Science.gov

Sample records for energy light ions

  1. The prospect for fusion energy with light ions

    SciTech Connect

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-09-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE.

  2. Particle and energy reflection coefficients of low-energy light ions at oblique incidence

    SciTech Connect

    Simovic, R.; Vukanic, J.

    1995-12-31

    The energy-dependent Boltzman equation for slow light ions incident normally on a solid has been solved previously. Since the ion distribution function is almost isotropic, satisfactory results have been obtained in the lowest order of approximation. In this paper, we complete our calculations to include the case of oblique ion incidence and compare results with the exact solutions based on the H-function method and MARLOWE computer simulation data.

  3. Vanishing electronic energy loss of very slow light ions in insulators with large band gaps.

    PubMed

    Markin, S N; Primetzhofer, D; Bauer, P

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO2, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction. PMID:19792368

  4. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  5. Light ion beam approach to ICF ignition, gain, and energy production

    SciTech Connect

    Olson, R.; Allshouse, G.; Cook, D.; Lockner, T.; Mazarakis, M.; Olson, C.; Smith, D. ); Peterson, R.; Adler, D.; Bruggink, D.; Englestad, R.; Khater, H.; Kulcinski, G.; Lovell, E.; MacFarlane, J.; Morgahead, E.; Moses, G.; Rutledge, S.; Sawan, M.; Sviatoslalvsky, I.; Wang, P.; Wittenberg, L. )

    1994-10-05

    A review of anticipated achievements in the light ion beam method of the inertial confinement fusion program is presented. They allow to estimate the cost of produced electric energy. It appears to be quite competitive to other fusion reactor designs at the 1000 MWe level and above. (AIP) [copyright] [ital American] [ital Institute] [ital of] [ital Physics] 1994

  6. The light ion trough.

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1972-01-01

    A distinct feature of the ion composition results from the OGO-2, 4 and 6 satellites is the light ion trough, wherein the mid-latitude concentrations of H+ and He+ decrease sharply with latitude. In contrast to the 'main trough' in electron density observed primarily as a nightside phenomenon, the light ion trough persists during both day and night. For daytime winter hemisphere conditions and for all seasons during night, the mid-latitude light ion concentration decrease is a pronounced feature. In the dayside summer and equinox hemispheres, the rate of light ion decrease with latitude is comparatively gradual, and the trough boundary is less well defined, particularly for quiet magnetic conditions. In response to magnetic storms, the light ion trough minimum moves equatorward, and deepens, consistent with earlier evidence of the contraction of the plasmasphere in response to storm time enhancements in magnetospheric plasma convection.

  7. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  8. Hypertriton and light nuclei production at Lambda-production subthreshold energy in heavy-ion collisions

    SciTech Connect

    Zhang, S.; Zu, Z.; Chen, J.H., Ma, Y.G., Cai, X-Z, Ma, G.L., Zhong, C.

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion ({sup 3}He), and hypertriton ({sub {Lambda}}{sup 3}H) at subthreshold energy of Aproduction ({approx} 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor (S{sub 3} = {sup 3}{sub {Lambda}}H/({sup 3}He x {Lambda}/p)) shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few {mu}b in {sup 36}Ar+{sup 36}Ar, {sup 40}Ca+{sup 40}Ca and {sup 56}Ni+{sup 56}Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at {Lambda} subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  9. Hypertriton and light nuclei production at Λ-production subthreshold energy in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Chen, Jin-Hui; Ma, Yu-Gang; Xu, Zhang-Bu; Cai, Xiang-Zhou; Ma, Guo-Liang; Zhong, Chen

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion (3He), and hypertriton (3ΛH) at subthreshold energy of Aproduction (≈ 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few μb in 36Ar+36Ar, 40Ca+40Ca and 56Ni+56Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at Λ subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  10. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  11. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities

    NASA Astrophysics Data System (ADS)

    Cayzac, W.; Bagnoud, V.; Basko, M. M.; Blažević, A.; Frank, A.; Gericke, D. O.; Hallo, L.; Malka, G.; Ortner, A.; Tauschwitz, An.; Vorberger, J.; Roth, M.

    2015-11-01

    The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

  12. Complete Fusion and Break-up Fusion Reactions in Light Ion Interactions at Low Energies

    SciTech Connect

    Cerutti, F.; Ferrari, A.; Gadioli, E.; Mairani, A.; Foertsch, S. V.; Buthelezi, E. Z.; Fujita, H.; Neveling, R.; Smit, F. D.; Dlamini, J.; Cowley, A. A.; Connell, S. H.

    2007-10-26

    Experimental spectra of intermediate mass fragments (IMFs) produced in the interaction of two {sup 12}C ions at incident energy of 200 MeV and their reproduction by a binary fragmentation model and the Boltzmann Master Equation theory as implemented into the Monte Carlo transport and interaction code FLUKA are shown.

  13. Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    SciTech Connect

    Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bartoli, A.; Bini, M.; Casini, G.; Coppi, C.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Taccetti, N.; Vanzi, E.

    2006-09-15

    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision, and mass of the system. The data have been collected with the FIASCO setup in the reactions {sup 93}Nb+{sup 93}Nb at (17,23,30,38)A MeV and {sup 116}Sn+{sup 116}Sn at (30,38)A MeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code GEMINI at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences in both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.

  14. Transport of Light Ions in Matter

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.

    1998-01-01

    A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.

  15. Time of Flight measurement of stopping cross sections for low energy light ions in H2, He, N2, and Ne gas

    NASA Astrophysics Data System (ADS)

    Jedrejcic, David; Greife, Uwe

    2015-10-01

    The majority of available data for the stopping cross section of light ions in light gases is concentrated in the medium and high energy regimes, with little or no data available at energies below 25 keV/u. This energy regime applies to the temperature range of many stellar cores, where fusion reactions between light nuclei are common. Knowledge of the stopping cross section for light ions which interact in this environment is crucial to the accurate modeling of stellar nucleosynthesis. The current work uses time-of-flight techniques to directly measure the stopping cross section of H2, He, N2 and Ne gas for H and He ions with energies between 15-22 keV. The gas target is isolated using differential pumping, bypassing the need for entrance and exit foils. Funded through DOE Office of Science.

  16. Secondary fusion reactions in the bombardment of light-element targets with low-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Gikal, B. N.; Teterev, Yu. G.; Shchegolev, V. Yu.; Zdorovets, M. V.; Ivanov, I. A.; Koloberdin, M. V.; Aleksandrenko, V. V.

    2014-07-01

    Neutron emission was observed experimentally at the DC-60 cyclotron at the Institute of Nuclear Physics (Astana, Kazakhstan). The neutron yields were measured in the bombardment of light-element (Be, C, Al, Al2O3, and LiF) targets with heavy ions (Ar, Kr, and Xe) with energies below the Coulomb barrier. The angular distributions of neutrons from the targets were also measured. It was found that the observed neutrons were produced in secondary nuclear reactions between the resting target nuclei and recoil nuclei that acquire energy in the process of elastic scattering. The experimental results were compared with calculations based on the abovementioned secondary-reaction mechanism. The calculations allow one to estimate the yields of secondary reactions to within a coefficient of 2.

  17. Operational experience with light ions at BNL

    SciTech Connect

    Reece, R.K.; Ahrens, L.A.; Barton, D.S.; Beavis, D.; Benjamin, J.; Foelsche, H.; Gardner, C.; Gill, E.; Raka, E.; Sidhu, S.

    1987-03-01

    A new transfer line has joined the Tandem Van de Graaff facility and the AGS at Brookhaven National Laboratory, permitting the acceleration of light ions (up to sulfur) to 14.5 GeV/nucleon. The Tandem, operating with a pulsed ion source, supplies a fully stripped ion beam at about 7 MeV/nucleon to the AGS. A new low frequency rf system accelerates the beam in the AGS to about 200 MeV/nucleon. The previously existing rf system completes the cycle. High energy ion beams are delivered using standard resonant extraction to four experimental beam lines. Details of techniques and preliminary performance and operational characteristics are discussed.

  18. High energy-resolution zero-degree facility for light-ion scattering and reactions at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Neveling, R.; Fujita, H.; Smit, F. D.; Adachi, T.; Berg, G. P. A.; Buthelezi, E. Z.; Carter, J.; Conradie, J. L.; Couder, M.; Fearick, R. W.; Förtsch, S. V.; Fourie, D. T.; Fujita, Y.; Görres, J.; Hatanaka, K.; Jingo, M.; Krumbholz, A. M.; Kureba, C. O.; Mira, J. P.; Murray, S. H. T.; von Neumann-Cosel, P.; O'Brien, S.; Papka, P.; Poltoratska, I.; Richter, A.; Sideras-Haddad, E.; Swartz, J. A.; Tamii, A.; Usman, I. T.; van Zyl, J. J.

    2011-10-01

    The setup and experimental techniques for measurements of zero-degree inelastic scattering and reactions involving light ions with the K=600 magnetic spectrometer at iThemba LABS are described. Measurements were performed for inelastic proton scattering at an incident energy of 200 MeV for targets ranging from 27Al to 208Pb. An energy-resolution of 45 keV (FWHM) was achieved by utilizing the faint-beam dispersion-matching technique. A background subtraction procedure was applied and allowed for the extraction of excitation energy spectra with low background. Measurements of the (p,t) reaction at zero degrees for Ep=100 and 200 MeV benefited from the difference in magnetic rigidity between the reaction products and the beam particles, resulting in background-free spectra with an excitation energy-resolution of 32 and 48 keV (FWHM), respectively, and a scattering angle resolution of 0.55° (FWHM). The addition of Double Sided Silicon Strip Detectors (DSSSD) at backward scattering angles allowed for coincident measurements of particle-decay of states excited in the (p,t) reaction at Ep=200 MeV.

  19. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.

    PubMed

    Liu, Min; Qiu, Xiaoqing; Miyauchi, Masahiro; Hashimoto, Kazuhito

    2013-07-10

    Photocatalytic reaction rate (R) is determined by the multiplication of light absorption capability (α) and quantum efficiency (QE); however, these two parameters generally have trade-off relations. Thus, increasing α without decreasing QE remains a challenging issue for developing efficient photocatalysts with high R. Herein, using Fe(III) ions grafted Fe(III) doped TiO2 as a model system, we present a novel method for developing visible-light photocatalysts with efficient R, utilizing the concept of energy level matching between surface-grafted Fe(III) ions as co-catalysts and bulk-doped Fe(III) ions as visible-light absorbers. Photogenerated electrons in the doped Fe(III) states under visible-light efficiently transfer to the surface grafted Fe(III) ions co-catalysts, as the doped Fe(III) ions in bulk produced energy levels below the conduction band of TiO2, which match well with the potential of Fe(3+)/Fe(2+) redox couple in the surface grafted Fe(III) ions. Electrons in the surface grafted Fe(III) ions efficiently cause multielectron reduction of adsorbed oxygen molecules to achieve high QE value. Consequently, the present Fe(III)-FexTi1-xO2 nanocomposites exhibited the highest visible-light R among the previously reported photocatalysts for decomposition of gaseous organic compounds. The high R can proceed even under commercial white-light emission diode irradiation and is very stable for long-term use, making it practically useful. Further, this efficient method could be applied in other wide-band gap semiconductors, including ZnO or SrTiO3, and may be potentially applicable for other photocatalysis systems, such as water splitting, CO2 reduction, NOx removal, and dye decomposition. Thus, this method represents a strategic approach to develop new visible-light active photocatalysts for practical uses. PMID:23768256

  20. SU-E-T-334: Track Structure Simulations of Charged Particles at Low and Intermediate Energies: Cross Sections Needs for Light and Heavy Ions

    SciTech Connect

    Dingfelder, M

    2014-06-01

    Purpose/Methods: Monte Carlo (MC) track structure simulations follow the primary as well as all produced secondary particles in an event-by-event manner, from starting or ejection energy down to total stopping. They provide useful information on physics and chemistry of the biological response to radiation. They depend on reliable interaction cross sections and transport models of the considered radiation quality with biologically relevant materials. Most transport models focus on sufficiently fast and bare (i.e., fully ionized) ions and cross sections calculated within the (relativistic) first Born or Bethe approximations. These theories consider the projectile as a point particle and rely on proton cross sections and simple charge-scaling methods; they neglect the atomic nature of the ion and break down at low and intermediate ion energies. Heavier ions are used in particle therapy and slow to intermediate and low energies in the biologically interesting Bragg peak. Lighter and slower fragment ions, including alpha particles, protons, and neutrons are also produced in nuclear and break up reactions of charged particles. Secondary neutrons also produce recoil protons and ions, mainly in the intermediate energy range. Results/Conclusion: This work reviews existing models for track structure simulations and cross section calculations for light and heavy ions focusing on the low and intermediate energy range. It also presents new and updated aspects on cross section calculations and simulation techniques for ions and discusses the need for new models, calculations, and experimental data.

  1. Theoretical overview: Light ion lessons, heavy ion hopes

    SciTech Connect

    Gavin, S.

    1992-01-01

    Experiments using light ion beams of atomic masses A [approximately] 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies [radical]s [approximately] 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

  2. Theoretical overview: Light ion lessons, heavy ion hopes

    SciTech Connect

    Gavin, S.

    1992-12-31

    Experiments using light ion beams of atomic masses A {approximately} 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies {radical}s {approximately} 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

  3. Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code

    SciTech Connect

    Rakhno, I. L.; Mokhov, N. V.; Gudima, K. K.

    2015-04-25

    An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.

  4. Static and dynamic deformation effects in the fusion cross section of light heavy ions at sub-barrier energies

    SciTech Connect

    Hussein, M.S.; Canto, L.F.; Donangelo, R.

    1980-02-01

    The static and dynamic deformation effects on the sub-barrier fusion cross section of light heavy ions are investigated by performing a coupled channel calculation for the system /sup 12/C+/sup 16/O. It is found that dynamic effects are negligible whereas static effects could be important, and they appear to show up partly through absorption under the barrier.

  5. Fragment emission studies in low energy light heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Rana, T. K.; Bhattacharya, C.; Manna, S.; Srivastava, V.; Banerjee, K.; Kundu, S.; Roy, P.; Pandey, R.; Chaudhuri, A.; Roy, T.; Ghosh, T. K.; Mukherjee, G.; Bhattacharya, S.; Meena, J. K.; Pandit, S. K.; Mahata, K.; Patale, P.; Shrivastava, A.; Nanal, V.

    2015-01-01

    Fragment emission mechanisms have been studied in 12C on 12C and 13C on 12C reactions at same excitation energy. The inclusive energy distributions of the complex fragments (3≤ Z ≤ 5) emitted from the composite system have been measured in the angular range 14° to 36°. The present experiments have been performed with the motivation to study the isotopic dependence of fragment yields in these two reactions. From the preliminary analysis, it has been observed that fragments are emitted from a completely equilibrated and long lived composite system for both 12C + 12C and 13C + 12C reactions. It has also been observed that the emission of neutron-rich fragments are more in 13C + 12C compared to 12C + 12C reaction.

  6. Double imaging photoelectron photoion coincidence sheds new light on the dissociation of energy-selected CH3Cl(+) ions.

    PubMed

    Tang, Xiaofeng; Lin, Xiaoxiao; Zhang, Weijun; Garcia, Gustavo A; Nahon, Laurent

    2016-09-14

    The vacuum ultraviolet (VUV) photoionization and dissociative photoionization of CH3Cl in the energy range of 11-17 eV have been investigated in detail by combining synchrotron radiation and double imaging photoelectron photoion coincidences (i(2)PEPICO). Three low-lying electronic states of the CH3Cl(+) molecular ion, X(2)E, A(2)A1 and B(2)E, were prepared and analyzed. The appearance energies of the energetically accessible fragment ions, CH2Cl(+), CHCl(+), CH3(+) and CH2(+), have been obtained from their respective mass-selected threshold photoelectron spectra (TPES) or photoionization efficiency (PIE) curves. The dissociation mechanisms of energy-selected CH3Cl(+) ions, prepared in the A(2)A1 and the B(2)E electronic states, as well as outside the Franck-Condon region, have been revealed to be state-specific via ion/electron kinetic energy correlation diagrams. In particular, the umbrella mode vibrational progression of the CH3(+) fragment ion in the direct dissociation of the A(2)A1 electronic state was identified and assigned indicating that this state correlates to the CH3(+)(1(1)A1') + Cl((2)P1/2) dissociation limit, in agreement with the theoretical calculations performed in this work. PMID:27524637

  7. Synchronized Ion Acceleration by Ultraintense Slow Light.

    PubMed

    Brantov, A V; Govras, E A; Kovalev, V F; Bychenkov, V Yu

    2016-02-26

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils. PMID:26967421

  8. Synchronized Ion Acceleration by Ultraintense Slow Light

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Govras, E. A.; Kovalev, V. F.; Bychenkov, V. Yu.

    2016-02-01

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.

  9. A study of light ion accelerators for cancer treatment

    SciTech Connect

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer.

  10. Secondary ion emission from V and Al surfaces under keV light ion on bombardment

    NASA Astrophysics Data System (ADS)

    Blauner, Patricia G.; Weller, Martha R.; Kaurin, Michael G.; Weller, Robert A.

    1986-03-01

    Positive secondary ion mass spectra have been measured for oxidized polycrystalline V and Al targets bombarded by H +, H 2+, He + and Ar + ions with beam energies ranging from 25 keV to 275 keV. An enhancement in the relative yield of positive ions of electronegative surface constituents, in particular O + is observed under light ion bombardment. Metallic ion intensities were found to decrease with increasing primary beam energy in proportion to the estimated total sputtering yields for these targets and beams. In contrast, the O + secondary ion intensities were independent of primary beam energy. This behavior is similar to that observed previously with heavy ions of comparable velocities. In addition, for the projectiles and targets used in these measurements, no energy thresholds or collective effects were observed in the emission of any positive ion. Published data on secondary ion emission resulting from electron, photon, and heavy ion bombardment are compared with these results.

  11. Inertial confinement fusion with light ion beams.

    PubMed

    Vandevender, J P; Cook, D L

    1986-05-16

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well. PMID:17755963

  12. Lighting Control Energy Savings

    Energy Science and Technology Software Center (ESTSC)

    1985-01-01

    CONTROLITE 1.0 is a lighting energy analysis program designed to calculate the energy savings and cost benefits obtainable using lighting controls in buildings. The program can compute the lighting energy reductions that result from using daylighting, scheduling, and other control strategies. When modeling daylight control systems, the program uses QUICKLITE to compute the daylight illuminances at specified points 5 times a day, 12 days a year (the 21st of each month), and for two skymore » conditions (clear and overcast skies). Fourier series techniques are used to fit a continuous curve through the computed illuminance points. The energy use for each of the 12 days is then computed given user-specified power-in/light-out characteristics of the modeled control system. The monthly and annual energy usage for overcast and clear conditions are found separately by fitting two long-term Fourier series curves to the energy use computed for each of the 12 days. Finally, the monthly energy use is calculated by taking a weighted average for the monthly energy use computed for the overcast and clear sky conditions. The program only treats the energy use directly attributable to lighting. The impact of lighting control strategies on building thermal loads is not computed. The program allows input of different control schedules (i.e., on/off times for the lighting system) for each day of the week, but every week of the year is treated the same; thus, holidays cannot be modeled explicitly. When used for daylighting purposes, CONTROLITE1.0 understands only clear and overcast conditions. User-supplied values for the proportion of clear and overcast hours for each month of the year are required to accommodate different climatic conditions.« less

  13. Light ion hohlraum target experiments on PBFA II and Nova

    SciTech Connect

    Leeper, R.J.; Bailey, J.E.; Barber, T.L.; Carlson, A.L.; Chandler, G.A.; Cook, D.L.; Derzon, M.S.; Dukart, R.J.; Hebron, D.E.; Johnson, D.J.; Matzen, M.K.; Mehlhorn, T.A.; Moats, A.R.; Nash, T.J.; Noack, D.D.; Olsen, R.W.; Olson, R.E.; Porter, J.L.; Quintenz, J.P.; Ruiz, C.L.; Stark, M.A.; Torres, J.A.; Wenger, D.F.

    1996-05-01

    The goal of the National Inertial Confinement Fusion (ICF) Program in the United States is a target yield in the range of 200 to 1000 MJ. To address this goal, the near-term emphasis in the Light Ion Target Physics program is to design a credible high-gain target driven by ion beams. Based on this target design, we have identified ion beam spatial parameters, ion beam energy and power deposition, the conversion of ion-beam energy into soft x-ray thermal radiation, the conversion of ion-beam energy into hydrodynamic motion, radiation smoothing in low-density foams, and internal pulse shaping as the critical physics issues. These issues are currently being addressed in both ion- and laser-driven experiments. {copyright} {ital 1996 American Institute of Physics.}

  14. Light ion hohlraum target experiments on PBFA II and Nova

    SciTech Connect

    Leeper, R.J.; Bailey, J.E.; Barber, T.L.

    1995-12-31

    The goal of the National Inertial Confinement Fusion (ICF) Program in the United States is a target yield in the range of 200 to 1000 MJ. To address this goal, the near-term emphasis in the Light Ion Target Physics program is to design a credible high-gain target driven by ion beams. Based on this target design, we have identified ion beam spatial parameters, ion beam energy and power deposition, the conversion of ion-beam energy into soft x-ray thermal radiation, the conversion of ion-beam energy into hydrodynamic motion, radiation smoothing in low-density foams, and internal pulse shaping as the critical physics issues. These issues are currently being addressed in both ion- and laser-driven experiments.

  15. Vibrational Energy Relaxation of Thiocyanate Ions in Liquid-to-Supercritical Light and Heavy Water. A Fermi's Golden Rule Analysis.

    PubMed

    Czurlok, Denis; Gleim, Jeannine; Lindner, Jörg; Vöhringer, Peter

    2014-10-01

    The vibrational relaxation dynamics following an ultrafast nitrile stretching (ν3) excitation of thiocyanate anions dissolved in light and heavy water have been studied over a wide temperature and density range corresponding to the aqueous liquid up to the supercritical phase. In both solvents, the relaxation of the ν3 = 1 state of the anion leads to a direct recovery of the vibrational ground state and involves the resonant transfer of the excess vibrational energy onto the solvent. In light water, the energy-accepting states are provided by the bending-librational combination band (νb + νL), while in heavy water, the relaxation is thermally assisted by virtual acceptor states derived from the stretching-librational/restricted translational hot band (νS - νL,T). The relaxation rate is found to strictly obey Fermi's Golden Rule when the density of resonant solvent states is estimated from the linear infrared spectra of the solute and the pure solvents. PMID:26278447

  16. Overview of Light-Ion Beam Therapy

    SciTech Connect

    Chu, William T.

    2006-03-16

    In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the building of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the treatment volume

  17. Tuning of the optical properties of In-rich In{sub x}Ga{sub 1−x}N (x=0.82−0.49) alloys by light-ion irradiation at low energy

    SciTech Connect

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario; Pettinari, Giorgio; Ciatto, Gianluca; Fonda, Emiliano; Amidani, Lucia; Boscherini, Federico; Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver; Giubertoni, Damiano; Bersani, Massimo

    2013-12-04

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In{sub x}Ga{sub 1−x}N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects.

  18. Principles of light energy management

    NASA Technical Reports Server (NTRS)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  19. Optical cavity integrated surface ion trap for enhanced light collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco M.

    Ion trap systems allow the faithful storage and manipulation of qubits encoded in the energy levels of the ions, and can be interfaced with photonic qubits that can be transmitted to connect remote quantum systems. Single photons transmitted from two remote sites, each entangled with one quantum memory, can be used to entangle distant quantum memories by interfering on a beam splitter. Efficient remote entanglement generation relies upon efficient light collection from single ions into a single mode fiber. This can be realized by integrating an ion trap with an optical cavity and employing the Purcell effect for enhancing the light collection. Remote entanglement can be used as a resource for a quantum repeater for provably secure long-distance communication or as a method for communicating within a distributed quantum information processor. We present the integration of a 1 mm optical cavity with a micro-fabricated surface ion trap. The plano-concave cavity is oriented normal to the chip surface where the planar mirror is attached underneath the trap chip. The cavity is locked using a 780 nm laser which is stabilized to Rubidium and shifted to match the 369 nm Doppler transition in Ytterbium. The linear ion trap allows ions to be shuttled in and out of the cavity mode. The Purcell enhancement of spontaneous emission into the cavity mode would then allow efficient collection of the emitted photons, enabling faster remote entanglement generation.

  20. Parameterization for light ion production from electromagnetic dissociation

    NASA Astrophysics Data System (ADS)

    Norbury, John

    2014-09-01

    Light ion (hydrogen and helium isotopes) production from relativistic nucleus-nucleus collisions is important in space radiation protection problems, when galactic cosmic rays interact with spacecraft. In fact, for thick spacecraft shields, such as the International Space Station, light ion and neutron production can dominate the contribution to dose equivalent. Both strong and electromagnetic interactions can contribute to light ion production. The present work extends a previous parameterization of electromagnetically produced light ions, so that particle branching ratios are described more realistically.

  1. Energy saver for industrial lighting

    NASA Technical Reports Server (NTRS)

    Arline, J.; Lapalme, J.; Warren, C.

    1980-01-01

    Electronic controller switches lights on or off in response to amount of sunlight available. Is application in offices and industrial installations where electrical energy is wasted by using artificial light in sunlit areas. Device utilizes electronic monitor that varies artificial lighting according to amount of sunlight in given area.

  2. Stopping of energetic light ions in elemental matter

    NASA Astrophysics Data System (ADS)

    Ziegler, J. F.

    1999-02-01

    The formalism for calculating the stopping of energetic light ions (H, He, and Li) at energies above 1 MeV/u, has advanced to the point that stopping powers may now be calculated with an accuracy of a few percent for all elemental materials. Although the subject has been of interest for a century, only recently have the final required corrections been understood and evaluated. The theory of energetic ion stopping is reviewed with emphasis on those aspects that pertain to the calculation of accurate stopping powers.

  3. Lighting and energy in perspective

    SciTech Connect

    Fisher, W.S.

    1982-06-01

    Lighting has been used far too often as a symbol of energy use. As a result, much of the public is under the impression that lighting is one of the biggest energy users. In this paper the very opposite is proven. By pie diagrams it is seen that lighting uses only 5% of the nation's energy. Mandates to reduce lighting in the event of an oil emergency may be counterproductive as a result. Reductions would be better sought in transportation use (51%) and space heating. In a survey of Portland families, car use was 56%, lighting only 2%. It was also determined that ''Dad, Mom, and the kids'' use far more energy than all the stores, offices, schools, hotels, motels, and hospitals in the country.

  4. ENLIGHT: The European Network for Light Ion Hadron Therapy.

    PubMed

    Dosanjh, Manjit; Cirilli, Manuela; Greco, Virginia; Meijer, Annelie E

    2012-11-01

    The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 to coordinate European efforts on hadron therapy (radiotherapy performed with protons and light ions instead of high-energy photons). The ENLIGHT network is formed by the European Hadron Therapy Community, with more than 300 participants from 20 different countries. A major success of ENLIGHT has been uniting traditionally separate communities so that clinicians, physicists, biologists, and engineers with experience and interest in particle therapy work together. ENLIGHT has been a successful initiative in forming a common European platform and bringing together people from diverse disciplines. ENLIGHT demonstrates the advantages of regular and organized exchanges of data, information, and best practices, as well as determining and following strategies for future needs in research and technological development in the hadron therapy field. PMID:23032898

  5. Radio frequency sustained ion energy

    DOEpatents

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  6. Lighting quality and energy efficiency

    SciTech Connect

    Benya, J.R.

    1996-01-01

    Ten design actions result in good lighting quality if applied intelligently. These actions are to: conceal the light source; provide enough light; relate to the architecture; relate to the human mood; utilize and manage the color of light; utilize and manage contrast; relate to the human being; solve technical problems created by other light sources; relate to the quality of the space; and realize the creative potential of the space. The starting characteristics for energy-efficient lighting include dimming capability, color capabilities, and optical capabilities. The most efficacious light source for the job should be used. This includes daylight, although it is not always reliable. Energy-efficient quality lighting is evident, but to make it persistent, to give it staying power, there must be some changes, such as: minor product improvements; two to a few major product breakthroughs; better education for the designers and specifiers; lower prices for key components and systems; higher value placed on environmental quality; ongoing applications research; doing it right; more industry awards and recoginition for energy-efficient designs; continuation of utility efforts in rebates, education programs, and technology centers; unification of the industry and avoidance of duplication; more positive governmental response and less arbitrary product-oriented legislation until this issue is better understood.

  7. Light Pipe Energy Savings Calculator

    NASA Astrophysics Data System (ADS)

    Owens, Erin; Behringer, Ernest R.

    2009-04-01

    Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.

  8. Light particle emissions in heavy ion reactions

    SciTech Connect

    Petitt, G.A.; Liu, Xin-Tao; Smathers, J.; Zhang, Ziang.

    1991-03-01

    We are completing another successful year of experimental work at the Holifield Heavy Ion Research Facility (HHIRF), the Los Alamos white neutron source facility, Brookhaven National Laboratory (BNL) and Georgia State University (GSU). A paper on energy division between the two heavy fragments in deep inelastic reactions between {sup 58}Ni + {sup 165}Ho was published in Physical Review C during the year. We have partially completed analysis of the data on the {sup 32}S + {sup 93}Nb system taken with the HILI detector system at the HHIRF. This paper discusses work on these topics and discusses the setup of a neutron detector for a neutron reaction experiment.

  9. Unidirectional stripping extraction from a cyclotron which accelerates light as well as heavy ions

    NASA Astrophysics Data System (ADS)

    Ristić-Djurović, Jasna L.; Ćirković, Saša

    2003-03-01

    The VINCY Cyclotron (VINča CYclotron) is a multipurpose machine intended to accelerate light as well as heavy ions. To extract heavy ions with low energy and light ions an extraction system with stripping foil is used. Heavy ions with high energy will be extracted by means of an electrostatic deflector. The former extraction system will be manufactured and used first. The proposed unidirectional stripping extraction system is the optimal balance between the placement of the extraction line and the required diversity and quality of the extracted beam. The available range of extraction directions is set by geometry limitations.

  10. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  11. Bright, Light and Energy Efficient.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)

  12. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Astrophysics Data System (ADS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  13. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  14. MCNPX Extension for Using Light Ion Evaluated Nuclear Data Library.

    Energy Science and Technology Software Center (ESTSC)

    2013-05-23

    Version 00 US DOE 10CFR810 Jurisdiction. MCUNED is an MCNPX extension that handles a light ion evaluated nuclear data library. Using MCUNED, all MCNPX simulations involving transport of light ion could be solved using evaluated libraries instead of MCNPX built-in models.

  15. Formation of amorphous silicon by light ion damage

    SciTech Connect

    Shih, Y.C.

    1985-12-01

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing.

  16. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  17. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-09-30

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven of PEARL program during the period of April 2006 to September 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC continued receiving the CFL samples purchased by sponsors and finished performing the sphere testing for all CFL models at 100 hours of life. After that LRC aged the CFL samples to 1000 hours of life, and then performed sphere testing for all CFL models at 1000 hours of life. Then the CFLs were placed on the test rack to be aged to 40% of their rated life. Rapid Cycle Stress Test was also performed for all models using different sets of CFL samples.

  18. Energy Star Lighting Verification Program

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2007-03-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven and Cycle Eight of PEARL program during the period of October 2006 to March 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC finished performing the sphere testing for all CFL models in Cycle Seven at 40% of their rated life. LRC also performed re-test of Rapid Cycle Stress Test, under the request of DOE, for five CFL models that failed the Rapid Cycle Stress Test in Cycle Seven. From January 2007 to March 2007, LRC coordinated the procuring efforts for the CFL models that were selected for Cycle Eight.

  19. Light ion mass spectrometer for space-plasma investigations

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.; Chappell, C. R.; Fields, S. A.; Lewter, W. J.

    1982-01-01

    Direct satellite measurements and ground-based techniques have given a comprehensive view of the density distribution of the cold plasma population in the earth's magnetosphere. There were, however, no direct measurements of the low-energy plasma mass composition, temperature, density, pitch-angle distribution, or plasma flow velocity. A description is presented of the evolution and development of an instrument, the Light Ion Mass Spectrometer (LIMS), designed to make these low-energy plasma measurements. The instrument was developed for flight on the spacecraft SCA-THA, a satellite to study satellite charging at high altitudes. This satellite, whose primary mission was to study spacecraft-plasma interactions and electrostatic charging, was launched into a near-geosynchronous orbit. The design requirements regarding the instrument are discussed, and attention is given to the calibration procedures, the flight configuration, and some examples of flight data.

  20. Shaping laser accelerated ions for future applications - The LIGHT collaboration

    NASA Astrophysics Data System (ADS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.; Brabetz, C.; Burris-Mog, T.; Cowan, T. E.; Deppert, O.; Droba, M.; Eickhoff, H.; Eisenbarth, U.; Harres, K.; Hoffmeister, G.; Hofmann, I.; Jaeckel, O.; Jaeger, R.; Joost, M.; Kraft, S.; Kroll, F.; Kaluza, M.; Kester, O.; Lecz, Z.; Merz, T.; Nürnberg, F.; Al-Omari, H.; Orzhekhovskaya, A.; Paulus, G.; Polz, J.; Ratzinger, U.; Roth, M.; Schaumann, G.; Schmidt, P.; Schramm, U.; Schreiber, G.; Schumacher, D.; Stoehlker, T.; Tauschwitz, A.; Vinzenz, W.; Wagner, F.; Yaramyshev, S.; Zielbauer, B.

    2014-03-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  1. Flipping the Photoswitch: Ion Channels Under Light Control.

    PubMed

    McKenzie, Catherine K; Sanchez-Romero, Inmaculada; Janovjak, Harald

    2015-01-01

    Nature has incorporated small photochromic molecules, colloquially termed 'photoswitches', in photoreceptor proteins to sense optical cues in phototaxis and vision. While Nature's ability to employ light-responsive functionalities has long been recognized, it was not until recently that scientists designed, synthesized and applied synthetic photochromes to manipulate many of which open rapidly and locally in their native cell types, biological processes with the temporal and spatial resolution of light. Ion channels in particular have come to the forefront of proteins that can be put under the designer control of synthetic photochromes. Photochromic ion channel controllers are comprised of three classes, photochromic soluble ligands (PCLs), photochromic tethered ligands (PTLs) and photochromic crosslinkers (PXs), and in each class ion channel functionality is controlled through reversible changes in photochrome structure. By acting as light-dependent ion channel agonists, antagonist or modulators, photochromic controllers effectively converted a wide range of ion channels, including voltage-gated ion channels, 'leak channels', tri-, tetra- and pentameric ligand-gated ion channels, and temperature-sensitive ion channels, into man-made photoreceptors. Control by photochromes can be reversible, unlike in the case of 'caged' compounds, and non-invasive with high spatial precision, unlike pharmacology and electrical manipulation. Here, we introduce design principles of emerging photochromic molecules that act on ion channels and discuss the impact that these molecules are beginning to have on ion channel biophysics and neuronal physiology. PMID:26381942

  2. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  3. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ∼ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  4. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  5. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-09-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  6. Lighting Energy Management for Colleges and Universities.

    ERIC Educational Resources Information Center

    National Lighting Bureau, Washington, DC.

    Colleges and universities probably rely on more types of lighting than do other facilities. This booklet is intended to help administrators achieve the goal of lighting energy management--gaining maximum benefit from illumination systems while minimizing energy waste. The development of a lighting energy management plan requires knowledge of the…

  7. Guide to Energy-Efficient Lighting

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Lighting accounts for about 15% of an average home’s electricity use, so it pays to make energy-efficient choices.

  8. Tomographic study of ion tracks by ion energy loss spectroscopy

    SciTech Connect

    Vacik, J.; Havranek, V.; Hnatowicz, V.; Lavrentiev, V.; Horak, P.; Fink, D.; Apel, P.

    2013-04-19

    Ion energy loss spectroscopy is suggested to determine the shape of the (latent, etched and filled) ion tracks in polymers using ion probes of various beam sizes. For a milli-probe, it can be considered as a one-dimensional tomography of many identical (rotationally symmetric) objects. For a micro-probe, the technique can be understood as a micro-tomography of the single ion track. In both cases, the ion energy loss spectroscopy requires monoenergetic ions with a low intensity (< 10{sup -3} s{sup -1}) and a well defined angular beam set-up. Here we present a study of the possible use of the ion milli-and micro-probes in a tomographic study of the ion track 3D geometry and its evolution during chemical etching.

  9. Thomson parabola ion energy analyzer

    SciTech Connect

    Cobble, James A; Flippo, Kirk A; Letzring, Samuel A; Lopez, Frank E; Offermann, Dustin T; Oertel, John A; Mastrosimone, Dino

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  10. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

    PubMed Central

    Armbruster, Ute; Carrillo, L. Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A.; Kramer, David M.; Jonikas, Martin C.

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K+ efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  11. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments.

    PubMed

    Armbruster, Ute; Carrillo, L Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A; Kramer, David M; Jonikas, Martin C

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3's activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  12. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps.

    PubMed

    Inoue, Keiichi; Nomura, Yurika; Kandori, Hideki

    2016-05-01

    In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na(+) and inward Cl(-) pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR). The H(+), Na(+), and Cl(-) pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na(+) → H(+) functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na(+) → Cl(-) and Cl(-) → H(+) functional conversions, whereas remaining conversions (H(+) → Na(+), H(+) → Cl(-), Cl(-) → Na(+)) were unsuccessful when mutagenesis of 4-6 residues was used. Phylogenetic analysis suggests that a H(+) pump is the common ancestor of all of these rhodopsins, from which Cl(-) pumps emerged followed by Na(+) pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro. PMID:26929409

  13. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  14. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  15. Damage calculation in fusion ceramics: comparing neutrons and light ions

    NASA Astrophysics Data System (ADS)

    Vladimirov, P. V.; Lizunov, D.; Ryazanov, Yu. A. I.; Möslang, A.

    1998-03-01

    A method developed earlier for displacement damage calculations in compound materials is applied to fusion ceramics irradiated by various neutron sources and light ion accelerators. For protons up to 40 MeV and alpha-particles up to 100 MeV, as well as for several neutron environments (EEF, ITER, HFIR, FFTF), sublattice-specific primary recoil spectra and displacement damage rates have been calculated for α-Al 2O 3, AlN, BeO, MgO, MgAl 2O 4 and SiC. Although the primary recoil spectra can vary significantly for different neutron sources and light ions, the ratios of sublattice-specific damage rates are the same within 5% for BeO, MgO and SiC in all considered environments. For ceramics containing Al, the damage ratio differs up to about 40% between neutron and light ion irradiations.

  16. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  17. Low-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback,more » net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  18. Low-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  19. High-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  20. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  1. Neutral beamline with improved ion energy recovery

    DOEpatents

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  2. Neutral beamline with improved ion energy recovery

    DOEpatents

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  3. NRL light ion beam research for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Cooperstein, G.; Goldstein, S. A.; Mosher, D.; Barker, R. J.; Boller, J. R.; Colombant, D. G.; Drobot, A.; Meger, R. A.; Oliphant, W. F.; Ottinger, P. F.

    1980-11-01

    There is presently great interest in using light ions beams to drive thermonuclear pellets. Terrawatt-level ion beams have been efficiently produced using conventional pulsed power generators at Sandia Laboratory with magnetically-insulated ion diodes and at the Naval Research Laboratory with pinch-reflex ion diodes. Both laboratories have recently focused ion beams to pellet dimensions. This paper reviews recent advances made at NRL in the area of ion production with pinch-reflex diodes, and in the areas of beam focusing and transport. In addition, modulator generator and beam requirements for pellet ignition systems are reviewed and compared with the latest experimental results. These results include the following: (1) production of = or - 100,100 kj proton and deuteron beams with peak ion powers approaching 2 TW on the PITHON generator in collaboration with Physics International Co., (2) focusing of 0.5 TW deuteron beams produced on the NRL Gamble 2 generator to current densities of about 300 kA/sq cm, and (3) efficient transport of 100 kA level ion beams over 1 meter distances using Z-discharge plasma channels.

  4. Towards Laser Cooling Trapped Ions with Telecom Light

    NASA Astrophysics Data System (ADS)

    Dungan, Kristina; Becker, Patrick; Donoghue, Liz; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information has many potential applications in communication, atomic clocks, and the precision measurement of fundamental constants. Trapped ions are excellent candidates for applications in quantum information because of their isolation from external perturbations, and the precise control afforded by laser cooling and manipulation of the quantum state. For many applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress towards laser cooling and trapping of doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Additionally, we present progress on optimization of a second-harmonic generation cavity for laser cooling and trapping barium ions, for future sympathetic cooling experiments. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  5. Light ion production for a future radiobiological facility at CERN: Preliminary studies

    NASA Astrophysics Data System (ADS)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  6. Light ion production for a future radiobiological facility at CERN: Preliminary studies

    SciTech Connect

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Scrivens, Richard; Röhrich, Jörg

    2014-02-15

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  7. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    SciTech Connect

    Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Polozov, S. M.; Poole, H. J.

    2011-01-07

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  8. Light ion flow in the nightside ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.; Grebowsky, J. M.

    1993-04-01

    The flow characteristics of the light ions H(+) and He(+) have been studied in the midnight region of the ionosphere of Venus. Measurements of ion composition, electron and ion temperatures and magnetic fields by instruments onboard the Pioneer Venus Orbiter have been used in rite electron and ion equations of conservation of mass and momentum to derive the vertical flow velocities of H(+) and He(+). When average height profiles of the measured quantities were used, H(+) was found to flow upward, accelerating to speeds of almost 1 km/s at the ion-exobase. In a similar fashion, He(+) was found to flow downward into the neutral atmosphere where it is readily quenched by charge transfer reactions. The polarization electric field played an important role in forcing H(+) upward, but did not contribute enough to the He(+) force balance to produce upward flow. At the ion-exobase, the outward electric polarization force on H(+) was shown to be five times the gravitational force. Using an analogy with the terrestrial ion-exosphere, H(+) was inferred to flow upward into the ionotail of Venus and accelerate to escape speeds. A planet averaged escape flux of 1.4 x 10 exp 7/sq cm/s was calculated, which is comparable to hydrogen loss rates estimated by other investigators.

  9. Light ion flow in the nightside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Grebowsky, J. M.

    1993-01-01

    The flow characteristics of the light ions H(+) and He(+) have been studied in the midnight region of the ionosphere of Venus. Measurements of ion composition, electron and ion temperatures and magnetic fields by instruments onboard the Pioneer Venus Orbiter have been used in rite electron and ion equations of conservation of mass and momentum to derive the vertical flow velocities of H(+) and He(+). When average height profiles of the measured quantities were used, H(+) was found to flow upward, accelerating to speeds of almost 1 km/s at the ion-exobase. In a similar fashion, He(+) was found to flow downward into the neutral atmosphere where it is readily quenched by charge transfer reactions. The polarization electric field played an important role in forcing H(+) upward, but did not contribute enough to the He(+) force balance to produce upward flow. At the ion-exobase, the outward electric polarization force on H(+) was shown to be five times the gravitational force. Using an analogy with the terrestrial ion-exosphere, H(+) was inferred to flow upward into the ionotail of Venus and accelerate to escape speeds. A planet averaged escape flux of 1.4 x 10 exp 7/sq cm/s was calculated, which is comparable to hydrogen loss rates estimated by other investigators.

  10. Process in high energy heavy ion acceleration

    NASA Astrophysics Data System (ADS)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  11. Resonating Rays in Light Ion Scattering from AN Optical Potential.

    NASA Astrophysics Data System (ADS)

    Stoyanov, Basil John

    Recent experimental investigations reveal that resonances of composite ion-ion systems are a general phenomenon in light- and heavy-ion scattering. The experimentally observed phenomenon known as the anomalous large-angle scattering (ALAS) of alpha-particle from certain isotopes, such as (alpha)-('40)Ca, manifests itself in the form of successive peaks in the back-scattering excitation function. Earlier theoretical studies were mainly concentrated either on the surface-wave or geometrical-wave description of these phenomena, whereas the pont of view taken here, which is based on the results of physical acoustics, is that the ion-ion scattering amplitude contains both the surface-wave and the geometrical-wave contributions. Therefore a comprehensive approach would be to investigate both of these contributions simultaneously. This is achieved in the present work through a decomposition, by applying the Sommerfeld-Watson and Imai transformations, of the scattering amplitude into its ingredients and by analyzing both the resulting geometrical rays and the surface waves in terms of resonances. This procedure generates a precise mathematical description of resonance processes in ion scattering (via the S-function poles) and at the same time leads in a semi -classical framework to their thorough physical interpretation (via the generalized Bohr-Sommerfeld quantization condition). The existence of resonances in both the geometrical and surface waves emerges from such a description, and is exemplified by numerical calculations for (alpha)-('40)Ca elastic scattering.

  12. Using neutral beams as a light ion beam probe (invited)

    SciTech Connect

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K.; Kramer, G. J.; Nazikian, R.; Austin, M. E.; Hanson, J. M.; Zeng, L.

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  13. New Light on Dark Energy

    NASA Astrophysics Data System (ADS)

    2008-01-01

    observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").

  14. Embodied Energy and Off-Grid Lighting

    SciTech Connect

    Alstone, Peter; Mills, Evan; Jacobson, Arne

    2011-01-25

    The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

  15. Correlative light-ion microscopy for biological applications

    NASA Astrophysics Data System (ADS)

    Bertazzo, Sergio; von Erlach, Thomas; Goldoni, Silvia; Çandarlıoğlu, Pelin L.; Stevens, Molly M.

    2012-04-01

    Here we report a new technique, Correlative Light-Ion Microscopy (CLIM), to correlate SEM-like micrographs with fluorescence images. This technique presents significant advantages over conventional methods in enabling topographical and biochemical information to be correlated with nanoscale resolution without destroying the fluorescence signal. We demonstrate the utility of CLIM for a variety of investigations of cell substrate interactions validating its potential to become a routine procedure in biomedical research.Here we report a new technique, Correlative Light-Ion Microscopy (CLIM), to correlate SEM-like micrographs with fluorescence images. This technique presents significant advantages over conventional methods in enabling topographical and biochemical information to be correlated with nanoscale resolution without destroying the fluorescence signal. We demonstrate the utility of CLIM for a variety of investigations of cell substrate interactions validating its potential to become a routine procedure in biomedical research. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30431g

  16. Energy efficient lighting and communications

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Kavehrad, M.; Deng, P.

    2012-01-01

    As Light-Emitting Diode (LED)'s increasingly displace incandescent lighting over the next few years, general applications of Visible Light Communication (VLC) technology are expected to include wireless internet access, vehicle-to-vehicle communications, broadcast from LED signage, and machine-to-machine communications. An objective in this paper is to reveal the influence of system parameters on the power distribution and communication quality, in a general plural sources VLC system. It is demonstrated that sources' Half-Power Angles (HPA), receivers' Field-Of Views (FOV), sources layout and the power distribution among sources are significant impact factors. Based on our findings, we developed a method to adaptively change working status of each LED respectively according to users' locations. The program minimizes total power emitted while simultaneously ensuring sufficient light intensity and communication quality for each user. The paper also compares Orthogonal Frequency-Division Multiplexing (OFDM) and On-Off Keying (OOK) signals performance in indoor optical wireless communications. The simulation is carried out for different locations where different impulse response distortions are experienced. OFDM seems a better choice than prevalent OOK for indoor VLC due to its high resistance to multi-path effect and delay spread. However, the peak-to-average power limitations of the method must be investigated for lighting LEDs.

  17. Four-rod-λ/2-RFQ for light ion acceleration

    NASA Astrophysics Data System (ADS)

    Schempp, A.; Deitinghoff, H.; Ferch, M.; Junior, P.; Klein, H.

    1985-05-01

    A simple type of RFQ structure with circular rods as electrodes has been developed in Frankfurt. The improved design uses a linear arrangement of supporting stems on a massive common bar. This linear rf structure consists of a chain of λ/2-line pairs and leads to an advantageously simple but nonetheless effective RFQ structure. With this stable cheap type of RFQ resonator preaccelerator prototypes have been built for light ions. New results of electrode and structure optimization and beam measurements are presented.

  18. Planetary loss from light ion escape on Venus

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Grebowsky, J. M.

    1995-01-01

    Using Pioneer Venus data, hydrogen and deuterium ions are shown to escape from the hydrogen bulge region in the nightside ionosphere. The polarization electric field propels these light ions upward through the ionosphere and into the ion-exosphere, where H(+) and D(+) continue to be accelerated away from Venus and move into the ionotail and beyond. The vertical flow speeds of H(+) and D(+) are found to be about the same; therefore, selective escape between H(+) and D(+) is negligible for this mechanism. Present day planetary loss rates of about 8.6 x 10(exp 25)/s and 3.2 X 10(exp 23)/s were obtained for H(+) and D(+), respectively. Such rates, persisting over a few billion years, should have significantly affected the planetary water budget.

  19. Tailored ion energy distributions on plasma electrodes

    SciTech Connect

    Economou, Demetre J.

    2013-09-15

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.

  20. Conversion of radiant light energy in photobioreactors

    SciTech Connect

    Cornet, J.F.; Dussap, C.G.; Gros, J.B. . Lab. de Genie Chimique Biologique)

    1994-06-01

    The conversion of radiant light energy into chemical affinity by microorganisms in photobioreactors is examined. The kinetics of entropy production in the system is theoretically established from entropy and energy balances for the material and photonic phases in the reactor. A negative chemical affinity term compensated for by a radiant energy term at a higher level of energy characterizes photosynthetic organisms. The local volumetric rate of radiant light energy absorbed, which appears in the dissipation function as an irreversible term, is calculated for monodimensional approximations providing analytical solutions and for general tridimensional equations requiring the solution of a new numerical algorithm. Solutions for the blue-green alga Spirulina platensis cultivated in photoreactors with different geometries and light energy inputs are compared. Thermodynamic efficiency of the photosynthesis is calculated. The highest value of 15% found for low radiant energy absorption rates corresponds to a maximum quantum yield in the reactor.

  1. Radiation-Pressure Acceleration of Ion Beams from Nanofoil Targets: The Leaky Light-Sail Regime

    SciTech Connect

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Geissler, M.; Karmakar, A.; Gibbon, P.

    2010-10-08

    A new ion radiation-pressure acceleration regime, the 'leaky light sail', is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10{sup 19} W/cm{sup 2}. 100 MeV proton beams are obtained by increasing the intensities to 2x10{sup 20} W/cm{sup 2}.

  2. Light thoughts on dark energy

    SciTech Connect

    Linder, Eric V.

    2004-04-01

    The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark energy and the future looks bright for constraining dark energy, though both the measurements and the interpretation will be challenging. We also discuss a more direct relation between the spacetime geometry and acceleration, via ''geometric dark energy'' from the Ricci scalar, and superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  3. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  4. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  5. The light emission produced by using different ion species bombarding various mixed ices

    NASA Astrophysics Data System (ADS)

    Lee, C.; Ip, W.; Hsu, S.; Liu, S.

    2006-05-01

    In the solar system, water (the most abundant of materials) and many other gases are contained in the interstellar medium and planets. They experienced constant irradiation by solar wind and radiation. In order to simulate the above condition in the earth laboratory, several ion species are applied to bombard several gases (CH4 and NH3) mixed with iced water and the optical spectroscopy of sputtered particles from the surface of mixed ices has been measured. According to the P. Sigmund¡¦s model [1], if the projectiles with the same beam energy, then heavier ion will generate more sputtered particles. It turned out that in this measurement the heavier incident ion produced stronger light intensity, which should be proportional to sputtered particles. The optical emissions produce by ion species can be classified two categories: (a) Light emissions of hydrogen molecular spectroscopy are generated by hydrogen molecular ion species bombarding mixed ices with water. (b) Light emissions of atomic transitions are produced by projectiles of He+¡BN+¡BH2O+¡BN2+, and Ar+. We also measured the variation of light emissions dependent on different incident angles. It indicates that the iced water has some characteristics of crystal. The experiment of ion interaction with mixed ices can be used to simulate conditions occurred in the astrophysics [2, 3]. References: 1. P. Sigmund, Phys. Rev. 184 (1969) 383. 2. M.H. Moore , R.L. Hudson , P.A. Gerakines , ¡§Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices¡¨ , Spectrochimica Acta Part A , 57 , 843-858 (2001). 3. R.A. Baragiola , R.A. Vidal , W. Svendsen , J. Schou , M. Shi , D.A. Bahr , C.L. Atteberrry , ¡§Sputtering of water ice¡¨ , NIMB , 209 , 294-303 (2003)

  6. Sputtering Threshold Energies of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.

    1999-01-01

    Sputter erosion in ion thrusters has been measured in lifetests at discharge voltages as low as 25 V. Thruster operation at this discharge voltage results in component erosion rates sufficiently low to satisfy most mission requirements. It has been recognized that most of the internal sputtering in ion thrusters is done by doubly charged ions. Knowledge of the sputtering threshold voltage of a xenon molybdenum system would be beneficial in understanding the sputtering process as well as making more accurate calculations of the sputtering rates of ion thruster components. Sputtering threshold energies calculated from various formulations found in the literature results in values ranging from 28 to 200 eV. It is evident that some of these formulations cannot be relied upon to provide sputtering thresholds with any degree of accuracy. This paper re-examines the threshold energies measurements made in the early sixties by Askerov and Sena, and Stuart and Wehner. The threshold voltages as derived by Askerov and au have been reevaluated by using a different extrapolation method of sputter yields at low ion energies. The resulting threshold energies are in general similar to those measured by Stuart and Wehner. An empirical relationship is derived,for mercury and xenon ions for the ratio of the sputtering threshold energy to the sublimation energy as a function of the ratio of target to ion atomic mass.

  7. Procedure to Measure Indoor Lighting Energy Performance

    SciTech Connect

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  8. Light energy conservation processes in Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Bogomolni, R. A.

    1977-01-01

    Proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane in Halobacterium halobium. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of phosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark pre-existing potential of about 130 mV only by a small amount (20 to 30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, which suggests that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented.

  9. Mutant of a Light-Driven Sodium Ion Pump Can Transport Cesium Ions.

    PubMed

    Konno, Masae; Kato, Yoshitaka; Kato, Hideaki E; Inoue, Keiichi; Nureki, Osamu; Kandori, Hideki

    2016-01-01

    Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven Na(+) pump found in marine bacterium. KR2 pumps Li(+) and Na(+), but it becomes an H(+) pump in the presence of K(+), Rb(+), and Cs(+). Site-directed mutagenesis of the cytoplasmic surface successfully converted KR2 into a light-driven K(+) pump, suggesting that ion selectivity is determined at the cytoplasmic surface. Here we extended this research and successfully created a light-driven Cs(+) pump. KR2 N61L/G263F pumps Cs(+) as well as other monovalent cations in the presence of a protonophore. Ion-transport activities correlated with the additive volume of the residues at 61 and 263. The result suggests that an ion-selectivity filter is affected by these two residues and functions by strict exclusion of K(+) and larger cations in the wild type (N61/G263). In contrast, introduction of large residues possibly destroys local structures of the ion-selectivity filter, leading to the permeation of K(+) (P61/W263) and Cs(+) (L61/F263). PMID:26740141

  10. Fe ion-implanted TiO2 thin film for efficient visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Impellizzeri, G.; Scuderi, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Sanz, R.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.; Privitera, V.

    2014-11-01

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO2 photocatalyst. High fluence Fe+ ions were implanted into thin TiO2 films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO2 pure film, locally lowering its band-gap energy from 3.2 eV to 1.6-1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6-1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO2.

  11. Measurements of low energy auroral ions

    NASA Astrophysics Data System (ADS)

    Urban, A.

    1981-12-01

    Ion measurements in the energy range 0.1-30 keV observed during the 'Substorm Phenomena' and 'Porcupine' campaigns are summarized. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field is identified and found to be accompanied by intense electron precipitation. On the other hand, deceleration of the ions is observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations suggest energy dispersion and a location of the source region at 9 earth radii. What is more, ion fluxes higher than those of the electrons are measured at pitch angles parallel to the magnetic field. It is noted that each of the examples was observed during different flights.

  12. Ion debris characterization from a z-pinch extreme ultraviolet light source

    SciTech Connect

    Antonsen, Erik L.; Thompson, Keith C.; Hendricks, Matthew R.; Alman, Darren A.; Jurczyk, Brian E.; Ruzic, D.N.

    2006-03-15

    An XTREME Technologies XTS 13-35 extreme ultraviolet (EUV) light source creates a xenon z pinch that generates 13.5 nm light. Due to the near x-ray nature of light at this wavelength, extremely smooth metal mirrors for photon collection must be employed. These are exposed to the source debris. Dissolution of the z-pinch gas column results in high-energy ion and neutral release throughout the chamber that can have adverse effects on mirror surfaces. The XTREME commercial EUV emission diagnostic chamber was designed to maximize diagnostic access to the light and particulate emissions from the z pinch. The principal investigation is characterization of the debris field and the erosive effects on optics present. Light emission from the z pinch is followed by ejection of multiply charged ions and fast neutral particles that make up an erosive flux to chamber surfaces. Attenuation of this erosive flux to optical surfaces is attempted by inclusion of a debris mitigation tool consisting of foil traps and neutral buffer gas flow. Characterization of the z-pinch ejecta is performed with a spherical sector energy analyzer (ESA) that diagnoses fast ion species by energy-to-charge ratio using ion time-of-flight (ITOF) analysis. This is used to evaluate the debris tool's ability to divert direct fast ions from impact on optic surfaces. The ITOF-ESA is used to characterize both the energy and angular distribution of the direct fast ions. Xe{sup +} up to Xe{sup +4} ions have been characterized along with Ar{sup +} (the buffer gas used), W{sup +}, Mo{sup +}, Si{sup +}, Fe{sup +}, and Ni{sup +}. Energy spectra for these species from 0.5 up to 13 keV are defined at 20 deg. and 30 deg. from the pinch centerline in the chamber. Results show a drop in ion flux with angular increase. The dominant species is Xe{sup +} which peaks around 8 keV. Ion flux measured against buffer gas flow rate suggests that the direct fast ion population is significantly attenuated through increases in buffer

  13. Ion debris characterization from a z-pinch extreme ultraviolet light source

    NASA Astrophysics Data System (ADS)

    Antonsen, Erik L.; Thompson, Keith C.; Hendricks, Matthew R.; Alman, Darren A.; Jurczyk, Brian E.; Ruzic, D. N.

    2006-03-01

    An XTREME Technologies XTS 13-35 extreme ultraviolet (EUV) light source creates a xenon z pinch that generates 13.5 nm light. Due to the near x-ray nature of light at this wavelength, extremely smooth metal mirrors for photon collection must be employed. These are exposed to the source debris. Dissolution of the z-pinch gas column results in high-energy ion and neutral release throughout the chamber that can have adverse effects on mirror surfaces. The XTREME commercial EUV emission diagnostic chamber was designed to maximize diagnostic access to the light and particulate emissions from the z pinch. The principal investigation is characterization of the debris field and the erosive effects on optics present. Light emission from the z pinch is followed by ejection of multiply charged ions and fast neutral particles that make up an erosive flux to chamber surfaces. Attenuation of this erosive flux to optical surfaces is attempted by inclusion of a debris mitigation tool consisting of foil traps and neutral buffer gas flow. Characterization of the z-pinch ejecta is performed with a spherical sector energy analyzer (ESA) that diagnoses fast ion species by energy-to-charge ratio using ion time-of-flight (ITOF) analysis. This is used to evaluate the debris tool's ability to divert direct fast ions from impact on optic surfaces. The ITOF-ESA is used to characterize both the energy and angular distribution of the direct fast ions. Xe+ up to Xe+4 ions have been characterized along with Ar+ (the buffer gas used), W+, Mo+, Si+, Fe+, and Ni+. Energy spectra for these species from 0.5 up to 13 keV are defined at 20° and 30° from the pinch centerline in the chamber. Results show a drop in ion flux with angular increase. The dominant species is Xe+ which peaks around 8 keV. Ion flux measured against buffer gas flow rate suggests that the direct fast ion population is significantly attenuated through increases in buffer gas flow rate. This does not address momentum transfer from

  14. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance

    PubMed Central

    Lórenz-Fonfría, Víctor A.; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-01-01

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(−) and 1,648(+) cm−1. These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance. PMID:26460012

  15. Ion Flux and Ion Energy Distributions in an Inductively Coupled GEC Rf Refererence Cell in Chlorine

    NASA Astrophysics Data System (ADS)

    Radovanov, Svetlana; Forrister, Ray; Anderson, Harold

    1996-10-01

    Ion flux and energy distribution measurements in pure chlorine were performed in an inductively coupled Gaseous Electronics Reference Cell 13.56 MHz radiofrequency discharge . Measurements were made using miniaturized gridded energy analyzer. This detector was developed at the University of New Mexico, based on earlier design of the small size energy analyzers at MIT. The detector was mounted on a 12 inch water cooled carrier to suppress probe heating. The probe could be radially moved in the discharge cell to monitor the radial uniformity of the plasma. In addition, the detector was protected with a ceramic coating to supress for the electron saturation current of unshielded probe areas. The measurements were done in the "bright " mode dominated by inductive coupling at different pressures and powers. The radial variation of the ion flux in pure chlorine and argon show similar strongly nonuniform profile. As expected, absolute ion flux values in chlorine are substantially decreased compared to pure argon discharge. The spatial nonuniformity across the 16 cm diameter surface of the grounded electrode is in agreement with the Langmuir probe measurements done by Miller and MIT measurements in pure argon. The ion energy distribution functions (IEDs) measured exhibit a complex structure indicative of both light Cl^+ and heavier Cl_2^+ ions. The IEDs in chlorine are much broder than those measured in pure argon plasma. The radial profile of IEDs found in the GEC/ICP chlorine discharge indicate large changes are occuring in the nature of power coupling to the discharge moving center to edge.

  16. MCNP6 fragmentation of light nuclei at intermediate energies

    NASA Astrophysics Data System (ADS)

    Mashnik, Stepan G.; Kerby, Leslie M.

    2014-11-01

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to 4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  17. Light stable isotope analysis of meteorites by ion microprobe

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1994-01-01

    The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.

  18. ESS-Bilbao light-ion linear accelerator and neutron source: design and applications

    NASA Astrophysics Data System (ADS)

    Abad, E.; Arredondo, I.; Badillo, I.; Belver, D.; Bermejo, F. J.; Bustinduy, I.; Cano, D.; Cortazar, D.; de Cos, D.; Djekic, S.; Domingo, S.; Echevarria, P.; Eguiraun, M.; Etxebarria, V.; Fernandez, D.; Fernandez, F. J.; Feuchtwanger, J.; Garmendia, N.; Harper, G.; Hassanzadegan, H.; Jugo, J.; Legarda, F.; Magan, M.; Martinez, R.; Megia, A.; Muguira, L.; Mujika, G.; Muñoz, J. L.; Ortega, A.; Ortega, J.; Perlado, M.; Portilla, J.; Rueda, I.; Sordo, F.; Toyos, V.; Vizcaino, A.

    2011-10-01

    The baseline design for the ESS-Bilbao light-ion linear accelerator and neutron source has been completed and the normal conducting section of the linac is at present under construction. The machine has been designed to be compliant with ESS specifications following the international guidelines of such project as described in Ref. [1]. The new accelerator facility in Bilbao will serve as a base for support of activities on accelerator physics carried out in Spain and southern Europe in the frame of different ongoing international collaborations. Also, a number of applications have been envisaged in the new Bilbao facility for the outgoing light ion beams as well as from fast neutrons produced by low-energy neutron-capture targets, which are briefly described.

  19. Light energy dissipation under water stress conditions

    SciTech Connect

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. )

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  20. Low energy ion loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S.; Liemohn, M.; Fang, X.; Ma, Y.

    2012-04-01

    Current data observations and modeling efforts have indicated that the low-energy pick-up ions on Mars significantly contribute to the overall escape rate. Due to the lack of a dipole magnetic field, the solar wind directly interacts with the dayside upper atmosphere causing particles to be stripped away. In this study, we use a 3-D Monte Carlo test particle simulation with virtual detectors to observe low energy ions (< 50 eV) in the Mars space environment. We will present velocity space distributions that can capture the asymmetric and non-gyrotropic features of particle motion. The effect of different solar conditions will also be discussed with respect to ion fluxes at various spatial locations as well as overall loss in order to robustly describe the physical processes controlling the distribution of planetary ions and atmospheric escape.

  1. Vacuum and magnetic field constraints in a H -/light ion synchrotron

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Martin, R. L.; Rossi, S.; Silari, M.

    1994-08-01

    Acceleration of H - ions in a synchrotron imposes severe restrictions on the level of residual pressure in the vacuum chamber and the maximum magnetic field in the magnets of the ring. Significant vacuum requirements are also imposed by the acceleration of ions. This paper discusses these two aspects of the design of a combined H -/light ion synchrotron for radiation therapy. The fractional loss of the accelerated beam induced by the two processes is evaluated on the basis of a general treatment of the physics of these phenomena. The values of the vacuum and magnetic field necessary for normal operation of the machine are specified and a discussion is given of the behaviour of the above quantities as a function of several parameters such as beam energy, composition and pressure of the residual gas in the vacuum chamber and beam extraction time.

  2. Resonant absorption effects induced by polarized laser light irradiating thin foils in the TNSA regime of ion acceleration

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Badziak, J.; Rosinski, M.; Zaras-Szydlowska, A.; Pfeifer, M.; Torrisi, A.

    2016-04-01

    Thin foils were irradiated by short pulsed lasers at intensities of 1016‑19W/cm2 in order to produce non-equilibrium plasmas and ion acceleration from the target-normal-sheath-acceleration (TNSA) regime. Ion acceleration in forward direction was measured by SiC detectors and ion collectors used in the time-of-flight configuration. Laser irradiations were employed using p-polarized light at different incidence angles with respect to the target surface and at different focal distances from the target surface. Measurements demonstrate that resonant absorption effects, due to the plasma wave excitations, enhance the plasma temperature and the ion acceleration with respect to those performed without to use of p-polarized light. Dependences of the ion flux characteristics on the laser energy, wavelength, focal distance and incidence angle will be reported and discussed.

  3. Making More Light with Less Energy

    SciTech Connect

    Kuritzky, Leah; Jewell, Jason

    2013-07-18

    Representing the Center for Energy Efficient Materials (CEEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CEEM is to discover and develop materials that control the interactions among light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.

  4. Cross-section scaling for track structure simulations of low-energy ions in liquid water.

    PubMed

    Schmitt, E; Friedland, W; Kundrát, P; Dingfelder, M; Ottolenghi, A

    2015-09-01

    Radiation damage by low-energy ions significantly contributes to the high biological efficiency of ion beams in distal Bragg peak regions as well as to the energy-dependent efficiency of neutron irradiation. To enable assessing biological effects of ions at energies <1 MeV u(-1) with track-structure based models, a Barkas-like scaling procedure is developed that provides ion cross sections in liquid water based on those for hydrogen ions. The resulting stopping power and range for carbon ions agree with the ICRU 73 database and other low-energy stopping power data. The method represents the basis for extending PARTRAC simulations of light ion track structures and biological effects down to the keV u(-1) range. PMID:25969528

  5. Ion transport in a polymer-plastic solid soft matter electrolyte in the light of solvent dynamics and ion association.

    PubMed

    Patel, Monalisa; Menezes, Pramod V; Bhattacharyya, Aninda J

    2010-04-29

    Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state, compliable mechanical strength (approximately 1 MPa), and wide electrochemical voltage stability (> or = 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO(4))-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO(4)-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polymer concentration shows an effective increase in trans conformer concentration along with free Li(+) ion concentration. This strongly supports the view that enhancement in LiClO(4)-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO(4)-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO(4)-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance (1)H and (7)Li line width measurements. PMID:20373767

  6. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  7. Energy-conservation opportunities in lighting

    SciTech Connect

    1981-04-01

    Technologies and techniques which can be employed by your existing personnel - without the need for consultants - to reduce your lighting costs by as much as 70% are discussed. Four basic steps to reduce energy costs and improve the effectiveness of the lighting system discussed are: get acquainted with some of the basic terminology and energy efficient lamps and fixtures which are on the market; conduct a survey of the building to determine where and how much energy and money can be saved in the process; implement the simple, low-cost or no-cost measures immediately; and calculate the payback period for capital investment modifications, and implement those which make economic sense. Case studies are used to illustrate the recommendations. (MCW)

  8. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  9. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  10. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2016-05-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  11. Independent-particle models for light negative atomic ions

    NASA Technical Reports Server (NTRS)

    Ganas, P. S.; Talman, J. D.; Green, A. E. S.

    1980-01-01

    For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.

  12. Quantum energy teleportation with trapped ions

    SciTech Connect

    Hotta, Masahiro

    2009-10-15

    We analyze a protocol of quantum energy teleportation that transports energy from the left edge of a linear ion crystal to the right edge by local operations and classical communication at a speed considerably greater than the speed of a phonon in the crystal. A probe qubit is strongly coupled with phonon fluctuation in the ground state for a short time and it is projectively measured in order to obtain information about this phonon fluctuation. During the measurement process, phonons are excited by the time-dependent measurement interaction and the energy of the excited phonons must be infused from outside the system. The obtained information is transferred to the right edge of the crystal through a classical channel. Even though the phonons excited at the left edge do not arrive at the right edge at the same time as when the information arrives at the right edge, we are able to soon extract energy from the ions at the right edge by using the transferred information. Because the intermediate ions of the crystal are not excited during the execution of the protocol, energy is transmitted in the energy-transfer channel without heat generation.

  13. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  14. Superintense ion beam with high energy density

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  15. Distribution of Micronuclei in Human Fibroblasts across the Bragg Curve of Light and Heavy Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Lacy, S.; Gridley, D. S.; Rusek, A.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    The space environment consists of energetic particles of varying mass and energy, and understanding the :biological Bragg curve" is essential in optimizing shielding effectiveness against space radiation induced biological impacts. The "biological Bragg curve" is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. Previously, we studied the induction of micronuclei (MN) across the Bragg curve of energetic Fe and Si ions, and observed no increased yield of MN at the location of the Bragg peak. However, the ratio of mono- to bi-nucleated cells, which indicates inhibition of cell progression, was found higher at the Bragg peak location in comparison to the plateau region of the Bragg curve. Here, we report the induction of MN in normal human fibroblast cells across the Bragg curve of incident protons generated at Loma Linda University. Similar to Si and Fe ions, the ratio of mono- to bi-nucleated cells showed a clear spike as the protons reached the Bragg peak. Unlike the two heavy ions, however, the MN yield also increased at the Bragg peak location. These results confirm the hypothesis that severely damaged cells at the Bragg peak of heavy, but not light ions are more likely to go through reproductive death and not be evaluated for micronuclei.

  16. Simulation of low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Langelaar, M. H.; Breeman, M.; Mijiritskii, A. V.; Boerma, D. O.

    A new simulation program `MATCH' has been developed for a detailed analysis of low-energy ion scattering (LEIS) and recoiling data. Instead of performing the full calculation of the three-dimensional trajectories through the sample from the ion source towards the detector, incoming trajectories as well as reversed-time outgoing trajectories are calculated, separately. Finally, these trajectories are matched to obtain the yield. The program has been tested for spectra and azimuthal scans of scattering and recoiling events of various sample species in different scattering geometries.

  17. A planar avalanche counter with a thin resistive cathode for light ions

    NASA Astrophysics Data System (ADS)

    Chtchetkovski, A. I.; Kotov, A. A.; Kravtsov, A. V.; Vaishnene, L. A.; Vznuzdaev, E. A.

    2000-09-01

    A new planar avalanche counter to detect the light ions, such as α-particles and low-energy nuclei of hydrogen isotopes has been constructed. With a thin resistive film as a cathode, the detector can operate safely even in the presence of single spark without serious breakdown consequences. Pure vaporous n-pentane and some freons were used as a working gas. Tests were performed with 5.5 MeV α-particles from the 238Pu source at various gas pressures.

  18. Narrow Resonances in Light Heavy-Ion Collisions: Formation and Decay

    SciTech Connect

    Haas, F.; Courtin, S.; Lebhertz, D.; Salsac, M.-D.

    2009-03-04

    Resonances in light heavy-ion collisions have been observed in systems with a small number of open channels. Very narrow resonances have been reported in the {sup 24}Mg+{sup 24}Mg and {sup 12}C+{sup 12}C cases for which the results of recent experiments on their decay modes will be presented. Special emphasis will be given to the {sup 12}C+{sup 12}C reaction where weak absorption allows the observation of resonant and refractive effects over a large bombarding energy range. The nature of recently observed sub-coulomb resonances will also be raised.

  19. Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment

    NASA Astrophysics Data System (ADS)

    Große-Kreul, Simon; Hübner, Simon; Benedikt, Jan; von Keudell, Achim

    2016-04-01

    Mass spectrometry of ions from atmospheric pressure plasmas is a challenging diagnostic method that has been applied to a large variety of cold plasma sources in the past. However, absolute densities can usually not be obtained, moreover, the process of sampling of ions and neutrals from such a plasma inherently influences the measured composition. These issues are studied in this contribution by a combination of experimental and numerical methods. Different numerical domains are sequentially coupled to calculate the ion transmission from the source to the mass analyzer. It is found that the energy of the sampled ions created by a radio-frequency microplasma operated in a He-N2 mixture at atmospheric pressure is of the order of 0.1 eV and that it depends linearly on the ion mass in good agreement with the expectation for seeded particles accelerated in a supersonic expansion. Moreover, the measured ion energy distribution from an afterglow of an atmospheric pressure plasma can be reproduced on basis of the particle trajectories in the sampling system. Eventually, an estimation of the absolute flux of ions to the detector is deduced.

  20. Investigations of biomimetic light energy harvesting pigments

    SciTech Connect

    Van Patten, P.G.; Donohoe, R.J.; Lindsey, J.S.; Bocian, D.F.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Nature uses chlorophyll and other porphyrinic pigments to capture and transfer light energy as a preliminary step in photosynthesis. The design of synthetic assemblies of light harvesting and energy directing pigments has been explored through synthesis and characterization of porphyrin oligomers. In this project, pigment electronic and vibrational structures have been explored by electrochemistry and dynamic and static optical measurements. Transient absorption data reveal energy transfer between pigments with lifetimes on the order of 20--200 picoseconds, while Raman data reveal that the basic porphyrin core structure is unperturbed relative to the individual monomer units. These two findings, along with an extensive series of experiments on the oxidized oligomers, reveal that coupling between the pigments is fundamentally weak, but sufficient to allow facile energy transfer as the predominant excited state process. Modeling of the expected quantum yields for energy transfer within a variety of arrays was accomplished, thereby providing a tool to guide synthetic goals.

  1. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.

    2011-01-01

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.

  2. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.

    2011-01-04

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.

  3. Reactive derivatives of gramicidin enable light- and ion-modulated ion channels

    NASA Astrophysics Data System (ADS)

    Macrae, Michael X.; Blake, Steven; Mayer, Thomas; Mayer, Michael; Yang, Jerry

    2009-08-01

    Detection of chemical processes on a single molecule scale is the ultimate goal of sensitive analytical assays. We have explored methods to detect chemical analytes in solution using synthetic derivatives of gramicidin A (gA). We exploited the functional properties of an ion channel-forming peptideg--gA--to report changes in the local environment near the opening of these semi-synthetic nanopores upon exposure to specific external stimuli. These peptide-based nanosensors detect reaction-induced changes in the chemical or physical properties of functional groups presented at the opening of the pore. This paper discusses the development of gA-based sensors for detecting external factors such as metal ions in solution or for detecting specific wavelengths of light. We propose that gA-based ion channel sensors offer tremendous potential for ultra sensitive functional detection since a single chemical modification of each individual sensing element can lead to readily detectable changes in channel conductance.

  4. High latitude proton precipitation and light-ion density profiles during the magnetic storm initial phase

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Measurements of precipitating protons and light ion densities by experiments on OGO-4 indicate that widespread proton precipitation occurs in predawn hours during the magnetic storm initial phase from the latitude of the high-latitude ion trough, or plasmapause , up to Lambda 75 deg. A softening of the proton spectrum is apparent as the plasmapause is approached. The separation of the low-latitude precipitation boundaries for 7.3 kev and 23.8 kev protons is approximately 1 deg, compared with a 3.6 deg separation which has been computed using the formulas of Gendrin and Eather and Carovillano. Consideration of probable proton drift morphology leads to the conclusion that protons ase injected in predawn hours, with widespread precipitation occurring in the region outside the plasmapause. Protons less energetic than approximately 7 kev drift eastward, while the more energetic protons drift westward, producing the observed dawn-dusk asymmetry for the lower-energy protons.

  5. Angular ion emission characteristics of a laser triggered tin vacuum arc as light source for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Verbraak, Harald; Küpper, Felix; Jonkers, Jeroen; Bergmann, Klaus

    2010-11-01

    The angular resolved emission of tin ions from a laser triggered vacuum arc to be used as light source for extreme ultraviolet lithography is presented. Ion energies of more than 200 keV for emission angles up to 50° with respect to the optical axis are observed. The angular emission characteristic is strongly anisotropic with a pronounced peak for fast ions into a cone with an opening angle of roughly 10° at an angle of 35° with respect to the optical axis. These ions also exhibit a distinct energy distribution function compared to the more isotropic emitted bulk of ions, which can be referred to different mechanisms of production. Looking at the discharge current parameters, the production of the directed fast ions can be connected with a peaked increase in the impedance, which gives hint to a plasma instability as origin of those ions. The emission of isotropic emitted ions is in agreement with a model of plasma expansion into vacuum. The emission characteristic is also strongly dependent on the parameter of the trigger laser. It is shown that using a double trigger laser pulse the fast ion production can be suppressed by more than one order of magnitude.

  6. Development of Gas Proportional Scintillation Counter for Light Heavy-Ion Detection

    SciTech Connect

    Hohara, Sin-ya; Imamura, Minoru; Kin, Tadahiro; Yamashita, Yusuke; Maki, Daiske; Saiho, Fuminobu; Ikeda, Katsuhiko; Uozumi, Yusuke; Matoba, Masaru

    2005-05-24

    In recent years, nuclear data have been needed in the medical field. Nuclear data induced by light heavy ions are especially needed at high precision for cancer treatment, although there are not enough usable data at present.We have a plan to measure light heavy-ion nuclear data with a dE-E detector. Low density is needed for the dE detector. We have two options for the dE detector: a semiconductor detector (SSD) and a Gas Counter. On one hand, SSD has good energy resolution, but on the other hand, it is expensive and its decay time is on the 100-microsecond order. A Gas Counter is inexpensive, and a Gas Proportional Scintillation Counter (GPSC) has fast decay time. Then, we developed a GPSC for the dE detector, and its evaluation experiment was carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC).We will report the results of the experiment with the performance of the GPSC.

  7. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    PubMed Central

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  8. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration.

    PubMed

    Yuan, Haifeng; Debroye, Elke; Janssen, Kris; Naiki, Hiroyuki; Steuwe, Christian; Lu, Gang; Moris, Michèle; Orgiu, Emanuele; Uji-I, Hiroshi; De Schryver, Frans; Samorì, Paolo; Hofkens, Johan; Roeffaers, Maarten

    2016-02-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  9. Space radiation accelerator experiments - The role of neutrons and light ions

    NASA Astrophysics Data System (ADS)

    Norbury, John W.; Slaba, Tony C.

    2014-10-01

    The importance of neutrons and light ions is considered when astronauts spend considerable time in thickly shielded regions of a spacecraft. This may be relevant for space missions both in and beyond low Earth orbit (LEO). In addition to heavy ion experiments at accelerators, it is suggested that an increased emphasis on experiments with lighter ions may be useful in reducing biological uncertainties.

  10. Light ion irradiation for unfavorable soft tissue sarcoma

    SciTech Connect

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation.

  11. Wind energy for outdoor lighting. Final report

    SciTech Connect

    Downing, G.J.

    1984-02-22

    This project was an attempt to develop a wind energy device which could be mounted on existing light poles and which would provide sufficient electricity to power a light on such poles. It was to be of design and materials simple enough to warrant ease and economy of manufacture. The original design was modified several times during fabrication in order to respond to the peculiarity of various types of materials involved. The system of belts and pulleys originally proposed proved too limited by friction to be practical. The final prototype was of sheet galvanized steel in three cuts of only three simple shapes. It was mounted on a recycled rear wheel axle of a 3/4 ton truck with axis vertical. A large pulley transferred energy to an automobile type alternator through a V-belt. The spinner turns easily in light winds, but even in moderate winds does not turn sufficiently fast to provide the necessary 400 rpm in the alternator. A larger pulley produces proportionately more drag, limiting rpm at the alternator. We now have an intriguing - some say beautiful - device which is enjoyed by passersby as kinetic art, but which unfortunately does not produce electricity. The concept may yet prove feasible, perhaps in a location of higher wind velocity, and perhaps with a larger diameter spinner. But as a simple, universal design of widespread application, it has not proved practical.

  12. Study on the Growth and the Photosynthetic Characteristics of Low Energy C+ Ion Implantation on Peanut

    PubMed Central

    Han, Yuguo; Xu, Lei; Yang, Peiling; Ren, Shumei

    2013-01-01

    Employing the Nonghua 5 peanut as experimental material, the effects of low energy C+ ion implantation on caulis height, root length, dry weight, photosynthetic characteristics and leaf water use efficiency (WUE) of Peanut Ml Generation were studied. Four fluences were observed in the experiment. The results showed that ion implantation harmed the peanut seeds because caulis height, root length and dry weight all were lower in the treatments than in CK, and the harm was aggravated with the increase of ion fluence. Both Pn and Tr show a saddle-shape curve due to midday depression of photosynthesis. Low fluence of low energy C+ ion implantation could increase the diurnal average Pn of peanut. The diurnal variation of Tr did not change as significantly as Pn. The light saturation point (LSP) was restrained by the ions. After low energy C+ ion implantation, WUE was enhanced. When the fluence increased to a certain level, the WUE began to decrease. PMID:23861939

  13. Conversion of a light-driven proton pump into a light-gated ion channel

    PubMed Central

    Vogt, A.; Guo, Y.; Tsunoda, S. P.; Kateriya, S.; Elstner, M.; Hegemann, P.

    2015-01-01

    Interest in microbial rhodopsins with ion pumping activity has been revitalized in the context of optogenetics, where light-driven ion pumps are used for cell hyperpolarization and voltage sensing. We identified an opsin-encoding gene (CsR) in the genome of the arctic alga Coccomyxa subellipsoidea C-169 that can produce large photocurrents in Xenopus oocytes. We used this property to analyze the function of individual residues in proton pumping. Modification of the highly conserved proton shuttling residue R83 or its interaction partner Y57 strongly reduced pumping power. Moreover, this mutation converted CsR at moderate electrochemical load into an operational proton channel with inward or outward rectification depending on the amino acid substitution. Together with molecular dynamics simulations, these data demonstrate that CsR-R83 and its interacting partner Y57 in conjunction with water molecules forms a proton shuttle that blocks passive proton flux during the dark-state but promotes proton movement uphill upon illumination. PMID:26597707

  14. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  15. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  16. High energy neutrino spin light [rapid communication

    NASA Astrophysics Data System (ADS)

    Lobanov, A. E.

    2005-07-01

    The quantum theory of spin light (electromagnetic radiation emitted by a Dirac massive neutrino propagating in dense matter due to the weak interaction of a neutrino with background fermions) is developed. In contrast to the Cherenkov radiation, this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The formulas for the transition rate and the total radiation power are obtained. It is found out that radiation of photons is possible only when the sign of the particle helicity is opposite to that of the effective potential describing the interaction of a neutrino (antineutrino) with the background medium. Due to the radiative self-polarization the radiating particle can change its helicity. As a result, the active left-handed polarized neutrino (right-handed polarized antineutrino) converting to the state with inverse helicity can become practically "sterile". Since the sign of the effective potential depends on the neutrino flavor and the matter structure, the spin light can change a ratio of active neutrinos of different flavors. In the ultra relativistic approach, the radiated photons averaged energy is equal to one third of the initial neutrino energy, and two thirds of the energy are carried out by the final "sterile" neutrinos.

  17. White light interferometry for quantitative surface characterization in ion sputtering experiments.

    SciTech Connect

    Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Erck, R. A.; Veryovkin, I. V.

    2012-07-01

    White light interferometry (WLI) can be used to obtain surface morphology information on dimensional scale of millimeters with lateral resolution as good as {approx}1 {micro}m and depth resolution down to 1 nm. By performing true three-dimensional imaging of sample surfaces, the WLI technique enables accurate quantitative characterization of the geometry of surface features and compares favorably to scanning electron and atomic force microscopies by avoiding some of their drawbacks. In this paper, results of using the WLI imaging technique to characterize the products of ion sputtering experiments are reported. With a few figures, several example applications of the WLI method are illustrated when used for (i) sputtering yield measurements and time-to-depth conversion, (ii) optimizing ion beam current density profiles, the shapes of sputtered craters, and multiple ion beam superposition and (iii) quantitative characterization of surfaces processed with ions. In particular, for sputter depth profiling experiments of {sup 25}Mg, {sup 44}Ca and {sup 53}Cr ion implants in Si (implantation energy of 1 keV per nucleon), the depth calibration of the measured depth profile curves determined by the WLI method appeared to be self-consistent with TRIM simulations for such projectile-matrix systems. In addition, high depth resolution of the WLI method is demonstrated for a case of a Genesis solar wind Si collector surface processed by gas cluster ion beam: a 12.5 nm layer was removed from the processed surface, while the transition length between the processed and untreated areas was 150 {micro}m.

  18. Light emission of a polyfluorene derivative containing complexed europium ions.

    PubMed

    Turchetti, Denis Augusto; Nolasco, Mariela Martins; Szczerbowski, Daiane; Carlos, Luís Dias; Akcelrud, Leni Campos

    2015-10-21

    The photophysical properties of a new alternating copolymer containing fluorene, terpyridine, and complexed sites with trivalent europium (Eu(3+)) ions (LaPPS66Eu) were investigated, using the non-complexed backbone (LaPPS66) and a low molecular weight compound of similar chemical structure of the ligand/Eu(3+) site (LaPPS66M) as a model compound. The analogous gadolinium complex (LaPPS66Gd) was also synthesized to determine the triplet state of the complex. (1)H and (13)C nuclear magnetic resonance (NMR) analysis, Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), elemental analyses, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) characterized the chemical structure and thermal properties of the synthesized materials. A level of Eu(3+) insertion of 37% (molar basis) in the polymer backbone was achieved. The photoluminescence studies were performed in the solid state showing the occurrence of polymer-to-Eu(3+) energy transfer brought about by the spectral overlap between the absorption spectra of the Eu(3+) complex and the emission of the polymer backbone. A detailed theoretical photoluminescence study performed using time-dependent DFT (TD-DFT) calculations and the recently developed LUMPAC luminescence package is also presented. The high accuracy of the theoretical calculations was achieved on comparison with the experimental values. Aiming at a deeper level of understanding of the photoluminescence process, the ligand-to-Eu(3+) intramolecular energy transfer and back-transfer rates were predicted. The complexed materials showed a dominant pathway involving the energy transfer between the triplet of the dbm (dibenzoylmethane) ligand and the (5)D1 and (5)D0 Eu(3+) levels. PMID:26384315

  19. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect

    Musket, R.G.

    2006-06-01

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8} cm{sup -2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nmenergy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  20. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect

    Musket, R G

    2005-10-14

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8}/cm{sup 2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nm < SEM hole diameter < {approx}100 nm), the energy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  1. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    SciTech Connect

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan; Huang, Shichun; Huang, Yulu; Wang, Haipeng; Wang, S

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  2. High-energy recoil-ion emission in keV heavy-ion surface collisions

    NASA Astrophysics Data System (ADS)

    van Someren, B.; Rudolph, H.; Urazgil'din, I. F.; van Emmichoven, P. A. Zeijlmans; Niehaus, A.

    1997-11-01

    For keV Xe +, Kr + and Ar + ions incident at 30° on Cu(110) we have observed the emission of negatively charged particles with energies up to about 40% of the primary energy. By time-of-flight techniques we have found that electrons are emitted with energies up to 80 eV, whereas the negatively charged high-energy particles are Cu - recoil ions. High-energy Cu + ions have also been found. Simple energy and momentum conservation arguments show that such high recoil energies are indeed possible for multiple collision events in which the primary recoil ion scatters off one or more Cu atoms.

  3. Low Energy Ion-Molecule Reactions

    SciTech Connect

    James M. Farrar

    2004-05-01

    This objective of this project is to study the dynamics of the interactions of low energy ions important in combustion with small molecules in the gas phase and with liquid hydrocarbon surfaces. The first of these topics is a long-standing project in our laboratory devoted to probing the key features of potential energy surfaces that control chemical reactivity. The project provides detailed information on the utilization of specific forms of incident energy, the role of preferred reagent geometries, and the disposal of total reaction energy into product degrees of freedom. We employ crossed molecular beam methods under single collision conditions, at collision energies from below one eV to several eV, to probe potential surfaces over a broad range of distances and interaction energies. These studies allow us to test and validate dynamical models describing chemical reactivity. Measurements of energy and angular distributions of the reaction products with vibrational state resolution provide the key data for these studies. We employ the crossed beam low energy mass spectrometry methods that we have developed over the last several years.

  4. Nanostructured light-absorbing crystalline CuIn{sub (1–x)}Ga{sub x}Se{sub 2} thin films grown through high flux, low energy ion irradiation

    SciTech Connect

    Hall, Allen J.; Hebert, Damon; Rockett, Angus A.; Shah, Amish B.; Bettge, Martin

    2013-10-21

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620–740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600–670 °C) and high rf power (80–400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by (112){sub T} facets. At 80–400 W rf power and 640–740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong (112){sub T} texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0–50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of (112){sub T} planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  5. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  6. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  7. Why heavy and light quarks radiate energy with similar rates

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-09-15

    The dead-cone effect has been predicted to reduce the magnitude of energy loss and jet quenching for heavy flavors produced with large p{sub T} in heavy-ion collisions. On the contrary, data from the Relativistic Heavy Ion Collider demonstrate a strong suppression of high-p{sub T} electrons from charm and bottom decays. We show that vacuum radiation of a highly virtual quark produced at high p{sub T} with a stripped-off color field develops a much wider dead cone, which screens the one related to the quark mass. Lacking the field, gluons cannot be radiated within this cone until the color field is regenerated and the quark virtuality cools down to the scale of the order of the quark mass. However, this takes longer than is essential for the observed jet quenching, leading to similar nuclear effects for the light and charm quark jets. Open beauty is expected to radiate much less within the p{sub T} range studied so far in heavy-ion collisions.

  8. Why heavy and light quarks radiate energy with similar rates

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Iván

    2010-09-01

    The dead-cone effect has been predicted to reduce the magnitude of energy loss and jet quenching for heavy flavors produced with large pT in heavy-ion collisions. On the contrary, data from the Relativistic Heavy Ion Collider demonstrate a strong suppression of high-pT electrons from charm and bottom decays. We show that vacuum radiation of a highly virtual quark produced at high pT with a stripped-off color field develops a much wider dead cone, which screens the one related to the quark mass. Lacking the field, gluons cannot be radiated within this cone until the color field is regenerated and the quark virtuality cools down to the scale of the order of the quark mass. However, this takes longer than is essential for the observed jet quenching, leading to similar nuclear effects for the light and charm quark jets. Open beauty is expected to radiate much less within the pT range studied so far in heavy-ion collisions.

  9. Enhanced adhesion from high energy ion irradiation

    NASA Technical Reports Server (NTRS)

    Werner, B. T.; Vreeland, T., Jr.; Mendenhall, M. H.; Qui, Y.; Tombrello, T. A.

    1983-01-01

    It has been found that the adhesion of thin metal films on insulators, semiconductors, and metals could be improved by subjecting the material to a high-energy ion bombardment. Griffith et al. (1982) have first suggested a use of this technique with insulators. The present investigation has the objective to determine the mechanism for the adhesion enhancement. A description is presented of a preliminary transmission electron microscopy (TEM) study of thinned bonded samples of silver on silicon using electron diffraction. It is found that irradiation of a variety of thin film-substrate combinations by heavy ion beams will provide a remarkable improvement in the adherence of the film. The evidence for the mechanism involved in the enhancement of adhesion is discussed.

  10. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  11. Ranges and profiles of distribution of low-energy ions channeling in metal and semiconductor single crystals

    NASA Astrophysics Data System (ADS)

    Umarov, F. F.; Rasulov, A. M.; Khaidarov, A. K.

    2003-07-01

    In the present work peculiarities of trajectories and energy losses, ranges and profiles of distribution of low-energy different-mass ions channeling in thin single crystals of metals and semiconductors have been thoroughly studied by computer simulation in binary collision approximation. The character of oscillations of channeled-ion trajectories depending on their energies, aiming points from the axis of a channel, kind of interaction potential, crystal lattice type and temperature has been determined. It has been found that, in the case of light ions even at low energy, the main contribution to energy loss is made by inelastic energy losses, whereas for heavy ions, already at E < 10 keV elastic energy losses exceed inelastic ones. Profiles of the distribution of channeled ions have been calculated depending on crystal lattice type, kind of ions and their energy.

  12. Temperature behavior of damage in sapphire implanted with light ions

    NASA Astrophysics Data System (ADS)

    Alves, E.; Marques, C.; Sáfrán, G.; McHargue, Carl J.

    2009-05-01

    In this study, we compare and discuss the defect behavior of sapphire single crystals implanted with different fluences (1 × 1016-1 × 1017 cm-2) of carbon and nitrogen with 150 keV. The implantation temperatures were RT, 500 °C and 1000 °C to study the influence of temperature on the defect structures. For all the ions the Rutherford backscattering-channeling (RBS-C) results indicate a surface region with low residual disorder in the Al-sublattice. Near the end of range the channeled spectrum almost reaches the random indicating a high damage level for fluences of 1 × 1017 cm-2. The transmission electron microscopy (TEM) photographs show a layered contrast feature for the C implanted sample where a buried amorphous region is present. For the N implanted sample the Electron Energy Loss Spectroscopy (EELS) elemental mapping give evidence for the presence of a buried damage layer decorated with bubbles. Samples implanted at high temperatures (500 °C and 1000 °C) show a strong contrast fluctuation indicating a defective crystalline structure of sapphire.

  13. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  14. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  15. Magnesium aluminate planar waveguides fabricated by C-ion implantation with different energies and fluences

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Zhang, Jing; Liu, Peng; Wang, Xue-Lin

    2015-11-01

    We report on MgAl2O4 planar waveguides produced using different energies and fluences of C-ion implantation at room temperature. Based on the prism coupling method and end-face coupling measurements, light could propagate in the C-ion-implanted samples. The Raman spectra results indicate that the MgAl2O4 crystal lattice was damaged during the multi-energy C implantation process, whereas the absorption spectra were hardly affected by the C-ion implantation in the visible and infrared bands.

  16. PERFORMANCE LIMITATIONS IN HIGH-ENERGY ION COLLIDERS

    SciTech Connect

    FISCHER, W.

    2005-05-16

    High-energy ion colliders (hadron colliders operating with ions other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams limits are set by space charge, charge exchange, and intrabeam scattering effects. The latter leads to luminosity lifetimes of only a few hours for intense heavy ions beams. Currently, the Relativistic Heavy Ion Collider (RHIC) at BNL is the only operating high-energy ion collider. Later this decade the Large Hadron Collider (LHC), under construction at CERN, will also run with heavy ions.

  17. Status of the light ion source developments at CEA/Saclay

    NASA Astrophysics Data System (ADS)

    Gobin, R.; Beauvais, P.-Y.; Bogard, D.; Charruau, G.; Delferrière, O.; De Menezes, D.; France, A.; Ferdinand, R.; Gauthier, Y.; Harrault, F.; Mattéi, P.; Benmeziane, K.; Leherissier, P.; Paquet, J.-Y.; Ausset, P.; Bousson, S.; Gardes, D.; Olivier, A.; Celona, L.; Sherman, J.

    2004-05-01

    SILHI (High Intensity Light Ion Source) is an ECR ion source producing high intensity proton or deuteron beams at 95 keV. It is now installed in the IPHI site building, at the CEA/Saclay center. IPHI is a front end demonstrator of high power accelerator. The source regularly delivers more than 130 mA protons in cw mode and already produced more than 170 mA deuterons in pulsed mode at nominal energy. The last beam characterizations, including emittance measurements, space charge compensation analysis, and diagnostic improvements, will be reported. Taking into account the SILHI experience, new developments are in progress to build and test a 5 mA deuteron source working in cw mode. This new source will also operate at 2.45 GHz and permanent magnets will provide the magnetic configuration. This source, of which the design will be discussed, will have to fit in with the SPIRAL 2 accelerator developed at GANIL to produce radioactive ion beams. The H- test stand status is briefly presented here and detailed in companion papers.

  18. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  19. Analysis of the theory of high energy ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Procedures for the approximation of the transport of high-energy ions are discussed on the basis of available data on ion nuclear reactions. A straightahead approximation appears appropriate for space applications. The assumption that the secondary-ion-fragment velocity is equal to that of the fragmenting nucleus is inferior to straightahead theory but is of sufficient accuracy if the primary ions display a broad energy spectrum. An iterative scheme for the solution of the inhomogenous integral transport equations holds promise for practical calculation. A model calculation shows that multiple charged ion fragments penetrate to greater depths in comparison with the free path of a primary heavy ion.

  20. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  1. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-05-15

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.

  2. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  3. Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission

    SciTech Connect

    Chen Daqin; Wang Yuansheng Yu Yunlong; Huang Ping; Weng Fangyi

    2008-10-15

    Transparent SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} bulk nano-composites triply doped with Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+} were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the {beta}-YF{sub 3} crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%. - Graphical abstract: Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light with CIE-X=0.351 and CIE-Y=0.306, can be easily tuned by adjusting the concentrations of the rare earth ions in the transparent oxyfluoride glass ceramics.

  4. Analysis of Light-Induced Transmembrane Ion Gradients and Membrane Potential in Photosystem I Proteoliposomes

    SciTech Connect

    Pennisi, Cristian P.; Greenbaum, Elias; Yoshida, Ken

    2010-01-01

    Photosystem I (PSI) complexes can support a light-driven electrochemical gradient for protons, which is the driving force for energy-conserving reactions across biological membranes. In this work, a computational model that enables a quantitative description of the light-induced proton gradients across the membrane of PSI proteoliposomes is presented. Using a set of electrodiffusion equations, a compartmental model of a vesicle suspended in aqueous medium was studied. The light-mediated proton movement was modeled as a single proton pumping step with backpressure of the electric potential. The model fits determinations of pH obtained from PSI proteoliposomes illuminated in the presence of mediators of cyclic electron transport. The model also allows analysis of the proton gradients in relation to the transmembrane ion fluxes and electric potential. Sensitivity analysis enabled a determination of the parameters that have greater influence on steady-state levels and onset/decay rates of transmembrane pH and electric potential. This model could be used as a tool for optimizing PSI proteoliposomes for photo-electrochemical applications.

  5. Fe ion-implanted TiO{sub 2} thin film for efficient visible-light photocatalysis

    SciTech Connect

    Impellizzeri, G. Scuderi, V.; Sanz, R.; Privitera, V.; Romano, L.; Sberna, P. M.; Arcadipane, E.; Scuderi, M.; Nicotra, G.; Bayle, M.; Carles, R.; Simone, F.

    2014-11-07

    This work shows the application of metal ion-implantation to realize an efficient second-generation TiO{sub 2} photocatalyst. High fluence Fe{sup +} ions were implanted into thin TiO{sub 2} films and subsequently annealed up to 550 °C. The ion-implantation process modified the TiO{sub 2} pure film, locally lowering its band-gap energy from 3.2 eV to 1.6–1.9 eV, making the material sensitive to visible light. The measured optical band-gap of 1.6–1.9 eV was associated with the presence of effective energy levels in the energy band structure of the titanium dioxide, due to implantation-induced defects. An accurate structural characterization was performed by Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and UV/VIS spectroscopy. The synthesized materials revealed a remarkable photocatalytic efficiency in the degradation of organic compounds in water under visible light irradiation, without the help of any thermal treatments. The photocatalytic activity has been correlated with the amount of defects induced by the ion-implantation process, clarifying the operative physical mechanism. These results can be fruitfully applied for environmental applications of TiO{sub 2}.

  6. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  7. Fabrication and demonstration of high energy density lithium ion microbatteries

    NASA Astrophysics Data System (ADS)

    Sun, Ke

    density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.

  8. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  9. Energy-efficient lighting system for television

    DOEpatents

    Cawthorne, Duane C.

    1987-07-21

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  10. HELIX: The High Energy Light Isotope Experiment

    NASA Astrophysics Data System (ADS)

    Tarle, Gregory

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  11. Neutral beamline with improved ion-energy recovery

    SciTech Connect

    Dagenhart, W.K.; Haselton, H.H.; Stirling, W.L.; Whealton, J.H.

    1981-04-13

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  12. Stopping power of light ions near the maximum

    NASA Astrophysics Data System (ADS)

    Bauer, Peter

    1990-01-01

    Some of the most interesting recent results are reviewed: in the regime of high ion velocities, there is large progress in the understanding of the stopping process beyond the first Born approximation (Bethe theory) due to theoretical and experimental investigations of the Barkas effect. Both investigations show that close collisions contribute to the Z31 correction, the importance of which becomes larger at lower ion velocities. For stopping measurements in metals and in semiconductors, the cooperation of two labs using different techniques has increased the attainable precision. The data may be compared to BEA calculations. The physical and chemical state of the material is of importance for ion stopping near the maximum on targets whose valence electrons dominate the stopping process. Ziegler has recently given a systematic treatment of the stopping of He and Li ions in hydrocarbons, using a core-and-bonds model. We have shown that, also for heavier compounds (Al 2O 3 and SiO 2), large chemical effects are found. The stopping properties of these compounds can be well described by BEA calculations. Sabin et al. (1985) have predicted large phase effects for alkalis: for lithium and sodium targets and protons as projectiles they find a stopping ratio (vapor to solid) which exceeds a factor of 2 near the stopping maximum. The concept of an "effective charge" is useful to predict stopping powers for heavier ions from proton stopping data. For low ion velocities (near the velocity proportional region) and for some substances, the value of the He effective charge may exceed the value suggested by Ziegler et al. considerably.

  13. Light nuclei production in fusion of heavy ions

    SciTech Connect

    Antonenko, N.V.; Ivanova, S.P.; Jolos, R.V.; Scheid, W. Joint Institute for Nuclear Research, 141980 Dubna )

    1994-10-01

    A possible mechanism of the production of light nuclei in fusion reactions is considered. It is shown that the decay of the dinuclear system during its evolution to a compound nucleus yields a substantial rate for the production of light nuclei. The cross section of this process is calculated for the reaction [sup 58]Ni+[sup 58]Ni. The coupling of other modes of motion causes an increase of the asymmetric decay of the dinuclear system.

  14. The Role of High-Energy Ion-Atom/Molecule Collisions in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    2014-12-01

    The need for ions in radiotherapy stems from the most favorable localization of the largest energy deposition, precisely at the tumor site with small energy losses away from the target. Such a dose conformity to the target is due to heavy masses of ions that scatter predominantly in the forward direction and lose maximal energy mainly near the end of their path in the vicinity of the Bragg peak. The heavy masses of nuclei preclude noticeable multiple scattering of the primary ion beam. This occurrence is responsible for only about 30% of ion efficiency in killing tumor cells. However, ionization of targets by fast ions yields electrons that might be of sufficient energy to produce further radiation damage. These δ-electrons, alongside radicals produced by ion-water collisions, can accomplish the remaining 70% of tumor cell eradication. Electrons achieve this chiefly through multiple scattering due to their small mass. Therefore, energy depositions by both heavy (nuclei) and light (electrons) particles as well as highly reactive radicals need to be simultaneously transported in Monte Carlo simulations. This threefold transport of particles is yet to be developed for the existing Monte Carlo codes. Critical to accomplishing this key goal is the availability of accurate cross section databases. To this end, the leading continuum distorted wave methodologies are poised to play a pivotal role in predicting energy losses of ions in tissue as discussed in this work.

  15. Ion channels activated by light in Limulus ventral photoreceptors

    PubMed Central

    1986-01-01

    The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors. PMID:2419481

  16. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  17. Low-Energy Ions from Laser-Cooled Atoms

    NASA Astrophysics Data System (ADS)

    Shayeganrad, G.; Fioretti, A.; Guerri, I.; Tantussi, F.; Ciampini, D.; Allegrini, M.; Viteau, M.; Fuso, F.

    2016-05-01

    We report the features of an ion source based on two-color photoionization of a laser-cooled cesium beam outsourced from a pyramidal magneto-optical trap. The ion source operates in continuous or pulsed mode. At acceleration voltages below 300 V, it delivers some ten ions per bunch with a relative energy spread Δ Urms/U ≃0.032 , as measured through the retarding field-energy-analyzer approach. Space-charge effects are negligible thanks to the low ion density attained in the interaction volume. The performances of the ion beam in a configuration using focused laser beams are extrapolated on the basis of the experimental results. Calculations demonstrate that our low-energy and low-current ion beam can be attractive for the development of emerging technologies requiring the delivery of a small amount of charge, down to the single-ion level and its eventual focusing in the 10-nm range.

  18. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed. PMID:18315202

  19. Ion currents and energies in reactive low-voltage ion plating: preliminary results

    NASA Astrophysics Data System (ADS)

    Edlinger, Johannes P.; Pulker, Hans K.

    1990-12-01

    Reactive Low-Voltage Ion Plating (RLVIP) is a plasma-assisted evaporation process that produces anorganic oxide- and nitride films with a closed microstructure. in order to better understand the process and the resulting film properties a BALZERS PPM 400 Plasmamonitor, a combination of a quadrupole mass filter and an energy selective ion optics, has been used to study the relative abundancies and energy distributions of the ions impinging on the growing film in the RLVIP process. The device is discussed and preliminary results are presented: The plasma is anisotropic. Surprisingly it contains ions with higher energies than expected from the self-bias potential.

  20. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  1. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    NASA Astrophysics Data System (ADS)

    Tudisco, S.; Altana, C.; Lanzalone, G.; Muoio, A.; Cirrone, G. A. P.; Mascali, D.; Schillaci, F.; Brandi, F.; Cristoforetti, G.; Ferrara, P.; Fulgentini, L.; Koester, P.; Labate, L.; Palla, D.; Gizzi, L. A.

    2016-02-01

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 1019 W/cm2. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  2. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  3. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source.

    PubMed

    Vondrasek, R; Delahaye, P; Kutsaev, Sergey; Maunoury, L

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a (252)Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species (143)Ba(27+). In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for (23)Na(7+) and 17.9% for (39)K(10+) were obtained injecting stable Na(+) and K(+) beams from a surface ionization source. PMID:23206054

  4. High-latitude proton precipitation and light ion density profiles during the magnetic storm initial phase.

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Measurements of precipitating protons and light ion densities by experiments on Ogo 4 indicate that widespread proton precipitation occurs in predawn hours during the magnetic storm initial phase from the latitude of the high-latitude ion trough, or plasmapause, up to latitudes greater than 75 deg. A softening of the proton spectrum is apparent as the plasmapause is approached. The separation of the low-latitude precipitation boundaries for 7.3-keV and 23.8-keV protons is less than about 1 deg, compared with a 3.6-deg separation that has been computed by using the formulas of Gendrin and Eather and Carovillano. Consideration of probable proton drift morphology leads to the conclusion that protons are injected in predawn hours, widespread precipitation occurring in the region outside the plasmapause. Protons less energetic than 7 keV drift eastward, whereas the more energetic protons drift westward, producing the observed dawn-dusk asymmetry for the lower-energy protons.

  5. Ion energy distribution near a plasma meniscus for multielement focused ion beams

    SciTech Connect

    Mathew, Jose V.; Bhattacharjee, Sudeep

    2009-05-01

    The axial ion energy spread near a plasma meniscus for multielement focused ion beams is investigated experimentally in atomic and molecular gaseous plasmas of krypton, argon, and hydrogen by tailoring the magnetic field in the region. In the case of magnetic end plugging, the ion energy spread reduces by approx50% near the meniscus as compared to the bulk plasma, thereby facilitating beam focusing. A quadrupole filter can be used to control the mean energy of the ions. Comparison with standard Maxwellian and Druyvesteyn distributions with the same mean energy indicates that the ion energy distribution in the meniscus is deficient in the population of low and high energy tail ions, resulting in a Gaussian-like profile with a spread of approx4 and approx5 eV for krypton and argon ions, respectively. By carefully tuning the wave power, plasma collisionality, and the magnetic field in the meniscus, the spread can be made lower than that of liquid metal ion sources, for extracting focused ion beams of other elements with adequate current density, for research and applications in nanosystems

  6. Interaction of (12)C ions with the mouse retinal response to light.

    PubMed

    Carozzo, Simone; Ball, Sherry L; Narici, Livio; Schardt, Dieter; Sannita, Walter G

    2015-06-26

    Astronauts in orbit reported phosphenes varying in shape and orientation across the visual field; incidence was correlated with the radiation flux. Patients with skull tumors treated by (12)C ions and volunteers whose posterior portion of the eye was exposed to highly ionizing particles in early studies reported comparable percepts. An origin in radiation activating the visual system is suggested. Bursts (∼ 4 ms) of (12)C ions evoked electrophysiological mass responses comparable to those to light in the retina of anesthetized wild-type mice at threshold flux intensities consistent with the incidence observed in humans. The retinal response amplitude increased in mice with ion intensity to a maximum at ∼ 2000 ions/burst, to decline at higher intensities; the inverted-U relationship suggests complex effects on retinal structures. Here, we show that bursts of (12)C ions presented simultaneously to white light stimuli reduced the presynaptic mass response to light in the mouse retina, while increasing the postsynaptic retinal and cortical responses amplitude and the phase-locking to stimulus of cortical low frequency and gamma (∼ 25-45 Hz) responses. These findings suggest (12)C ions to interfere with, rather than mimicking the light action on photoreceptors; a parallel action on other retinal structures/mechanisms resulting in cortical activation is conceivable. Electrophysiological visual testing appears applicable to monitor the radiation effects and in designing countermeasures to prevent functional visual impairment during operations in space. PMID:25956035

  7. Energy efficient lighting and security; Are they compatible

    SciTech Connect

    Tucker, R.A. )

    1992-01-01

    This paper reports that properly applied, light sources and lighting systems not only enhance a building's attractiveness and usability, they also create a secure environment. An effectively lighted area can minimize pedestrian hazards and auto accidents. Good security lighting also eliminates the darkness that vandals, thieves, and felons thrive on. Unfortunately, lighting quality has sometimes been sacrificed for the sake of energy efficiency, and resulting savings offset by poor aesthetics and user dissatisfaction. However, trade-offs in quality and efficiency are not necessary, thanks to recent developments in light source technology.

  8. Importance of ion energy on SEU in CMOS SRAMs

    SciTech Connect

    Dodd, P.E.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L.; Winokur, P.S.; Musseau, O.; Leray, J.L.

    1998-03-01

    The single-event upset (SEU) responses of 16 Kbit to 1 Mbit SRAMs irradiated with low and high-energy heavy ions are reported. Standard low-energy heavy ion tests appear to be sufficiently conservative for technologies down to 0.5 {micro}m.

  9. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  10. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future. PMID:26996438

  11. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  12. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  13. Polymer processing by a low energy ion accelerator

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Velardi, L.; Nassisi, V.; Paladini, F.; Visco, A. M.; Campo, N.; Torrisi, L.; Margarone, D.; Giuffrida, L.; Rainò, A.

    2008-05-01

    Ion implantation is a process in which ions are accelerated toward a substrate at energies high enough to bury them just below the surface substrate in order to modify the surface characteristics. Laser-produced plasma is a very suitable and low cost technique in the production of ion sources. In this work, a laser ion source is developed by a UV pulsed laser of about 108 W/cm2 power density, employing a C target and a post ion acceleration of 40 kV to increase the ion energy. In this work, we implanted C ions on ultra-high-molecular-weight-polyethylene (UHMWPE) and low-density polyethylene (LDPE). We present the preliminary results of surface property modifications for both samples. In particular, we have studied the modifications of the surface micro-hardness of the polymers by applying the "scratch test" method as well as the hydrophilicity modifications by the contact angle measurements.

  14. The low-energy ion range in DNA.

    PubMed

    Yu, L D; Kamwanna, T; Brown, I G

    2009-08-21

    In fundamental studies of low-energy ion irradiation effects on DNA, calculation of the low-energy ion range, an important basic physical parameter, is often necessary. However, up to now a unified model and approach for range calculation is still lacking, and reported data are quite divergent and thus unreliable. Here we describe an approach for calculation of the ion range, using a simplified mean-pseudoatom model of the DNA target. Based on ion stopping theory, for the case of low-energy (< or = a few keV) ion implantation into DNA, the stopping falls in the low reduced energy regime, which gives a cube-root energy dependence of the stopping (E(1/3)). Calculation formulas of the ion range in DNA are obtained and presented to unify the relevant calculations. The upper limits of the ion energy as a function of the atomic number of the bombarding ion species are proposed for the low-energy case to hold. Comparison of the results of this approach with the results of some widely used computer simulation codes and with results reported by other groups indicates that the approach described here provides convincing and dependable results. PMID:19652287

  15. Crystal effects in the neutralization of He+ ions in the low energy ion scattering regime.

    PubMed

    Primetzhofer, D; Markin, S N; Juaristi, J I; Taglauer, E; Bauer, P

    2008-05-30

    Investigating possible crystal effects in ion scattering from elemental surfaces, measurements of the positive ion fraction P+ are reported for He+ ions scattered from single and polycrystalline Cu surfaces. In the Auger neutralization regime, the ion yield is determined by scattering from the outermost atomic layer. For Cu(110) P+ exceeds that for polycrystalline Cu by up to a factor of 2.5, thus exhibiting a strong crystal effect. It is much less pronounced at higher energies, i.e., in the reionization regime. However, there a completely different angular dependence of the ion yield is observed for poly- and single crystals, due to massive subsurface contributions in nonchanneling directions. PMID:18518602

  16. Impulse-Excited Energy Harvester based on Potassium-Ion- Electret

    NASA Astrophysics Data System (ADS)

    Ashizawa, H.; Mitsuya, H.; Ishibashi, K.; Ishikawa, T.; Fujita, H.; Hashiguchi, G.; Toshiyoshi, H.

    2015-12-01

    We have developed an energy harvester that is specifically desired for impulse acceleration of infrastructure vibrations such as sudden motion at railway bridges. The energy harvester based on potassium-ion-electret on the sidewalls of 1.8- μm-gap comb electrodes generated a 64 μAp-p current during low impulse acceleration, which was large enough to light a green LED.

  17. Ion Beam Energy Dependant Study of Nanopore Sculpting

    NASA Astrophysics Data System (ADS)

    Ledden, Brad

    2005-03-01

    Experiments show that ion beams of various energies (1keV, 3keV, and 5keV) can be used to controllably ``sculpt'' nanoscale features in silicon nitride films using a feedback controlled ion beam sculpting apparatus. We report on nanopore ion beam sculpting effects that depend on inert gas ion beam energy. We show that: (1) all ion beam energies enable single nanometer control of structural dimensions in nanopores; (2) the ion beam energies above show similar ion beam flux dependence of nanopore formation; (3) the thickness of nanopores differs depending on ion beam energy. Computer simulations (with SRIM and TRIM) and an ``adatom'' surface diffusion model are employed to explain the dynamics of nanoscale dimension change by competing sputtering and surface mass transport processes induced by different ion beam irradiation. These experiments and theoretical work reveal the surface atomic transport phenomena in a quantitative way that allows the extraction of parameters such as the adatom surface diffusion coefficients and average travel distances.

  18. High energy ions for materials analysis, materials modification and medical applications

    NASA Astrophysics Data System (ADS)

    Homeyer, H.

    1998-04-01

    Energetic light and heavy ions are becoming more and more important for applications in science, technology and medicine. They are the special feature of the ion beam laboratory ISL at the Hahn-Meitner- Institut, Berlin. Examples of applications are: (i) materials analysis using high energy Elastic Recoil Detection Analysis (ERDA) and high energy Proton Induced X-ray Emission (PIXE), (ii) materials modification and damage by high LET nuclear tracks: the large scale production of microfilters and the effect of single event burnouts of high power semiconductors and the (iii) therapy of eye tumors with energetic protons.

  19. Continuous Self-Energy of Ions at the Dielectric Interface

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Zhen-Gang

    2014-04-01

    By treating both the short-range (solvation) and long-range (image force) electrostatic forces as well as charge polarization induced by these forces in a consistent manner, we obtain a simple theory for the self-energy of an ion that is continuous across the interface. Along with nonelectrostatic contributions, our theory enables a unified description of ions on both sides of the interface. Using intrinsic parameters of the ions, we predict the specific ion effect on the interfacial affinity of halogen anions at the water-air interface, and the strong adsorption of hydrophobic ions at the water-oil interface, in agreement with experiments and atomistic simulations.

  20. High energy implantation with high-charge-state ions in a vacuum arc ion implanter

    SciTech Connect

    Oks, E.M. |; Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion implantation energy can in principal be increased by increasing the charge states of the ions produced by the ion source rather than by increasing the implanter operating voltage, providing an important savings in cost and size of the implanter. In some recent work the authors have shown that the charge states of metal ions produced in a vacuum arc ion source can be elevated by a strong magnetic field. In general, the effect of both high arc current and high magnetic field is to push the distribution to higher charge states--the mean ion charge state is increased and new high charge states are formed. The effect is significant for implantation application--the mean ion energy can be about doubled without change in extraction voltage. Here they describe the ion source modifications, the results of time-of-flight measurements of ion charge state distributions, and discuss the use and implications of this technique as a means for doing metal iron implantation in the multi-hundreds of keV ion energy range.

  1. Caging Metal Ions with Visible Light-Responsive Nanopolymersomes

    PubMed Central

    2015-01-01

    Polymersomes are bilayer vesicles that self-assemble from amphiphilic diblock copolymers, and provide an attractive system for the delivery of biological and nonbiological molecules due to their environmental compatibility, mechanical stability, synthetic tunability, large aqueous core, and hyperthick hydrophobic membrane. Herein, we report a nanoscale photoresponsive polymersome system featuring a meso-to-meso ethyne-bridged bis[(porphinato)zinc] (PZn2) fluorophore hydrophobic membrane solute and dextran in the aqueous core. Upon 488 nm irradiation in solution or in microinjected zebrafish embryos, the polymersomes underwent deformation, as monitored by a characteristic red-shifted PZn2 emission spectrum and confirmed by cryo-TEM. The versatility of this system was demonstrated through the encapsulation and photorelease of a fluorophore (FITC), as well as two different metal ions, Zn2+ and Ca2+. PMID:25518002

  2. Light-Induced Ion Rectification in Zigzag Nanochannels.

    PubMed

    Li, Chuanshuai; Hu, Shimin; Yang, Lei; Fan, Jiajie; Yao, Zhiqiang; Zhang, Yiqiang; Shao, Guosheng; Hu, Junhua

    2015-12-01

    Ion transport through nanoporous systems has attracted broad interest due to its crucial role in physiological processes in living organisms and artificial bionic devices. In this work, a nanochannel system with a zigzag inner surface was fabricated by using a two-step anodizing technique. The rectification performance of the zigzag channels was observed by I-V measurement in KCl solution. Unlike channels with asymmetric geometry, the mechanism was analyzed based on the "point effect" of charge distribution and "shape effect" of the zigzag channel. The current rectification ratio decreases from nearly 3.0 to 1.0 when the KCl concentration increased from 0.1 mM to 100 mM. The fabrication of different nanopore systems and exploration of novel mechanisms will help to develop biomimetic membranes for practical applications. PMID:26255623

  3. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  4. Recent Ion Energy Distribution Observations on MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Clark, Jerry; Titus, J. B.; Mezonlin, E. D.; Johnson, J. A., III; Almagri, A. F.; Andeson, J. A.

    2015-11-01

    Ion energy distribution and temperature measurements have been made on the Madison Symmetric Torus (MST) using the Florida A&M University compact neutral particle analyzer (CNPA). The CNPA is a low energy (0.34-5.2 keV), high energy resolution (25 channels) neutral particle analyzer, with a radial view on MST. Recently, a retarding potential system was built to allow CNPA measurements to ensemble a complete ion energy distribution with high-energy resolution, providing insight into the dynamics of the bulk and fast ion populations. Recent work has also been done to improve the analysis techniques used to infer the ion temperature measurements, allowing us to understand temperature dynamics better during global magnetic reconnection events. Work supported in part by grants to FAMU and to UW from NSF and from Fusion Energy Sciences at DOE.

  5. Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Mangalam, Vivek; Pita, Kantisara; Couteau, Christophe

    2016-02-01

    In this work, we investigate the efficient energy transfer occurring between ZnO nanocrystals (ZnO-nc) and europium (Eu3+) ions embedded in a SiO2 matrix prepared using the sol-gel technique. We show that a strong red emission was observed at 614 nm when the ZnO-nc were excited using a continuous optical excitation at 325 nm. This emission is due to the radiative 5D0 → 7F2 de-excitation of the Eu3+ ions and has been conclusively shown to be due to the energy transfer from the excited ZnO-nc to the Eu3+ ions. The photoluminescence excitation spectra are also examined in this work to confirm the energy transfer from ZnO-nc to the Eu3+ ions. Furthermore, we study various de-excitation processes from the excited ZnO-nc and their contribution to the energy transfer to Eu3+ ions. We also report the optimum fabrication process for maximum red emission at 614 nm from the samples where we show a strong dependence on the annealing temperature and the Eu3+ concentration in the sample. The maximum red emission is observed with 12 mol% Eu3+ annealed at 450 °C. This work provides a better understanding of the energy transfer mechanism from ZnO-nc to Eu3+ ions and is important for applications in photonics, especially for light emitting devices.

  6. Strong white light in P2O5-Li2O-Yb2O3-Sb2O3 glass doped with Pr3+ion

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Han, Yingdong; Song, Feng; Ren, Xiaobin; An, Liqun

    2013-01-01

    P2O5-Li2O-Yb2O3-Sb2O3 glasses doped with Pr3+ ion had been prepared to explore white-light-emitting materials. The photoluminescence spectra of the glasses were measured under 270 nm excitation. The emission color of the glass doped with 2 mol% Pr3+ ion was white to the naked eye, and the CIE coordinates (0.336, 0.319) of the sample were close to the standard equal energy white-light illumination (x=0.333, y=0.333). The present working mechanism of the commercial white-LEDs is that a yellow phosphor is excited by a blue LED chip. The emission characters are restricted by the intensity of the blue light and the thickness of the phosphor. However, the luminescent characters of our materials are not effected by the pumping light. Thus, our materials will be helpful in developing white-light-emitting materials.

  7. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  8. Secondary batteries with multivalent ions for energy storage.

    PubMed

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  9. Behaviour of Paramagnetic Light Rare Earth Ions in LRE-123 Superconductors

    NASA Astrophysics Data System (ADS)

    Jirsa, M.; Rameš, M.; Muralidhar, M.; Volochová, D.; Diko, P.

    The slightly curved paramagnetic background (due to Brillouin dependence) of the paramagnetic light rare earth ions in 123 superconductors mixes below Tc with reversible magnetization, which hinders evaluation of the associated thermodynamic characteristics. We propose a method how to determine the effective number of magnetons per ion, the principal parameter of the Brillouin function course, even in materials with pores, with unknown or varying density and/or the local composition. The method was tested on various types of compounds containing Gd ions, like pure Gd-211, tetragonal Gd-123, (Y,Gd)-123, and (Nd,Eu,Gd)- 123 and on orthorhombic (oxygenated) Gd-123 and (Nd,Eu,Gd)-123.

  10. The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Edward Nissen, Todd Satogata, Yuhong Zhang

    2012-07-01

    In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

  11. Losses of ion energy in the multicomponent beam

    NASA Astrophysics Data System (ADS)

    Gasanov, Ilkham S.; Gurbanov, Ilgar I.; Akbarov, Elchin M.

    2015-03-01

    Energy losses of near axis ions and decreases in ion current density in the center of a beam were observed in a liquid metal source operating under a charged nanodroplets (In, Sn, Au, Ge) generation regime. In experiments, nanodroplets with the sizes of 2-20 nanometers and a characteristic specific charge of 5 × 104 C/kg were revealed. Energy spectra of ions were defined by means of the filter of speeds with cross-section static electromagnetic fields. A reduction of 4% of the In+ ions energy was observed under the conditions of the curried out measurements. The stream of nanoparticles, in contrast to an ion beam, has a small radial divergence; outside of this stream, change of ion speeds is not observed. Energy losses of ions occur during their flight through small nanoparticles. Penetration depth of the accelerated ions in liquid indium is estimated within the framework of the Lindhard-Scharff-Schiott model. Similar interaction between components occurs in ion-beam systems of complex composition where there is a relative movement of various charged particles.

  12. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  13. New Lighting Fixtures: Combining Creativity and Style with Energy Efficiency

    SciTech Connect

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2004-10-01

    This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescent lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.

  14. Polarized light ions and spectator nucleon tagging at EIC

    SciTech Connect

    Guzey, Vadim; Higinbotham, Dougas W.; Hyde, Charles; Nadel-Turonski, Pawel A.; Park, Kijun; Sargsian, Misak M.; Strikman, Mark; Weiss, Christian

    2014-10-01

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x ll 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p(R) < several 100MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  15. Living Lightly: Energy Conservation in Housing.

    ERIC Educational Resources Information Center

    Bender, Tom

    This publication contains a series of papers which promote the concepts of energy conservation and offer safe and convenient ways of handling all aspects of our lives affected by energy without having to depend in any way on fossil fuels or nuclear power. These changes, which can be brought about in homes and in energy flows affected by the…

  16. High-energy ion tracks in thin films.

    SciTech Connect

    Doyle, Barney Lee; Follstaedt, David Martin; McDaniel, Floyd Del; Rossi, Paolo; Norman, Adam K.; Bringa, Eduardo M

    2004-08-01

    High-energy ion tracks (374 MeV Au{sup 26+}) in thin films were examined with transmission electron microscopy to investigate nanopore formation. Tracks in quartz and mica showed diffraction contrast. Tracks in sapphire and mica showed craters formed at the positions of ion incidence and exit, with a lower-density track connecting them. Direct nanopore formation by ions (without chemical etching) would appear to require film thicknesses less than 10 nm.

  17. NOTE: The relevance of very low energy ions for heavy-ion therapy

    NASA Astrophysics Data System (ADS)

    Elsässer, T.; Gemmel, A.; Scholz, M.; Schardt, D.; Krämer, M.

    2009-04-01

    Heavy-ion radiotherapy exploits the high biological effectiveness of localized energy deposition delivered by so-called Bragg-peak particles. Recent publications have challenged the established procedures to calculate biological effective dose distributions in treatment planning. They emphasize the importance of very low energy (<500 keV amu-1) ions, either as primary particles or originating from molecular and nuclear fragmentations. We show, however, that slow heavy ions with energies below 500 keV amu-1 only play a negligible role in cancer treatments for several reasons. Their residual range is very small compared to the relevant length scale of treatment planning. Moreover, their relative frequency and also their relative dose distribution are insignificant, since energy loss and range straggling in ion slowing down processes as well as the necessary superposition of Bragg peaks wash out small-scale special effects. Additionally, we show that even a 1000 times larger biological damage of such slow ions would not result in a clinically relevant increase of the photon-equivalent dose. Therefore, neither a more precise physical description of ions in the very distal part of the Bragg peak nor the consideration of radiation damage induced by hyperthermal ions would result in a meaningful improvement of current models for heavy-ion treatment planning.

  18. Energy distributions of sputtered copper neutrals and ions

    NASA Technical Reports Server (NTRS)

    Lundquist, T. R.

    1978-01-01

    Direct quantitative analysis of surfaces by secondary ion mass spectrometry will depend on an understanding of the yield ratio of ions to neutrals. This ratio as a function of the energy of the sputtered particles has been obtained for a clean polycrystalline copper surface sputtered by 1000-3000 eV Ar(+). The energy distributions of both neutral and ionized copper were measured with a retarding potential analyzer using potential modulation differentiation and signal averaging. The maximum for both distributions is identical and occurs near 2.5 eV. The energy distributions of neutrals is more sharply peaked than that of the ions, presumably as a consequence of more efficient nutralization of slow escaping ions by the mobile electrons of copper. The ion-neutral ratio is compared with results from various ionization models.

  19. Basic Energy Conservation and Management Part 1: Looking at Lighting

    ERIC Educational Resources Information Center

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal. However, school board members, superintendents, and directors of buildings and grounds are often unaware of the many options available to conserve energy. School energy conservation used to be relatively simple: turn off the lights and turn down the heat in the winter and…

  20. Secondary batteries with multivalent ions for energy storage

    PubMed Central

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg−1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times). PMID:26365600

  1. Secondary batteries with multivalent ions for energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg-1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  2. Light induced suppression of sulfur in a cesium sputter ion source.

    PubMed

    Martschini, Martin; Rohlén, Johan; Andersson, Pontus; Golser, Robin; Hanstorp, Dag; Lindahl, Anton O; Priller, Alfred; Steier, Peter; Forstner, Oliver

    2012-04-01

    New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied. The laser light induced a significant change in oxygen, sulfur and chlorine negative ion production from a AgCl target. Approximately 100 mW of laser light reduced the sulfur to chlorine ratio by one order of magnitude. The effect was found to depend on laser power and ion source parameters but not on the laser wavelength. The time constant of the effect varied from a few seconds up to several minutes. Experiments were first performed at the ion beam facility GUNILLA at University of Gothenburg with macroscopic amounts of sulfur. The results were then reproduced at the VERA AMS facility with chemically cleaned AgCl targets containing ∼1 ppm sulfur. The physical explanation behind the effect is still unclear. Nevertheless, the technique has been successfully applied during a regular AMS measurement of (36)Cl. PMID:23576897

  3. Light induced suppression of sulfur in a cesium sputter ion source

    PubMed Central

    Martschini, Martin; Rohlén, Johan; Andersson, Pontus; Golser, Robin; Hanstorp, Dag; Lindahl, Anton O.; Priller, Alfred; Steier, Peter; Forstner, Oliver

    2012-01-01

    New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied. The laser light induced a significant change in oxygen, sulfur and chlorine negative ion production from a AgCl target. Approximately 100 mW of laser light reduced the sulfur to chlorine ratio by one order of magnitude. The effect was found to depend on laser power and ion source parameters but not on the laser wavelength. The time constant of the effect varied from a few seconds up to several minutes. Experiments were first performed at the ion beam facility GUNILLA at University of Gothenburg with macroscopic amounts of sulfur. The results were then reproduced at the VERA AMS facility with chemically cleaned AgCl targets containing ∼1 ppm sulfur. The physical explanation behind the effect is still unclear. Nevertheless, the technique has been successfully applied during a regular AMS measurement of 36Cl. PMID:23576897

  4. Energy levels of a heavy ion moving in dense plasmas

    SciTech Connect

    Hu, Hongwei; Chen, Wencong; Zhao, Yongtao; Li, Fuli; Dong, Chenzhong

    2013-12-15

    In this paper, the potential of a slowly moving test particle moving in collisional dense plasmas is studied. It is composed of the Debye-shielding potential, wake potential, and collision term. The Ritz variational-perturbational method is developed for calculating relativistic binding energy levels of a heavy ion moving in dense plasmas. Binding energy levels of a heavy ion moving in plasmas are calculated. The results show that both non-relativistic energy levels and relativistic energy levels become more negative as the temperature becomes high. They also become more negative as the number density decreasing. Relativistic correction is important for calculating binding energy levels. Both relativistic energy levels and non-relativistic energy levels vary minutely as the speed of heavy ion varies.

  5. Generation and Control of Chains of Entangled Atom-Ion Pairs with Quantum Light

    SciTech Connect

    Shapiro, Moshe; Brumer, Paul

    2011-04-15

    Coherent control using quantum light incident upon molecules in an optical lattice is shown to give rise to a direct way of writing arbitrary sequences of entangled atom-ion pairs. There is no evident limitation on the length of the word (i.e., the number of qbits) that can be formed.

  6. Production of light nuclei in relativistic heavy-ion collisions

    SciTech Connect

    Barrette, J.; Bellwied, R.; Braun-Munzinger, P.; Cleland, W.E.; Cormier, T.M.; David, G.; Dee, J.; Diebold, G.E.; Dietzsch, O.; Germani, J.V.; Gilbert, S.; Greene, S.V.; Hall, J.R.; Hemmick, T.K.; Herrmann, N.; Hong, B.; Jayananda, K.; Kraus, D.; Kumar, B.S.; Lacasse, R.; Lissauer, D.; Llope, W.J.; Ludlam, T.W.; McCorkle, S.; Majka, R.; Mark, S.K.; Mitchell, J.T.; Muthuswamy, M.; O'Brien, E.; Pruneau, C.; Rotondo, F.S.; Sandweiss, J.; daSilva, N.C.; Sonnadara, U.; Stachel, J.; Takai, H.; Takagui, E.M.; Throwe, T.G.; Wolfe, D.; Woody, C.L.; Xu, N.; Zhang, Y.; Zhang, Z.; Zou, C. Gesellschaft fuer Schwerionenforschung, Darmstadt McGill University, Montreal, Canada H3A University of Pittsburgh, Pittsburgh, Pennsylvania 15260 State University of New York, Stony Brook, New York 11794 University of New Mexico, Albuquerque, New Mexico 87131 University of Sa

    1994-08-01

    We have measured cross sections for the synthesis of nuclei of mass [ital A][le]4 in collisions of 14.6[ital A] GeV/[ital c] [sup 28]Si nuclei with targets of Pb, Cu, and Al. The data are measured at close to center-of-mass rapidities, and are unique in their exploration of the centrality dependence of nucleosynthesis. Simple coalescence models that were used to study nucleosynthesis at lower energies are inadequate for the description of our measurements. Our data and improved models are used to extract parameters related to the size of the interaction volume at freeze-out.

  7. Implications of light energy on food quality and packaging selection.

    PubMed

    Duncan, Susan E; Chang, Hao-Hsun

    2012-01-01

    Light energy in the ultraviolet and visible light regions plays a critical role in overall food quality, leading to various degradation and oxidation reactions. Food degradation and oxidation result in the destruction of nutrients and bioactive compounds, the formation of off odors and flavors, the loss of food color, and the formation of toxic substances. Food compounds are sensitive to various light wavelengths. Understanding the effect that specific light wavelengths have on food compounds will allow the development of novel food packaging materials that block the most damaging light wavelengths to photostability of specific food compounds. Future research should focus more specifically on the effect of specific light wavelengths on the quality of specific food products, as there is limited published information on this particular topic. This information also can be directly related to the selection of food packaging materials to retain both high quality and visual clarity of food products exposed to light. PMID:23034114

  8. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    SciTech Connect

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extraction with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.

  9. Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.

    PubMed

    Hosaka, Toshiaki; Yoshizawa, Susumu; Nakajima, Yu; Ohsawa, Noboru; Hato, Masakatsu; DeLong, Edward F; Kogure, Kazuhiro; Yokoyama, Shigeyuki; Kimura-Someya, Tomomi; Iwasaki, Wataru; Shirouzu, Mikako

    2016-08-19

    The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities. PMID:27365396

  10. Electronic stopping power data of heavy ions in polymeric foils in the ion energy domain of LSS theory

    NASA Astrophysics Data System (ADS)

    Dib, A.; Ammi, H.; Hedibel, M.; Guesmia, A.; Mammeri, S.; Msimanga, M.; Pineda-Vargas, C. A.

    2015-11-01

    A continuous energy loss measurements of 63Cu, 28Si, 27Al, 24Mg, 19F, 16O and 12C ions over an energy range of (0.06-0.65) MeV/nucleon through thin polymeric foils (Mylar, Polypropylene and Formvar) were carried out by time of flight spectrometry. The deduced experimental stopping data have been used in order to assess our proposed semi empirical formula. The proposed approach based on the Firsov and Lindhard-Scharff stopping power models is provided for well describing-the electronic stopping power of heavy ions (3 ⩽ Z < 100) in various solids targets at low energy range. The ζe factor, which was approximated to be ∼Z11/6 , involved in Lindhard, Scharff and Schiott (LSS) formula has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating, effective charge Z1∗ of moving heavy ions with low velocities (v ⩽v0Z12/3) and modified ζe in LSS formula, have been found to be in close agreement with measured values in various solids targets. A reason of energy loss measurements is to obtain data that help to assess our understanding of the stopping power theories. For this, the obtained results are compared with, LSS calculations, MSTAR and SRIM-2013 predictions code.

  11. Low-energy light bulbs, computers, tablets and the blue light hazard.

    PubMed

    O'Hagan, J B; Khazova, M; Price, L L A

    2016-02-01

    The introduction of low energy lighting and the widespread use of computer and mobile technologies have changed the exposure of human eyes to light. Occasional claims that the light sources with emissions containing blue light may cause eye damage raise concerns in the media. The aim of the study was to determine if it was appropriate to issue advice on the public health concerns. A number of sources were assessed and the exposure conditions were compared with international exposure limits, and the exposure likely to be received from staring at a blue sky. None of the sources assessed approached the exposure limits, even for extended viewing times. PMID:26768920

  12. Visibility of Young's Interference Fringes: Scattered Light from Small Ion Crystals.

    PubMed

    Wolf, Sebastian; Wechs, Julian; von Zanthier, Joachim; Schmidt-Kaler, Ferdinand

    2016-05-01

    We observe interference in the light scattered from trapped ^{40}Ca^{+} ion crystals. By varying the intensity of the excitation laser, we study the influence of elastic and inelastic scattering on the visibility of the fringe pattern and discriminate its effect from that of the ion temperature and wave-packet localization. In this way we determine the complex degree of coherence and the mutual coherence of light fields produced by individual atoms. We obtain interference fringes from crystals consisting of two, three, and four ions in a harmonic trap. Control of the trapping potential allows for the adjustment of the interatomic distances and thus the formation of linear arrays of atoms serving as a regular grating of microscopic scatterers. PMID:27203319

  13. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  14. Probing the nuclear symmetry energy with heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Coupland, Daniel David Schechtman

    There are two distinct components involved in using heavy ion collisions to constrain the density dependence of the symmetry energy. On one hand, observables sensitive to the symmetry energy must be identified and measured with enough precision to provide meaningful constraints. On the other hand, nuclear reaction simulations are used to predict those observables for different possible forms of the symmetry energy. Examination of both components and the interface between them is important to improve the constraints. This thesis contributes to both the experimental and theoretical parts of this endeavor. First, we examine the uncertainties in the simulation of the isospin diffusion observable by varying the input physics within the pBUU transport code. In addition to the symmetry energy, several other uncertain parts of the calculation affect isospin diffusion, most notably the in-medium nucleon-nucleon cross sections and light cluster production. There is also a difference in the calculated isospin transport ratios depending on whether they are computed using the isospin asymmetry of the heavy residue or of all forward-moving fragments. We suggest that measurements comparing these two quantities would help place constraints on the input physics, including the density dependence of the symmetry energy. Second, we present a measurement of the neutron and proton kinetic energy spectra emitted from central collisions of 124Sn + 124Sn and 112Sn + 112Sn at beam energies of 50 MeV per nucleon and 120 MeV per nucleon. Previous transport simulations indicate that ratios of these spectra are sensitive to the density dependence of the symmetry energy and to the isovector momentum dependence of the mean field. Protons were detected in the Large Area Silicon Strip Array (LASSA) and neutrons were detected in the MSU Neutron Walls. The multiplicity of charged particles detected in the MSU Miniball was used to determine the impact parameter of the collisions. Several thin

  15. IONS (ANURADHA): Ionization states of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Chakraborti, R.; Cowsik, R.; Durgaprasad, N.; Kajarekar, P. J.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutt, N.; Goswami, J. N.

    1987-01-01

    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays.

  16. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    SciTech Connect

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  17. Chemiluminescence involving acidic and ambient ion light emitters. The chemiluminescence of the 9-acridinepercarboxylate anion

    SciTech Connect

    White, E.H.; Roswell, D.F.; Dupont, A.C.; Wilson, A.A.

    1987-08-19

    The reaction of phenyl 9-acridinecarboxylate with an excess of peroxide ion in THF/water (67/33 mol %) leads to the emission of either bright yellow-green light or bright blue light, depending on the reaction conditions. The blue emission is favored by high concentrations of hydrogen peroxide and water, for example. 9-Acridinepercarboxylic acid is a common intermediate in the reactions. The light emitter responsible for the blue chemiluminescence is acridone, whereas that responsible for the yellow-green chemiluminescence is the anion of acridone. The effects of base concentration and solvent composition on the relative proportions of these two emitters have produced evidence that, contrary to the expectation of simple theory, a dioxetanone is not an intermediate in the reaction. Other cases where chemiluminescence may involve percarboxylate and peroxide ions are discussed.

  18. Light Increases Energy Transfer Efficiency in a Boreal Stream

    PubMed Central

    Lesutienė, Jūratė; Gorokhova, Elena; Stankevičienė, Daiva; Bergman, Eva; Greenberg, Larry

    2014-01-01

    Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic 13C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on 13C uptake by periphyton. In the field experiment, P addition had a positive effect on 13C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, 13C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific 13C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific 13C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between 13C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community-wide effects on

  19. Low-energy-spread ion bunches from a trapped atomic gas.

    PubMed

    Reijnders, M P; van Kruisbergen, P A; Taban, G; van der Geer, S B; Mutsaers, P H A; Vredenbregt, E J D; Luiten, O J

    2009-01-23

    We present time-of-flight measurements of the longitudinal energy spread of pulsed ultracold ion beams, produced by near-threshold ionization of rubidium atoms captured in a magneto-optical atom trap. Well-defined pulsed beams have been produced with energies of only 1 eV and a root-mean-square energy spread as low as 0.02 eV, 2 orders of magnitude lower than the state-of-the-art gallium liquid-metal ion source. The low energy spread is important for focused ion beam technology because it enables milling and ion-beam-induced deposition at sub-nm length scales with many ionic species, both light and heavy. In addition, we show that the slowly moving, low-energy-spread ion bunches are ideal for studying intricate space charge effects in pulsed beams. As an example, we present a detailed study of the transition from space charge dominated dynamics to ballistic motion. PMID:19257360

  20. Infrared and Mass Analyzed Ion Kinetic Energy Spectroscopy of Cluster Ions

    NASA Astrophysics Data System (ADS)

    Feinberg, Thomas Neal

    A new method for obtaining mass analyzed kinetic energy spectroscopy for the study of cluster ions was tested. The experiments utilized an MS/MS instrument (Quadrupole/Electric Sector Analyzer) coupled to a cluster beam source. The ion source consisted of a molecular beam excited by high energy electron impact. Experiments were conducted using argon and argon/ethene gas mixtures in the ion source. Kinetic energy spectra of collision induced dissociation products and carbon dioxide laser photodissociation products were analyzed. The results for argon dimers showed a laser polarization effect on the measurement of the kinetic energy of the fragment argon ions in the infrared photodissociation event. When ionization occurred within the supersonic expansion zone, the polarization effects were no longer observed. Ethene gas in the ion source produced a variety of ions; some of these showed photodissociation efficiencies within the region of the monomer nu_7 vibrational mode. The spectroscopy and collision induced dissociation data are consistent with a structure consisting of a central core ion surrounded by one or more ethene molecules.

  1. Energy loss of ions implanted in MOS dielectric films

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    Energy loss measurements of ions in the low kinetic energy regime have been made on as-grown SiO2(170-190nm) targets. Singly charged Na + ions with kinetic energies of 2-5 keV and highly charged ions Ar +Q (Q=4, 8 and 11) with a kinetic energy of 1 keV were used. Excitations produced by the ion energy loss in the oxides were captured by encapsulating the irradiated oxide under a top metallic contact. The resulting Metal-Oxide-Semiconductor (MOS) devices were probed with Capacitance-Voltage (C V) measurements and extracted the flatband voltages from the C-V curves. The C-V results for singly charged ion experiments reveal that the changes in the flatband voltage and slope for implanted devices relative to the pristine devices can be used to delineate effects due to implanted ions only and ion induced damage. The data shows that the flatband voltage shifts and C-V slope changes are energy dependent. The observed changes in flatband voltage which are greater than those predicted by calculations scaled for the ion dose and implantation range (SRIM). These results, however, are consistent with a columnar recombination model, where electron-hole pairs are created due to the energy deposited by the implanted ions within the oxide. The remaining holes left after recombination losses are diffused through the oxide at the room temperature and remain present as trapped charges. Comparison of the data with the total number of the holes generated gives a fractional yield of 0.0124 which is of the same order as prior published high energy irradiation experiments. Additionally, the interface trap density, extracted from high and low frequency C-V measurements is observed to increase by one order of magnitude over our incident beam energy. These results confirm that dose- and kinetic energy -dependent effects can be recorded for singly charged ion irradiation on oxides using this method. Highly charged ion results also confirm that dose as well as and charge-dependent effects can

  2. Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993

    SciTech Connect

    Sweeney, M.A.

    1995-11-01

    This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included.

  3. Building a Road from Light to Energy

    SciTech Connect

    Li, Anton; Bilby, David; Barito, Adam; Vyletel, Brenda

    2013-07-18

    Representing the Center for Solar and Thermal Energy Conversion (CSTEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of the Center for Solar and Thermal Energy Conversion (CSTEC) is to design and to synthesize new materials for high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new fundamental insights into equilibrium and non-equilibrium processes, including quantum phenomena, that occur in materials over various spatial and temporal scales.

  4. Light-Driven Ca(2+) Ion Pump: How Does It Work?

    PubMed

    Lai, Cheng-Tsung; Zhang, Yu; Schatz, George C

    2015-12-10

    Work done by Bennett et al. [ Nature 2002 , 420 , 398 - 401 ] demonstrated that Ca(2+) ions can be actively transported through a lipid bilayer membrane by an artificial photosynthetic machine. However, details of the pump process, such as the oxidation state of the shuttle molecule and stoichiometry of the shuttle-ion complex, are not fully understood, which hinders the development of ion pumps of this type with higher efficiency. In this study, we combine all atom molecular dynamics simulations and quantum mechanics calculations to estimate the time scale of the shuttle-ion complex diffusion process and charge transfer step. We find that the process of shuttle-ion complex diffusion across the lipid bilayer membrane is the rate-limiting step, with a time scale of seconds to minutes. Other processes such as charge transfer between the redox reaction center and the shuttle molecule have picoseconds time scales. We also show that a shuttle-ion complex with 2:1 stoichiometry ratio has a lower energy barrier across the lipid membrane than other choices of complexes. The calculations show that the Ca(2+) ion is likely to be shuttled by a semiquinone type of shuttle molecule as this has the lowest free energy barrier across the lipid bilayer membrane, the fewest electrons transferred in the redox cycle, and it does not generate (or require) proton flow. Estimates of ion flow rates are consistent with measured values. PMID:26584359

  5. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  6. Enhancement of surface processes with low energy ions

    SciTech Connect

    Chason, E.

    1995-05-01

    Continuing trends in device fabrication towards smaller feature sizes, lower thermal budgets and advanced device structures put greater emphasis on controlling the surface structure and reactivity during processing. Since the evolution of the semiconductor surface during processing is determined by the interaction of multiple surface processes, understanding how to control and modify these processes on the atomic level would enable us to exert greater control over the resulting morphology and composition. Low energy ions represent one method for bringing controlled amounts of energy to the surface to modify surface structure and kinetics. The kinetic energy deposited by the ions can break bonds and displace atoms, creating defect populations significantly in excess of the equilibrium concentration. Consequences of these non-equilibrium conditions include the enhancement of surface kinetic processes, increased surface reactivity and formation of metastable structures and compositions. These effects can be beneficial (ion enhanced mass transport can lead to surface smoothing) or they can be detrimental (residual defects can degrade electrical properties or lead to amorphization). The net results depend on a complex balance that depends on many parameters including ion mass, energy, flux and temperature. In the following section, we review progress both in our fundamental understanding of the production of low-energy ion-induced defects and in the use of low energy ions to enhance surface morphology, stimulate low temperature growth and obtain non-equilibrium structures and compositions.

  7. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  8. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  9. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  10. Activation energies of colloidal particle aggregation: towards a quantitative characterization of specific ion effects.

    PubMed

    Tian, Rui; Yang, Gang; Li, Hang; Gao, Xiaodan; Liu, Xinmin; Zhu, Hualing; Tang, Ying

    2014-05-21

    A quantitative description of specific ion effects is an essential and focused topic in colloidal and biological science. In this work, the dynamic light scattering technique was employed to study the aggregation kinetics of colloidal particles in the various alkali ion solutions with a wide range of concentrations. It indicated that the activation energies could be used to quantitatively characterize specific ion effects, which was supported by the results of effective hydrodynamic diameters, aggregation rates and critical coagulation concentrations. At a given concentration of 25 mmol L(-1), the activation energies for Li(+) are 1.2, 5.7, 28, and 126 times as much for Na(+), K(+), Rb(+), and Cs(+), respectively. Most importantly, the activation energy differences between two alkali cation species increase sharply with decrease of electrolyte concentrations, implying the more pronounced specific ion effects at lower concentrations. The dominant role of electrolyte cations during the aggregation of negatively charged colloidal particles was confirmed by alternative anions. Among the various theories, only the polarization effect can give a rational interpretation of the above specific ion effects, and this is substantially supported by the presence of strong electric fields from montmorillonite surfaces and its association mainly with electrolyte cations and montmorillonite particles. The classical induction theory, although with inclusion of electric field, requires significant corrections because it predicts an opposite trend to the experimentally observed specific ion effects. PMID:24603654

  11. Comparison between single- and dual-electrode ion source systems for low-energy ion transport

    SciTech Connect

    Vasquez, M. Jr.; Tokumura, S.; Kasuya, T.; Maeno, S.; Wada, M.

    2012-11-06

    Extraction of ions with energies below 100 eV has been demonstrated using a hot-cathode multi-cusp ion source equipped with extraction electrodes made of thin wires. Two electrode geometries, a single-electrode system, and a dual-electrode system were built and tested. The single-electrode configuration showed high ion beam current densities at shorter distances from the electrode but exhibited rapid attenuation as the distance from the electrode increased. Beam angular spread measurements showed similar beam divergence for both electrode configurations at low plasma densities. At high plasma densities and low extraction potentials, the single-electrode system showed the angular spread twice as large as that of the dual-electrode system. Energy distribution analyses showed a broader energy spread for ion beams extracted from a single-electrode set-up.

  12. Defect production and recombination during low-energy ion processing

    SciTech Connect

    Kellerman, B.K.; Floro, J.A.; Chason, E.; Brice, D.K.; Picraux, S.T.; White, J.M.

    1994-10-01

    Low-energy ion processing produces damaged, microroughened semiconductor surfaces due to the production of point defects. The authors present a study of point defect production and annealing on the Ge(001)-2x1 surface during low-energy inert ion bombardment as a function of ion energy, ion mass and substrate temperature. Ion-induced surface point defect production was quantified experimentally in real time using in situ Reflection High Energy Electron Diffraction. The observed surface defect yield decreased abruptly around room temperature as the substrate temperature was increased from 175 K to 475 K. The authors have developed Monte Carlo simulations of defect diffusion to model defect recombination both in the bulk and on the surface. Bulk defect production statistics generated by a binary collision simulator, TRIMRC, were coupled with our bulk diffusion simulator to predict the number of ion-induced surface defects. A comparison between the experimental results and the simulation predictions indicated that defects produced in the bulk may represent a significant contribution to the observed surface defect yield and suggested that TRIMRC may overestimate the depth distribution of the defects. The simulations further indicated that the abrupt drop in the experimental yield with increasing substrate temperature does not arise from bulk defect recombination. The Monte Carlo simulations of surface diffusion (applicable to any crystalline surface) support a defect annealing mechanism (at low ion fluxes) that involves surface recombination of defects generated within a single cascade.

  13. Ion energy measurements in steady state discharges @f|

    NASA Astrophysics Data System (ADS)

    Schwager * *, L. A.; Hsu, W. L.; Tung, D. M.

    1990-02-01

    The energy distribution of ions incident on the grounded surface (cathode) of a direct current (DC) glow discharge is measured. This incident energy determines the effectiveness of glow discharge cleaning in removing gases and impurities from the vessel surface. We have found that the incident ion energy falls significantly below the anode potential when the mean free path for charge exchange is less than the width of the cathode sheath which is approximately the Child-Langmuir sheath width. The DC discharge provides a current density at the grounded surface of typically 17 micro-Amps/cm2. A gas mix of deuterium and argon at pressures up to 40 mTorr is ignited to form the plasma. A mass and energy analyzer measures the energy distribution of the ion stream which passes through an aperture in the center of the electrically grounded surface.

  14. The photodetachment cross-section and threshold energy of negative ions in carbon dioxide

    NASA Technical Reports Server (NTRS)

    Helmy, E. M.; Woo, S. B.

    1974-01-01

    Threshold energy and sunlight photodetachment measurements on negative carbon dioxide ions, using a 2.5 kw light pressure xenon lamp, show that: (1) Electron affinity of CO3(+) is larger than 2.7 e.V. and that an isomeric form of CO3(+) is likely an error; (2) The photodetachment cross section of CO3(-) will roughly be like a step function across the range of 4250 to 2500A, having its threshold energy at 4250A; (3) Sunlight photodetachment rate for CO3(-) is probably much smaller than elsewhere reported; and (4) The probability of having photodetached electrons re-attach to form negative ions is less than 1%. Mass identifying drift tube tests confirm that the slower ion is CO3(-), formed through the O(-) + 2CO2 yields CO3(-) + CO2 reaction.

  15. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  16. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    SciTech Connect

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  17. Green Lights Project Results in Lower Energy Costs.

    ERIC Educational Resources Information Center

    Berridge, Robert; Kwartin, Bruce

    1992-01-01

    An Environmental Protection Agency program encourages energy conservation on campuses by consulting with colleges and universities willing to reduce energy used in lighting. Full program implementation in these and other organizations can create significant savings in demand for electricity and help fight global warming and acid rain. (MSE)

  18. Inferring mixture Gibbs free energies from static light scattering data

    NASA Astrophysics Data System (ADS)

    Ross, David; Wahle, Christopher; Thurston, George

    We describe a light scattering partial differential equation for the free energy of mixing that applies to connected, isotropic ternary and quaternary liquid composition domains, including restricted domains which may not touch all binary axes. For restricted domains, contrasting light scattering efficiency patterns obtained at different wavelengths can correspond to the same underlying free energy, and supplement the available information. We discuss well-posed problems for this fully nonlinear, degenerate elliptic partial differential equation. Using Monte Carlo simulations, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, and indicate how measurement time depends on instrument throughput. These methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain liquid domains. Supported by NIH EY018249.

  19. The production and use of ultralow energy ion beams

    NASA Astrophysics Data System (ADS)

    Goldberg, R. D.; Armour, D. G.; van den Berg, J. A.; Cook, C. E. A.; Whelan, S.; Zhang, S.; Knorr, N.; Foad, M. A.; Ohno, H.

    2000-02-01

    An ion accelerator, purpose built to produce beams at energies down to 10 eV with current densities in the 10-100 μA cm-2 range, is described. Fitted with dual ion source assemblies, the machine enables ultralow energy ion implantation and the growth of films and multilayers to be carried out under highly controlled conditions. The accelerator delivers ion beams into an ultrahigh vacuum chamber, containing a temperature controlled target stage (range -120 to +1350 °C), where they are used to study the fundamental physics relating to the interaction of ultralow energy ions with surfaces. This knowledge underlies a wide range of ion-beam and plasma-based technologies and, to illustrate its importance, results are presented from investigations designed to determine the optimum conditions for the growth of diamond-like and aluminum films by ion-beam deposition and the formation of ultrashallow junctions in semiconductors by 2.5 keV As+ implantation. The later investigation shows how transient arsenic diffusion, which occurs during post-implant thermal processing, can be controlled by manipulating the substrate temperature during implantation.

  20. Solid-State Lighting: An Energy Economics Perspective

    SciTech Connect

    Tsao, Jeffrey Y.; Saunders, Harry D.; Creighton, J. Randall; Coltrin, Michael E.; Simmons, Jerry A.

    2010-08-19

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb–Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  1. High energy gain in three-dimensional simulations of light sail acceleration

    SciTech Connect

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  2. White luminescence of Tm-Dy ions co-doped aluminoborosilicate glasses under UV light excitation

    SciTech Connect

    Liu Shimin; Zhao Gaoling; Lin Xiaohua; Ying Hao; Liu Junbo; Wang Jianxun; Han Gaorong

    2008-10-15

    Tm{sup 3+} and Dy{sup 3+} ions co-doped aluminoborosilicate glasses were prepared in this study. The luminescence properties of the glasses were analyzed. A combination of blue, green, yellow, and red emission bands was shown for these glasses, and white light emission could be observed under UV light excitation. White light luminescence color could be changed by varying the excitation wavelength. Concentration quenching effect was investigated in this paper. Furthermore, the dependence of luminescence properties on glass compositions was studied. Results showed that the luminescence intensity changed with different network modifier oxides, while the white color luminescence was not affected significantly. - Graphical abstract: Tm{sup 3+} and Dy{sup 3+} ions co-doped aluminoborosilicate glasses, which emit white light under UV light excitation, were prepared. The dependence of luminescence properties on glass compositions was studied, and results showed that the white color luminescence was not affected significantly with different network modifier oxides. This adjustability could broaden application areas.

  3. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  4. Plasma Sputter-type Ion Source with Wire Electrodes for Low-energy Gallium Ion Extraction

    SciTech Connect

    Vasquez, M. Jr.; Kasuya, T.; Wada, M.; Maeno, S.; Miyamoto, N.

    2011-01-07

    Low-energy ions of gallium (Ga) and argon (Ar) were extracted from a plasma sputter-type ion source system that utilized a tungsten (W) wire extractor geometry. The 90% transparent W wire extractor configuration had shown that the system was capable of producing an ion beam with the energy as low as 10 eV in a dc filament discharge and 50 eV in a radio frequency (rf) excited system. In the present investigation, Ar plasma was sustained in an ion source chamber through an inductively coupled 13.56 MHz rf power source. Negatively biased liquid Ga target suspended on a W reservoir was sputtered and postionized prior to extraction. Mass spectral analyses revealed a strong dependence of the Ga{sup +} current on the induced target bias.

  5. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice

    PubMed Central

    2015-01-01

    External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs. PMID:26734646

  6. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice.

    PubMed

    Nickoloff, Jac A

    2015-12-01

    External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs. PMID:26734646

  7. Using neutral beams as a light ion beam probe (invited)a)

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Heidbrink, W. W.; Van Zeeland, M. A.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Austin, M. E.; Fisher, R. K.; Hanson, J. M.; Nazikian, R.; Zeng, L.

    2014-11-01

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  8. [Energy saving and LED lamp lighting and human health].

    PubMed

    Deĭnego, V N; Kaptsov, V A

    2013-01-01

    The appearance of new sources of high-intensity with large proportion of blue light in the spectrum revealed new risks of their influence on the function of the eye and human health, especially for children and teenagers. There is an urgent need to reconsider the research methods of vision hygiene in conditions of energy-saving and LED bulbs lighting. On the basis of a systematic approach and knowledge of the newly discovered photosensitive receptors there was built hierarchical model of the interaction of "light environment - the eye - the system of formation of visual images - the hormonal system of the person - his psycho-physiological state." This approach allowed us to develop a range of risk for the negative impact of spectrum on the functions of the eye and human health, as well as to formulate the hygiene requirements for energy-efficient high-intensity light sources. PMID:24624829

  9. Topological phases in oxide heterostructures with light and heavy transition metal ions (invited)

    SciTech Connect

    Fiete, Gregory A.; Rüegg, Andreas

    2015-05-07

    Using a combination of density functional theory, tight-binding models, and Hartree-Fock theory, we predict topological phases with and without time-reversal symmetry breaking in oxide heterostructures. We consider both heterostructures containing light transition metal ions and those containing heavy transition metal ions. We find that the (111) growth direction naturally leads to favorable conditions for topological phases in both perovskite structures and pyrochlore structures. For the case of light transition metal elements, Hartree-Fock theory predicts the spin-orbit coupling is effectively enhanced by on-site multiple-orbital interactions and may drive the system through a topological phase transition, while heavy elements with intrinsically large spin-orbit coupling require much weaker or even vanishing electron interactions to bring about a topological phase.

  10. Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study.

    PubMed Central

    Bassi, G S; Murchie, A I; Walter, F; Clegg, R M; Lilley, D M

    1997-01-01

    The ion-induced folding transitions of the hammerhead ribozyme have been analysed by fluorescence resonance energy transfer. The hammerhead ribozyme may be regarded as a special example of a three-way RNA junction, the global structure of which has been studied by comparing the distances (as energy transfer efficiencies) between the ends of pairs of labelled arms for the three possible end-to-end vectors as a function of magnesium ion concentration. The data support two sequential ion-dependent transitions, which can be interpreted in the light of the crystal structures of the hammerhead ribozyme. The first transition corresponds to the formation of a coaxial stacking between helices II and III; the data can be fully explained by a model in which the transition is induced by a single magnesium ion which binds with an apparent association constant of 8000-10 000 M-1. The second structural transition corresponds to the formation of the catalytic domain of the ribozyme, induced by a single magnesium ion with an apparent association constant of approximately 1100 M-1. The hammerhead ribozyme provides a well-defined example of ion-dependent folding in RNA. PMID:9405376

  11. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  12. Fluorescent light bulbs - energy saver or environmental hazard?

    SciTech Connect

    Christenson, S.M.

    1995-03-01

    Businesses and homeowners have installed millions of fluorescent light bulbs in buildings around the country in the last few decades. Because fluorescent light bulbs are energy efficient and save electricity, environmentalists and governmental officials - including U.S. EPA - have promoted their use. Yet, fluorescent bulbs raise environmental concerns of their own. When these bulbs burn out, environmental and facility managers face complex issues about whether the old bulbs are regulated as hazardous waste.

  13. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  14. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  15. Inverse energy dispersion of energetic ions observed in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Lester, M.

    2016-07-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (˜50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 RE using combined Super Dual Auroral Radar Network radar and EPD observations.

  16. The energy storage in the formation of slow light

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.

    2010-08-01

    Slow light formation in media with (i) an electromagnetically induced transparency, (ii) a doublet structure, and (iii) a single absorption line, detuned from resonance, is considered with the help of a simple model. The model is based on the description of particles in these media by a pseudospin 1/2, which is subject to two 'orthogonal fields'. We mainly focus on the analysis of the reversible process of the particle excitation-de-excitation resulting in the temporal storage of the light-pulse energy without the pulse corruption. The influence of irreversible relaxation processes on the slow light formation is studied.

  17. Highly Compressed Ion Beam for High Energy Density Science

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Briggs, R.J.; Callahan, D.A.; Caporaso, G.J.; Celata, C.M.; Davidson, R.C.; Faltens, A.; Grisham, L.; Grote, D.P.; Henestroza, E.; Kaganovich I.; Lee, E.P.; Lee, R.W.; Leitner, M.; Logan, B.G.; Nelson, S.D.; Olson, C.L.; Penn, G.; Reginato,L.R.; Renk, T.; Rose, D.; Seessler, A.; Staples, J.W.; Tabak, M.; Thoma,C.; Waldron, W.; Welch, D.R.; Wurtele, J.; Yu, S.S.

    2005-05-16

    The Heavy Ion Fusion Virtual National Laboratory is developing the intense ion beams needed to drive matter to the High Energy Density regimes required for Inertial Fusion Energy and other applications. An interim goal is a facility for Warm Dense Matter studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach they are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target ''foils,'' which may in fact be foams with mean densities 1% to 10% of solid. This approach complements that being pursued at GSI Darmstadt, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrically target. They present the beam requirements for Warm Dense Matter experiments. The authors discuss neutralized drift compression and final focus experiments and modeling. They describe suitable accelerator architectures based on Drift-Tube Linac, RF, single-gap, Ionization-Front Accelerator, and Pulse-Line Ion Accelerator concepts. The last of these is being pursued experimentally. Finally, they discuss plans toward a user facility for target experiments.

  18. Intracanopy lighting reduces electrical energy utilization by closed cowpea stands.

    PubMed

    Frantz, J M; Joly, R J; Mitchell, C A

    2001-01-01

    The high planting densities needed to grow edible biomass in sustainable space life support systems will create problems for planophile crops that form closed, self-shading canopies. The use of traditional overhead-lighting configurations will reduce the penetration of photosynthetically active radiation (PAR) into such canopies and will result in substantial shading of understory leaves. Intracanopy lighting, an irradiation approach that allows plants to grow around fixed arrays of low-intensity lamps, reduces overall energy expenditure for crop production by improving light distribution and interception throughout the canopy. Comparing different fluorescent lamp geometries within vegetative canopies of cowpea (Vigna unguiculata L. Walp) revealed great plasticity of leaf orientation to maximize absorption of PAR from lamps arrayed at various nontraditional angles. Varying the amount of photosynthetic energy available within canopies creates considerable potential to manipulate canopy productivity. Increasing lamp number 38% within cowpea canopies raised stand productivity 45%, reflecting the highly efficient interception and absorption of intracanopy PAR. However, combined above/within-canopy lighting did not increase overall PAR interception and vegetative yield, and productivity did not improve relative to the same input wattage of intracanopy lighting alone. Optimization of intracanopy lighting for crops to be used in future space life support systems will substantially reduce power and energy burdens for food-crop production. PMID:11676456

  19. Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling.

    PubMed

    Jin, Hyung-Ha; Shin, Chansun; Kwon, Junhyun

    2010-01-01

    Cross-section-view TEM samples of ion-irradiated material are successfully fabricated using a focused ion beam (FIB) system and low-energy Ar ion milling. Ga ion-induced damages in FIB processing are reduced remarkably by the means of low-energy Ar ion milling. There are optimized ion milling conditions for the reduction and removal of the secondary artifacts such as defects and ripples. Incident angles and accelerated voltages are especially more important factors on the preservation of a clean surface far from secondary defects and surface roughing due to Ga and Ar ion bombardment. PMID:20484144

  20. Low Light Adaptation: Energy Transfer Processes in Different Types of Light Harvesting Complexes from Rhodopseudomonas palustris

    PubMed Central

    Moulisová, Vladimíra; Luer, Larry; Hoseinkhani, Sajjad; Brotosudarmo, Tatas H.P.; Collins, Aaron M.; Lanzani, Guglielmo; Blankenship, Robert E.; Cogdell, Richard J.

    2009-01-01

    Abstract Energy transfer processes in photosynthetic light harvesting 2 (LH2) complexes isolated from purple bacterium Rhodopseudomonas palustris grown at different light intensities were studied by ground state and transient absorption spectroscopy. The decomposition of ground state absorption spectra shows contributions from B800 and B850 bacteriochlorophyll (BChl) a rings, the latter component splitting into a low energy and a high energy band in samples grown under low light (LL) conditions. A spectral analysis reveals strong inhomogeneity of the B850 excitons in the LL samples that is well reproduced by an exponential-type distribution. Transient spectra show a bleach of both the low energy and high energy bands, together with the respective blue-shifted exciton-to-biexciton transitions. The different spectral evolutions were analyzed by a global fitting procedure. Energy transfer from B800 to B850 occurs in a mono-exponential process and the rate of this process is only slightly reduced in LL compared to high light samples. In LL samples, spectral relaxation of the B850 exciton follows strongly nonexponential kinetics that can be described by a reduction of the bleach of the high energy excitonic component and a red-shift of the low energetic one. We explain these spectral changes by picosecond exciton relaxation caused by a small coupling parameter of the excitonic splitting of the BChl a molecules to the surrounding bath. The splitting of exciton energy into two excitonic bands in LL complex is most probably caused by heterogenous composition of LH2 apoproteins that gives some of the BChls in the B850 ring B820-like site energies, and causes a disorder in LH2 structure. PMID:19948132

  1. Review of intense-ion-beam propagation with a view toward measuring ion energy

    SciTech Connect

    Garcia, M.

    1982-08-25

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements.

  2. Effects of Light Ion Contaminants on the Laser Break-Out Afterburner

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Hegelich, B. M.; Bowers, Kevin J.; Flippo, K. A.; Kwan, T. J. T.; Fernández, J. C.

    2006-10-01

    A novel laser ion acceleration mechanism was reported by Yin et al. [Laser and Particle Beams 24, 291; see also invited talk by L. Yin this meeting] that allows, through careful target and laser conditioning, greatly enhanced peak beam ion energy (>2 GeV energy carbon ions with an I=10^21 W/cm^2 laser) and conversion efficiency from laser to fast ions. After a brief phase of target normal sheath acceleration (TNSA), the break-out afterburner (BOA) undergoes a period of enhanced TNSA followed by intense ion acceleration associated with penetration of the laser through the thin target. One of the outstanding questions regarding realization of the BOA experimentally is whether cleaning of ultra-thin targets is required to remove protons that collect on the target. Particle-in-cell simulations of BOA with and without contaminants will be shown. These simulations, using the LANL VPIC code, can be used to assess the effects on ion acceleration and beam quality resulting from the presence of contaminants.

  3. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  4. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    NASA Astrophysics Data System (ADS)

    Variale, V.; Cavenago, M.; Agostinetti, P.; Sonato, P.; Zanotto, L.

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D- beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D- and D+), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H- each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  5. Ion collector design for an energy recovery test proposal with the negative ion source NIO1.

    PubMed

    Variale, V; Cavenago, M; Agostinetti, P; Sonato, P; Zanotto, L

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D(-) beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D(-) and D(+)), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H(-) each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed. PMID:26932033

  6. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three of PEARL program during the period of October 2002 to April 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The products tested are 20 models of screw-based compact fluorescent lamps (CFL) of various types and various wattages made or marketed by 12 different manufacturers, and ten models of residential lighting fixtures from eight different manufacturers.

  7. Precise measurements of the energy losses of heavy ions

    SciTech Connect

    Bichsel, H.; Hiraoka, T. |

    1995-12-31

    Accurate measurements of the energy loss of all charged particles are needed to determine the reliability of the Bethe theory of stopping power. Few measurements have been made for particles with energies greater than 20 MeV/u. A first step to accurate measurements is to establish the precision of an experimental method. The authors report here about the recent energy loss measurements for 290 MeV/u carbon ions from the HIMAC. They have been made with the method used for 70 MeV protons. The ion beam traverses an absorber of thickness t and the residual range of the ions is measured with a water container of adjustable thickness (``range gauge``).

  8. Spectroscopy of Neutrons Generated Through Nuclear Reactions with Light Ions in Short-Pulse Laser-Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Forrest, C. J.; Glebov, V. Yu.; Sangster, T. C.; Schroder, W. U.

    2015-11-01

    Neutron and charged-particle production has been studied in OMEGA EP laser-driven light-ion reactions including D-D fusion, D-9Be fusion, and 9Be(D,n)10B processes at deuteron energies from 1 to a few MeV. The energetic deuterons are produced in a primary target, which is irradiated with one short-pulse (10-ps) beam with energies of up to 1.25 kJ focused at the target front surface. Charged particles from the backside of the target create neutrons and ions through nuclear reactions in a secondary target placed closely behind the primary interaction target. Angle-dependent yields and spectra of the neutrons generated in the secondary target are measured using scintillator-photomultiplier-based neutron time-of-flight detectors and nuclear activation samples. A Thomson parabola is used to measure the spectra of the primary and secondary charged particles. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789.

  9. Compact floating ion energy analyzer for measuring energy distributions of ions bombarding radio-frequency biased electrode surfaces

    NASA Astrophysics Data System (ADS)

    Edelberg, Erik A.; Perry, Andrew; Benjamin, Neil; Aydil, Eray S.

    1999-06-01

    A compact floating retarding-field ion energy analyzer and the accompanying electronics have been designed and built to measure the energy distribution of ions bombarding radio-frequency (rf) biased electrodes in high-density plasma reactors. The design consists of two main components, a compact retarding field vacuum probe and an integrated stack of floating electronics for providing output voltages, measuring currents and voltages and transmitting data to a computer. The operation and capabilities of the energy analyzer are demonstrated through ion energy distribution measurements conducted on a 4 MHz rf-biased electrostatic chuck in a 13.56 MHz high-density transformer coupled plasma (TCP) reactor. The analyzer is capable of operating while floating on several hundreds of volts of rf bias and at pressures up to 30 mTorr without differential pumping. The effects of pressure (2-30 mTorr), TCP power (500-1500 W), rf-bias power (0-800 W), gas composition, and ion mass on the ion energy distributions are demonstrated through Ar, Ne, and Ar/Ne discharges.

  10. The Determinant of Light-Energy and Light-Signal Conversion in Rhodopsins

    SciTech Connect

    Kandori, Hideki

    2007-12-26

    Rhodopsins can convert light into either chemical energy or signal [1, 2]. It is therefore reasonable to postulate the existence of specific structures for each function. Nevertheless, X-ray crystallographic structures showed similar protein architectures for microbial rhodopsins of both functional classes. But then, the question is how is each function achieved?.

  11. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Six of PEARL program during the period of October 2004 to April 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameters tested for CFL models in Cycle Six are 1000-hour Lumen Maintenance, Lumen Maintenance at 40% Rated Life, and Interim Life Test, along with a series of parameters verified, such as ballast electrical parameters and Energy Star label.

  12. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Four and Cycle Five of PEARL program during the period of October 2003 to April 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Four is lumen maintenance at 40% rated life, and parameters tested for Cycle Five are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  13. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three and Cycle Four of PEARL program during the period of April 2003 to October 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle three is lumen maintenance at 40% rated life, and parameters tested for Cycle Four are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  14. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle 6 and Reflector CFL In-situ Testing of PEARL program during the period of April 2005 to October 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC performed testing for the fixture samples in Cycle 6 against Energy Star residential fixture specifications during this period of time. LRC subcontracted the Reflector CFL In-situ Testing to Luminaire Testing Laboratories located at Allentown PA, and supervised this test.

  15. National Lighting Bureau Reports Dramatic Energy Savings Possible through Minor Lighting Modifications.

    ERIC Educational Resources Information Center

    College Store Journal, 1979

    1979-01-01

    Dramatic savings are possible by implementing minor modifications including: energy efficient light bulbs and tubes, ballasts, luminaires (fixtures), controls, operating practices, and revised maintenance. Many different changes can be made without affecting productivity, safety and security, visual comfort, aesthetic appeal, consumer discretion,…

  16. Kinetic energy distributions in ion-induced CO fragmentation: Signature of shallow states in multiply charged CO

    NASA Astrophysics Data System (ADS)

    Rajput, Jyoti; Safvan, C. P.

    2007-06-01

    Ion-induced molecular fragmentation of CO has been studied using time-of-flight mass spectroscopy with position sensitive detectors in multihit coincidence mode. Ar8+ ions having a velocity of 1.1 a.u. were used as projectiles. The features observed in the kinetic energy release (KER) spectra for all the detected fragmentation channels are discussed in light of the existing and calculated ab initio potential energy curves. The preference of the symmetric breakup over the asymmetric one is clearly observed. For fragmentation channels originating from the same parent molecular ion, it is observed that the most probable KER value is higher for the dissociation channel having a higher charge on the oxygen ion. Occurrence of sharp peaks in KER spectra of some of the fragmentation channels hints towards the existence of shallow (possibly metastable) excited states of COq+ (q=4,5) molecular ions and calls for further theoretical investigations.

  17. Range and Energy Straggling in Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tai, Hsiang

    2000-01-01

    A first-order approximation to the range and energy straggling of ion beams is given as a normal distribution for which the standard deviation is estimated from the fluctuations in energy loss events. The standard deviation is calculated by assuming scattering from free electrons with a long range cutoff parameter that depends on the mean excitation energy of the medium. The present formalism is derived by extrapolating Payne's formalism to low energy by systematic energy scaling and to greater depths of penetration by a second-order perturbation. Limited comparisons are made with experimental data.

  18. Energy loss of coasting gold ions and deuterons in RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brown, K.A.; Butler, J.J.; FischW; Harvey, M.; Tepikian, S.

    2008-06-23

    The total energy loss of coasting gold ion beams was measured at RHIC at two energies, corresponding to a gamma of 75.2 and 107.4. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  19. Study of energy transfer mechanism from ZnO nanocrystals to Eu(3+) ions.

    PubMed

    Mangalam, Vivek; Pita, Kantisara; Couteau, Christophe

    2016-12-01

    In this work, we investigate the efficient energy transfer occurring between ZnO nanocrystals (ZnO-nc) and europium (Eu(3+)) ions embedded in a SiO2 matrix prepared using the sol-gel technique. We show that a strong red emission was observed at 614 nm when the ZnO-nc were excited using a continuous optical excitation at 325 nm. This emission is due to the radiative (5)D0 → (7)F2 de-excitation of the Eu(3+) ions and has been conclusively shown to be due to the energy transfer from the excited ZnO-nc to the Eu(3+) ions. The photoluminescence excitation spectra are also examined in this work to confirm the energy transfer from ZnO-nc to the Eu(3+) ions. Furthermore, we study various de-excitation processes from the excited ZnO-nc and their contribution to the energy transfer to Eu(3+) ions. We also report the optimum fabrication process for maximum red emission at 614 nm from the samples where we show a strong dependence on the annealing temperature and the Eu(3+) concentration in the sample. The maximum red emission is observed with 12 mol% Eu(3+) annealed at 450 °C. This work provides a better understanding of the energy transfer mechanism from ZnO-nc to Eu(3+) ions and is important for applications in photonics, especially for light emitting devices. PMID:26858155

  20. Ions in the Enceladus plume: Cassini/CAPS ion measurements at high energy resolution

    NASA Astrophysics Data System (ADS)

    Crary, F.; Coates, A. J.; Hill, T. W.; Jones, G. H.; Tokar, R. L.

    2012-12-01

    During several Cassini encounters with Saturn's satellite, Enceladus, the spacecraft crossed through the plume of water vapor and dust south of the satellite with a spacecraft orientation which allowed the Cassini Plasma Spectrometer (CAPS) to observe ions and nanograin dust particles associated with the plume. During three of these encounters, E7 (November 2, 2009), E17 (March XX, 2012) and E18 (April YY, 2012), the trajectories were very similar and parallel to the equatorial plane (i.e. little north-south velocity, so that the spacecraft moved perpendicular to the rotation axis of Enceladus.) Previous analysis, using data from the CAPS ion mass spectrometer (IMS) and electron spectrometer (ELS), identified cold ions at rest with respect to Enceladus [1], negative water group and water cluster ions [2], and both positively and negatively charged dust particles in the 0.5 to 2 nm (1000 to 20,000 AMU) size range [3,4]. We present observations from the third CAPS sensor, the ion beam spectrometer (IBS). Although this sensor lacks the angular resolution of the other CAPS sensors, it has an energy resolution of 1.4%, roughly an order of magnitude greater than the ELS and IMS sensors. The IBS data allows us to estimate the temperature and flow speed of the low energy ions in the plume, and characterize the structure of the plume ionosphere. We find that the plume is highly structured, down to the 2-s (17 km along track) limit of the instrument's sampling. Distinct regions of cold, dense ions, resembling a collisional ionosphere, are intermixed with a broad background of warmer, non-thermal ions, possibly resulting from charge exchange between magnetospheric ions and plume neutrals. Despite the sensor's lack of intrinsic angular resolution, the ion flux and energy spectra are consistent with a drift velocity away from Saturn and in the direction of the upstream flow. References: [1] Tokar et al., 2009, Cassini detection of Enceladus' cold water-group plume ionosphere

  1. Magnetic quadrupole doublet focusing system for high energy ions.

    PubMed

    Glass, Gary A; Dymnikov, Alexander D; Rout, Bibhudutta; Dias, Johnny F; Houston, Louis M; LeBlanc, Jared

    2008-03-01

    A high energy focused ion beam microprobe using a doublet arrangement of short magnetic quadrupole lenses was used to focus 1-3 MeV protons to spot sizes of 1x1 microm2 and 1-4.5 MeV carbon and silicon ion beams to spot sizes of 1.5x1.5 microm2. The results presented clearly demonstrate that this simple doublet configuration can provide high energy microbeams for microanalysis and microfabrication applications. PMID:18377047

  2. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  3. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under

  4. Cluster ions from keV-energy ion and atom bombardment of frozen gases

    NASA Astrophysics Data System (ADS)

    David, Donald E.; Magnera, Thomas F.; Tian, Rujiang; Stulik, Dusan; Michl, Josef

    1986-04-01

    A brief survey is given of the mass spectra obtained from frozen gases by bombardment with keV-energy ions and atoms. The internal chemical constitution of the observed secondary cluster ions, which bears no simple relation to the molecular structure of the solid, has been established by observations of collision-induced dissociation, laser-induced dissociation and metastable decay. It has been correlated with the chemical composition of the residual bombarded solid, deduced from spectroscopic observations. These results, as well as preliminary results on sputtering yields for impact of 1-4 keV rare gas ions on solid argon, are compatible with the previously proposed mechanistic model for the formation of the cluster ions based on the flow of supercritical gas from the elastic collision spike region.

  5. Energy-saving approaches to solid state street lighting

    NASA Astrophysics Data System (ADS)

    Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras

    2011-10-01

    We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.

  6. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1987-May 31, 1988

    SciTech Connect

    Petitt, G.A.

    1988-01-01

    This paper discusses work on heavy ion reactions done at Georgia State University. Topics and experiments discussed are: energy division in damped reactions between /sup 58/Ni projectiles and /sup 165/Ho and /sup 58/Ni targets using time-of-flight methods; particle-particle correlations; and development works on the Hili detector system. 10 refs., 9 figs. (DWL

  7. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    SciTech Connect

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  8. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  9. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  10. Controlling Light to Make the Most Energy From the Sun

    SciTech Connect

    Callahan, Dennis; Corcoran, Chris; Eisler, Carissa; Flowers, Cris; Goodman, Matt; Hofmann, Carrie; Sadtler, Bryce

    2013-07-18

    Representing the Light-Material Interactions in Energy Conversion (LMI), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of LMI to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency.

  11. Development of a low energy ion source for ROSINA ion mode calibration

    SciTech Connect

    Rubin, Martin; Altwegg, Kathrin; Jaeckel, Annette; Balsiger, Hans

    2006-10-15

    The European Rosetta mission on its way to comet 67P/Churyumov-Gerasimenko will remain for more than a year in the close vicinity (1 km) of the comet. The two ROSINA mass spectrometers on board Rosetta are designed to analyze the neutral and ionized volatile components of the cometary coma. However, the relative velocity between the comet and the spacecraft will be minimal and also the velocity of the outgassing particles is below 1 km/s. This combination leads to very low ion energies in the surrounding plasma of the comet, typically below 20 eV. Additionally, the spacecraft may charge up to a few volts in this environment. In order to simulate such plasma and to calibrate the mass spectrometers, a source for ions with very low energies had to be developed for the use in the laboratory together with the different gases expected at the comet. In this paper we present the design of this ion source and we discuss the physical parameters of the ion beam like sensitivity, energy distribution, and beam shape. Finally, we show the first ion measurements that have been performed together with one of the two mass spectrometers.

  12. A low energy ion source for electron capture spectroscopy

    SciTech Connect

    Tusche, C.; Kirschner, J.

    2014-06-15

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He{sup +} ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He{sup 2+} operation, we obtain a beam current of 320 pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*{sup +} (2s) ions.

  13. Modeling Atmospheric Energy Deposition (by energetic ions)

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Brain, D. A.; Lillis, R. J.; Liemohn, M. W.; Bougher, S. W.

    2011-12-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. Such modeling has been previously done for Earth, Mars and Jupiter using a guiding center precipitation model with extensive collisional physics. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation that can perform calculations for cases where there is only a weak or nonexistent magnetic field that includes detailed physical interaction with the atmosphere (i.e. collisional physics). We show initial efforts to apply a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Venus, Mars, and Titan. A systematic study of the ionization, excitation, and energy

  14. Extension to Higher Mass Numbers of an Improved Knockout-Ablation-Coalescence Model for Secondary Neutron and Light Ion Production in Cosmic Ray Interactions

    NASA Astrophysics Data System (ADS)

    Indi Sriprisan, Sirikul; Townsend, Lawrence; Cucinotta, Francis A.; Miller, Thomas M.

    Purpose: An analytical knockout-ablation-coalescence model capable of making quantitative predictions of the neutron spectra from high-energy nucleon-nucleus and nucleus-nucleus collisions is being developed for use in space radiation protection studies. The FORTRAN computer code that implements this model is called UBERNSPEC. The knockout or abrasion stage of the model is based on Glauber multiple scattering theory. The ablation part of the model uses the classical evaporation model of Weisskopf-Ewing. In earlier work, the knockout-ablation model has been extended to incorporate important coalescence effects into the formalism. Recently, alpha coalescence has been incorporated, and the ability to predict light ion spectra with the coalescence model added. The earlier versions were limited to nuclei with mass numbers less than 69. In this work, the UBERNSPEC code has been extended to make predictions of secondary neutrons and light ion production from the interactions of heavy charged particles with higher mass numbers (as large as 238). The predictions are compared with published measurements of neutron spectra and light ion energy for a variety of collision pairs. Furthermore, the predicted spectra from this work are compared with the predictions from the recently-developed heavy ion event generator incorporated in the Monte Carlo radiation transport code HETC-HEDS.

  15. Light-harvesting materials: Soft support for energy conversion

    SciTech Connect

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  16. New Light on Dark Energy (LBNL Science at the Theater)

    ScienceCinema

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2011-06-08

    A panel of Lab scientists ? including Eric Linder, Shirly Ho, and Greg Aldering ? along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  17. New Light on Dark Energy (LBNL Science at the Theater)

    SciTech Connect

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2011-04-25

    A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  18. Ripple formation on silicon by medium energy ion bombardment.

    PubMed

    Chini, Tapas Kumar; Datta, Debi Prasad; Bhattacharyya, Satya Ranjan

    2009-06-01

    The formation of a self-organized nanoscale ripple pattern after off-normally incident ion bombardment on the surface of amorphous materials, or on semiconductors like silicon that are easily amorphized by ion bombardment, has attracted much attention in recent years from the point of view of both theory and applications. As the energy of the impinging ions increases from low to medium, i.e. several hundred eV to a few tens of keV, the ratio of amplitude to wavelength of the generated ripple pattern becomes so large that inter-peak shadowing of the incident ion flux takes place. Morphologically, the sinusoidal surface profile starts to become distorted after prolonged ion bombardment under such conditions. Structural and compositional modifications of the ripple morphology generated under shadowing conditions include the formation of a thicker amorphous layer with high incorporation of argon atoms in the form of nanometer sized bubbles around the middle part of the front slope of the ripple facing the ion beam, as compared to the rear slope. The present paper reviews recent developments in the experimental study of morphological, structural and compositional aspects of ripple patterns generated on a silicon surface after medium keV (30-120 keV) argon bombardment mainly at an angle of ion incidence of 60°. PMID:21715743

  19. Neutral dynamics and ion energy transport in MST plasma

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel; Kumar, Santosh; Anderson, Jay

    2015-11-01

    Neutral dynamics can have a significant effect on ion energy transport through charge exchange collisions. Whereas previously charge exchange was considered a direct loss mechanism in MST plasmas, new analysis indicates that significant thermal charge exchange neutrals are reionized. Further, the temperatures of the neutral species in the core of the plasma are suspected to be much higher than room temperature, which has a large effect on ion energy losses due to charge exchange. The DEGAS2 Monte Carlo simulation code is applied to the MST reversed field pinch experiment to estimate the density and temperature profile of the neutral species. The result is then used to further examine the effect of the neutral species on ion energy transport in improved confinement plasmas. This enables the development of a model that accounts for collisional equilibration between species, classical convective and conductive energy transport, and energy loss due to charge exchange collisions. The goal is to quantify classical, stochastic, and anomalous ion heating and transport in RFP plasmas. Work supported by the US DOE. DEGAS2 is provided by PPPL and STRAHL is provided by Ralph Dux of the Max-Planck-Institut fur Plasmaphysik.

  20. Isotopic fractionation in low-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Ponganis, K. V.; Graf, T.; Marti, K.

    1997-08-01

    The evolutions of planetary atmospheres and other solar system reservoirs have been affected by a variety of fractionating mechanisms. It has been suggested that one of these mechanisms could be low-energy ion implantation. Bernatowicz and Hagee [1987] showed that Kr and Xe implanted at low energy onto tungsten are fractionated by approximately 1% per amu, favoring the heavy isotopes; we confirm these effects. We have extended these studies to Ar and Ne, using a modified Bayard-Alpert type implanter design of cylindrical symmetry with collector potentials of -40 to -100V, and observe systematically larger mass dependent isotopic fractionation for argon and neon, >=3% per amu and >=4% per amu, respectively. These fractionations scale approximately as Δm/m for all of the noble gases measured, consistent with the findings of Bernatowicz and coworkers. Experimental data at higher energies and predictions by TRIM (Transport of Ions in Matter) code simulations indicate that sticking probabilities may depend upon the mass ratios of projectile and target. Many natural environments for low-energy ion implantation existed in the early solar nebula, such as in dusty plasmas or in the interaction of the bipolar outflow with small grains or in the wind of the early active Sun with accreting planetesimals. Low-energy ions provide viable sources for gas loading onto nebular dust grains; the result is isotopic and elemental fractionation of the projectiles.

  1. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  2. Leveraging Lighting for Energy Savings: GSA Northwest/Artic Region

    SciTech Connect

    2016-01-01

    Case study describes how the Northwest/Arctic Region branch of the General Services Administration (GSA) improved safety and energy efficiency in its Fairbanks Federal Building parking garage used by federal employees, U.S. Marshals, and the District Court. A 74% savings was realized by replacing 220 high-pressure sodium fixtures with 220 light-emitting diode fixtures.

  3. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  4. Effect of three-body Coulomb interactions on the breakup of light nuclei in the field of a heavy ion: An asymptotic estimate

    SciTech Connect

    Alt, E.O.; Irgaziev, B.F.; Muminov, A.T.

    1995-11-01

    The quasielastic breakup of light nuclei into two charged fragments in the Coulomb field of a heavy multiply charged ion are studied. For fragments diverging with extremely low energies an asymptotic estimate is obtained for the ratio of the differential cross section in which three-body Coulomb effects are taken into account to that in which these effects are disregarded. It is shown that effects due to the acceleration of breakup fragments in the field of the heavy ion are significant. 13 refs., 2 figs.

  5. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-05-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure of Cycle 7 of PEARL program during the period of October 2005 to March 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC administered the purchasing of CFL samples to test in Cycle 7, performed 100-hour seasoning for most of the CFL samples received by March 2006, and performed sphere testing for some of the CFL samples at 100 hours of life (initial measurement).

  6. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Five and Cycle Six of PEARL program during the period of April 2004 to October 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Five is lumen maintenance at 40% rated life, and parameters tested for Cycle Six are Efficacy, CCT, CRI, Power Factor, Start Time, Warm-up Time, and Rapid Cycle Stress Test for CFLs.

  7. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-02-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  8. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices. PMID:26883532

  9. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  10. Dynamics of midlatitude light ion trough and plasmatails. [from data obtained on OGO-4

    NASA Technical Reports Server (NTRS)

    Chen, A. J.; Grebowsky, J. M.; Taylor, H. A., Jr.

    1973-01-01

    Light ion trough measurements near midnight made by the RF ion mass spectrometer on OGO-4 operating in the high resolution mode in Feb. 1968 reveal the existence of irregular structure on the low latitude side of the midlatitude trough. Using two different relations between the equatorial convection electric field, assumed spatially invariant and directed from dawn to dusk, and Kp (one based on plasmapause measurements, the other on polar cap E field measurements) a model development was made of the outer plasmasphere. The model calculations produced multiple plasmatail extensions of the plasmasphere which compare favorably with the observed irregularities. Due to magnetic local time differences between the Northern and Southern Hemisphere along OGO's orbit, the time dependent irregularity structure observed is not symmetrical about the equator. The model development produces an outer plasmasphere boundary location which varies similarly to the observed minimum density point of the light ion trough. However the measurements are not extensive enough to yield conclusive proof that one of the electric field models is better than the other.

  11. Root apex sealing with different filling materials photopolymerized with argon ion laser light

    NASA Astrophysics Data System (ADS)

    Lupato Conrado, Luis Augusto; Frois, Iris M.; Amaro Zangaro, Renato; Munin, Egberto

    2003-06-01

    The present study evaluates the seal quality in apex delta of single root human teeth filled with light-curing materials (Ultrablend Calcium-hydroxide, Vitremer glass ionomer and Flow-Fill Magic composite). 45 roots prepared by the endo PTC/Dakin technique were used. All prepared samples received photopolymerization with the blue 488 nm argon ion laser light. A 200 μm optical fiber introduced into the root canal delivered 100 mW of light power to the light-curing material. The fiber tip was positioned 5 mm away from the apex. Light was applied for 20 seconds. After curing, the samples received impermeabilization with ethyl-cyanoacrylate, leaving only the apex exposed, and then immersed in a methylene-blue dye solution for 24 hours. The samples were cut longitudinally and analyzed under a stereoscopic microscope for dye infiltration. It was found that those samples sealed with Ultrablend Calcium-hydroxide or the glass ionomer presented the best results, as compared to those samples sealed with the Flow-Fill Magic composite. No statistically significant difference was observed between the group treated with Ultrablend Calcium-hydroxide and the group treated with the glass ionomer, for a significance level of 0.05.

  12. THE LIGHT/DARK UNIVERSE Light from Galaxies, Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Overduin, James M.; Wesson, Paul S.

    1. The enigma of the dark night sky. 1.1. Why is the sky dark at night? 1.2. "By reason of distance". 1.3. Island Universe. 1.4. Non-uniform sources. 1.5. Tired light. 1.6. Absorption. 1.7. Fractal Universe. 1.8. Finite age. 1.9. Dark stars. 1.10. Curvature. 1.11. Ether voids. 1.12. Insufficient energy. 1.13. Light-matter interconversion. 1.14. Cosmic expansion. 1.15. Olbers' paradox today -- 2. The intensity of cosmic background light. 2.1. Bolometric intensity. 2.2. Time and redshift. 2.3. Matter, energy and expansion. 2.4. How important is expansion?. 2.5. Simple flat models. 2.6. Curved and multi-fluid models. 2.7. A bright sky at night? -- 3. The spectrum of cosmic background light. 3.1. Spectral intensity. 3.2. Luminosity density. 3.3. The delta function. 3.4. The normal distribution. 3.5. The thermal spectrum. 3.6. The spectra of galaxies. 3.7. The light of the night sky. 3.8. R.I.P. Olbers' paradox -- 4. Dark cosmology. 4.1. The four dark elements. 4.2. Baryons. 4.3. Dark matter. 4.4. Neutrinos. 4.5. Dark energy. 4.6. Cosmological concordance. 4.7. The coincidental Universe -- 5. The radio and microwave backgrounds. 5.1. The cosmological "constant". 5.2. The scalar field. 5.3. Decaying dark energy. 5.4. Energy density. 5.5. Source luminosity. 5.6. Bolometric intensity. 5.7. Spectral energy distribution. 5.8. Dark energy and the background light -- 6. The infrared and visible backgrounds. 6.1. Decaying axions. 6.2. Axion halos. 6.3. Bolometric intensity. 6.4. Axions and the background light -- 7. The ultraviolet background. 7.1. Decaying neutrinos. 7.2. Neutrino halos. 7.3. Halo luminosity. 7.4. Free-streaming neutrinos. 7.5. Extinction by gas and dust. 7.6. Neutrinos and the background light -- 8. The x-ray and gamma-ray backgrounds. 8.1. Weakly interacting massive particles. 8.2. Pair annihilation. 8.3. One-loop decay. 8.4. Tree-level decay. 8.5. Gravitinos. 8.6. WIMPs and the background light -- 9. The high-energy gamma-ray background. 9.1. Primordial

  13. Formation of ions by high-energy photons

    SciTech Connect

    Drukarev, E. G.; Mikhailov, A. I.; Mikhailov, I. A.; Rakhimov, Kh. Yu.; Scheid, W.

    2007-03-15

    We calculate the electron energy spectrum of ionization by a high-energy photon, accompanied by creation of an e{sup -}e{sup +} pair. The total cross section of the process is also obtained. The asymptotics of the cross section does not depend on the photon energy. At the photon energies exceeding a certain value {omega}{sub 0} this appears to be the dominant mechanism of formation of the ions. The dependence of {omega}{sub 0} on the value of nuclear charge is obtained. Our results are consistent with experimental data.

  14. Energy spectrum of neutrals formed in an ion accelerator

    SciTech Connect

    Fink, J.H.

    1982-03-15

    This work presents an estimate of the energy distribution of the neutrals formed in the ion beam accelerator. However it does not determine the fraction of those neutrals which leave the neutral beam injector and go on into the reactor. To do that, more details of the beam line performance are needed.

  15. Photon and dilepton production in high energy heavy ion collisions

    DOE PAGESBeta

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  16. Energy transfer between thulium and praseodymium ions in solids

    SciTech Connect

    Cockroft, N.J.; Murdoch, K.M.

    1993-09-01

    New thulium-to-praseodymium upconversion and cross-relaxation energy transfer mechanisms are observed. YLiF{sub 4} has several subsets of dopant ions, which exhibit a variety of transfer efficiencies. Dual-pulse laser excitation of dimers in CsCdBr{sub 3} is used to demonstrate a probable upconversion pathway.

  17. Energy resolution of gas ionization chamber for high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Sato, Yuki; Taketani, Atsushi; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Nishimura, Daiki; Fukuda, Mitsunori; Inabe, Naohito; Murakami, Hiroyuki; Yoshida, Koichi; Kubo, Toshiyuki

    2014-01-01

    The energy resolution is reported for high-energy heavy ions with energies of nearly 340 MeV/nucleon and was measured using a gas ionization chamber filled with a 90%Ar/10%CH4 gas mixture. We observed that the energy resolution is proportional to the inverse of the atomic number of incident ions and to the inverse-square-root of the gas thickness. These results are consistent with the Bethe-Bloch formula for the energy loss of charged particles and the Bohr expression for heavy ion energy straggling. In addition, the influence of high-energy δ-rays generated in the detector on the energy deposition is discussed.

  18. QUB Low Energy Ion-Ices Irradiation Experiment

    NASA Astrophysics Data System (ADS)

    Muntean, A.; Field, T.; Hunniford, A.; McCullough, B.; Konanoff, J.; Millar, T.

    2011-05-01

    Ion processing plays an important role in the chemical and physical modification of ice surfaces in astrophysical environments. This experimental project supported by the LASSIE ITN, led by Dr Tom Field, will investigate irradiation of astrophysical ice analogues by singly and multiply charged ion analogues of cosmic rays. Singly or multiply charged ions of either gaseous or solid elements are produced by a compact permanent magnet Electron Cyclotron Resonance (ECR) ion source attached to a ''floating beamline'' accelerator. Charge (q) to mass analysed ion beams in the energy range from a few 100 eV to 5xq keV are directed into a dedicated experimental chamber containing a temperature controlled (6K - 300K) cryostatically cooled sample of an astrophysical ice analogue. Current diagnostics include a differentially pumped, high resolution, quadrupole mass spectrometer mounted in ''line of sight'' of the ion impact area of the ice sample In a preliminary collaborative experiment with the groups of Prof Nigel Mason (Open University, UK) and Prof Elisabetta Palumbo (INAF-Osservatorio Astrofisico di Catania. Italy) and using a cryostat and FTIR spectrometer provided by Prof Nigel Mason we studied the interaction of 4 keV C+ and C2+ ions with H2O ices at 30K AND 90K. The most significant species formed in these interactions was 13CO2, the yield of which, with singly charged ions, could be explained by the competition between a formation and a destruction mechanism. In the case of doubly charged ions, explanation of the CO2 yield required additional formation and destruction mechanisms which were considered to be a result of the additional potential energy possessed by the projectile ions. These results also showed the influence of sample temperature and morphology. It is clear that for both singly and doubly charged projectile ions, the yield of 13CO2 was greater at 30K than at 90K. This effect has been observed elsewhere and has been assigned to the greater porosity of

  19. Modelling high-energy pulsar light curves from first principles

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Philippov, Alexander A.; Spitkovsky, Anatoly

    2016-04-01

    Current models of gamma-ray light curves in pulsars suffer from large uncertainties on the precise location of particle acceleration and radiation. Here, we present an attempt to alleviate these difficulties by solving for the electromagnetic structure of the oblique magnetosphere, particle acceleration, and the emission of radiation self-consistently, using 3D spherical particle-in-cell simulations. We find that the low-energy radiation is synchro-curvature radiation from the polar-cap regions within the light cylinder. In contrast, the high-energy emission is synchrotron radiation that originates exclusively from the Y-point and the equatorial current sheet where relativistic magnetic reconnection accelerates particles. In most cases, synthetic high-energy light curves contain two peaks that form when the current sheet sweeps across the observer's line of sight. We find clear evidence of caustics in the emission pattern from the current sheet. High-obliquity solutions can present up to two additional secondary peaks from energetic particles in the wind region accelerated by the reconnection-induced flow near the current sheet. The high-energy radiative efficiency depends sensitively on the viewing angle, and decreases with increasing pulsar inclination. The high-energy emission is concentrated in the equatorial regions where most of the pulsar spin-down is released and dissipated. These results have important implications for the interpretation of gamma-ray pulsar data.

  20. Optimal Energy Transfer in Light-Harvesting Systems.

    PubMed

    Chen, Lipeng; Shenai, Prathamesh; Zheng, Fulu; Somoza, Alejandro; Zhao, Yang

    2015-01-01

    Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples. PMID:26307957

  1. Energy loss of 132Xe-ions in thin foils

    NASA Astrophysics Data System (ADS)

    Trzaska, W. H.; Knyazheva, G. N.; Perkowski, J.; Andrzejewski, J.; Khlebnikov, S. V.; Kozulin, E. M.; Lyapin, V. G.; Malkiewicz, T.; Mutterer, M.

    2009-10-01

    The energy loss of 132Xe-ions in C, Al, Ni, Ag, Lu, Au, Pb and Th foils was measured in the energy range from 0.1 to 5 MeV/u using the TOF-E method. The results are compared with previously published data and with the predictions of several computer codes. They include theoretical codes: PASS, CASP, semi-empirical programs: SRIM, LET and the Hubert table predictions.

  2. Relative abundance of the light ions in the winter nighttime topside ionosphere

    NASA Technical Reports Server (NTRS)

    Sanatani, S.; Breig, E. L.

    1984-01-01

    Ion concentration measurements with the retarding potential analyzer onboard OGO 6 satellite have served as basis for investigation of the distribution of the light ions, H(+) and He(+), relative to that of O(+) in the 500- to 800-km height range in the winter nighttime ionosphere. This concentration ratio exhibits distinct large-scale horizontal variations, with a relative depression in the ratio observed over a broad region about -45 deg longitude northward of approximately 40 deg dip latitude. The lower ratios are associated primarily with well-defined relative increases in the abundance of O(+), and occur in the same longitude sector that has been characterized in an earlier study by both an observed concurrent relative enhancement in ion temperature and the presence of large fluxes of energetic electrons. Comparisons are presented for the altitude distributions of the concentration ratio between regions representing extremes of the horizontal variation. A simple diffusive-equilibrium model demonstrates that the effects of ion temperature on the O(+) vertical distribution are a significant factor leading to the observed variation of the concentration ratio.

  3. Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.

    1995-01-01

    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.

  4. Ion Escape from Mars - Mars Express Data in the Light of MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hanns; Fedorov, Andrei

    2016-04-01

    Measuring the escape of ions from Mars has been one of the main targets of the ASPERA-3 experiment on Mars Express since orbit insertion in 2004. But the Mars Express spacecraft is not optimized for this measurement since it lacks a magnetometer and a Langmuir probe to observe magnetic field and total plasma densities. Nevertheless over the last 10 years several studies have been published attempting to determine the total escape flux and its variation with external parameters from ASPERA-3 observations. Since October 2014 the MAVEN spacecraft is in orbit around Mars with a much larger instrumental suite optimized for measuring the ion outflow. In this paper we reassess observations made by the MEX ASPERA-3 and MARSIS experiments in the light of recently published MAVEN observations.

  5. Energy loss effect on color center creation in LiF crystals under irradiation with 12C, 14N, 40Ar, 84Kr, and 130Xe ions

    NASA Astrophysics Data System (ADS)

    Dauletbekova, A.; Schwartz, K.; Sorokin, M. V.; Baizhumanov, M.; Akilbekov, A.; Zdorovets, M.

    2015-09-01

    Color center creation in LiF crystals irradiated with 12C, 14N, 40Ar, 84Kr, and 130Xe MeV ions were studied as a function of the absorbed energy (fluence). For light ions (12C, 14N) the saturation of single F centers takes place at higher absorbed energy (5 × 1023 eV/cm3) than that for 40Ar, 84Kr and 130Xe ions (∼1023 eV/cm3). The saturation concentration of F centers for 12C and 14N (2 × 1019 cm-3) is twice of that for the heavier ions. Further irradiation with light ions decreases concentration of F centers, presumably due to aggregation, whereas for heavy ions the saturation concentration remains approximately the same that can be explained by much stronger recombination losses within single tracks.

  6. Characterization of Surface Modifications by White Light Interferometry: Applications in Ion Sputtering, Laser Ablation, and Tribology Experiments

    PubMed Central

    Baryshev, Sergey V.; Erck, Robert A.; Moore, Jerry F.; Zinovev, Alexander V.; Tripa, C. Emil; Veryovkin, Igor V.

    2013-01-01

    In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained. PMID:23486006

  7. Light ion sources and target results on PBFA II (Particle Beam Fusion Accelerator II)

    SciTech Connect

    Cook, D.L.; Bailey, J.E.; Bieg, K.W.; Bloomquist, D.D.; Coats, R.S.; Chandler, G.C.; Cuneo, M.E.; Derzon, M.S.; Desjarlais, M.P.; Dreike, P.L.; Dukart, R.J.; Gerber, R.A.; Johnson, D.J.; Leeper, R.J.; Lockner, T.R.; McDaniel, D.H.; Maenchen, J.E.; Matzen, M.K.; Mehlhorn, T.A.; Mix, L.P.; Moats, A.R.; Nelson, W.E.; Pointon, T.D.; Pregenzer, A.L.; Quintenz, J.P.; Renk, T.J.; Rosenthal, S.E.; Ruiz, C.L.; Slutz, S.A.; Stinnett, R

    1990-01-01

    Advances in ion beam theory, diagnostics, and experiments in the past two years have enabled efficient generation of intense proton beams on PBFA II, and focusing of the beam power to 5.4 TW/cm{sup 2} on a 6-mm-diameter target. Target experiments have been started with the intense proton beams, since the range of protons at 4--5 MeV is equivalent to that of lithium at 30 MeV. Three series of experiments have been conducted using planar, conical, and cylindrical targets. These tests have provided information on ion beam power density, uniformity, and energy deposition. In order to increase the power density substantially for target implosion experiments, we are now concentrating on development of high voltage lithium ion beams. 10 refs., 13 figs.

  8. Controlling the shape of the ion energy distribution at constant ion flux and constant mean ion energy with tailored voltage waveforms

    NASA Astrophysics Data System (ADS)

    Bruneau, Bastien; Lafleur, Trevor; Booth, Jean-Paul; Johnson, Erik

    2016-04-01

    In this paper, we investigate the excitation of a capacitively coupled plasma using a non-sinusoidal voltage waveform whose amplitude- and slope-asymmetry varies continuously with a period which is a multiple of the fundamental RF period. We call this period the ‘beating’ period. Through particle-in-cell (PIC) simulations, we show that such waveforms cause oscillation of the self-bias at this beating frequency, corresponding to the charging and discharging of the external capacitor. The amplitude of this self-bias oscillation depends on the beating period, the value of the external capacitor, and the ion flux to the electrodes. This self-bias oscillation causes temporal modulation of the ion flux distribution function (IFDF), albeit at a constant ion flux and constant mean ion energy, and allows the energy width of the IFDF (averaged over the beating period) to be varied in a controlled fashion.

  9. Modeling heavy ion ionization energy loss at low and intermediate energies

    SciTech Connect

    Rakhno, I.L.; /Fermilab

    2009-11-01

    The needs of contemporary accelerator and space projects led to significant efforts made to include description of heavy ion interactions with matter in general-purpose Monte Carlo codes. This paper deals with an updated model of heavy ion ionization energy loss developed previously for the MARS code. The model agrees well with experimental data for various projectiles and targets including super-heavy ions in low-Z media.

  10. A high-energy, high-current ion implantation system

    NASA Astrophysics Data System (ADS)

    Rose, Peter H.; Faretra, Ronald; Ryding, Geoffery

    1985-01-01

    High current (Pre-DepTM) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-DepTM Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. DatalockTM, a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 × 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  11. High-energy ion production in PIVAIR target experiments

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Wood, Monty; Vecere, Carl; Voisin, Luc; Vermare, Christophe; Tinsley, Jim; Moy, Ken; Reyes, Phil; Leeper, Ray

    1999-11-01

    An intense electron beam focused onto a target produces ions that can be accelerated upstream into the beam's space charge potential well. If sufficient ions are produced to even partially space charge neutralize the beam, they can ruin the beam focus at the target [1]. This could be a serious problem for high-energy radiography accelerators like the 20-MeV DARHT, as well as for the interpretation of data obtained using invasive techniques, such as beam imaging using Cerenkov or optical transition radiation from targets. In target experiments at the 7-MeV PIVAIR accelerator at CESTA we obtained evidence for copious singly and multiply ionized heavy-metal target ions accelerated through potentials consistent with the space-charge well. The technique used to detect these ions and estimate their energy was the exposure of plastic nuclear track detector materials near the target. [1] "Effect of target-emitted ions on the focal spot of an intense electron beam," D.R Welch and T. P. Hughes, Laser and Particle Beams 16, pp.285-294, 1998

  12. Energy loss of heavy ions at high velocity

    NASA Astrophysics Data System (ADS)

    Andersen, J. U.; Ball, G. C.; Davies, J. A.; Davies, W. G.; Forster, J. S.; Geiger, J. S.; Geissel, H.; Ryabov, V. A.

    1994-05-01

    The slowing down of heavy ions by electronic stopping at high velocity is discussed. The ions are nearly fully stripped and have a well defined charge with relatively small fluctuations. Owing to the large charge of the ions, the classical Bohr formula applies instead of the Bethe formula, which is based on a quantum perturbation calculation. It is essential to include the Barkas effect in the description since it becomes quite large for heavy ions, especially in high-Z materials. In Lindhard's treatment [Nucl. Instr. and Meth. 132 (1976) l], the Barkas correction is viewed as an effect of dynamic screening of the ion potential in the initial phase of a collision with an electron, which reduces the relative velocity and therefore enhances the cross section. With inclusion of this enhancement factor for all impact parameters, as evaluated by Jackson and McCarthy for distant collisions [Phys. Rev. B 6 (1972) 4131], the description reproduces within a few percent measurements for 15 MeV/u Br on Si, Ni, and Au and for 10 MeV/u Kr on Al, Ni, and Au. The procedure is shown also to apply at lower velocities near the stopping maximum, albeit with less accuracy. The straggling in energy loss has been analyzed for a measurement on Si and it is well described by a combination of about equal contributions from fluctuations in the number of violent collisions with single electrons (Bohr straggling) and from fluctuations in ion charge state.

  13. Light ion fusion experiment (L. I. F. E. ) concept validation studies. Final report, July 1979-May 1980

    SciTech Connect

    Christensen, T E; Orthel, J L; Thomson, J J

    1980-12-01

    This report reflects the considerable advances made for the objectives of the contractual program, validating by detailed anaytical studies the concept of a new Light Ion Fusion Experiment for Inertial Confinement Fusion. The studies have produced an analytical design of a novel electrostatic accelerator based on separate function and strong channel focusing principles, to launch 3 to 10 MeV, 23 kA, He/sup +/ neutralized beams in 400 ns pulses, delivering on a 5 mm radius target located 10 m downstream, 50 kJ of implosion energy in approx. 20 ns impact times The control, stability and focusing of beams is made by electrostatic quadrupoles, producing overall beam normalized emittance of approx. 3 x 10/sup -5/ m-rad.

  14. LEICA - A low energy ion composition analyzer for the study of solar and magnetospheric heavy ions

    NASA Technical Reports Server (NTRS)

    Mason, Glenn M.; Hamilton, Douglas C.; Walpole, Peter H.; Heuerman, Karl F.; James, Tommy L.; Lennard, Michael H.; Mazur, Joseph E.

    1993-01-01

    The SAMPEX LEICA instrument is designed to measure about 0.5-5 MeV/nucleon solar and magnetospheric ions over the range from He to Ni. The instrument is a time-of-flight mass spectrometer which measures particle time-of-flight over an about 0.5 m path, and the residual energy deposited in an array of Si solid state detectors. Large area microchannel plates are used, resulting in a large geometrical factor for the instrument (0.6 sq cm sr) which is essential for accurate compositional measurements in small solar flares, and in studies of precipitating magnetospheric heavy ions.

  15. Energy loss of ions in solids: Non-linear calculations for slow and swift ions

    NASA Astrophysics Data System (ADS)

    Arista, Néstor R.

    2002-10-01

    The historical approach to describe the energy loss of swift ions in solids is based on the Bohr, Bethe and Bloch theories. As is well known, the central parameter in these theories is the ratio η= Z1e2/ℏ v, whose value is generally used to delimit the ranges of applicability of the Bohr ( η>1) and Bethe ( η<1) theories. The transition between these regimes can be obtained by changing the ratio Z1/ v, although not by simply changing v. In fact, this scheme breaks down at low velocities, where quantum and non-linear effects arise. This domain is characterized by the strong oscillatory Z1 dependence of the stopping powers. This paper proposes a self-consistent non-linear approach to calculate the energy loss of heavy ions on a wide range of velocities. The model is based on the transport cross-section approach and on a previous extension of the Friedel sum rule for moving ions. The purpose of this study is to develop a non-linear stopping power evaluation method that could be applied at finite ion velocities, bridging the current gap between the low- and high-energy models.

  16. Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations

    PubMed Central

    1996-01-01

    The receptor potential of rhabdomeric photoreceptors is mediated primarily by a Na influx, but other ions must also permeate through light-dependent channels to account for some properties of the photoresponse. We examined ion conduction in macroscopic and single- channel light-induced currents of Lima and Pecten photoreceptors. In the absence of Na, a fivefold change in extracellular K shifted the reversal voltage of the photocurrent (Vrev) by approximately 27 mV. Because the dependency of Vrev on [K]o was sub-Nernstian, and Vrev in each condition was more positive than Ek, some other ion(s) with a positive equilibrium potential must be implicated, in addition to K. We assessed the participation of calcium, an important candidate because of its involvement in light adaptation. Three strategies were adopted to minimize the impairments to cytosolic Ca homeostasis and loss of responsiveness that normally result from the required ionic manipulations: (a) Internal dialysis with Na-free solutions, to prevent reverse operation of the Na/Ca exchanger. (b) Rapid solution changes, temporally limiting exposure to potentially detrimental ionic conditions. (c) Single-channel recording, exposing only the cell- attached patch of membrane to the test solutions. An inward whole-cell photocurrent could be measured with Ca as the only extracellular charge carrier. Decreasing the [Ca]o to 0.5 mM reduced the response by 43% and displaced the reversal potential by -4.3 mV; the shift was larger (delta Vrev = -44 mV) when intracellular permeant cations were also removed. In all cases, however, the current carried by Ca was < 5% of that measured with normal [Na]o. Unitary light-activated currents were reduced in a similar way when the pipette contained only divalent cations, indicating a substantial selectivity for Na over Ca. The fall kinetics of the photoresponse was slower when external Ca was replaced by Ba, or when the membrane was depolarized; however, dialysis with 10 mM BAPTA

  17. Instrumentation for treatment of cancer using proton and light-ion beams

    NASA Astrophysics Data System (ADS)

    Chu, W. T.; Ludewigt, B. A.; Renner, T. R.

    1993-08-01

    Clinical trials using accelerated heavy charged-particle beams for treating cancer and other diseases have been performed for nearly four decades. Recently there have been worldwide efforts to construct hospital-based medically dedicated proton or light-ion accelerator facilities. To make such accelerated heavy charged-particle beams clinically useful, specialized instruments must be developed to modify the physical characteristics of the particle beams in order to optimize their biological and clinical effects. This article reviews the beam modifying devices and associated dosimetric equipment developed specifically for controlling and monitoring the clinical beams.

  18. Development of niobium spoke cavities for a superconducting light-ion Linac.

    SciTech Connect

    Shepard, K. W.

    1998-11-18

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  19. Charge state, angular distribution, and kinetic energy of ions from multicomponent-cathodes in vacuum arc devices

    SciTech Connect

    Nikolaev, A. G. Savkin, K. P.; Yushkov, G. Yu.; Frolova, V. P.; Barengolts, S. A.

    2014-12-07

    We present research results on vacuum arc plasma produced with multicomponent cathode made of several different elements. The ion mass-to-charge-state spectra of the plasmas were studied by time-of-flight spectrometry. The angular distributions of different ion species were measured, and the kinetic energy of their directed (streaming) motion was determined. It is shown that the fractional composition of ions of different cathode components in the plasma flow from the cathode spot closely matches the fractional content of these components in the composite cathode. The charge states of ions of the various cathode components are determined by the average electron temperature in the cathode spot plasma. The angular distribution of lower mass ions in the plasma from a multicomponent cathode is less isotropic and broader than for the plasma from a single-component cathode of the same light element. The directed kinetic energies of the ions of the different components for plasma from a multicomponent cathode are lower for lighter elements and greater for heavier elements compared to the ion directed energy for plasmas from single-component cathodes made of the same materials. The physical processes responsible for these changes in the ion charge states in multicomponent-cathode vacuum arc plasma are discussed.

  20. Influence of shell effects on the formation of light nuclei in collisions of heavy ions

    SciTech Connect

    Antonenko, N.V.; Dzholos, R.V. )

    1989-07-01

    Various approaches to calculation of the coefficients of the transport equation which describes the process of multinucleon transfers, are analyzed. It is shown that, without resorting to the averaging of matrix elements over many shell configurations, one can obtain expressions for transition probabilities that include the effects of nuclear shell structure. On this basis, the yield of light nuclei in reactions induced by heavy ions is studied in the framework of the degenerate-shell model. The calculations, which are carried out on the assumption that the wave functions of high-lying one-particle states of the system are not concentrated in one nucleus but are distributed over the two nuclei proportionally to their volumes, lead to an appreciable increase of the yield of light elements as compared to calculations in which one-particle states are assumed to belong to only one of the nuclei forming the double system.

  1. High-energy ion processing of materials for improved hardcoatings

    SciTech Connect

    Williams, J.M.; Gorbatkin, S.M.; Rhoades, R.L.; Oliver, W.C.; Riester, L.; Tsui, T.Y.

    1994-02-01

    Research has been directed toward use of economically viable ion processing strategies for production and improvement of hardcoatings. Processing techniques were high-energy ion implantation and electron cyclotron resonance microwave plasma processing. Subject materials were boron suboxides, Ti-6Al-4V alloy, CoCrMo alloy (a Stellite{trademark}), and electroplated Cr. These materials may be regarded either as coatings themselves (which might be deposited by thermal spraying, plasma processing, etc.) or in some cases, as substrates whose surfaces can be improved. hardness and other properties in relation to process variables are reported.

  2. Thylakoid protein phosphorylation: Regulation of light energy distribution in photosynthesis

    SciTech Connect

    Coughlan, S.J.

    1990-01-01

    It has become apparent that green plants possess the ability to adapt to changes in the spectral quality of ambient light. This phenomenon, state transitions, involves a reversible distribution of light energy between the two photosystems in response to changes in the excitation state of photosystems 1 and 2. Thus, the quantum efficiency of photosynthetic electron transport is maintained under different illumination conditions, and damage caused by excessive energetic input of light (photoinhibition) is prevented. This model comprises a phosphorylation/dephosphorylation cycle of three major components: substrates, the protein kinase(s) and protein phosphatase(s) responsible for the specific phosphorylation and dephosphorylation of these of substrates, and the control mechanisms whereby the protein kinase(s) is activated/deactivated in response to redox and /or conformational changes in the thylakoid. This report considers the three components in some detail.

  3. Fission in intermediate energy heavy ion reactions

    SciTech Connect

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.

    1989-04-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components--intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 15 refs., 7 figs.

  4. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Preparation of Squeezed State and Entanglement State Between Vibrational Motion of Trapped Ion and Light

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Jie

    2010-12-01

    Several schemes have been proposed to prepare two-mode squeezed state and entanglement state between motional states of a single trapped ion and light. Preparation of two-mode squeezed state is based on interaction of a trapped ion located in light cavity with cavity field. Preparation of entanglement state is based on interaction of a trapped ion located in light cavity with cavity field and a traveling wave light field.

  5. Investigating the performance of an ion luminescence probe as a multichannel fast-ion energy spectrometer using pulse height analysis

    SciTech Connect

    Zurro, B.; Baciero, A.; Jimenez-Rey, D.; Rodriguez-Barquero, L.; Crespo, M. T.

    2012-10-15

    We investigate the capability of a fast-ion luminescent probe to operate as a pulse height ion energy analyzer. An existing high sensitivity system has been reconfigured as a single channel ion detector with an amplifier to give a bandwidth comparable to the phosphor response time. A digital pulse processing method has been developed to determine pulse heights from the detector signal so as to obtain time-resolved information on the ion energy distribution of the plasma ions lost to the wall of the TJ-II stellarator. Finally, the potential of this approach for magnetic confined fusion plasmas is evaluated by studying representative TJ-II discharges.

  6. High energy metal ion implantation using `Magis`, a novel, broad-beam, Marx-generator-based ion source

    SciTech Connect

    Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion energy of the beam formed by an ion source is proportional to extractor voltage and ion charge state. Increasing the voltage is difficult and costly for extraction voltage over 100 kV. Here we explore the possibility of increasing the charge states of metal ions to facilitate high-energy, broad beam ion implantation at a moderate voltage level. Strategies to enhance the ion charge state include operating in the regimes of high-current vacuum sparks and short pulses. Using a time-of-flight technique we have measured charge states as high as 7+ (73 kA vacuum spark discharge) and 4+ (14 kA short pulse arc discharge), both for copper, with the mean ion charge states about 6.0 and 2.5, respectively. Pulsed discharges can conveniently be driven by a modified Marx generator, allowing operation of ``Magis`` with a single power supply (at ground potential) for both plasma production and ion extraction.

  7. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  8. Charge Transfer in Collisions of Lithium Ions with Beryllium through Oxygen Ions at Energies Below 32 keV/amu

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Suzuki, S.; Shirai, T.; Shimakura, N.

    The charge transfer cross sections of Li+ (1s2) ions in collisions with B5+ , C6+, N5+ (1s2), and O6+ (1s2) ions, and of Li2+ (1s) ions with Be+ (1s22s) ions are calculated in the collision energy range of 0.02-32 keV/amu by using a semi-classical close-coupling method with molecular-state expansion.

  9. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  10. National voluntary laboratory accreditation program: Energy efficient lighting products. Handbook

    SciTech Connect

    Galowin, L.S.; Hall, W.; Rossiter, W.J.

    1994-07-01

    The purpose of this handbook is to set out procedures and technical requirements for the National Voluntary Laboratory Accreditation Program (NVLAP) accreditation of laboratories which perform test methods covered by the Energy Efficient Lighting (EEL) Products program. It complements and supplements the NVLAP programmatic procedures and general requirements found in NIST Handbook 150 (PB94-178225). The interpretive comments and additional requirements contained in this handbook make the general NVLAP criteria specifically applicable to the EEL program.

  11. Light-heavy-ion collisions: a window into pre-equilibrium QCD dynamics?

    NASA Astrophysics Data System (ADS)

    Romatschke, P.

    2015-07-01

    Relativistic collisions of light on heavy ions (p + Au at GeV, p + Au , d + Au ,He + Au at GeV and 200 GeV and p + Pb ,He + Pb at TeV) are simulated using "superSONIC", a model that includes pre-equilibrium flow, viscous hydrodynamics and a hadronic cascade afterburner. Even though these systems have strong gradients and only consist of at most a few tens of charged particles per unit rapidity, one finds evidence that a hydrodynamic description applies to these systems. Based on these simulations, the presence of a triangular flow component in d + Au collisions at GeV is predicted to be similar in magnitude to that found in He + Au collisions. Furthermore, the ratio of He + Au to d + Au is found to be sensitive to the presence of pre-equilibrium flow. This would imply an experimentally accessible window into pre-equilibrium QCD dynamics using light-heavy-ion collisions.

  12. A Photometric and Energy Assessment of a Novel Lighting System

    SciTech Connect

    Crawford, Doug; Gould, Carl; Packer, Michael; Rubinstein, Francis; Siminovitch, Michael

    1995-06-01

    This paper describes the results of a photometric and energy analysis that was conducted on a new light guide and sulfur lamp system recently installed at both the US Department of Energy's Forrestal building and the Smithsonian Institution's National Air and Space Museum. This system couples high lumen output, high efficiency sulfur lamps to hollow light guides lined with a reflective prismatic film. At the Forrestal building the system lights a large roadway and plaza area that lies beneath a section of the building. It has been designed to completely replace the grid of 280 mercury vapor lamps formerly used to illuminate the space. At the National Air and Space Museum a similar system illuminates Gallery 114, which houses the large rocket displays from the US Space program. This paper outlines the unique operational and design characteristics of this highly efficient distribution system and details the results of field studies that characterize the significant energy savings and increased illumination levels that have been achieved. The projected savings in maintenance costs, due to longer lamp life and a reduction of the total number of lamps, is also presented.

  13. High-resolution spectral analysis of light from neutral beams and ion source plasmas

    SciTech Connect

    McNeill, D H; Kim, J

    1980-05-01

    The spectral distributions of Balmer alpha emission from 7- and 22-cm-diam neutral hydrogen beams have been measured with a Fabry-Perot interferometer to obtain information on the beam energy, divergence, and species composition. Results of these measurements are compared with other data on the beam properties to evaluate high-resolution spectroscopy as a beam diagnostic technique. Measurements on ion source plasmas and on beam-produced background plasmas yield average neutral atom energies of approximately 0.3 and 2.5 eV, respectively.

  14. Sputtering of oxygen ice by low energy ions

    NASA Astrophysics Data System (ADS)

    Muntean, E. A.; Lacerda, P.; Field, T. A.; Fitzsimmons, A.; Hunniford, C. A.; McCullough, R. W.

    2015-11-01

    Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer Solar system. These ices are continuously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2 +, N2 + and O2 +) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yields for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.

  15. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  16. Replacement of Lighting Fixtures with LED Energy Efficient Lights at the Parking Facility, Milwaukee, Wisconsin

    SciTech Connect

    David Brien

    2012-06-21

    The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.

  17. Energy diffusion of pickup ions upstream of comets

    NASA Technical Reports Server (NTRS)

    Isenberg, Philip A.

    1987-01-01

    A steady state model of pickup ion energization upstream of a cometary bow wave is presented in order to investigate the effects of quasi-linear energy diffusion in the turbulence there. The model assumes that the ions are immediately isotropized at pickup, and it includes the effects of adiabatic acceleration in the slowing solar wind and of continual pickup of ions as the comet is approached. By taking all physical quantities to fall off as power laws with distance from the comet, an analytical expression is obtained for the distribution function of pickup ions in the reference frame moving with the solar wind. To illustrate the application of this model, the model results are compared to the observations of pickup ions at comet Giacobini-Zinner. At present, this is the only cometary encounter for which sufficient quantitative information is available. The model does not compare well with these observations, but it is not clear whether the differences are due to artificial problems in the model or the data analysis or to the action of other energization processes at this comet. Preliminary results from the Halley encounters appear to agree more closely with this model.

  18. Metal ion, light, and redox responsive interaction of vesicles by a supramolecular switch.

    PubMed

    Samanta, Avik; Ravoo, Bart Jan

    2014-04-22

    Chemical, photochemical and electrical stimuli are versatile possibilities to exert external control on self-assembled materials. Here, a trifunctional molecule that switches between an "adhesive" and a "non-adhesive" state in response to metal ions, or light, or oxidation is presented. To this end, an azobenzene-ferrocene conjugate with a flexible N,N'-bis(3-aminopropyl)ethylenediamine spacer was designed as a multistimuli-responsive guest molecule that can form inclusion complexes with β-cyclodextrin. In the absence of any stimulus the guest molecule induces reversible aggregation of host vesicles composed of amphiphilic β-cyclodextrin due to the formation of intervesicular inclusion complexes. In this case, the guest molecule operates as a noncovalent cross-linker for the host vesicles. In response to any of three external stimuli (metal ions, UV irradiation, or oxidation), the conformation of the guest molecule changes and its affinity for the host vesicles is strongly reduced, which results in the dissociation of intervesicular complexes. Upon elimination or reversal of the stimuli (sequestration of metal ion, visible irradiation, or reduction) the affinity of the guest molecules for the host vesicles is restored. The reversible cross-linking and aggregation of the cyclodextrin vesicles in dilute aqueous solution was confirmed by isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600 ), dynamic light scattering (DLS), ζ-potential measurements and cyclic voltammetry (CV). To the best of our knowledge, a dynamic supramolecular system based on a molecular switch that responds orthogonally to three different stimuli is unprecedented. PMID:24643990

  19. Sharpening of field emitter tips using high-energy ions

    DOEpatents

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  20. Ion energy distribution functions in a supersonic plasma jet

    NASA Astrophysics Data System (ADS)

    Caldirola, S.; Roman, H. E.; Riccardi, C.

    2014-11-01

    Starting from experimental measurements of ion energy distribution functions (IEDFs) in a low pressure supersonic plasma jet, we propose a model to simulate them numerically from first principles calculations. Experimentally we acquired IEDFs with a quadrupole mass spectrometer (QMS) collecting the argon ions produced from a inductively coupled plasma (ICP) and driven into a supersonic free gas expansion. From the discussion of these results and the physics of our system we developed a simulation code. Integrating the equations of motion the code evolves the trajectory of a single ion across the jet. Ar+- Ar collisions are modelled with a 12-4 Lennard-Jones potential which considers induced dipole interactions. IEDFs were simulated at different positions along the jet and compared with the experimental data showing good agreement. We have also implemented a charge transfer mechanism in which the ion releases its charge to a neutral atom which can take place at sufficiently close distances and is a function of the impact energy.

  1. Low energy electrons and swift ion track structure in PADC

    NASA Astrophysics Data System (ADS)

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-10-01

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  2. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  3. Low energy electrons and swift ion track structure in PADC

    DOE PAGESBeta

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  4. Optical-model abrasion cross sections for high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1981-01-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  5. Optical-model abrasion cross sections for high-energy heavy ions

    SciTech Connect

    Townsend, L.W.

    1981-07-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  6. Use of genetically encoded, light-gated ion translocators to control tumorigenesis

    PubMed Central

    Chernet, Brook T.; Adams, Dany S.; Lobikin, Maria; Levin, Michael

    2016-01-01

    It has long been known that the resting potential of tumor cells is depolarized relative to their normal counterparts. More recent work has provided evidence that resting potential is not just a readout of cell state: it regulates cell behavior as well. Thus, the ability to control resting potential in vivo would provide a powerful new tool for the study and treatment of tumors, a tool capable of revealing living-state physiological information impossible to obtain using molecular tools applied to isolated cell components. Here we describe the first use of optogenetics to manipulate ion-flux mediated regulation of membrane potential specifically to prevent and cause regression of oncogene-induced tumors. Injection of mutant-KRAS mRNA induces tumor-like structures with many documented similarities to tumors, in Xenopus tadpoles. We show that expression and activation of either ChR2D156A, a blue-light activated cation channel, or Arch, a green-light activated proton pump, both of which hyperpolarize cells, significantly lowers the incidence of KRAS tumor formation. Excitingly, we also demonstrate that activation of co-expressed light-activated ion translocators after tumor formation significantly increases the frequency with which the tumors regress in a process called normalization. These data demonstrate an optogenetic approach to dissect the biophysics of cancer. Moreover, they provide proof-of-principle for a novel class of interventions, directed at regulating cell state by targeting physiological regulators that can over-ride the presence of mutations. PMID:26988909

  7. Use of genetically encoded, light-gated ion translocators to control tumorigenesis.

    PubMed

    Chernet, Brook T; Adams, Dany S; Lobikin, Maria; Levin, Michael

    2016-04-12

    It has long been known that the resting potential of tumor cells is depolarized relative to their normal counterparts. More recent work has provided evidence that resting potential is not just a readout of cell state: it regulates cell behavior as well. Thus, the ability to control resting potential in vivo would provide a powerful new tool for the study and treatment of tumors, a tool capable of revealing living-state physiological information impossible to obtain using molecular tools applied to isolated cell components. Here we describe the first use of optogenetics to manipulate ion-flux mediated regulation of membrane potential specifically to prevent and cause regression of oncogene-induced tumors. Injection of mutant-KRAS mRNA induces tumor-like structures with many documented similarities to tumors, in Xenopus tadpoles. We show that expression and activation of either ChR2D156A, a blue-light activated cation channel, or Arch, a green-light activated proton pump, both of which hyperpolarize cells, significantly lowers the incidence of KRAS tumor formation. Excitingly, we also demonstrate that activation of co-expressed light-activated ion translocators after tumor formation significantly increases the frequency with which the tumors regress in a process called normalization. These data demonstrate an optogenetic approach to dissect the biophysics of cancer. Moreover, they provide proof-of-principle for a novel class of interventions, directed at regulating cell state by targeting physiological regulators that can over-ride the presence of mutations. PMID:26988909

  8. The influence of different metal ions on light scattering properties of pattern microbial fuel cells' bacteria Desulfuromonas acetoxidans

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Olexsandr I.; Getman, Vasyl'B.; Ferensovyich, Yaroslav P.; Yaremyk, Roman Y.; Hnatush, Svitlana O.

    2011-09-01

    Microbial fuel cell (MFC) technologies represent the newest approach for generating electricity - bioelectricity generation from biomass using bacteria. Desulfuromonas acetoxidans are aquatic obligatory anaerobic sulfur-reducing bacteria that possess an ability to produce electric current in the processes of organic matter oxidation and Fe3+- or Mn4+- reduction. These are pattern objects for MFC systems. They could be applied as a highly effective and self-sustaining model of wastewater treatment which contains energy in the form of biodegradable organic matter. But wastewaters contain high concentrations of xenobiotics, such as different heavy metals that have a detrimental effect towards all living organisms. The influence of different concentrations of MnCl2×4H2O, FeSO4 CuSO4, CdSO4, ZnSO4 and PbNO3 on light scattering properties of aquatic D. acetoxidans bacteria on the base of their cells' size distribution and relative content has been investigated by the new method of measurement. The cell distribution curve was in the range of 0.4 - 1.4 μm. The most crucial changes of cell concentration dependences, compared with other investigated metal ions, have been observed under the influence of copper ions. The ability of D. acetoxidans bacteria to produce electric current upon the specific cultivation conditions and the influence of Fe2+ and Mn2+ has been verified.

  9. Energy loss straggling in collisions of fast finite-size ions with atoms

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2013-03-15

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron 'coat' of an ion noticeably improves the agreement with experimental data.

  10. Defect formation in graphene during low-energy ion bombardment

    NASA Astrophysics Data System (ADS)

    Ahlberg, P.; Johansson, F. O. L.; Zhang, Z.-B.; Jansson, U.; Zhang, S.-L.; Lindblad, A.; Nyberg, T.

    2016-04-01

    This letter reports on a systematic investigation of sputter induced damage in graphene caused by low energy Ar+ ion bombardment. The integral numbers of ions per area (dose) as well as their energies are varied in the range of a few eV's up to 200 eV. The defects in the graphene are correlated to the dose/energy and different mechanisms for the defect formation are presented. The energetic bombardment associated with the conventional sputter deposition process is typically in the investigated energy range. However, during sputter deposition on graphene, the energetic particle bombardment potentially disrupts the crystallinity and consequently deteriorates its properties. One purpose with the present study is therefore to demonstrate the limits and possibilities with sputter deposition of thin films on graphene and to identify energy levels necessary to obtain defect free graphene during the sputter deposition process. Another purpose is to disclose the fundamental mechanisms responsible for defect formation in graphene for the studied energy range.

  11. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    NASA Astrophysics Data System (ADS)

    Kundrát, Pavel

    2006-03-01

    A detailed study of the biological effects of diverse quality radiations, addressing their biophysical interpretation, is presented. Published survival data for V79 cells irradiated by monoenergetic protons, helium-3, carbon and oxygen ions and for CHO cells irradiated by carbon ions have been analysed using the probabilistic two-stage model of cell inactivation. Three different classes of DNA damage formed by traversing particles have been distinguished, namely severe single-track lesions which might lead to cell inactivation directly, less severe lesions where cell inactivation is caused by their combinations and lesions of negligible severity that can be repaired easily. Probabilities of single ions forming these lesions have been assessed in dependence on their linear energy transfer (LET) values. Damage induction probabilities increase with atomic number and LET. While combined lesions play a crucial role at lower LET values, single-track damage dominates in high-LET regions. The yields of single-track lethal lesions for protons have been compared with Monte Carlo estimates of complex DNA lesions, indicating that lethal events correlate well with complex DNA double-strand breaks. The decrease in the single-track damage probability for protons of LET above approximately 30 keV µm-1, suggested by limited experimental evidence, is discussed, together with the consequent differences in the mechanisms of biological effects between protons and heavier ions. Applications of the results in hadrontherapy treatment planning are outlined.

  12. Shedding light on the mercury mass discrepancy by weighing Hg 52+ ions in a Penning trap

    NASA Astrophysics Data System (ADS)

    Fritioff, T.; Bluhme, H.; Schuch, R.; Bergström, I.; Björkhage, M.

    2003-07-01

    In their nuclear tables Audi and Wapstra have pointed out a serious mass discrepancy between their extrapolated values for the mercury isotopes and those from a direct measurement by the Manitoba group. The values deviate by as much as 85 ppb from each other with claimed uncertainties of about 16 and 7 ppb, respectively. In order to decide which values are correct the masses of the 198Hg and 204Hg isotopes have been measured in the Stockholm Penning trap mass spectrometer SMILETRAP using 52+ ions. This charge state corresponds to a filled Ni electron configuration for which the electron binding energy can be accurately calculated. The mass values obtained are 197.966 768 44(43) u for 198Hg and 203.973 494 10(39) u for 204Hg. These values agree with those measured by the Manitoba group, with a 3 times lower uncertainty. This measurement was made possible through the implementation of a cooling technique of the highly charged mercury ions during charge breeding in the electron beam ion source used for producing the Hg 52+ ions.

  13. Performance Characterization of High Energy Commercial Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2010-01-01

    The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.

  14. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  15. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    SciTech Connect

    Mahinay, C. L. S. Ramos, H. J.; Wada, M.

    2015-02-15

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  16. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization.

    PubMed

    Mahinay, C L S; Wada, M; Ramos, H J

    2015-02-01

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV. PMID:25725835

  17. Dynamical description of heavy-ion collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Napolitani, P.; Colonna, M.

    2016-05-01

    Descriptions of heavy-ion collisions at Fermi energies require to take into account in-medium dissipation and phase-space fluctuations. The interplay of these correlations with the one-body collective behaviour determines the properties (kinematics and fragment production) and the variety of mechanisms (from fusion to neck formation and multifragmentation) of the exit channel. Starting from fundamental concepts tested on nuclear matter, we build up a microscopic description which addresses finite systems and applies to experimental observables.

  18. THE GEOMETRICAL ASPECT OF HIGH-ENERGY HEAVY ION COLLISIONS

    SciTech Connect

    Nagamiya, S.; Morrissey, D.J.

    1980-02-01

    The total yields of nuclear charge or mass from projectile and target fragments and the fragments from the overlapping region between projectile and target were evaluated based on existing data. These values are compared with simple formulas expected from the participant-spectator model. Agreement is reasonably good, suggesting that the major part of the integrated yields for all reaction products from high-energy heavy-ion collisions are geometrical.

  19. Light-ion therapy in the U.S.: From the Bevalac to ??

    SciTech Connect

    Alonso, Jose R.; Castro, Joseph R.

    2002-09-24

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joined by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.

  20. Laser acceleration of low emittance, high energy ions and applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Audebert, Patrick; Borghesi, Marco; Pépin, Henri; Willi, Oswald

    2009-03-01

    Laser-accelerated ion sources have exceptional properties, i.e. high brightness and high spectral cut-off (56 MeV at present), high directionality and laminarity (at least 100-fold better than conventional accelerators beams), short burst duration (ps). Thanks to these properties, these sources open new opportunities for applications. Among these, we have already explored their use for proton radiography of fields in plasmas and for warm dense matter generation. These sources could also stimulate development of compact ion accelerators or be used for medical applications. To extend the range of applications, ion energy and conversion efficiency must however be increased. Two strategies for doing so using present-day lasers have been successfully explored in LULI experiments. In view of applications, it is also essential to control (i.e. collimate and energy select) these beams. For this purpose, we have developed an ultra-fast laser-triggered micro-lens providing tuneable control of the beam divergence as well as energy selection. To cite this article: J. Fuchs et al., C. R. Physique 10 (2009).

  1. Effect of Low-Energy Ions on Plasma-Enhanced Deposition of Cubic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Torigoe, M.; Fukui, S.; Teii, K.; Matsumoto, S.

    2015-09-01

    The effect of low-energy ions on deposition of cubic boron nitride (cBN) films in an inductively coupled plasma with the chemistry of fluorine is studied in terms of ion energy, ion flux, and ion to boron flux ratio onto the substrate. The ion energy and the ion to boron flux ratio are determined from the sheath potential and the ratio of incident ion flux to net deposited boron flux, respectively. For negative substrate biases where sp2-bonded BN phase only or no deposit is formed, both the ion energy and the ion to boron flux ratio are high. For positive substrate biases where cBN phase is formed, the ion energy and the ion to boron flux ratio are estimated in the range of a few eV to 35 eV and 100 to 130, respectively. The impact of negative ions is presumed to be negligible due to their low kinetic energy relative to the sheath potential over the substrate surface. The impact of positive ions with high ion to boron flux ratios is primarily responsible for reduction of the ion energy for cBN film deposition. Work supported in part by a Grant-in-Aid for Scientific Research (B), a Funding Program for Next Generation World-Leading Researchers, and an Industrial Technology Research Grant Program 2008.

  2. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    SciTech Connect

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ion fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 /times/ 10/sup 14/ cm/sup /minus/2/) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs.

  3. Hard Probes in High-Energy Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Wang, X.

    Hard QCD processes in ultrarelativistic heavy-ion collisionsbecome increasingly relevant and they can be used as probes of the dense matter formed during the violent scatterings. We will discuss how one can use these hard probes to study the properties of the dense matter and the associated phenomenologies. In particular, we study the effect of jet quenching due to medium-induced energy loss on inclusive particle pT distributions and investigate how one can improve the measurement of parton energy loss in direct photon events.

  4. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  5. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  6. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum.

    PubMed

    Xu, Sai; Xu, Shihan; Zhu, Yongsheng; Xu, Wen; Zhou, Pingwei; Zhou, Chunyang; Dong, Biao; Song, Hongwei

    2014-11-01

    There has been great progress in the development of fluorescence biosensors based on quantum dots (QDs) for the detection of lead ions. However, most methods are detecting lead ions in aqueous solution rather than in human serum due to the influence of protein autofluorescence in serum excited by visible light. Thus, we developed a novel fluorescence resonance energy transfer (FRET) biosensor by choosing the upconversion NaYF4:Yb(3+)/Tm(3+) nanoparticles as the energy donor and the CdTe QDs as the energy acceptor for lead ion detection. It is the first near infrared (NIR)-excited fluorescent probe for determination of lead ions in serum that is capable of overcoming self-luminescence from serum excitation with visible light. The sensor also shows high selectivity, a low detection limit (80 nm) and good linear Stern-Volmer characteristics (R = 0.996), both in the buffer and serum. This biosensor has great potential for versatile applications in lead ion detection in biological and analytical fields. PMID:25184968

  7. Low energy ions in the heavy ions in space (HIIS) experiment on LDEF.

    PubMed

    Kleis, T; Tylka, A J; Boberg, P R; Adams, J H; Beahm, L P

    1996-01-01

    We present data from the Lexan top stacks in the Heavy Ions In Space (HIIS) experiment which was flown for six years (April 1984-Jan 1990) onboard the LDEF spacecraft in 28.5 degrees orbit at about 476 km altitude. HIIS was built of passive (i.e. no timing resolution) plastic track detectors which collected particles continuously over the entire mission. In this paper we present data on low energy heavy ions (10 < or = Z, 20MeV/nuc < E < 200 MeV/nuc). These ions are far below the geomagnetic cutoff for fully ionized ions in the LDEF orbit even after taking into account the severe cutoff suppression caused by occasional large geomagnetic storms during the LDEF mission. Our preliminary results indicate an unusual elemental composition of trapped particles in the inner magnetosphere during the LDEF mission, including both trapped anomalous cosmic ray species (Ne, Ar) and other elements (such as Mg and Fe) which are not found in the anomalous component of cosmic rays. The origin of the non-anomalous species is not understood, but they may be associated with the solar energetic particle events and geomagnetic disturbances of 1989. PMID:11540364

  8. Energy Migration Engineering of Bright Rare-Earth Upconversion Nanoparticles for Excitation by Light-Emitting Diodes.

    PubMed

    Zhong, Yeteng; Rostami, Iman; Wang, Zihua; Dai, Hongjie; Hu, Zhiyuan

    2015-11-01

    A novel Nd(3+) -sensitized upconversion nanoparticle (UCNP) that can be excited by near-infrared 740 nm light-emitting diode (LED) lamps with bright upconversion luminescence is designed. Yb(3+) ion distribution is engineered to increase the energy migration efficiency. The benefit of the novel LED-excited UCNPs is demonstrated by imaging of breast cancer cells and enabling an economic handheld semiquantitative visual measurement device. PMID:26393770

  9. An (e, 2e + ion) investigation of fragmentation of methane induced by low energy electrons

    NASA Astrophysics Data System (ADS)

    Xu, S.; Ma, X.; Ren, X.; Senftleben, A.; Pflüger, T.; Ullrich, J.; Yan, S.; Zhang, P.; Yang, J.; Dorn, A.

    2014-04-01

    An (e, 2e+ion) investigation of the ionization and dissociation of methane by 54 eV electron impact is performed using the advanced reaction microscope. By measuring two electrons and the ion in the final state in triple coincidence, the species of the ions are identified, and the energies deposited into the target are determined. The species and the kinetic energies of the fragmented ion show strong dependence on the intermediate states of the parent ion.

  10. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect

    Conan O'Rourke; Yutao Zhou

    2007-12-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This final report summarizes the experimental procedure and results of all cycles (Cycles 1 through 8) of PEARL program from the beginning of year 2000 to the end of 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. In each cycle of PEARL program, PEARL Board selects a list of Compact Fluorescent Lamp (CFL) and Residential Lighting Fixture (RLF) models that are Energy Star qualified. In Cycle 5, Cycle 7, and Cycle 8, no fixture models were selected. After that PEARL sponsors procure product samples for each selected model from different stores and locations in the retail market and send them to LRC for testing. LRC then receive and select the samples, and test them against Energy Star specifications. After the testing LRC analyze and report the results to PEARL Board. Totally 185 models of CFL and 52 models of RLF were tested in PEARL program. Along with the evolution of the Energy Star specifications from year 2000 to 2003, parameters that were required by Energy Star changed during the eight years of PEARL program. The testing parameters and number of samples tested in PEARL program also changed during this time. For example, in Cycle 1, three samples of each models were tested

  11. Emission of polarized light by slow ions after excitation near a magnetic surface

    NASA Astrophysics Data System (ADS)

    Närmann, A.; Schleberger, M.; Heiland, W.; Huber, C.; Kirschner, J.

    1991-07-01

    We investigation the emission of polarized light from slow (3-12 KeV) particles scattered off a magnetized Fe(110) surface for different transitions, energies and incident angles. Recently, a similar experiment has been performed for the grazing incident case at much higher energies [H. Winter, H. Hagedorn, R. Zimny, H. Nienhaus and J. Kirschner, Phys. Rev. Lett. 62 (1989) 296]. By changing the incident angle we can separate effects due to anisotropically distributed angular momenta from effects due to the polarization of surface electrons.

  12. Functional Arrays for Light Energy Capture and Charge Separation.

    PubMed

    Flamigni, Lucia

    2016-06-01

    This article draws, with a simplified but rigorous approach, the typical procedure for the design and optimization of functional multicomponent structures for light to chemical energy conversion for two series of multipartite structures based on prototypical chromophores: polypyridyl metal complexes and porphyrinoids. Starting from a photophysical study performed by steady-state and time-resolved spectroscopic methods, the full deactivation dynamics of the light-absorbing chromophore(s) are disclosed. The preferred deactivation step (electron transfer in this case) is then optimized. This can be done by simply operating on the solvent, but also by changing structure/components that can alter electronic and nuclear factors, via continuous feedback with the research groups in charge of the synthesis. With a presentation suitable for a wide audience, it is here discussed how the effective design of functional multicomponent structures for charge separation can be achieved. PMID:27027981

  13. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  14. Low energy nuclear reactions with RIBRAS, Radioactive Ion Beam in Brasil, system

    NASA Astrophysics Data System (ADS)

    Guimarães, V.; Lépine-Szily, A.; Lichtenthäler, R.; de Faria, P. N.; Barioni, A.; Pires, K. C. C.; Morcelle, V.; Mendes, D. R.; Zamora, J. C.; Morais, M. C.; Condori, R. P.; Benjamim, E. A.; Monteiro, D. S.; Crema, E.; Moro, A. M.; Lubian, J.

    2011-09-01

    RIBRAS, Radioactive Ion beam in Brasil, is a system based on superconducting solenoids which can produce low energy RNB (Radioactive Nuclear Beams) at the University of São Paulo, Brazil. Secondary radioactive beams of light particles such as 6He, 7Be and 8Li have been produced and low energy elastic scattering and transfer reaction experiments have been performed. The recent scientific program using this facility includes elastic scattering and transfer reactions of 6He halo nucleus on 9Be, 27Al, 51V and 120Sn targets and 8Li on 9Be, 12C and 51V targets. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Also spectroscopic factors have been obtained from the transfer reactions.

  15. Understanding ion transport in ion-containing polymers for energy applications

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok

    A molecular-level understanding of dynamics in ion-containing polymers is of considerable interest for electromechanical transduction devices and electrochemical membranes. One example is the study of ion transport in ionomers which are polymers with one type of ion covalently bonded to the chain, allowing only the unattached counterions to move rapidly in response to an applied electric field. Since designing ionomers for facile ion transport is a great challenge, it is necessary to investigate structures, dynamics, and ionic interactions, giving rise to better understanding of the generation and transport processes of ionic carriers in ionomers. Therefore, the goal of this dissertation is to understand in detail the structure-property relations of single-ion conductors through morphological, electric, dielectric, and mechanical measurements. Polymerizable imidazolium-based ionic liquids and their polymers were characterized to study the effect of different pendent structures and different counterions on ionic conductivity, dielectric constant, and morphology. The larger counterions (Tf2N-) display higher ionic conductivity and mobility than the smaller counterions (PF6 - or BF4 -), owing to a lower glass transition temperature, as anticipated by ab initio calculations that show that the imidazolium cation is less prone to aggregation with Tf2N- counterions than with PF6 - or BF4 - counterions. This is also observed by rheological measurements, as the terminal relaxation time increases with decreasing size of counterions, attributed to the increase of ionic interactions. The diethyleneoxy units on the imidazlium cation afford higher mobility than the butyl or dodecyl terminal Nsubstituents, for both monomers and polymers, owing to a lower binding energy between the imidazolium cation and the counterions. All monomers and polymers studied exhibit two dipolar relaxations, assigned to the usual segmental motion (alpha ) associated with the glass transition and a

  16. LED traffic lights: New technology signals major energy savings

    SciTech Connect

    Houghton, D.

    1994-12-31

    Using light-emitting diode technology to replace incandescent lamps in traffic signals promises energy savings upwards of 60 percent for each of the estimated quarter of a million controlled intersections in the United States. LED units use only 9 to 25 watts instead of the 67 to 150 watts used by each incandescent lamp. Though their first cost is relatively high, energy savings result in paybacks of 1 to 5 years. LED retrofit kits are available for red signal disks and arrows, and installations in several states have proven successful, although minor improvements are addressing concerns about varying light output and controller circuitry. Retrofitting green lamps is not yet feasible, because color standards of the Institute of Traffic Engineers cannot be met with existing LED technology. Yellow lamps have such low duty factors (they`re on only 3 percent of the time) that retrofitting with LED signals is not cost-effective. LEDs last much longer than incandescents, allowing municipalities to not only reduce their electricity bills, but to save on maintenance costs as well. As further incentive, some utilities are beginning to implement rebate programs for LED traffic signal retrofits. Full approval of LED units is still awaited from the Institute of Traffic Engineers (ITE), the standard-setting body for traffic safety devices. Local and state governments ultimately decide what specifications to require for traffic lights, and the growing body of successful field experience with LEDs appears to be raising their comfort level with the technology. The California Department of Transportation is developing an LED traffic light specification, and two California utilities, Southern California Edison and Pacific Gas and Electric, have provided rebates for some pilot installations.

  17. Fragmentation efficiencies of peptide ions following low energy collisional activation

    NASA Astrophysics Data System (ADS)

    Summerfield, Scott G.; Gaskell, Simon J.

    1997-11-01

    Low energy fragmentations of protonated peptides in the gas phase are generally attributed to charge-directed processes. The extent and location of peptide backbone fragmentation is accordingly influenced by the extent to which charge is sequestered on amino acid side-chains. We describe systematic studies of the efficiencies of decomposition of peptide ions to assess in particular the influence of the presence of basic amino acid residues and of the protonation state. In a set of analogues containing two arginine, two histidine or two lysine residues, the extent of fragmentation of [M + 2H]2+ ions decreases with increased basicity, reflecting decreased backbone protonation. The collisionally activated dissociation of multiply protonated melittin ions shows an increase in fragmentation efficiency with higher charge state (using activation conditions which are similar for each charge state). For a single charge state, acetylation of primary amine groups increases fragmentation efficiency, consistent with the reduction in basicity of lysine side-chains. Conversion of arginine residues to the less basic dimethylpyrimidylornithine, however, decreases fragmentation efficiency, suggesting more effective sequestering of ionizing protons; the effect may be attributable to a disfavouring of proton-bridged structures but this hypothesis requires further study. Preliminary data for the decompositions of [M- 2H]2- ions derived from peptides containing two acidic residues suggest that the sequestration of charge away from the backbone is again detrimental to efficient fragmentation. Apparently diagnostic cleavages adjacent to aspartic acid residues are observed.

  18. Ion Energy Distribution Control Using Ion Mass Ratios in Inductively Coupled Plasmas With a Pulsed DC Bias on the Substrate

    NASA Astrophysics Data System (ADS)

    Logue, Michael D.; Kushner, Mark J.

    2012-10-01

    In many applications requiring energetic ion bombardment, such as plasma etching, gas mixtures containing several ion species are used. In cases where two ions have significantly different masses, it may be feasible to selectively control the ion energy distributions (IEDs) by preferentially extracting the lighter ion mass with a controllable energy. In this work, we investigate the possibility of using a pulsed DC substrate bias in an inductively coupled plasma (ICP) to obtain this control. Pulsing of the substrate bias in the afterglow of a pulsed ICP plasma should allow for shifting of the IED peak energy by an amount approximately equal to the applied bias. If short enough pulses are used it may be possible to obtain a higher flux at high energy of the lower mass ion compared to the higher mass ion. A computational investigation of IEDs in low pressure (a few to 100 mTorr) ICPs sustained in gas mixtures such as Ar/H2 or Xe/H2 (having large mass differences) was conducted as a proof of principle. The model is the Hybrid Plasma Equipment Model with which electron energy distributions (EEDs) and IEDs as a function of position and time are obtained using Monte Carlo simulations. We have found a selective ability to mass and energy discriminate ion fluxes when using sufficiently short bias pulses. Results from the model for plasmas densities, electron temperatures, EEDs and IEDs will be discussed.

  19. Biological characterization of low-energy ions with high-energy deposition on human cells.

    PubMed

    Saha, Janapriya; Wilson, Paul; Thieberger, Peter; Lowenstein, Derek; Wang, Minli; Cucinotta, Francis A

    2014-09-01

    During space travel, astronauts are exposed to cosmic radiation that is comprised of high-energy nuclear particles. Cancer patients are also exposed to high-energy nuclear particles when treated with proton and carbon beams. Nuclear interactions from high-energy particles traversing shielding materials and tissue produce low-energy (<10 MeV/n) secondary particles of high-LET that contribute significantly to overall radiation exposures. Track structure theories suggest that high charge and energy (HZE) particles and low-energy secondary ions of similar LET will have distinct biological effects for cellular and tissue damage endpoints. We investigated the biological effects of low-energy ions of high LET utilizing the Tandem Van de Graaff accelerator at the Brookhaven National Laboratory (BNL), and compared these to experiments with HZE particles, that mimic the space environment produced at NASA Space Radiation Laboratory (NSRL) at BNL. Immunostaining for DNA damage response proteins was carried out after irradiation with 5.6 MeV/n boron (LET 205 keV/μm), 5.3 MeV/n silicon (LET 1241 keV/μm), 600 MeV/n Fe (LET 180 keV/μm) and 77 MeV/n oxygen (LET 58 keV/μm) particles. Low-energy ions caused more persistent DNA damage response (DDR) protein foci in irradiated human fibroblasts and esophageal epithelial cells compared to HZE particles. More detailed studies comparing boron ions to Fe particles, showed that boron-ion radiation resulted in a stronger G2 delay compared to Fe-particle exposure, and boron ions also showed an early recruitment of Rad51 at double-strand break (DSB) sites, which suggests a preference of homologous recombination for DSB repair in low-energy albeit high-LET particles. Our experiments suggest that the very high-energy radiation deposition by low-energy ions, representative of galactic cosmic radiation and solar particle event secondary radiation, generates massive but localized DNA damage leading to delayed DSB repair, and distinct cellular

  20. Ultrafast energy relaxation in single light-harvesting complexes

    PubMed Central

    Malý, Pavel; Gruber, J. Michael; Cogdell, Richard J.; Mančal, Tomáš; van Grondelle, Rienk

    2016-01-01

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations. PMID:26903650

  1. Ultrafast energy relaxation in single light-harvesting complexes.

    PubMed

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2016-03-15

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations. PMID:26903650

  2. Light ion irradiation creep of Textron SCS-6™ silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.; Lesueur, D.

    2002-12-01

    Creep tests were conducted in torsion on Textron SCS-6™ fibers during an irradiation with light ions in the temperature range 500-1000 °C for doses up to 0.16 dpa. The fibers produced by chemical vapor deposition have a similar structure as a silicon carbide composite matrix produced by chemical vapor infiltration. At 600 °C, the irradiation creep curves were characterized by a continuous drop in creep rate with dose. There was approximately a square root relationship between irradiation creep strain and dose. The creep rate was a linear function of stress. On a decrease in temperature the creep rate increased. At 1000 °C, the creep rate dropped only slightly with dose and decreased if the temperature was lowered. The results are discussed in terms of concentration and mobility of point defects and the change of these quantities with temperature.

  3. Charge state dependence of cathodic vacuum arc ion energy andvelocity distributions

    SciTech Connect

    Rosen, Johanna; Schneider, Jochen M.; Anders, Andre

    2006-08-15

    In the literature, conflicting conclusions are reported concerning the charge state dependence of cathodic arc ion energy and velocity distributions. It appears that data from electrostatic energy analyzers indicate charge state dependence of ion energy, whereas time-of-flight methods support charge state independence of ion velocity. Here we present charge-state-resolved ion energy distributions and calculate the corresponding ion velocity distributions in aluminum vacuum arc plasma. We show that the conflicting conclusions reported in the literature for the two different characterization techniques may originate from the commonly employed data interpretation of energy and velocity, in which peak values and average values are not carefully distinguished.

  4. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  5. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  6. Analyzing system safety in lithium-ion grid energy storage

    DOE PAGESBeta

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less

  7. Low energy ion distribution measurements in Madison Symmetric Torus plasmas

    SciTech Connect

    Titus, J. B. Mezonlin, E. D.; Johnson, J. A.

    2014-06-15

    Charge-exchange neutrals contain information about the contents of a plasma and can be detected as they escape confinement. The Florida A and M University compact neutral particle analyzer (CNPA), used to measure the contents of neutral particle flux, has been reconfigured, calibrated, and installed on the Madison Symmetric Torus (MST) for high temperature deuterium plasmas. The energy range of the CNPA has been extended to cover 0.34–5.2 keV through an upgrade of the 25 detection channels. The CNPA has been used on all types of MST plasmas at a rate of 20 kHz throughout the entire discharge (∼70 ms). Plasma parameter scans show that the ion distribution is most dependent on the plasma current. Magnetic reconnection events throughout these scans produce stronger poloidal electric fields, stronger global magnetic modes, and larger changes in magnetic energy all of which heavily influence the non-Maxwellian part of the ion distribution (the fast ion tail)

  8. Analyzing system safety in lithium-ion grid energy storage

    SciTech Connect

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  9. [Derivative fluorescence probe recognition results of the light physical mechanism of metal ions].

    PubMed

    Dai, Yu-mei; Hu, Xiao-jun; Li, Fu-jun; Xie, Yu-meng; Zhao, Yang-yang; Zhou, Qiao

    2015-02-01

    As people deeply study the electronic spectra of fluorescent compounds and photophysical behavior, enormous progress has been made in the aspect of changes and states of different systems in the use of fluorescent molecules as probes. PTC-DA is a kind of typical fluorescent molecular probe that is highly sensitive and selective in water environment. This paper makes a research on the physical mechanism of light of PTCDA by TDF (Density Functional Theory), calculates the optimal configuration the charge population and excitation spectra of PTCDA molecules under ideal condition and acquires PTCDA fluorescence emission spectra then analyses that PTCDA is a kind of quenching and dual colorimetric signal probe response. Its optical signal response mechanism belongs to ICT (Intramolecular Charge Transfer) mechanism. According to the results, this perylene derivatives is fitted with Cu2+ excited state absorption spectra. Before and after the combination with Cu2+, the peak shape of absorption spectrum is similar. When copper is added, the overall absorption peak position occurred redshift, quenching discoloration happens. By comparing with experimental values, the calculated molecular configuration is reasonable and effective and the peak of excitation spectra is realistic. Analysis shows that: PTCDA molecules divalent copper ions have better fluorescence detection activity, the optical signal response mechanisms are intramolecular charge transfer (ICT) mechanisms. When a molecule receives divalent copper ions, the absorption spectrum peak position redshifts, intramolecular charge transfer direction and intensity changes. There occur both quenching signal and discoloration signal. It is a kind of fluorescent probe material with double quenching and discoloration fluorescent signal, which has great potential for development. This paper makes an early-stage exploration of the physical mechanism of light response mechanism analysis in molecular fluorescent probe field and

  10. Membrane systems for energy efficient separation of light gases

    SciTech Connect

    Devlin, D.J.; Archuleta, T.; Barbero, R.

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  11. Secondary-ion emission from clean and oxidized aluminum as a function of incident ion mass and energy

    NASA Astrophysics Data System (ADS)

    Blauner, Patricia G.; Weller, Robert A.

    1987-02-01

    Measurements of the intensities of low-energy secondary ions emitted from clean and oxidized polycrystalline aluminum surfaces under (15-275)-KeV He+, Ne+, Ar+, Kr+, and Xe+ bombardment are reported. An additional measurement of the secondary-ion mass spectrum obtained from a clean Al surface under 40-MeV Br5+ bombardment is also presented. By varying both the beam energy and mass over such a large range, we have been able to identify three distinct categories of secondary ions. The first category includes the metallic-ion species emitted from the oxide surface. The intensities of these ions are observed to be proportional to the sputtering yield of aluminum, indicating that they are produced by means which are consistent with several of the mechanisms already proposed to explain oxygen-enhanced secondary-ion emission from metals. The second category includes both singly and multiply charged Al ions from the clean surface as well as multiply charged ions from the oxide surface. Under high-energy bombardment, these ions all appear to be produced by the kinetic mechanism which has been proposed to explain multiply charged ion emission from Al under lower-energy bombardment. The third category of secondary ions identified includes only O+ emitted from the oxide surface. This species, although usually a small component of the spectrum, is produced by means wholly unrelated to elastic energy deposition. Its production cannot be explained by any of the proposed models of metallic secondary-ion emission. The possibility that O+ is produced by a mechanism similar to that of electron-stimulated desorption is discussed.

  12. Secondary-ion emission from clean and oxidized aluminum as a function of incident ion mass and energy

    SciTech Connect

    Blauner, P.G.; Weller, R.A.

    1987-02-01

    Measurements of the intensities of low-energy secondary ions emitted from clean and oxidized polycrystalline aluminum surfaces under (15--275)-KeV He/sup +/, Ne/sup +/, Ar/sup +/, Kr/sup +/, and Xe/sup +/ bombardment are reported. An additional measurement of the secondary-ion mass spectrum obtained from a clean Al surface under 40-MeV Br/sup 5+/ bombardment is also presented. By varying both the beam energy and mass over such a large range, we have been able to identify three distinct categories of secondary ions. The first category includes the metallic-ion species emitted from the oxide surface. The intensities of these ions are observed to be proportional to the sputtering yield of aluminum, indicating that they are produced by means which are consistent with several of the mechanisms already proposed to explain oxygen-enhanced secondary-ion emission from metals. The second category includes both singly and multiply charged Al ions from the clean surface as well as multiply charged ions from the oxide surface. Under high-energy bombardment, these ions all appear to be produced by the kinetic mechanism which has been proposed to explain multiply charged ion emission from Al under lower-energy bombardment. The third category of secondary ions identified includes only O/sup +/ emitted from the oxide surface. This species, although usually a small component of the spectrum, is produced by means wholly unrelated to elastic energy deposition. Its production cannot be explained by any of the proposed models of metallic secondary-ion emission. The possibility that O/sup +/ is produced by a mechanism similar to that of electron-stimulated desorption is discussed.

  13. Performance of low-light-level night vision device affected by backscattered electron from ion barrier film

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Shi, Feng; Cheng, Yaojin; Hou, Zhipeng; Shi, Hongli; Zhu, Wanping; Liu, Beibei; Zhang, Ni

    2012-10-01

    In order to suggest the performance of low-light-level night vision device affected by backscattered electron from ion barrier film(IBF), in this paper, based on the idea of Monte-Carlo, the track of electron impinging and rebounding on ion barrier film is simulated. The Lambert distribution and Beta distribution are used to calculate electron's emission. The Mott cross section and the Bethe formula rewrited by Joy are used to describe and calculate the elastic and inelastic scattering electron traversing in the film. With the statistic of the total transmitted electron and the discussion on the effect of cathode voltage, proximity between ion barrier film and photocathode on performance of low-light-level night vision device, we get the point diffusion function of ion barrier film, and we conclude that in low light level backscattered electron hardly affect working of image intensifier and higher cathode voltage, closer proximity between cathode and ion film will reduce the impact of backscattered electron in high light level.

  14. Modeling coherent excitation energy transfer in photosynthetic light harvesting systems

    NASA Astrophysics Data System (ADS)

    Huo, Pengfei

    2011-12-01

    Recent non-linear spectroscopy experiments suggest the excitation energy transfer in some biological light harvesting systems initially occurs coherently. Treating such processes brings significant challenge for conventional theoretical tools that usually involve different approximations. In this dissertation, the recently developed Iterative Linearized Density Matrix (ILDM) propagation scheme, which is non-perturbative and non-Markovian is extended to study coherent excitation energy transfer in various light harvesting complexes. It is demonstrated that the ILDM approach can successfully describe the coherent beating of the site populations on model systems and gives quantitative agreement with both experimental results and the results of other theoretical methods have been developed recently to going beyond the usual approximations, thus providing a new reliable theoretical tool to study this phenomenon. This approach is used to investigate the excited energy transfer dynamics in various experimentally studied bacteria light harvesting complexes, such as Fenna-Matthews-Olsen (FMO) complex, Phycocyanin 645 (PC645). In these model calculations, quantitative agreement is found between computed de-coherence times and quantum beating pattens observed in the non-linear spectroscopy. As a result of these studies, it is concluded that the stochastic resonance behavior is important in determining the optimal throughput. To begin addressing possible mechanics for observed long de-coherence time, various models which include correlation between site energy fluctuations as well as correlation between site energy and inter-site coupling are developed. The influence of both types of correlation on the coherence and transfer rate is explored using with a two state system-bath hamiltonian parametrized to model the reaction center of Rhodobacter sphaeroides bacteria. To overcome the disadvantages of a fully reduced approach or a full propagation method, a brownian dynamics

  15. Energy dissipation of highly charged ions on Al oxide films.

    PubMed

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides. PMID:21389384

  16. Energy dissipation of highly charged ions on Al oxide films

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Pomeroy, J. M.; Sosolik, C. E.

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xeq + for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  17. Characteristics of low-energy ion beams extracted from a wire electrode geometry

    SciTech Connect

    Vasquez, M. Jr.; Tokumura, S.; Kasuya, T.; Maeno, S.; Wada, M.

    2012-02-15

    Beams of argon ions with energies less than 50 eV were extracted from an ion source through a wire electrode extractor geometry. A retarding potential energy analyzer (RPEA) was constructed in order to characterize the extracted ion beams. The single aperture RPEA was used to determine the ion energy distribution function, the mean ion energy and the ion beam energy spread. The multi-cusp hot cathode ion source was capable of producing a low electron temperature gas discharge to form quiescent plasmas from which ion beam energy as low as 5 eV was realized. At 50 V extraction potential and 0.1 A discharge current, the ion beam current density was around 0.37 mA/cm{sup 2} with an energy spread of 3.6 V or 6.5% of the mean ion energy. The maximum ion beam current density extracted from the source was 0.57 mA/cm{sup 2} for a 50 eV ion beam and 1.78 mA/cm{sup 2} for a 100 eV ion beam.

  18. Quark production in heavy ion collisions: formalism and boost invariant fermionic light-cone mode functions

    NASA Astrophysics Data System (ADS)

    Gelis, François; Tanji, Naoto

    2016-02-01

    We revisit the problem of quark production in high energy heavy ion collisions, at leading order in α s in the color glass condensate framework. In this first paper, we setup the formalism and express the quark spectrum in terms of a basis of solutions of the Dirac equation (the mode functions). We determine analytically their initial value in the Fock-Schwinger gauge on a proper time surface Q s τ 0 ≪ 1, in a basis that makes manifest the boost invariance properties of this problem. We also describe a statistical algorithm to perform the sampling of the mode functions.

  19. Nuclear interactions of high energy heavy ions and applications in astrophysics

    SciTech Connect

    Wefel, J.P.

    1992-01-23

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays.

  20. Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight

    NASA Astrophysics Data System (ADS)

    Narici, L.

    2008-07-01

    Interactions between ionizing radiation in space and brain functions, and the related risk assessments, are among the major concerns when programming long permanence in space, especially when outside the protective shield of the Earth's magnetosphere. The light flashes (LF) observed by astronauts in space, mostly when dark adapted, are an example of these interactions; investigations in space and on the ground showed that these effects can originate with the action of ionizing radiation in the eye. Recent findings from ALTEA, an interdisciplinary and multiapproach program devoted to the study of different aspects of the radiation-brain functions interaction, are presented in this paper. These include: (i) study of radiation passing through the astronauts' eyes in the International Space Station (≈20 ions min-1, excluding H and fast and very slow He), measured in conjunction with reporting of the perception of LF; (ii) preliminary electrophysiological evidence of these events in astronauts and in patients during heavy ion therapy; and (iii) in vitro results showing the radiation driven activation of rhodopsin at the start of the phototransduction cascade in the process of vision. These results are in agreement with our previous work on mice. A brief but complete summary of the earlier works is also reported to permit a discussion of the results.

  1. Integrated Cavity QED in a linear Ion Trap Chip for Enhanced Light Collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco; Jonathan, Sterk; Boyan, Tabakov; Haltli, Raymond; Tigges, Chris; Stick, Daniel; Balin, Matthew; Moehring, David

    2012-06-01

    Realizing a scalable trapped-ion quantum information processor may require integration of tools to manipulate qubits into trapping devices. We present efforts towards integrating a 1 mm optical cavity into a microfabricated surface ion trap to efficiently connect nodes in a quantum network. The cavity is formed by a concave mirror and a flat coated silicon mirror around a linear trap where ytterbium ions can be shuttled in and out of the cavity mode. By utilizing the Purcell effect to increase the rate of spontaneous emission into the cavity mode, we expect to collect up to 13% of the emitted photons. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  3. Observation of a power-law energy distribution in atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2016-05-01

    Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.

  4. A Novel Spin-Light Polarimeter for the Electron Ion Collider

    NASA Astrophysics Data System (ADS)

    Mohanmurthy, Prajwal; Dutta, Dipangkar

    2013-04-01

    High precision polarimetry is a pre-requisite for the suite of precision experiments being planned for the proposed Electron Ion Collider. A novel polarimeter based on the asymmetry in the spacial distribution of the spin light component of synchrotron radiation will make for a fine addition to the existing-conventional Møller and Compton polarimeters. The spin light polarimeter consists of a set of wiggler magnet along the beam that generate synchrotron radiation. The spacial distribution of synchrotron radiation will be measured by an ionization chamber. The up-down (below and above the wiggle) spacial asymmetry in the transverse plain is used to quantify the polarization of the beam. As a part of the design process, the fringe fields of the wiggler magnet was simulated using a 2-D magnetic field simulation toolkit called Poisson Superfish, which is maintained by Los Alamos National Laboratory. The effects of the fringe field was found to be negligible. Lastly, a full fledged GEANT-4 simulation was built to study the response of the ionization chamber. The results from all the simulations carried out, the preliminary design parameters of the polarimeter and its impact will be discussed.

  5. The phototron: A light to RF energy conversion device

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1982-01-01

    The phototron, a photoelectric device that converts light to radio frequency energy, is described. It is a vacuum tube, free electron, device that is mechanically similar to a reflex klystron with the hot filament cathode replaced by a large area photocathode. The device can operate either with an external voltage source used to accelerate the photoelectrons or with zero bias voltage; in which case the photokinetic energy of the electrons sustains the R.F. oscillations in the tuned R.F. circuit. One basic design of the phototron was tested. Frequencies as high as about 1 GHz and an overall efficiency of about 1% in the biased mode were obtained. In the unbiased mode, the frequencies of operation and efficiences are considerably lower. Success with test model suggests that considerable improvements are possible through design refinements. One such design refinement is the reduction of the length of the electron flight path.

  6. Artificial light-harvesting arrays for solar energy conversion.

    PubMed

    Harriman, Anthony

    2015-07-28

    Solar fuel production, the process whereby an energy-rich substance is produced using electrons provided by water under exposure to sunlight, requires the cooperative accumulation of multiple numbers of photons. Identifying the optimum reagents is a difficult challenge, even without imposing the restriction that these same materials must function as both sensitiser and catalyst. The blockade caused by an inadequate supply of photons at the catalytic sites might be resolved by making use of an artificial light-harvesting array whose sole purpose is to funnel photons of appropriate frequency to the active catalyst, which can now be a dark reagent. Here we consider several types of artificial photon collectors built from fluorescent modules interconnected via electronic energy transfer. Emphasis is placed on the materials aspects and on establishing the basic operating principles. PMID:26086688

  7. Study of entropy in intermediate-energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Ji; Guo, Wen-Jun; Li, Xian-Jie; Wang, Kuo

    2016-03-01

    Using the isospin-dependent quantum molecular dynamics model, the entropy of an intermediate-energy heavy ion collision system after the reaction and the number of deuteronlike and protonlike particles produced in the collision is calculated. In the collision, different parameters are used and the mass number used here is from 40 to 93 at incident energy from 150 MeV to 1050 MeV. We build a new model in which the density distribution of the reaction product is used to calculate the size of the entropy. The entropy calculated with this model is in good agreement with experimental values. Our data reveals that with the increase of the neutron-proton ratio and impact parameter, the entropy of the reaction system decreases, and it increases with the increase of system mass and reaction energy.

  8. Red light generation through the lead boro-telluro-phosphate glasses activated by Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Selvi, S.; Marimuthu, K.; Suriya Murthy, N.; Muralidharan, G.

    2016-09-01

    Lead boro-telluro-phosphate glasses containing 0.05 to 2.0 wt% of Eu3+ ions were prepared through melt quenching technique. Structural characteristics of title glasses were identified through XRD, FTIR and Raman studies. The optical properties of the prepared glasses were studied using UV-Vis-NIR absorption and photoluminescence spectra. From the resultant spectra, we have obtained the bonding parameters (δ), nephelauxetic ratio (β), direct and indirect band gaps and Urbach energy (ΔE) values. A deep red luminescence due to 5D0 → 7F2 transition of Eu3+ ions could be observed for the title glasses. The local site symmetry around the Eu3+ ions and the degree of Eu3+-O2- covalence were assessed from the luminescence intensity ratio of 5D0 → 7F2/5D0 → 7F1 transitions. Judd-Ofelt intensity parameters, calculated from the luminescence spectra, were used to estimate the radiative parameters like transition probability (A), branching ratio (βexp, βcal) and stimulated emission cross-section (σPE) concerning the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions. The important laser parameters, gain bandwidth and optical gain are also estimated. The decay curves associated with the transition from 5D0 state was found to be single-exponential at all Eu3+ ion concentrations. CIE colour coordinates and colour purity of the prepared glasses were estimated from the CIE chromaticity diagram.

  9. Energy and daylighting: A correlation between quality of light and energy consciousness

    SciTech Connect

    Krug, N.

    1997-12-31

    Energy and Daylighting, an advanced topics graduate/professional elective has been established to help the student develop a deeper understanding of Architectural Daylighting, Energy Conserving Design, and Material/Construction/Methods through direct application. After a brief survey of the principles and applications of current and developing attitudes and techniques in energy conservation and natural lighting strategies is conducted (in order to build upon previous courses), an extensive exercise follows which allows the student the opportunity for direct applications. Both computer modeling/analysis and physical modeling (light box simulation with photographic documentation) are employed to focus attention on the interrelationships between natural lighting and passive energy conserving design--all within the context of establishing environmental (interior) quality and (exterior) design direction. As a result, students broaden their understanding of natural light and energy conservation as design tools; the importance of environmental responsibility, both built and natural environments; and using computer analysis as a design tool. This presentation centers around the activities and results obtained from explorations into Energy and Daylighting. Discussion will highlight the course objectives, the methodology involved in the studies, specific requirements and means of evaluation, a slide show of befores and afters (results), and a retrospective look at the course`s value, as well as future directions and implications.

  10. Mean excitation energy for the stopping power of light elements

    NASA Astrophysics Data System (ADS)

    Smith, D. Y.; Inokuti, M.; Karstens, W.; Shiles, E.

    2006-09-01

    We have evaluated the mean excitation energy or I value for Coulomb excitations by swift charged particles passing through carbon, aluminum and silicon. A self-consistent Kramers-Kronig analysis was used to treat X-ray optical spectra now available from synchrotron light sources allowing us to carry out Bethe's original program of evaluating I from the observed dielectric response. We find that the K and L shell are the dominant contributors to I in these light elements and that the contribution of valence electrons is relatively small, primarily because of their low binding energy. The optical data indicate that Si and Al have nearly equal I values, in contrast to Bloch's Thomas-Fermi result, I ∝ Z. The optically based I values for C and Al are in excellent agreement with experiment. However, the dielectric-response I value for Si is 164 ± 2 eV, at variance with the commonly quoted value of 173 ± 3 eV derived from stopping-power measurements.

  11. Slow light in ruby: delaying energy beyond the input pulse

    NASA Astrophysics Data System (ADS)

    Wisniewski-Barker, Emma; Gibson, Graham; Franke-Arnold, Sonja; Shi, Zhimin; Narum, Paul; Boyd, Robert W.; Padgett, Miles J.

    2015-03-01

    The mechanism by which light is slowed through ruby has been the subject of great debate. To distinguish between the two main proposed mechanisms, we investigate the problem in the time domain by modulating a laser beam with a chopper to create a clean square wave. By exploring the trailing edge of the pulsed laser beam propagating through ruby, we can determine whether energy is delayed beyond the input pulse. The effects of a time-varying absorber alone cannot delay energy into the trailing edge of the pulse, as a time-varying absorber can only attenuate a coherent pulse. Therefore, our observation of an increase in intensity at the trailing edge of the pulse provides evidence for a complicated model of slow light in ruby that requires more than just pulse reshaping. In addition, investigating the Fourier components of the modulated square wave shows that harmonic components with different frequencies are delayed by different amounts, regardless of the intensity of the component itself. Understanding the difference in delays of the individual Fourier components of the modulated beam reveals the cause of the distortion the pulse undergoes as it propagates through the ruby.

  12. Ultrasonic synthesis and photocatalytic performance of metal-ions doped TiO{sub 2} catalysts under solar light irradiation

    SciTech Connect

    Feng, Huajun; Yu, Liya E.; Zhang, Min-Hong

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We synthesized eight metal-ions doped TiO{sub 2} catalysts by a unique ultrasonic method. ► Mg-doped TiO{sub 2} showed the highest photocatalytic performance under solar light. ► Surface area of catalyst dominates the photocatalytic efficiency under solar light. ► Crystal property and visible light activity are less important than surface area. -- Abstract: Eight metal-ions doped TiO{sub 2} (M-TiO{sub 2}) were successfully synthesized by an ultrasonic method, including Fe, Co, Ce, Cr, Mn, Mg, Ni and Ag ions. Among them, the 1% Mg–TiO{sub 2} shows the highest photocatalytic efficiency under solar light, which was determined by degrading rhodamine B (RhB) molecules in an aqueous solution. The synthesized M-TiO{sub 2} samples were characterized by XRD, BET Surface area, TEM, XPS and diffuse reflectance spectrum. Effects of synthesis conditions and characterized properties on photocatalytic efficiency of the M-TiO{sub 2} were investigated comprehensively. A positive correlation between specific surface area and photocatalytic efficiency of the M-TiO{sub 2} was found across different synthesis conditions. However, no clear correlation with photocatalytic efficiency was observed for crystal structure and radii of doping ions of the M-TiO{sub 2}. XPS study indicates the change of oxidation states of Mn ions in Mn–TiO{sub 2} during synthesis procedure from the initial Mn{sup 2+} to a mixture of Mn{sup 3+} and Mn{sup 4+} ions. Dye sensitization mechanism was observed during the photocatalytic procedure of the Mg–TiO{sub 2}, which enhanced the degradation efficiency of the Mg–TiO{sub 2} under solar light. Finally, no obvious loss of photocatalytic activity was observed for the Mg–TiO{sub 2} after five cycles of RhB degradation.

  13. Heavy and light ion irradiation damage effects in δ-phase Sc4Hf3O12

    NASA Astrophysics Data System (ADS)

    Wen, J.; Li, Y. H.; Tang, M.; Valdez, J. A.; Wang, Y. Q.; Patel, M. K.; Sickafus, K. E.

    2015-12-01

    Polycrystalline δ-phase Sc4Hf3O12 was irradiated with light and heavy ions to study the radiation stability of this compound. In order to explore the ion species spectrum effect, the irradiations were performed with 400 keV Ne2+ ions to fluences ranging from 1 × 1014 to 1 × 1015 ions/cm2, 600 keV Kr3+ ions to fluences ranging from 5 × 1014 to 5 × 1015 ions/cm2, and 6 MeV Xe26+ ions to fluences ranging from 2 × 1013 to 1 × 1015 ions/cm2. Irradiated samples were characterized by various techniques including grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). A complete phase transformation from ordered rhombohedral to disordered fluorite was observed by a fluence of 1 × 1015 ions/cm2 with 400 keV Ne2+ ions, equivalent to a peak ballistic damage dose of ∼0.33 displacements per atom (dpa). Meanwhile, the same transformation was also observed by 600 keV Kr3+ ions at the same fluence of 1 × 1015 ions/cm2, which however corresponds to a peak ballistic damage dose of ∼2.2 dpa. Only a partial O-D transformation was observed for 6 MeV Xe26+ ions in the fluence range used. Experimental results indicated that the O-D transformation is observed under both electronic and nuclear stopping dominant irradiation regimes. It was also observed that light ions are more efficient than heavy ions in producing the retained defects that are presumably responsible for the O-D phase transformation. The O-D transformation mechanism is discussed in the context of anion oxygen Frenkel defects and cation antisite defects. We concluded that the irradiation induced O-D transformation is easier to occur in δ-phase compounds with partial order of cations than in that with fully disordered cation structures.

  14. Reference dosimetry for light-ion beams based on graphite calorimetry.

    PubMed

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Duane, S; Bailey, M; Shipley, D; Bertrand, D; Romano, F; Cirrone, P; Cuttone, G; Vynckier, S

    2014-10-01

    Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large. This uncertainty is dominated by the beam quality correction factors, [Formula: see text], mainly due to the mean energy to produce one ion pair in air, wair. A method to reduce this uncertainty is to carry out primary dosimetry, using calorimetry. A [Formula: see text]-value can be derived from a direct comparison between calorimetry and ionometry. Here, this comparison is performed using a graphite calorimeter in an 80-MeV A(-1) carbon ion beam. Assuming recommended TRS-398 values of water-to-graphite stopping power ratio and the perturbation factor for an ionisation chamber, preliminary results indicate a wair-value of 35.5 ± 0.9 J C(-1). PMID:24336190

  15. Enhanced ion beam energy by relativistic transparency in laser-driven shock ion acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2015-11-01

    We investigated the effects of relativistic transparency (RT) on electrostatic shock ion acceleration. Penetrating portion of the laser pulse directly heats up the electrons to a very high temperature in backside of the target, resulting in a condition of high shock velocity. The reflected portion of the pulse can yield a fast hole boring and density compression in near-critical density plasma to satisfy the electrostatic shock condition; 1.5 ions up to velocity ~2vsh. In 1D PIC simulation, we have clearly observed RT-based shock acceleration which generates significantly higher ion beam energy in comparison to that in a purely opaque plasma. In multi-dimensional systems, various instabilities should be considered such as Weibel-like instability, which causes filamentation during the laser penetration. From series of comparisons of linearly polarized and circularly polarized pulses for the RT-based shock, we observed the circularly polarized pulse is usually more advantageous in reducing the instability, possibly leading to better RT-based shock acceleration. The Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number NRF- 2013R1A1A2006353).

  16. Low Energy Sputtering Experiments for Ion Engine Lifetime Assessment

    NASA Technical Reports Server (NTRS)

    Duchemin Olivier B.; Polk, James E.

    1999-01-01

    The sputtering yield of molybdenum under xenon ion bombardment was measured using a Quartz Crystal Microbalance. The measurements were made for ion kinetic energies in the range 100-1keV on molybdenum films deposited by magnetron sputtering in conditions optimized to reproduce or approach bulk-like properties. SEM micrographs for different anode bias voltages during the deposition are compared, and four different methods were implemented to estimate the density of the molybdenum films. A careful discussion of the Quartz Crystal Microbalance is proposed and it is shown that this method can be used to measure mass changes that are distributed unevenly on the crystal electrode surface, if an analytical expression is known for the differential mass-sensitivity of the crystal and the erosion profile. Finally, results are presented that are in good agreement with previously published data, and it is concluded that this method holds the promise of enabling sputtering yield measurements at energies closer to the threshold energy in the very short term.

  17. Energy and power characteristics of Li-ion cells

    SciTech Connect

    Nagasubramanian, G.; Jungst, R.G.; Ingersoll, D.; Doughty, D.H.; Radzykewycz, D.; Hill, C.

    1998-06-08

    At Sandia National Laboratories the authors are evaluating the energy and power characteristics of commercially available Li-ion cells. Cells of several different sizes (20 Ah, 1.1 Ah, 0.750 Ah and {approximately}0.5 Ah) and geometries (cylindrical and prismatic) from several manufacturers were studied. The cells were pulsed discharged at increasing currents (50 mA to 1,000 mA) over a range of temperatures (+35 C to {minus}40 C) and at different states of charge (4.1 V, open circuit voltage (OCV), fully charged, 3.6 V OCV partially discharged and 3.1 V OCV nearly discharged) and the voltage drop was recorded. The voltage drop was small at ambient and near ambient temperatures indicating that the total cell internal impedance was small under these conditions. However, at {minus} 40 C the voltage drop was significant due to an increase in the cell internal impedance. At a given temperature, the voltage drop increases with decreasing state-of-charge (SOC) or OCV. The cell impedance and other electrochemical properties as a function of temperature and SOC were also measured. The Ragone data indicate that the specific power and specific energy of Li-ion cells of different sizes are comparable and therefore scaling up to {approximately}20 Ah does not affect either the energy or the power.

  18. Ab initio molecular dynamics calculations of ion hydration free energies

    SciTech Connect

    Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.

  19. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    NASA Astrophysics Data System (ADS)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  20. Low energy argon ion irradiation surface effects on triglycine sulfate

    NASA Astrophysics Data System (ADS)

    Aragó, Carmen; Plaza, José L.; Marqués, Manuel I.; Gonzalo, Julio A.

    2013-09-01

    An experimental study of the effects of low energy (1-2 keV) argon ion (Ar+) irradiation on Triglycine Sulfate (TGS) has been performed. Ferroelectric parameters, such as the Curie temperature TC determined from the dielectric constant peaks ɛ(T), or the remnant polarization Pr, and coercive field Ec, obtained from the hysteresis loops, show interesting differences between samples irradiated in ferroelectric and paraelectric phases, respectively. The radiation damage seems to be superficial, as observed by AFM microscope, and the surface alteration in both phases becomes eventually notorious when the radiation dosage increases.

  1. Threshold LET for SEU induced by low energy ions

    SciTech Connect

    McNulty, P.J.; Roche, P.; Palau, J.M.; Gasiot, J.

    1999-12-01

    Simulations to determine the threshold LET as a function of the length of the ion track are consistent with there being two regions of charge collection. In the top layer which contains the depletion region all the charge generated is collected in time to upset the device. In the next layer, 10% to 20% of the charge generated is collected and contributes to upsetting the device. This second layer of partial charge collection may significantly impact the accuracy of SEU predictions involving low-energy neutrons and protons. A simple method of including this contribution in calculations is proposed.

  2. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  3. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  4. Heavy ion mutagenesis: linear energy transfer effects and genetic linkage

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.

  5. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel.

    PubMed

    Medovoy, David; Perozo, Eduardo; Roux, Benoît

    2016-07-01

    Potassium (K(+)) channels are transmembrane proteins that passively and selectively allow K(+) ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K(+) over Na(+) while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K(+) and Na(+) in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factors play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K(+) channels. The data indicate that having multiple K(+) ions bound simultaneously is required for selective K(+) conduction, and that a reduction in the number of bound K(+) ions destroys the multi-ion selectivity mechanism utilized by K(+) channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K(+)-channels. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26896693

  6. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel

    PubMed Central

    Medovoy, David; Perozo, Eduardo; Roux, Benoît

    2016-01-01

    Potassium (K+) channels are transmembrane proteins that passively and selectively allow K+ ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K+ and Na+ in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factor play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K+ channels. The data indicate that having multiple K+ ions bound simultaneously is required for selective K+ conduction, and that a reduction in the number of bound K+ ions destroys the multi-ion selectivity mechanism utilized by K+ channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K+-channels. PMID:26896693

  7. Dependence of secondary ion emission from organic material on the energy loss of the impacting heavy ion

    SciTech Connect

    Hunt, J.E.; Wien, K.

    1991-12-31

    Samples of the amino acid valine were irradiated by 2.5 MeV-Ar, 0.8 MeV-Kr and 1.0 MeV Xe beams from the Argonne Dynamitron accelerator in order to study the energy distributions of ejected secondary ions. For Kr and Xe the nuclear stopping power exceeded the electronic stopping power by a factor 2 or 3, respectively, but the functional shape of the energy distributions and the mean ejection energies (0.9--1.4 eV) indicated that the molecular ions (M{plus_minus}H){sup {plus_minus}} are desorbed by an electronic sputter process. Contributions of atomic collision cascades were observed for the H{sup {minus}} ion. In the second part of the article, the overall dependence of molecular ion yields on the electronic energy loss is discussed in the framework of recent desorption models and the structure of the nuclear track.

  8. Dependence of secondary ion emission from organic material on the energy loss of the impacting heavy ion

    SciTech Connect

    Hunt, J.E. ); Wien, K. . Inst. fuer Kernphysik)

    1991-01-01

    Samples of the amino acid valine were irradiated by 2.5 MeV-Ar, 0.8 MeV-Kr and 1.0 MeV Xe beams from the Argonne Dynamitron accelerator in order to study the energy distributions of ejected secondary ions. For Kr and Xe the nuclear stopping power exceeded the electronic stopping power by a factor 2 or 3, respectively, but the functional shape of the energy distributions and the mean ejection energies (0.9--1.4 eV) indicated that the molecular ions (M{plus minus}H){sup {plus minus}} are desorbed by an electronic sputter process. Contributions of atomic collision cascades were observed for the H{sup {minus}} ion. In the second part of the article, the overall dependence of molecular ion yields on the electronic energy loss is discussed in the framework of recent desorption models and the structure of the nuclear track.

  9. Tuning Charge Transfer in Ion-Surface Collisions at Hyperthermal Energies.

    PubMed

    Yao, Yunxi; Giapis, Konstantinos P

    2016-05-18

    Charge exchange in ion-surface collisions may be influenced by surface adsorbates to alter the charge state of the scattered projectiles. We show here that the positive-ion yield, observed during ion scattering on metal surfaces at low incident energies, is greatly enhanced by adsorbing electronegative species onto the surface. Specifically, when beams of N(+) and O(+) ions are scattered off of clean Au surfaces at hyperthermal energies, no positive ions are observed exiting. Partial adsorption of F atoms on the Au surface, however, leads to the appearance of positively charged primary ions scattering off of Au, a direct result of the increase in the Au work function. The inelastic energy losses for positive-ion exits are slightly larger than the corresponding ionization energies of the respective N and O atoms, which suggest that the detected positive ions are formed by surface reionization during the hard collision event. PMID:26879471

  10. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  11. Efficient Production of High-energy Nonthermal Particles during Magnetic Reconnection in a Magnetically Dominated Ion-Electron Plasma

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Li, Xiaocan; Li, Hui; Daughton, William; Zhang, Bing; Lloyd-Ronning, Nicole; Liu, Yi-Hsin; Zhang, Haocheng; Deng, Wei

    2016-02-01

    Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux-dominated flows. In this Letter, we investigate nonthermal particle acceleration during magnetic reconnection in a magnetically dominated ion-electron plasma using fully kinetic simulations. For an ion-electron plasma with a total magnetization of {σ }0={B}2/(4π n({m}i+{m}e){c}2), the magnetization for each species is {σ }i˜ {σ }0 and {σ }e˜ ({m}i/{m}e){σ }0, respectively. We have studied the magnetically dominated regime by varying σe = 103-105 with initial ion and electron temperatures {T}i={T}e=5-20{m}e{c}2 and mass ratio {m}i/{m}e=1-1836. The results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several (2-3) light-crossing times. For the cases with periodic boundary conditions, the power-law index is 1\\lt s\\lt 2 for both electrons and ions. The hard spectra limit the power-law energies for electrons and ions to be {γ }{be}˜ {σ }e and {γ }{bi}˜ {σ }i, respectively. The main acceleration mechanism is a Fermi-like acceleration through the drift motions of charged particles. When comparing the spectra for electrons and ions in momentum space, the spectral indices sp are identical as predicted in Fermi acceleration. We also find that the bulk flow can carry a significant amount of energy during the simulations. We discuss the implication of this study in the context of Poynting-flux dominated jets and pulsar winds, especially the applications for explaining nonthermal high-energy emissions.

  12. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. S-matrix calculations of energy levels of alkalilike ions

    NASA Astrophysics Data System (ADS)

    Sapirstein, Jonathan; Cheng, K. T.

    2013-05-01

    A recent S-matrix based QED calculation of energy levels of the lithium isoelectronic sequence is extended to the general case of a valence electron outside an arbitrary filled core. Formulas are presented that allow calculation of the energy levels of valence ns , np1 / 2 , np3 / 2 , nd3 / 2 , and nd5 / 2 states. Emphasis is placed on modifications of the lithiumlike formulas required because more than one core state is present, and a discussion of an unusual feature of the two-photon exchange contribution involving autoiononizing states is given. The method is illustrated with a calculation of energy levels of the sodium isoelectronic sequence, with results for 3s1 / 2 , 3p1 / 2 , and 3p3 / 2 energies tabulated for the range Z = 20 - 100 . A detailed breakdown of the calculation is given for Z = 74 . Comparison with experiment and other calculations is given, and prospects for extension of the method to ions with more complex electronic structure discussed. The work of JS was supported in part by NSF Grant No. PHY-1068065. The work of KTC was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Synthesis of sputtered thin films in low energy ion beams

    NASA Astrophysics Data System (ADS)

    Howson, R. P.

    1997-01-01

    Magnetron sputtering is a process which gives a highly energetic depositing species. The growing film can be further bombarded with ions of the heavy gas used for sputtering by directing a plasma of it onto the surface. This can be done quite simply by using an unbalanced magnetron. The immersion of an insulating or isolated substrate-film combination in this plasma leads to a self-bias of around 30 V appearing on it's surface and a bombardment of low energy ions of the sputtering gas of several milli-amps per square centimetre. If the residual gas contains a reactive component, to form a compound film, then the gas is made much more reactive and less is needed to form the stoichiometric film. This can take place in a continuously operating system made stable using partial pressure control of the reactive gas with plasma emission monitoring or something similar. It can also be operated when the process of deposition is separated in time from the process of reaction and is repeated to build the film. We have called this process successive-plasma-anodisation (SPA) and it can be achieved by mechanically transferring the substrate between two magnetrons, one to deposit the metal film and one, which is unbalanced, to provide an oxygen plasma. It can also be operated by pulsing the reactive gas under carefully controlled conditions. Examples are given of the synthesis of compound films using low energy ion bombardment with these techniques and it is demonstrated that excellent films of a large range of oxides and nitrides can be made.

  16. On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.

    2014-10-01

    Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.

  17. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1992-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1-100 MeV region is reported. Most of the events studied are dominated by He and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. Spectra of H, He-3, O, and Fe have spectral indices that are consistent with a value of about 3.5 above about 2 MeV/amu. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. Alternative interpretations are that trapping in the acceleration region directly causes a peak in the resulting ion spectrum or that low-energy particles encounter significant additional scattering during transport from the flare.

  18. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  19. Visible light to electrical energy conversion using photoelectrochemical cells

    NASA Technical Reports Server (NTRS)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  20. Electronic Energy transfer in light-harvesting antenna complexes

    NASA Astrophysics Data System (ADS)

    Hossein-Nejad, Hoda

    The studies presented in this thesis explore electronic energy transfer (EET) in light-harvesting antenna complexes and investigate the role of quantum coherence in EET. The dynamics of energy transfer are investigated in three distinct length scales and a different formulation of the exciton transport problem is applied at each scale. These scales include: the scale of a molecular dimer, the scale of a single protein and the scale of a molecular aggregate. The antenna protein phycoerythrin 545 (PE545) isolated from the photosynthetic cryptophyte algae Rhodomonas CS4 is specifically studied in two chapters of this thesis. It is found that formation of small aggregates delocalizes the excitation across chromophores of adjacent proteins, and that this delocalization has a dramatic effect in enhancing the rate of energy transfer between pigments. Furthermore, we investigate EET from a donor to an acceptor via an intermediate site and observe that interference of coherent pathways gives a finite correction to the transfer rate that is sensitively dependent on the nature of the vibrational interactions in the system. The statistical fluctuations of a system exhibiting EET are investigated in the final chapter. The techniques of non-equilibrium statistical mechanics are applied to investigate the steady-state of a typical system exhibiting EET that is perturbed out of equilibrium due to its interaction with a fluctuating bath.