms. The right eyes of the creatures were subjected to diffuse laser radiation, for 30 days, 14 minutes per day, under conditions of low illumination. Controls are rabbits under the same conditions, but not exposed to laser radiation. In order to isolate the early glucocorticoid response to the treatment, the hydrocortisone content of the blood is determined which permitted judgment on presence of a functional cumulation effect. The body developed an adaptive/compensatory reaction to the laser radiation so that hydrocortisone levels and the system's hemodynamics and nervous system returned to normal.

  5. Helium-Neon Laser Irradiation Promotes the Proliferation and Migration of Human Epidermal Stem Cells In Vitro: Proposed Mechanism for Enhanced Wound Re-epithelialization

    PubMed Central

    Liao, Xuan; Xie, Guang-Hui; Cheng, Biao; Li, Sheng-Hong; Xie, Shan; Xiao, Li-Ling; Fu, Xiao-Bing

    2014-01-01

    Abstract Objective: The present study was conducted to investigate the effects of helium-neon (He-Ne) laser irradiation on the proliferation, migration, and differentiation of cultured human epidermal stem cells (ESCs). Background data: A He-Ne laser with a wavelength of 632.8 nm is known to have photobiological effects, and is widely used for accelerating wound healing; however, the cellular mechanisms involved have not been completely understood. Methods: The ESCs were prepared from human foreskin, and irradiated by using He-Ne laser at 632.8 nm with 2 J/cm2. The ESC proliferation, migration, and differentiation were examined by using XTT assay, scratch assay, and flow cytometry technology, respectively. The phosphorylation of extracellular signal-regulated kinases (ERK) was analyzed by using Western blotting. Results: He-Ne laser irradiation markedly promoted cell proliferation and migration accompanied by an increase in the phosphorylation of ERK, but did not significantly influence cell differentiation. Conclusion: Our data indicated that photostimulation with a He-Ne laser resulted in a significant increase in human ESC proliferation and migration in vitro, which might contribute, at least partially, to accelerated wound re-epithelialization by low-level laser therapy. PMID:24661127

  6. Induction of primitive pigment cell differentiation by visible light (helium-neon laser): a photoacceptor-specific response not replicable by UVB irradiation.

    PubMed

    Lan, Cheng-Che E; Wu, Shi-Bei; Wu, Ching-Shuang; Shen, Yi-Chun; Chiang, Tzu-Ying; Wei, Yau-Huei; Yu, Hsin-Su

    2012-03-01

    Solar lights encompass ultraviolet (UV), visible, and infrared spectrum. Most previous studies focused on the harmful UV effects, and the biologic effects of lights at other spectrums remained unclear. Recently, lights at visible region have been used for regenerative purposes. Using the process of vitiligo repigmentation as a research model, we focused on elucidating the pro-differentiation effects induced by visible light. We first showed that helium-neon (He-Ne) laser (632.8 nm) irradiation stimulated differentiation of primitive pigment cells, an effect not replicable by UVB treatment even at high and damaging doses. In addition, significant increases of mitochondrial DNA copy number and the regulatory genes for mitochondrial biogenesis were induced by He-Ne laser irradiation. Mechanistically, we demonstrated that He-Ne laser initiated mitochondrial retrograde signaling via a Ca(2+)-dependent cascade. The impact on cytochrome c oxidase within the mitochondria is responsible for the efficacy of He-Ne laser in promoting melanoblast differentiation. Taken together, we propose that visible lights from the sun provide important environmental cues for the relatively quiescent stem or primitive cells to differentiate. In addition, our results also indicate that visible light may be used for regenerative medical purposes involving stem cells. PMID:22038170

  7. Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration--an in vivo experimental study.

    PubMed

    Prabhu, Vijendra; Rao, Satish B S; Rao, Nageshwara B; Aithal, Kiran B; Kumar, Pramod; Mahato, Krishna K

    2010-01-01

    We report the design and development of an optical fiber probe-based Helium-Neon (He-Ne) low-level laser therapy system for tissue regeneration. Full thickness excision wounds on Swiss albino mice of diameter 15 mm were exposed to various laser doses of 1, 2, 3, 4, 6, 8 and 10 J cm(-2) of the system with appropriate controls, and 2 J cm(-2) showing optimum healing was selected. The treatment schedule for applying the selected laser dose was also standardized by irradiating the wounds at different postwounding times (0, 24 and 48 h). The tissue regeneration potential was evaluated by monitoring the progression of wound contraction and mean wound healing time along with the hydroxyproline and glucosamine estimation on wound ground tissues. The wounds exposed to 2 J cm(-2) immediately after wounding showed considerable contraction on days 5, 9, 12, 14, 16 and 19 of postirradiation compared with the controls and other treatment schedules, showing significant (P < 0.001) decrease in the healing time. A significant increase in hydroxyproline and glucosamine levels was observed for the 2 J cm(-2) irradiation group compared with the controls and other treatment groups. In conclusion, the wounds treated with 2 J cm(-2) immediately after the wounding show better healing compared with the controls. PMID:20735808

  8. The influence of low-power helium-neon laser irradiation on function of selected peripheral blood cells.

    PubMed

    Wasik, M; Gorska, E; Modzelewska, M; Nowicki, K; Jakubczak, B; Demkow, U

    2007-11-01

    The effects of low-level laser light irradiation are debatable and the mechanisms of its action are still unclear. This study was conducted to test the effects of low-level laser irradiation on human blood cells: erythrocytes, granulocytes, and lymphocytes. Whole blood obtained by phlebotomy was irradiated at 632.8 nm by using energy fluences 0.6 J/cm2. An analysis of blood gases revealed an increase in PO2 and SaO2 (P<0.001) in irradiated blood. No shifts in PCO2 and pH were recorded. Spontaneous synthesis of DNA in T and B blood lymphocytes decreased significantly after laser irradiation (P<0.02 and P<0.04, respectively). Phytohemagglutinin (PHA)-induced proliferation of T cells and SAC proliferation of B cells, expressed as a stimulation index, were statistically higher in the samples of irradiated than in non-irradiated blood (P<0.01). Chemiluminescence of fMLP-stimulated granulocytes from irradiated blood increased in comparison with non-irradiated samples (P<0.001). No changes of spontaneous and stimulated chemiluminescence kinetics in irradiated samples were observed. These results reveal the influence of photodynamic reactions on the ability of blood to transport oxygen and on immunomodulatory effects on leukocytes. PMID:18204188

  9. Application of intravenous helium-neon (He-Ne) laser therapy to patients with respiratory insufficiency: introductory report

    NASA Astrophysics Data System (ADS)

    Pisula, K.; Gaszynski, W.; Piotrowski, D.

    1996-03-01

    In this paper the authors present an unconventional method of intravenous laser therapy applied to nine patients treated in ICU for acute respiratory insufficiency. The laser therapy treatment was applied twice in 24 hours by introducing a quartz light pipe into a peripheral vein of the forearm connected to the He-Ne laser produced by Amber, Poland. In order to irradiate the whole circulating blood the procedure lasted twenty minutes. The initial observation showed the improvement of the respiratory parameters and the decrease of leucocytosis. During the intravenous laser therapy the ARDS was not observed in the patients, despite the existence of risk factors.

  10. Effect of low intensity helium-neon (HeNe) laser irradiation on experimental paracoccidioidomycotic wound healing dynamics.

    PubMed

    Ferreira, Maria Carolina; Gameiro, Jacy; Nagib, Patrícia Resende Alo; Brito, Vânia Nieto; Vasconcellos, Elza da Costa Cruz; Verinaud, Liana

    2009-01-01

    The effect of HeNe laser on the extracellular matrix deposition, chemokine expression and angiogenesis in experimental paracoccidioidomycotic lesions was investigated. At days 7, 8 and 9 postinfection the wound of each animal was treated with a 632.8 nm HeNe laser at a dose of 3 J cm(-2). At day 10 postinfection, the wounds were examined by using histologic and immunohistochemical methods. Results revealed that laser-treated lesions were lesser extensive than untreated ones, and composed mainly by macrophages and lymphocytes. High IL-1beta expression was shown in the untreated group whereas in laser-treated animals the expression was scarce. On the other hand, the expression of CXCL-10 was found to be reduced in untreated animals and quite intensive and well distributed in the laser-treated ones. Also, untreated lesions presented vascular endothelial growth factor (VEGF) in a small area near the center of the lesion and high immunoreactivity for hypoxia-inducible factor-1 (HIF-1), whereas laser-treated lesions expressed VEGF surrounding blood vessels and little immunoreactivity for HIF-1. Laser-treated lesions presented much more reticular fibers and collagen deposition when compared with the untreated lesion. Our results show that laser was efficient in minimizing the local effects observed in paracoccidioidomycosis and can be an efficient tool in the treatment of this infection, accelerating the healing process. PMID:18764901

  11. [The effect of endovascular helium-neon laser therapy on the immune status of patients with acute calculous pyelonephritis].

    PubMed

    Siniukhin, V N; Ianenko, E K; Safanov, R M; Khamaganova, E G; Borisik, V I

    1996-01-01

    Cellular immunity was assessed in 48 patients with acute calculous pyelonephritis exposed to intravenous He-Ne laser therapy. It was found that endovascular He-Ne laser therapy in the study regimens corrects immunological abnormalities arising in acute calculous pyelonephritis. PMID:9036617

  12. [Possibilities of intravenous use of helium-neon laser in the treatment of experimental tuberculosis of animals].

    PubMed

    Topol'nitskiĭ, V G; Maliev, B M; Gracheva, M P; Kruglova, E G

    1992-01-01

    The study presents experimental finding of 40 mongrel dogs whose intravascular blood was irradiated with laser as a supplement to the multimodality treatment of respiratory tuberculosis. Earlier disappearance of intoxication symptoms and reduced terms of destruction cavity decrease and closure, as roentgenologically evidenced, was achieved. The influence of this treatment on certain lipid peroxidation parameters, hemocoagulation, immunity status and bacteriostatic blood activity were found. There were no side effects during treatment. PMID:1409508

  13. [A comparative analysis of the results of using different methods of helium-neon laser therapy in patients with stable stenocardia].

    PubMed

    Iurlov, V M; Kul'baba, I H

    1996-01-01

    Based on the findings from the examination of 133 patients with stable angina pectoris, it was shown that He-Ne laser therapy with the irradiation being applied to the liver projection area in combination with the prolonged-action nitrates is superior to similar application of irradiation to the precordial region and Head's zones or intravenous irradiation of blood. Revealed in the examination of the above patients was a reaction of antiproteolytic enzymes to He-Ne laser therapy, which appeared to be varying with methods of laser therapy. It is suggested that a reaction of the realization of the components of proteolysis might be involved in the realization of therapeutic effect of the He-Ne laser energy in patients with ischemic heart disease. PMID:9005112

  14. Improvement of the antifungal activity of Litsea cubeba vapor by using a helium-neon (He-Ne) laser against Aspergillus flavus on brown rice snack bars.

    PubMed

    Suhem, Kitiya; Matan, Narumol; Matan, Nirundorn; Danworaphong, Sorasak; Aewsiri, Tanong

    2015-12-23

    The aim of this study was to improve the antifungal activity of the volatile Litsea cubeba essential oil and its main components (citral and limonene) on brown rice snack bars by applying He-Ne laser treatment. Different volumes (50-200 μL) of L. cubeba, citral or limonene were absorbed into a filter paper and placed inside an oven (18 L). Ten brown rice snack bars (2 cm wide × 4 cm long × 0.5 cm deep) were put in an oven and heated at 180 °C for 20 min. The shelf-life of the treated snack bars at 30 °C was assessed and sensory testing was carried out to investigate their consumer acceptability. A count of total phenolic content (TPC) and Fourier transform infrared spectroscopy (FTIR) on the properties of essential oil, citral, and limonene before and after the laser treatment was studied for possible modes of action. It was found that the laser treatment improved the antifungal activity of the examined volatile L. cubeba and citral with Aspergillus flavus inhibition by 80% in comparison with those of the control not treated with the laser. L. cubeba vapor at 100 μL with the laser treatment was found to completely inhibit the growth of natural molds on the snack bars for at least 25 days; however, without essential oil vapor and laser treatment, naturally contaminating mold was observed in 3 days. Results from the sensory tests showed that the panelists were unable to detect flavor and aroma differences between essential oil treatment and the control. Laser treatment caused an increase in TPC of citral oil whereas the TPC in limonene showed a decrease after the laser treatment. These situations could result from the changing peak of the aliphatic hydrocarbons that was revealed by the FTIR spectra. PMID:26433461

  15. Differential cross sections for ionization of helium, neon, and argon by fast electrons

    SciTech Connect

    Miller, J.H.; Manson, S.T.

    1984-05-01

    Ionization cross sections, differential in the energy of secondary electrons, are presented for high-energy electrons incident on helium, neon, and argon. The results are based on Bethe's theory for inelastic scattering of fast charged particles using photoabsorption data and proton-impact differential ionization cross sections to determine the coefficients of this asymptotic expansion of the first Born approximation. The model cross sections are compared with experimental data for primary-electron energies between 100 and 5000 eV.

  16. Influence of helium-neon laser irradiation on seed germination in vitro and physico-biochemical characters in seedlings of brinjal (Solanum melongena L.) var. Mattu Gulla.

    PubMed

    Muthusamy, Annamalai; Kudwa, Prathibha P; Prabhu, Vijendra; Mahato, Krishna K; Babu, Vidhu Sankar; Rao, Mattu Radhakrishna; Gopinath, Puthiya Mandyat; Satyamoorthy, Kapaettu

    2012-01-01

    In the present study, the seeds of brinjal (Solanum melongena L.) var. Mattu Gulla were irradiated with single exposure of He-Ne laser at different doses of 5-40 J cm(-2) and germinated aseptically. Thirty day old seedlings were harvested and the germination, growth, physiological and biochemical parameters were estimated and compared with un-irradiated control seedlings. A significant enhancement in growth characters were noted with respect to length, fresh and dry weight of shoots and roots. In addition, chlorophyll (a and b), carotenoid content, anthocyanin and amylases (α and β) activities were found to be altered. Significant alterations in percentage of seed germination (P < 0.001) and time to 50% germination (P < 0.001) were observed in the irradiated seeds compared with the un-irradiated controls. In conclusion, the results of the present study demonstrated that low dose (5-30 J cm(-2) ) of He-Ne laser irradiation enhanced the germination process and altered growth, by positively influencing physiological and biochemical parameters of the brinjal seedlings compared with un-irradiated control under in vitro conditions. PMID:22515726

  17. [The dynamic level of beta 2-microglobulin, the basic lipid peroxidation indices and middle molecules in the blood and urine in patients with acute calculous pyelonephritis against a background of endovascular helium-neon laser therapy].

    PubMed

    Safafov, R M; Ianenko, E K; Nikitinskaia, L P; Golovanov, S A; Drozhzheva, V V; Kon'kova, T A; Danilkov, A P

    1997-01-01

    The authors present the effect of intravenous He-Ne laser therapy on the changes in beta 2-microglobulin, lipid peroxidation, middle-size molecules in the blood and urine of patients with acute calculous pyelonephritis. Endovascular He-Ne laser therapy was found an effective treatment of acute calculous pyelonephritis. The authors propose to combine hemosorption with endovascular He-Ne laser radiation. PMID:9123656

  18. [Age-related peculiarities of thymus reaction to the exposure to helium-neon laser and injured muscle alloplasty with the muscle tissue from the animals of the same age].

    PubMed

    Bulyakova, N V; Azarova, V S

    2015-01-01

    Histological, cytological and morphometric changes in the thymus of 1 month-old, adult (3-4 months-old) and old (24-30 months-old) rats (24 animals in each group) were studied during muscle regeneration after the alloplasty of the injured area with the muscle tissue from the animal of the same age. Muscles of the donor or recipient were subjected to the course of preliminary irradiation with He-Ne laser (dose: 4.5-5.4 J/cm2 for each extremity; total dose of 9.0-10.8 J/cm2 per animal). It was shown that the exposure of gastrocnemius muscles that were prepared for the operation to He-Ne laser radiation decreased morpho-functional activity of the thymus in young, adult and old recipient rats the before surgery. This was demonstrated by its weaker reaction to the allograft during the early time intervals after surgery. The observed effect was more pronounced with the increasing age of an animal. PMID:25958725

  19. Low energy laser irradiation treatment for second intention wound healing in horses

    PubMed Central

    Fretz, Peter B.; Li, Zhong

    1992-01-01

    Low energy helium-neon laser irradiation was administered to full thickness skin wounds (3 cm × 3 cm) on the dorsal surface of the metacarpophalangeal/metatarsophalangeal joints and cranial surface of the tarsocrural joints of eight horses. The effects on wound healing were analyzed statistically. There were no differences (p > 0.55) observed in the rate of wound healing between the low energy laser irradiated wounds and the control wounds. There was a significant difference (p < 0.006) observed in the rate of healing between the anatomical sites. Tarsal wounds healed more rapidly than fetlock wounds. PMID:17424089

  20. Intermolecular dispersion interactions of normal alkanes with rare gas atoms: van der Waals complexes of n-pentane with helium, neon, and argon

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2008-09-01

    Interaction energies of normal pentane with three rare gas atoms (helium, neon, and argon) were calculated using ab initio methods: the second-order Møller-Plesset (MP2), the fourth-order Møller-Plesset (MP4), and coupled cluster with single and double substitutions with noniterative triple excitation (CCSD(T)) levels of theory. Dunning's correlation consistent basis sets up to aug-cc-pVQZ were applied. Eight profiles (246 points for each rare gas atom) of potential energy surface (PES) of all-trans (anti-anti) conformation of n-pentane were scanned. Optimal distances for complex formation were found. MP2 interaction energies at the basis set limit were evaluated by three different methods (Feller's, Helgaker's, and Martin's). The MP2 interaction energy at the basis set limit for a global minimum of n-pentane complex with argon was more than 400 cm -1, so formation of a stable complex (at least at low temperature) can be expected. A comparison with previously published data on propane complexes with rare gas atoms (both computational and experimental) was done. The MP4 level of theory was found to be sufficient for a description of C 5H 12 complexes with helium, neon, and argon.

  1. Helium, neon and argon diffraction from Ru(0001).

    PubMed

    Minniti, M; Díaz, C; Fernández Cuñado, J L; Politano, A; Maccariello, D; Martín, F; Farías, D; Miranda, R

    2012-09-01

    We present an experimental and theoretical study of He, Ne and Ar diffraction from the Ru(0001) surface. Close-coupling calculations were performed to estimate the corrugation function and the potential well depth in the atom-surface interaction in all three cases. DFT (density functional theory) calculations, including van der Waals dispersion forces, were used to validate the close-coupling results and to further analyze the experimental results. Our DFT calculations indicate that, in the incident energy range 20-150 meV, anticorrugating effects are present in the case of He and Ar diffraction, whereas normal corrugation is observed with Ne beams. PMID:22898880

  2. Atomic delay in helium, neon, argon and krypton

    NASA Astrophysics Data System (ADS)

    Palatchi, Caryn; Dahlström, J. M.; Kheifets, A. S.; Ivanov, I. A.; Canaday, D. M.; Agostini, P.; DiMauro, L. F.

    2014-12-01

    Photoionization by an eXtreme UltraViolet (XUV) attosecond pulse train (APT) in the presence of an infrared pulse (RABBITT method) conveys information about the atomic photoionization delay. By taking the difference of the spectral delays between pairs of rare gases (Ar,He), (Kr,He) and (Ne,He) it is possible to eliminate in each case the larger group delay (‘attochirp’) associated with the APT itself and obtain the Ar, Kr and Ne Wigner delays referenced to model calculations of the He delay. In this work we measure how the delays vary as a function of XUV photon energy but we cannot determine the absolute delay difference between atoms due to lack of precise knowledge of the initial conditions. The extracted delays are compared with several theoretical predictions and the results are consistent within 30 as over the energy range from 10 to 50 eV. An ‘effective’ Wigner delay over all emission angles is found to be more consistent with our angle-integrated measurement near the Cooper minimum in Ar. We observe a few irregular features in the delay that may be signatures of resonances. .

  3. Effect of low-energy laser irradiation on cytokine secretion from skeletal muscle cells: involvement of calcium in the process

    NASA Astrophysics Data System (ADS)

    Schwartz, Fidi; Adamek, Mariusz; Brodie, C.; Shainberg, Asher

    1997-12-01

    Low energy laser irradiation has an effect on Nerve Growth Factor and anti mitotic factors release from rat and mouse skeletal muscle cultures. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation. Calcium changes were detected by dynamic video imaging systems and with a photometric system. Pre incubation of the myotubes with photosensitizers enhance the elevation of both cytosolic calcium and cytokines release from the cells after Helium/Neon irradiation with energy of 3-10 J/cm2. These findings can lead to an hypothesis that transient changes in calcium can accelerate cytokines release from the myotubes.

  4. Low-energy laser treatment of rheumatic diseases: a long-term study

    NASA Astrophysics Data System (ADS)

    Antipa, Ciprian; Moldoveanu, Vladimir; Rusca, Nicolae; Bruckner, Ion I.; Podoleanu, Adrian Gh.; Stanciulescu, Viorica

    1995-05-01

    We tried to establish the efficiency of low energy (power) lasers (LEL), in various inflammatory and noninflammatory rheumatic diseases during five years. We treated 514 patients with osteoarthrosis, 326 patients with nonarticular rheumatism and 82 patients with inflammatory rheumatism, in four different ways: only with Galium-Aluminum-Arsenide (GaAs) infrared lasers; both GaAs lasers and Helium neon (HeNe) lasers; with placebo laser; with classical anti-inflammatory therapy. The results were analyzed using local objective improvements and the score obtained from a pain scale before and after the treatments. We also note some preliminary results obtained by the computer analysis of the evocated potentials after laser irradiation. We conclude that LEL (especially HeNe with GaAs) is obviously more efficient than placebo laser therapy and also had better or at least similar results, in most of the cases, than classical anti-inflammatory therapy.

  5. Destruction cross sections for fast hydrogen molecules incident on helium, neon, and argon

    SciTech Connect

    de Castro Faria, N.V.; Borges, I. Jr.; Coelho, L.F.S.; Jalbert, G.

    1995-05-01

    We measured the destruction cross sections of fast H{sub 2} molecules (3.0{le}{ital v}{le}7.0 a.u.) in helium, neon, and argon targets. We also measured, complementing previously published data, the H{sub 2}{sup +} destruction cross sections in neon for 3.0{le}{ital v}{le}7.0 a.u. and in helium and argon for {ital v}=3.0 a.u. The H{sub 2} beam was obtained from fast {ital H}{sub 3} molecules dissociated in an auxiliary target. These H{sub 2} and H{sub 2}{sup +} destruction cross sections were compared with the previous ones for H{sub 2}{sup +} and H{sub 3}{sup +} ions and also with the H electron-loss cross section, and a simple description is able to explain quantitatively the observed trends for these four sets of experiments, giving also information about the main destruction channels for the H{sub 2} and H{sub 2}{sup +} molecules.

  6. Some Student Experiments with a Laser.

    ERIC Educational Resources Information Center

    Young, P. A.

    1989-01-01

    Described are three experiments on the photometric, Gaussian, and image-forming properties of a helium-neon gas laser. Details of the experimental method and typical calculations with diagrams and graphs are provided. (YP)

  7. Just How Bright Is a Laser?

    ERIC Educational Resources Information Center

    Van Baak, David A.

    1995-01-01

    Attempts to quantify the subjective sensation of brightness of the spot projected by a helium-neon laser and compares this with conventional sources of light. Provides an exercise in using the blackbody radiation formulas. (JRH)

  8. [The use of low-energy lasers for preventing and treating postoperative and radiation-induced complications in patients with head and neck tumors].

    PubMed

    Kitsmaniuk, Z D; DëmochkoVB; Popovich, V I

    1992-01-01

    The efficacy of low-energy helium-neon and copper vapor lasers for prevention and treatment of postoperative and irradiation complications was assessed in 195 patients with locally advanced tumors of the head and neck. The control group included 118 patients. Intravenous laser irradiation of the blood was associated with a higher percentage of wound healing by first intention and better course of the postoperative period. Laser treatment of skin irradiation fields was shown to improve skin tolerance to the neutron beam. The study failed to establish tumor growth stimulation by the laser irradiation in terms of recurrence and metastasis development. The data obtained showed low-energy laser irradiation to offer promise for prevention and treatment of postoperative and irradiation complications. PMID:1300810

  9. Helium, neon, and argon systematics of the European subcontinental mantle: Implications for its geochemical evolution

    NASA Astrophysics Data System (ADS)

    Dunai, T. J.; Baur, H.

    1995-07-01

    In this study we present a comprehensive noble gas study of mantle xenoliths from various European Cenozoic volcanic provinces. The main body of samples is from the Massif Central, France, and the Eifel, Germany. Smaller subsets of samples are from Spitsbergen and the Graz Basin, Austria. In all the helium, neon, and argon isotopic abundances of a total of forty-five mantle xenoliths, phenocrysts, and xenocrysts were determined. The 3He/4He-ratios within each volcanic province are very uniform, irrespective of the diverse lithologies and P-T conditions which are represented by our sample suite. Mean 3He/4He ratios of the Massif Central, Eifel, Spitsbergen, and Kapfenstein are 6.53 ± .25, 6.03 ± .14, 6.65 ± .25, and 6.1 ± .7 (1σ) times the atmospheric ratio (Ra.), respectively. The strontium and neodymium isotopic composition of some of the cpx-separates are highly variable and therefore in contrast to the uniform He signature. We thus conclude that He and probably also the other noble gases in the xenoliths are effectively decoupled from the non-volatile elements. Therefore, the He signature that is preserved in the xenoliths is actually that of their host magmas. Published strontium, neodymium, and lead isotope data of the unevolved host magmas of the xenoliths correlate well with our xenolith He data. The position of the fields of the investigated volcanic provinces in Hesbnd Sr, Hesbnd Nd, and Hesbnd Pb variation diagrams depict ternary mixtures between DMM-EM-HIMU endmembers as the source the host magmas and their volatiles. The neon isotopic composition of the gases released from the xenoliths is in most cases atmospheric and probably reflects atmospheric contamination; only a few samples reveal indications for MORB-type Ne or evidence of mass-fractionation. The 40Ar/36Ar-ratios of the xenoliths are mostly radiogenic, with the highest ratio being 17,000. However, all samples have suffered a certain degree of atmospheric contamination. We calculate that

  10. Single-Event-Upset Laser Scanner With Optical Bias

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup

    1992-01-01

    Light-assisted microelectronic advanced laser scanner (LAMEALS) is augmented version of microelectronic advanced laser scanner (MEALS) described in article, "Laser Scanner Tests For Single-Event Upsets", (NPO-18216). Only major difference, steady illumination from helium/neon laser, argon-ion laser, and/or other source(s) combined with pulsed dye-laser illumination of MEALS into single illuminating beam.

  11. Light noble gas chemistry: Structures, stabilities, and bonding of helium, neon and argon compounds

    SciTech Connect

    Frenking, G. ); Koch, W. ); Reichel, F. ); Cremer, D. )

    1990-05-23

    Theoretically determined geometries are reported for the light noble gas ions Ng{sub 2}C{sup 2+}, Ng{sub 2}N{sup 2+}, Ng{sub 2}O{sup 2+}, NgCCNg{sup 2+}, NgCCH{sup +}, NgCN{sup +}, and NgNC{sup +} (Ng = He, Ne, Ar) at the MP2/6-31G(d,p) level of theory. In a few cases, optimizations were carried out at CASSCF/6-31G(d,p). The thermodynamic stability of the Ng compounds is investigated at MP4(SDTQ)/6-311G(2df,2pd) for Ng = He, Ne and at MP4(SDTQ)/6-311G(d,p) for Ng = Ar. The structures and stabilities of the molecules are discussed in terms of donor-acceptor interactions between Ng and the respective fragment cation, by using molecular orbital arguments and utilizing the analysis of the electron density distribution and its associated Laplace field. Generally, there is an increase in Ng,X binding interactions of a noble gas molecule NgX with increasing atomic size of Ng. In some cases the Ne,X stabilization energies are slightly smaller than the corresponding He,X values because of repulsive p-{pi} interactions in the neon compounds. The argon molecules are in all cases significantly stronger bound.

  12. Stabilized Lasers and Precision Measurements.

    ERIC Educational Resources Information Center

    Hall, J. L.

    1978-01-01

    Traces the development of stabilized lasers from the Massachusetts Institute of Technology passive-stabilization experiments of the early 1960s up through the current epoch of highly stabilized helium-neon and carbon dioxide and continuous wave dye lasers. (Author/HM)

  13. Laser Mode Structure Experiments for Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Phillips, Richard A.; Gehrz, Robert D.

    Experiments dealing with laser mode structure are presented which are suitable for an upper division undergraduate laboratory. The theory of cavity modes is summarized. The mode structure of the radiation from a helium-neon laser is measured by using a photodiode detector and spectrum analyzer to detect intermode beating. Off-axial modes can be…

  14. Laser communication system for controlling several functions at a location remote to the laser

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Rowland, C. W.; Sinclair, A. R. (Inventor)

    1973-01-01

    A multichannel laser remote control system is described. The system is used in areas where radio frequency, acoustic, and hardware control systems are unsatisfactory or prohibited and where line of sight is unobstructed. A modulated continuous wave helium-neon laser is used as the transmitter and a 360 degree light collector serves as the antenna at the receiver.

  15. Laser measuring system accurately locates point coordinates on photograph

    NASA Technical Reports Server (NTRS)

    Doede, J. H.; Lindenmeyer, C. W.; Vonderohe, R. H.

    1966-01-01

    Laser activated ultraprecision ranging apparatus interfaced with a computer determines point coordinates on a photograph. A helium-neon gas CW laser provides collimated light for a null balancing optical system. This system has no mechanical connection between the ranging apparatus and the photograph.

  16. [A quantitative analysis of the ultrastructures of the blood polymorphonuclear neutrophils in patients with ischemic heart disease after a session of intravenous laser therapy].

    PubMed

    Khomeriki, S G; Morozov, I A

    1998-01-01

    Circulating neutrophilic granulocytes before and after laser therapy were studied in 10 patients with ischemic heart disease and 5 healthy persons. The patients had severe cytoplasm vacuolization, specific granules number increase, a decrease in thickness of the submembranous actin layer and decrease of surface = volume ratio. Neutrophils indices in patients with ischemic heart disease become closer to those in donor cells after blood irradiation with a helium-neon laser. The results indicate a normalizing effect of helium-neon laser irradiation on the mechanisms of non-specific reactivity in some forms of ischemic heart disease. PMID:9949900

  17. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Kinetic model of the active medium of an XeCl laser pumped by an electron beam

    NASA Astrophysics Data System (ADS)

    Boĭchenko, A. M.; Derzhiev, V. I.; Zhidkov, A. G.; Yakovlenko, Sergei I.

    1989-02-01

    Kinetic models of active media of an XeCl laser are developed for the case when these media are diluted by various buffer gases (helium, neon, argon) and the laser is pumped by an electron beam. The results of the calculations are in satisfactory agreement with experimental data.

  18. A two-frequency gas laser in mutually orthogonal transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Gudelev, V. G.; Izmailov, A. Ch.; Iasinskii, V. M.

    1988-02-01

    The characteristics of the radiation from a two-frequency helium-neon laser during the superposition of mutually orthogonal transverse magnetic fields on the active medium are investigated experimentally and theoretically. It is shown that dichroism and birefringence of the active medium are minimized at equal magnetic strengths. As a result, stable two-frequency laser operation is realized with nearly equal wave intensities and a sufficiently low beat frequency which is stable with respect to variations in the resonator length, pump intensity, and magnetic field induction. The influence of the amplitude and phase anisotropy of the resonator, magnetoplasma effects, isotopic composition, and pressure of the working mixture on the energy and frequency characteristics of the laser is analyzed.

  19. [Endovascular laser irradiation of blood in the comprehensive treatment of stomach cancer].

    PubMed

    Kamarli, Z P; Ankudinova, S A; Kolesnikova, R N

    1998-01-01

    The data on the treatment of 35 patients with gastric cancer (two groups) are presented. In group I, surgery and chemotherapy were given; in group II--intravenous helium-neon laser therapy as a component of complex treatment. Dynamic changes in hematological and immunological indices were investigated. The immunological and hemopoietic indices improved after laser therapy. PMID:10087969

  20. Ultrahigh and audio frequencies in a laser beam

    SciTech Connect

    Casabella, P.A.; Gonsiorowski, T.; Leitner, A.

    1980-05-01

    The helium--neon lasers readily available in teaching laboratories usually operate in several photon modes simultaneously. The first-difference and second-difference beats lie in the uhf- and audio-frequency ranges, respectively, and can be detected as sinusoidal signals with photodiodes. These are instructive experiments which raise thought provoking questions about cavity resonance and negative dispersion.

  1. Endodontic applications of short pulsed FR Nd:YAG dental laser: treatment of dystrophic calcification: a clinical trial report

    NASA Astrophysics Data System (ADS)

    Gregg, Robert H., II

    1992-06-01

    Formation of dystrophic calcification deposits within the root canal of a tooth, have historically been difficult clinical endodontic complications. Presently, removal of such tissue, mineralized through the deposition of calcareous materials in a root canal (a 'calcified canal'), remains resistant to conventional endodontic techniques. The subsequent treatment primarily involves undesirable surgical procedures and/or loss of the tooth. Described in this clinical trial is a technique using free running (RF) pulsed, Nd:YAG laser energy to ablate hard calcified tissue which obstructed mechanical access of the root canal and root apex--a technique employed after conventional endodontic methods failed. This paper discusses the 'plasma' effect, 'spallation', canal illumination and transillumination using the helium-neon (HeNe) aiming beam. A free running pulsed, FR Nd:YAG dental laser was successfully used at 20 pulses per second and 1.75 watts to photovaporize and photodisrupt enough calcified tissue obstruction, to allow a conventional endodontic file to pass the canal blockage, and access the root apex. This clinical trial achieved the immediate, short term objective of endodontic hard tissue removal via photovaporization and photodisruption. The pulsed FR Nd:YAG dental laser used as described in this clinical report appears to be a very safe and very effective technique; offers a treatment alternative to traditional therapy that suggests high patient acceptance; and is significantly less stressful for the doctor and staff than traditional treatment options. Long-term, controlled scientific and clinical studies are necessary to establish the safety and efficacy of both the helium-neon energy for visualization and the low- watt pulsed FR Nd:YAG energy for photovaporization and photodisruption of hard calcified tissue within the root canal. Research is especially needed to understand the effects of low- watt, pulsed FR, Nd:YAG laser on the activity of osteoclasts and

  2. Low-level laser therapy in chemo- and radiation-induced mucositis: results of multicenter phase III studies

    NASA Astrophysics Data System (ADS)

    Bensadoun, Rene-Jean

    2001-04-01

    Low of middle energy irradiation with helium-neon laser (LLLT) appears to be a simple atraumatic technique for the prevention and treatment of mucositis of various origins. Preliminary findings obtained by Ciais et al prompted randomized multi-center, double-blind trials to evaluate LLLT for the prevention of a acute chemo- and radiation- induced stomatitis. Irradiation by LLLT corresponds to local application of a high photon density monochromatic light source. Activation of epithelial healing on LLL-treated surfaces, the most commonly recognized effect, has been confirmed by numerous in vitro studies, and is a function of cell type, wavelength, and energy dose. The mechanism of action at a molecular and enzymatic level is currently being studied (detoxification of free-radicals).

  3. Laser prophylaxis and treatment of primary caries

    NASA Astrophysics Data System (ADS)

    Kazmina, Svetlana G.; Kunin, Anatoly A.; Dergunova, Elvira I.

    1995-04-01

    The light of He-Ne laser is widely used for the treatment of many stomatological diseases. The caries static activity of a helium-neon laser (HNL) light, its influence ont he activation of microcirculation of the pulpenzyme system and on the increase of enamel permeability became clear nowadays. These data allow to suppose that the Ne-Ne light may potent the activity of the initial caries by the increase of teeth stability to the factors provoking the caries.

  4. Use of low-energy laser as adjunct treatment of alcohol addiction.

    PubMed

    Zalewska-Kaszubska, Jadwiga; Obzejta, Dominik

    2004-01-01

    Auricular acupuncture is a medical method that has been used in the treatment of alcohol addiction. In our study we decided to intensify this method by additional biostimulation of the whole organism. The aim of this study was the therapy of patients with alcohol dependence syndrome. Fifty-three alcoholics were treated with two types of laser stimulation in four sessions. Each session consisted of 20 consecutive daily helium-neon laser neck biostimulations and 10 auricular acupuncture treatments with argon laser (every 2nd day). The Beck Depression Inventory-Fast Screen (BDI-FS) was used to assess their frame of mind before the session and after 2 months of treatment. Moreover, beta-endorphin plasma concentration was estimated five times using the radioimmunoassay (RIA) method. Improvement in BDI-FS and increase in, beta-endorphin level were observed. These results suggest that laser therapy can be useful as an adjunct treatment for alcoholism. PMID:15674998

  5. Control of connective tissue metabolism by lasers: recent developments and future prospects

    SciTech Connect

    Abergel, R.P.; Meeker, C.A.; Lam, T.S.; Dwyer, R.M.; Lesavoy, M.A.; Uitto, J.

    1984-12-01

    Various laser modalities are currently in extensive use in dermatology and plastic surgery, particularly for treatment of vascular and pigmented lesions. A relatively new area of laser utilization involves the possible biologic effects of the lasers. In this overview, recent studies are summarized which indicate that lasers at specific wavelengths and energy densities modulate the connective tissue metabolism by skin fibroblasts both in vitro and in vivo. Specifically, the neodymium-yttrium-aluminum-garnet (Nd: YAG) laser was shown to selectively suppress collagen production both in fibroblast cultures and in normal skin in vivo, thus suggesting that this laser modality may be useful for the treatment of fibrotic conditions such as keloids and hypertrophic scars. Furthermore, two low-energy lasers, helium-neon (He-Ne) and gallium-arsenide (Ga-As), were shown to stimulate collagen production in human skin fibroblast cultures, suggesting that these lasers could be used for enhancement of wound healing processes. These experimental approaches illustrate the future possibilities for applying lasers for the modulation of various biologic functions of cells in tissues and attest to the potential role of lasers in the treatment of cutaneous disorders.

  6. Responses of astrocytes in culture after low dose laser irradiation

    SciTech Connect

    Yew, D.T.; Zheng, D.R.; Au, C.; Li, W.W. )

    1990-03-01

    The effect of Helium-Neon low dose laser on astrocytes was investigated in cultures of isolated astrocytes from albino neonatal rats. The laser appeared to inhibit the growth of astrocytes as exemplified by the smaller sizes of the cells and the decreased leucine uptake in each cell after treatment. Temporary decrease in the number of mitoses was also observed, but this trend was reversed soon after. Electron microscopic studies revealed an increase in buddings from cell bodies and processes (branches) after irradiation.

  7. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    SciTech Connect

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  8. Laser ablation of human tooth

    NASA Astrophysics Data System (ADS)

    Franklin, Sushmita R.; Chauhan, P.; Mitra, A.; Thareja, R. K.

    2005-05-01

    We report the measurements of ablation threshold of human tooth in air using photo-thermal deflection technique. A third harmonic (355nm) of Nd:YAG (yttrium aluminum garnet) laser was used for irradiation and a low power helium neon laser as a probe beam. The experimental observations of ablation threshold in conjunction with theoretical model based on heat conduction equations for simulating the interaction of a laser radiation with a calcified tissue are used to estimate the absorption coefficient of human tooth.

  9. [Experimental validation and the initial experience of the use of intravenous laser irradiation of the blood in oncology].

    PubMed

    Gamaleia, N F; Stadnik, V Ia; Rudykh, Z M; Kosinskaia, N P; Shtykhir', S V

    1988-01-01

    The treatment of some non-oncological and then oncological patients was undertaken on the basis of the results obtained by laser blood irradiation (a helium-neon laser, the wavelength of 0.633 micron) in the tumour-bearing mice. The method was applied to 25 patients with the cancer of cervix uteri after their radiotherapy and resulted in the stimulation of their hemopoietic and immunologic systems. PMID:3391124

  10. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  11. Effects of laser irradiation on immature olfactory neuroepithelial explants from the rat

    SciTech Connect

    Mester, A.F.; Snow, J.B. Jr.

    1988-07-01

    The photobiological effect of low-output laser irradiation on the maturation and regeneration of immature olfactory bipolar receptor cells of the rat was studied. The maturation and regeneration of the receptor cells of rat fetuses were quantified in neuroepithelial explants with morphometric analysis. The number of explants with outgrowth and the number and length of neuritic outgrowths were determined on a regular basis for 12 days. Explants in the experimental group were irradiated with a helium-neon laser using different incident energy densities (IED). Explants in the fluorescent light control group were exposed to fluorescent light for the same periods of time as those in the experimental group were exposed to laser irradiation. Explants in another control group were not exposed to laser or fluorescent light irradiation. The IED of 0.5 J/cm2 laser irradiation has been found to increase significantly the number of explants with outgrowth and the number and length of the outgrowths. Other laser IEDs or fluorescent light irradiation did not influence maturation or regeneration.

  12. [The effect of transvenous laser therapy on lipid peroxidation function in patients with ischemic heart disease].

    PubMed

    Vakhliaev, V D; Smirnova, I E; Uchaĭkina, L V; Barsel', V A; Aksiutina, M S; Matveeva, S A; Paramonova, M A; Shchedrina, I S; Syrkin, A L

    1992-07-01

    The papers deals with changes in the levels of lipid peroxidation products in patients with stable angina of effort, which occurred with intravenous helium-neon blood irradiation. The therapy was highly effective in patients with lower functional classes and persons with normal circulation, resulting in a reduction in lipid peroxidation intensity. Predictors are recommended to determine the efficiency and expediency of laser therapy in patients with coronary heart disease. PMID:1487878

  13. Laser plasmadynamic energy conversion

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1976-01-01

    The generation of electrons ions by interacting an intense laser beam with cesium vapor is considered. Theoretical calculation shows that the conversion efficiency is as high as 40 percent if the entire photon energy is utilized in ionizing the cesium vapor that is generated initially by the incoming laser beam. An output voltage is expected to be generated across two electrodes, one of which is the liquid cesium, by keeping the other electrode at a different work function. Evaluation of the laser plasmadynamic (LPD) converter was performed using pulsed ruby and Nd-glass lasers. Although the results obtained to date indicate an efficiency smaller than that of theoretical predictions, an unoptimized LPD converter did demonstrate the capability of converting laser energy at large power levels. The limitations in the performance may by due to converter geometry, the types of lasers used, and other limitations inherent to the cesium plasma.

  14. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1975-01-01

    Laser radiation could possibly provide a feasible approach for the transmission of energy between stations and vehicles in space and on earth. The transmitted energy could be used for the operational requirements of the receiving space station, lunar base, or spacecraft. In addition, laser energy could also be employed to provide power for the propulsion of vehicles in space. The present status of development regarding the various technological areas involved in an implementation of these objectives is examined, taking into account the possibility of further advances needed to satisfy the technical requirements. Attention is given to laser-induced chemistry for converting the radiation energy into chemical energy. Other subjects considered are related to photovoltaics, optical diodes, thermo-electronics, laser rockets, and photon engines.

  15. Laser flash effects on laser speckle shift visual evoked potential.

    PubMed

    Schmeisser, E T

    1985-10-01

    Steady-state visual evoked potentials (VEP's) were recorded from four cynomolgus monkeys in response to a sinusoidally oscillating 10 degrees helium-neon laser speckle field (632.8 nm), moving vertically 2.5 degrees at 8 shifts per second. A 5-pulse flash train at the maximum permissible exposure (MPE) dose from a collimated Q-switched frequency-doubled neodymium laser (532 nm) was superimposed on the foveal stimulus and the subsequent disruption and recovery of the VEP measured. Minimal disruption of the response signal magnitude was demonstrated (0.1 greater than p greater than 0.05) which recovered within 300 ms of the termination of the pulse train. A small but significant (p less than 0.01) disruption of phase entrainment was also noted that recovered within the same period. This is contrasted with a second experiment with three monkeys in which an argon (514 nm) laser served both as the speckle stimulus source and as the shuttered flash. Exposure to collimated MPE argon radiation for 250 ms immediately depressed the VEP (97%, p less than 0.01) and showed recovery to 70% of the pre-flash baseline only after 3 s. Phase lock was also severely degraded for several seconds. These results imply that visual processing of nonacuity-limited medium contrast stimuli with broad spatial frequency content will probably not be materially affected by ultra-short pulsed laser exposure at these energy levels and frequencies. However, even safe levels of collimated continuous laser light may have severe effects on vision that could parallel flash effects seen with Xenon discharge flash lamps. PMID:4073205

  16. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1989-01-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  17. Action of low-energy monochromatic coherent light on the stability of retinal lysosomes

    NASA Astrophysics Data System (ADS)

    Metelitsina, Irina P.; Leus, N. F.

    1995-05-01

    The data had been obtained during the experiment in vitro by irradiation of solubilized lysosomal enzymes, retinal homogenates and native lysosomes enabled us to conclude that the laser beam ((lambda) equals 632.8 nm, power density from 0.1 to 15.0 mWt/cm2) acts on the level of membranous structures of lysosomes. During irradiation of rabbits eyes in vitro with an unfocused laser beam (power density on the cornea aur face from 0.01 to 15.0 mWt/cm2 was shown, that low-energy, ranged from 0.01 to 1.0 mWt/cm2 promotes stabilization of lysosomal membranes. Irradiation with laser beam of 8.0 mWt/cm2 and more power induces destabilization of lysosomal membranes. We have also shown that vitamins A and E effecting membranotropic on lysosomes may be corrected by low-energy radiation of helium-neon laser. It is substantiated experimentally that the stabilizing effect of vitamin E may be intensified in case of the combined action of laser radiation on lysosomes. The labilizing effect of vitamin A on membranes of organelles, as was studied, may be weakened by application of laser radiation of low intensities.

  18. Energy transmission by laser

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2015-02-01

    Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF) and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of superlong ionised channels with a characteristic diameter of ~ 100 mkm in atmosphere along the beam propagation direction. At estimated electron densities below 1016 cm-3 in these filaments and laser wavelengths in the range of 0.5 - 1.0 mm, the plasma barely absorbs laser radiation. In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~ 100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m). Not so long ago scientific group from P.N. Lebedev has improved that result, the discharge gap -1m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result - 16 m long conducting channel controlled by a laser spark at the voltage - 3 MV - was obtained more than 20years ago in Russia and Japan by using pulsed CO2 laser with energy - 0.5 kJ. An average electric field strength was < 190 kV/m. It is still too much for efficient applications.

  19. A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules.

    PubMed

    Dai, D P; Xia, Y; Yin, Y N; Yang, X X; Fang, Y F; Li, X J; Yin, J P

    2014-11-17

    We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam. PMID:25402105

  20. Reliability factors in gas lasers

    NASA Astrophysics Data System (ADS)

    Malk, E. G.; Ramsay, I. A.

    1982-07-01

    Two types of gas lasers, the helium-neon laser and the sealed off, waveguide carbon dioxide laser, are discussed. The beneficial influence of hard seals on the HeNe laser is briefly described, and the resulting improved mean time between failures is described and discussed, showing a summary of lifetest data. Rejection percentages at 80 percent of the rated power in 18 months of elapsed time is determined to be 10 percent for one family of HeNe lasers and 7.6 percent for another family. An optical failure mode for HeNe lasers and the scientific investigation leading to its elimination are described. Finally, CO2 waveguide laser reliability is discussed in terms of the lifetime degradation factors involved in the operation of these lasers.

  1. Sensitized action of low-level laser radiation mechanism

    NASA Astrophysics Data System (ADS)

    Chichuk, Tatyana V.; Stranadko, Eugeny P.; Lubchenko, G. N.; Podgornaya, E. V.; Pozdnyakova, E. E.; Klebanov, Gennady I.

    1999-12-01

    The goal of this work is to study the laser-induced photosensitized oxidation of lipids of the artificial (lyposomes) and cell's (erythrocytes, leukocytes) membranes and human blood lipoproteins. As a exogenous photosensitizers we are used hematoporphyrin derivatives (HPD) and sulfonated phthalocyanine aluminum (Pc). Irradiation was performed by helium-neon laser (632.8 nm). It was found out the increasing of the products of lipid oxidation in the suspensions of a lyposomes, human blood apo-(beta) -lipoproteins, erythrocytes and leucocytes. Accumulation of the lipid oxidation products depend on as irradiation dose as HPD or Pc concentrations. Interaction of photosensitizers with the lyposomes, lipoproteins and erythrocytes was investigated.

  2. The Laser-assisted photoelectric effect of He, Ne, Ar and Xe in intense extreme ultraviolet and infrared laser fields

    NASA Astrophysics Data System (ADS)

    Hayden, P.; Dardis, J.; Hough, P.; Richardson, V.; Kennedy, E. T.; Costello, J. T.; Düsterer, S.; Redlin, H.; Feldhaus, J.; Li, W. B.; Cubaynes, D.; Meyer, M.

    2016-02-01

    In this paper, we report results on two-colour above-threshold ionisation, where extreme ultraviolet pulses of femtosecond duration were synchronised to intense infrared laser pulses of picosecond duration, in order to study the laser-assisted photoelectric effect of atomic helium, neon, krypton and xenon which leads to the appearance of characteristic sidebands in the photoelectron spectra. The observed trends are found to be well described by a simple model based on the soft-photon approximation, at least for the relatively low optical intensities of up to ? employed in these early experiments.

  3. Soft-tissue injuries from sports activities and traffic accidents--treatment with low-level laser therapy: a multicenter double-blind placebo-controlled clinical study on 132 patients

    NASA Astrophysics Data System (ADS)

    Simunovic, Zlatko; Trobonjaca, Tatjana

    2000-06-01

    The aim of current multicenter clinical study was to assess the efficacy of low energy-level laser therapy (LLLT) in the treatment of soft tissue injuries compared to the placebo and classical phyiotherapeutic procedures. This clinical study was conducted in two centers located in Locarno, Switzerland and Opatija, Croatia. Two types of irradiation techniques were used: (1) direct, skin contact technique for treatment of trigger points where IR diode laser 830 nm continuous wave was applied; and (2) scanning technique for irradiation of larger surface area with use of Helium Neon laser 632.8 nm combined with IR diode laser 904 nm pulsed wave. Results were evaluated according to clinical parameters like: hematoma, swelling, heat, pan and loss of function. The findings were statistically analyzed via chi- square test. Results have demonstrated that the recovery process was accelerated in 85 percent of patients treated with LLLT compared to the control group of patients. The results and advantages obtained proved once again the efficacy of LLLT as a new and successful way to treat soft tissue injuries.

  4. Laser speckle tracking for monitoring and analysis of retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Seifert, Eric; Bliedtner, Katharina; Brinkmann, Ralf

    2014-02-01

    Laser coagulation of the retina is an established treatment for several retinal diseases. The absorbed laser energy and thus the induced thermal damage varies with the transmittance and scattering properties of the anterior eye media and with the pigmentation of the fundus. The temperature plays the most important role in the coagulation process. An established approach to measure a mean retinal temperature rise is optoacoustics, however it provides limited information on the coagulation. Phase sensitive OCT potentially offers a three dimensional temporally resolved temperature distribution but is very sensitive to slightest movements which are clinically hard to avoid. We develop an optical technique able to monitor and quantify thermally and coagulation induced tissue movements (expansions and contractions) and changes in the tissue structure by dynamic laser speckle analysis (LSA) offering a 2D map of the affected area. A frequency doubled Nd:YAG laser (532nm) is used for photocoagulation. Enucleated porcine eyes are used as targets. The spot is 100μm. A Helium Neon laser (HeNe) is used for illumination. The backscattered light of a HeNe is captured with a camera and the speckle pattern is analyzed. A Q-switched Nd:YLF laser is used for simultaneous temperature measurements with the optoacoustic approach. Radial tissue movements in the micrometer regime have been observed. The signals evaluation by optical flow algorithms and generalized differences tuned out to be able to distinguish between regions with and without immediate cell damage. Both approaches have shown a sensitivity of 93% and a specificity above 99% at their optimal threshold.

  5. State of some peripheral organs during laser puncture correction of ovarian functional deficiency

    NASA Astrophysics Data System (ADS)

    Vylegzhanina, T. A.; Kuznetsova, Tatiana I.; Maneeva, O.; Ryzhkovskaya, E. L.; Yemelianova, A.

    2001-01-01

    The findings from studies on structural and functional parameters of the adrenal, thyroid, and pineal glands in conditions of ovarian hypofunction and after its correction by laser puncture are presented. An experimentally induced hypofunction of the ovaries was shown to be accompanied by a decreased hormonal synthesis in the cortical fascicular zone. The epiphysis showed ultra structural signs of increased functional activity. Application of a helium-neon laser to biologically active points of the ovarian reflexogenic zone induced normalization of the ovarian cycle, potentiating of the adrenal functional state, and a decreased thyroid hormone production and abolished the activatory effect of the dark regime on the functional state of the pineal gland.

  6. [Effect of intravenous laser irradiation of blood on the homeostasis in patients with hemorrhagic pancreatitis].

    PubMed

    Dedenko, I K

    1989-08-01

    After intravenous blood exposure to low-intensity radiation of Helium-Neon laser patients with haemorrhagic pancreatitis exhibited inhibition of the blood proteolytic activity; enhancement of free-radical oxidation, kallikrein-kinin system activity, blood oxygen transport, correction of endotoxic pancreatogenic syndrome. In addition, the positive shifts were also observed in the immunological status, morphofunctional characteristics of the red blood cells and hemoglobin, hepatic and renal functions. In severe pancreatogenic endotoxicosis the highest response was achieved with combined use of hemosorption and intravenous laser irradiation. PMID:2811243

  7. Lustre changes on teeth. The use of laser beams for comparative studies in vivo.

    PubMed

    Redmalm, G; Rydén, H; Johannsen, G; Söder, P O

    1981-01-01

    An instrument for studies of lustre changes on teeth in vivo was constructed and evaluated. The equipment was based on a helium-neon gas laser, a coordinate screen and a photocell. The intensity of light reflected from incisors of ten test subjects was measured before and after brushing with different dentifrices. The investigation showed that the instrument was useful for measuring intensity differences of laser light reflected from teeth. The intensity was found to vary within wide limits from teeth of different persons. During a test period of 70 days only few lustre changes caused by dentifrices were registered. PMID:6949332

  8. Measurement system for laser bistatic lidar scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, Chin-Yuan

    2001-11-01

    We construct a bistatic polarimetric scattering system and improve the experimental techniques to contribute to the research of a mathematical model that describes the electromagnetic waves scattering characteristics from random rough surfaces, and to serve as a tool used to better describe wave interaction with random media. To accomplish the measurement both a horn antenna operating in the far field and a parabolic-dish antenna operating in the near-field focus mode are utilized. The transmitter for the active system is a linearly polarized, helium-neon laser operating in the red light region. The receiver measures both like- and cross-polarized returns, which helps assess the scattered radiation pattern. A flat metal plate is developed to calibrate the measuring facility. The system is automated and consists of a spherical frame over which the transmitter and receiver travel. The transmitter and receiver design, system automation, and system architecture are discussed. Experimental measurements for a target are presented to evaluate the accuracy, repeatability, and utility of the helium-neon laser measurement system.

  9. The Intravenous Laser Blood Irradiation in Chronic Pain and Fibromyalgia

    PubMed Central

    Momenzadeh, Sirous; Abbasi, Mohammadzaki; Ebadifar, Asghar; Aryani, Mohammadreza; Bayrami, Jafar; Nematollahi, Fatemeh

    2015-01-01

    Intravenous laser blood irradiation was first introduced into therapy by the Soviet scientists EN.Meschalkin and VS.Sergiewski in 1981. Originally this method was developed for the treatment of cardiovascular diseases. Improvement of rheologic properties of the blood as well as improvement of microcirculation and reduction of the area of infarction has been proved. Further, reduction of dysrhythmia and sudden cardiac death was achieved. At first, only the Helium-Neon laser (632.8 nm) was used in this therapy. For that, a power of 1-3mW and a period of exposure of 20-60 minutes were applied. The treatments were carried out once or twice a day up to ten appointments in all1. In the years after, many, and for the most part Russian studies showed that helium-neon laser had various effects on many organs and on the hematologic and immunologic system. The studies were published mainly in Russian which were little known in the West because of decades of political separation, and were regarded with disapproval. Besides clinical research and application for patients, the cell biological basis was developed by the Estonian cell biologist Tiina Karu at the same time. An abstract is to be found in her work "The Science of Low-Power Laser-Therapy" PMID:25699161

  10. The intravenous laser blood irradiation in chronic pain and fibromyalgia.

    PubMed

    Momenzadeh, Sirous; Abbasi, Mohammadzaki; Ebadifar, Asghar; Aryani, Mohammadreza; Bayrami, Jafar; Nematollahi, Fatemeh

    2015-01-01

    Intravenous laser blood irradiation was first introduced into therapy by the Soviet scientists EN.Meschalkin and VS.Sergiewski in 1981. Originally this method was developed for the treatment of cardiovascular diseases. Improvement of rheologic properties of the blood as well as improvement of microcirculation and reduction of the area of infarction has been proved. Further, reduction of dysrhythmia and sudden cardiac death was achieved. At first, only the Helium-Neon laser (632.8 nm) was used in this therapy. For that, a power of 1-3mW and a period of exposure of 20-60 minutes were applied. The treatments were carried out once or twice a day up to ten appointments in all1. In the years after, many, and for the most part Russian studies showed that helium-neon laser had various effects on many organs and on the hematologic and immunologic system. The studies were published mainly in Russian which were little known in the West because of decades of political separation, and were regarded with disapproval. Besides clinical research and application for patients, the cell biological basis was developed by the Estonian cell biologist Tiina Karu at the same time. An abstract is to be found in her work "The Science of Low-Power Laser-Therapy" PMID:25699161

  11. Endodontic applications of a short pulsed FR Nd:YAG dental laser: photovaporization of extruded pulpal tissue following traumatic fractures of two maxillary central incisors--a clinical trial repor

    NASA Astrophysics Data System (ADS)

    Gregg, Robert H., II

    1992-06-01

    Historically, many techniques have been attempted in the search for a satisfactory and consistent treatment of inflamed, painful, hyperemic pulpal tissue. Present techniques attempting to achieve profound local anesthesia in such tissue, have not been satisfactory. Local anesthesia techniques acceptable to the patient with painful hyperemic pulpal tissue, has eluded previous technology. The subsequent treatment of hyperemic tissue without sufficient anesthesia primarily involves undesirable invasive mechanical/surgical procedures. Described in this clinical trial is a technique using free running (FR) pulsed, Nd:YAG laser energy to ablate soft tooth pulpal tissue--a technique employed after conventional endodontic methods failed. A free running pulsed, FR Nd:YAG dental laser was successfully used at 20 pulses per second and 1.25 watts to photovaporize endodontic pulpal tissue (pulpectomy) to allow a conventional endodontic file to extirpate the remaining soft tissue remnants and access the root apex. Also described in this paper is the 'hot-tip' effect of contact fiber laser surgery. This clinical trial achieved the immediate, short term objective of endodontic soft tissue removal via photovaporization, without pain reported by the patient. The pulsed FR Nd:YAG dental laser used as described in this clinical report appears to be a very safe and very effective technique; offers a treatment alternative to traditional therapy that suggests high patient acceptance; and is significantly less stressful for the doctor and staff than traditional treatment options. Long-term, controlled scientific and clinical studies are necessary to establish the safety and efficacy of both the helium-neon energy for visualization and the low-watt pulsed FR Nd:YAG energy for photovaporization of soft endodontic pulpal tissue within the root canal. Research is especially needed to understand the effects of a low-watt, pulsed FR, Nd:YAG laser on the activity of osteoclasts and odontoclasts

  12. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  13. [Anti-inflammatory and immunosuppressive effects of laser therapy in patients with rheumatoid arthritis].

    PubMed

    Tupikin, G V

    1985-01-01

    The clinical and laboratory findings were examined of 10 patients with seropositive rheumatoid arthritis (RA) treated with a first applied technique of intravenous irradiation of the circulating blood with helium-neon laser combined with external irradiation of the inflamed joints. A distinct antiinflammatory and immunosuppressant effect was attained in all the RA patients. In 80% of the test subjects, the rheumatoid blood factor reduced to 1:20 titres. The treatment method did not cause any side effects or complications and shortened the time of the patients' stay at hospital. PMID:4071434

  14. Control of light backscattering in blood during intravenous laser irradiation

    NASA Astrophysics Data System (ADS)

    Melnik, Ivan S.; Popov, V. D.; Rusina, Tatyana V.; Dets, Sergiy M.

    1997-02-01

    One of the most important problems in modern laser medicine is the determination of system response on laser treatment. Reaction of living system is significant during many kinds of laser procedures like surgery, therapy and biostimulation. Our study was aimed to optimize laser exposure using feed-back fiber system for intravenous laser irradiation of blood (ILIB). This system consisted of helium-neon laser (633 nm, 5 mW) with coupled fiber unit, photodetector and PC interface. Photodetector signals produced due to light backscattering were storaged and processed during all blood irradiation procedure. Significant time-dependent variations were observed within 9-15 min after beginning of treatment procedure and were correlated with number of trials, stage and character of disease. The designed feed-back system allows us to register a human blood response on laser irradiation to achieve better cure effect.

  15. The influence of intravenous laser irradiation of blood on some metabolic and functional parameters in intact rabbits and experimental cerebral ischaemia

    NASA Astrophysics Data System (ADS)

    Nechipurenko, N.; Vasilevskaya, L.; Musienko, J.; Maslova, G.

    2007-07-01

    It has been studied the intravenous laser irradiation of blood (ILIB) influence with helium-neon laser (HNL) of 630 nm wavelength on some of lipid peroxidation (LPO) and antioxidant system (AOS) findings, aside-base status (ABS) and blood oxygen transport (BOT), state of dermal microhaemodynamics (MGD) in the intact rabbits and after modeling of local ischemia of brain (LIB). Depending on conditions of organism functioning (norm or brain ischaemia) ILIB has resulted in stimulating or normalizing effects on the whole metabolic and microhaemocirculation processes which had been studied during our investigation. It is discussed the mechanisms of pathogenetic directivity of ILIB influence in cerebral ischaemia

  16. Photovoltaic conversion of laser energy

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  17. [The influence of extracorporeal laser radiation on structural indices of erythrocytes].

    PubMed

    Khetsuriani, R G; Aladashvili, L M; Arabuli, M B; Tophuria, D Z; Tchlikadze, N G

    2015-01-01

    Object of the research was to study the diffractometric indices of erythrocytes, while 1 ml of the blood of the experimental animals was irradiated extracorporally by helium-neon laser. For this purpose 1 ml blood was taken from normal weight, (1200 gr) grown up shinshila rabbits, that we divided into 7 groups and irradiated with 10 vat helium-neon laser during 0.5-1 minutes. After irradiation blood was injected back to the organism of rabbits. After 2-6 hours from irradiation blood was taken from veins, to study by electronic microscope and later to be processed by diffractometric analysis method. The examinations testify that after extracorporeal irradiation diffractometric characteristics of erythrocytes' membranes are lower than after general irradiation, which indicates to the different energetic possibilities of laser. The extracorporeal irradiation, performed by laser and input of radiated blood back to organism is considered to be a shock therapy from the side of erythrocytes, which promote the defense function of the organism itself. The base for the shock therapy should be important factors such as homeostasis, compensative-adaptive mechanisms and so on. Exactly this above mentioned should be manifested after the sensitized cells are led back to the body (1 ml of blood) and with their existence they should promote display of the defense mechanisms. PMID:25693223

  18. Thermo electronic laser energy conversion

    NASA Technical Reports Server (NTRS)

    Hansen, L. K.; Rasor, N. S.

    1976-01-01

    The thermo electronic laser energy converter (TELEC) is described and compared to the Waymouth converter and the conventional thermionic converter. The electrical output characteristics and efficiency of TELEC operation are calculated for a variety of design variables. Calculations and results are briefly outlined. It is shown that the TELEC concept can potentially convert 25 to 50 percent of incident laser radiation into electric power at high power densities and high waste heat rejection temperatures.

  19. Second NASA Conference on Laser Energy Conversion

    NASA Technical Reports Server (NTRS)

    Billman, K. W. (Editor)

    1976-01-01

    The possible transmission of high power laser beams over long distances and their conversion to thrust, electricity, or other useful forms of energy is considered. Specific topics discussed include: laser induced chemistry; developments in photovoltaics, including modification of the Schottky barrier devices and generation of high voltage emf'sby laser radiation of piezoelectric ceramics; the thermo electronic laser energy converter and the laser plasmadynamics converters; harmonic conversion of infrared laser radiation in molecular gases; and photon engines.

  20. Ultrastable laser array at 633 nm for real-time dimensional metrology

    NASA Astrophysics Data System (ADS)

    Lawall, John; Pedulla, J. Marc; Le Coq, Yann

    2001-07-01

    We describe a laser system for very-high-accuracy dimensional metrology. A sealed-cavity helium-neon laser is offset locked to an iodine-stabilized laser in order to realize a secondary standard with higher power and less phase noise. Synchronous averaging is employed to remove the effect of the frequency modulation present on the iodine-stabilized laser. Additional lasers are offset locked to the secondary standard for use in interferometry. All servo loops are implemented digitally. The offset-locked lasers have intrinsic linewidths of the order of 2.5 kHz and exhibit a rms deviation from the iodine-stabilized laser below 18 kHz. The amplitude noise is at the shot-noise limit for frequencies above 700 kHz. We describe and evaluate the system in detail, and include a discussion of the noise associated with various types of power supplies.

  1. Low-power-laser therapy used in tendon damage

    NASA Astrophysics Data System (ADS)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  2. Evaluating the effect of low-level laser therapy on healing of tentomized Achilles tendon in streptozotocin-induced diabetic rats by light microscopical and gene expression examinations.

    PubMed

    Aliodoust, Morteza; Bayat, Mohammad; Jalili, Mohammad Reza; Sharifian, Zainalabedin; Dadpay, Masoomeh; Akbari, Mohammad; Bayat, Mehrnoush; Khoshvaghti, Amir; Bayat, Homa

    2014-07-01

    Tendon healing is impaired in individuals diagnosed with diabetes mellitus (DM). According to research, there is considerable improvement in the healing of surgically tenotomized Achilles tendons following low-level laser therapy (LLLT) in non-diabetic, healthy animals. This study uses light microscopic (LM) and semi-quantitative reverse transcription PCR (RT-PCR) analyses to evaluate the ability of LLLT in healing Achilles tendons from streptozotocin-induced diabetic (STZ-D) rats. A total of 88 rats were randomly divided into two groups, non-diabetic and diabetic. DM was induced in the rats by injections of STZ. The right Achilles tendons of all rats were tenotomized 1 month after administration of STZ. Laser-treated rats were treated with a helium-neon (He-Ne) laser that had a 632.8-nm wavelength and 7.2-mW average power. Experimental group rats received a daily dose of 0.014 J (energy density, 2.9 J/cm(2)). Control rats did not receive LLLT. Animals were sacrificed on days 5, 10, and 15 post-operatively for semi-quantitative LM and semi-quantitative RT-PCR examinations of transforming growth factor-beta1 (TGF-β1) gene expression. The chi-square test showed that LLLT significantly reduced inflammation in non-diabetic rats compared with their non-diabetic controls (p = 0.02). LLLT significantly decreased inflammation in diabetic rats on days 5 (p = 0.03) and 10 (p = 0.02) compared to the corresponding control diabetic rats. According to the student's t test, LLLT significantly increased TGF-β1 gene expression in healthy (p = 0.000) and diabetic (p = 0.000) rats compared to their relevant controls. The He-Ne laser was effective in altering the inflammatory reaction and increasing TGF-β1 gene production. PMID:24622817

  3. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  4. Tactical high-energy laser

    NASA Astrophysics Data System (ADS)

    Shwartz, Josef; Wilson, Gerald T.; Avidor, Joel M.

    2002-06-01

    The Nautilus Project was started in 1995 as a joint US-Israel feasibility study for using laser systems to defend against short-range artillery rockets. It has now matured into a successful laser weapon demonstration program - the Tactical High Energy Laser (THEL) Advanced Concept Technology Demonstration (ACTD) Program. By now the THEL Demonstrator has engaged and destroyed a large number of artillery rockets in mid-flight in an extended series of demonstration tests at the US Army's White Sands Missile Range in New Mexico. The THEL ACTD hardware and development process are described in this paper, as well as the major test results. The paper also describes the operational concept for a deployed THEL weapon system and some possible growth paths for the THEL ACTD Program.

  5. A survey of laser and selected optical systems for remote measurement of pollutant gas concentrations

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Menzies, R. T.

    1983-01-01

    Applications of the Differential Absorption Lidar (DIAL) technique to the remote sensing of pollutant gases are surveyed. In the DIAl technique, the differential absorption of two laser beams reflected back to a receiver from a target determines the concentration of the gas being studied. The types of instruments available are considered in detail: dye lidar (to measure nitrogen dioxide, sulfur dioxide, and ozone); carbon dioxide laser (for ozone, ethylene, ammonia, and hydrazine), helium-neon laser (for methane); hydrogen fluoride laser (for HF); and tunable diode laser (for nitric oxide and carbon monoxide). DIAL instruments are compared with other optical remote sensors such as Fourier-transform infrared spectrometers, correlation spectrometers (COSPEC and GASPEC), and grating spectrometers; and criteria for the selection of an appropriate gas measuring system are suggested. Laser and other optical remote sensors are found to be cost effective in many cases, despite the fact that they are more costly than point-monitoring systems.

  6. High Energy 2-Micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.

  7. Nonlinear laser energy depletion in laser-plasma accelerators

    SciTech Connect

    Shadwick, B.A.; Schroeder, C.B.; Esarey, E.

    2009-04-03

    Energy depletion of intense, short-pulse lasers via excitation of plasma waves is investigated numerically and analytically. The evolution of a resonant laser pulse proceeds in two phases. In the first phase, the pulse steepens, compresses, and frequency red-shifts as energy is deposited in the plasma. The second phase of evolution occurs after the pulse reaches a minimum length at which point the pulse rapidly lengthens, losing resonance with the plasma. Expressions for the rate of laser energy loss and rate of laser red-shifting are derived and are found to be in excellent agreement with the direct numerical solution of the laser field evolution coupled to the plasma response. Both processes are shown to have the same characteristic length-scale. In the high intensity limit, for nearly-resonant Gaussian laser pulses, this scale length is shown to be independent of laser intensity.

  8. Continuous-Integration Laser Energy Lidar Monitor

    NASA Technical Reports Server (NTRS)

    Karsh, Jeremy

    2011-01-01

    This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.

  9. [Laser scan microscopy: a new imaging procedure in quality assessment of artificial lenses].

    PubMed

    Rochels, R; Ziegler, E

    1989-01-01

    Laser-scan microscopy permits the evaluation of surfaces and deeper layers of an object by computer-assisted scanning with a laser beam. The reflected helium-neon or argon laser light is transmitted to a photodetector and after signal processing, to a frame store and a TV monitor. Imaging is realized by synchronous scanning and modulation of light intensity. Laser-scan microscopy revealed a smooth surface of both PMMA and HEMA lenses, whereas tears were detected in folded silicone implants. The physical and chemical homogeneity inside the three different materials was optimal. Compared to scanning electron microscopy, the quality of imaging is not as good with laser-scan microscopy. Nevertheless, one decisive advantage of the latter method is an analysis free of processing and artifacts, which permits a routine control of brand new and folded intraocular lenses. PMID:2722098

  10. Stability of short, single-mode erbium-doped fiber lasers

    SciTech Connect

    Svalgaard, M.; Gilbert, S.L.

    1997-07-01

    We conducted a detailed study of the stability of short, erbium-doped fiber lasers fabricated with two UV-induced Bragg gratings written into the doped fiber. We find that the relative intensity noise of single-longitudinal-mode fiber grating lasers is approximately 3 orders of magnitude lower than that of a single-frequency 1.523-{mu}m helium-neon laser. The frequency noise spectrum contains few resonances, none of which exceeds 0.6 kHz/Hz{sup 1/2} rms; the integrated rms frequency noise from 50 Hz to 63 kHz is 36 kHz. We also demonstrate a simple method for monitoring the laser power and number of oscillating modes during laser fabrication. {copyright} 1997 Optical Society of America

  11. Digital Communication System Based on Polarization Self-Modulation in Lasers

    NASA Astrophysics Data System (ADS)

    Tabarin, V. A.; Ikonnikov, V. P.; Shatalov, A. N.

    2014-09-01

    Polarization self-modulation in lasers can be used to create instruments for generating optical pulses at very high repetition rates without using high-speed electronics. Self-oscillation is observed when part of the output of a laser is returned to the laser after a 90° polarization change. A practical scheme based on polarization self-modulation in a 3.39-μm helium-neon laser is proposed for pulsed code data transmission with an yttrium-iron garnet magnetooptical Q-switch. Highly efficient transmission of digital signals is implemented with a repetition rate of 75 MHz, equivalent to half the free spectral range of the laser.

  12. High Energy Laser Diagnostic Sensors

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Goddard, Douglas N.; Lewis, Jay; Thomas, David

    2010-10-01

    Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures. We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

  13. Laser system for natural gas detection. Phase 1: Laboratory feasibility studies

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D., Jr.

    1982-01-01

    This project demonstrated the feasibility of using laser remote sensing technology as a tool for leak survey work in natural gas distribution systems. A laboratory device was assembled using a pair of helium neon (HeNe) lasers to measure methane. One HeNe laser emits radiation at a wavelength of 3.3922 micrometers, which corresponds to a strong absorption feature of methane, while the other emits radiation at a wavelength of 3.3911 micrometers, which corresponds to a weak absorption by methane. As a particular area is scanned for leaks, the laser is pointed at convenient topographic targets within its operating range, about 25 m. A portion of the backscattered radiation is collected by a receiver and focused onto an indium antimonide (InSb) photodetector, cooled to 77K. Methane concentrations were determined from the differential absorption at the two wavelengths for the backscattered radiation.

  14. Study of Nanopore Sculpting with Noble Gas Ion Beams at Various Energies

    NASA Astrophysics Data System (ADS)

    Ledden, Bradley; Krueger, Eric; Li, Jiali

    2006-03-01

    We report on experiments using noble gas beams: Helium, Neon, Argon, Krypton, and Xenon, at energies of 1keV, 3keV, and 5keV to controllably fabricate nanopores in freestanding silicon nitride membranes. Utilizing computer simulations (SRIM and TRIM), and a surface adatom diffusion model to describe the phenomenon of nanopore formation, we evaluate the conditions, specifically the ion energy, responsible for highly controllable fabrication of solid state nanopores. Additionally, we present methods to determine the thickness of the grown film as well as the thickness profile of the nanopore.

  15. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium.

    PubMed

    Hendudari, Farzane; Piryaei, Abbas; Hassani, Seyedeh-Nafiseh; Darbandi, Hasan; Bayat, Mohammad

    2016-05-01

    Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm(2) and energy densities of 0.5, 1, and 2 J/cm(2)). About 10% of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm(2) was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT + HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT + hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium. PMID:26984346

  16. Imaging retinal densitometry with a confocal Scanning Laser Ophthalmoscope.

    PubMed

    van Norren, D; van de Kraats, J

    1989-01-01

    We describe a novel use of the Scanning Laser Ophthalmoscope (SLO), viz. as an imaging retinal densitometer. In our SLO a helium-neon or an argon laser beam is moved in a raster pattern over the retina; the reflected light is descanned (confocal SLO) and collected by a photomultiplier. Images of the fundus subtending 22 by 18 deg are displayed on a TV monitor. Single frames taken with 514 nm light were stored in a computer in arrays of 256 by 256 pixels and density differences between dark adapted and bleached images were calculated. With a full bleach density differences of about 0.35 were found in the center of the fovea; at retinal eccentricities of 15-20 deg we found 0.15. After selective bleaching with 633 nm light substantial density differences were only seen in the foveal area. We conclude that the confocal SLO is a very suitable instrument for imaging fundus reflectometry. PMID:2631402

  17. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  18. Laser biostimulation (Ne-He and Ga-As) effects as compared to the conventional therapy in several pelvic inflammatory diseases

    NASA Astrophysics Data System (ADS)

    Antipa, Ciprian; Dona, Dumitru; Podoleanu, Adrian Gh.; Crisan, Nicolae; Constantinescu, Camelia

    1993-05-01

    We studied the effects of the very low-power Gallium-Arsenic infrared semiconductor laser and low-power Helium-Neon laser irradiation, single or in combination, compared to the placebo and conventional therapy on the recovery of 118 female patients from our hospital with the diagnosis of chronic pelvic inflammatory disorders. Laser biostimulation therapy proved to be significantly more efficient as compared with placebo or conventional therapy. The most efficient of all kinds of irradiations was the combination between He-Ne and Ga-As (laserpuncture and scanning). After laser treatments we didn't find any significant local genital changes both at the bimanual examination (except provoked pain), and at the echographical examination. Soft and very low-power laser therapy can be a useful alternative to the conventional treatments for pelvic inflammatory diseases.

  19. Gratings for High-Energy Petawatt Lasers

    SciTech Connect

    Nguyen, H T; Britten, J A; Carlson, T C; Nissen, J D; Summers, L J; Hoaglan, C R; Aasen, M D; Peterson, J E; Jovanovic, I

    2005-11-08

    To enable high-energy petawatt laser operation we have developed the processing methods and tooling that produced both the world's largest multilayer dielectric reflection grating and the world's highest laser damage resistant gratings. We have successfully delivered the first ever 80 cm aperture multilayer dielectric grating to LLNL's Titan Intense Short Pulse Laser Facility. We report on the design, fabrication and characterization of multilayer dielectric diffraction gratings.

  20. High energy high brightness thin disk laser

    NASA Astrophysics Data System (ADS)

    Nixon, Matthew D.; Cates, Michael C.

    2012-11-01

    Boeing has been developing solid state lasers for high energy applications since 2004 using Yb:YAG thin disk lasers as pioneered by A. Giesen1 and commercialized by Trumpf Laser GmbH.2 In this paper, we report results of our second generation design and status of a third generation we are currently developing, which will produce 35 kW and a beam quality <2.

  1. Scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-03-01

    The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

  2. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    PubMed Central

    Gupta, Sanjiv K.; Kumar, Ajai; Agarwal, Swati; Pandey, Paritosh

    2012-01-01

    Background: Hypertrophic scarring may be a cause of failure after transcanalicular laser dacryocystorhinostomy (DCR) surgery. This hypertrophic scarring results from tissue charring and excessive coagulation, which may be caused by the high laser energy. We have evaluated the use of low energy settings to prevent hypertrophic scarring, for a successful outcome. Aims: To perform and evaluate transcanalicular laser DCR using low energy 810 nm diode laser. Design: Interventional, non-comparative, case series. Materials and Methods: Patients with nasolacrimal duct obstruction and chronic dacryocystitis, who needed DCR, and were fit for surgery under local anesthesia, were recruited to undergo transcanalicular laser DCR using a 810 nm diode laser. The outcome was measured by the patency of the lacrimal passage, as indicated by the relief in the symptoms and the patency on syringing at the last follow-up. The surgical time and surgical complications were noted. Statistical Analysis Used: Descriptive analysis. Results: The study included 94 patients. The average age was 30.1 years (range 15 - 69 years). Seventy (74.4%) patients were female. Eight patients had failed external DCR. Per-operative patency of the passage was obtained in all the patients. Average surgical time was seven minutes (5 – 18 minutes). At the end of the study period of one year, a successful outcome was seen in 85 patients (90.5%). There were eight patients of previous failed DCR surgeries, and six of them achieved a cure at the end of follow-up. Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate. PMID:23439888

  3. High energy chemical laser system

    DOEpatents

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  4. Comparative laser Doppler measurement on tooth pulp blood flow at 632 and 750 nm

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Pettersson, Hans; Rohman, Hakan

    1993-12-01

    Laser-Doppler flowmetry has been used for the assessment of pulp blood flow in health and disease. General purpose laser Doppler instruments working at the Helium-Neon (632,8 nm) as well as IR (750 - 810 nm) wavelengths have been used in this application. Specially designed handheld equipment has also been used to assess blood supply to the tooth. A considerable difference in the measurement results have been noticed when using different wavelengths and probe designs. In this study some of the problems related to the use of various wavelengths and probe designs are studied in human teeth and in a physical model of a tooth. Our results support the early observation that measurements at different wavelengths and with different probe designs cannot be directly compared.

  5. Damage mechanisms and transparency changes in CO2-laser-irradiated glass

    NASA Astrophysics Data System (ADS)

    Guignard, Franck; Autric, Michel L.; Baudinaud, Vincent

    1998-04-01

    Transverse excited atmospheric pressure CO2 laser induced damage on BK7 and fused silica has been investigated. Damage processes have been characterized by looking at the transparency changes during irradiation with a helium-neon laser and plasma formation, with a photodiode. Both results are compared with thermal coupling and damage threshold measurements. The two glass qualities show slightly different behavior. BK7 shows surface crazing after irradiation, fused silica shows micro-fractures formation. In both cases, residual tensile stresses induced near the surface on cooling is identified as the most likely cause of cracking. A model was developed to calculate temperature and residual stresses, calculations results gives good agreement with damage thresholds measured.

  6. Recent progresses in He-Ne lasers stabilized to (I-127)2

    SciTech Connect

    Bertinetto, F.; Cordiale, P.; Fontana, S.; Picotto, G.B.

    1985-06-01

    The stabilization of a He-Ne (helium-neon) laser to hyperfine structure (HFS) components of the P(48)11-3 transition of (I-127)2 at 612 nm observed in an external iodine cell, may give a frequency reproducibility of + or - 5 kHz or + or - 1 x 10 to the -11th nu and a stability of 1.4 x 10 to the -13th nu for an observation time tau = 100 s. From He-3-Ne-22 lasers stabilized to HFS components of (I-127)2 observed in an intracavity cell, both at 612 and 640 nm wavelengths, a reproducibility of + or - 2 x 10 to the -10th nu can be expected. Common and convenient operating conditions have been found at both wavelengths. 12 references.

  7. Induratio penis plastica (IPP) and laser: a review

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Mancini, S.; Postiglione, M. G.

    2002-10-01

    The first employments of Laser therapy for I.P.P. came from back to more than twenty years ago. At the beginning it was employed only in the acute forms as analgesic laser laser was used also as anti-inflammatory following the doses of Low Level Laser Therapy. Than the science tried to use the laser effect remodelling phase of the scars, to make the fibrosis regrade in the chronic forms. Tunable laser in small optical fiber was used for ablation of calcified zones with very good results. For the slight forms were used diode laser 660 and 904 nm, alone ir coupling with CO2 laser with large spot. At first some Author used helium-Neon laser 632. Some of these lasers were combined wtih microiontophoresis and ultrasounds therapy in teh same treatment. Now we use 810 nm surgical diode laser in almost all induratio forms. The immediate results and follow up will be discussed. Thanks to these results we could conclude that IPP laser therapy can be effective in most of the clinic forms. Although the used procedure is subject to improvement.

  8. Correction of biochemical and functional disorders in brain ischaemia with laser therapy

    NASA Astrophysics Data System (ADS)

    Musienko, Julia I.; Nechipurenko, Natalia I.; Vasilevskaya, Ludmila A.

    2005-08-01

    Application of intravenous laser irradiation of blood (ILIB) is considered to be the most effective method of laser therapy and its application is expedient pathogenetically in the ischemic disturbances. The aim of this study is to investigate ILIB influence with red helium-neon laser (HNL) with 630 nm wavelength and different powers on blood oxygen transport (BOT), cerebral and dermal microhaemodynamics (MGD), hydro-ion balance in normal rabbits and after modeling of local ischemia of brain (LIB). Experimental cerebral ischemia is characterized by development of BOT disturbance, ionic disbalance and edema in the ischemic brain region. Microcirculation disturbances with worsening of the cerebral and dermal MHD were revealed. ILIB with HNL radiation of 2.5 and 4.5 mW powers provokes dehydratation of brain structure alone with the K+, Na+ concentration decreasing and hemoglobin-oxygen affinity increasing in intact group of animals. There was not revealed marked changes of cerebral MHD condition here. Using of ILIB in rabbits after LIB contributes for improving function of BOT, normalizing of water content in all cerebral structures compared to operated animals. Preventive ILIB provoked improvement of speckl-optical parameters and marked protective effect on microhaemodynamics processes in superficial brain structures. HNL radiation with 1.0 mW power results in worsening of oxygen transport, cerebral and skin MHD, hydro-ion homeostasis in animals with LIB modeling. Thus, laser haemotherapy contributes for improving of hydro-ion status, blood oxygen transport and cerebral microcirculation in brain ischemia, what allows considering that helium-neon radiation with the pointed regimen is substantiated pathogenetically in brain ischaemia.

  9. Dual wavelength laser damage testing for high energy lasers.

    SciTech Connect

    Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

    2010-05-01

    As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously

  10. High energy laser beam dump

    SciTech Connect

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  11. High Energy Laser for Space Debris Removal

    SciTech Connect

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored

  12. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  13. [Effects of laser radiation on the periodontium. An animal model approach. Effects of usual radiation dosage].

    PubMed

    Noguerol Rodriguez, B; Alandez Chamorro, J; Cañizares Garcia, J; Campos Muñoz, A; Sicilia Felechosa, A

    1989-05-01

    Twenty four albino mice of forty days old were selected. Twelve forty days old albino mice were irradiated with a Helium-Neon laser source, dose of 10.50566 Jul/cm2. They were divided in two groups according to time of animal sacrifice (immediately after irradiation and ten days after). As control were used twelve mice using the same time as the experimental groups, but without radiation. T.E.M. ultrathin sections showed alteration only in the conjunctiva and in the bone tissues, but not in the epithelial tissue. The bone showed two osteocyte population according to their response to irradiation. The first population showed characteristic comparable with the controls, and the second showed alterations suggestive of a degenerative process. The connective tissue also showed two fibroblasts populations, the first showed signs of a big synthesizing activity, and the second, degenerative signs. The first fibroblast population appeared in the animals sacrificed immediately after irradiation. PMID:2637054

  14. Prospects for lasers for fusion energy assessed

    NASA Astrophysics Data System (ADS)

    Basov, N. G.; Rozanov, V.

    1985-06-01

    The authors assess the status of laser thermonuclear fusion research in the USSR and abroad, reviewing some of its major advances as well as current objectives of scientists working in this field. The possible development of an experimental laser thermonuclear reactor is discussed. Such a laser must operate with a pulse repetition frequency of 1 to 10 pulses per second, and it must have a service life of about 100 million pulses. It will be made up of individual modules (10 to 20 modules) with an overall energy of 2 to 3 megajoules, and it will ensure stable focusing of radiation on a target about 1 centimeter in size from a distance of about 50 meters. Its efficiency will be adequate and its cost low enough. Lasers of several types (including carbon-dioxide lasers and chemical and excimer lasers based on a mixture of noble gases with halogen) can meet these requirements, but incorporating them in a single unit is quite difficult from the engineering standpoint. The development of modules of such lasers is also an important task.

  15. High-Energy Petawatt Capability for the Omega Laser

    SciTech Connect

    Waxer, L.J.; Maywar, D.N.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Stoeckl, C.; Zuegel, J.D.

    2005-07-25

    The 60-beam Omega laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) has been a workhorse on the frontier of laser fusion and high-energy-density physics for more than a decade. LLE scientists are currently extending the performance of this unique, direct-drive laser system by adding high-energy petawatt capabilities.

  16. Atmospheric applications of high-energy lasers

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2005-03-01

    It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, many still remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionarey history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.

  17. Phase-Shifted Laser Feedback Interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, Benjie

    1999-01-01

    Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.

  18. Study on deposition rate and laser energy efficiency of Laser-Induction Hybrid Cladding

    NASA Astrophysics Data System (ADS)

    Wang, DengZhi; Hu, QianWu; Zheng, YinLan; Xie, Yong; Zeng, XiaoYan

    2016-03-01

    Laser-Induction Hybrid Cladding (LIHC) was introduced to prepare metal silicide based composite coatings, and influence of different factors such as laser type, laser power, laser scan speed and induction preheating temperature on the coating deposition rate and laser energy efficiency was studied systematically. Compared with conventional CO2 laser cladding, fiber laser-induction hybrid cladding improves the coating deposition rate and laser energy efficiency by 3.7 times. When a fiber laser with laser power of 4 kW was combined with an induction preheating temperature of 850 °C, the maximum coating deposition rate and maximum laser energy efficiency reaches 71 g/min and 64% respectively.

  19. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  20. Laser Inertial Fusion Energy Control Systems

    SciTech Connect

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  1. Influence Of Low Intensity Laser Therapy On Diabetic Polyneuropathy

    NASA Astrophysics Data System (ADS)

    Abdel-Raoof, N. A.; Elnhas, N. G.; Elsayed, I. M.

    2011-09-01

    Diabetic peripheral neuropathy is a consequence of diabetes-mediated impairment of blood flow, and resultant hypoxia of nerves that may develop within 10 years of the onset of diabetes in 40-50% of people with type 1 or type 2 diabetes. Low Intensity Laser Therapy (LILT) has been advocated for the treatment of chronic pain disorders as blood flow is an important determinant for pain relief. Comparing the effect of Helium-Neon Laser therapy versus Infrared laser therapy on blood vessels diameter and flow as well as level of sensation for neuropathy. Twenty diabetic patients suffering from neuropathy were enrolled in the study with age 45-55 years. They were assigned randomly into two equal groups in number; Group A underwent an application of He-Neon laser while Group B underwent an application of Infrared laser. Both groups received laser for 2 months. Blood flow velocity, and blood vessel diameter were investigated by using duplex Doppler ultrasound and peripheral neuropathy parameters were investigated by Semmes-Weinstein monofilament assessment. The results revealed that He-Neon laser as well as Infrared laser groups showed significant improvement in blood flow velocity, blood vessel diameter & neuropathy tested parameters after treatment but there was no significance difference between the two types of LILT. LILT is a safe, non-invasive and drug free method for improving blood flow & sensation in patients suffering from diabetic polyneuropathy in addition to preventing one of the most threatening microvascular complications of diabetes.

  2. Open-ended projects in undergraduate optics and lasers courses

    NASA Astrophysics Data System (ADS)

    Hoyt, Chad

    This talk will describe the format and experience of undergraduate Lasers and Optics courses at Bethel University. The courses, which include a rigorous lecture portion, are built on open-ended research projects that have a novel aspect. They begin with four weeks of small student groups rotating between several standard laser and optics laboratory exercises. These may include, for example, alignment and characterization of a helium neon laser and measurements with a Michelson interferometer or a scanning Fabry-Pérot optical cavity. During the following seven weeks of the course, student groups (2-4 people) choose and pursue research questions in the lab. Their work culminates in a group manuscript typeset in and a twenty-minute presentation to the class. Projects in the spring, 2014 Optics course included experiments with ultracold lithium atoms in a magneto-optical trap, optical tweezers, digital holography and adaptive optics. Projects in the spring, 2015 Lasers course included ultrafast optics with a mode-locked erbium fiber laser, quantum optics, surface plasmon lasers (led by Nathan Lindquist) and a low-cost, near-infrared spectrometer. Several of these projects are related to larger scale, funded research in the physics department. The format and experience in Lasers and Optics is representative of other upper-level courses at Bethel, including Fluid Mechanics and Computer Methods. A physics education research group from the University of Colorado evaluated the spring, 2015 Lasers course. They focused on student experimental attitudes and measurements of student project ownership.

  3. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  4. Path toward a high-energy solid-state laser

    NASA Astrophysics Data System (ADS)

    Wood, Gary L.; Merkle, Larry D.; Dubinskii, Mark; Zandi, Bahram

    2004-04-01

    Lasers have come a long way since the first demonstration by Maiman of a ruby crystal laser in 1960. Lasers are used as scientific tools as well as for a wide variety of applications for both commercial industry and the military. Today lasers come in all types, shapes and sizes depending on their application. The solid-state laser has some distinct advantages in that it can be rugged, compact, and self contained, making it reliable over long periods of time. With the advent of diode laser pumping a ten times increase in overall laser efficiency has been realized. This significant event, and others, is changing the way solid-state lasers are applied and allows new possibilities. One of those new areas of exploration is the high energy laser. Solid-state lasers for welding are already developed and yield energies in the 0.5 to 6 kilojoule range. These lasers are at the forefront of what is possible in terms of high energy solid-state lasers. It is possible to achieve energies of greater than 100 kJ. These sorts of energies would allow applications, in addition to welding, such as directed energy weapons, extremely remote sensing, power transfer, propulsion, biological and chemical agent neutralization and unexploded and mine neutralization. This article will review these new advances in solid-state lasers and the different paths toward achieving a high energy laser. The advantages and challenges of each approach will be highlighted.

  5. Phase conjugation of high energy lasers.

    SciTech Connect

    Bliss, David Emery; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 - 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  6. Efficient pumping of inertial fusion energy lasers

    NASA Astrophysics Data System (ADS)

    Wessling, C.; Rübenach, O.; Hambücker, S.; Sinhoff, V.; Banerjeea, S.; Ertel, K.; Mason, P.

    2013-02-01

    Solid-state lasers have been demonstrated as attractive drivers for laser-plasma interaction and have presently been developed for various applications like inertial confinement fusion (ICF) [1], particle acceleration and intense X-ray generation [3]. Viable real world applications like power production at industrial scale will require high laser system efficiency, repetition rate and lifetime which are only possible with semiconductor diode pumping. The paper describes the work conducted with two 20 kW diode laser sources pumping an ytterbium:YAG laser amplifier. The set-up acts as a small scale prototype for the DiPOLE project [2]. This project aims to develop scalable gas cooled cryogenic multi-slab diode pumped solid state lasers capable of producing KJ pulse energy. A scale-down prototype is currently under development at the Central Laser Facility (CLF) designed to generate 10 J at 10 Hz. To secure an efficient pumping process the sources have to fulfill aside power requirement in the spectral and time domain, the claim for high homogenization and low divergence of the spatial and angular beam distribution as well as a minimization of losses within the optical path. The existing diode laser sources designed and built by INGENERIC deliver 20 kW pulsed power, concentrated on a plateau of FWHM dimension of 20 x 20 mm² with a homogeneity of more than 90 %. The center wavelength of 939.5 nm is controlled in a range of ± 0.1 nm. The time and area integrated spectrum of at least 76 % of the total energy is contained within a 6 nm wide wavelength band around the center wavelength. Repetition rates can be adjusted between 0.1 Hz up to 10 Hz with rise and fall times less than 50 μs and pulse durations from 0.2 ms to 1.2 ms. The paper describes the impact of different designs on the performance of pump sources and puts special emphasis on the influence of the optical components on efficiency and performance. In addition the influence of the measuring principle is

  7. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  8. Laser Experiments for High Energy Density Science

    SciTech Connect

    Kumar, G. Ravindra

    2010-11-23

    High energy density science probes some of the most basic scientific questions that cut across traditional disciplines. The advent of table top, terawatt, femtosecond lasers promises to revolutionize this area by the use of precise experimental techniques on the one hand and testing of models and computer simulations on the other. In this paper, we present some of our results on hot electron generation, giant magnetic fields and ultrafast plasma dynamics using such experiments and theoretical modeling.

  9. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  10. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Yuiko T.; Payne, Stephen A.; Hayden, Joseph S.; Campbell, John H.; Aston, Mary Kay; Elder, Melanie L.

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  11. Fiber laser front end for high energy petawatt laser systems

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J; Siders, C; Lucianetti, A; Crane, J K; Barty, C J

    2006-06-15

    We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier

  12. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  13. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  14. Tactical laser weapons and other directed-energy weapons

    NASA Astrophysics Data System (ADS)

    Wang, Rongrui

    1993-07-01

    This paper briefly introduces the current development status of three directed-energy weapons: laser weapons, radio frequency/microwave weapons, and charged-particle-beam weapons. Among them, the tactical laser weapon may be the first to find application.

  15. Effect of mass and density of ambient gas on the interaction of laser-blow-off plasma plumes propagating in close proximity

    NASA Astrophysics Data System (ADS)

    Kumar, Bhupesh; Singh, R. K.; Kumar, Ajai

    2016-04-01

    The effects of mass and pressure of ambient gas on the propagation dynamics of two laser-blow-off plasma plumes created in close proximity are investigated. A time gated fast imaging technique is used for recording the images of the laterally colliding plumes under different experimental conditions. Pressure is varied from 0.1 to 3 mbar in three ambient, i.e., helium, neon, and argon. Emphasis is given on the nature of shock-shock interaction under different ambient conditions. It has been observed that the shock-velocity, shape, strength, and their interactions are strongly dependent on the mass and density of the ambient gases. The role of the interacting shocks and their subsequent reflections on the formation and geometrical shape of the interaction region in different ambient conditions is briefly described.

  16. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  17. Performance calculation and simulation system of high energy laser weapon

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke

    2014-12-01

    High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.

  18. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  19. Space electric power design study. [laser energy conversion

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  20. Indications for laser therapy in diverse models of periodontitis

    NASA Astrophysics Data System (ADS)

    Kunin, Anatoly A.; Erina, Stanislava V.; Sokolova, Irina A.; Pankova, Svetlana N.; Ippolitov, Yu. A.; Lepechina, L. I.; Malinovskaya, L. A.; Chitrina, L. L.

    1996-11-01

    Parodontal diseases have an immunological pathogenic mechanism leading to various manifestations and can not be referred to as a common inflammation. The home and foreign research points at active and immunological reaction with the following distraction surrounding tissues of the tooth. Histochemical and biochemical examinations show metabolic disturbances of parodontal tissues. A total sample size of 604 people suffering from average height of chronic generalized parodontitis was examined in the survey. Immunological and histochemical tests were taken before and after a course of laser therapy with the use of helium-neon laser 'YAGODA', an inhibitory and stimulating dosage irradiations and anti-inflammatory dosage irradiations with infrared laser 'UZOR'. We selected a group of patients with the decreased local immunological status on the ground of immunological tests. Histochemical tests shaped the next group with the passive and active forms of parodontitis pathology. The tests data resulted in a method of laser therapy. The investigations confirm that the chronic generalized parodontitis has a shift in tissue immunity of the oral cavity and cell-bound metabolic disturbance of gum epithelium. It is expedient to use the anti-inflammatory dosage irradiations with infrared laser 'UZOR' to correct immunity, and in case of and active process to realize the DNA and RNA synthesis by means of increasing the irradiation with the apparatus 'YAGODA'. The irradiation decreases in case of a passive process.

  1. High Energy 2-micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    This viewgraph presentation shows the development of 2-micron solid state lasers. The topics covered include: 1) Overview 2-micron solid state lasers; 2) Modeling and population inversion measurement; 3) Side pump oscillator; and 4) One Joule 2-m Laser.

  2. Laser effects research and modeling to support high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Beraun, Jorge E.

    2001-09-01

    This paper discuses the DELE lethality assessment methodology and explains requirements for experimental data and algorithm development within the laser lethality and vulnerability area. current applications and data sets cover a broad range of laser parameters and materials properties. In addition, new lasers, new materials, and new applications continue to be rapidly added to the area. The purpose of this paper is to introduce the audience to the formalized process/discipline of formulating vulnerability criteria for different High Energy Laser systems by emphasizing the laser/materials phenomenology. Some of the DELE laser facilities and diagnostic capabilities are reviewed.

  3. Future scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  4. The irradiation of hepatocytes with He-Ne laser causes an increase of cytosolic free calcium concentration and an increase of cell membrane potential, correlated with it, both increases taking place in an oscillatory manner.

    PubMed

    Vacca, R A; Moro, L; Petragallo, V A; Greco, M; Fontana, F; Passarella, S

    1997-12-01

    Isolated hepatocytes were irradiated with Helium-Neon laser (fluence: 0.24 Joules x cm-2, fluence rate: 12 mW x cm-2) and changes of both cytosolic free Ca2+ concentration and cell membrane potential were checked by measuring fura-2 and bis-oxonol fluorescence respectively. Irradiation resulted in an enhancement in cytosolic free Ca2+ concentration that requires the presence of Ca2+ in the phase outside hepatocytes; consistently an increase in cell membrane potential was measured correlated with it. Interestingly, the rate of increase of both cytosolic free Ca2+ concentration and cell membrane potential shows special time dependent features similar to those peculiar of oscillatory processes. PMID:9415809

  5. Use of Nd:YAG laser in pancreatic resections with duodenal preservation in the dog.

    PubMed

    Berlatzky, Y; Muggia-Sullam, M; Munda, R; Joffe, S N

    1985-01-01

    The trend in recent years for treatment of pancreatic carcinoma and occasionally for pancreatitis has been towards total pancreatectomy. The pancreas is also now being harvested for transplantation. Any operative technique that can reduce operating time, blood loss, and associated morbidity and mortality would be of tremendous advantage. The aim of this study was to undertake a total pancreatectomy using the Nd:YAG laser (wavelength 1,060 nm) with a helium neon laser (wavelength 628 nm) incorporated to provide a marker beam. The laser beam was passed into a 400 micron flexible glass fiber enclosed in a 2.5 mm polyethylene cannula, which also served as a conduit for coaxial CO2. The laser was operated in a continuous wave mode, and the fiber exit beam had a divergence of 10 degrees. For photocoagulation and tissue vaporization, peak powers of 50 W were used with 0.5-1 sec pulses. The total pancreatectomy using the Nd:YAG laser was performed in eight dogs, and ten dogs undergoing the conventional operative procedure served as controls. The findings indicate that the Nd:YAG laser could be used effectively and safely. The operating time was considerably diminished (P less than 0.01); the number of ligatures used was smaller; blood loss, graft survival, and duodenal viability were similar. The Nd:YAG laser offers a new therapeutic modality in the performance of tedious and often difficult pancreatic surgery. PMID:3906327

  6. CO2 LASERS IN HIGH ENERGY PHYSICS.

    SciTech Connect

    POGORELSKY,I.V.

    2001-12-03

    Several proof-of-principle laser accelerator experiments turned a long-wavelength of a CO{sub 2} laser to advantage. Ongoing advancement to multi-terawatt femtosecond CO{sub 2} lasers opens new venues for next-generation laser acceleration research.

  7. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  8. Preliminary results on the conversion of laser energy into electricity

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.; Manista, E. J.; Alger, D. L.

    1978-01-01

    A preliminary experiment was performed to investigate conversion of 10.6 micron laser energy to electrical energy via a laser-sustained argon plasma. Short-circuit currents of 0.7 A were measured between a thoriated-tungsten emitter and collector electrodes immersed in the laser-sustained argon plasma. Open-circuit voltages of about 1.5 V were inferred from the current-voltage load characteristics. The dominant mechanism of laser energy conversion is uncertain at this time. Much higher output powers appear possible.

  9. High energy laser testbed for accurate beam pointing control

    NASA Astrophysics Data System (ADS)

    Kim, Dojong; Kim, Jae Jun; Frist, Duane; Nagashima, Masaki; Agrawal, Brij

    2010-02-01

    Precision laser beam pointing is a key technology in High Energy Laser systems. In this paper, a laboratory High Energy Laser testbed developed at the Naval Postgraduate School is introduced. System identification is performed and a mathematical model is constructed to estimate system performance. New beam pointing control algorithms are designed based on this mathematical model. It is shown in both computer simulation and experiment that the adaptive filter algorithm can improve the pointing performance of the system.

  10. Fiber laser pumped high energy cryogenically cooled Ho:YLF laser

    NASA Astrophysics Data System (ADS)

    Lippert, Espen; Fonnum, Helge; Stenersen, Knut

    2012-09-01

    In this paper we report on a high energy, low repetition rate 2-micron-laser, with high conversion efficiency in terms of output energy per pump power. The laser consists of a Ho3+-doped LiYF4 (YLF) crystal cooled to cryogenic temperatures in an unstable resonator, pumped by a thulium fiber laser. The cooling to 77 K makes Ho:YLF a quasi four level laser system, which greatly enhances the extraction efficiency. We achieved 356 mJ in Q-switched operation at 1 Hz PRF when pumping the laser with 58 W for 36 ms. The high beam quality from the fiber laser and the use of an unstable resonator with a graded reflectivity mirror (GRM) resulted in a high quality laser beam with a M2-value of 1.3.

  11. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Yuiko T.; Guesto-Barnak, Donna

    1992-01-01

    A low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K.sub.90.degree. C. >0.85 W/mK, a low coefficient of thermal expansion, .alpha..sub.20.degree.-300.degree. C. <80.times.10.sup.-7 /.degree.C., low emission cross section, .sigma.<2.5.times.10.sup.-20 cm.sup.2, and a high fluorescence lifetime, .tau.>325 .mu.secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): wherein Ln.sub.2 O.sub.3 is the sum of lanthanide oxides; .SIGMA.R.sub.2 O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al.sub.2 O.sub.3 and MgO is <24 unless .SIGMA.R.sub.2 O is 0, then the sum of Al.sub.2 O.sub.3 and MgO is <42; and the ratio of MgO to B.sub.2 O.sub.3 is 0.48-4.20.

  12. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect

    Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D.; Gray, R. J.; McKenna, P.; Rosinski, M.; Badziak, J.; Wolowski, J.; Deppert, O.; Batani, D.; Davies, J. R.; Hassan, S. M.; Tatarakis, M.; and others

    2014-02-24

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.

  13. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  14. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    SciTech Connect

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  15. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  16. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOEpatents

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  17. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers. PMID:26560609

  18. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  19. Laser energy distribution on detector under the different incident angle

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Chen, Q.; Hao, Y.; Zhang, W.; Li, H.; Ren, G.; Zhu, R.

    2015-11-01

    Laser active suppressing jamming is one of the most important technologies in the domain of electro-optical countermeasures. The propagation direction of laser is not always in the same line with the principal axis of electro-optical imaging system, so it is necessary to investigate laser energy distribution on detector under the different incident angle. This paper toke optical system with wide field of view for example. We firstly analyzed the system's structure based on the inverting prism and evaluated image quality. Laser energy distribution caused by diffraction effect of optical system was secondly simulated based on Kirchhoff 's diffraction theory. Thirdly, we built the system's analysis model of stray light, traced a large number of light propagation, and obtained laser energy distribution on detector caused by scattering effect. At last, combine the above two kinds of energy distribution into total laser energy distribution on detector. According to the detector's saturated threshold, we can count up the saturated number and evaluate laser disturbing effect. The research results can provide theoretical reference and technical support for evaluating laser disturbing effect of electro-optical imaging system.

  20. High energy XeBr electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  1. High energy XeBr electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.

  2. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.

  3. Reaction of cells to local, regional, and general low-intensive laser irradiation

    NASA Astrophysics Data System (ADS)

    Baibekov, Iskander M.; Kasymov, A. S.; Musaev, Erkin S.; Vorojeikin, V. M.; Artikov, S. N.

    1993-07-01

    Local influence of low intensive laser irradiation (LILI) of Helium-Neon (HNL), Copper vapor (CVL), Nitrogen (UVL) and Arsenic Gallium (AGL) lasers cause stimulation of processes of physiological and reparative regeneration in intact skin, and mucous membrane of stomach and duodenum, dermatome wounds and gastroduodenal ulcers. Structural bases of these effects are the acceleration of cell proliferation and differentiation and also the activation of intracellular structures and intensification of cell secretion. Regional influence of the pointed types of LILI on hepar in cirrhosis and hepatitis causes decreasing of the inflammatory and cirrhotic changes. After endo- and exo-vascular laser irradiations of blood the decreasing of the number of pathological forms of erythrocytes and the increasing of their catalase activity, are indicated. General (total) laser irradiation of the organism--laser shower, increases the bone marrow cells proliferation, especially myeloid series. It is accompanied with acceleration of their differentiation and migration in circulation. It was revealed, that HNL to a considerable extent influences the epithelial cells and CVL the connective tissue cells. UVL increases the amount of microorganisms on cell surfaces (membrane bound microorganisms). Regional irradiation of the LILI causes both direct and indirect influence of cells. Structural changes of bone marrow cells and gut mucous membrane cells indicate intersystemic interaction.

  4. Changes in the germination process and growth of pea in effect of laser seed irradiation

    NASA Astrophysics Data System (ADS)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  5. Phototherapeutic Effect of Low-Level Laser on Thyroid Gland of Gamma-Irradiated Rats.

    PubMed

    Morcos, Nadia; Omran, Manar; Ghanem, Hala; Elahdal, Mahmoud; Kamel, Nashwa; Attia, Elbatoul

    2015-01-01

    One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT. PMID:25975382

  6. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications. PMID:26560597

  7. Energy Losses Estimation During Pulsed-Laser Seam Welding

    NASA Astrophysics Data System (ADS)

    Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana

    2014-06-01

    The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.

  8. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  9. Unprecedented laser action from energy transfer in multichromophoric BODIPY cassettes.

    PubMed

    Xiao, Yi; Zhang, Dakui; Qian, Xuhong; Costela, Angel; Garcia-Moreno, Inmaculada; Martin, Virginia; Perez-Ojeda, M Eugenia; Bañuelos, Jorge; Gartzia, Leire; Arbeloa, Iñigo López

    2011-11-01

    A cassette molecule, featuring direct integration of two donor BODIPY units to one acceptor BODIPY unit, was conveniently developed as the first highly "through-bond energy transfer" (TBET) laser dye. This multicolor absorbing dye exhibited highly efficient and photostable laser action under drastic pumping conditions. PMID:21935560

  10. Applications analysis of high energy lasers

    NASA Technical Reports Server (NTRS)

    Arno, R. D.; Mackay, J. S.; Nishioka, K.

    1972-01-01

    An analysis and comparison of laser technology with competing technologies were made to determine possible laser applications. The analysis was undertaken as follows: (1) possible applications were listed and categorized; (2) required components were enumerated and the characteristics of these components were extrapolated; (3) complete system characteristics were calculated parametrically for selected applications using the postulated component characteristics; and (4) where possible and appropriate, comparisons were made with competing systems. It was found that any large scale replacement of existing systems and methods by lasers requires many technological advances in laser and associated systems. However, several applications appear feasible, such as low orbit drag make-up, orbit changing, communications, and illumination applications.

  11. Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns

    SciTech Connect

    Rochkind, S.; Rousso, M.; Nissan, M.; Villarreal, M.; Barr-Nea, L.; Rees, D.G.

    1989-01-01

    In this paper, we direct attention to the systemic effect of low-power helium-neon (HeNe) laser irradiation on the recovery of the injured peripheral and central nervous system, as well as healing of cutaneous wounds and burns. Laser irradiation on only the right side in bilaterally inflicted cutaneous wounds enhanced recovery in both sides compared to the nonirradiated control group (P less than .01). Similar results were obtained in bilateral burns: irradiating one of the burned sites also caused accelerated healing in the nonirradiated site (P less than .01). However, in the nonirradiated control group, all rats suffered advanced necrosis of the feet and bilateral gangrene. Low-power HeNe laser irradiation applied to a crushed injured sciatic nerve in the right leg in a bilaterally inflicted crush injury, significantly increased the compound action potential in the left nonirradiated leg as well. The statistical analysis shows a highly significant difference between the laser-treated group and the control nonirradiated group (P less than .001). Finally, the systemic effect was found in the spinal cord segments corresponding to the crushed sciatic nerves. The bilateral retrograde degeneration of the motor neurons of the spinal cord expected after the bilateral crush injury of the peripheral nerves was greatly reduced in the laser treated group. The systemic effects reported here are relevant in terms of the clinical application of low-power laser irradiation as well as for basic research into the possible mechanisms involved.

  12. Application of laser therapy in the treatment of brain ischemia

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Nechipurenko, N. I.; Musienko, J. I.; Kuchinsky, A. V.

    2007-06-01

    Intravenous laser irradiation of blood (ILIB) by helium-neon laser (HNL) with λ=632.8 nm, 2.5-4.5 mW at the light guide outlet was employed to investigate ILIB influence on blood oxygen transport (BOT), hydro-ion balance for normal rabbits and after modeling of local ischemia of brain (LIB). Marked improvement of disturbances typical for ischemia was revealed for both hydro-ion balance characteristics and BOT parameters such as oxygen tension (p vO II), oxygen hemoglobin saturation (s vO II), p vO II of blood under its 50% saturation by O II (p50) and tendency was found to their normalization. To identify the molecular photoacceptors and the mechanisms of primary photoreactions the spectral data were used both in visible and infrared regions. On the basis of spectral analysis hemoglobin was discussed as a possible photoacceptor when blood is irradiated with HNL radiation. Variations in the redox properties of respiratory chain components were considered as primary mechanisms of light action on photoacceptor molecules that initiated a cascade of secondary reactions controlling cellular homeostasis parameters.

  13. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  14. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  15. Atomistic simulations of tungsten surface evolution under low-energy neon implantation

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Hammond, Karl D.; Sefta, Faiza; Wirth, Brian D.

    2016-04-01

    Tungsten is a candidate material for the divertor of fusion reactors, where it will be subject to a high flux of particles coming from the fusion plasma as well as a significant heat load. Under helium plasma exposure in fusion-reactor-like conditions, a nanostructured morphology is known to form on the tungsten surface in certain temperature and incident energy ranges, although the formation mechanism is not fully established. A recent experimental study (Yajima et al 2013 Plasma Sci. Technol. 15 282-6) using neon or argon exposure did not produce similar nanostructure. This article presents molecular dynamics simulations of neon implantation in tungsten aimed at investigating the surface evolution and elucidating the role of noble gas mass in fuzz formation. In contrast to helium, neon impacts can sputter both tungsten and previously implanted neon atoms. The shorter range of neon ions, along with sputtering, limit the formation of large bubbles and likely prevents nanostructure formation.

  16. Modeling low energy laser ignition of explosive and pyrotechnic powders

    SciTech Connect

    Glass, M.W.; Merson, J.A.; Salas, F.J.

    1992-01-01

    Laser diode ignition (LDI) of explosives and pyrotechnics is being developed at Sandia National Laboratories as a replacement for low energy hotwire devices. This technology offers significant improvements in device safety due to the insensitivity to electrostatic discharge (ESD) and electromagnetic radiation (EMR). The LDI system incorporates a laser diode source, a fiber optic cable to transmit the laser energy, and the energetic component. The laser energy is volumetrically absorbed by the explosive component causing its temperature to rise to its auto-ignition temperature. Substantial experimental work characterizing the optical ignition mechanism has been undertaken in support of the LDI development work. This work has primarily been focused on the explosive component, CP, 2-(5-cyanotetrazolato) pentaamminecobalt(III) perchlorate, doped with a small amount of carbon black to enhance the laser energy absorptance at the 850 nm wavelength of the laser diode. To support the experimental efforts, numerical modeling of the thermal response of CP to a low energy laser input has been undertaken.

  17. Modeling low energy laser ignition of explosive and pyrotechnic powders

    SciTech Connect

    Glass, M.W.; Merson, J.A.; Salas, F.J.

    1992-07-01

    Laser diode ignition (LDI) of explosives and pyrotechnics is being developed at Sandia National Laboratories as a replacement for low energy hotwire devices. This technology offers significant improvements in device safety due to the insensitivity to electrostatic discharge (ESD) and electromagnetic radiation (EMR). The LDI system incorporates a laser diode source, a fiber optic cable to transmit the laser energy, and the energetic component. The laser energy is volumetrically absorbed by the explosive component causing its temperature to rise to its auto-ignition temperature. Substantial experimental work characterizing the optical ignition mechanism has been undertaken in support of the LDI development work. This work has primarily been focused on the explosive component, CP, 2-(5-cyanotetrazolato) pentaamminecobalt(III) perchlorate, doped with a small amount of carbon black to enhance the laser energy absorptance at the 850 nm wavelength of the laser diode. To support the experimental efforts, numerical modeling of the thermal response of CP to a low energy laser input has been undertaken.

  18. A High Energy 2-microns Laser for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra N.; Barnes, James C.; Barnes, Norman P.; Petros, Mulugeta

    2000-01-01

    Solid-state 2-microns laser has been receiving considerable interest because of its eye-safe property and efficient diode pump operation, It has potential for multiple lidar applications to detect water vapor. carbon dioxide and winds. In this paper, we describe a 2-microns double pulsed Ho:Tm:YLF laser and end-pumped amplifier system. A comprehensive theoretical model has been developed to aid the design and optimization of the laser performance. In a single Q-switched pulse operation the residual energy stored in the Tm atoms will be wasted. However, in a double pulses operation mode, the residual energy stored in the Tm atoms will repopulate the Ho atoms that were depleted by the extraction of the first Q-switched pulse. Thus. the Tin sensitized Ho:YLF laser provides a unique advantage in applications that require double pulse operation, such as Differential Absorption Lidar (DIAL). A total output energy of 146 mJ per pulse pair under Q-switch operation is achieved with as high as 4.8% optical to optical efficiency. Compared to a single pulse laser, 70% higher laser efficiency is realized. To obtain high energy while maintaining the high beam quality, a master-oscillator-power-amplifier 2-microns system is designed. We developed an end-pumped Ho:Tm:YLF disk amplifier. This amplifier uses two diode arrays as pump source. A non-imaging lens duct is used to couple the radiation from the laser diode arrays to the laser disk. Preliminary result shows that the efficiency of this laser can be as high as 3%, a factor of three increases over side-pump configuration. This high energy, highly efficient and high beam quality laser is a promising candidate for use in an efficient, multiple lidar applications.

  19. Efficiency and energy spread in laser-wakefield acceleration.

    PubMed

    Reitsma, A J W; Cairns, R A; Bingham, R; Jaroszynski, D A

    2005-03-01

    The theoretical limits on efficiency and energy spread of the laser-wakefield accelerator are investigated using a one-dimensional model. Modifications, both of the wakefield due to the electron bunch, and of the laser pulse shape due to the varying permittivity of the plasma, are described self-consistently. It is found that a short laser pulse gives a higher efficiency than a long laser pulse with the same initial energy. Energy spread can be minimized by optimizing bunch length and bunch charge such that the variation of the accelerating force along the length of the bunch is minimized. An inherent trade-off between energy spread and efficiency exists. PMID:15783901

  20. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  1. High-energy 4{omega} probe laser for laser-plasma experiments at nova

    SciTech Connect

    Glenzer, S. H., LLNL

    1998-06-02

    For the characterization of inertial confinement fusion plasmas we implemented a high-energy 4{omega} probe laser at the Nova laser facility. A total energy of > 50 Joules at 4{omega}, a focal spot size of order 100 {micro}m, and a pointing accuracy of 100 {micro}m was demonstrated for target shots. This laser provides intensities of up to 3 x 10{sup 14}W cm{sup -2} and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4{omega} probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n{sub e} > 2 X 10{sup 21}cm{sup -3} which represents the highest density plasma so far being diagnosed with Thomson scattering.

  2. High energy KrCl electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy KrCl laser is presented for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr/sub M/ to form KrCl.

  3. High energy KrCl electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  4. Spectroscopic properties, energy transfer dynamics, and laser performance of thulium-holmium doped laser systems

    SciTech Connect

    Kalisky, Y.; Rotman, S.R.; Boulon, G.; Pedrini, C.; Brenier, A.

    1994-12-31

    Spectroscopic studies using laser induced fluorescence and numerical modeling of energy transfer and back transfer mechanism are reported in Er:Tm:Ho:YLF, Cr:Tm:Ho:YAG and Cr:Tm:YAG laser crystals at various temperatures (10 K-300 K). Direct energy transfer from Tm{sup 3+} excited states to Ho{sup 3+} {sup 5}I{sub 7} emitting level was observed and analyzed both in YAG and YLF. Further analysis of Cr{sup 3+} and Tm{sup 3+} time-dependent emission curves indicate a strong correlation of chromium-thulium pairs. Pulsed operation of holmium laser at high temperature will be presented.

  5. High-energy laser activities at MBDA Germany

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Dietrich, Stephan; Tassini, Leonardo; Protz, Rudolf; Geidek, Franz; Zoz, Jürgen

    2013-05-01

    At MBDA Germany a concept for a high-energy laser weapon system is investigated, which is based on existing industrial laser sources. Due to the enormous progress in the field of high-power fiber lasers, commercial industrial fiber lasers are now available delivering a nearly-diffraction limited beam quality with power levels of up to 10 kW. By using a geometric beam coupling scheme, a number of individual high-power fiber laser beams are combined together using one common beam director telescope. A total laser beam power of more than 100 kW can be achieved, which is sufficient for an operational laser weapon system. The individual beams from the different lasers are steered by servo-loops using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at one common focal point on a distant target, also allowing fine tracking of target movements and first-order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated by using different experimental set-ups. A number of experiments were performed successfully to investigate laser beam target interaction and target fine tracking, also at large distances and at moving targets. Content and results of these investigations are reported, which demonstrate the complete engagement sequence for a C-RAM scenario. This includes subsequent steps of target acquisition by radar and IR optics, followed by large angle coarse tracking, active fine tracking and destruction of the target by the laser system. This successful implementation of geometric beam combining is an important step for the realization of a laser weapon system in the near future.

  6. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-05-01

    Laser pulses of few a nanoseconds' duration are focused by an appropriate converging lens system, leading to breakdown of the medium (combustible gases), resulting in the formation of intense plasma. Plasma thus induced can be used to initiate the combustion of combustible air-fuel mixtures in a spark ignition engine provided the energy of the plasma spark is high enough. Laser ignition has several advantages over the conventional spark ignition system, especially in case of lean air-fuel mixture. In this study, laser ignition of compressed natural gas was investigated in a constant volume combustion chamber (CVCC) as well as in a single-cylinder engine. Flame kernel visualizations for different pulse energy of natural gas-air mixtures were carried out in the CVCC. The images of the development of early flame kernel stages and its growth with time were recorded by shadowgraphy technique. The effect of laser pulse energy on the engine combustion, performance, and emissions was investigated using different air-fuel mixtures. Increased peak cylinder pressure, higher rate of heat release, faster combustion, and increased combustion stability were observed for higher laser pulse energies. The effect of laser pulse energy on the engine-out emissions was also investigated in this study.

  7. Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation

    SciTech Connect

    Michael, Sherif

    2008-04-28

    The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

  8. Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation

    NASA Astrophysics Data System (ADS)

    Michael, Sherif

    2008-04-01

    The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

  9. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  10. Army hypersonic compact kinetic-energy missile laser window design

    NASA Astrophysics Data System (ADS)

    Russell, Gerald W.; Cayson, Stephen C.; Jones, Michael M.; Carriger, Wendy; Mitchell, Robert R.; Strobel, Forrest A.; Rembert, Michael; Gibson, David A.

    2003-09-01

    The U.S. Army Aviation and Missile Command, Aviation and Missile Research, Engineering, and Development Center (AMRDEC) is currently developing the Compact Kinetic Energy Missile (CKEM) which achieves hypersonic velocities at sea level. The system incorporates guidance to the target and requires active guidance technology. CKEM's kinetic energy warhead requires an accurate guidance sub-system in order to achieve high probability of kills at long range. Due to the severity of the aerothermal environments, minimized reaction time for small time to target conditions, and the communication degrading effects of the missile's energetic boost motor, a state of the art guidance technique is being developed by the AMRDEC Missile Guidance Directorate called Side-Scatter Laser Beam Rider. This technology incorporates a 1.06 micron laser to receive an off-axis laser guidance link to communicate guidance information from the launch site to the missile. This concept requires the use of optical windows on board the missile for the missile-borne laser energy signal receivers. The current concept utilizes four rectangular windows at 90° increments around the missile. The peak velocity during flight can reach approximately 6300 ft/sec inducing severe aerothermal heating and highly transient thermal gradients. The Propulsion and Structures Directorate was tasked to design and experimentally validate the laser window. Additionally, flight tests were conducted to demonstrate the laser guidance technology. This paper will present the laser window design development process as well as aerothermal testing to induce flight like environments and assess worst case thermostructural conditions.

  11. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    SciTech Connect

    Shepherd, R; Chen, H; Ping, Y; Dyer, G; Wilks, S; Chung, H; Kemp, A; Hanson, S; Widmann, K; Fournier, K; Faenov, A; Pikuz, T; Niles, A; Beiersdorfer, P

    2007-02-27

    We have performed experiments at the COMET and Calisto short pulse laser facilities to make the first comprehensive measurements of the laser absorption and energy partition in solid targets heated with an ultrashort laser pulse focused to relativistic laser intensities (>10 10{sup 17} W/cm{sup 2}). The measurements show an exceedingly high absorption for P polarized laser-target interactions above 10{sup 19} W/cm{sup 2}. Additionally, the hot electron population is observed to markedly increase at the same intensity range. An investigation of the relaxation process was initiated u using time sing time-resolved K{sub {alpha}} spectroscopy. Measurements of the time time-resolved K{sub {alpha}} radiation suggest a 10-20 ps relativistic electron relaxation time. However modeling difficulties of these data are apparent and a more detailed investigation on this subject matter is warranted.

  12. Laser-material interactions: A study of laser energy coupling with solids

    SciTech Connect

    Shannon, M A

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  13. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  14. A laser scanner for imaging fluorophore labeled molecules in electrophoretic gels

    SciTech Connect

    Fisk, D.J.; Sutherland, J.C.

    1995-08-01

    A laser scanner for imaging electrophoretic gels was constructed and tested. The scanner incorporates a green helium-neon (HeNe) laser (543.5nm wavelength) and can achieve a spatial resolution of 19{micro}m. The instrument can function in two modes : snap-shot and finish-line. In snapshot mode, all samples are electrophoresed for the same time and the gel is scanned after completion of electrophoresis, while in finish-line mode, fluorophore labeled samples are electrophoresed for a constant distance and the image is formed as the samples pass under the detector. The resolving power of the finish-line mode of imaging is found to be greater than that of the snapshot mode of imaging. This laser scanner is also compared with a Charge Coupled Device (CCD) camera and in terms of resolving power is found to be superior. Sensitivity of the instrument is presented in terms of the minimum amount of DNA that can be detected verses its molecular length.

  15. Technical challenges for the future of high energy lasers

    SciTech Connect

    LaFortune, K N; Hurd, R L; Fochs, S N; Rotter, M D; Pax, P H; Combs, R L; Olivier, S S; Brase, J M; Yamamoto, R M

    2007-01-10

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

  16. Technical challenges for the future of high energy lasers

    NASA Astrophysics Data System (ADS)

    LaFortune, K. N.; Hurd, R. L.; Fochs, S. N.; Rotter, M. D.; Pax, P. H.; Combs, R. L.; Olivier, S. S.; Brase, J. M.; Yamamoto, R. M.

    2007-02-01

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

  17. Efficient gas lasers pumped by generators with inductive energy storage

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.; Panchenko, Alexei N.; Tel'minov, Alexei E.

    2008-05-01

    Laser and discharge parameters in mixtures of rare gases with halogens driven by a pre-pulse-sustainer circuit technique are studied. Inductive energy storage with semiconductor opening switch was used for the high-voltage pre-pulse formation. It was shown that the pre-pulse with a high amplitude and short rise-time along with sharp increase of discharge current and uniform UV- and x-ray preionization allow to form long-lived stable discharge in halogen containing gas mixtures. Improvement of both pulse duration and output energy was achieved for XeCl-, XeF-, KrCl- and KrF excimer lasers. Maximal laser output was as high as 1 J at efficiency up to 4%. Increase both of the radiation power and laser pulse duration were achieved in N2-NF3 (SF6) and He-F2 (NF3) gas mixtures, as well.

  18. Acoustical problems in high energy pulsed E-beams lasers

    NASA Technical Reports Server (NTRS)

    Horton, T. E.; Wylie, K. F.

    1976-01-01

    During the pulsing of high energy, CO2, electron beam lasers, a significant fraction of input energy ultimately appears as acoustical disturbances. The magnitudes of these disturbances were quantified by computer analysis. Acoustical and shock impedance data are presented on materials (Rayleigh type) which show promise in controlling acoustical disturbance in E-beam systems.

  19. High-energy lasers by using distributed reflection: A concept

    NASA Technical Reports Server (NTRS)

    Saffren, M. M.

    1975-01-01

    Lasers may be made with higher energy photons than heretofore possible. It has been proposed that vacuum ultraviolet lasing can be obtained by bombarding superfluid helium with electron beam, while coupling acoustic energy into helium to set up standing waves in fluid.

  20. Diode-pumped solid state laser for inertial fusion energy

    SciTech Connect

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW {center_dot} hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness.

  1. Energy transfer between laser beams crossing in ignition hohlraums

    SciTech Connect

    Michel, P; Divol, L; Williams, E A; Thomas, C A; Callahan, D A; Weber, S; Haan, S W; Salmonson, J D; Dixit, S; Hinkel, D E; Edwards, M J; MacGowan, B J; Lindl, J D; Glenzer, S H; Suter, L J

    2008-10-03

    The full scale modeling of power transfer between laser beams crossing in plasmas is presented. A new model was developed, allowing calculation of the propagation and coupling of pairs of laser beams with their associated plasma wave in three dimensions. The full laser beam smoothing techniques used in ignition experiments are modeled, and their effects on crossed-beam energy transfer is investigated. A shift in wavelength between the beams can move the instability off resonance and reduce the transfer, hence preserving the symmetry of the capsule implosion.

  2. High-energy Nd:glass laser for oncology

    NASA Astrophysics Data System (ADS)

    Boutchenkov, Vyatcheslav A.; Utenkov, Boris I.; Zaitsev, V. K.; Bayanov, Valentin I.; Serebryakov, Victor A.

    1991-07-01

    The use of high energy solid state lasers for the treatment of human skin neoplasia was based on the experiments and clinic studies by Helsper and Goldman (1964), McGuff (1966). The heat of precise local volume is emitted due to the pulse laser radiation. The thermal effect results in the superficial necrosis of tissues with their integrity destruction, vascular repture accompanied by bloodstoke in some cases and by capillary embolism in others. Obvious tumour destruction is note only in case of high density irradiation. General tumour destruction depends on biological neoplasia features as well as the laser type.

  3. Laser-assisted manufacturing of thermal energy devices

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Tewolde, Mahder; Kim, Ki-Hoon; Seo, Dong-Min; Longtin, Jon P.; Hwang, David J.

    2016-03-01

    In this study, we will present recent progress in the laser-assisted manufacturing of thermal energy devices that require suppressed thermal transport characteristics yet maintaining other functionalities such as electronic transport or mechanical strength. Examples of such devices to be demonstrated include thermoelectric generator or insulating materials. To this end, it will be shown that an additive manufacturing approaches can be facilitated and improved by unique processing capabilities of lasers in composite level. In order to tailor thermal characteristics in thermal devices, we will mainly investigate the potential of laser heating, curing, selective removal and sintering processes of material systems in the composite level.

  4. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  5. Propagation of high-energy laser beams through metallic aerosols

    SciTech Connect

    Zardecki, A.; Armstrong, R.L.

    1988-08-01

    By combining the results of the hydrodynamic code CON1D and the beam propagation code LASER, we investigate the propagation of high-energy laser beams through vaporizing metallic aerosols in the regime for which the plasma generation becomes important. An effective plasma absorption coefficient allows us to set up a coupled system of equations describing the system consisting of the beam and vapor. 14 refs., 5 figs.

  6. RECENT LASER ACCIDENTS AT DEPARTMENT OF ENERGY LABORATORIES

    SciTech Connect

    ODOM, CONNON R.

    2007-02-02

    Recent laser accidents and incidents at research laboratories across the Department of Energy complex are reviewed in this paper. Factors that contributed to the accidents are examined. Conclusions drawn from the accident reports are summarized and compared. Control measures that could have been implemented to prevent the accidents will be summarized and compared. Recommendations for improving laser safety programs are outlined and progress toward achieving them are summarized.

  7. Energy Absorption Structure of Laser Supported Detonation Wave

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Yamaguchi, Toshikazu; Hatai, Keigo; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2010-05-01

    In Repetitive Pulsed (RP) laser propulsion, when the high energy laser beam is focused in the thruster, Laser Supported Detonation (LSD) wave is generated. This LSD wave converts the laser energy to the enthalpy of the blast wave, which will then apply impulse to the wall of the thruster. Therefore, the energy absorption structure and sustaining condition of LSD wave are important to be understood, which was still not clear though some visualized experiments have been conducted by Ushio et al. before. In this paper, 2-wavelength Mach-Zehnder interferometry is brought to investigate the electron density distribution of LSD area. At the same time, the temperature of the laser induced plasma is measured by an emission spectroscopy experiment, and calculated based on the assumption of local thermal equilibrium. The results show that in LSD, the electron density has a peak (as high as 2×1024[m-3]) behind the shock wave. The irradiated laser can be entirely absorbed before reaching the position of this peak. As a result, a new peak is always generating in front of the old one and this propagating has the same velocity as that of the blast wave. In this way, high heating ratio is sustained right after the shock front. However, as the laser pulse energy becomes lower, the propagating peak cannot catch up with the blast wave anymore, which leads to a termination of the LSD wave. From this study, it is found that for sustaining the LSD wave, a sufficiently thin laser absorption layer is necessary.

  8. Free electron lasers for transmission of energy in space

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  9. Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters

    PubMed Central

    So, Kwok-Fai; Leung, Mason Chin Pang; Cui, Qi

    2014-01-01

    Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the first week with a short period of treatment time (5 minutes) in which 65–66% of retinal ganglion cells survived the optic nerve axotomy whereas 45–47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These findings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal ganglion cells. PMID:25558230

  10. DNA sequencing by capillary electrophoresis: use of a two-laser-two-window intensified diode array detection system.

    PubMed

    Carson, S; Cohen, A S; Belenkii, A; Ruiz-Martinez, M C; Berka, J; Karger, B L

    1993-11-15

    This paper presents the principles of an instrument designed for DNA sequencing using the standard four-dye-labeled primer approach. The method is based on capillary electrophoresis with laser-induced fluorescence and an intensified diode array detector. An important goal of the instrument design has been a detection system that possesses high sensitivity and high spectral resolution. Based on an analysis of the spectral characteristics of the four standard dye-labeled primers, FAM, JOE, ROX, and TAMRA, the strategy has been to use a two-laser-two-window approach, in which a 488-nm argon ion laser illuminates one window, followed by a 543-nm helium-neon laser illuminating the second window. The two-window approach has no moving parts and permits continuous illumination. Spectral resolution is provided by a grating spectrograph and a cooled intensified diode array. The estimated limit of detection for the standard four dye-labeled primers was found to be in the sample concentration range of 1 x 10(-12) M. To achieve these low levels, complete free-radical polymerization of polyacrylamide has been found to be necessary in order to reduce background noise. In addition, reduction in background noise was accomplished by continual purging of the anodic reservoir in order to prevent electrolysis products from entering the capillary. Separation of DNA sequencing reaction products is demonstrated on a 9% T linear polyacrylamide column. PMID:8291673