Science.gov

Sample records for energy interval approximation

  1. Optimal Approximation of Quadratic Interval Functions

    NASA Technical Reports Server (NTRS)

    Koshelev, Misha; Taillibert, Patrick

    1997-01-01

    Measurements are never absolutely accurate, as a result, after each measurement, we do not get the exact value of the measured quantity; at best, we get an interval of its possible values, For dynamically changing quantities x, the additional problem is that we cannot measure them continuously; we can only measure them at certain discrete moments of time t(sub 1), t(sub 2), ... If we know that the value x(t(sub j)) at a moment t(sub j) of the last measurement was in the interval [x-(t(sub j)), x + (t(sub j))], and if we know the upper bound D on the rate with which x changes, then, for any given moment of time t, we can conclude that x(t) belongs to the interval [x-(t(sub j)) - D (t - t(sub j)), x + (t(sub j)) + D (t - t(sub j))]. This interval changes linearly with time, an is, therefore, called a linear interval function. When we process these intervals, we get an expression that is quadratic and higher order w.r.t. time t, Such "quadratic" intervals are difficult to process and therefore, it is necessary to approximate them by linear ones. In this paper, we describe an algorithm that gives the optimal approximation of quadratic interval functions by linear ones.

  2. Function approximation using adaptive and overlapping intervals

    SciTech Connect

    Patil, R.B.

    1995-05-01

    A problem common to many disciplines is to approximate a function given only the values of the function at various points in input variable space. A method is proposed for approximating a function of several to one variable. The model takes the form of weighted averaging of overlapping basis functions defined over intervals. The number of such basis functions and their parameters (widths and centers) are automatically determined using given training data and a learning algorithm. The proposed algorithm can be seen as placing a nonuniform multidimensional grid in the input domain with overlapping cells. The non-uniformity and overlap of the cells is achieved by a learning algorithm to optimize a given objective function. This approach is motivated by the fuzzy modeling approach and a learning algorithms used for clustering and classification in pattern recognition. The basics of why and how the approach works are given. Few examples of nonlinear regression and classification are modeled. The relationship between the proposed technique, radial basis neural networks, kernel regression, probabilistic neural networks, and fuzzy modeling is explained. Finally advantages and disadvantages are discussed.

  3. A comparison of approximate interval estimators for the Bernoulli parameter

    NASA Technical Reports Server (NTRS)

    Leemis, Lawrence; Trivedi, Kishor S.

    1993-01-01

    The goal of this paper is to compare the accuracy of two approximate confidence interval estimators for the Bernoulli parameter p. The approximate confidence intervals are based on the normal and Poisson approximations to the binomial distribution. Charts are given to indicate which approximation is appropriate for certain sample sizes and point estimators.

  4. Improved cosmic ray ionization model for the system lower ionosphere-middle atmosphere. Determination of approximation energy interval characteristics for the particle penetration

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Mateev, Lachezar

    The effects of galactic and solar cosmic rays (CRs) in the middle atmosphere are considered in this work. We take into account the CR modulation by solar wind and the anomalous CR component also. In fact, CRs determine the electric conductivity in the middle atmosphere and influence the electric processes in it in this way. CRs introduce solar variability in the terrestrial atmosphere and ozonosphere -because they are modulated by solar wind. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and the middle atmosphere is developed in this paper. For this purpose, the ionization losses (dE/dh) for the energetic charged particles according to the Bohr-Bethe-Bloch formula are approximated in three different energy intervals. More accurate expressions for CR energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. q(h) is determined by the solution of a 3D integral with account of geomagnetic cut-off rigidity. The integrand in q(h) gives the possibility for application of adequate numerical methods -in this case Gauss quadrature and Romberg extrapolation, for the solution of the mathematical problem. Computations for CR ionization in the middle atmosphere are made. The contributions of the different approximation energy intervals are presented. In this way the process of interaction of CR particles with the upper and middle atmosphere are described much more realistically. The full CR composition is taken into account: protons, helium (alpha-particles), light L, medium M, heavy H and very heavy VH group of nuclei. The computations are made for different geomagnetic cut-off rigidities R in the altitude interval 35-120 km. The COSPAR International Reference Atmosphere CIRA'86 is applied in the computer program for the neutral density and scale height values. The proposed improved CR ionization model will contribute to the

  5. Constructing Approximate Confidence Intervals for Parameters with Structural Equation Models

    ERIC Educational Resources Information Center

    Cheung, Mike W. -L.

    2009-01-01

    Confidence intervals (CIs) for parameters are usually constructed based on the estimated standard errors. These are known as Wald CIs. This article argues that likelihood-based CIs (CIs based on likelihood ratio statistics) are often preferred to Wald CIs. It shows how the likelihood-based CIs and the Wald CIs for many statistics and psychometric…

  6. A Novel Method of the Generalized Interval-Valued Fuzzy Rough Approximation Operators

    PubMed Central

    Xue, Tianyu; Xue, Zhan'ao; Cheng, Huiru; Liu, Jie; Zhu, Tailong

    2014-01-01

    Rough set theory is a suitable tool for dealing with the imprecision, uncertainty, incompleteness, and vagueness of knowledge. In this paper, new lower and upper approximation operators for generalized fuzzy rough sets are constructed, and their definitions are expanded to the interval-valued environment. Furthermore, the properties of this type of rough sets are analyzed. These operators are shown to be equivalent to the generalized interval fuzzy rough approximation operators introduced by Dubois, which are determined by any interval-valued fuzzy binary relation expressed in a generalized approximation space. Main properties of these operators are discussed under different interval-valued fuzzy binary relations, and the illustrative examples are given to demonstrate the main features of the proposed operators. PMID:25162065

  7. Approximate representations of random intervals for hybrid uncertainty quantification in engineering modeling

    SciTech Connect

    Joslyn, C.

    2004-01-01

    We review our approach to the representation and propagation of hybrid uncertainties through high-complexity models, based on quantities known as random intervals. These structures have a variety of mathematical descriptions, for example as interval-valued random variables, statistical collections of intervals, or Dempster-Shafer bodies of evidence on the Borel field. But methods which provide simpler, albeit approximate, representations of random intervals are highly desirable, including p-boxes and traces. Each random interval, through its cumulative belief and plausibility measures functions, generates a unique p-box whose constituent CDFs are all of those consistent with the random interval. In turn, each p-box generates an equivalence class of random intervals consistent with it. Then, each p-box necessarily generates a unique trace which stands as the fuzzy set representation of the p-box or random interval. In turn each trace generates an equivalence class of p-boxes. The heart of our approach is to try to understand the tradeoffs between error and simplicity introduced when p-boxes or traces are used to stand in for various random interval operations. For example, Joslyn has argued that for elicitation and representation tasks, traces can be the most appropriate structure, and has proposed a method for the generation of canonical random intervals from elicited traces. But alternatively, models built as algebraic equations of uncertainty-valued variables (in our case, random-interval-valued) propagate uncertainty through convolution operations on basic algebraic expressions, and while convolution operations are defined on all three structures, we have observed that the results of only some of these operations are preserved as one moves through these three levels of specificity. We report on the status and progress of this modeling approach concerning the relations between these mathematical structures within this overall framework.

  8. An approximation of interval type-2 fuzzy controllers using fuzzy ratio switching type-1 fuzzy controllers.

    PubMed

    Tao, C W; Taur, Jinshiuh; Chuang, Chen-Chia; Chang, Chia-Wen; Chang, Yeong-Hwa

    2011-06-01

    In this paper, the interval type-2 fuzzy controllers (FC(IT2)s) are approximated using the fuzzy ratio switching type-1 FCs to avoid the complex type-reduction process required for the interval type-2 FCs. The fuzzy ratio switching type-1 FCs (FC(FRST1)s) are designed to be a fuzzy combination of the possible-leftmost and possible-rightmost type-1 FCs. The fuzzy ratio switching type-1 fuzzy control technique is applied with the sliding control technique to realize the hybrid fuzzy ratio switching type-1 fuzzy sliding controllers (HFSC(FRST1)s) for the double-pendulum-and-cart system. The simulation results and comparisons with other approaches are provided to demonstrate the effectiveness of the proposed HFSC(FRST1)s. PMID:21189244

  9. Non-Gaussian distributions of melodic intervals in music: The Lévy-stable approximation

    NASA Astrophysics Data System (ADS)

    Niklasson, Gunnar A.; Niklasson, Maria H.

    2015-11-01

    The analysis of structural patterns in music is of interest in order to increase our fundamental understanding of music, as well as for devising algorithms for computer-generated music, so called algorithmic composition. Musical melodies can be analyzed in terms of a “music walk” between the pitches of successive tones in a notescript, in analogy with the “random walk” model commonly used in physics. We find that the distribution of melodic intervals between tones can be approximated with a Lévy-stable distribution. Since music also exibits self-affine scaling, we propose that the “music walk” should be modelled as a Lévy motion. We find that the Lévy motion model captures basic structural patterns in classical as well as in folk music.

  10. Analysis of accuracy of approximate, simultaneous, nonlinear confidence intervals on hydraulic heads in analytical and numerical test cases

    USGS Publications Warehouse

    Hill, M.C.

    1989-01-01

    Inaccuracies in parameter values, parameterization, stresses, and boundary conditions of analytical solutions and numerical models of groundwater flow produce errors in simulated hydraulic heads. These errors can be quantified in terms of approximate, simultaneous, nonlinear confidence intervals presented in the literature. Approximate confidence intervals can be applied in both error and sensitivity analysis and can be used prior to calibration or when calibration was accomplished by trial and error. The method is expanded for use in numerical problems, and the accuracy of the approximate intervals is evaluated using Monte Carlo runs. Four test cases are reported. -from Author

  11. Accuracy in Parameter Estimation for the Root Mean Square Error of Approximation: Sample Size Planning for Narrow Confidence Intervals

    ERIC Educational Resources Information Center

    Kelley, Ken; Lai, Keke

    2011-01-01

    The root mean square error of approximation (RMSEA) is one of the most widely reported measures of misfit/fit in applications of structural equation modeling. When the RMSEA is of interest, so too should be the accompanying confidence interval. A narrow confidence interval reveals that the plausible parameter values are confined to a relatively…

  12. Kinetic energy density dependent approximations to the exchange energy

    NASA Astrophysics Data System (ADS)

    Ernzerhof, Matthias; Scuseria, Gustavo E.

    1999-07-01

    Two nonempirical kinetic energy density dependent approximations are introduced. First, the local τ approximation (LTA) is proposed in which the exchange energy Ex depends only on a kinetic energy density τ. This LTA scheme appears to be complementary to the local spin density (LSD) approximation in the sense that its exchange contribution to the atomization energy ΔEx=Exatoms-Exmolecule is fairly accurate for systems where LSD fails. On the other hand, in cases where LSD works well LTA results for ΔEx are worse. Secondly, the τPBE approximation to Ex is developed which combines some of the advantages of LTA and of the Perdew-Burke-Ernzerhof (PBE) exchange functional. Like the PBE exchange functional, τPBE is free of empirical parameters. Furthermore, it yields improved atomization energies compared to the PBE approximation.

  13. Energy Equation Approximation in Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W.

    1959-01-01

    There is some confusion in the literature of fluid mechanics in regard to the correct form of the energy equation for the study of the flow of nearly incompressible fluids. Several forms of the energy equation and their use are therefore discussed in this note.

  14. Proportional damping approximation using the energy gain and simultaneous perturbation stochastic approximation

    NASA Astrophysics Data System (ADS)

    Sultan, Cornel

    2010-10-01

    The design of vector second-order linear systems for accurate proportional damping approximation is addressed. For this purpose an error system is defined using the difference between the generalized coordinates of the non-proportionally damped system and its proportionally damped approximation in modal space. The accuracy of the approximation is characterized using the energy gain of the error system and the design problem is formulated as selecting parameters of the non-proportionally damped system to ensure that this gain is sufficiently small. An efficient algorithm that combines linear matrix inequalities and simultaneous perturbation stochastic approximation is developed to solve the problem and examples of its application to tensegrity structures design are presented.

  15. Energy flow: image correspondence approximation for motion analysis

    NASA Astrophysics Data System (ADS)

    Wang, Liangliang; Li, Ruifeng; Fang, Yajun

    2016-04-01

    We propose a correspondence approximation approach between temporally adjacent frames for motion analysis. First, energy map is established to represent image spatial features on multiple scales using Gaussian convolution. On this basis, energy flow at each layer is estimated using Gauss-Seidel iteration according to the energy invariance constraint. More specifically, at the core of energy invariance constraint is "energy conservation law" assuming that the spatial energy distribution of an image does not change significantly with time. Finally, energy flow field at different layers is reconstructed by considering different smoothness degrees. Due to the multiresolution origin and energy-based implementation, our algorithm is able to quickly address correspondence searching issues in spite of background noise or illumination variation. We apply our correspondence approximation method to motion analysis, and experimental results demonstrate its applicability.

  16. Bethe free-energy approximations for disordered quantum systems

    NASA Astrophysics Data System (ADS)

    Biazzo, I.; Ramezanpour, A.

    2014-06-01

    Given a locally consistent set of reduced density matrices, we construct approximate density matrices which are globally consistent with the local density matrices we started from when the trial density matrix has a tree structure. We employ the cavity method of statistical physics to find the optimal density matrix representation by slowly decreasing the temperature in an annealing algorithm, or by minimizing an approximate Bethe free energy depending on the reduced density matrices and some cavity messages originated from the Bethe approximation of the entropy. We obtain the classical Bethe expression for the entropy within a naive (mean-field) approximation of the cavity messages, which is expected to work well at high temperatures. In the next order of the approximation, we obtain another expression for the Bethe entropy depending only on the diagonal elements of the reduced density matrices. In principle, we can improve the entropy approximation by considering more accurate cavity messages in the Bethe approximation of the entropy. We compare the annealing algorithm and the naive approximation of the Bethe entropy with exact and approximate numerical simulations for small and large samples of the random transverse Ising model on random regular graphs.

  17. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    SciTech Connect

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  18. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    NASA Astrophysics Data System (ADS)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  19. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations.

    PubMed

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N(4)). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as ⟨Ŝ(2)⟩ are also developed and tested. PMID:25481124

  20. Approximate scaling properties of RNA free energy landscapes

    NASA Technical Reports Server (NTRS)

    Baskaran, S.; Stadler, P. F.; Schuster, P.

    1996-01-01

    RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.

  1. Flux tube spectra from approximate integrability at low energies

    SciTech Connect

    Dubovsky, S. Flauger, R.; Gorbenko, V.

    2015-03-15

    We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

  2. Approximating ground and excited state energies on a quantum computer

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2015-04-01

    Approximating ground and a fixed number of excited state energies, or equivalently low-order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number of different low-order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schrödinger equation with degrees of freedom. Our algorithm computes estimates of a constant number of different low-order eigenvalues with error and success probability at least , with cost polynomial in and . This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.

  3. Hadron Production in the Restricted Rapidity Intervals in Proton-Nucleus Interactions at High Energies

    NASA Astrophysics Data System (ADS)

    Aggarwal, Madan M.

    Data on 200 and 400 GeV proton interactions with nuclear emulsion have been analyzed. It is found that the multiplicity distributions of the shower particles in the restricted rapidity intervals are well described by the negative binomial distribution (NBD). The dependences of the NBD parameters on rapidity interval, energy and target size have been studied. The results have also been discussed in terms of Giovannini and Van Hove’s clan model of multiparticle production.

  4. Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices

    NASA Astrophysics Data System (ADS)

    Chatterjee, Koushik; Pernal, Katarzyna

    2012-11-01

    Starting from Rowe's equation of motion we derive extended random phase approximation (ERPA) equations for excitation energies. The ERPA matrix elements are expressed in terms of the correlated ground state one- and two-electron reduced density matrices, 1- and 2-RDM, respectively. Three ways of obtaining approximate 2-RDM are considered: linearization of the ERPA equations, obtaining 2-RDM from density matrix functionals, and employing 2-RDM corresponding to an antisymmetrized product of strongly orthogonal geminals (APSG) ansatz. Applying the ERPA equations with the exact 2-RDM to a hydrogen molecule reveals that the resulting ^1Σ _g^+ excitation energies are not exact. A correction to the ERPA excitation operator involving some double excitations is proposed leading to the ERPA2 approach, which employs the APSG one- and two-electron reduced density matrices. For two-electron systems ERPA2 satisfies a consistency condition and yields exact singlet excitations. It is shown that 2-RDM corresponding to the APSG theory employed in the ERPA2 equations yields excellent singlet excitation energies for Be and LiH systems, and for the N2 molecule the quality of the potential energy curves is at the coupled cluster singles and doubles level. ERPA2 nearly satisfies the consistency condition for small molecules that partially explains its good performance.

  5. Multimode approximation for {sup 238}U photofission at intermediate energies

    SciTech Connect

    Demekhina, N. A.; Karapetyan, G. S.

    2008-01-15

    The yields of products originating from {sup 238}U photofission are measured at the bremsstrahlung endpoint energies of 50 and 3500 MeV. Charge and mass distributions of fission fragments are obtained. Symmetric and asymmetric channels in {sup 238}U photofission are singled out on the basis of the model of multimode fission. This decomposition makes it possible to estimate the contributions of various fission components and to calculate the fissilities of {sup 238}U in the photon-energy regions under study.

  6. Multimode approximation for {sup 238}U photofission at intermediate energies

    SciTech Connect

    Demekhina, N. A. Karapetyan, G. S.

    2008-01-15

    The yields of products originating from {sup 238}U photofission are measured at the Bremsstrahlung endpoint energies of 50 and 3500 MeV. Charge and mass distributions of fission fragments are obtained. Symmetric and asymmetric channels in {sup 238}U photofission are singled out on the basis of the model of multimode fission. This decomposition makes it possible to estimate the contributions of various fission components and to calculate the fissilities of {sup 238}U in the photon-energy regions under study.

  7. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  8. Dynamic Analyses of Result Quality in Energy-Aware Approximate Programs

    NASA Astrophysics Data System (ADS)

    RIngenburg, Michael F.

    Energy efficiency is a key concern in the design of modern computer systems. One promising approach to energy-efficient computation, approximate computing, trades off output precision for energy efficiency. However, this tradeoff can have unexpected effects on computation quality. This thesis presents dynamic analysis tools to study, debug, and monitor the quality and energy efficiency of approximate computations. We propose three styles of tools: prototyping tools that allow developers to experiment with approximation in their applications, online tools that instrument code to determine the key sources of error, and online tools that monitor the quality of deployed applications in real time. Our prototyping tool is based on an extension to the functional language OCaml. We add approximation constructs to the language, an approximation simulator to the runtime, and profiling and auto-tuning tools for studying and experimenting with energy-quality tradeoffs. We also present two online debugging tools and three online monitoring tools. The first online tool identifies correlations between output quality and the total number of executions of, and errors in, individual approximate operations. The second tracks the number of approximate operations that flow into a particular value. Our online tools comprise three low-cost approaches to dynamic quality monitoring. They are designed to monitor quality in deployed applications without spending more energy than is saved by approximation. Online monitors can be used to perform real time adjustments to energy usage in order to meet specific quality goals. We present prototype implementations of all of these tools and describe their usage with several applications. Our prototyping, profiling, and autotuning tools allow us to experiment with approximation strategies and identify new strategies, our online tools succeed in providing new insights into the effects of approximation on output quality, and our monitors succeed in

  9. Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation

    NASA Astrophysics Data System (ADS)

    Maggio, Emanuele; Kresse, Georg

    2016-06-01

    The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Møller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.

  10. Interval Data Analysis with the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect

    Taasevigen, Danny J.; Katipamula, Srinivas; Koran, William

    2011-07-07

    Analyzing whole building interval data is an inexpensive but effective way to identify and improve building operations, and ultimately save money. Utilizing the Energy Charting and Metrics Tool (ECAM) add-in for Microsoft Excel, building operators and managers can begin implementing changes to their Building Automation System (BAS) after trending the interval data. The two data components needed for full analyses are whole building electricity consumption (kW or kWh) and outdoor air temperature (OAT). Using these two pieces of information, a series of plots and charts and be created in ECAM to monitor the buildings performance over time, gain knowledge of how the building is operating, and make adjustments to the BAS to improve efficiency and start saving money.

  11. A pediatric correlational study of stride interval dynamics, energy expenditure and activity level.

    PubMed

    Ellis, Denine; Sejdic, Ervin; Zabjek, Karl; Chau, Tom

    2014-08-01

    The strength of time-dependent correlations known as stride interval (SI) dynamics has been proposed as an indicator of neurologically healthy gait. Most recently, it has been hypothesized that these dynamics may be necessary for gait efficiency although the supporting evidence to date is scant. The current study examines over-ground SI dynamics, and their relationship with the cost of walking and physical activity levels in neurologically healthy children aged nine to 15 years. Twenty participants completed a single experimental session consisting of three phases: 10 min resting, 15 min walking and 10 min recovery. The scaling exponent (α) was used to characterize SI dynamics while net energy cost was measured using a portable metabolic cart, and physical activity levels were determined based on a 7-day recall questionnaire. No significant linear relationships were found between a and the net energy cost measures (r < .07; p > .25) or between α and physical activity levels (r = .01, p = .62). However, there was a marked reduction in the variance of α as activity levels increased. Over-ground stride dynamics do not appear to directly reflect energy conservation of gait in neurologically healthy youth. However, the reduction in the variance of α with increasing physical activity suggests a potential exercise-moderated convergence toward a level of stride interval persistence for able-bodied youth reported in the literature. This latter finding warrants further investigation. PMID:24722770

  12. Optimising sprint interval exercise to maximise energy expenditure and enjoyment in overweight boys.

    PubMed

    Crisp, Nicole A; Fournier, Paul A; Licari, Melissa K; Braham, Rebecca; Guelfi, Kym J

    2012-12-01

    The aim of this study was to identify the sprint frequency that when supplemented to continuous exercise at the intensity that maximises fat oxidation (Fat(max)), optimises energy expenditure, acute postexercise energy intake and enjoyment. Eleven overweight boys completed 30 min of either continuous cycling at Fat(max) (MOD), or sprint interval exercise that consisted of continuous cycling at Fat(max) interspersed with 4-s maximal sprints every 2 min (SI(120)), every 1 min (SI(60)), or every 30 s (SI(30)). Energy expenditure was assessed during exercise, after which participants completed a modified Physical Activity Enjoyment Scale (PACES) followed by a buffet-type breakfast to measure acute postexercise energy intake. Energy expenditure increased with increasing sprint frequency (p < 0.001), but the difference between SI(60) and SI(30) did not reach significance (p = 0.076), likely as a result of decreased sprint quality as indicated by a significant decline in peak power output from SI(60) to SI(30) (p = 0.034). Postexercise energy intake was similar for MOD, SI(120), and SI(30) (p > 0.05), but was significantly less for SI(60) compared with MOD (p = 0.025). PACES was similar for MOD, SI(120), and SI(60) (p > 0.05), but was less for SI(30) compared with MOD (p = 0.038), SI(120) (p = 0.009), and SI(60) (p = 0.052). In conclusion, SI(60) appears optimal for overweight boys given that it maximises energy expenditure (i.e., there was no additional increase in expenditure with a further increase in sprint frequency) without prompting increased energy intake. This, coupled with the fact that enjoyment was not compromised, may have important implications for increased adherence and long-term energy balance. PMID:23176528

  13. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    SciTech Connect

    Liu, Fang; Lin, Lin; Vigil-Fowler, Derek; Lischner, Johannes; Kemper, Alexander F.; Sharifzadeh, Sahar; Jornada, Felipe H. da; Deslippe, Jack; Yang, Chao; and others

    2015-04-01

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.

  14. The performance of density functional approximations for the structures and relative energies of minimum energy crossing points

    NASA Astrophysics Data System (ADS)

    Abate, Bayileyegn A.; Peralta, Juan E.

    2013-12-01

    The structural parameters and relative energies of the minimum-energy crossing points (MECPs) of eight small molecules are calculated using five different representative density functional theory approximations as well as MP2, MP4, and CCSD(T) as a reference. Compared to high-level wavefunction methods, the main structural features of the MECPs of the systems included in this Letter are reproduced reasonably well by density functional approximations, in agreement with previous works. Our results show that when high-level wavefunction methods are computationally prohibitive, density functional approximations offer a good alternative for locating and characterizing the MECP in spin-forbidden chemical reactions.

  15. Analysis of localized diabatic states beyond the condon approximation for excitation energy transfer processes.

    PubMed

    Alguire, Ethan C; Fatehi, Shervin; Shao, Yihan; Subotnik, Joseph E

    2014-12-26

    In a previous paper [ Fatehi , S. ; et al. J. Chem. Phys. 2013 , 139 , 124112 ], we demonstrated a practical method by which analytic derivative couplings of Boys-localized CIS states can be obtained. In this paper, we now apply that same method to the analysis of triplet-triplet energy transfer systems studied by Closs and collaborators [ Closs , G. L. ; et al. J. Am. Chem. Soc. 1988 , 110 , 2652 ]. For the systems examined, we are able to conclude that (i) the derivative coupling in the BoysOV basis is negligible, and (ii) the diabatic coupling will likely change little over the configuration space explored at room temperature. Furthermore, we propose and evaluate an approximation that allows for the inexpensive calculation of accurate diabatic energy gradients, called the "strictly diabatic" approximation. This work highlights the effectiveness of diabatic state analytic gradient theory in realistic systems and demonstrates that localized diabatic states can serve as an acceptable approximation to strictly diabatic states. PMID:24447246

  16. Two-loop Bhabha scattering at high energy beyond leading power approximation

    NASA Astrophysics Data System (ADS)

    Penin, Alexander A.; Zerf, Nikolai

    2016-09-01

    We evaluate the two-loop O (me2/ s) contribution to the wide-angle high-energy electron-positron scattering in the double-logarithmic approximation. The origin and the general structure of the power-suppressed double logarithmic corrections are discussed in detail.

  17. Two-loop Bhabha scattering at high energy beyond leading power approximation

    NASA Astrophysics Data System (ADS)

    Penin, Alexander A.; Zerf, Nikolai

    2016-09-01

    We evaluate the two-loop O (me2/s) contribution to the wide-angle high-energy electron-positron scattering in the double-logarithmic approximation. The origin and the general structure of the power-suppressed double logarithmic corrections are discussed in detail.

  18. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles.

    PubMed

    Peng, Degao; Steinmann, Stephan N; van Aggelen, Helen; Yang, Weitao

    2013-09-14

    The recent proposal to determine the (exact) correlation energy based on pairing matrix fluctuations by van Aggelen et al. ["Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation," preprint arXiv:1306.4957 (2013)] revived the interest in the simplest approximation along this path: the particle-particle random phase approximation (pp-RPA). In this paper, we present an analytical connection and numerical demonstrations of the equivalence of the correlation energy from pp-RPA and ladder-coupled-cluster doubles. These two theories reduce to identical algebraic matrix equations and correlation energy expressions. The numerical examples illustrate that the correlation energy missed by pp-RPA in comparison with coupled-cluster singles and doubles is largely canceled out when considering reaction energies. This theoretical connection will be beneficial to design density functionals with strong ties to coupled-cluster theories and to study molecular properties at the pp-RPA level relying on well established coupled cluster techniques. PMID:24050333

  19. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    PubMed

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results. PMID:26986444

  20. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    2015-10-01

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  1. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation

    SciTech Connect

    Aggelen, Helen van; Department of Chemistry, Duke University, Durham, North Carolina 27708 ; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H{sub 2}, and eliminates delocalization errors in H{sub 2}{sup +} and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R{sup −6} asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  2. Energy intake over 2 days is unaffected by acute sprint interval exercise despite increased appetite and energy expenditure.

    PubMed

    Beaulieu, Kristine; Olver, T Dylan; Abbott, Kolten C; Lemon, Peter W R

    2015-01-01

    A cumulative effect of reduced energy intake, increased oxygen consumption, and/or increased lipid oxidation could explain the fat loss associated with sprint interval exercise training (SIT). This study assessed the effects of acute sprint interval exercise (SIE) on energy intake, subjective appetite, appetite-related peptides, oxygen consumption, and respiratory exchange ratio over 2 days. Eight men (25 ± 3 years, 79.6 ± 9.7 kg, body fat 13% ± 6%; mean ± SD) completed 2 experimental treatments: SIE and recovery (SIEx) and nonexercise control. Each 34-h treatment consisted of 2 consecutive 10-h test days. Between 0800-1800 h, participants remained in the laboratory for 8 breath-by-breath gas collections, 3 buffet-type meals, 14 appetite ratings, and 4 blood samples for appetite-related peptides. Treatment comparisons were made using 2-way repeated measures ANOVA or t tests. An immediate, albeit short-lived (<1 h), postexercise suppression of appetite and increase in peptide YY (PYY) were observed (P < 0.001). However, overall hunger and motivation to eat were greater during SIEx (P < 0.02) without affecting energy intake. Total 34-h oxygen consumption was greater during SIEx (P = 0.04), elicited by the 1491-kJ (22%) greater energy expenditure over the first 24 h (P = 0.01). Despite its effects on oxygen consumption, appetite, and PYY, acute SIE did not affect energy intake. Consequently, if these dietary responses to SIE are sustained with regular SIT, augmentations in oxygen consumption and/or a substrate shift toward increased fat use postexercise are most likely responsible for the observed body fat loss with this type of exercise training. PMID:25494974

  3. Molecular tests of the random phase approximation to the exchange-correlation energy functional

    NASA Astrophysics Data System (ADS)

    Furche, Filipp

    2001-11-01

    The exchange-correlation energy functional within the random phase approximation (RPA) is recast into an explicitly orbital-dependent form. A method to evaluate the functional in finite basis sets is introduced. The basis set dependence of the RPA correlation energy is analyzed. Extrapolation using large, correlation-consistent basis sets is essential for accurate estimates of RPA correlation energies. The potential energy curve of N2 is discussed. The RPA is found to recover most of the strong static correlation at large bond distance. Atomization energies of main-group molecules are rather uniformly underestimated by the RPA. The method performs better than generalized-gradient-type approximations (GGA's) only for some electron-rich systems. However, the RPA functional is free of error cancellation between exchange and correlation, and behaves qualitatively correct in the high-density limit, as is demonstrated by the coupling strength decomposition of the atomization energy of F2. The GGA short-range correlation correction to the RPA by Yan, Perdew, and Kurth [Phys. Rev. B 61, 16 430 (2000)] does not seem to improve atomization energies consistently.

  4. Slope-dependent nuclear-symmetry energy within the effective-surface approximation

    NASA Astrophysics Data System (ADS)

    Blocki, J. P.; Magner, A. G.; Ring, P.

    2015-12-01

    The effective-surface approximation is extended taking into account derivatives of the symmetry-energy density per particle with respect to the mean particle density. The isoscalar and isovector particle densities in this extended effective-surface approximation are derived. The improved expressions of the surface symmetry energy, in particular, its surface tension coefficients in the sharp-edged proton-neutron asymmetric nuclei take into account important gradient terms of the energy density functional. For most Skyrme forces the surface symmetry-energy constants and the corresponding neutron skins and isovector stiffnesses are calculated as functions of the Swiatecki derivative of the nongradient term of the symmetry-energy density per particle with respect to the isoscalar density. Using the analytical isovector surface-energy constants in the framework of the Fermi-liquid droplet model we find energies and sum rules of the isovector giant dipole-resonance structure in a reasonable agreement with the experimental data, and they are compared with other theoretical approaches.

  5. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  6. An evaluation of energy-independent heavy ion transport coefficient approximations.

    PubMed

    Townsend, L W; Wilson, J W

    1988-04-01

    Using a one-dimensional transport theory for laboratory heavy ion propagation, evaluations of typical energy-independent transport coefficient approximations are made by comparing theoretical depth-dose predictions to published experimental values for incident 670 MeV/nucleon 20Ne beams in water. Results are presented for cases where the input nuclear absorption cross sections, or input fragmentation parameters, or both, are fixed. PMID:3350661

  7. Quantitative molecular orbital energies within a G0W0 approximation

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, S.; Tamblyn, I.; Doak, P.; Darancet, P. T.; Neaton, J. B.

    2012-09-01

    Using many-body perturbation theory within a G 0 W 0 approximation, with a plane wave basis set and using a starting point based on density functional theory within the generalized gradient approximation, we explore routes for computing the ionization potential (IP), electron affinity (EA), and fundamental gap of three gas-phase molecules — benzene, thiophene, and (1,4) diamino-benzene — and compare with experiments. We examine the dependence of the IP and fundamental gap on the number of unoccupied states used to represent the dielectric function and the self energy, as well as the dielectric function plane-wave cutoff. We find that with an effective completion strategy for approximating the unoccupied subspace, and a well converged dielectric function kinetic energy cutoff, the computed IPs and EAs are in excellent quantitative agreement with available experiment (within 0.2 eV), indicating that a one-shot G 0 W 0 approach can be very accurate for calculating addition/removal energies of small organic molecules.

  8. Introducing electron capture into the unitary-convolution-approximation energy-loss theory at low velocities

    SciTech Connect

    Schiwietz, G.; Grande, P. L.

    2011-11-15

    Recent developments in the theoretical treatment of electronic energy losses of bare and screened ions in gases are presented. Specifically, the unitary-convolution-approximation (UCA) stopping-power model has proven its strengths for the determination of nonequilibrium effects for light as well as heavy projectiles at intermediate to high projectile velocities. The focus of this contribution will be on the UCA and its extension to specific projectile energies far below 100 keV/u, by considering electron-capture contributions at charge-equilibrium conditions.

  9. Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Asenovski, Simeon; Mateev, Lachezar

    2013-04-01

    Numerical calculations of galactic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower ionosphere altitudes (35-90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs influence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).

  10. Correlation matrix renormalization approximation for total-energy calculations of correlated electron systems

    SciTech Connect

    Yao, Y. X.; Liu, Jun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2014-01-23

    We generalized the commonly used Gutzwiller approximation for calculating the electronic structure and total energy of strongly correlated electron systems. In our method, the evaluation of one-body and two-body density matrix elements of the Hamiltonian is simplified using a renormalization approximation to achieve better scaling of the computational effort as a function of system size. To achieve a clear presentation of the concept and methodology, we describe the detailed formalism for a finite hydrogen system with minimal basis set. We applied the correlation matrix renormalization approximation approach to a H2 dimer and H8 cubic fragment with minimal basis sets, as well as a H2 molecule with a large basis set. The results compare favorably with sophisticated quantum chemical calculations. We believe our approach can serve as an alternative way to build up the exchange-correlation energy functional for an improved density functional theory description of systems with strong electron correlations.

  11. Eikonal approximation in the theory of energy loss by fast charged particles

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.; Gusarevich, E. S.

    2011-05-01

    Energy losses in fast charged particles as a result of collisions with atoms are considered in the eikonal approximation. It is shown that the nonperturbative contribution to effective stopping in the range of intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target atoms) may turn out to be significant as compared to shell corrections to the Bethe-Bloch formula calculated in perturbation theory. The simplifying assumptions are formulated under which the Bethe-Bloch formula can be derived in the eikonal approximation. It is shown that the allowance for nonperturbative effects may lead to considerable (up to 50%) corrections to the Bethe-Bloch formula. The applicability range for the Bethe-Bloch formula is analyzed. It is concluded that calculation of the energy loss in the eikonal approximation (in the range of impact parameters for which the Bethe-Bloch formula is normally used) is much more advantageous than analysis based on the Bethe-Bloch formula and its modifications because not only the Bloch correction is included in the former calculations, the range of intermediate impact parameters is also taken into account nonperturbatively; in addition, direct generalization to the cases of collisions of complex projectiles and targets is possible in this case.

  12. Low-energy extensions of the eikonal approximation to heavy-ion scattering

    SciTech Connect

    Aguiar, C.E.; Aguiar, C.E.; Zardi, F.; Vitturi, A.

    1997-09-01

    We discuss different schemes devised to extend the eikonal approximation to the regime of low bombarding energies (below 50 MeV per nucleon) in heavy-ion collisions. From one side we consider the first- and second-order corrections derived from Wallace{close_quote}s expansion. As an alternative approach we examine the procedure of accounting for the distortion of the eikonal straight-line trajectory by shifting the impact parameter to the corresponding classical turning point. The two methods are tested for different combinations of colliding systems and bombarding energies, by comparing the angular distributions they provide with the exact solution of the scattering problem. We find that the best results are obtained with the shifted trajectories, the Wallace expansion showing a slow convergence at low energies, in particular for heavy systems characterized by a strong Coulomb field. {copyright} {ital 1997} {ital The American Physical Society}

  13. Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations.

    PubMed

    Iles-Smith, Jake; Dijkstra, Arend G; Lambert, Neill; Nazir, Ahsan

    2016-01-28

    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions. PMID:26827205

  14. Proximity force approximation for the Casimir energy as a derivative expansion

    NASA Astrophysics Data System (ADS)

    Fosco, César D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2011-11-01

    The proximity force approximation (PFA) has been widely used as a tool to evaluate the Casimir force between smooth objects at small distances. In spite of being intuitively easy to grasp, it is generally believed to be an uncontrolled approximation. Indeed, its validity has only been tested in particular examples, by confronting its predictions with the next-to-leading-order (NTLO) correction extracted from numerical or analytical solutions obtained without using the PFA. In this article we show that the PFA and its NTLO correction may be derived within a single framework, as the first two terms in a derivative expansion. To that effect, we consider the Casimir energy for a vacuum scalar field with Dirichlet conditions on a smooth curved surface described by a function ψ in front of a plane. By regarding the Casimir energy as a functional of ψ, we show that the PFA is the leading term in a derivative expansion of this functional. We also obtain the general form of the corresponding NTLO correction, which involves two derivatives of ψ. We show, by evaluating this correction term for particular geometries, that it properly reproduces the known corrections to PFA obtained from exact evaluations of the energy.

  15. An evaluation of energy-independent heavy ion transport coefficient approximations

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1988-01-01

    Utilizing a one-dimensional transport theory for heavy ion propagation, evaluations of typical energy-dependent transport coefficient approximations are made by comparing theoretical depth-dose predictions to published experimental values for incident 670 MeV/nucleon Ne-20 beams in water. Results are presented for cases where the input nuclear absorption cross sections, or input fragmentation parameters, or both, are fixed. The lack of fragment charge and mass concentration resulting from the use of Silberberg-Tsao fragmentation parameters continues to be the main source of disagreement between theory and experiment.

  16. The appearance of an interval of energies that contain the whole diamagnetic contribution to NMR magnetic shieldings.

    PubMed

    Maldonado, Alejandro; Aucar, Gustavo A

    2007-10-21

    Working within relativistic polarization propagator approach, it was shown in a previous article that the electronic origin of diamagnetic contributions to NMR nuclear magnetic shielding, sigmad, are mostly excitations that fit in a well defined interval of energies such that 2mc2interval of energies does not have, in principle, any physical reason to be so well defined, and gives a large amount of the total contribution to sigmad, e.g., close to 98% of it. Then a further study is given in this article, where we show some of the main characteristics of that interval of energy, such as its universal appearance and basis set independence. Our main result is the finding that sigmad is completely described by that interval of excitation energies, i.e., there is no contribution arising from outside of it. Most of the contributions belonging to that interval arise from virtual electronic energies larger than -3mc2. For heavier atoms, there are few contributions from states with virtual negative energies smaller than -3mc2. The model systems under study were noble gases, XH (X=Br, I, and At), XH2 (X=O, S, Se, Te, and Po), XH3 (X=N, P, As, Sb, and Bi); XH4 (X=Sn and Pb), and SnXH3 (X=Br and I). The pattern of contributions of occupied molecular orbitals (MOs) is also shown, where the 1s1/2 is the most important for excitations ending in the bottom half part of the above mentioned interval. On the other hand, the contribution of the other occupied MOs are more important than that of 1s1/2 for the other part of such interval. We also show that sigmad is electron correlation independent within both relativistic and nonrelativistic domain. In the case of sigmap, we find out a clear dependence of electron correlation effects with relativistic effects, which is of the order of 30% for Pb in PbH4. PMID:17949140

  17. Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations

    SciTech Connect

    Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.

    2009-06-15

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  18. Electron energy spectrum in cylindrical quantum dots and rods: approximation of separation of variables

    NASA Astrophysics Data System (ADS)

    Nedzinskas, R.; Karpus, V.; Čechavičius, B.; Kavaliauskas, J.; Valušis, G.

    2015-06-01

    A simple analytical method for electron energy spectrum calculations of cylindrical quantum dots (QDs) and quantum rods (QRs) is presented. The method is based on a replacement of an actual QD or QR hamiltonian with an approximate one, which allows for a separation of variables. Though this approach is known in the literature, it is essentially expanded in the present paper by taking into account a discontinuity of the effective mass, which is of importance in actual semiconductor heterostructures, e.g., InGaAs QDs or QRs embedded in GaAs matrix. Several examples of InGaAs QDs and QRs are considered—their energy spectrum calculations show that the suggested method yields reliable results both for the ground and excited states. The proposed analytical model is verified by numerical calculations, results of which coincide with an accuracy of ∼1 meV.

  19. Low-energy parameters of neutron-neutron interaction in the effective-range approximation

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2013-06-15

    The effect of the mass difference between the charged and neutral pions on the low-energy parameters of nucleon-nucleon interaction in the {sup 1}S{sub 0} state is studied in the effective-range approximation. On the basis of experimental values of the singlet parameters of neutron-proton scattering and the experimental value of the virtual-state energy for the neutron-neutron systemin the {sup 1}S{sub 0} state, the following values were obtained for the neutron-neutron scattering length and effective range: a{sub nn} = -16.59(117) fm and r{sub nn} = 2.83(11) fm. The calculated values agree well with present-day experimental results.

  20. Lattice energies of molecular solids from the random phase approximation with singles corrections.

    PubMed

    Klimeš, Jiří

    2016-09-01

    We use the random phase approximation (RPA) method with the singles correlation energy contributions to calculate lattice energies of ten molecular solids. While RPA gives too weak binding, underestimating the reference data by 13.7% on average, much improved results are obtained when the singles are included at the GW singles excitations (GWSE) level, with average absolute difference to the reference data of only 3.7%. Consistently with previous results, we find a very good agreement with the reference data for hydrogen bonded systems, while the binding is too weak for systems where dispersion forces dominate. In fact, the overall accuracy of the RPA+GWSE method is similar to an estimated accuracy of the reference data. PMID:27609003

  1. Resonant Interaction, Approximate Symmetry, and Electromagnetic Interaction (EMI) in Low Energy Nuclear Reactions (LENR)

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2007-03-01

    Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.

  2. Development of approximate method to analyze the characteristics of latent heat thermal energy storage system

    SciTech Connect

    Saitoh, T.S.; Hoshi, Akira

    1999-07-01

    Third Conference of the Parties to the U.N. Framework Convention on Climate Change (COP3) held in last December in Kyoto urged the industrialized nation to reduce carbon dioxide (CO{sub 2}) emissions by 5.2 percent (on the average) below 1990 level until the period between 2008 and 2012 (Kyoto protocol). This implies that even for the most advanced countries like the US, Japan, and EU implementation of drastic policies and overcoming many barriers in market should be necessary. One idea which leads to a path of low carbon intensity is to adopt an energy storage concept. One of the reasons that the efficiency of the conventional energy systems has been relatively low is ascribed to lacking of energy storage subsystem. Most of the past energy systems, for example, air-conditioning system, do not have energy storage part and the system usually operates with low energy efficiency. Firstly, the effect of reducing CO{sub 2} emissions was also examined if the LHTES subsystems were incorporated in all the residential and building air-conditioning systems. Another field of application of the LHTES is of course transportation. Future vehicle will be electric or hybrid vehicle. However, these vehicles will need considerable energy for air-conditioning. The LHTES system will provide enough energy for this purpose by storing nighttime electricity or rejected heat from the radiator or motor. Melting and solidification of phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and also reduce carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid (melt) region. Close-contact melting processes for a single enclosure have been solved using several

  3. A method for establishing absolute full-energy peak efficiency and its confidence interval for HPGe detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Chester, A.; Domingo, T.; Starosta, K.; Williams, J.; Voss, P.

    2015-12-01

    A method is proposed for establishing the absolute efficiency calibration of a HPGe detector including the confidence interval in the energy range of 79.6-3451.2 keV. The calibrations were accomplished with the 133Ba, 60Co, 56Co and 152Eu point-like radioactive sources with only the 60Co source being activity calibrated to an accuracy of 2% at the 90% confidence level. All data sets measured from activity calibrated and uncalibrated sources were fit simultaneously using the linearized least squares method. The proposed fit function accounts for scaling of the data taken with activity uncalibrated sources to the data taken with the high accuracy activity calibrated source. The confidence interval for the fit was found analytically using the covariance matrix. Accuracy of the fit was below 3.5% at the 90% confidence level in the 79.6-3451.2 keV energy range.

  4. An approximate model and empirical energy function for solute interactions with a water-phosphatidylcholine interface.

    PubMed Central

    Sanders, C R; Schwonek, J P

    1993-01-01

    An empirical model of a liquid crystalline (L alpha phase) phosphatidylcholine (PC) bilayer interface is presented along with a function which calculates the position-dependent energy of associated solutes. The model approximates the interface as a gradual two-step transition, the first step being from an aqueous phase to a phase of reduced polarity, but which maintains a high enough concentration of water and/or polar head group moieties to satisfy the hydrogen bond-forming potential of the solute. The second transition is from the hydrogen bonding/low polarity region to an effectively anhydrous hydrocarbon phase. The "interfacial energies" of solutes within this variable medium are calculated based upon atomic positions and atomic parameters describing general polarity and hydrogen bond donor/acceptor propensities. This function was tested for its ability to reproduce experimental water-solvent partitioning energies and water-bilayer partitioning data. In both cases, the experimental data was reproduced fairly well. Energy minimizations carried out on beta-hexyl glucopyranoside led to identification of a global minimum for the interface-associated glycolipid which exhibited glycosidic torsion angles in agreement with prior results (Hare, B.J., K.P. Howard, and J.H. Prestegard. 1993. Biophys. J. 64:392-398). Molecular dynamics simulations carried out upon this same molecule within the simulated interface led to results which were consistent with a number of experimentally based conclusions from previous work, but failed to quantitatively reproduce an available NMR quadrupolar/dipolar coupling data set (Sanders, C.R., and J.H. Prestegard. 1991. J. Am. Chem. Soc. 113:1987-1996). The proposed model and functions are readily incorporated into computational energy modeling algorithms and may prove useful in future studies of membrane-associated molecules. PMID:8241401

  5. Generalized gradient approximation exchange energy functional with correct asymptotic behavior of the corresponding potential

    SciTech Connect

    Carmona-Espíndola, Javier; Gázquez, José L.; Vela, Alberto; Trickey, S. B.

    2015-02-07

    A new non-empirical exchange energy functional of the generalized gradient approximation (GGA) type, which gives an exchange potential with the correct asymptotic behavior, is developed and explored. In combination with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional, the new CAP-PBE (CAP stands for correct asymptotic potential) exchange-correlation functional gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are fully competitive with those obtained from other GGA-type functionals that do not have the correct asymptotic exchange potential behavior. Distinct from them, the new functional provides important improvements in quantities dependent upon response functions, e.g., static and dynamic polarizabilities and hyperpolarizabilities. CAP combined with the Lee-Yang-Parr correlation functional gives roughly equivalent results. Consideration of the computed dynamical polarizabilities in the context of the broad spectrum of other properties considered tips the balance to the non-empirical CAP-PBE combination. Intriguingly, these improvements arise primarily from improvements in the highest occupied and lowest unoccupied molecular orbitals, and not from shifts in the associated eigenvalues. Those eigenvalues do not change dramatically with respect to eigenvalues from other GGA-type functionals that do not provide the correct asymptotic behavior of the potential. Unexpected behavior of the potential at intermediate distances from the nucleus explains this unexpected result and indicates a clear route for improvement.

  6. Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Kelly, William R.; Marolf, Donald

    2015-10-01

    The gravitational Dirichlet problem—in which the induced metric is fixed on boundaries at finite distance from the bulk—is related to simple notions of UV cutoffs in gauge/gravity duality and appears in discussions relating the low-energy behavior of gravity to fluid dynamics. We study the Einstein-Maxwell version of this problem, in which the induced Maxwell potential on the wall is also fixed. For flat walls in otherwise asymptotically flat spacetimes, we identify a moduli space of Majumdar-Papapetrou-like static solutions parametrized by the location of an extreme black hole relative to the wall. Such solutions may be described as balancing gravitational repulsion from a negative-mass image source against electrostatic attraction to an oppositely signed image charge. Standard techniques for handling divergences yield a moduli space metric with an eigenvalue that becomes negative near the wall, indicating a region of negative kinetic energy and suggesting that the Hamiltonian may be unbounded below. One may also surround the black hole with an additional (roughly spherical) Dirichlet wall to impose a regulator whose physics is more clear. Negative kinetic energies remain, though new terms do appear in the moduli space metric. The regulator dependence indicates that the adiabatic approximation may be ill-defined for classical extreme black holes with Dirichlet walls.

  7. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment.

    PubMed

    Skelly, Lauren E; Andrews, Patricia C; Gillen, Jenna B; Martin, Brian J; Percival, Michael E; Gibala, Martin J

    2014-07-01

    Subjects performed high-intensity interval training (HIIT) and continuous moderate-intensity training (END) to evaluate 24-h oxygen consumption. Oxygen consumption during HIIT was lower versus END; however, total oxygen consumption over 24 h was similar. These data demonstrate that HIIT and END induce similar 24-h energy expenditure, which may explain the comparable changes in body composition reported despite lower total training volume and time commitment. PMID:24773393

  8. Nuclear energy surfaces at high-spin in the A{approximately}180 mass region

    SciTech Connect

    Chasman, R.R.; Egido, J.L.; Robledo, L.M.

    1995-08-01

    We are studying nuclear energy surfaces at high spin, with an emphasis on very deformed shapes using two complementary methods: (1) the Strutinsky method for making surveys of mass regions and (2) Hartree-Fock calculations using a Gogny interaction to study specific nuclei that appear to be particularly interesting from the Strutinsky method calculations. The great advantage of the Strutinsky method is that one can study the energy surfaces of many nuclides ({approximately}300) with a single set of calculations. Although the Hartree-Fock calculations are quite time-consuming relative to the Strutinsky calculations, they determine the shape at a minimum without being limited to a few deformation modes. We completed a study of {sup 182}Os using both approaches. In our cranked Strutinsky calculations, which incorporate a necking mode deformation in addition to quadrupole and hexadecapole deformations, we found three well-separated, deep, strongly deformed minima. The first is characterized by nuclear shapes with axis ratios of 1.5:1; the second by axis ratios of 2.2:1 and the third by axis ratios of 2.9:1. We also studied this nuclide with the density-dependent Gogny interaction at I = 60 using the Hartree-Fock method and found minima characterized by shapes with axis ratios of 1.5:1 and 2.2:1. A comparison of the shapes at these minima, generated in the two calculations, shows that the necking mode of deformation is extremely useful for generating nuclear shapes at large deformation that minimize the energy. The Hartree-Fock calculations are being extended to larger deformations in order to further explore the energy surface in the region of the 2.9:1 minimum.

  9. Multi-term approximation to the Boltzmann transport equation for electron energy distribution functions in nitrogen

    NASA Astrophysics Data System (ADS)

    Feng, Yue

    Plasma is currently a hot topic and it has many significant applications due to its composition of both positively and negatively charged particles. The energy distribution function is important in plasma science since it characterizes the ability of the plasma to affect chemical reactions, affect physical outcomes, and drive various applications. The Boltzmann Transport Equation is an important kinetic equation that provides an accurate basis for characterizing the distribution function---both in energy and space. This dissertation research proposes a multi-term approximation to solve the Boltzmann Transport Equation by treating the relaxation process using an expansion of the electron distribution function in Legendre polynomials. The elastic and 29 inelastic cross sections for electron collisions with nitrogen molecules (N2) and singly ionized nitrogen molecules ( N+2 ) have been used in this application of the Boltzmann Transport Equation. Different numerical methods have been considered to compare the results. The numerical methods discussed in this thesis are the implicit time-independent method, the time-dependent Euler method, the time-dependent Runge-Kutta method, and finally the implicit time-dependent relaxation method by generating the 4-way grid with a matrix solver. The results show that the implicit time-dependent relaxation method is the most accurate and stable method for obtaining reliable results. The results were observed to match with the published experimental data rather well.

  10. Discrete Dipole Approximation for Low-Energy Photoelectron Emission from NaCl Nanoparticles

    SciTech Connect

    Berg, Matthew J.; Wilson, Kevin R.; Sorensen, Chris; Chakrabarti, Amit; Ahmed, Musahid

    2011-09-22

    This work presents a model for the photoemission of electrons from sodium chloride nanoparticles 50-500 nm in size, illuminated by vacuum ultraviolet light with energy ranging from 9.4-10.9 eV. The discrete dipole approximation is used to calculate the electromagnetic field inside the particles, from which the two-dimensional angular distribution of emitted electrons is simulated. The emission is found to favor the particle?s geometrically illuminated side, and this asymmetry is compared to previous measurements performed at the Lawrence Berkeley National Laboratory. By modeling the nanoparticles as spheres, the Berkeley group is able to semi-quantitatively account for the observed asymmetry. Here however, the particles are modeled as cubes, which is closer to their actual shape, and the interaction of an emitted electron with the particle surface is also considered. The end result shows that the emission asymmetry for these low-energy electrons is more sensitive to the particle-surface interaction than to the specific particle shape, i.e., a sphere or cube.

  11. Interval Training.

    ERIC Educational Resources Information Center

    President's Council on Physical Fitness and Sports, Washington, DC.

    Regardless of the type of physical activity used, interval training is simply repeated periods of physical stress interspersed with recovery periods during which activity of a reduced intensity is performed. During the recovery periods, the individual usually keeps moving and does not completely recover before the next exercise interval (e.g.,…

  12. Singlet-triplet energy gaps for diradicals from particle-particle random phase approximation.

    PubMed

    Yang, Yang; Peng, Degao; Davidson, Ernest R; Yang, Weitao

    2015-05-21

    The particle-particle random phase approximation (pp-RPA) for calculating excitation energies has been applied to diradical systems. With pp-RPA, the two nonbonding electrons are treated in a subspace configuration interaction fashion while the remaining part is described by density functional theory (DFT). The vertical or adiabatic singlet-triplet energy gaps for a variety of categories of diradicals, including diatomic diradicals, carbene-like diradicals, disjoint diradicals, four-π-electron diradicals, and benzynes are calculated. Except for some excitations in four-π-electron diradicals, where four-electron correlation may play an important role, the singlet-triplet gaps are generally well predicted by pp-RPA. With a relatively low O(r(4)) scaling, the pp-RPA with DFT references outperforms spin-flip configuration interaction singles. It is similar to or better than the (variational) fractional-spin method. For small diradicals such as diatomic and carbene-like ones, the error of pp-RPA is slightly larger than noncollinear spin-flip time-dependent density functional theory (NC-SF-TDDFT) with LDA or PBE functional. However, for disjoint diradicals and benzynes, the pp-RPA performs much better and is comparable to NC-SF-TDDFT with long-range corrected ωPBEh functional and spin-flip configuration interaction singles with perturbative doubles (SF-CIS(D)). In particular, with a correct asymptotic behavior and being almost free from static correlation error, the pp-RPA with DFT references can well describe the challenging ground state and charge transfer excitations of disjoint diradicals in which almost all other DFT-based methods fail. Therefore, the pp-RPA could be a promising theoretical method for general diradical problems. PMID:25891638

  13. Interval neural networks

    SciTech Connect

    Patil, R.B.

    1995-05-01

    Traditional neural networks like multi-layered perceptrons (MLP) use example patterns, i.e., pairs of real-valued observation vectors, ({rvec x},{rvec y}), to approximate function {cflx f}({rvec x}) = {rvec y}. To determine the parameters of the approximation, a special version of the gradient descent method called back-propagation is widely used. In many situations, observations of the input and output variables are not precise; instead, we usually have intervals of possible values. The imprecision could be due to the limited accuracy of the measuring instrument or could reflect genuine uncertainty in the observed variables. In such situation input and output data consist of mixed data types; intervals and precise numbers. Function approximation in interval domains is considered in this paper. We discuss a modification of the classical backpropagation learning algorithm to interval domains. Results are presented with simple examples demonstrating few properties of nonlinear interval mapping as noise resistance and finding set of solutions to the function approximation problem.

  14. Quick benefits of interval training versus continuous training on bone: a dual-energy X-ray absorptiometry comparative study.

    PubMed

    Boudenot, Arnaud; Maurel, Delphine B; Pallu, Stéphane; Ingrand, Isabelle; Boisseau, Nathalie; Jaffré, Christelle; Portier, Hugues

    2015-12-01

    To delay age-related bone loss, physical activity is recommended during growth. However, it is unknown whether interval training is more efficient than continuous training to increase bone mass both quickly and to a greater extent. The aim of this study was to compare the effects of a 10-week interval training regime with a 14-week continuous training regime on bone mineral density (BMD). Forty-four male Wistar rats (8 weeks old) were separated into four groups: control for 10 weeks (C10), control for 14 weeks (C14), moderate interval training for 10 weeks (IT) and moderate continuous training for 14 weeks (CT). Rats were exercised 1 h/day, 5 day/week. Body composition and BMD of the whole body and femur respectively were assessed by dual-energy X-ray absorptiometry at baseline and after training to determine raw gain and weight-normalized BMD gain. Both trained groups had lower weight and fat mass gain when compared to controls. Both trained groups gained more BMD compared to controls when normalized to body weight. Using a 30% shorter training period, the IT group showed more than 20% higher whole body and femur BMD gains compared to the CT. Our data suggest that moderate IT was able to produce faster bone adaptations than moderate CT. PMID:26754273

  15. Severity evaluation of the transverse crack in a cylindrical part using a PZT wafer based on an interval energy approach

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Zheng, Jiajia; Song, Gangbing

    2016-03-01

    Transverse cracks in cylindrical parts can be detected by using the ultrasound based pulse-echo method, which has been widely used in industrial applications. However, it is still a challenge to identify the echoes reflected by a crack and bottom surfaces of a cylindrical part due to the multi-path propagation and wave mode conversion. In this paper, an interval energy approach is proposed to evaluate the severity of the transverse crack in a cylindrical part. Lead zirconate titanate patch transducers are used to generate the ultrasound pulse and to detect the echoes. The echo signals are preprocessed and divided into two zones, the normal reflection zone and the crack reflection zone. Two energy factors evaluating the severity of the crack are computed based on the interval energy. When using this proposed method, it is not necessary to identify the echo sources since all the crack and boundary echoes are automatically taken into consideration by using the proposed method. The experimental results indicate that proposed approach is more suitable and sensitive to evaluate the transverse crack severity of cylindrical part than the traditional method.

  16. Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies.

    PubMed

    Yang, Yang; Peng, Degao; Lu, Jianfeng; Yang, Weitao

    2014-09-28

    The particle-particle random phase approximation (pp-RPA) has been used to investigate excitation problems in our recent paper [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. It has been shown to be capable of describing double, Rydberg, and charge transfer excitations, which are challenging for conventional time-dependent density functional theory (TDDFT). However, its performance on larger molecules is unknown as a result of its expensive O(N(6)) scaling. In this article, we derive and implement a Davidson iterative algorithm for the pp-RPA to calculate the lowest few excitations for large systems. The formal scaling is reduced to O(N(4)), which is comparable with the commonly used configuration interaction singles (CIS) and TDDFT methods. With this iterative algorithm, we carried out benchmark tests on molecules that are significantly larger than the molecules in our previous paper with a reasonably large basis set. Despite some self-consistent field convergence problems with ground state calculations of (N - 2)-electron systems, we are able to accurately capture lowest few excitations for systems with converged calculations. Compared to CIS and TDDFT, there is no systematic bias for the pp-RPA with the mean signed error close to zero. The mean absolute error of pp-RPA with B3LYP or PBE references is similar to that of TDDFT, which suggests that the pp-RPA is a comparable method to TDDFT for large molecules. Moreover, excitations with relatively large non-HOMO excitation contributions are also well described in terms of excitation energies, as long as there is also a relatively large HOMO excitation contribution. These findings, in conjunction with the capability of pp-RPA for describing challenging excitations shown earlier, further demonstrate the potential of pp-RPA as a reliable and general method to describe excitations, and to be a good alternative to TDDFT methods. PMID:25273409

  17. Calculation of intermediate-energy electron-impact ionization of molecular hydrogen and nitrogen using the paraxial approximation

    SciTech Connect

    Serov, Vladislav V.

    2011-12-15

    We have implemented the paraxial approximation followed by the time-dependent Hartree-Fock method with a frozen core for the single impact ionization of atoms and two-atomic molecules. It reduces the original scattering problem to the solution of a five-dimensional time-dependent Schroedinger equation. Using this method, we calculated the multifold differential cross section of the impact single ionization of the helium atom, the hydrogen molecule, and the nitrogen molecule from the impact of intermediate-energy electrons. Our results for He and H{sub 2} are quite close to the experimental data. Surprisingly, for N{sub 2} the agreement is good for the paraxial approximation combined with first Born approximation but worse for pure paraxial approximation, apparently because of the insufficiency of the frozen-core approximation.

  18. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    NASA Astrophysics Data System (ADS)

    Alemi, Mallory; Loring, Roger F.

    2015-06-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  19. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    SciTech Connect

    Alemi, Mallory; Loring, Roger F.

    2015-06-07

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  20. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    PubMed Central

    Alemi, Mallory; Loring, Roger F.

    2015-01-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes. PMID:26049437

  1. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    SciTech Connect

    Singh, Kunwar Pal; Arya, Rashmi; Malik, Anil K.

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarized laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.

  2. Rapid approximate calculation of water binding free energies in the whole hydration domain of (bio)macromolecules.

    PubMed

    Reif, Maria M; Zacharias, Martin

    2016-07-01

    The evaluation of water binding free energies around solute molecules is important for the thermodynamic characterization of hydration or association processes. Here, a rapid approximate method to estimate water binding free energies around (bio)macromolecules from a single molecular dynamics simulation is presented. The basic idea is that endpoint free-energy calculation methods are applied and the endpoint quantities are monitored on a three-dimensional grid around the solute. Thus, a gridded map of water binding free energies around the solute is obtained, that is, from a single short simulation, a map of favorable and unfavorable water binding sites can be constructed. Among the employed free-energy calculation methods, approaches involving endpoint information pertaining to actual thermodynamic integration calculations or endpoint information as exploited in the linear interaction energy method were examined. The accuracy of the approximate approaches was evaluated on the hydration of a cage-like molecule representing either a nonpolar, polar, or charged water binding site and on α- and β-cyclodextrin molecules. Among the tested approaches, the linear interaction energy method is considered the most viable approach. Applying the linear interaction energy method on the grid around the solute, a semi-quantitative thermodynamic characterization of hydration around the whole solute is obtained. Disadvantages are the approximate nature of the method and a limited flexibility of the solute. © 2016 Wiley Periodicals, Inc. PMID:27185199

  3. Status of the Brueckner-Hartree-Fock approximation to the nuclear matter binding energy with the Paris potential

    SciTech Connect

    Schulze, H.; Cugnon, J.; Lejeune, A.; Baldo, M.; Lombardo, U.

    1995-11-01

    A new calculation of the binding energy of nuclear matter in the Brueckner-Hartree-Fock approximation with the Paris potential using the standard and continuous choices of single particle energies is presented, paying special attention to the numerical accuracy and higher partial waves. Comparison with other calculations is made and the accuracy of the state of the art for the Brueckner-Hartree-Fock method is assessed.

  4. Interbirth intervals

    PubMed Central

    Haig, David

    2014-01-01

    Background and objectives: Interbirth intervals (IBIs) mediate a trade-off between child number and child survival. Life history theory predicts that the evolutionarily optimal IBI differs for different individuals whose fitness is affected by how closely a mother spaces her children. The objective of the article is to clarify these conflicts and explore their implications for public health. Methodology: Simple models of inclusive fitness and kin conflict address the evolution of human birth-spacing. Results: Genes of infants generally favor longer intervals than genes of mothers, and infant genes of paternal origin generally favor longer IBIs than genes of maternal origin. Conclusions and implications: The colonization of maternal bodies by offspring cells (fetal microchimerism) raises the possibility that cells of older offspring could extend IBIs by interfering with the implantation of subsequent embryos. PMID:24480612

  5. Casimir bag energy in the stochastic approximation to the pure QCD vacuum

    SciTech Connect

    Fosco, C. D.; Oxman, L. E.

    2007-01-15

    We study the Casimir contribution to the bag energy coming from gluon field fluctuations, within the context of the stochastic vacuum model of pure QCD. After formulating the problem in terms of the generating functional of field strength cumulants, we argue that the resulting predictions about the Casimir energy are compatible with the phenomenologically required bag energy term.

  6. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications.

    PubMed

    Buchheit, Martin; Laursen, Paul B

    2013-10-01

    High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2-4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used 'classical' HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2-4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p(·)VO(2max)] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can

  7. Exact and approximate expressions of energy generation rates and their impact on the explosion properties of pair instability supernovae

    NASA Astrophysics Data System (ADS)

    Takahashi, Koh; Yoshida, Takashi; Umeda, Hideyuki; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2016-02-01

    Energetics of nuclear reaction is fundamentally important to understand the mechanism of pair instability supernovae (PISNe). Based on the hydrodynamic equations and thermodynamic relations, we derive exact expressions for energy conservation suitable to be solved in simulation. We also show that some formulae commonly used in the literature are obtained as approximations of the exact expressions. We simulate the evolution of very massive stars of ˜100-320 M⊙ with zero- and 1/10 Z⊙, and calculate further explosions as PISNe, applying each of the exact and approximate formulae. The calculations demonstrate that the explosion properties of PISN, such as the mass range, the 56Ni yield, and the explosion energy, are significantly affected by applying the different energy generation rates. We discuss how these results affect the estimate of the PISN detection rate, which depends on the theoretical predictions of such explosion properties.

  8. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations

    NASA Astrophysics Data System (ADS)

    Malshe, M.; Narulkar, R.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Agrawal, P. M.; Komanduri, R.

    2009-05-01

    A general method for the development of potential-energy hypersurfaces is presented. The method combines a many-body expansion to represent the potential-energy surface with two-layer neural networks (NN) for each M-body term in the summations. The total number of NNs required is significantly reduced by employing a moiety energy approximation. An algorithm is presented that efficiently adjusts all the coupled NN parameters to the database for the surface. Application of the method to four different systems of increasing complexity shows that the fitting accuracy of the method is good to excellent. For some cases, it exceeds that available by other methods currently in literature. The method is illustrated by fitting large databases of ab initio energies for Sin(n =3,4,…,7) clusters obtained from density functional theory calculations and for vinyl bromide (C2H3Br) and all products for dissociation into six open reaction channels (12 if the reverse reactions are counted as separate open channels) that include C-H and C-Br bond scissions, three-center HBr dissociation, and three-center H2 dissociation. The vinyl bromide database comprises the ab initio energies of 71 969 configurations computed at MP4(SDQ) level with a 6-31G(d,p) basis set for the carbon and hydrogen atoms and Huzinaga's (4333/433/4) basis set augmented with split outer s and p orbitals (43321/4321/4) and a polarization f orbital with an exponent of 0.5 for the bromine atom. It is found that an expansion truncated after the three-body terms is sufficient to fit the Si5 system with a mean absolute testing set error of 5.693×10-4 eV. Expansions truncated after the four-body terms for Sin(n =3,4,5) and Sin(n =3,4,…,7) provide fits whose mean absolute testing set errors are 0.0056 and 0.0212 eV, respectively. For vinyl bromide, a many-body expansion truncated after the four-body terms provides fitting accuracy with mean absolute testing set errors that range between 0.0782 and 0.0808 eV. These

  9. Interplay Between Condensation Energy, Pseudogap, and the Specific Heat of a Hubbard Model in a $n$ n -Pole Approximation

    NASA Astrophysics Data System (ADS)

    Lausmann, A. C.; Calegari, E. J.; Magalhaes, S. G.; Chaves, C. M.; Troper, A.

    2015-04-01

    The condensation energy and the specific heat jump of a two-dimensional Hubbard model, suitable to discuss high- superconductors, are studied. In this work, the Hubbard model is investigated by the Green's function method within a -pole approximation, which allows to consider superconductivity with -wave pairing. In the present scenario, the pseudogap regime emerges when the antiferromagnetic correlations become sufficiently strong to move to lower energies the region around of the nodal point on the renormalized bands. It is observed that above a given total occupation , the specific heat jump and also the condensation energy decrease signaling the presence of the pseudogap.

  10. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping

    PubMed Central

    Hatzer-Grubwieser, P.; Bauer, C.; Parson, W.; Unterberger, S. H.; Kuhn, V.; Pemberger, N.; Pallua, Anton K.; Recheis, W.; Lackner, R.; Stalder, R.; Pallua, J. D.

    2015-01-01

    In this study different state-of-the-art visualization methods such as micro-computed tomography (micro-CT), mid-infrared (MIR) microscopic imaging and energy dispersive X-ray (EDS) mapping were evaluated to study human skeletal remains for the determination of the post-mortem interval (PMI). PMI specific features were identified and visualized by overlaying molecular imaging data and morphological tissue structures generated by radiological techniques and microscopic images gained from confocal microscopy (Infinite Focus (IFM)). In this way, a more distinct picture concerning processes during the PMI as well as a more realistic approximation of the PMI were achieved. It could be demonstrated that the gained result in combination with multivariate data analysis can be used to predict the Ca/C ratio and bone volume (BV) over total volume (TV) for PMI estimation. Statistical limitation of this study is the small sample size, and future work will be based on more specimens to develop a screening tool for PMI based on the outcome of this multidimensional approach. PMID:25878731

  11. Vibration energy harvesting from a nonlinear standing beam-mass system using a two-mode approximation

    NASA Astrophysics Data System (ADS)

    Lajimi, S. A. M.; Friswell, M. I.

    2015-04-01

    For a nonlinear beam-mass system used to harvest vibratory energy, the two-mode approximation of the response is computed and compared to the single-mode approximation of the response. To this end, the discretized equations of generalized coordinates are developed and studied using a computational method. By obtaining phase-portraits and time-histories of the displacement and voltage, it is shown that the strong nonlinearity of the system affects the system dynamics considerably. By comparing the results of single- and two-mode approximations, it is shown that the number of mode shapes affects the dynamics of the response. Varying the tip-mass results in different structural configurations namely linear, pre-buckled nonlinear, and post-buckled nonlinear configurations. The nonlinear dynamics of the system response are investigated for vibrations about static equilibrium points arising from the buckling of the beam. Furthermore, it is demonstrated that the harvested power is affected by the system configuration.

  12. Differences among breed crosses of cattle in the conversion of food energy to calf weight during the preweaning interval.

    PubMed

    Jenkins, T G; Cundiff, L V; Ferrell, C L

    1991-07-01

    The objective of this study was to determine whether F1 cows that differ in genetic potential for weight at maturity and milk yield vary in the conversion of food energy to calf weight gain. Food intakes and weight change data were recorded by pen for cows and calves from approximately 45 d postpartum. Cows assigned to the study were 7- to 9-yr-old F1s produced by top-crossing Angus, Hereford, Brown Swiss, Chianina, Gelbvieh; Maine Anjou, and Red Poll sires to either Angus or Hereford dams. Calves were sired by Simmentals. Experimental units were pens (10 to 12 cow/calf pairs); pen was replicated within breed of sire in each of 2 yr (n = 24). Calf weight gain and energy consumed by the dams differed among the F1s, as did the ratio of calf weight gain to energy consumed by the calf and cow. Angus or Hereford (35.8), Red Poll (35.7), or Maine Anjou (35.6) F1s produced more calf weight per unit of energy consumed (g/Mcal) by the cow and calf than Chianina (33.1) or Gelbvieh (33.7) F1 females; Brown Swiss cows were intermediate (34.3). Differences in food conversion efficiency exist among breed crosses. These differences seem to be associated with breed cross differences in genetic potential for milk yield and mature weight; an exception to this trend was the Maine Anjou. PMID:1885388

  13. Folding funnels and energy landscapes of larger proteins within the capillarity approximation

    PubMed Central

    Wolynes, Peter G.

    1997-01-01

    The characterization of protein-folding kinetics with increasing chain length under various thermodynamic conditions is addressed using the capillarity picture in which distinct spatial regions of the protein are imagined to be folded or trapped and separated by interfaces. The quantitative capillarity theory is based on the nucleation theory of first-order transitions and the droplet analysis of glasses and random magnets. The concepts of folding funnels and rugged energy landscapes are shown to be applicable in the large size limit just as for smaller proteins. An ideal asymptotic free-energy profile as a function of a reaction coordinate measuring progress down the funnel is shown to be quite broad. This renders traditional transition state theory generally inapplicable but allows a diffusive picture with a transition-state region to be used. The analysis unifies several scaling arguments proposed earlier. The importance of fluctuational fine structure both to the free-energy profile and to the glassy dynamics is highlighted. The fluctuation effects lead to a very broad trapping-time distribution. Considerations necessary for understanding the crossover between the mean field and capillarity pictures of the energy landscapes are discussed. A variety of mechanisms that may roughen the interfaces and may lead to a complex structure of the transition-state ensemble are proposed. PMID:9177189

  14. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Krause, Katharina; Klopper, Wim

    2013-11-01

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations.

  15. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    SciTech Connect

    Krause, Katharina; Klopper, Wim

    2013-11-21

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn–Sham calculation accounting for spin–orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn–Sham calculations.

  16. Iterative and direct methods employing distributed approximating functionals for the reconstruction of a potential energy surface from its sampled values

    NASA Astrophysics Data System (ADS)

    Szalay, Viktor

    1999-11-01

    The reconstruction of a function from knowing only its values on a finite set of grid points, that is the construction of an analytical approximation reproducing the function with good accuracy everywhere within the sampled volume, is an important problem in all branches of sciences. One such problem in chemical physics is the determination of an analytical representation of Born-Oppenheimer potential energy surfaces by ab initio calculations which give the value of the potential at a finite set of grid points in configuration space. This article describes the rudiments of iterative and direct methods of potential surface reconstruction. The major new results are the derivation, numerical demonstration, and interpretation of a reconstruction formula. The reconstruction formula derived approximates the unknown function, say V, by linear combination of functions obtained by discretizing the continuous distributed approximating functional (DAF) approximation of V over the grid of sampling. The simplest of contracted and ordinary Hermite-DAFs are shown to be sufficient for reconstruction. The linear combination coefficients can be obtained either iteratively or directly by finding the minimal norm least-squares solution of a linear system of equations. Several numerical examples of reconstructing functions of one and two variables, and very different shape are given. The examples demonstrate the robustness, high accuracy, as well as the caveats of the proposed method. As to the mathematical foundation of the method, it is shown that the reconstruction formula can be interpreted as, and in fact is, frame expansion. By recognizing the relevance of frames in determining analytical approximation to potential energy surfaces, an extremely rich and beautiful toolbox of mathematics has come to our disposal. Thus, the simple reconstruction method derived in this paper can be refined, extended, and improved in numerous ways.

  17. Four-body corrected first Born approximation for single charge exchange at high impact energies

    NASA Astrophysics Data System (ADS)

    Mančev, Ivan

    1995-06-01

    Single electron capture is investigated by means of the four-body boundary corrected first Born approximation (CB1-4B). The "post" form of the transition amplitude for a general heteronuclear case (Zp; e1) + (ZT; e2) → (Zp; e1, e2) + ZT is derived in the form of readily obtainable two-dimensional real integrals. We investigate the sensitivity of the total cross sections to the choice of ground state wave function for helium-like atoms. Also, the influence of non-captured electron on the final results is studied. As an illustration, the CB1-4B method is used to compute the total cross sections for reactions: H(1s) + H(1s) → H-(1s2) + H+, He+(1s) + H(1s) → He(1s2) + H+ and He+(1s) + He+(1s) → He(1s2) + α. The theoretical cross sections are found to be in good agreement with the available experimental data.

  18. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity. PMID:27530803

  19. One-parameter optimization of a nonempirical meta-generalized-gradient-approximation for the exchange-correlation energy

    SciTech Connect

    Perdew, John P.; Ruzsinszky, Adrienn; Tao, Jianmin; Csonka, Gabor I.; Scuseria, Gustavo E.

    2007-10-15

    The meta-generalized-gradient-approximation (meta-GGA) for the exchange-correlation energy, as constructed by Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], has achieved usefully consistent accuracy for diverse systems and is the most reliable nonempirical density functional (and the most reliable nonhybrid) in common use. We present here an optimized version of this TPSS functional obtained by empirically fitting a single free parameter that controls the approach of the exchange enhancement factor to its rapidly-varying-density limit, while preserving all the exact constraints that the original TPSS functional satisfies. We find that molecular atomization energies are significantly improved with the optimized version and are even better than those obtained with the best hybrid functionals employing a fraction of exact exchange (e.g., the TPSS hybrid), while energy barrier heights are slightly improved; jellium surface energies remain accurate and almost unchanged. The one-parameter freedom of the TPSS functional may be useful even beyond the meta-GGA level, since the TPSS approximation is a natural starting point for the higher-level hyper-GGA.

  20. Lateral distribution of high energy muons in EAS of sizes Ne approximately equals 10(5) and Ne approximately equals 10(6)

    NASA Technical Reports Server (NTRS)

    Bazhutov, Y. N.; Ermakov, G. G.; Fomin, G. G.; Isaev, V. I.; Jarochkina, Z. V.; Kalmykov, N. N.; Khrenov, B. A.; Khristiansen, G. B.; Kulikov, G. V.; Motova, M. V.

    1985-01-01

    Muon energy spectra and muon lateral distribution in EAS were investigated with the underground magnetic spectrometer working as a part of the extensive air showers (EAS) array. For every registered muon the data on EAS are analyzed and the following EAS parameters are obtained, size N sub e, distance r from the shower axis to muon, age parameter s. The number of muons with energy over some threshold E associated to EAS of fixed parameters are measured, I sub reg. To obtain traditional characteristics, muon flux densities as a function of the distance r and muon energy E, muon lateral distribution and energy spectra are discussed for hadron-nucleus interaction model and composition of primary cosmic rays.

  1. Interfacial tension and wall energy of a Bose-Einstein condensate binary mixture: Triple-parabola approximation

    NASA Astrophysics Data System (ADS)

    Deng, Zehui; Schaeybroeck, Bert Van; Lin, Chang-You; Thu, Nguyen Van; Indekeu, Joseph O.

    2016-02-01

    Accurate and useful analytic approximations are developed for order parameter profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates. The pure condensates 1 and 2, each of which contains a particular species of atoms, feature healing lengths ξ1 and ξ2. The inter-atomic interactions are repulsive. In particular, the reduced inter-species repulsive interaction strength is K. A triple-parabola approximation (TPA) is proposed, to represent closely the energy density featured in Gross-Pitaevskii (GP) theory. This TPA allows us to define a model, which is a handy alternative to the full GP theory, while still possessing a simple analytic solution. The TPA offers a significant improvement over the recently introduced double-parabola approximation (DPA). In particular, a more accurate amplitude for the wall energy (of a single condensate) is derived and, importantly, a more correct expression for the interfacial tension (of two condensates) is obtained, which describes better its dependence on K in the strong segregation regime, while also the interface profiles undergo a qualitative improvement.

  2. Free Energy Contribution Analysis Using Response Kernel Approximation: Insights into the Acylation Reaction of a Beta-Lactamase.

    PubMed

    Asada, Toshio; Ando, Kanta; Bandyopadhyay, Pradipta; Koseki, Shiro

    2016-09-01

    A widely applicable free energy contribution analysis (FECA) method based on the quantum mechanical/molecular mechanical (QM/MM) approximation using response kernel approaches has been proposed to investigate the influences of environmental residues and/or atoms in the QM region on the free energy profile. This method can evaluate atomic contributions to the free energy along the reaction path including polarization effects on the QM region within a dramatically reduced computational time. The rate-limiting step in the deactivation of the β-lactam antibiotic cefalotin (CLS) by β-lactamase was studied using this method. The experimentally observed activation barrier was successfully reproduced by free energy perturbation calculations along the optimized reaction path that involved activation by the carboxylate moiety in CLS. It was found that the free energy profile in the QM region was slightly higher than the isolated energy and that two residues, Lys67 and Lys315, as well as water molecules deeply influenced the QM atoms associated with the bond alternation reaction in the acyl-enzyme intermediate. These facts suggested that the surrounding residues are favorable for the reactant complex and prevent the intermediate from being too stabilized to proceed to the following deacylation reaction. We have demonstrated that the free energy contribution analysis should be a useful method to investigate enzyme catalysis and to facilitate intelligent molecular design. PMID:27501066

  3. Detectability of auditory signals presented without defined observation intervals

    NASA Technical Reports Server (NTRS)

    Watson, C. S.; Nichols, T. L.

    1976-01-01

    Ability to detect tones in noise was measured without defined observation intervals. Latency density functions were estimated for the first response following a signal and, separately, for the first response following randomly distributed instances of background noise. Detection performance was measured by the maximum separation between the cumulative latency density functions for signal-plus-noise and for noise alone. Values of the index of detectability, estimated by this procedure, were approximately those obtained with a 2-dB weaker signal and defined observation intervals. Simulation of defined- and non-defined-interval tasks with an energy detector showed that this device performs very similarly to the human listener in both cases.

  4. Brownian motors in the low-energy approximation: Classification and properties

    SciTech Connect

    Rozenbaum, V. M.

    2010-04-15

    We classify Brownian motors based on the expansion of their velocity in terms of the reciprocal friction coefficient. The two main classes of motors (with dichotomic fluctuations in homogeneous force and periodic potential energy) are characterized by different analytical dependences of their mean velocity on the spatial and temporal asymmetry coefficients and by different adiabatic limits. The competition between the spatial and temporal asymmetries gives rise to stopping points. The transition through these points can be achieved by varying the asymmetry coefficients, temperature, and other motor parameters, which can be used, for example, for nanoparticle segregation. The proposed classification separates out a new type of motors based on synchronous fluctuations in symmetric potential and applied homogeneous force. As an example of this type of motors, we consider a near-surface motor whose two-dimensional motion (parallel and perpendicular to the substrate plane) results from fluctuations in external force inclined to the surface.

  5. Rigorous and unifying physical interpretation of the exchange potential and energy in the local-density approximation

    NASA Astrophysics Data System (ADS)

    Slamet, Marlina; Sahni, Viraht

    1992-02-01

    In this paper we explain that the exchange potential and energy in the local-density approximation (LDA) of density-functional theory has a IrigorousP and IunifiedP physical interpretation founded in the work of Harbola and Sahni. Accordingly, the IsourceP charge distribution that gives rise to both the LDA exchange (path-independent) potential IandP energy is the Fermi hole as derived in the gradient-expansion approximation (GEA) to O(∇). Thus, the LDA exchange potential, or equivalently the functional derivative of the LDA exchange-energy functional of the density, is the work required to bring an electron from infinity to its position at r against the force field of this charge distribution. The LDA exchange energy in turn is the energy of interaction between the electronic density and this charge. However, it is the non-spherically-symmetric component of the source charge that gives rise to the potential but its spherically symmetric component that contributes to the energy. Since the underlying physics of the LDA for exchange lies in its source charge, we next determine the structure of the GEA Fermi hole to O(∇) for the nonuniform electronic system in atoms and at metallic surfaces. A study of this structure as a function of electron position shows that the errors in the LDA arise because the source charge does not in general reproduce accurately the structure of the exact Fermi hole, that it violates the quantum-mechanical requirement of positivity, and further that it oscillates, albeit with decaying amplitude, far into the classically forbidden region.

  6. High-Intensity Interval Resistance Training (HIRT) influences resting energy expenditure and respiratory ratio in non-dieting individuals

    PubMed Central

    2012-01-01

    Background The benefits of exercise are well established but one major barrier for many is time. It has been proposed that short period resistance training (RT) could play a role in weight control by increasing resting energy expenditure (REE) but the effects of different kinds of RT has not been widely reported. Methods We tested the acute effects of high-intensity interval resistance training (HIRT) vs. traditional resistance training (TT) on REE and respiratory ratio (RR) at 22 hours post-exercise. In two separate sessions, seventeen trained males carried out HIRT and TT protocols. The HIRT technique consists of: 6 repetitions, 20 seconds rest, 2/3 repetitions, 20 secs rest, 2/3 repetitions with 2′30″ rest between sets, three exercises for a total of 7 sets. TT consisted of eight exercises of 4 sets of 8–12 repetitions with one/two minutes rest with a total amount of 32 sets. We measured basal REE and RR (TT0 and HIRT0) and 22 hours after the training session (TT22 and HIRT22). Results HIRT showed a greater significant increase (p < 0.001) in REE at 22 hours compared to TT (HIRT22 2362 ± 118 Kcal/d vs TT22 1999 ± 88 Kcal/d). RR at HIRT22 was significantly lower (0.798 ± 0.010) compared to both HIRT0 (0.827 ± 0.006) and TT22 (0.822 ± 0.008). Conclusions Our data suggest that shorter HIRT sessions may increase REE after exercise to a greater extent than TT and may reduce RR hence improving fat oxidation. The shorter exercise time commitment may help to reduce one major barrier to exercise. PMID:23176325

  7. Exchange energy gradients with respect to atomic positions and cell parameters within the Hartree-Fock Gamma-point approximation.

    PubMed

    Weber, Valéry; Daul, Claude; Challacombe, Matt

    2006-06-01

    Recently, linear scaling construction of the periodic exact Hartree-Fock exchange matrix within the Gamma-point approximation has been introduced [J. Chem. Phys. 122, 124105 (2005)]. In this article, a formalism for evaluation of analytical Hartree-Fock exchange energy gradients with respect to atomic positions and cell parameters at the Gamma-point approximation is presented. While the evaluation of exchange gradients with respect to atomic positions is similar to those in the gas phase limit, the gradients with respect to cell parameters involve the accumulation of atomic gradients multiplied by appropriate factors and a modified electron repulsion integral (ERI). This latter integral arises from use of the minimum image convention in the definition of the Gamma-point Hartree-Fock approximation. We demonstrate how this new ERI can be computed with the help of a modified vertical recurrence relation in the frame of the Obara-Saika and Head-Gordon-Pople algorithm. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm [K. Nemeth and M. Challacombe, J. Chem. Phys. 121, 2877 (2004)] to optimize periodic systems at the Hartree-Fock level of theory. PMID:16774396

  8. Exchange energy gradients with respect to atomic positions and cell parameters within the Hartree-Fock Γ-point approximation

    NASA Astrophysics Data System (ADS)

    Weber, Valéry; Daul, Claude; Challacombe, Matt

    2006-06-01

    Recently, linear scaling construction of the periodic exact Hartree-Fock exchange matrix within the Γ-point approximation has been introduced [J. Chem. Phys. 122, 124105 (2005)]. In this article, a formalism for evaluation of analytical Hartree-Fock exchange energy gradients with respect to atomic positions and cell parameters at the Γ-point approximation is presented. While the evaluation of exchange gradients with respect to atomic positions is similar to those in the gas phase limit, the gradients with respect to cell parameters involve the accumulation of atomic gradients multiplied by appropriate factors and a modified electron repulsion integral (ERI). This latter integral arises from use of the minimum image convention in the definition of the Γ-point Hartree-Fock approximation. We demonstrate how this new ERI can be computed with the help of a modified vertical recurrence relation in the frame of the Obara-Saika and Head-Gordon-Pople algorithm. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm [K. Németh and M. Challacombe, J. Chem. Phys. 121, 2877 (2004)] to optimize periodic systems at the Hartree-Fock level of theory.

  9. Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere

    NASA Astrophysics Data System (ADS)

    Schindlmayr, Arno

    2013-02-01

    The GW approximation for the electronic self-energy is an important tool for the quantitative prediction of excited states in solids, but its mathematical exploration is hampered by the fact that it must, in general, be evaluated numerically even for very simple systems. In this paper I describe a nontrivial model consisting of two electrons on the surface of a sphere, interacting with the normal long-range Coulomb potential, and show that the GW self-energy, in the absence of self-consistency, can in fact be derived completely analytically in this case. The resulting expression is subsequently used to analyze the convergence of the energy gap between the highest occupied and the lowest unoccupied quasiparticle orbital with respect to the total number of states included in the spectral summations. The asymptotic formula for the truncation error obtained in this way, whose dominant contribution is proportional to the cutoff energy to the power -3/2, may be adapted to extrapolate energy gaps in other systems.

  10. Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; VandeVondele, Joost

    2016-02-01

    Understanding charge transfer at electrochemical interfaces requires consistent treatment of electronic energy levels in solids and in water at the same level of the electronic structure theory. Using density-functional-theory-based molecular dynamics and thermodynamic integration, the free energy levels of six redox couples in water are calculated at the level of the random phase approximation and a double hybrid density functional. The redox levels, together with the water band positions, are aligned against a computational standard hydrogen electrode, allowing for critical analysis of errors compared to the experiment. It is encouraging that both methods offer a good description of the electronic structures of the solutes and water, showing promise for a full treatment of electrochemical interfaces.

  11. Approximate constants of motion for classically chaotic vibrational dynamics - Vague tori, semiclassical quantization, and classical intramolecular energy flow

    NASA Technical Reports Server (NTRS)

    Shirts, R. B.; Reinhardt, W. P.

    1982-01-01

    Substantial short time regularity, even in the chaotic regions of phase space, is found for what is seen as a large class of systems. This regularity manifests itself through the behavior of approximate constants of motion calculated by Pade summation of the Birkhoff-Gustavson normal form expansion; it is attributed to remnants of destroyed invariant tori in phase space. The remnant torus-like manifold structures are used to justify Einstein-Brillouin-Keller semiclassical quantization procedures for obtaining quantum energy levels, even in the absence of complete tori. They also provide a theoretical basis for the calculation of rate constants for intramolecular mode-mode energy transfer. These results are illustrated by means of a thorough analysis of the Henon-Heiles oscillator problem. Possible generality of the analysis is demonstrated by brief consideration of classical dynamics for the Barbanis Hamiltonian, Zeeman effect in hydrogen and recent results of Wolf and Hase (1980) for the H-C-C fragment.

  12. Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional.

    PubMed

    Cheng, Jun; VandeVondele, Joost

    2016-02-26

    Understanding charge transfer at electrochemical interfaces requires consistent treatment of electronic energy levels in solids and in water at the same level of the electronic structure theory. Using density-functional-theory-based molecular dynamics and thermodynamic integration, the free energy levels of six redox couples in water are calculated at the level of the random phase approximation and a double hybrid density functional. The redox levels, together with the water band positions, are aligned against a computational standard hydrogen electrode, allowing for critical analysis of errors compared to the experiment. It is encouraging that both methods offer a good description of the electronic structures of the solutes and water, showing promise for a full treatment of electrochemical interfaces. PMID:26967430

  13. Approximation of properties of hyperelastic materials with use of energy-based models and biaxial tension data

    NASA Astrophysics Data System (ADS)

    Jamróz, Weronika

    2016-06-01

    The paper shows the way enrgy-based models aproximate mechanical properties of hiperelastic materials. Main goal of research was to create a method of finding a set of material constants that are included in a strain energy function that constitutes a heart of an energy-based model. The most optimal set of material constants determines the best adjustment of a theoretical stress-strain relation to the experimental one. This kind of adjustment enables better prediction of behaviour of a chosen material. In order to obtain more precised solution the approximation was made with use of data obtained in a modern experiment widely describen in [1]. To save computation time main algorithm is based on genetic algorithms.

  14. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    PubMed

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations. PMID:26574370

  15. Interval estimates and their precision

    NASA Astrophysics Data System (ADS)

    Marek, Luboš; Vrabec, Michal

    2015-06-01

    A task very often met in in practice is computation of confidence interval bounds for the relative frequency within sampling without replacement. A typical situation includes preelection estimates and similar tasks. In other words, we build the confidence interval for the parameter value M in the parent population of size N on the basis of a random sample of size n. There are many ways to build this interval. We can use a normal or binomial approximation. More accurate values can be looked up in tables. We consider one more method, based on MS Excel calculations. In our paper we compare these different methods for specific values of M and we discuss when the considered methods are suitable. The aim of the article is not a publication of new theoretical methods. This article aims to show that there is a very simple way how to compute the confidence interval bounds without approximations, without tables and without other software costs.

  16. Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV

    SciTech Connect

    Li, Z. P.; Hillhouse, G. C.; Meng, J.

    2008-07-15

    We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a {sup 208}Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to {sigma}N and {omega}N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely, total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction also play an increasingly important role at energies lower than 100 MeV.

  17. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    SciTech Connect

    Mussard, Bastien; Reinhardt, Peter; Toulouse, Julien; Ángyán, János G.

    2015-04-21

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

  18. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    NASA Astrophysics Data System (ADS)

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2016-03-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional HTCH407, about Fermi energy. Then, one-shot GW (G0W0) correction for precise computations of band structure is applied. Quasi-direct band gap of penta-graphene is obtained around 4.1-4.3 eV by G0W0 correction. Penta-graphene is an insulator and can be expected to have broad applications in future, especially in nanoelectronics and nanomechanics.

  19. Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation

    NASA Astrophysics Data System (ADS)

    Waldecker, Lutz; Bertoni, Roman; Ernstorfer, Ralph; Vorberger, Jan

    2016-04-01

    The electron-phonon coupling and the corresponding energy exchange are investigated experimentally and by ab initio theory in nonequilibrium states of the free-electron metal aluminium. The temporal evolution of the atomic mean-squared displacement in laser-excited thin freestanding films is monitored by femtosecond electron diffraction. The electron-phonon coupling strength is obtained for a range of electronic and lattice temperatures from density functional theory molecular dynamics simulations. The electron-phonon coupling parameter extracted from the experimental data in the framework of a two-temperature model (TTM) deviates significantly from the ab initio values. We introduce a nonthermal lattice model (NLM) for describing nonthermal phonon distributions as a sum of thermal distributions of the three phonon branches. The contributions of individual phonon branches to the electron-phonon coupling are considered independently and found to be dominated by longitudinal acoustic phonons. Using all material parameters from first-principles calculations except the phonon-phonon coupling strength, the prediction of the energy transfer from electrons to phonons by the NLM is in excellent agreement with time-resolved diffraction data. Our results suggest that the TTM is insufficient for describing the microscopic energy flow even for simple metals like aluminium and that the determination of the electron-phonon coupling constant from time-resolved experiments by means of the TTM leads to incorrect values. In contrast, the NLM describing transient phonon populations by three parameters appears to be a sufficient model for quantitatively describing electron-lattice equilibration in aluminium. We discuss the general applicability of the NLM and provide a criterion for the suitability of the two-temperature approximation for other metals.

  20. The use of two-stream approximations for the parameterization of solar radiative energy fluxes through vegetation

    SciTech Connect

    Joseph, J.H.; Iaquinta, J.; Pinty, B.

    1996-10-01

    Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system. For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to make this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to be acceptable by other researchers and, in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND`s as well as experimental data for 17 plant canopies. It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LAND`s. However, only the uniform and planophile LANDS lead to canopy hemispheric reflectances, which are markedly different from one another. The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must be made on the basis of experimental data. 30 refs., 5 figs.

  1. The Use of Two-Stream Approximations for the Parameterization of Solar Radiative Energy Fluxes through Vegetation.

    NASA Astrophysics Data System (ADS)

    Josepoh, Joachim H.; Laquinta, Jean; Pinty, Bernard

    1996-10-01

    Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system.For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to nuke this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to he acceptable by other researchers and. in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND's as well as experimental data for 17 plant canopies.It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LANDS. However, only the uniform and planophile LANDs lead to canopy hemispheric reflectances, which are markedly different from one another.The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must he made on the basis of experimental data.

  2. Enforcing the linear behavior of the total energy with hybrid functionals: Implications for charge transfer, interaction energies, and the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Atalla, Viktor; Zhang, Igor Ying; Hofmann, Oliver T.; Ren, Xinguo; Rinke, Patrick; Scheffler, Matthias

    2016-07-01

    We obtain the exchange parameter of hybrid functionals by imposing the fundamental condition of a piecewise linear total energy with respect to electron number. For the Perdew-Burke-Ernzerhof (PBE) hybrid family of exchange-correlation functionals (i.e., for an approximate generalized Kohn-Sham theory) this implies that (i) the highest occupied molecular orbital corresponds to the ionization potential (I ), (ii) the energy of the lowest unoccupied molecular orbital corresponds to the electron affinity (A ), and (iii) the energies of the frontier orbitals are constant as a function of their occupation. In agreement with a previous study [N. Sai et al., Phys. Rev. Lett. 106, 226403 (2011), 10.1103/PhysRevLett.106.226403], we find that these conditions are met for high values of the exact exchange admixture α and illustrate their importance for the tetrathiafulvalene-tetracyanoquinodimethane complex for which standard density functional theory functionals predict artificial electron transfer. We further assess the performance for atomization energies and weak interaction energies. We find that atomization energies are significantly underestimated compared to PBE or PBE0, whereas the description of weak interaction energies improves significantly if a 1 /R6 van der Waals correction scheme is employed.

  3. Second-Order Approximate Symmetries of the Geodesic Equations for the Reissner-Nordström Metric and Re-Scaling of Energy of a Test Particle

    NASA Astrophysics Data System (ADS)

    Hussain, Ibrar; Mahomed, Fazal M.; Qadir, Asghar

    2007-12-01

    Following the use of approximate symmetries for the Schwarzschild spacetime by A.H. Kara, F.M. Mahomed and A. Qadir (Nonlinear Dynam., to appear), we have investigated the exact and approximate symmetries of the system of geodesic equations for the Reissner-Nordström spacetime (RN). For this purpose we are forced to use second order approximate symmetries. It is shown that in the second-order approximation, energy must be rescaled for the RN metric. The implications of this rescaling are discussed.

  4. Theory of strongly correlated electron systems. I. Intersite Coulomb interaction and the approximation of renormalized fermions in total energy calculations

    NASA Astrophysics Data System (ADS)

    Sandalov, I.; Lundin, U.; Eriksson, O.

    The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many-electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many-electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange-correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LDA (RF LDA), is obtained by introducing the spectral weights of the many-electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LDA, and taking into account the

  5. Forward dijets in high-energy collisions: Evolution of QCD n-point functions beyond the dipole approximation

    SciTech Connect

    Dumitru, Adrian; Jalilian-Marian, Jamal

    2010-10-01

    Present knowledge of QCD n-point functions of Wilson lines at high energies is rather limited. In practical applications, it is therefore customary to factorize higher n-point functions into products of two-point functions (dipoles) which satisfy the Balitsky-Kovchegov-evolution equation. We employ the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner formalism to derive explicit evolution equations for the 4- and 6-point functions of fundamental Wilson lines and show that if the Gaussian approximation is carried out before the rapidity evolution step is taken, then many leading order N{sub c} contributions are missed. Our evolution equations could specifically be used to improve calculations of forward dijet angular correlations, recently measured by the STAR Collaboration in deuteron-gold collisions at the RHIC collider. Forward dijets in proton-proton collisions at the LHC probe QCD evolution at even smaller light-cone momentum fractions. Such correlations may provide insight into genuine differences between the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner and Balitsky-Kovchegov approaches.

  6. Polarization corrections to single-particle energies studied within the energy-density-functional and quasiparticle random-phase approximation approaches

    NASA Astrophysics Data System (ADS)

    Tarpanov, D.; Toivanen, J.; Dobaczewski, J.; Carlsson, B. G.

    2014-01-01

    Background: Models based on using perturbative polarization corrections and mean-field blocking approximation give conflicting results for masses of odd nuclei. Purpose: We systematically investigate the polarization and mean-field models, implemented within self-consistent approaches that use identical interactions and model spaces, to find reasons for the conflicts between them. Methods: For density-dependent interactions and with pairing correlations included, we derive and study links between the mean-field and polarization results obtained for energies of odd nuclei. We also identify and discuss differences between the polarization-correction and full particle-vibration-coupling (PVC) models. Numerical calculations are performed for the mean-field ground-state properties of deformed odd nuclei and then compared to the polarization corrections determined using the approach that conserves spherical symmetry. Results: We have identified and numerically evaluated self-interaction (SI) energies that are at the origin of different results obtained within the mean-field and polarization-correction approaches. Conclusions: Mean-field energies of odd nuclei are polluted by the SI energies, and this makes them different from those obtained using polarization-correction methods. A comparison of both approaches allows for the identification and determination of the SI terms, which then can be calculated and removed from the mean-field results, giving the self-interaction-free energies. The simplest deformed mean-field approach that does not break parity symmetry is unable to reproduce full PVC effects.

  7. Bounds on the overlap of the Hartree-Fock, optimized effective potential, and density functional approximations with the exact energy eigenstates.

    PubMed

    Thanos, S; Theophilou, A K

    2006-05-28

    In this paper, we examine the limits of accuracy of the single determinant approximations (Hartree-Fock, optimized effective potential, and density functional theory) to the exact energy eigenstates of many electron systems. We show that an approximate Slater determinant of S(z)=M gives maximum accuracy for states with S=M, provided that perturbation theory for the spin up minus spin down potential is applicable. The overlap with the exact energy eigenstates with S not equal M is much smaller. Therefore, for the case that the emphasis is on wave functions, one must use symmetry preserving theories, although this is at the expense of accuracy in energy. PMID:16774321

  8. Estimating the Gibbs energy of hydration from molecular dynamics trajectories obtained by integral equations of the theory of liquids in the RISM approximation

    NASA Astrophysics Data System (ADS)

    Tikhonov, D. A.; Sobolev, E. V.

    2011-04-01

    A method of integral equations of the theory of liquids in the reference interaction site model (RISM) approximation is used to estimate the Gibbs energy averaged over equilibrium trajectories computed by molecular mechanics. Peptide oxytocin is selected as the object of interest. The Gibbs energy is calculated using all chemical potential formulas introduced in the RISM approach for the excess chemical potential of solvation and is compared with estimates by the generalized Born model. Some formulas are shown to give the wrong sign of Gibbs energy changes when peptide passes from the gas phase into water environment; the other formulas give overestimated Gibbs energy changes with the right sign. Note that allowance for the repulsive correction in the approximate analytical expressions for the Gibbs energy derived by thermodynamic perturbation theory is not a remedy.

  9. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    SciTech Connect

    De Souza, J.C.C.; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  10. Shortening the retention interval of 24-hour dietary recalls increases fourth-grade children’s accuracy for reporting energy and macronutrient intake at school meals

    PubMed Central

    Guinn, Caroline H.; Royer, Julie A.; Hardin, James W.; Mackelprang, Alyssa J.; Smith, Albert F.

    2010-01-01

    Background Accurate information about children’s intake is crucial for national nutrition policy and for research and clinical activities. To analyze accuracy for reporting energy and nutrients, most validation studies utilize the conventional approach which was not designed to capture errors of reported foods and amounts. The reporting-error-sensitive approach captures errors of reported foods and amounts. Objective To extend results to energy and macronutrients for a validation study concerning retention interval (elapsed time between to-be-reported meals and the interview) and accuracy for reporting school-meal intake, the conventional and reporting-error-sensitive approaches were compared. Design and participants/setting Fourth-grade children (n=374) were observed eating two school meals, and interviewed to obtain a 24-hour recall using one of six interview conditions from crossing two target periods (prior-24-hours; previous-day) with three interview times (morning; afternoon; evening). Data were collected in one district during three school years (2004–2005; 2005–2006; 2006–2007). Main outcome measures Report rates (reported/observed), correspondence rates (correctly reported/observed), and inflation ratios (intruded/observed) were calculated for energy and macronutrients. Statistical analyses performed For each outcome measure, mixed-model analysis of variance was conducted with target period, interview time, their interaction, and sex in the model; results were adjusted for school year and interviewer. Results Conventional approach — Report rates for energy and macronutrients did not differ by target period, interview time, their interaction, or sex. Reporting-error-sensitive approach — Correspondence rates for energy and macronutrients differed by target period (four P-values<0.0001) and the target-period by interview-time interaction (four P-values<0.0001); inflation ratios for energy and macronutrients differed by target period (four P

  11. Dual quantum electrodynamics: Dyon-dyon and charge-monopole scattering in a high-energy approximation

    SciTech Connect

    Gamberg, Leonard; Milton, Kimball A.

    2000-04-01

    We develop the quantum field theory of electron-point magnetic monopole interactions and, more generally, dyon-dyon interactions, based on the original string-dependent ''nonlocal'' action of Dirac and Schwinger. We demonstrate that a viable nonperturbative quantum field theoretic formulation can be constructed that results in a string independent cross section for monopole-electron and dyon-dyon scattering. Such calculations can be done only by using nonperturbative approximations such as the eikonal approximation and not by some mutilation of lowest-order perturbation theory. (c) 2000 The American Physical Society.

  12. Dual quantum electrodynamics: Dyon-dyon and charge-monopole scattering in a high-energy approximation

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard; Milton, Kimball A.

    2000-04-01

    We develop the quantum field theory of electron-point magnetic monopole interactions and, more generally, dyon-dyon interactions, based on the original string-dependent ``nonlocal'' action of Dirac and Schwinger. We demonstrate that a viable nonperturbative quantum field theoretic formulation can be constructed that results in a string independent cross section for monopole-electron and dyon-dyon scattering. Such calculations can be done only by using nonperturbative approximations such as the eikonal approximation and not by some mutilation of lowest-order perturbation theory.

  13. /sup 187/Os + n resonance parameters in the interval 27-500 eV neutron energies

    SciTech Connect

    Winters, R.R.; Carlton, R.F.; Harvey, J.A.; Hill, N.W.

    1982-01-01

    The neutron total cross section for /sup 187/Os, in the energy range, 27 eV to 500 eV, has been measured at the ORELA facility by the neutron time-of-flight technique, utilizing a 2.0 gm osmium sample (n = 0.008401 Os-nuclei/barn) enriched to 70.38% /sup 187/Os. Measurements were performed at a 80 m flight station with an energy resolution, ..delta..E/E, of 0.1% using a /sup 6/Li glass scintillator. Resolved resonances have been analyzed by a Reich-Moore multilevel code (SAMMY) to obtain parameters for 85 resonances up to 500 eV. Preliminary determinations of the level spacing (5 eV) and s-wave strength function (3.9 x 10/sup -4/) for /sup 187/Os are in agreement with recent analyses of the osmium isotopes, made in connection with the use of the Re/Os chronometer for estimating the duration of stellar nucleosynthesis.

  14. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    ERIC Educational Resources Information Center

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  15. Photofission Cross Sections for {sup 237}Np in the Energy Interval from 5.27 to 10.83 MeV

    SciTech Connect

    Geraldo, L.P.; Semmler, R.; Goncalez, O. L.; Arruda-Neto, J.D.T.; Garcia, F.; Rodriguez, O.

    2000-11-15

    Photofission cross sections for {sup 237}Np have been measured as a function of energy, in the interval from 5.27 to 10.83 MeV. The gamma-ray spectra were those produced by thermal neutron capture, in 30 different target materials, at a tangential beam hole of the Instituto de Pesquisas Energeticas e Nucleares IEA-R1 2-MW research reactor. The set of experimental data has been unfolded employing least-squares methods and the covariance matrix methodology. The determined photofission cross sections for {sup 237}Np, together with the complete correlation matrix for the involved errors, are presented and are compared with previous measurements reported in the literature. A statistical calculation for the {sup 237}Np photofission cross sections was performed, and the results are compared with the experimental data.

  16. Neutrinos of energy approximately 10(16) eV from gamma-ray bursts in pulsar wind bubbles.

    PubMed

    Guetta, Dafne; Granot, Jonathan

    2003-05-23

    The supranova model for gamma-ray bursts (GRBs) is becoming increasingly more popular. In this scenario the GRB occurs weeks to years after a supernova explosion, and is located inside a pulsar wind bubble (PWB). Protons accelerated in the internal shocks that emit the GRB may interact with the external PWB photons producing pions which decay into approximately 10(16) eV neutrinos. A km(2) neutrino detector would observe several events per year correlated with the GRBs. PMID:12785881

  17. Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation-Hauser-Feshbach model

    SciTech Connect

    Kawano, T.; Moeller, P.; Wilson, W. B.

    2008-11-15

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  18. On the errors of local density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham potential and orbital energies.

    PubMed

    Gritsenko, O V; Mentel, Ł M; Baerends, E J

    2016-05-28

    In spite of the high quality of exchange-correlation energies Exc obtained with the generalized gradient approximations (GGAs) of density functional theory, their xc potentials vxc are strongly deficient, yielding upshifts of ca. 5 eV in the orbital energy spectrum (in the order of 50% of high-lying valence orbital energies). The GGAs share this deficiency with the local density approximation (LDA). We argue that this error is not caused by the incorrect long-range asymptotics of vxc or by self-interaction error. It arises from incorrect density dependencies of LDA and GGA exchange functionals leading to incorrect (too repulsive) functional derivatives (i.e., response parts of the potentials). The vxc potential is partitioned into the potential of the xc hole vxchole (twice the xc energy density ϵxc), which determines Exc, and the response potential vresp, which does not contribute to Exc explicitly. The substantial upshift of LDA/GGA orbital energies is due to a too repulsive LDA exchange response potential vxresp (LDA) in the bulk region. Retaining the LDA exchange hole potential plus the B88 gradient correction to it but replacing the response parts of these potentials by the model orbital-dependent response potential vxresp (GLLB) of Gritsenko et al. [Phys. Rev. A 51, 1944 (1995)], which has the proper step-wise form, improves the orbital energies by more than an order of magnitude. Examples are given for the prototype molecules: dihydrogen, dinitrogen, carbon monoxide, ethylene, formaldehyde, and formic acid. PMID:27250286

  19. Programming with Intervals

    NASA Astrophysics Data System (ADS)

    Matsakis, Nicholas D.; Gross, Thomas R.

    Intervals are a new, higher-level primitive for parallel programming with which programmers directly construct the program schedule. Programs using intervals can be statically analyzed to ensure that they do not deadlock or contain data races. In this paper, we demonstrate the flexibility of intervals by showing how to use them to emulate common parallel control-flow constructs like barriers and signals, as well as higher-level patterns such as bounded-buffer producer-consumer. We have implemented intervals as a publicly available library for Java and Scala.

  20. Ensemble v-representable ab initio density-functional calculation of energy and spin in atoms: A test of exchange-correlation approximations

    SciTech Connect

    Kraisler, Eli; Makov, Guy; Kelson, Itzhak

    2010-10-15

    The total energies and the spin states for atoms and their first ions with Z=1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable are treated as ensemble v-representable with fractional occupations of the Kohn-Sham system. A recently developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms, the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g., in lanthanides. The spin values calculated ab initio fit the experiment for most atoms and are almost unaffected by the choice of the xc functional. Among the systems with incorrectly obtained spin, there exist some cases (e.g., V, Pt) for which the result is found to be stable with respect to small variations in the xc approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a nonlocal nature, to accurately describe such systems.

  1. Piecewise linear approximation for hereditary control problems

    NASA Technical Reports Server (NTRS)

    Propst, Georg

    1990-01-01

    This paper presents finite-dimensional approximations for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems, when a quadratic cost integral must be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in the case where the cost integral ranges over a finite time interval, as well as in the case where it ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense.

  2. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Mozhdeh; Jamshidi, Zahra

    2016-05-01

    The prospect of challenges in reproducing and interpretation of resonance Raman properties of molecules interacting with metal clusters has prompted the present research initiative. Resonance Raman spectra based on the time-dependent gradient approximation are examined in the framework of density functional theory using different methods for representing the exchange-correlation functional. In this work the performance of different XC functionals in the prediction of ground state properties, excitation state energies, and gradients are compared and discussed. Resonance Raman properties based on time-dependent gradient approximation for the strongly low-lying charge transfer states are calculated and compared for different methods. We draw the following conclusions: (1) for calculating the binding energy and ground state geometry, dispersion-corrected functionals give the best performance in comparison to ab initio calculations, (2) GGA and meta GGA functionals give good accuracy in calculating vibrational frequencies, (3) excited state energies determined by hybrid and range-separated hybrid functionals are in good agreement with EOM-CCSD calculations, and (4) in calculating resonance Raman properties GGA functionals give good and reasonable performance in comparison to the experiment; however, calculating the excited state gradient by using the hybrid functional on the hessian of GGA improves the results of the hybrid functional significantly. Finally, we conclude that the agreement of charge-transfer surface enhanced resonance Raman spectra with experiment is improved significantly by using the excited state gradient approximation.

  3. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation.

    PubMed

    Mohammadpour, Mozhdeh; Jamshidi, Zahra

    2016-05-21

    The prospect of challenges in reproducing and interpretation of resonance Raman properties of molecules interacting with metal clusters has prompted the present research initiative. Resonance Raman spectra based on the time-dependent gradient approximation are examined in the framework of density functional theory using different methods for representing the exchange-correlation functional. In this work the performance of different XC functionals in the prediction of ground state properties, excitation state energies, and gradients are compared and discussed. Resonance Raman properties based on time-dependent gradient approximation for the strongly low-lying charge transfer states are calculated and compared for different methods. We draw the following conclusions: (1) for calculating the binding energy and ground state geometry, dispersion-corrected functionals give the best performance in comparison to ab initio calculations, (2) GGA and meta GGA functionals give good accuracy in calculating vibrational frequencies, (3) excited state energies determined by hybrid and range-separated hybrid functionals are in good agreement with EOM-CCSD calculations, and (4) in calculating resonance Raman properties GGA functionals give good and reasonable performance in comparison to the experiment; however, calculating the excited state gradient by using the hybrid functional on the hessian of GGA improves the results of the hybrid functional significantly. Finally, we conclude that the agreement of charge-transfer surface enhanced resonance Raman spectra with experiment is improved significantly by using the excited state gradient approximation. PMID:27208944

  4. Convergent sum of gradient expansion of the kinetic-energy density functional up to the sixth order term using Padé approximant

    NASA Astrophysics Data System (ADS)

    Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.

    2016-04-01

    The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.

  5. Few-particles generation channels in inelastic hadron-nuclear interactions at energy approximately equals 400 GeV

    NASA Technical Reports Server (NTRS)

    Tsomaya, P. V.

    1985-01-01

    The behavior of the few-particles generation channels in interaction of hadrons with nuclei of CH2, Al, Cu and Pb at mean energy 400 GeV was investigated. The values of coherent production cross-sections beta coh at the investigated nuclei are given. A dependence of coherent and noncoherent events is investigated. The results are compared with the simulations on additive quark model (AQM).

  6. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation.

    PubMed

    Bozkaya, Uğur; Sherrill, C David

    2016-05-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies. PMID:27155621

  7. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur; Sherrill, C. David

    2016-05-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.

  8. Efficient implementation of the analytic second derivatives of Hartree-Fock and hybrid DFT energies: a detailed analysis of different approximations

    NASA Astrophysics Data System (ADS)

    Bykov, Dmytro; Petrenko, Taras; Izsák, Róbert; Kossmann, Simone; Becker, Ute; Valeev, Edward; Neese, Frank

    2015-07-01

    In this paper, various implementations of the analytic Hartree-Fock and hybrid density functional energy second derivatives are studied. An approximation-free four-centre implementation is presented, and its accuracy is rigorously analysed in terms of self-consistent field (SCF), coupled-perturbed SCF (CP-SCF) convergence and prescreening criteria. The CP-SCF residual norm convergence threshold turns out to be the most important of these. Final choices of convergence thresholds are made such that an accuracy of the vibrational frequencies of better than 5 cm-1 compared to the numerical noise-free results is obtained, even for the highly sensitive low frequencies (<100-200 cm-1). The effects of the choice of numerical grid for density functional exchange-correlation integrations are studied and various weight derivative schemes are analysed in detail. In the second step of the work, approximations are introduced in order to speed up the computation without compromising its accuracy. To this end, the accuracy and efficiency of the resolution of identity approximation for the Coulomb terms and the semi-numerical chain of spheres approximation to the exchange terms are carefully analysed. It is shown that the largest performance improvements are realised if either Hartree-Fock exchange is absent (pure density functionals) and otherwise, if the exchange terms in the CP-SCF step of the calculation are approximated by the COSX method in conjunction with a small integration grid. Default values for all the involved truncation parameters are suggested. For vancomycine (176 atoms and 3593 basis functions), the RIJCOSX Hessian calculation with the B3LYP functional and the def2-TZVP basis set takes ∼3 days using 16 Intel® Xeon® 2.60GHz processors with the COSX algorithm having a net parallelisation scaling of 11.9 which is at least ∼20 times faster than the calculation without the RIJCOSX approximation.

  9. Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Lu, Dan; Ye, Ming; Hill, Mary C.

    2012-09-01

    Confidence intervals based on classical regression theories augmented to include prior information and credible intervals based on Bayesian theories are conceptually different ways to quantify parametric and predictive uncertainties. Because both confidence and credible intervals are used in environmental modeling, we seek to understand their differences and similarities. This is of interest in part because calculating confidence intervals typically requires tens to thousands of model runs, while Bayesian credible intervals typically require tens of thousands to millions of model runs. Given multi-Gaussian distributed observation errors, our theoretical analysis shows that, for linear or linearized-nonlinear models, confidence and credible intervals are always numerically identical when consistent prior information is used. For nonlinear models, nonlinear confidence and credible intervals can be numerically identical if parameter confidence regions defined using the approximate likelihood method and parameter credible regions estimated using Markov chain Monte Carlo realizations are numerically identical and predictions are a smooth, monotonic function of the parameters. Both occur if intrinsic model nonlinearity is small. While the conditions of Gaussian errors and small intrinsic model nonlinearity are violated by many environmental models, heuristic tests using analytical and numerical models suggest that linear and nonlinear confidence intervals can be useful approximations of uncertainty even under significantly nonideal conditions. In the context of epistemic model error for a complex synthetic nonlinear groundwater problem, the linear and nonlinear confidence and credible intervals for individual models performed similarly enough to indicate that the computationally frugal confidence intervals can be useful in many circumstances. Experiences with these groundwater models are expected to be broadly applicable to many environmental models. We suggest that for

  10. The Vertical-current Approximation Nonlinear Force-free Field Code—Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2016-06-01

    In this work we provide an updated description of the Vertical-Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, non-potential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann, we find agreement in the potential, non-potential, and free energy within a factor of ≲ 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare energies. The VCA-NLFFF code is found to detect decreases in flare energies in most X, M, and C-class flares. The successful detection of energy decreases during a variety of flares with the VCA-NLFFF code indicates that current-driven twisting and untwisting of the magnetic field is an adequate model to quantify the storage of magnetic energies in active regions and their dissipation during flares. The VCA-NLFFF code is also publicly available in the Solar SoftWare.

  11. Interval polynomial positivity

    NASA Technical Reports Server (NTRS)

    Bose, N. K.; Kim, K. D.

    1989-01-01

    It is shown that a univariate interval polynomial is globally positive if and only if two extreme polynomials are globally positive. It is shown that the global positivity property of a bivariate interval polynomial is completely determined by four extreme bivariate polynomials. The cardinality of the determining set for k-variate interval polynomials is 2k. One of many possible generalizations, where vertex implication for global positivity holds, is made by considering the parameter space to be the set dual of a boxed domain.

  12. On the errors of local density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham potential and orbital energies

    NASA Astrophysics Data System (ADS)

    Gritsenko, O. V.; Mentel, Ł. M.; Baerends, E. J.

    2016-05-01

    In spite of the high quality of exchange-correlation energies Exc obtained with the generalized gradient approximations (GGAs) of density functional theory, their xc potentials vxc are strongly deficient, yielding upshifts of ca. 5 eV in the orbital energy spectrum (in the order of 50% of high-lying valence orbital energies). The GGAs share this deficiency with the local density approximation (LDA). We argue that this error is not caused by the incorrect long-range asymptotics of vxc or by self-interaction error. It arises from incorrect density dependencies of LDA and GGA exchange functionals leading to incorrect (too repulsive) functional derivatives (i.e., response parts of the potentials). The vxc potential is partitioned into the potential of the xc hole vxchole (twice the xc energy density ɛxc), which determines Exc, and the response potential vresp, which does not contribute to Exc explicitly. The substantial upshift of LDA/GGA orbital energies is due to a too repulsive LDA exchange response potential vxresp L D A in the bulk region. Retaining the LDA exchange hole potential plus the B88 gradient correction to it but replacing the response parts of these potentials by the model orbital-dependent response potential vxresp G L L B of Gritsenko et al. [Phys. Rev. A 51, 1944 (1995)], which has the proper step-wise form, improves the orbital energies by more than an order of magnitude. Examples are given for the prototype molecules: dihydrogen, dinitrogen, carbon monoxide, ethylene, formaldehyde, and formic acid.

  13. GW approximation study of late transition metal oxides: Spectral function clusters around Fermi energy as the mechanism behind smearing in momentum density

    NASA Astrophysics Data System (ADS)

    Khidzir, S. M.; Ibrahim, K. N.; Wan Abdullah, W. A. T.

    2016-05-01

    Momentum density studies are the key tool in Fermiology in which electronic structure calculations have proven to be the integral underlying methodology. Agreements between experimental techniques such as Compton scattering experiments and conventional density functional calculations for late transition metal oxides (TMOs) prove elusive. In this work, we report improved momentum densities of late TMOs using the GW approximation (GWA) which appears to smear the momentum density creating occupancy above the Fermi break. The smearing is found to be largest for NiO and we will show that it is due to more spectra surrounding the NiO Fermi energy compared to the spectra around the Fermi energies of FeO and CoO. This highlights the importance of the positioning of the Fermi energy and the role played by the self-energy term to broaden the spectra and we elaborate on this point by comparing the GWA momentum densities to their LDA counterparts and conclude that the larger difference at the intermediate level shows that the self-energy has its largest effect in this region. We finally analyzed the quasiparticle renormalization factor and conclude that an increase of electrons in the d-orbital from FeO to NiO plays a vital role in changing the magnitude of electron correlation via the self-energy.

  14. Volumetric measurements of bone mineral density of the lumbar spine: comparison of three geometrical approximations using dual-energy X-ray absorptiometry (DXA)

    PubMed

    Schreuder, M F; van Driel, A P; van Lingen, A; Roos, J C; de Ridder, C M; Manoliu, R A; David, E F; Netelenbos, J C

    1998-08-01

    Measurements of bone mineral density using dual-energy X-ray absorptiometry (DXA) gives area values (g cm-2) rather than true volumetric values (g cm-3). To calculate the vertebral volume using planar postero-anterior and lateral DXA values, several different geometrical approximations were used: cubic, cylindrical with a circular cross-section and cylindrical with an elliptical cross-section. The aim of this study was to compare these geometrical approximations with each other and with a reference standard, defined as the volume found on a computed tomographic (CT) scan. L2 and L3 were evaluated in a phantom study. Volume approximations by the cube or cylinder with circular cross-section geometry showed more than a 50% overestimation (range 54-74%). However, the elliptical cylinder approach showed very good agreement: 2.1% and 1.2% for L2 and L3, respectively, when compared to the CT volumes. In addition, we performed four patient studies with both CT and DXA to evaluate the elliptical cylinder estimate in a clinical setting. For L2 and L3, the mean relative difference was less than 2%. We conclude that the elliptical cylinder approach results in the most accurate bone volume estimates in both the phantom and patients. PMID:9751926

  15. Reaction dynamics of D+H2 --> DH+H: Effects of potential energy surface topography and usefulness of the constant centrifugal potential approximation

    NASA Astrophysics Data System (ADS)

    Takada, Shoji; Ohsaki, Akihiko; Nakamura, Hiroki

    1992-01-01

    Two findings are reported for the D+H2→DH+H reaction on the basis of the exact quantum mechanical calculation for J=0, where J is total angular momentum. First, with use of the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface and the Varandas surface, we demonstrate that a rather small difference in potential energy surface (PES) induces a surprisingly large effect on reaction dynamics. Two origins of the discrepancy are pointed out and analyzed: (1) Noncollinear conformation in the reaction zone contributes to the reaction significantly despite the fact that the minimum energy path and the saddle point are located in the collinear configuration. (2) A difference in the distant part of PES also causes a discrepancy in the reaction dynamics indirectly, although this effect is much smaller than (1). Secondly, we investigate the validity of the constant centrifugal potential approximation (CCPA) based on the accurate results for J=0. The use of CCPA to estimate total cross section and rate constant is again proved to have practical utility as in the cases of the sudden and adiabatic approximations.

  16. Proper Interval Vertex Deletion

    NASA Astrophysics Data System (ADS)

    Villanger, Yngve

    Deleting a minimum number of vertices from a graph to obtain a proper interval graph is an NP-complete problem. At WG 2010 van Bevern et al. gave an O((14k + 14) k + 1 kn 6) time algorithm by combining iterative compression, branching, and a greedy algorithm. We show that there exists a simple greedy O(n + m) time algorithm that solves the Proper Interval Vertex Deletion problem on \\{claw,net,allowbreak tent,allowbreak C_4,C_5,C_6\\}-free graphs. Combining this with branching on the forbidden structures claw,net,tent,allowbreak C_4,C_5, and C 6 enables us to get an O(kn 6 6 k ) time algorithm for Proper Interval Vertex Deletion, where k is the number of deleted vertices.

  17. Pressure-induced phase transformations in alkali-metal hydrides calculated using an improved linear-muffin-tin-orbital-atomic-sphere-approximation energy scheme

    NASA Astrophysics Data System (ADS)

    Rodriguez, C. O.; Methfessel, M.

    1992-01-01

    A scheme for the calculation of total energies from first principles is described which is intermediate between the popular linear muffin-tin-orbital method in the atomic-sphere approximation (LMTO-ASA) and an exact full-potential treatment. The local-density total energy is evaluated accurately for the output charge density from the ASA potential. This method is applied to the study of static structural properties and the pressure-induced phase transformation from B1 (NaCl-structure) to B2 (CsCl-structure) phases for the partially ionic alkaki-metal hydrides NaH and KH and the alkali halide NaCl. Good agreement with experimental transition pressures and volumes is obtained. The series NaH, KH, and NaCl shows the observed strong cation and weak anion dependence. Charge densities and band structures are given at zero and high pressure. Calculated energy-volume curves for LiH show no transition up to 1 Mbar, in agreement with experimental data.

  18. A model for the bandgap energy of the dilute nitride InGaNAs alloys by modifying simplified coherent potential approximation

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Qu, You-Yang; Wei, Tong; Sun, Xiao-Dong; Wang, Sha-Sha; Lu, Ke-Qing

    2014-03-01

    In this paper, a model describing the bandgap energy of the dilute nitride alloy InxGa1-xNyAs1-y is developed based on the modification of simplified coherent potential approximation (MSCPA) and the band anti-crossing model (BAC). The parameters in the model are obtained by fitting the experimental bandgap energies of the ternary alloys InGaAs, InGaN, GaNAs and InNAs. It is found that the results agree well with the experimental data. We also find that although the bandgap energies of InxGa1-xNyAs1-y and InxGa1-xAs can be calculated by using MSCPA, the physical mechanisms for the bandgap evolution of InxGa1-xNyAs1-y and InxGa1-xAs are very different. In addition, it is found that the model in this work may be used in a larger composition range than the BAC model.

  19. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  20. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  1. Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical extinction and electron energy-loss spectroscopies

    NASA Astrophysics Data System (ADS)

    Guillaume, Stéphane-Olivier; de Abajo, F. Javier García; Henrard, Luc

    2013-12-01

    An efficient procedure is introduced for the calculation of the optical response of individual and coupled metallic nanoparticles in the framework of the discrete-dipole approximation (DDA). We introduce a modal expansion in the basis set of discrete dipoles and show that a few suitably selected modes are sufficient to compute optical spectra with reasonable accuracy, thus reducing the required numerical effort relative to other DDA approaches. Our method offers a natural framework for the study of localized plasmon modes, including plasmon hybridization. As a proof of concept, we investigate optical extinction and electron energy-loss spectra of monomers, dimers, and quadrumers formed by flat silver squares. This method should find application to the previously prohibited simulation of complex particle arrays.

  2. Water 16-mers and hexamers: assessment of the three-body and electrostatically embedded many-body approximations of the correlation energy or the nonlocal energy as ways to include cooperative effects.

    PubMed

    Qi, Helena W; Leverentz, Hannah R; Truhlar, Donald G

    2013-05-30

    This work presents a new fragment method, the electrostatically embedded many-body expansion of the nonlocal energy (EE-MB-NE), and shows that it, along with the previously proposed electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), produces accurate results for large systems at the level of CCSD(T) coupled cluster theory. We primarily study water 16-mers, but we also test the EE-MB-CE method on water hexamers. We analyze the distributions of two-body and three-body terms to show why the many-body expansion of the electrostatically embedded correlation energy converges faster than the many-body expansion of the entire electrostatically embedded interaction potential. The average magnitude of the dimer contributions to the pairwise additive (PA) term of the correlation energy (which neglects cooperative effects) is only one-half of that of the average dimer contribution to the PA term of the expansion of the total energy; this explains why the mean unsigned error (MUE) of the EE-PA-CE approximation is only one-half of that of the EE-PA approximation. Similarly, the average magnitude of the trimer contributions to the three-body (3B) term of the EE-3B-CE approximation is only one-fourth of that of the EE-3B approximation, and the MUE of the EE-3B-CE approximation is one-fourth that of the EE-3B approximation. Finally, we test the efficacy of two- and three-body density functional corrections. One such density functional correction method, the new EE-PA-NE method, with the OLYP or the OHLYP density functional (where the OHLYP functional is the OptX exchange functional combined with the LYP correlation functional multiplied by 0.5), has the best performance-to-price ratio of any method whose computational cost scales as the third power of the number of monomers and is competitive in accuracy in the tests presented here with even the electrostatically embedded three-body approximation. PMID:23627665

  3. Interval arithmetic operations for uncertainty analysis with correlated interval variables

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Fu, Chun-Ming; Ni, Bing-Yu; Han, Xu

    2016-08-01

    A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation, and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.

  4. How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches

    SciTech Connect

    Pernal, Katarzyna; Chatterjee, Koushik; Kowalski, Piotr H.

    2014-01-07

    Performance of the antisymmetrized product of strongly orthogonal geminal (APSG) ansatz in describing ground states of molecules has been extensively explored in the recent years. Not much is known, however, about possibilities of obtaining excitation energies from methods that would rely on the APSG ansatz. In the paper we investigate the recently proposed extended random phase approximations, ERPA and ERPA2, that employ APSG reduced density matrices. We also propose a time-dependent linear response APSG method (TD-APSG). Its relation to the recently proposed phase including natural orbital theory is elucidated. The methods are applied to Li{sub 2}, BH, H{sub 2}O, and CH{sub 2}O molecules at equilibrium geometries and in the dissociating limits. It is shown that ERPA2 and TD-APSG perform better in describing double excitations than ERPA due to inclusion of the so-called diagonal double elements. Analysis of the potential energy curves of Li{sub 2}, BH, and H{sub 2}O reveals that ERPA2 and TD-APSG describe correctly excitation energies of dissociating molecules if orbitals involved in breaking bonds are involved. For single excitations of molecules at equilibrium geometries the accuracy of the APSG-based methods approaches that of the time-dependent Hartree-Fock method with the increase of the system size. A possibility of improving the accuracy of the TD-APSG method for single excitations by splitting the electron-electron interaction operator into the long- and short-range terms and employing density functionals to treat the latter is presented.

  5. How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches

    NASA Astrophysics Data System (ADS)

    Pernal, Katarzyna; Chatterjee, Koushik; Kowalski, Piotr H.

    2014-01-01

    Performance of the antisymmetrized product of strongly orthogonal geminal (APSG) ansatz in describing ground states of molecules has been extensively explored in the recent years. Not much is known, however, about possibilities of obtaining excitation energies from methods that would rely on the APSG ansatz. In the paper we investigate the recently proposed extended random phase approximations, ERPA and ERPA2, that employ APSG reduced density matrices. We also propose a time-dependent linear response APSG method (TD-APSG). Its relation to the recently proposed phase including natural orbital theory is elucidated. The methods are applied to Li2, BH, H2O, and CH2O molecules at equilibrium geometries and in the dissociating limits. It is shown that ERPA2 and TD-APSG perform better in describing double excitations than ERPA due to inclusion of the so-called diagonal double elements. Analysis of the potential energy curves of Li2, BH, and H2O reveals that ERPA2 and TD-APSG describe correctly excitation energies of dissociating molecules if orbitals involved in breaking bonds are involved. For single excitations of molecules at equilibrium geometries the accuracy of the APSG-based methods approaches that of the time-dependent Hartree-Fock method with the increase of the system size. A possibility of improving the accuracy of the TD-APSG method for single excitations by splitting the electron-electron interaction operator into the long- and short-range terms and employing density functionals to treat the latter is presented.

  6. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  7. Interval-valued random functions and the kriging of intervals

    SciTech Connect

    Diamond, P.

    1988-04-01

    Estimation procedures using data that include some values known to lie within certain intervals are usually regarded as problems of constrained optimization. A different approach is used here. Intervals are treated as elements of a positive cone, obeying the arithmetic of interval analysis, and positive interval-valued random functions are discussed. A kriging formalism for interval-valued data is developed. It provides estimates that are themselves intervals. In this context, the condition that kriging weights be positive is seen to arise in a natural way. A numerical example is given, and the extension to universal kriging is sketched.

  8. Approximating random quantum optimization problems

    NASA Astrophysics Data System (ADS)

    Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.

    2013-06-01

    We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.

  9. Relativistic regular approximations revisited: An infinite-order relativistic approximation

    SciTech Connect

    Dyall, K.G.; van Lenthe, E.

    1999-07-01

    The concept of the regular approximation is presented as the neglect of the energy dependence of the exact Foldy{endash}Wouthuysen transformation of the Dirac Hamiltonian. Expansion of the normalization terms leads immediately to the zeroth-order regular approximation (ZORA) and first-order regular approximation (FORA) Hamiltonians as the zeroth- and first-order terms of the expansion. The expansion may be taken to infinite order by using an un-normalized Foldy{endash}Wouthuysen transformation, which results in the ZORA Hamiltonian and a nonunit metric. This infinite-order regular approximation, IORA, has eigenvalues which differ from the Dirac eigenvalues by order E{sup 3}/c{sup 4} for a hydrogen-like system, which is a considerable improvement over the ZORA eigenvalues, and similar to the nonvariational FORA energies. A further perturbation analysis yields a third-order correction to the IORA energies, TIORA. Results are presented for several systems including the neutral U atom. The IORA eigenvalues for all but the 1s spinor of the neutral system are superior even to the scaled ZORA energies, which are exact for the hydrogenic system. The third-order correction reduces the IORA error for the inner orbitals to a very small fraction of the Dirac eigenvalue. {copyright} {ital 1999 American Institute of Physics.}

  10. Generalized Vibrational Perturbation Theory for Rotovibrational Energies of Linear, Symmetric and Asymmetric Tops: Theory, Approximations, and Automated Approaches to Deal with Medium-to-Large Molecular Systems

    PubMed Central

    Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo

    2015-01-01

    Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 Wiley Periodicals, Inc. PMID:26345131

  11. Low-energy dipole excitations in neon isotopes and N=16 isotones within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Martini, M.; Peru, S.; Dupuis, M.

    2011-03-15

    Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones {sup 24}O, {sup 26}Ne, {sup 28}Mg, and {sup 30}Si are characterized by a similar behavior. The occupation of the 2s{sub 1/2} neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of {sup 28}Ne and {sup 30}Ne, characterized by transitions involving the {nu}1d{sub 3/2} state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is identified in the {sup 18}Ne nucleus.

  12. Experimenting with musical intervals

    NASA Astrophysics Data System (ADS)

    Lo Presto, Michael C.

    2003-07-01

    When two tuning forks of different frequency are sounded simultaneously the result is a complex wave with a repetition frequency that is the fundamental of the harmonic series to which both frequencies belong. The ear perceives this 'musical interval' as a single musical pitch with a sound quality produced by the harmonic spectrum responsible for the waveform. This waveform can be captured and displayed with data collection hardware and software. The fundamental frequency can then be calculated and compared with what would be expected from the frequencies of the tuning forks. Also, graphing software can be used to determine equations for the waveforms and predict their shapes. This experiment could be used in an introductory physics or musical acoustics course as a practical lesson in superposition of waves, basic Fourier series and the relationship between some of the ear's subjective perceptions of sound and the physical properties of the waves that cause them.

  13. Volatility return intervals analysis of the Japanese market

    NASA Astrophysics Data System (ADS)

    Jung, W.-S.; Wang, F. Z.; Havlin, S.; Kaizoji, T.; Moon, H.-T.; Stanley, H. E.

    2008-03-01

    We investigate scaling and memory effects in return intervals between price volatilities above a certain threshold q for the Japanese stock market using daily and intraday data sets. We find that the distribution of return intervals can be approximated by a scaling function that depends only on the ratio between the return interval τ and its mean <τ>. We also find memory effects such that a large (or small) return interval follows a large (or small) interval by investigating the conditional distribution and mean return interval. The results are similar to previous studies of other markets and indicate that similar statistical features appear in different financial markets. We also compare our results between the period before and after the big crash at the end of 1989. We find that scaling and memory effects of the return intervals show similar features although the statistical properties of the returns are different.

  14. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  15. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  16. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  17. An interval model updating strategy using interval response surface models

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-En; Zhang, Qiu-Hu; Ren, Wei-Xin

    2015-08-01

    Stochastic model updating provides an effective way of handling uncertainties existing in real-world structures. In general, probabilistic theories, fuzzy mathematics or interval analyses are involved in the solution of inverse problems. However in practice, probability distributions or membership functions of structural parameters are often unavailable due to insufficient information of a structure. At this moment an interval model updating procedure shows its superiority in the aspect of problem simplification since only the upper and lower bounds of parameters and responses are sought. To this end, this study develops a new concept of interval response surface models for the purpose of efficiently implementing the interval model updating procedure. The frequent interval overestimation due to the use of interval arithmetic can be maximally avoided leading to accurate estimation of parameter intervals. Meanwhile, the establishment of an interval inverse problem is highly simplified, accompanied by a saving of computational costs. By this means a relatively simple and cost-efficient interval updating process can be achieved. Lastly, the feasibility and reliability of the developed method have been verified against a numerical mass-spring system and also against a set of experimentally tested steel plates.

  18. Intervality and coherence in complex networks.

    PubMed

    Domínguez-García, Virginia; Johnson, Samuel; Muñoz, Miguel A

    2016-06-01

    Food webs-networks of predators and prey-have long been known to exhibit "intervality": species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis-usually identified with a "niche" dimension-has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand. However, we argue here that intervality should not be considered the cause but rather a consequence of food-web structure. First, analysing a set of 46 empirical food webs, we find that they also exhibit predator intervality: the predators of any given species are as likely to be contiguous as the prey are, but in a different ordering. Furthermore, this property is not exclusive of trophic networks: several networks of genes, neurons, metabolites, cellular machines, airports, and words are found to be approximately as interval as food webs. We go on to show that a simple model of food-web assembly which does not make use of a niche axis can nevertheless generate significant intervality. Therefore, the niche dimension (in the sense used for food-web modelling) could in fact be the consequence of other, more fundamental structural traits. We conclude that a new approach to food-web modelling is required for a deeper understanding of ecosystem assembly, structure, and function, and propose that certain topological features thought to be specific of food webs are in fact common to many complex networks. PMID:27368797

  19. Intervality and coherence in complex networks

    NASA Astrophysics Data System (ADS)

    Domínguez-García, Virginia; Johnson, Samuel; Muñoz, Miguel A.

    2016-06-01

    Food webs—networks of predators and prey—have long been known to exhibit "intervality": species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis—usually identified with a "niche" dimension—has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand. However, we argue here that intervality should not be considered the cause but rather a consequence of food-web structure. First, analysing a set of 46 empirical food webs, we find that they also exhibit predator intervality: the predators of any given species are as likely to be contiguous as the prey are, but in a different ordering. Furthermore, this property is not exclusive of trophic networks: several networks of genes, neurons, metabolites, cellular machines, airports, and words are found to be approximately as interval as food webs. We go on to show that a simple model of food-web assembly which does not make use of a niche axis can nevertheless generate significant intervality. Therefore, the niche dimension (in the sense used for food-web modelling) could in fact be the consequence of other, more fundamental structural traits. We conclude that a new approach to food-web modelling is required for a deeper understanding of ecosystem assembly, structure, and function, and propose that certain topological features thought to be specific of food webs are in fact common to many complex networks.

  20. Calculator Function Approximation.

    ERIC Educational Resources Information Center

    Schelin, Charles W.

    1983-01-01

    The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)

  1. Approximation for nonresonant beam target fusion reactivities

    SciTech Connect

    Mikkelsen, D.R.

    1988-11-01

    The beam target fusion reactivity for a monoenergetic beam in a Maxwellian target is approximately evaluated for nonresonant reactions. The approximation is accurate for the DD and TT fusion reactions to better than 4% for all beam energies up to 300 keV and all ion temperatures up to 2/3 of the beam energy. 12 refs., 1 fig., 1 tab.

  2. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  3. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318

  4. Dependence of the specific energy of the β/α interface in the VT6 titanium alloy on the heating temperature in the interval 600-975°C

    NASA Astrophysics Data System (ADS)

    Murzinova, M. A.; Zherebtsov, S. V.; Salishchev, G. A.

    2016-04-01

    The specific energy of interphase boundaries is an important characteristic of multiphase alloys, because it determines in many respects their microstructural stability and properties during processing and exploitation. We analyze variation of the specific energy of the β/α interface in the VT6 titanium alloy at temperatures from 600 to 975°C. Analysis is based on the model of a ledge interphase boundary and the method for computation of its energy developed by van der Merwe and Shiflet [33, 34]. Calculations use the available results of measurements of the lattice parameters of phases in the indicated temperature interval and their chemical composition. In addition, we take into account the experimental data and the results of simulation of the effect of temperature and phase composition on the elastic moduli of the α and β phases in titanium alloys. It is shown that when the temperature decreases from 975 to 600°C, the specific energy of the β/α interface increases from 0.15 to 0.24 J/m2. The main contribution to the interfacial energy (about 85%) comes from edge dislocations accommodating the misfit in direction [0001]α || [110]β. The energy associated with the accommodation of the misfit in directions {[ {bar 2110} ]_α }| {{{[ {1bar 11} ]}_β }} . and {[ {0bar 110} ]_α }| {{{[ {bar 112} ]}_β }} . due to the formation of "ledges" and tilt misfit dislocations is low and increases slightly upon cooling.

  5. Sensory superstition on multiple interval schedules.

    PubMed

    Starr, B C; Staddon, J E

    1982-03-01

    Pigeons were exposed to multiple schedules in which an irregular repeating sequence of five stimulus components was correlated with the same reinforcement schedule throughout. Stable, idiosyncratic, response-rate differences developed across components. Components were rank-ordered by response rate; an approximately linear relation was found between rank order and the deviation of mean response rate from the overall mean rate. Nonzero slopes of this line were found for multiple fixed-interval and variable-time schedules and for multiple variable-interval schedules both when number of reinforcements was the same in all components and when it varied. The steepest function slopes were found in the variable schedules with relatively long interfood intervals and relatively short component durations. When just one stimulus was correlated with all components of a multiple variable-interval schedule, the slope of the line was close to zero. The results suggest that food-rate differences may be induced initially by different reactions to the stimuli and subsequently maintained by food. PMID:7069361

  6. Sensory superstition on multiple interval schedules.

    PubMed Central

    Starr, B C; Staddon, J E

    1982-01-01

    Pigeons were exposed to multiple schedules in which an irregular repeating sequence of five stimulus components was correlated with the same reinforcement schedule throughout. Stable, idiosyncratic, response-rate differences developed across components. Components were rank-ordered by response rate; an approximately linear relation was found between rank order and the deviation of mean response rate from the overall mean rate. Nonzero slopes of this line were found for multiple fixed-interval and variable-time schedules and for multiple variable-interval schedules both when number of reinforcements was the same in all components and when it varied. The steepest function slopes were found in the variable schedules with relatively long interfood intervals and relatively short component durations. When just one stimulus was correlated with all components of a multiple variable-interval schedule, the slope of the line was close to zero. The results suggest that food-rate differences may be induced initially by different reactions to the stimuli and subsequently maintained by food. PMID:7069361

  7. Effect Sizes, Confidence Intervals, and Confidence Intervals for Effect Sizes

    ERIC Educational Resources Information Center

    Thompson, Bruce

    2007-01-01

    The present article provides a primer on (a) effect sizes, (b) confidence intervals, and (c) confidence intervals for effect sizes. Additionally, various admonitions for reformed statistical practice are presented. For example, a very important implication of the realization that there are dozens of effect size statistics is that "authors must…

  8. A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Liu, ZhuangZhuang; Wang, TianShu; Li, JunFeng

    2015-04-01

    This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing approximation interval methods. We consider trigonometric approximation polynomials of three types: both cosine and sine functions, the sine function, and the cosine function. Thus, special interval arithmetic for trigonometric function without overestimation can be used to obtain interval results. The interval method using trigonometric approximation polynomials with a cosine functional form exhibits better performance than the existing Taylor interval method and Chebyshev interval method. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed method.

  9. [Birth interval differentials in Rwanda].

    PubMed

    Ilinigumugabo, A

    1992-01-01

    Data from the 1983 Rwanda Fertility Survey are the basis for this study of variations in birth intervals. An analysis of the quality of the Rwandan birth data showed it to be relatively good. The life table technique utilized in this study is explained in a section on methodology, which also describes the Rwanda Fertility Survey questionnaires. A comparison of birth intervals in which live born children died before their first birthday or survived the first birthday shows that infant mortality shortens birth intervals by an average of 5 months. The first birth interval was almost 28 months when the oldest child survived, but declined to 23 months when the oldest child died before age 1. The effect of mortality on birth intervals increased with parity, from 5 months for the first birth interval to 5.5 months for the second and third and 6.4 months for subsequent intervals. The differences amounted to 9 or 10 months for women separating at parities under 4 and over 14 months for women separating at parities of 4 or over. Birth intervals generally increased with parity, maternal age, and the duration of the union. But women entering into unions at higher ages had shorter birth intervals. In the absence of infant mortality and dissolution of the union, women attending school beyong the primary level had first birth intervals 6 months shorter on average than other women. Controlling for infant mortality and marital dissolution, women working for wages had average birth intervals of under 2 years for the first 5 births. Father's occupation had a less marked influence on birth intervals. Urban residence was associated with a shortening of the average birth interval by 6 months between the first and second birth and 5 months between the second and third births. In the first 5 births, Tutsi women had birth intervals 1.5 months longer on average than Hutu women. Women in polygamous unions did not have significantly different birth intervals except perhaps among older women

  10. Fast approximate motif statistics.

    PubMed

    Nicodème, P

    2001-01-01

    We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175

  11. The Guiding Center Approximation

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Sunn

    The guiding center approximation for charged particles in strong magnetic fields is introduced here. This approximation is very useful in situations where the charged particles are very well magnetized, such that the gyration (Larmor) radius is small compared to relevant length scales of the confinement device, and the gyration is fast relative to relevant timescales in an experiment. The basics of motion in a straight, uniform, static magnetic field are reviewed, and are used as a starting point for analyzing more complicated situations where more forces are present, as well as inhomogeneities in the magnetic field -- magnetic curvature as well as gradients in the magnetic field strength. The first and second adiabatic invariant are introduced, and slowly time-varying fields are also covered. As an example of the use of the guiding center approximation, the confinement concept of the cylindrical magnetic mirror is analyzed.

  12. Covariant approximation averaging

    NASA Astrophysics Data System (ADS)

    Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2015-06-01

    We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.

  13. Monotone Boolean approximation

    SciTech Connect

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.

  14. Teaching Confidence Intervals Using Simulation

    ERIC Educational Resources Information Center

    Hagtvedt, Reidar; Jones, Gregory Todd; Jones, Kari

    2008-01-01

    Confidence intervals are difficult to teach, in part because most students appear to believe they understand how to interpret them intuitively. They rarely do. To help them abandon their misconception and achieve understanding, we have developed a simulation tool that encourages experimentation with multiple confidence intervals derived from the…

  15. Children's Discrimination of Melodic Intervals.

    ERIC Educational Resources Information Center

    Schellenberg, E. Glenn; Trehub, Sandra E.

    1996-01-01

    Adults and children listened to tone sequences and were required to detect changes either from intervals with simple frequency ratios to intervals with complex ratios or vice versa. Adults performed better on changes from simple to complex ratios than on the reverse changes. Similar performance was observed for 6-year olds who had never taken…

  16. Automatic Error Analysis Using Intervals

    ERIC Educational Resources Information Center

    Rothwell, E. J.; Cloud, M. J.

    2012-01-01

    A technique for automatic error analysis using interval mathematics is introduced. A comparison to standard error propagation methods shows that in cases involving complicated formulas, the interval approach gives comparable error estimates with much less effort. Several examples are considered, and numerical errors are computed using the INTLAB…

  17. Explorations in Statistics: Confidence Intervals

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2009-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This third installment of "Explorations in Statistics" investigates confidence intervals. A confidence interval is a range that we expect, with some level of confidence, to include the true value of a population parameter…

  18. A Review of Confidence Intervals.

    ERIC Educational Resources Information Center

    Mauk, Anne-Marie Kimbell

    This paper summarizes information leading to the recommendation that statistical significance testing be replaced, or at least accompanied by, the reporting of effect sizes and confidence intervals. It discusses the use of confidence intervals, noting that the recent report of the American Psychological Association Task Force on Statistical…

  19. Semiphenomenological approximation of the sums of experimental radiative strength functions for dipole gamma transitions of energy E{sub {gamma}}below the neutron binding energy B{sub n} for mass numbers in the range 40 {<=} A {<=} 200

    SciTech Connect

    Sukhovoj, A. M. Furman, W. I. Khitrov, V. A.

    2008-06-15

    The sums of radiative strength functions for primary dipole gamma transitions, k(E1) + k(M1), are approximated to a high precision by a superposition of two functional dependences in the energy range 0.5 < E{sub 1} < B{sub n} - 0.5 MeV for the {sup 40}K, {sup 60}Co, {sup 71,74}Ge, {sup 80}Br, {sup 114}Cd, {sup 118}Sn, {sup 124,125}Te, {sup 128}I, {sup 137,138,139}Ba, {sup 140}La, {sup 150}Sm, {sup 156,158}Gd, {sup 160}Tb, {sup 163,164,165}Dy, {sup 166}Ho, {sup 168}Er, {sup 170}Tm, {sup 174}Yb, {sup 176,177}Lu, {sup 181}Hf, {sup 182}Ta, {sup 183,184,185,187}W, {sup 188,190,191,193}Os, {sup 192}Ir, {sup 196}Pt, {sup 198}Au, and {sup 200}Hg nuclei. It is shown that, in any nuclei, radiative strength functions are a dynamical quantity and that the values of k(E1) + k(M1) for specific energies of gamma transitions and specific nuclei are determined by the structure of decaying and excited levels, at least up to the neutron binding energy B{sub n}.

  20. VARIABLE TIME-INTERVAL GENERATOR

    DOEpatents

    Gross, J.E.

    1959-10-31

    This patent relates to a pulse generator and more particularly to a time interval generator wherein the time interval between pulses is precisely determined. The variable time generator comprises two oscillators with one having a variable frequency output and the other a fixed frequency output. A frequency divider is connected to the variable oscillator for dividing its frequency by a selected factor and a counter is used for counting the periods of the fixed oscillator occurring during a cycle of the divided frequency of the variable oscillator. This defines the period of the variable oscillator in terms of that of the fixed oscillator. A circuit is provided for selecting as a time interval a predetermined number of periods of the variable oscillator. The output of the generator consists of a first pulse produced by a trigger circuit at the start of the time interval and a second pulse marking the end of the time interval produced by the same trigger circuit.

  1. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.

    1998-06-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  2. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  3. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |

    1997-12-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  4. Approximate method for estimating plasma ionization characteristics based on numerical simulation of the dynamics of a plasma bunch with a high specific energy in the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Motorin, A. A.; Stupitsky, E. L.; Kholodov, A. S.

    2016-07-01

    The spatiotemporal pattern for the development of a plasma cloud formed in the ionosphere and the main cloud gas-dynamic characteristics have been obtained from 3D calculations of the explosion-type plasmodynamic flows previously performed by us. An approximate method for estimating the plasma temperature and ionization degree with the introduction of the effective adiabatic index has been proposed based on these results.

  5. Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: Analysis within the two-level model with illustration for H2 and LiH

    NASA Astrophysics Data System (ADS)

    Casida, Mark E.; Gutierrez, Fabien; Guan, Jingang; Gadea, Florent-Xavier; Salahub, Dennis; Daudey, Jean-Pierre

    2000-11-01

    Time-dependent density-functional theory (TDDFT) is an increasingly popular approach for calculating molecular excitation energies. However, the TDDFT lowest triplet excitation energy, ωT, of a closed-shell molecule often falls rapidly to zero and then becomes imaginary at large internuclear distances. We show that this unphysical behavior occurs because ωT2 must become negative wherever symmetry breaking lowers the energy of the ground state solution below that of the symmetry unbroken solution. We use the fact that the ΔSCF method gives a qualitatively correct first triplet excited state to derive a "charge-transfer correction" (CTC) for the time-dependent local density approximation (TDLDA) within the two-level model and the Tamm-Dancoff approximation (TDA). Although this correction would not be needed for the exact exchange-correlation functional, it is evidently important for a correct description of molecular excited state potential energy surfaces in the TDLDA. As a byproduct of our analysis, we show why TDLDA and LDA ΔSCF excitation energies are often very similar near the equilibrium geometries. The reasoning given here is fairly general and it is expected that similar corrections will be needed in the case of generalized gradient approximations and hybrid functionals.

  6. Optimizing the Zeldovich approximation

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.

    1994-01-01

    We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment

  7. Approximate Bruechner orbitals in electron propagator calculations

    SciTech Connect

    Ortiz, J.V.

    1999-12-01

    Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.

  8. Image magnification using interval information.

    PubMed

    Jurio, Aranzazu; Pagola, Miguel; Mesiar, Radko; Beliakov, Gleb; Bustince, Humberto

    2011-11-01

    In this paper, a simple and effective image-magnification algorithm based on intervals is proposed. A low-resolution image is magnified to form a high-resolution image using a block-expanding method. Our proposed method associates each pixel with an interval obtained by a weighted aggregation of the pixels in its neighborhood. From the interval and with a linear K(α) operator, we obtain the magnified image. Experimental results show that our algorithm provides a magnified image with better quality (peak signal-to-noise ratio) than several existing methods. PMID:21632304

  9. The Proximity Force Approximation for the Casimir Energy of Plate-Sphere and Sphere-Sphere Systems in the Presence of One Extra Compactified Universal Dimension

    NASA Astrophysics Data System (ADS)

    Cheng, Hongbo

    2015-08-01

    The Casimir energies for plate-sphere system and sphere-sphere systems under PFA in the presence of one extra compactified universal dimension are analyzed. We find that the Casimir energy between a plate and a sphere in the case of sphere-based PFA is divergent. The Casimir energy of plate-sphere system in the case of plate-based PFA is finite and keeps negative. The extra-dimension corrections to the Casimir energy will be more manifest if the sphere is larger or farther away from the plate. It is shown that the negative Casimir energy for two spheres is also associated with the sizes of spheres and extra space. The larger spheres and the longer distance between them make the influence from the additional dimension stronger.

  10. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  11. Simple Interval Timers for Microcomputers.

    ERIC Educational Resources Information Center

    McInerney, M.; Burgess, G.

    1985-01-01

    Discusses simple interval timers for microcomputers, including (1) the Jiffy clock; (2) CPU count timers; (3) screen count timers; (4) light pen timers; and (5) chip timers. Also examines some of the general characteristics of all types of timers. (JN)

  12. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  13. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  14. Fermion tunneling beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Majhi, Bibhas Ranjan

    2009-02-01

    Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys.JHEPFG1029-8479 06 (2008) 09510.1088/1126-6708/2008/06/095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.

  15. Beyond the Kirchhoff approximation

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto

    1989-01-01

    The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.

  16. QT interval in anorexia nervosa.

    PubMed Central

    Cooke, R A; Chambers, J B; Singh, R; Todd, G J; Smeeton, N C; Treasure, J; Treasure, T

    1994-01-01

    OBJECTIVES--To determine the incidence of a long QT interval as a marker for sudden death in patients with anorexia nervosa and to assess the effect of refeeding. To define a long QT interval by linear regression analysis and estimation of the upper limit of the confidence interval (95% CI) and to compare this with the commonly used Bazett rate correction formula. DESIGN--Prospective case control study. SETTING--Tertiary referral unit for eating disorders. SUBJECTS--41 consecutive patients with anorexia nervosa admitted over an 18 month period. 28 age and sex matched normal controls. MAIN OUTCOME MEASURES--maximum QT interval measured on 12 lead electrocardiograms. RESULTS--43.6% of the variability in the QT interval was explained by heart rate alone (p < 0.00001) and group analysis contributed a further 5.9% (p = 0.004). In 6 (15%) patients the QT interval was above the upper limit of the 95% CI for the prediction based on the control equation (NS). Two patients died suddenly; both had a QT interval at or above the upper limit of the 95% CI. In patients who reached their target weights the QT interval was significantly shorter (median 9.8 ms; p = 0.04) relative to the upper limit of the 60% CI of the control regression line, which best discriminated between patients and controls. The median Bazett rate corrected QT interval (QTc) in patients and controls was 435 v 405 ms.s-1/2 (p = 0.0004), and before and after refeeding it was 435 v 432 ms.s1/2 (NS). In 14(34%) patients and three (11%) controls the QTc was > 440 ms.s-1/2 (p = 0.053). CONCLUSIONS--The QT interval was longer in patients with anorexia nervosa than in age and sex matched controls, and there was a significant tendency to reversion to normal after refeeding. The Bazett rate correction formula overestimated the number of patients with QT prolongation and also did not show an improvement with refeeding. PMID:8068473

  17. Tuning for temporal interval in human apparent motion detection.

    PubMed

    Bours, Roger J E; Stuur, Sanne; Lankheet, Martin J M

    2007-01-01

    Detection of apparent motion in random dot patterns requires correlation across time and space. It has been difficult to study the temporal requirements for the correlation step because motion detection also depends on temporal filtering preceding correlation and on integration at the next levels. To specifically study tuning for temporal interval in the correlation step, we performed an experiment in which prefiltering and postintegration were held constant and in which we used a motion stimulus containing coherent motion for a single interval value only. The stimulus consisted of a sparse random dot pattern in which each dot was presented in two frames only, separated by a specified interval. On each frame, half of the dots were refreshed and the other half was a displaced reincarnation of the pattern generated one or several frames earlier. Motion energy statistics in such a stimulus do not vary from frame to frame, and the directional bias in spatiotemporal correlations is similar for different interval settings. We measured coherence thresholds for left-right direction discrimination by varying motion coherence levels in a Quest staircase procedure, as a function of both step size and interval. Results show that highest sensitivity was found for an interval of 17-42 ms, irrespective of viewing distance. The falloff at longer intervals was much sharper than previously described. Tuning for temporal interval was largely, but not completely, independent of step size. The optimal temporal interval slightly decreased with increasing step size. Similarly, the optimal step size decreased with increasing temporal interval. PMID:17461670

  18. Exponential Approximations Using Fourier Series Partial Sums

    NASA Technical Reports Server (NTRS)

    Banerjee, Nana S.; Geer, James F.

    1997-01-01

    The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.

  19. The {sup 2}H(d,p){sup 3}H Reaction At Astrophysical Energies Studied Via The Trojan Horse Method And Pole Approximation Validity Test

    SciTech Connect

    Sparta, R.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Kiss, G.; McCleskey, M.; Trache, L.

    2010-03-01

    In order to understand primordial and stellar nucleosynthesis, we have studied {sup 2}H(d,p){sup 3}H reaction at 0, 4 MeV down to astrophysical energies. Knowledge of this S-factor is interesting also to plan reactions for fusion reactors to produce energy. {sup 2}H(d,p){sup 3}H has been studied through the Trojan Horse Method applied to the three-body reaction {sup 2}H({sup 3}He,pt)H, at a beam energy of 17 MeV. Once protons and tritons are detected in coincidence and the quasi-free events are selected, the obtained S-factor has been compared with direct reactions results. Such data are in agreement with the direct ones, and a pole invariance test has been obtained comparing the present result with another {sup 2}H(d,p){sup 3}H THM one, performed with a different spectator particle (see fig. 1).

  20. Analysis of experimental data on doublet neutron-deuteron scattering at energies below the deuteron-breakup threshold on the basis of the pole approximation of the effective-range function

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2008-01-15

    On the basis of the Bargmann representation of the S matrix, the pole approximation is obtained for the effective-range function k cot {delta}. This approximation is optimal for describing the neutron-deuteron system in the doublet spin state. The values of r{sub 0} = 412.469 fm and v{sub 2} = -35 495.62 fm{sup 3} for the doublet low-energy parameters of neutron-deuteron scattering and the value of D = 172.678 fm{sup 2} for the respective pole parameter are deduced by using experimental results for the triton binding energy E{sub T}, the doublet neutron-deuteron scattering length a{sub 2}, and van Oers-Seagrave phase shifts at energies below the deuteron-breakup threshold. With these parameters, the pole approximation of the effective-range function provides a highly precise description (the relative error does not exceed 1%) of the doublet phase shift for neutron-deuteron scattering at energies below the deuteron-breakup threshold. Physical properties of the triton in the ground (T) and virtual (v) states are calculated. The results are B{sub v} = 0.608 MeV for the virtuallevel position and C{sub T}{sup 2} = 2.866 and C{sub v}{sup 2} = 0.0586 for the dimensionless asymptotic normalization constants. It is shown that, in the Whiting-Fuda approximation, the values of physical quantities characterizing the triton virtual state are determined to a high precision by one parameter, the doublet neutron-deuteron scattering length a{sub 2}. The effective triton radii in the ground ({rho}{sub T} = 1.711 fm) and virtual ({rho}{sub v} = 74.184 fm) states are calculated for the first time.

  1. Astronomical telescope for photons-gamma rays of low energy (approximately 4 MeV using the difference method like a Venetian blind

    NASA Astrophysics Data System (ADS)

    de Aguiar, O. D.; Martin, I. M.

    1980-07-01

    A description of a gamma ray telescope, which is sensitive to photons in the energy range of 3 - 10 MeV is presented. Collimation was provided by a passive shield which functioned somewhat like a 'venetian blind' to block the signal from one of the detectors. Signal subtraction techniques were used to obtain the desired information.

  2. An Assessment of Density Functional Methods for Potential Energy Curves of Nonbonded Interactions: The XYG3 and B97-D Approximations

    SciTech Connect

    Vazquez-Mayagoitia, Alvaro; Sherrill, David; Apra, Edoardo; Sumpter, Bobby G

    2010-01-01

    A recently proposed double-hybrid functional called XYG3 and a semilocal GGA functional (B97-D) with a semiempirical correction for van der Waals interactions have been applied to study the potential energy curves along the dissociation coordinates of weakly bound pairs of molecules governed by London dispersion and induced dipole forces. Molecules treated in this work were the parallel sandwich, T-shaped, and parallel-displaced benzene dimer, (C6H6)2; hydrogen sulfide and benzene, H2S C6H6; methane and benzene, CH4 C6H6; the methane dimer, (CH4)2; and the pyridine dimer, (C5H5N)2. We compared the potential energy curves of these functionals with previously published benchmarks at the coupled cluster singles, doubles, and perturbative triplets [CCSD(T)] complete-basis-set limit. Both functionals, XYG3 and B97-D, exhibited very good performance, reproducing accurate energies for equilibrium distances and a smooth behavior along the dissociation coordinate. Overall, we found an agreement within a few tenths of one kcal mol-1 with the CCSD(T) results across the potential energy curves.

  3. Generalized Confidence Intervals and Fiducial Intervals for Some Epidemiological Measures.

    PubMed

    Bebu, Ionut; Luta, George; Mathew, Thomas; Agan, Brian K

    2016-01-01

    For binary outcome data from epidemiological studies, this article investigates the interval estimation of several measures of interest in the absence or presence of categorical covariates. When covariates are present, the logistic regression model as well as the log-binomial model are investigated. The measures considered include the common odds ratio (OR) from several studies, the number needed to treat (NNT), and the prevalence ratio. For each parameter, confidence intervals are constructed using the concepts of generalized pivotal quantities and fiducial quantities. Numerical results show that the confidence intervals so obtained exhibit satisfactory performance in terms of maintaining the coverage probabilities even when the sample sizes are not large. An appealing feature of the proposed solutions is that they are not based on maximization of the likelihood, and hence are free from convergence issues associated with the numerical calculation of the maximum likelihood estimators, especially in the context of the log-binomial model. The results are illustrated with a number of examples. The overall conclusion is that the proposed methodologies based on generalized pivotal quantities and fiducial quantities provide an accurate and unified approach for the interval estimation of the various epidemiological measures in the context of binary outcome data with or without covariates. PMID:27322305

  4. Generalized Confidence Intervals and Fiducial Intervals for Some Epidemiological Measures

    PubMed Central

    Bebu, Ionut; Luta, George; Mathew, Thomas; Agan, Brian K.

    2016-01-01

    For binary outcome data from epidemiological studies, this article investigates the interval estimation of several measures of interest in the absence or presence of categorical covariates. When covariates are present, the logistic regression model as well as the log-binomial model are investigated. The measures considered include the common odds ratio (OR) from several studies, the number needed to treat (NNT), and the prevalence ratio. For each parameter, confidence intervals are constructed using the concepts of generalized pivotal quantities and fiducial quantities. Numerical results show that the confidence intervals so obtained exhibit satisfactory performance in terms of maintaining the coverage probabilities even when the sample sizes are not large. An appealing feature of the proposed solutions is that they are not based on maximization of the likelihood, and hence are free from convergence issues associated with the numerical calculation of the maximum likelihood estimators, especially in the context of the log-binomial model. The results are illustrated with a number of examples. The overall conclusion is that the proposed methodologies based on generalized pivotal quantities and fiducial quantities provide an accurate and unified approach for the interval estimation of the various epidemiological measures in the context of binary outcome data with or without covariates. PMID:27322305

  5. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  6. Partitioned-Interval Quantum Optical Communications Receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2013-01-01

    The proposed quantum receiver in this innovation partitions each binary signal interval into two unequal segments: a short "pre-measurement" segment in the beginning of the symbol interval used to make an initial guess with better probability than 50/50 guessing, and a much longer segment used to make the high-sensitivity signal detection via field-cancellation and photon-counting detection. It was found that by assigning as little as 10% of the total signal energy to the pre-measurement segment, the initial 50/50 guess can be improved to about 70/30, using the best available measurements such as classical coherent or "optimized Kennedy" detection.

  7. Updating representations of temporal intervals.

    PubMed

    Danckert, James; Anderson, Britt

    2015-12-01

    Effectively engaging with the world depends on accurate representations of the regularities that make up that world-what we call mental models. The success of any mental model depends on the ability to adapt to changes-to 'update' the model. In prior work, we have shown that damage to the right hemisphere of the brain impairs the ability to update mental models across a range of tasks. Given the disparate nature of the tasks we have employed in this prior work (i.e. statistical learning, language acquisition, position priming, perceptual ambiguity, strategic game play), we propose that a cognitive module important for updating mental representations should be generic, in the sense that it is invoked across multiple cognitive and perceptual domains. To date, the majority of our tasks have been visual in nature. Given the ubiquity and import of temporal information in sensory experience, we examined the ability to build and update mental models of time. We had healthy individuals complete a temporal prediction task in which intervals were initially drawn from one temporal range before an unannounced switch to a different range of intervals. Separate groups had the second range of intervals switch to one that contained either longer or shorter intervals than the first range. Both groups showed significant positive correlations between perceptual and prediction accuracy. While each group updated mental models of temporal intervals, those exposed to shorter intervals did so more efficiently. Our results support the notion of generic capacity to update regularities in the environment-in this instance based on temporal information. The task developed here is well suited to investigations in neurological patients and in neuroimaging settings. PMID:26303026

  8. Approximate recalculation of the {alpha}(Z{alpha}){sup 5} contribution to the self-energy effect on hydrogenic states with a multipole expansion

    SciTech Connect

    Zamastil, J.

    2013-01-15

    A contribution of virtual electron states with large wave numbers to the self-energy of an electron bound in the weak Coulomb field is analyzed in the context of the evaluation method suggested in the previous paper. The contribution is of the order {alpha}(Z{alpha}){sup 5}. The same value for this contribution is found here as the one found in the previous calculations using different evaluation methods. When we add the remaining terms of the order {alpha}(Z{alpha}){sup 5} to the calculation of the self-energy effect in hydrogen-like ions presented in the previous paper we find a very good agreement with numerical evaluations. The relative difference between present and numerical evaluations ranges from 2 parts in 10{sup 6} for Z=1 up to 6 parts in 10{sup 4} for Z=10. - Highlights: Black-Right-Pointing-Pointer The complete terms of the order {alpha}(Z{alpha}){sup 5} are identified. Black-Right-Pointing-Pointer The accuracy of the result for the ground state of the hydrogen is 2 ppm. Black-Right-Pointing-Pointer The separation into the low and high energy regions and their matching is avoided.

  9. The Role of Higher Harmonics In Musical Interval Perception

    NASA Astrophysics Data System (ADS)

    Krantz, Richard; Douthett, Jack

    2011-10-01

    Using an alternative parameterization of the roughness curve we make direct use of critical band results to investigate the role of higher harmonics on the perception of tonal consonance. We scale the spectral amplitudes in the complex home tone and complex interval tone to simulate acoustic signals of constant energy. Our analysis reveals that even with a relatively small addition of higher harmonics the perfect fifth emerges as a consonant interval with more, musically important, just intervals emerging as consonant as more and more energy is shifted into higher frequencies.

  10. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in {approximately} 10 GeV energy range

    SciTech Connect

    Saito, T.; Takagi, F.

    1994-04-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p{sup 2})/{sigma}{sub tot}, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p{sup 2} d{sup 2}{sigma}/dpd{Omega} = C exp ({minus}Bp{sup 2}), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section {rho} = f/{sigma}{sub tot} is also described by exponential A{sub 0} exp ({minus}A{sub 1p}{sup 2}), where p becomes independent of energy at initial particle energies {ge} 1.5 GeV for C nucleus and {ge} 5 GeV for the heaviest of the investigated Pb nuclei.

  11. Countably QC-Approximating Posets

    PubMed Central

    Mao, Xuxin; Xu, Luoshan

    2014-01-01

    As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730

  12. Approximate Bayesian multibody tracking.

    PubMed

    Lanz, Oswald

    2006-09-01

    Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730

  13. Uniform Continuity on Unbounded Intervals

    ERIC Educational Resources Information Center

    Pouso, Rodrigo Lopez

    2008-01-01

    We present a teaching approach to uniform continuity on unbounded intervals which, hopefully, may help to meet the following pedagogical objectives: (i) To provide students with efficient and simple criteria to decide whether a continuous function is also uniformly continuous; and (ii) To provide students with skill to recognize graphically…

  14. Approximation by hinge functions

    SciTech Connect

    Faber, V.

    1997-05-01

    Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.

  15. Rapidly converging series approximation to Kepler's equation

    NASA Astrophysics Data System (ADS)

    Peters, R. D.

    1984-08-01

    A power series solution in eccentricity e and normalized mean anomaly f has been developed for elliptic orbits. Expansion through the fourth order yields approximate errors about an order of magnitude smaller than the corresponding Lagrange series. For large e, a particular algorithm is shown to be superior to published initializers for Newton iteration solutions. The normalized variable f varies between zero and one on each of two separately defined intervals: 0 to x = (pi/2-e) and x to pi. The expansion coefficients are polynomials based on a one-time evaluation of sine and cosine terms in f.

  16. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: Linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Isegawa, Miho; Truhlar, Donald G.

    2013-04-01

    Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel

  17. An approximation based global optimization strategy for structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Schmit, L. A.

    1991-01-01

    A global optimization strategy for structural synthesis based on approximation concepts is presented. The methodology involves the solution of a sequence of highly accurate approximate problems using a global optimization algorithm. The global optimization algorithm implemented consists of a branch and bound strategy based on the interval evaluation of the objective function and constraint functions, combined with a local feasible directions algorithm. The approximate design optimization problems are constructed using first order approximations of selected intermediate response quantities in terms of intermediate design variables. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure setforth.

  18. Approximating maximum clique with a Hopfield network.

    PubMed

    Jagota, A

    1995-01-01

    In a graph, a clique is a set of vertices such that every pair is connected by an edge. MAX-CLIQUE is the optimization problem of finding the largest clique in a given graph and is NP-hard, even to approximate well. Several real-world and theory problems can be modeled as MAX-CLIQUE. In this paper, we efficiently approximate MAX-CLIQUE in a special case of the Hopfield network whose stable states are maximal cliques. We present several energy-descent optimizing dynamics; both discrete (deterministic and stochastic) and continuous. One of these emulates, as special cases, two well-known greedy algorithms for approximating MAX-CLIQUE. We report on detailed empirical comparisons on random graphs and on harder ones. Mean-field annealing, an efficient approximation to simulated annealing, and a stochastic dynamics are the narrow but clear winners. All dynamics approximate much better than one which emulates a "naive" greedy heuristic. PMID:18263357

  19. Fourier Analysis of Musical Intervals

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2008-11-01

    Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in The Physics Teacher aptly demonstrated the use of MacScope2 in just such a manner as a way to teach Fourier analysis.3 A logical continuation of this project is to use MacScope not just to analyze the Fourier composition of musical tones but also musical intervals.

  20. Approximation Schemes for Scheduling with Availability Constraints

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Huo, Yumei; Zhao, Hairong

    We investigate the problems of scheduling n weighted jobs to m identical machines with availability constraints. We consider two different models of availability constraints: the preventive model where the unavailability is due to preventive machine maintenance, and the fixed job model where the unavailability is due to a priori assignment of some of the n jobs to certain machines at certain times. Both models have applications such as turnaround scheduling or overlay computing. In both models, the objective is to minimize the total weighted completion time. We assume that m is a constant, and the jobs are non-resumable. For the preventive model, it has been shown that there is no approximation algorithm if all machines have unavailable intervals even when w i = p i for all jobs. In this paper, we assume there is one machine permanently available and the processing time of each job is equal to its weight for all jobs. We develop the first PTAS when there are constant number of unavailable intervals. One main feature of our algorithm is that the classification of large and small jobs is with respect to each individual interval, thus not fixed. This classification allows us (1) to enumerate the assignments of large jobs efficiently; (2) and to move small jobs around without increasing the objective value too much, and thus derive our PTAS. Then we show that there is no FPTAS in this case unless P = NP.

  1. Simultaneous confidence intervals for a steady-state leaky aquifer groundwater flow model

    USGS Publications Warehouse

    Christensen, S.; Cooley, R.L.

    1996-01-01

    Using the optimization method of Vecchia & Cooley (1987), nonlinear Scheffe??-type confidence intervals were calculated tor the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear widths was not correct for the head intervals. Results show that nonlinear effects can cause the nonlinear intervals to be offset from, and either larger or smaller than, the linear approximations. Prior information on some transmissivities helps reduce and stabilize the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.

  2. Successive intervals analysis of preference measures in a health status index.

    PubMed Central

    Blischke, W R; Bush, J W; Kaplan, R M

    1975-01-01

    The method of successive intervals, a procedure for obtaining equal intervals from category data, is applied to social preference data for a health status index. Several innovations are employed, including an approximate analysis of variance test for determining whether the intervals are of equal width, a regression model for estimating the width of the end intervals in finite scales, and a transformation to equalize interval widths and estimate item locations on the new scale. A computer program has been developed to process large data sets with a larger number of categories than previous programs. PMID:1219005

  3. An Event Restriction Interval Theory of Tense

    ERIC Educational Resources Information Center

    Beamer, Brandon Robert

    2012-01-01

    This dissertation presents a novel theory of tense and tense-like constructions. It is named after a key theoretical component of the theory, the event restriction interval. In Event Restriction Interval (ERI) Theory, sentences are semantically evaluated relative to an index which contains two key intervals, the evaluation interval and the event…

  4. Confidence Intervals for Error Rates Observed in Coded Communications Systems

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2015-05-01

    We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.

  5. Symmetric approximations of the Navier-Stokes equations

    SciTech Connect

    Kobel'kov, G M

    2002-08-31

    A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as {epsilon}{yields}0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established.

  6. Symmetric approximations of the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Kobel'kov, G. M.

    2002-08-01

    A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as \\varepsilon\\to0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established.

  7. Practical Scheffe-type credibility intervals for variables of a groundwater model

    USGS Publications Warehouse

    Cooley, R.L.

    1999-01-01

    Simultaneous Scheffe-type credibility intervals (the Bayesian version of confidence intervals) for variables of a groundwater flow model calibrated using a Bayesian maximum a posteriori procedure were derived by Cooley [1993b]. It was assumed that variances reflecting the expected differences between observed and model-computed quantities used to calibrate the model are known, whereas they would often be unknown for an actual model. In this study the variances are regarded as unknown, and variance variability from observation to observation is approximated by grouping the data so that each group is characterized by a uniform variance. The credibility intervals are calculated from the posterior distribution, which was developed by considering each group variance to be a random variable about which nothing is known a priori, then eliminating it by integration. Numerical experiments using two test problems illustrate some characteristics of the credibility intervals. Nonlinearity of the statistical model greatly affected some of the credibility intervals, indicating that credibility intervals computed using the standard linear model approximation may often be inadequate to characterize uncertainty for actual field problems. The parameter characterizing the probability level for the credibility intervals was, however, accurately computed using a linear model approximation, as compared with values calculated using second-order and fully nonlinear formulations. This allows the credibility intervals to be computed very efficiently.Simultaneous Scheffe-type credibility intervals for variables of a groundwater flow model calibrated using a Bayesian maximum a posteriori procedure were developed. The variances reflecting the expected differences between the observed and model-computed quantities were unknown, and variance variability from observation to observation was approximated by grouping the data so that each group was characterized by a uniform variance. Nonlinearity

  8. CONFIDENCE INTERVALS FOR A CROP YIELD LOSS FUNCTION IN NONLINEAR REGRESSION

    EPA Science Inventory

    Quantifying the relationship between chronic pollutant exposure and the ensuing biological response requires consideration of nonlinear functions that are flexible enough to generate a wide range of response curves. he linear approximation (i.e., Wald's) interval estimates for oz...

  9. Interval Estimation for True Raw and Scale Scores under the Binomial Error Model

    ERIC Educational Resources Information Center

    Lee, Won-Chan; Brennan, Robert L.; Kolen, Michael J.

    2006-01-01

    Assuming errors of measurement are distributed binomially, this article reviews various procedures for constructing an interval for an individual's true number-correct score; presents two general interval estimation procedures for an individual's true scale score (i.e., normal approximation and endpoints conversion methods); compares various…

  10. Confidence Intervals for True Scores Using the Skew-Normal Distribution

    ERIC Educational Resources Information Center

    Garcia-Perez, Miguel A.

    2010-01-01

    A recent comparative analysis of alternative interval estimation approaches and procedures has shown that confidence intervals (CIs) for true raw scores determined with the Score method--which uses the normal approximation to the binomial distribution--have actual coverage probabilities that are closest to their nominal level. It has also recently…