Sample records for energy plant cultivation

  1. [Review on application of plant growth retardants in medicinal plants cultivation].

    PubMed

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  2. Plant growth and gas balance in a plant and mushroom cultivation system

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I.

    1994-11-01

    In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem.

  3. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant.

    PubMed

    Al-Obaidi, Jameel R; Halabi, Mohammed Farouq; AlKhalifah, Nasser S; Asanar, Shanavaskhan; Al-Soqeer, Abdulrahman A; Attia, M F

    2017-08-24

    Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant's cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research.

  4. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    PubMed

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  5. Study on light and thermal energy of illumination device for plant factory design

    NASA Astrophysics Data System (ADS)

    Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.

    2018-01-01

    To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.

  6. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  7. Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    NASA Technical Reports Server (NTRS)

    Mashinsky, A. L.; Oreshkin, V. I.; Nechitailo, G. S.

    1994-01-01

    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways.

  8. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  9. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  10. Microbiota of radish plants, cultivated in closed and open ecological systems

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.

    It is common knowledge that microorganisms respond to environmental changes faster than other representatives of the living world. The major aim of this work was to examine and analyze the characteristics of the microbiota of radish culture, cultivated in the closed ecological system of human life-support Bios-3 and in an open system in different experiments. Microbial community of near-root, root zone and phyllosphere of radish were studied at the phases of seedlings, root formation, technical ripeness—by washing-off method—like microbiota of the substrate (expanded clay aggregate) and of the seeds of radish culture. Inoculation on appropriate media was made to count total quantity of anaerobic and aerobic bacteria, bacteria of coliform group, spore-forming, Proteus group, fluorescent, phytopathogenic bacteria, growing on Fermi medium, yeasts, microscopic fungi, Actinomyces. It was revealed that formation of the microbiota of radish plants depends on the age, plant cultivation technology and the specific conditions of the closed system. Composition of microbial conveyor-cultivated in phytotrons varied in quality and in quantity with plant growth phases—in the same manner as cultivation of even-aged soil and hydroponics monocultures which was determined by different qualitative and quantitative composition of root emissions in the course of plant vegetation. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of radish. We registered the changes in the species composition and microorganism quantity during plant cultivation in the closed system on a long-used solution. It was demonstrated that during the short-term (7 days) use of the nutrient solution in the experiments without system closing, the species composition of the microbiota of radish plants was more diverse in a multiple-aged vegetable polyculture (61

  11. Wanted: Information on the Distribution of Cultivated Plants

    ERIC Educational Resources Information Center

    Howard, Richard A.

    1970-01-01

    Lack of documentation makes it very difficult to discover where species of cultivated plants may be found in the United States. Plead for compilation of "campus floras and herbarium collections. Need for a rational locator file of available plant materials. Lists and reviews present sources of information. Bibliography of campus floras. (EB)

  12. Use of cultivated plants and non-plant remedies for human and animal home-medication in Liubań district, Belarus.

    PubMed

    Sõukand, Renata; Hrynevich, Yanina; Prakofjewa, Julia; Valodzina, Tatsiana; Vasilyeva, Iryna; Paciupa, Jury; Shrubok, Aliaksandra; Hlushko, Aliaksei; Knureva, Yana; Litvinava, Yulia; Vyskvarka, Siarhei; Silivonchyk, Hanna; Paulava, Alena; Kõiva, Mare; Kalle, Raivo

    2017-10-03

    To use any domestic remedy, specific knowledge and skills are required. Simple logic dictates that the use of wild plants in the context of limited interaction with nature requires prior identification, while in the case of non-plant remedies and cultivated plants this step can be omitted. This paper aims to document the current and past uses of non-plant remedies and cultivated plants in the study region for human/animal medication; to analyze the human medicinal and veterinary use areas in the context of the remedy groups; to qualitatively compare the results with relevant historical publications; and to compare the intensity and purpose of use between the remedy groups. During field studies 134 semi-structured interviews were conducted with locals from 11 villages in the Liubań district of Belarus. Currently used home-remedies as well as those used in the past were documented by employing the folk history method. The subject was approached through health-related uses, not by way of remedies. Interview records were digitalized and structured in Detailed Use Records in order to ascertain local perceptions. An Informant Consensus Factor (FIC) was calculated for remedy groups as well as for different use categories. In the human medication area the use of nearby remedies was neither very diverse nor numerous: 266 DUR for 45 taxa belonging to 27 families were recorded for cultivated plants along with 188 DUR for 58 different non-plant remedies. The FIC values for both remedy groups were lower than for wild plants. In the ethnoveterinary medicine use area there were 48 DUR referring to the use of 14 cultivated plant taxa from 12 families and 72 DUR referring to the use of 31 non-plant remedies. The FIC value for the whole veterinary use area of cultivated plants was relatively low, yet similar to the FIC of wild plants. Differences between remedy groups were pronounced, indicating that in domestic human medicine cultivated plants and non-plant remedies are either

  13. Measurements of trace contaminants in closed-type plant cultivation chambers

    NASA Astrophysics Data System (ADS)

    Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.

    Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.

  14. Production of marine plant biomass: Management, cultivation, and genetic modification of macrophytic algae

    NASA Astrophysics Data System (ADS)

    Vandermeer, J. P.

    1982-12-01

    Every second of every day, the Sun's fusion reactions convert thousands of tons of hydrogen into helium with the release of almost unimaginable amounts of energy. Through the photosynthetic activity of plants, both aquatic and terrestrial, a small fraction of this energy is trapped and stored as plant biomass. The oceans cover a greater fraction of the globe than do the land masses, making it appropriate to consider their contribution to the total biomass production, and their potential as a source of raw materials for the extraction of chemicals and fuels. A rather broad synthesis, convering the total seaweed resource and some of the constraints placed on harvesting these plants, attempts to farm the oceans to increase the supply of desirable species, attempts to cultivate seaweeds in enclosures where environmental parameters are controlled, and finally, the limited amount of genetic manipulation that was applied to these plants was presented. Only the larger red and brown seaweeds were considered because they represent the bulk of the biomass.

  15. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  16. Biometry and diversity of Arabica coffee genotypes cultivated in a high density plant system.

    PubMed

    Rodrigues, W N; Tomaz, M A; Ferrão, M A G; Martins, L D; Colodetti, T V; Brinate, S V B; Amaral, J F T; Sobreira, F M; Apostólico, M A

    2016-02-11

    The present study was developed to respond to the need for an increase in crop yield in the mountain region of Caparaó (southern Espírito Santo State, Brazil), an area of traditional coffee production. This study aimed to analyze the diversity and characterize the crop yield of genotypes of Coffea arabica L. with potential for cultivation in high plant density systems. In addition, it also aimed to quantify the expression of agronomic traits in this cultivation system and provide information on the genotypes with the highest cultivation potential in the studied region. The experiment followed a randomized block design with 16 genotypes, four repetitions, and six plants per experimental plot. Plant spacing was 2.00 x 0.60 m, with a total of 8333 plants per hectare, representing a high-density cultivation system. Coffee plants were cultivated until the start of their reproductive phenological cycles and were evaluated along four complete reproductive cycles. Genotypes with high crop yield and beverage quality, short canopy, and rust resistance were selected. C. arabica genotypes showed variability in almost all characteristics. It was possible to identify different responses among genotypes grown in a high plant density cultivation system. Although the chlorophyll a content was similar among genotypes, the genotypes Acauã, Araponga MG1, Sacramento MG1, Tupi, and Catuaí IAC 44 showed a higher chlorophyll b content than the other genotypes. Among these, Sacramento MG1 also showed high leafiness and growth of vegetative structures, whereas Araponga MG1, Pau-Brasil MG1, and Tupi showed high fruit production. In addition, Araponga MG1 had also a higher and more stable crop yield over the years.

  17. Effects of hydraulic retention time on cultivation of indigenous microalgae as a renewable energy source using secondary effluent.

    PubMed

    Takabe, Yugo; Hidaka, Taira; Tsumori, Jun; Minamiyama, Mizuhiko

    2016-05-01

    Secondary effluent from wastewater treatment plants is suitable media for cultivating microalgae as a renewable energy source, and hydraulic retention time (HRT) control in culture is important to conduct well-planned outdoor indigenous microalgae cultivation with secondary effluent. This study revealed cultivation characteristics under various HRT by continuous 6-month experiments. In addition, effects of HRT on cultivation were determined by a mathematical model that described indigenous microalgae growth. Cultivated biomass mainly consisted of Chlorophyceae and its detritus regardless of HRT, and 5.93-14.8g/m(2)/day of biomass yield was obtained. The cultivated biomass had a stable higher heating value of 16kJ/g. Sensitivity analysis of the model suggests that HRT control had great effects on biomass yield, and 2-3days of HRT were recommended to obtain maximum biomass yield under certain weather conditions (temperature: approximately 12-25°C and solar radiation: approximately 8-19MJ/m(2)/day). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Phylogeography of the wild and cultivated stimulant plant qat (Catha edulis, Celastraceae) in areas of historical cultivation.

    PubMed

    Tembrock, Luke R; Simmons, Mark P; Richards, Christopher M; Reeves, Patrick A; Reilley, Ann; Curto, Manuel A; Meimberg, Harald; Ngugi, Grace; Demissew, Sebsebe; Al Khulaidi, Abdul Wali; Al-Thobhani, Mansoor; Simpson, Sheron; Varisco, Daniel M

    2017-04-01

    Qat ( Catha edulis , Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described in often contradictory historical documents. We examined the wild origins, human-mediated dispersal, and genetic divergence of cultivated qat compared to wild qat. We sampled 17 SSR markers and 1561 wild and cultivated individuals across the historical areas of qat cultivation. On the basis of genetic structure inferred using Bayesian and nonparametric methods, two centers of origin in Kenya and one in Ethiopia were found for cultivated qat. The centers of origin in Ethiopia and northeast of Mt. Kenya are the primary sources of cultivated qat genotypes. Qat cultivated in Yemen is derived from Ethiopian genotypes rather than Yemeni wild populations. Cultivated qat with a wild Kenyan origin has not spread to Ethiopia or Yemen, whereas a small minority of qat cultivated in Kenya originated in Ethiopia. Hybrid genotypes with both Ethiopian and Kenyan parentage are present in northern Kenya. Ethiopian cultivars have diverged from their wild relatives, whereas Kenyan qat has diverged less. This pattern of divergence could be caused by the extinction of the wild-source qat populations in Ethiopia due to deforestation, undersampling, and/or artificial selection for agronomically important traits. © 2017 Tembrock et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  19. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  20. Assessing the regional impacts of increased energy maize cultivation on farmland birds.

    PubMed

    Brandt, Karoline; Glemnitz, Michael

    2014-02-01

    The increasing cultivation of energy crops in Germany substantially affects the habitat function of agricultural landscapes. Precise ex ante evaluations regarding the impacts of this cultivation on farmland bird populations are rare. The objective of this paper was to implement a methodology to assess the regional impacts of increasing energy maize cultivation on the habitat quality of agricultural lands for farmland birds. We selected five farmland bird indicator species with varying habitat demands. Using a crop suitability modelling approach, we analysed the availability of potential habitat areas according to different land use scenarios for a real landscape in Northeast Germany. The model was based on crop architecture, cultivation period, and landscape preconditions. Our results showed that the habitat suitability of different crops varied between bird species, and scenario calculations revealed an increase and a decrease in the size of the potential breeding and feeding habitats, respectively. The effects observed in scenario 1 (increased energy maize by 15%) were not reproduced in all cases in scenario 2 (increased energy maize by 30%). Spatial aggregation of energy maize resulted in a negative effect for some species. Changes in the composition of the farmland bird communities, the negative effects on farmland bird species limited in distribution and spread and the relevance of the type of agricultural land use being replaced by energy crops are also discussed. In conclusion, we suggest a trade-off between biodiversity and energy targets by identifying biodiversity-friendly energy cropping systems.

  1. [Effects of Different Planting Direction and Layer Combination on Gastrodia elata f. elata in Bionic Wild Cultivation].

    PubMed

    Liu, Wei; Zhao, Zhi; Wang, Hua-lei; Luo, Fu-lai; Li, Jin-ling; Liu, Hong-chang; Luo, Chun-li

    2015-05-01

    Combination of different planting direction and layer were set to choose the best technology of cultivation of Gastrodia elata f. elata. To improve the yield and quality of Gastrodia elata f. elata, randomized block design experiments were carried out to investigate the yield and quality, and to analyze their economic effectiveness in bionic wild cultivation. Length, width, thickness and weight of southern direction's Gastrodia elata f. elata developed better than the northeast direction. The three planting layer levels on growth effect of Gastrodia elata f. elata was the 3rd layer > the 2nd layer > the 1st layer. In six treatments, combination of southern direction-the 3rd layer was the best technology of cultivation of Gastrodia elata f. elata, which had the best growth condition, the highest yield significantly higher than other treatments, and the best economic benefits. Southern direction associated with the 3rd layer is the best combination to planting Gastrodia elata f. elata in bionic wild cultivation. The planting ways not only improve the yield and quality, but also save land.

  2. Phylogeography of the wild and cultivated stimulant plant qat (Catha edulis, Celastraceae) in areas of historic cultivation1

    USDA-ARS?s Scientific Manuscript database

    Qat (Catha edulis, Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described i...

  3. Allelopathic effects of ragweed (Ambrosia artemisiifolia L.) on cultivated plants.

    PubMed

    Lehoczky, E; Gólya, G; Szabó, R; Szalai, A

    2011-01-01

    During the past years ragweed has been coming to the forefront of interest in Hungary and in other European countries as well because its serious health risk. Results of the 5th National Weed Survey has proven that ragweed is the most important weed species on Hungarian field lands, its coverage shows a rising tendency in cereals moreover it not only occurs in cultivated plants. Allelopathic effects of aqueous extracts derived from different parts of ragweed plants (air dried leafy stems, seeds) on the germination and growth of other cultivated plants [maize (Zea mays L.), winter wheat (Triticum aestivum L.), rye (Secale cereale L.), oat (Avena sativa L.)] were studied. The extracts made for the trials were prepared with distilled water. Petri dishes were used for the germination experiments and distilled water was used as a control treatment. The seven days long experiment was carried out within a Binder-type thermostat under dark conditions. The germination percentage was checked in every two days and the growth of sprouts was evaluated after a week counting the germinated seeds and measuring the length of the radicle and plumule. The measured data were statistically analysed and the effect of extracts on germinating and length of sprouts were assessed.

  4. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    . The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the near future.

  5. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  6. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.

  7. [A brief introduction to life energy cultivation strategies in traditional Chinese medicine].

    PubMed

    Maa, Suh-Hwa

    2010-04-01

    The knowledge embraced within the broad field of Traditional Chinese Medicine (TCM) represents an important part of our common human heritage, as it incorporates time-tested and viable health promotion approaches applicable to everyone, regardless of ethnicity and geographic location. TCM emphasizes the importance of increased self-consciousness, which, once achieved, becomes regular aspect of daily life. Cultivating life energies in order to prevent and treat disease lies at the heart of TCM. This paper provides a brief introduction to TCM life energy cultivation strategies for nurse reference.

  8. Effects of indoor and outdoor cultivation conditions on 137 Cs concentrations in cultivated mushrooms produced after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi

    2017-01-01

    Radiocesium ( 134 Cs and 137 Cs) in mushrooms has been a matter of public concern after the accident at Fukushima Daiichi Nuclear Power Plant. To minimize the internal dose by ingestion of cultivated mushrooms, the Japanese government set a guideline level with respect to the radiocesium concentration in bed-logs and mushroom beds; however, the effects of indoor and outdoor cultivation methods on radiocesium concentrations in cultivated mushrooms were not clear. The effects of indoor and outdoor cultivation on the radiocesium concentrations in mushroom were examined using published food monitoring data. 137 Cs concentration data in Lentinula edodes from the Aizu area in Fukushima Prefecture and seven prefectures outside Fukushima were used for the analysis. No statistically significant 137 Cs concentration differences were found between these two cultivation methods. Using detected 137 Cs data in shiitake, the geometric means from each prefecture were less than one-quarter of the standard limit (100 Bq kg -1 ) for total radiocesium under both cultivation conditions. It was suspected that re-suspended radiocesium might have been taken up by mushrooms or that radiocesium might have been absorbed into the mushrooms from the soil in the outdoor cultures. However, neither effect was significant for cultivated mushrooms in the areas examined. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media

    PubMed Central

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-01-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001–1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media. PMID:25997013

  10. Training programmes can change behaviour and encourage the cultivation of over-harvested plant species.

    PubMed

    Williams, Sophie J; Jones, Julia P G; Clubbe, Colin; Gibbons, James M

    2012-01-01

    Cultivation of wild-harvested plant species has been proposed as a way of reducing over-exploitation of wild populations but lack of technical knowledge is thought to be a barrier preventing people from cultivating a new species. Training programmes are therefore used to increase technical knowledge to encourage people to adopt cultivation. We assessed the impact of a training programme aiming to encourage cultivation of xaté (Chamaedorea ernesti-augusti), an over-harvested palm from Central America. Five years after the training programme ended, we surveyed untrained and trained individuals focusing on four potential predictors of behaviour: technical knowledge, attitudes (what individuals think about a behaviour), subjective norms (what individuals perceive others to think of a behaviour) and perceived behavioural control (self assessment of whether individuals can enact the behaviour successfully). Whilst accounting for socioeconomic variables, we investigate the influence of training upon these behavioural predictors and examine the factors that determine whether people adopt cultivation of a novel species. Those who had been trained had higher levels of technical knowledge about xaté cultivation and higher belief in their ability to cultivate it while training was not associated with differences in attitudes or subjective norms. Technical knowledge and perceived behavioural control (along with socio-economic variables such as forest ownership and age) were predictors of whether individuals cultivate xaté. We suggest that training programmes can have a long lasting effect on individuals and can change behaviour. However, in many situations other barriers to cultivation, such as access to seeds or appropriate markets, will need to be addressed.

  11. Training Programmes Can Change Behaviour and Encourage the Cultivation of Over-Harvested Plant Species

    PubMed Central

    Williams, Sophie J.; Jones, Julia P. G.; Clubbe, Colin; Gibbons, James M.

    2012-01-01

    Cultivation of wild-harvested plant species has been proposed as a way of reducing over-exploitation of wild populations but lack of technical knowledge is thought to be a barrier preventing people from cultivating a new species. Training programmes are therefore used to increase technical knowledge to encourage people to adopt cultivation. We assessed the impact of a training programme aiming to encourage cultivation of xaté (Chamaedorea ernesti-augusti), an over-harvested palm from Central America. Five years after the training programme ended, we surveyed untrained and trained individuals focusing on four potential predictors of behaviour: technical knowledge, attitudes (what individuals think about a behaviour), subjective norms (what individuals perceive others to think of a behaviour) and perceived behavioural control (self assessment of whether individuals can enact the behaviour successfully). Whilst accounting for socioeconomic variables, we investigate the influence of training upon these behavioural predictors and examine the factors that determine whether people adopt cultivation of a novel species. Those who had been trained had higher levels of technical knowledge about xaté cultivation and higher belief in their ability to cultivate it while training was not associated with differences in attitudes or subjective norms. Technical knowledge and perceived behavioural control (along with socio-economic variables such as forest ownership and age) were predictors of whether individuals cultivate xaté. We suggest that training programmes can have a long lasting effect on individuals and can change behaviour. However, in many situations other barriers to cultivation, such as access to seeds or appropriate markets, will need to be addressed. PMID:22431993

  12. Cultivation and breeding of Chinese medicinal plants in Germany.

    PubMed

    Heuberger, Heidi; Bauer, Rudolf; Friedl, Fritz; Heubl, Günther; Hummelsberger, Josef; Nögel, Rainer; Seidenberger, Rebecca; Torres-Londoño, Paula

    2010-12-01

    Chinese herbal medicine (CHM) is increasingly used in Germany and Europe. Due to the need for herbal drugs of consistent quality and reliable supply, methods for commercial field cultivation and post-harvest processing under south German conditions have been developed for selected plant species used in CHM since 1999. The project used an interdisciplinary approach covering all aspects from seed sourcing to medicinal application. This paper describes the outcome of the agricultural seed and field experiments, breeding program, botanical and chemical characterization of the experimental material, comparison of experimental and imported herbal material with respect to their pharmaceutical quality, transfer of production methods and plant material to specialized farmers, medicinal application and, finally, information for users along the chain of distribution about the benefits of the locally produced herbal material. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves,more » through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.« less

  14. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species

    DOE PAGES

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; ...

    2015-10-15

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves,more » through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.« less

  15. Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil.

    PubMed

    Andrade-Neto, Valter F; Brandão, Maria G L; Oliveira, Francielda Q; Casali, Vicente W D; Njaine, Brian; Zalis, Mariano G; Oliveira, Luciana A; Krettli, Antoniana U

    2004-08-01

    Bidens pilosa (Asteraceae), a medicinal plant used worldwide, has antimalarial activity as shown in previous work. This study tested ethanol extracts from wild plants collected in three different regions of Brazil and from plants cultivated in various soil conditions. The extracts were active in mice infected with P. berghei: doses of < or =500 mg/kg administered by oral route reduced malaria parasitaemia and mouse mortality; higher doses were found to be less effective. Tested in vitro against three P. falciparum isolates, two chloroquine resistant and one mefloquine resistant, the plants cultivated under standard conditions, and in humus enriched soil, were active; but the wild plants were the most active. Analysis using thin layer chromatography demonstrated the presence of flavonoids (compounds considered responsible for the antimalarial activity) in all plants tested, even though at different profiles. Because B. pilosa is proven to be active against P. falciparum drug-resistant parasites in vitro, and in rodent malaria in vivo, it is a good candidate for pre-clinical tests as a phytotherapeutic agent or for chemical isolation of the active compounds with the aim of finding new antimalarial drugs. Copyright (c) 2004 John Wiley & Sons, Ltd.

  16. Selection of root-zone media for higher plant cultivation in space.

    PubMed

    Guo, Shuang-sheng; Ai, Wei-dang; Zhao, Cheng-jian; Han, Li-jun; Wang, Jian-xiao

    2004-04-01

    To investigate the cultivating effects of several mineral matters used as root-zone media for higher plant growth in space. Four kinds of artificial and natural mineral matters were used as plant root-zone media based on lots of investigation and analysis. Nutrient liquid was delivered into the media by a long capillary material, and roots of plants obtained nutrition and water from the media. The related parameters such as plant height and photosynthetic efficiency were measured and analyzed. The growing effect in a mixture of coarse and fine ceramic particles with equal quantity proportion was the best, that in fine ceramic particles was the second best, that in clinoptilolite particles was the third and that in diorite particles was the last. The mixture of coarse and fine ceramic particles with equal quantity possesses not only fine capillary action, but also good aerating ability, and therefore is capable of being utilized as an effective root-zone media for higher plants intended to be grown in space.

  17. Specific detection of cultivable Helicobacter pylori cells from wastewater treatment plants.

    PubMed

    Moreno, Yolanda; Ferrús, M Antonía

    2012-10-01

    Helicobacter pylori is present in surface water and wastewater, and biofilms in drinking water systems have been reported as possible reservoirs of H. pylori. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in wastewater treatment plants to understand the role of wastewater in the pathogen's transmission. A modified filter technique was used to obtain a positive H. pylori culture, and specific detection of this pathogen was achieved with FISH and PCR techniques. A total of six positive H. pylori cultures were obtained from the water samples, and molecular techniques positively identified H. pylori in 21 culture-negative samples. The combination of a culturing procedure after sample filtration followed by the application of a molecular method, such as PCR or FISH, provides a specific tool for the detection, identification, and direct visualization of cultivable and therefore viable H. pylori cells from complex mixed communities such as water samples. © 2012 Blackwell Publishing Ltd.

  18. Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia.

    PubMed

    Al-Shahwan, I M; Abdalla, O A; Al-Saleh, M A; Amer, M A

    2017-09-01

    A total of 1368 symptomatic plant samples showing different virus-like symptoms such as mottling, chlorosis, mosaic, yellow mosaic, vein clearing and stunting were collected from alfalfa, weed and cultivated plant species growing in vicinity of alfalfa fields in five principal regions of alfalfa production in Saudi Arabia. DAS-ELISA test indicated occurrence of 11 different viruses in these samples, 10 of which were detected for the first time in Saudi Arabia. Eighty percent of the alfalfa samples and 97.5% of the weed and cultivated plants samples were found to be infected with one or more of these viruses. Nine weed plant species were found to harbor these viruses namely, Sonchus oleraceus, Chenopodium spp., Hibiscus spp., Cichorium intybus , Convolvulus arvensis , Malva parviflora , Rubus fruticosus , Hippuris vulgaris , and Flaveria trinervia . These viruses were also detected in seven cultivated crop plants growing adjacent to the alfalfa fields including Vigna unguiculata , Solanum tuberosum , Solanum melongena , Phaseolus vulgaris , Cucurbita maxima , Capsicum annuum , and Vicia faba . The newly reported viruses together with their respective percent of detection in alfalfa, and in both weeds and cultivated crop plant species together were as follows: Bean leaf roll virus (BLRV) {12.5 and 4.5%}, Lucerne transient streak virus (LTSV) {2.9 and 3.5%}, Bean yellow mosaic virus (BYMV) {1.4 and 4.5%}, Bean common mosaic virus (BCMV) {1.2 and 4.5%}, Red clover vein mosaic virus (RCVMV) {1.2 and 4%}, White clover mosaic virus (WCIMV) {1.0 and 5%}, Cucumber mosaic virus (CMV) {0.8 and 3%}, Pea streak virus (PeSV) {0.4 and 4.5%} and Tobacco streak virus (TSV) {0.3 and 2.5%}. Alfalfa mosaic virus (AMV), the previously reported virus in alfalfa, had the highest percentage of detection in alfalfa accounting for 58.4% and 62.8% in the weeds and cultivated plants. Peanut stunt virus (PSV) was also detected for the first time in Saudi Arabia with a 66.7% of infection in 90

  19. Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan

    2014-07-01

    Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources.

  20. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  1. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    PubMed

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. No claim to US Government works. New Phytologist © 2015 New Phytologist Trust.

  2. Spatial-temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Zhuang, Dafang; Huang, Yaohuan

    2014-01-01

    Energy plants are the main source of bioenergy which will play an increasingly important role in future energy supplies. With limited cultivated land resources in China, the development of energy plants may primarily rely on the marginal land. In this study, based on the land use data from 1990 to 2010(every 5 years is a period) and other auxiliary data, the distribution of marginal land suitable for energy plants was determined using multi-factors integrated assessment method. The variation of land use type and spatial distribution of marginal land suitable for energy plants of different decades were analyzed. The results indicate that the total amount of marginal land suitable for energy plants decreased from 136.501 million ha to 114.225 million ha from 1990 to 2010. The reduced land use types are primarily shrub land, sparse forest land, moderate dense grassland and sparse grassland, and large variation areas are located in Guangxi, Tibet, Heilongjiang, Xinjiang and Inner Mongolia. The results of this study will provide more effective data reference and decision making support for the long-term planning of bioenergy resources. PMID:25056520

  3. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    PubMed

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  4. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    PubMed Central

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  5. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    PubMed

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  6. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    EPA Science Inventory

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  7. Identification of the terebrantian thrips (Insecta, Thysanoptera) associated with cultivated plants in Java, Indonesia

    PubMed Central

    Sartiami, Dewi; Mound, Laurence A.

    2013-01-01

    Abstract An illustrated identification key is provided to 49 species of Thysanoptera, Terebrantia that have been found in association with cultivated plants in Java. This is the first published identification system to this group of insects from Indonesia, and includes 15 species not previously recorded from Indonesia, and a further three species not previously recorded from Java. A table is provided indicating the plants from which thrips were taken. PMID:23794915

  8. Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene.

    PubMed

    Sharonova, Natalia; Breus, Irina

    2012-05-01

    In laboratory experiments on leached chernozem contaminated by kerosene (1-15 wt.%), germination of 50 plants from 21 families (cultivated and wild, annual and perennial, mono- and dicotyledonous) as affected by kerosene type and concentration and plant features was determined. Tested plants formed three groups: more tolerant, less tolerant, and intolerant, in which relative germination was more than 70%, 30-70% and less than 30%, respectively. As parameters of soil phytotoxicity, effective kerosene concentrations (EC) causing germination depression of 10%, 25% and 50% were determined. EC values depended on the plant species and varied in a wide range of kerosene concentrations: 0.02-7.3% (EC(10)), 0.05-8.1% (EC(25)), and 0.2-12.7% (EC(50)). The reported data on germination in soils contaminated by oil and petrochemicals were generalized. The comparison showed that at very high contamination levels (10 and 15%) kerosene was 1.3-1.6 times more phytotoxic than diesel fuel and 1.3-1.4 times more toxic than crude oil, and at low (1 and 2%) and medium (3 and 5%) levels the toxicity of these contaminants was close differing by a factor of 1.1-1.2. Tolerance of plants to soil contamination had a species-specific nature and, on the average, decreased in the following range of families: Fabaceae (germination decrease of 10-60% as compared to an uncontaminated control)>Brassicaceae (5-70%)>Asteraceae (25-95%)>Poaceae (10-100%). The monocotyledonous species tested were characterized as medium- and low-stable to contamination, whereas representatives of dicotyledonous plants were met in all groups of tolerance. Tested wild plants, contrary to reference data on oil toxicity, were more sensitive to kerosene than cultivated. No correlation was observed between degree of plant tolerance to kerosene and mass of seeds. The evidence indicates factors as structure and properties of testa, structure of germ, type of storage compounds, and type of seed germination (underground or

  9. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  10. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    PubMed

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.

  12. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  13. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  14. [Detection of agent "zhuanggenling" and investigation of utilization of plant growth retardants in traditional Chinese medicine cultivation].

    PubMed

    Zhai, Yu-yao; Guo, Bao-lin; Huang, Wen-hua

    2015-02-01

    Plant growth retardant as one of plant growth regulator can inhibit the cell division, elongation and growth rate in shoot apical meristem (SAM), which can be reversed by gibberellin regulate the product of photosynthesis transfer to the root and rhizome part. As commonly used plant growth retardant, paclobutrazol, uniconazole, chlorocholine chloride, mepiquat chloride, choline chloride and daminozide are used to promote the growth of root and rhizome, call as "zhuanggenling", "pengdasu", "pengdaji" etc. Single or recombination of plant growth regulator is registered as pesticide, and called as pesticide "zhuanggenling" in this paper. Growth regulator which registered as a foliar fertilizer or fertilization was called agricultural fertilizer "zhuanggenling" in this paper. The author investigate the usage of "zhuanggenling" in the root and rhizome of medicinal plants cultivation from 2012 to 2014 in Sichuan province, Huangyuan town, Mianyang (Ophiopogonis Radix); Pengzhou Aoping town (Chuanxiong Rhizoma); Pengshan Xiejia town (Alismatis Rhizoma); Jiangyou Taiping town and Zhangming town (Aconiti Lateralis Radix Praeparata); Yunnan Wenshan (Notoginseng Radix et Rhizoma); Henan province, Wuzhidafeng Town (Rehmanniae Radix, Achyranthis Bidentatae Radix, Dioscoreae Rhizoma); Gansu Min county (Codonopsis Radix, Angelicae Sinensis Radix); Gansu Li county (Rhei Radix et Rhizoma). The result showed that "zhuanggenling" were applied in the most medicinal plant cultivation except Rhei Radix et Rhizoma. It has been applied widespreadly in Ophiopogonis Radix, Alismatis Rhizoma, Achyranthis Bidentatae Radix, Codonopsis Radix; Rehmanniae Radix, commonly in Angelicae Sinensis Radix application, and occasionally in Chuanxiong Rhizoma, Aconiti Lateralis Radix Praeparata, Notoginseng Radix et Rhizoma and Dioscoreae Rhizoma. In 53 collected sample from plantation areas, fifteen (28%) were pesticide "zhuanggenling", thirty-eight (72%) were pesticide "zhuanggenling". UPLC analysis

  15. [Historical research of cinchona cultivation in Japan (Part 2). Useful tropical plants introduced from Java and India in the early Meiji era].

    PubMed

    Nagumo, Seiji; Sasaki, Yohei; Takido, Michio

    2010-01-01

    In the early Meiji era, Takeaki Enomoto made a proposal to the government that cinchona and coffee seedlings be introduced to Japan. In response, the Meiji government dispatched Masatsugu Takeda of the Ministry of Internal Affairs to Java and India from March to August 1878 for the purpose of investigating useful plants of tropical origin and introducing them to Japan. This paper clarifies the route to those destinations and the plants obtained locally. Using the seeds obtained from India during his travels, the cultivation of cinchona was attempted in 1882 for the first time in Japan. In Ogasawara, coffee cultivation was conducted, again for the first time in Japan, using coffee seeds brought back from Java. The cultivation of coffee was successful and served as the foundation of the Ogasawara coffee that exists to this day. Takeda also introduced a number of books and materials related to useful tropical plants available as a result of his travels, which contributed to the promotion of new industries and businesses in the Meiji era.

  16. Isolation of Novel Bacteria Including Rarely Cultivated Phyla, Acidobacteria and Verrucomicrobia, from the Roots of Emergent Plants by Simple Culturing Method

    PubMed Central

    Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Tamaki, Hideyuki; Tagawa, Masahiro; Toyama, Tadashi; Kamagata, Yoichi; Mori, Kazuhiro

    2017-01-01

    A number of novel bacteria including members of rarely cultivated phyla, Acidobacteria and Verrucomicrobia, were successfully isolated from the roots of two emergent plants, Iris pseudacorus and Scirpus juncoides, by a simple culturing method. A total of 47.1% (66 strains) for I. pseudacorus and 42.1% (59 strains) for S. juncoides of all isolates (140 strains from each sample) were phylogenetically novel. Furthermore, Acidobacteria and Verrucomicrobia occupied 10.7% (15 strains) and 2.9% (4 strains) of I. pseudacorus isolates, and 2.1% (3 strains) and 3.6% (5 strains) of S. juncoides isolates, respectively, indicating that plant roots are attractive sources for isolating rarely cultivated microbes. PMID:28740039

  17. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    NASA Astrophysics Data System (ADS)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  18. Yield of illicit indoor cannabis cultivation in the Netherlands.

    PubMed

    Toonen, Marcel; Ribot, Simon; Thissen, Jac

    2006-09-01

    To obtain a reliable estimation on the yield of illicit indoor cannabis cultivation in The Netherlands, cannabis plants confiscated by the police were used to determine the yield of dried female flower buds. The developmental stage of flower buds of the seized plants was described on a scale from 1 to 10 where the value of 10 indicates a fully developed flower bud ready for harvesting. Using eight additional characteristics describing the grow room and cultivation parameters, regression analysis with subset selection was carried out to develop two models for the yield of indoor cannabis cultivation. The median Dutch illicit grow room consists of 259 cannabis plants, has a plant density of 15 plants/m(2), and 510 W of growth lamps per m(2). For the median Dutch grow room, the predicted yield of female flower buds at the harvestable developmental stage (stage 10) was 33.7 g/plant or 505 g/m(2).

  19. [Dendrobium officinale stereoscopic cultivation method].

    PubMed

    Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui

    2014-12-01

    The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.

  20. [Theory and practice of bionic cultivation of traditional Chinese medicine].

    PubMed

    Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan

    2009-03-01

    The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.

  1. Analysis of life cycle assessment of food/energy/waste systems and development and analysis of microalgae cultivation/wastewater treatment inclusive system

    NASA Astrophysics Data System (ADS)

    Armstrong, Kristina Ochsner

    Across the world, crises in food, energy, land and water resources, as well as waste and greenhouse gas accumulation are inspiring research into the interactions among these environmental pressures. In the food/energy/waste problem set, most of the research is focused on describing the antagonistic relationships between food, energy and waste; these relationships are often analyzed with life cycle assessment (LCA). These analyses often include reporting of metrics of environmental performance with few functional units, often focusing on energy use, productivity and environmental impact while neglecting water use, food nutrition and safety. Additionally, they are often attributional studies with small scope which report location-specific parameters only. This thesis puts forth a series of recommendations to amend the current practice of LCA to combat these limitations and then utilizes these suggestions to analyze a synergistic food/waste/energy system. As an example analysis, this thesis describes the effect of combining wastewater treatment and microalgae cultivation on the productivity and scalability of the synergistic system. To ameliorate the high nutrient and water demands of microalgae cultivation, many studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low environmental costs. While cultivation studies have found this to be true, none explore the viability of the substitution in terms of productivity and scale-up. The results of this study suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt water microalgae cultivation. This study shows that the integration could result in reduced lipid content, high wastewater requirements, no greenhouse gas emissions benefit and only a small energy benefit.

  2. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    PubMed

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p < 0.05). The addition of Fol changed the community structure, particularly in soil A, where Penicillium spp. and Fusarium spp. were the dominant responding fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review.

    PubMed

    Guarrera, P M; Savo, V

    2013-04-19

    Many wild and cultivated plants are rich in mineral elements and bioactive compounds and are consumed for health purposes. Studies have demonstrated the curative properties of many of these food plants. In this paper, we discuss the properties of several plants with potential health benefits that have previously received little attention. This review provides an overview and critical discussion of food plants perceived by informants (emic view) as healthy or used as 'food medicine' in Italy. Pharmacological activity of these plants is explored, based upon published scientific research (etic view). Preparation methods, taste perception, toxicity and various potentialities of some food plants are also discussed. The present review includes literature available from 1877 to 2012. The information was collected from books, scientific papers, and abstracts that reported any plants used as food medicine in Italy. The perceived health properties were analyzed in the framework of recent international phytochemical and phytopharmacological literature. A total of 67 edible wild plants and 18 cultivated vegetables, distributed into 20 families, were reported by informants (in literature). Several plants were highly cited (e.g., Taraxacum officinale Webb., Crepis vesicaria L., Allium cepa L., Allium sativum L.). The most frequent health properties attributed to edible plants by the informants were: laxative (22 species), diuretic (15), digestive (11), galactagogue (8), antitussive (cough) (8), hypotensive (7), tonic (7), sedative (7), hypoglycemic (6). Some edible plants are promising for their potential health properties, such as Crepis vesicaria L., Sanguisorba minor Scop. and Sonchus oleraceus L. Several wild species were perceived by informants to maintain health but have never been studied from a phytochemical or pharmacological point of view: e.g., Asparagus albus L., Crepis leontodontoides All., Hyoseris radiata L. subsp. radiata, Phyteuma spicatum L. Copyright © 2013

  4. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil.

    PubMed

    Maric, Miroslava; Antonijevic, Milan; Alagic, Sladjana

    2013-02-01

    The copper production in Bor (East Serbia) during the last 100 years presents an important source of the pollution of environment. Dust, waste waters, tailing, and air pollutants influence the quality of soil, water, and air. Over 2,000 ha of fertile soil have been damaged by the flotation tailing from Bor's facilities. The goal of the present work has been to determine the content of Pb, Cu, and Fe in wild plants (17 species) naturally growing in the damaged soil and in fodder crops (nine species) planted at the same place. The content of Pb, Cu, and Fe has been analyzed in damaged soil as well. This study has also searched for native (wild) and cultivated plants which are able to grow in contaminated soil in the area of the intense industrial activity of copper production in Bor, which means that they can accumulate and tolerate heavy metals in their above-ground tissues. It has been found out that the content of all metals in contaminated soil decreases considerably at the end of the experiment. As it has been expected, all plant species could accumulate investigated metals. All tested plants, both wild-growing and cultivated plants, seem to be quite healthy on the substrate which contained extremely high concentrations of copper.

  5. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  6. Energy performance and greenhouse gas emissions of kelp cultivation for biogas and fertilizer recovery in Sweden.

    PubMed

    Pechsiri, Joseph S; Thomas, Jean-Baptiste E; Risén, Emma; Ribeiro, Mauricio S; Malmström, Maria E; Nylund, Göran M; Jansson, Anette; Welander, Ulrika; Pavia, Henrik; Gröndahl, Fredrik

    2016-12-15

    The cultivation of seaweed as a feedstock for third generation biofuels is gathering interest in Europe, however, many questions remain unanswered in practise, notably regarding scales of operation, energy returns on investment (EROI) and greenhouse gas (GHG) emissions, all of which are crucial to determine commercial viability. This study performed an energy and GHG emissions analysis, using EROI and GHG savings potential respectively, as indicators of commercial viability for two systems: the Swedish Seafarm project's seaweed cultivation (0.5ha), biogas and fertilizer biorefinery, and an estimation of the same system scaled up and adjusted to a cultivation of 10ha. Based on a conservative estimate of biogas yield, neither the 0.5ha case nor the up-scaled 10ha estimates met the (commercial viability) target EROI of 3, nor the European Union Renewable Energy Directive GHG savings target of 60% for biofuels, however the potential for commercial viability was substantially improved by scaling up operations: GHG emissions and energy demand, per unit of biogas, was almost halved by scaling operations up by a factor of twenty, thereby approaching the EROI and GHG savings targets set, under beneficial biogas production conditions. Further analysis identified processes whose optimisations would have a large impact on energy use and emissions (such as anaerobic digestion) as well as others embodying potential for further economies of scale (such as harvesting), both of which would be of interest for future developments of kelp to biogas and fertilizer biorefineries. Copyright © 2016. Published by Elsevier B.V.

  7. Traditional pattern of cashew cultivation : A lesson from Sumenep-Madura, Indonesia

    NASA Astrophysics Data System (ADS)

    Jadid, Nurul; Sutikno, Dewi, Dyah Santhi; Nurhidayati, Tutik; Abdulgani, Nurlita; Muzaki, Farid Kamal; Arraniry, Byan Arasyi; Mardika, Rizal Kharisma; Rakhman, R. Yuvita

    2017-11-01

    Belonging to the Anacardiaceae family, the cashew tree (Anacardium Occidentale, Linn.) is one of the important tropical plants that possess high economic value. This plant is commonly grown in Indonesian regions including Sumenep, Madura, where the red sandy loam type of soil is commonly present. This study aims to obtain rough data on the pattern of cashew cultivation and identify the cashew cultivation knowledge of local communities. Data were taken in Bringin village, Sumenep-Madura. Our field survey showed that the cashew's cultivation pattern in this village applies the so-called traditional organic farming. Cashew trees are planted along the boundaries of the owner's farm field, functioning as a fence of their farm. Nevertheless, our survey also indicated that this pattern of cultivation is still below standard of cultivation. The planting distance between the cashew trees with one another is relatively close (< 5 meters), causing the cashew branches to overlap with each other. Moreover, we observed that there was no rejuvenation of old cashew trees. Finally, knowledge of the community about post-harvest processing is limited. Therefore, we suggest that educating the community about good standard cashew cultivation is required to improve productivity as well as the quality of cashew nuts.

  8. Propagation and introduction of Arnica montana L. into cultivation: a step to reduce the pressure on endangered and high-valued medicinal plant species.

    PubMed

    Sugier, Danuta; Sugier, Piotr; Gawlik-Dziki, Urszula

    2013-01-01

    Arnica montana (L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production.

  9. Topical report on sources and systems for aquatic plant biomass as an energy resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, J.C.; Ryther, J.H.; Waaland, R.

    1977-10-21

    Background information is documented on the mass cultivation of aquatic plants and systems design that is available from the literature and through consultation with active research scientists and engineers. The biology of microalgae, macroalgae, and aquatic angiosperms is discussed in terms of morphology, life history, mode of existence, and ecological significance, as they relate to cultivation. The requirements for growth of these plants, which are outlined in the test, suggest that productivity rates are dependent primarily on the availability of light and nutrients. It is concluded that the systems should be run with an excess of nutrients and with lightmore » as the limiting factor. A historical review of the mass cultivation of aquatic plants describes the techniques used in commercial large-scale operations throughout the world and recent small-scale research efforts. This review presents information on the biomass yields that have been attained to date in various geographical locations with different plant species and culture conditions, emphasizing the contrast between high yields in small-scale operations and lower yields in large-scale operations.« less

  10. [Study on High-yield Cultivation Measures for Arctii Fructus].

    PubMed

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  11. The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorisation.

    PubMed

    Largeteau, Michèle L; Llarena-Hernández, Régulo Carlos; Regnault-Roger, Catherine; Savoie, Jean-Michel

    2011-12-01

    Sun mushroom is a cultivated mushroom extensively studied for its medicinal properties for several years and literature abounds on the topic. Besides, agronomical aspects were investigated in Brazil, the country the mushroom comes from, and some studies focus on the biology of the fungus. This review aimed to present an overview of the non-medicinal knowledge on the mushroom. Areas of commercial production and marketing trends are presented. Its specific fragrance, taste, nutritional value and potential use of extracts as food additives are compared to those of the most cultivated fungi and laboratory models. The interest of the mushroom for lignocellulosic enzyme production and source of biomolecules for the control of plant pathogens are shown. Investigation of genetic variability among cultivars is reported. Growing and storage of mycelium, as well as cultivation conditions (substrate and casing generally based on local products; indoor and outdoor cultivation; diseases and disorders) are described and compared to knowledge on Agaricus bisporus.

  12. Proper Cultivation Needed for Good Survival and Growth of Planted Cottonwood

    Treesearch

    H. E. Kennedy

    1975-01-01

    Survival and growth were significantly better when cuttings were not covered or broken during early cultivation. Survival with good cultivation was 90 percent; with poor cultivation, survival ranged from 20 to 60 percent. Undisturbed cuttings grew 30 to 35 percent better than those covered before sprouting and almost 100 percent better than covered cuttings with broken...

  13. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  14. [Research on output and quality of Panax notoginseng and annual change characteristics of N, P and K nutrients of planting soil under stereo-cultivation].

    PubMed

    Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye

    2015-08-01

    The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P

  15. Response of Newly Established Slash Pine to Cultivation and Fertilization

    Treesearch

    A.E. Tiarks; J.D. Haywood

    1981-01-01

    Response of newly established slash pine to fertilization is increased if herbaceous plants are controlled. To find the amount of cultivation required in Louisiana, fertilized and unfertilized rows of planted pines were hand-hoed in a wedge-shaped pattern. By using this technique, the amount of cultivation was varied from none to complete. Slash pine growth was...

  16. Non-cultivated plants present a season-long route of pesticide exposure for honey bees

    PubMed Central

    Long, Elizabeth Y.; Krupke, Christian H.

    2016-01-01

    Recent efforts to evaluate the contribution of neonicotinoid insecticides to worldwide pollinator declines have focused on honey bees and the chronic levels of exposure experienced when foraging on crops grown from neonicotinoid-treated seeds. However, few studies address non-crop plants as a potential route of pollinator exposure to neonicotinoid and other insecticides. Here we show that pollen collected by honey bee foragers in maize- and soybean-dominated landscapes is contaminated throughout the growing season with multiple agricultural pesticides, including the neonicotinoids used as seed treatments. Notably, however, the highest levels of contamination in pollen are pyrethroid insecticides targeting mosquitoes and other nuisance pests. Furthermore, pollen from crop plants represents only a tiny fraction of the total diversity of pollen resources used by honey bees in these landscapes, with the principle sources of pollen originating from non-cultivated plants. These findings provide fundamental information about the foraging habits of honey bees in these landscapes. PMID:27240870

  17. Seaweed cultivation: Traditional way and its reformation

    NASA Astrophysics Data System (ADS)

    Fei, Xiu-Geng; Bao, Ying; Lu, Shan

    1999-09-01

    Seaweed cultivation or phycoculture has been developed rather fast in recent years. The total production of cultivated seaweed at present is about 6250×103 tons fresh weight. The total cultivation area is estimated as 200×103 hectare. The annual total value of cultivated seaweeds has been estimated to be more than 3 billion US dollars. Phycoculture provides many job opportunities for the coastal region people, has the potential to improve marine environments and thus even induce global change. All traditional cultivation methods and techniques are based on or start from the individual plant or the cultivated seaweed population. Modern biological science and biotechnology achievements have benefited agriculture a lot, but traditional seaweed cultivation has not changed much since its founding. This is because seaweed cultivation has been quite conservative for quite a long period and has accumulated many problems requiring solution. Four main problems might be the most universal ones holding back further development of the industry. New ways of seaweed cultivation must be developed, new techniques must be perfected, and new problems solved. This paper mainly discusses the main problems of traditional seaweed cultivation at present and its possible further development and reformation in the future.

  18. Propagation and Introduction of Arnica montana L. into Cultivation: A Step to Reduce the Pressure on Endangered and High-Valued Medicinal Plant Species

    PubMed Central

    2013-01-01

    Arnica montana (L.) is an endangered and endemic medicinal plant species in Europe. The pressure on natural sources of this plant is alleviated by a suitable use of arnica resources in the European region and introduction into cultivation. The objective of this study was to describe the impact of different ways of plant propagation and introduction on the growth and reproduction mode of this species. During the six consecutive years of the field experiment, the vegetative and reproductive traits were monitored, and survival time was assessed. The particular ways of arnica plant propagation and introduction determined all the intrinsic species traits and plant survival. The values of the characteristics studied indicated good acclimatization of the arnica ecotype to the climatic conditions of eastern Poland. Practical implications from the data presented here include the possibility of using the presented modes of arnica propagation and introduction in the short- and long-term perspective of arnica cultivation, which can give a possibility of better adjustment of raw material production. PMID:24282381

  19. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    NASA Astrophysics Data System (ADS)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  20. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  1. Production of oil palm empty fruit bunch compost for ornamental plant cultivation

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    The aim of this research was to produce the oil palm empty fruit bunch (EFB) compost for ornamental plant cultivation. EFB compost was produced by chopping fresh EFB into 1-3 cm pieces, inserting the pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding activated liquid organic fertilizer (ALOF) until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The compost processed was then mixed with sand and rice husk with a ratio of 1:1:1; 1:3:1; 1:0:1 and was used as a potting medium for planting some valuable ornamental plants i.e. cactus (cactaceae), sansevieria, and anthurium. Composting was carried out for 40 days and the compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0.95%. The compost-sand-husk rice mixture can be used as a growing medium where the best ratio for cactus, sansevieria, and anthurium was 1:3:1; 1:1:1; and 1:0:1, respectively.

  2. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  3. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  4. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa.

    PubMed

    Maroyi, Alfred

    2017-08-08

    Traditional ecological knowledge among indigenous communities plays an important role in retaining cultural identity and achieving sustainable natural resource management. Hundreds of millions of people mostly in developing countries derive a substantial part of their subsistence and income from plant resources. The aim of this study was to assess useful plant species diversity, plant use categories and local knowledge of both wild and cultivated useful species in the Eastern Cape province, South Africa. The study was conducted in six villages in the Eastern Cape province, South Africa between June 2014 and March 2017. Data on socio-economic characteristics of the participants, useful plants harvested from the wild, managed in home gardens were documented by means of questionnaires, observation and guided field walks with 138 participants. A total of 125 plant species belonging to 54 genera were recorded from the study area. More than half of the species (59.2%) are from 13 families, Apiaceae, Apocynaceae, Araliaceae, Asparagaceae, Asphodelaceae, Asteraceae, Fabaceae, Lamiaceae, Malvaceae, Myrtaceae, Poaceae, Rosaceae and Solanaceae. More than a third of the useful plants (37.6%) documented in this study are exotic to South Africa. About three quarters of the documented species (74.4%) were collected from the wild, while 20.8% were cultivated and 4.8% were spontaneous. Majority of the species (62.4%) were used as herbal medicines, followed by food plants (30.4%), ethnoveterinary medicine (18.4%), construction timber and thatching (11.2%). Other minor plant use categories (1-5%) included firewood, browse, live fence, ornamentals, brooms and crafts. This study demonstrated that local people in the Eastern Cape province harbour important information on local vegetation that provides people with food, fuel and medicines, as well as materials for construction and the manufacturing of crafts and many other products. This study also demonstrated the dynamism of

  5. Cultivating Research Skills: An interdisciplinary approach in training and supporting energy research

    NASA Astrophysics Data System (ADS)

    Winkler, H.; Carbajales-Dale, P.; Alschbach, E.

    2013-12-01

    Geoscience and energy research has essentially separate and diverse tracks and traditions, making the education process labor-intensive and burdensome. Using a combined forces approach to training, a multidisciplinary workshop on information and data sources and research skills was developed and offered through several departments at Stanford University. The popular workshops taught required skills to scientists - giving training on new technologies, access to restricted energy-related scientific and government databases, search strategies for data-driven resources, and visualization and geospatial analytics. Feedback and data suggest these workshops were fundamental as they set the foundation for subsequent learning opportunities for students and faculty. This session looks at the integration of the information workshops within multiple energy and geoscience programs and the importance of formally cultivating research and information skills.

  6. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    PubMed

    Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.

  7. Progress in cultivation-independent phyllosphere microbiology

    PubMed Central

    Müller, Thomas; Ruppel, Silke

    2014-01-01

    Most microorganisms of the phyllosphere are nonculturable in commonly used media and culture conditions, as are those in other natural environments. This review queries the reasons for their ‘noncultivability’ and assesses developments in phyllospere microbiology that have been achieved cultivation independently over the last 4 years. Analyses of total microbial communities have revealed a comprehensive microbial diversity. 16S rRNA gene amplicon sequencing and metagenomic sequencing were applied to investigate plant species, location and season as variables affecting the composition of these communities. In continuation to culture-based enzymatic and metabolic studies with individual isolates, metaproteogenomic approaches reveal a great potential to study the physiology of microbial communities in situ. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. Improving and combining cultivation and culture-independent techniques can contribute to a better understanding of the phyllosphere ecology. This is essential, for example, to avoid human–pathogenic bacteria in plant food. PMID:24003903

  8. Industry Growth Forum Cultivates Clean Energy Entrepreneurship -

    Science.gov Websites

    Innovation Partnership (ATIP) Foundation. Photo by Dennis Schroeder, NREL Industry Growth Forum Cultivates , Colorado. Photo by Dennis Schroeder, NREL An analysis of data for all of the presenting companies since

  9. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    NASA Astrophysics Data System (ADS)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  10. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions

    PubMed Central

    Singh, Devesh; Buhmann, Anne K.; Flowers, Tim J.; Seal, Charlotte E.; Papenbrock, Jutta

    2014-01-01

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  11. Integrating cultivation history into EBIPM

    USDA-ARS?s Scientific Manuscript database

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  12. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.

    PubMed

    Markou, Giorgos; Nerantzis, Elias

    2013-12-01

    Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60-65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions. © 2013.

  13. Cultivable bacteria isolated from apple trees cultivated under different crop systems: Diversity and antagonistic activity against Colletotrichum gloeosporioides

    PubMed Central

    dos Passos, João Frederico M.; da Costa, Pedro B.; Costa, Murilo D.; Zaffari, Gilmar R.; Nava, Gilberto; Boneti, José Itamar; de Oliveira, Andréia Mara R.; Passaglia, Luciane M.P.

    2014-01-01

    This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture. PMID:25249780

  14. The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming.

    PubMed

    Snir, Ainit; Nadel, Dani; Groman-Yaroslavski, Iris; Melamed, Yoel; Sternberg, Marcelo; Bar-Yosef, Ofer; Weiss, Ehud

    2015-01-01

    Weeds are currently present in a wide range of ecosystems worldwide. Although the beginning of their evolution is largely unknown, researchers assumed that they developed in tandem with cultivation since the appearance of agricultural habitats some 12,000 years ago. These rapidly-evolving plants invaded the human disturbed areas and thrived in the new habitat. Here we present unprecedented new findings of the presence of "proto-weeds" and small-scale trial cultivation in Ohalo II, a 23,000-year-old hunter-gatherers' sedentary camp on the shore of the Sea of Galilee, Israel. We examined the plant remains retrieved from the site (ca. 150,000 specimens), placing particular emphasis on the search for evidence of plant cultivation by Ohalo II people and the presence of weed species. The archaeobotanically-rich plant assemblage demonstrates extensive human gathering of over 140 plant species and food preparation by grinding wild wheat and barley. Among these, we identified 13 well-known current weeds mixed with numerous seeds of wild emmer, barley, and oat. This collection provides the earliest evidence of a human-disturbed environment-at least 11 millennia before the onset of agriculture-that provided the conditions for the development of "proto-weeds", a prerequisite for weed evolution. Finally, we suggest that their presence indicates the earliest, small-scale attempt to cultivate wild cereals seen in the archaeological record.

  15. The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming

    PubMed Central

    Snir, Ainit; Nadel, Dani; Groman-Yaroslavski, Iris; Melamed, Yoel; Sternberg, Marcelo; Bar-Yosef, Ofer; Weiss, Ehud

    2015-01-01

    Weeds are currently present in a wide range of ecosystems worldwide. Although the beginning of their evolution is largely unknown, researchers assumed that they developed in tandem with cultivation since the appearance of agricultural habitats some 12,000 years ago. These rapidly-evolving plants invaded the human disturbed areas and thrived in the new habitat. Here we present unprecedented new findings of the presence of “proto-weeds” and small-scale trial cultivation in Ohalo II, a 23,000-year-old hunter-gatherers' sedentary camp on the shore of the Sea of Galilee, Israel. We examined the plant remains retrieved from the site (ca. 150,000 specimens), placing particular emphasis on the search for evidence of plant cultivation by Ohalo II people and the presence of weed species. The archaeobotanically-rich plant assemblage demonstrates extensive human gathering of over 140 plant species and food preparation by grinding wild wheat and barley. Among these, we identified 13 well-known current weeds mixed with numerous seeds of wild emmer, barley, and oat. This collection provides the earliest evidence of a human-disturbed environment—at least 11 millennia before the onset of agriculture—that provided the conditions for the development of "proto-weeds", a prerequisite for weed evolution. Finally, we suggest that their presence indicates the earliest, small-scale attempt to cultivate wild cereals seen in the archaeological record. PMID:26200895

  16. Impact of planting dates on a seed maggot, Neotephritis finalis (Diptera: Tephritidae), and sunflower bud moth (Lepidoptera: Tortricidae) damage in cultivated sunflower

    USDA-ARS?s Scientific Manuscript database

    Neotephritis finalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N...

  17. Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 1. Energy and water

    NASA Astrophysics Data System (ADS)

    Ramier, David; Boulain, Nicolas; Cappelaere, Bernard; Timouk, Franck; Rabanit, Manon; Lloyd, Colin R.; Boubkraoui, Stéphane; Métayer, Frédéric; Descroix, Luc; Wawrzyniak, Vincent

    2009-08-01

    SummaryThis paper presents an analysis of the coupled cycling of energy and water by semi-arid Sahelian surfaces, based on two years of continuous vertical flux measurements from two homogeneous recording stations in the Wankama catchment, in the West Niger meso-site of the AMMA project. The two stations, sited in a millet field and in a semi-natural fallow savanna plot, sample the two dominant land cover types in this area typical of the cultivated Sahel. The 2-year study period enables an analysis of seasonal variations over two full wet-dry seasons cycles, characterized by two contrasted rain seasons that allow capturing a part of the interannual variability. All components of the surface energy budget (four-component radiation budget, soil heat flux and temperature, eddy fluxes) are measured independently, allowing for a quality check through analysis of the energy balance closure. Water cycle monitoring includes rainfall, evapotranspiration (from vapour eddy flux), and soil moisture at six depths. The main modes of observed variability are described, for the various energy and hydrological variables investigated. Results point to the dominant role of water in the energy cycle variability, be it seasonal, interannual, or between land cover types. Rainfall is responsible for nearly as much seasonal variations of most energy-related variables as solar forcing. Depending on water availability and plant requirements, evapotranspiration pre-empts the energy available from surface forcing radiation, over the other dependent processes (sensible and ground heat, outgoing long wave radiation). In the water budget, pre-emption by evapotranspiration leads to very large variability in soil moisture and in deep percolation, seasonally, interannually, and between vegetation types. The wetter 2006 season produced more evapotranspiration than 2005 from the fallow but not from the millet site, reflecting differences in plant development. Rain-season evapotranspiration is nearly

  18. Mobility and persistence of the herbicide fomesafen in soils cultivated with bean plants using SLE/LTP and HPLC/DAD.

    PubMed

    Costa, Anna I G; Queiroz, Maria Eliana L R; Neves, Antônio A; de Assis, Roberta C; dos Soares, Carlos E S; da Silva, Antônio A; D'Antonino, Leonardo; de Oliveira, André F; Bellato, Carlos R

    2015-03-01

    A method has been optimized and validated for the determination of fomesafen in soils using solid-liquid extraction with low-temperature partitioning (SLE/LTP) and analysis by liquid chromatography with a high-efficiency diode array detector (HPLC/DAD). The method was used to evaluate the persistence and mobility of this herbicide in different soils cultivated with bean plants. Recovery values were ≥98.9 %, with variations in the repeatability coefficients of ≤15 %, and a detection limit of 7.3 μg kg(-1). Half-life values of fomesafen were between 60 and 71 days in soil cultivated using a no-till system and 99 and 114 days in soil cultivated using a conventional tillage system. The mobility of fomesafen was moderate and mainly influenced by the organic matter content, pH, and soil type. In Red-Yellow Argisol, which has a higher content of organic matter, the leaching of fomesafen was less pronounced. In Red-Yellow Latosol, which has smaller amounts of organic matter and high pH, the leaching of fomesafen was more pronounced.

  19. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae).

    PubMed

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  20. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    PubMed Central

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  1. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  2. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted.

  3. [Key techniques for precision cultivation of nitrogenous fertilizer of pollution-free ginseng].

    PubMed

    Guo, Li-Li; Guo, Shuai; Dong, Lin-Lin; Shen, Liang; Li, Xi-Wen; Xu, Jiang; Chen, Shi-Lin

    2018-04-01

    Planting pollution-free farmland is the main mode of industrialization of ginseng cultivation, fine management of nitrogen fertilizer ginseng pollution-free farmland cultivation technology system is one of the key factors. In order to investigate the effect of nitrogenous fertilizer on the accumulation of ginseng biomass and saponins synthesis in vegetative growth stage, two-years-old ginsengs were used as test materials in this study. The test materials were cultivated by Hoagland medium with different nitrogen concentration (0,10,20,40 mg·L⁻¹) for 40 days. During the cultivation, photosynthetic rate was measured four times. After 40 days cultivation, chlorophyll content, stem diameter and the spatiotemporal expression of saponin synthesis related genes PgHMGR and PgSQE were tested. The results showed that there were significant differences in the photosynthetic rate and chlorophyll content among different nitrogen concentrations. The relative expression level of PgHMGR gene and PgSQE gene in root, stem and leaves of ginseng were different. Ginseng seedlings cultivated by 20 mg·L⁻¹ nitrogen possess the highest photosynthetic rate and chlorophyll content, while PgHMGR and PgSE showed the highest gene expression level. The optimal nitrogen concentration for the growth of 2-years-old ginseng might be 20 mg·L⁻¹ with 57.14 g ammonium nitrate each plant or pure 20.00 mg nitrogen each plant. It is concluded that this concentration is the most suitable concentration for the ginsenoside synthesis. Pollution-free ginseng with fine nitrogen fertilizer cultivation is conducive to the production of high quality and efficient ginseng medicinal materials. It lays a theoretical foundation for the rational fertilization and environment-friendly sustainable ecological ginseng planting industry. Copyright© by the Chinese Pharmaceutical Association.

  4. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    NASA Astrophysics Data System (ADS)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  5. Enhancement of Recombinant Protein Production in Transgenic Nicotiana benthamiana Plant Cell Suspension Cultures with Co-Cultivation of Agrobacterium Containing Silencing Suppressors.

    PubMed

    Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A

    2018-05-24

    We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.

  6. Energy and environmental impact analysis of rice cultivation and straw management in northern Thailand.

    PubMed

    Yodkhum, Sanwasan; Sampattagul, Sate; Gheewala, Shabbir H

    2018-04-17

    Rice cultivation and energy use for rice production can produce the environmental impacts, especially related to greenhouse gas (GHG) emissions. Also, rice straw open burning by farmers generally practiced after harvesting stage in Thailand for removing the residues in the rice field is associated with emissions of air pollutants, especially particulate matter formation that affects human health and global climate. This study assessed the environmental burdens, consisting of GHG emissions, energy use, and particulate matter formation (PM10), from rice cultivation in Thailand by life cycle assessment (LCA) and compared the environmental burdens of rice straw management scenarios: open burning, incorporation into soil, and direct combustion for electricity generation. The data were collected from the rice production cooperative in Chiang Mai province, northern Thailand, via onsite records and face-to-face questionnaires in 2016. The environmental impacts were evaluated from cradle-to-farm gate. The results showed that the total GHG emissions were 0.64 kg CO 2 -eq per kilogram of paddy rice, the total energy use was 1.80 MJ per kilogram of paddy rice and the PM10 emissions were 0.42 g PM10-eq per kilogram of paddy rice. The results of rice straw management scenarios showed that rice straw open burning had the highest GHG and PM10 emissions. However, rice straw utilization by incorporation into soil and direct combustion for electricity generation could reduce these impacts substantially.

  7. Energy comparison between solar thermal power plant and photovoltaic power plant

    NASA Astrophysics Data System (ADS)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  8. The Population Genetics of Cultivation: Domestication of a Traditional Chinese Medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae)

    PubMed Central

    Chen, Chuan; Li, Pan; Wang, Rui-Hong; Schaal, Barbara A.; Fu, Cheng-Xin

    2014-01-01

    Background Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement. Results Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations. Conclusions These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection

  9. Plant Succession at the Edges of Two Abandoned Cultivated Fields on the Arid Lands Ecology Reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Sally A.; Rickard, William H.

    How vegetation recovers from disturbances is an important question for land managers. We examined 500 m2 plots to determine the progress made by native herbaceous plant species in colonizing the edges of abandoned cultivated fields at different elevations and microclimates, but with similar soils in a big sagebrush/bluebunch wheatgrass steppe. Alien species, especially cheatgrass and cereal rye, were the major competitors to the natives. The native species with best potential for restoring steppe habitats were sulphur lupine, hawksbeard, bottlebrush squirreltail, needle-and-thread grass, Sandberg's bluegrass, and several lomatiums.

  10. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) - Hydroponic cultivation

    NASA Astrophysics Data System (ADS)

    Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S.

    2012-12-01

    Four soybean cultivars ('Atlantic', 'Cresir', 'Pr91m10' and 'Regir'), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m-2 s-1, temperature regime 26/20 °C light/dark, relative humidity 65-75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m-1 and 5.5 respectively. The percentage of germination was high (from 86.9% in 'Cresir' to 96.8% in 'Regir')and the MGT was similar for all the cultivars (4.3 days). The growing cycle lasted from 114 in 'Cresir' to 133 days on average in the other cultivars. Differences in plant size were recorded, with 'Pr91m10' plants being the shortest (58 vs 106 cm). Cultivars did not differ significantly in seed yield (12 g plant-1) and in non edible biomass (waste), water consumption and biomass conversion efficiency (water, radiation and acid use indexes). 'Pr91m10' showed the highest protein content in the seeds (35.6% vs 33.3% on average in the other cultivars). Results from the cultivation experiment showed good performances of the four cultivars in hydroponics. The overall analysis suggests that 'Pr91m10' could be the best candidate for the cultivation in a BLSS, coupling the small plant size and the good yield with high resource use efficiency and good seed quality.

  11. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions.

    PubMed

    Singh, Devesh; Buhmann, Anne K; Flowers, Tim J; Seal, Charlotte E; Papenbrock, Jutta

    2014-11-10

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  12. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  13. Sowing Seeds to Cultivate Future Army Leaders

    DTIC Science & Technology

    2010-11-01

    and can operate successfully in Sowing Seeds to Cultivate Future Army Leaders Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...TITLE AND SUBTITLE Sowing Seeds to Cultivate Future Army Leaders 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...month will not de- velop the next Army Chief of Staff, it is imperative to plant the seeds of new ideas and concepts early into our ju- nior leaders

  14. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste.

    PubMed

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-10-10

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO₂, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.

  15. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    PubMed Central

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-01-01

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates. PMID:27735859

  16. Gene flow and genetic diversity in cultivated and wild cacao (Theobroma cacao) in Bolivia.

    PubMed

    Chumacero de Schawe, Claudia; Durka, Walter; Tscharntke, Teja; Hensen, Isabell; Kessler, Michael

    2013-11-01

    The role of pollen flow within and between cultivated and wild tropical crop species is little known. To study the pollen flow of cacao, we estimated the degree of self-pollination and pollen dispersal distances as well as gene flow between wild and cultivated cacao (Theobroma cacao L.). We studied pollen flow and genetic diversity of cultivated and wild cacao populations by genotyping 143 wild and 86 cultivated mature plants and 374 seedlings raised from 19 wild and 25 cultivated trees at nine microsatellite loci. A principal component analysis distinguished wild and cultivated cacao trees, supporting the notion that Bolivia harbors truly wild cacao populations. Cultivated cacao had a higher level of genetic diversity than wild cacao, presumably reflecting the varied origin of cultivated plants. Both cacao types had high outcrossing rates, but the paternity analysis revealed 7-14% self-pollination in wild and cultivated cacao. Despite the tiny size of the pollinators, pollen was transported distances up to 3 km; wild cacao showed longer distances (mean = 922 m) than cultivated cacao (826 m). Our data revealed that 16-20% of pollination events occurred between cultivated and wild populations. We found evidence of self-pollination in both wild and cultivated cacao. Pollination distances are larger than those typically reported in tropical understory tree species. The relatively high pollen exchange from cultivated to wild cacao compromises genetic identity of wild populations, calling for the protection of extensive natural forest tracts to protect wild cacao in Bolivia.

  17. Modelling the impact of mulching the soil with plant remains on water regime formation, crop yield and energy costs in agricultural ecosystems

    NASA Astrophysics Data System (ADS)

    Gusev, Yeugeniy M.; Dzhogan, Larisa Y.; Nasonova, Olga N.

    2018-02-01

    The model MULCH, developed by authors previously for simulating the formation of water regime in an agricultural field covered by straw mulch layer, has been used for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of Russia and Ukraine. It simulates the dynamics of water budget components in a soil rooting zone at daily time step from the beginning of spring snowmelt to the beginning of the period with stable negative air temperatures. The model was designed for estimation of mulching efficiency in terms of increase in plant water supply and crop yield under climatic and soil conditions of the steppe and forest-steppe zones. It is used for studying the mulching effect on some characteristics of water regime and yield of winter wheat growing at specific sites located in semi-arid and arid regions of the steppe and forest-steppe zones of the eastern and southern parts of the East-European (Russian) plain. In addition, a previously developed technique for estimating the energetic efficiency of various agricultural technologies with accounting for their impact on changes in soil energy is applied for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of the steppe and forest-steppe zones of the European Russia: (1) moldboard tillage of soil without irrigation, (2) moldboard tillage of soil with irrigation, (3) subsurface cultivation, and (4) subsurface cultivation with mulching the soil with plant remains.

  18. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality.

    PubMed

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  19. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    PubMed Central

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato. PMID:28824665

  20. Evaluation of hydrocarbon plants suitable for cultivation in Florida. [Euphorbia tirucalli, E. lathyris, and Asclepias curassavica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehgan, B.; Wang, S.C.

    1983-01-01

    Most of the hydrocarbon plants reported in the literature are not suitable for cultivation under Florida conditions. Preliminary results of field and greenhouse trials have indicated two species; Euphorbia tirucalli, which is suitable only for south Florida and Asclepias curassavica which has shown promise for the entire state. The hydrocarbon content of E. tirucalli increases with age of the plants (8.19-11.90%), whereas, that of A. curassavica is influenced positively by fertilization (3.62%) and negatively by supplemental irrigation (2.75%). A comparison between the results of field trials with A. curassavica in Florida and E. lathyris in California shows similar biomass yieldsmore » under unirrigated conditions, despite 3.6 to 7.8 times greater nitrogen application for E. lathyris. Because of environmental conditions in Florida, E. lathyris is not capable of good growth. It is suggested that future research on hydrocarbon plants should concentrate on selection of individuals or species with vigorous, upright growth habits, low fertilizer-irrigation requirements and high hydrocarbon contents. 18 references.« less

  1. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  2. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. © 2013 CSIRO. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Energy analysis of coal, fission, and fusion power plants

    NASA Astrophysics Data System (ADS)

    Tsoulfanidis, N.

    1981-04-01

    The method of net energy analysis has been applied to coal, fission, and fusion power plants. Energy consumption over the lifetime of the plants has been calculated for construction, operation and maintenance, fuel, public welfare, and land use and restoration. Thermal and electric energy requirements were obtained separately for each energy consuming sector. The results of the study are presented in three ways: total energy requirements, energy gain ratio, and payback periods. All three types of power plants are net producers of energy. The coal and fusion power plants are superior to fission plants from the energy efficiency point of view. Fission plants will improve considerably if the centrifuge replaces the gaseous diffusion as a method of enrichment.

  4. Water use and its recycling in microalgae cultivation for biofuel application.

    PubMed

    Farooq, Wasif; Suh, William I; Park, Min S; Yang, Ji-Won

    2015-05-01

    Microalgal biofuels are not yet economically viable due to high material and energy costs associated with production process. Microalgae cultivation is a water-intensive process compared to other downstream processes for biodiesel production. Various studies found that the production of 1 L of microalgal biodiesel requires approximately 3000 L of water. Water recycling in microalgae cultivation is desirable not only to reduce the water demand, but it also improves the economic feasibility of algal biofuels as due to nutrients and energy savings. This review highlights recently published studies on microalgae water demand and water recycling in microalgae cultivation. Strategies to reduce water footprint for microalgal cultivation, advantages and disadvantages of water recycling, and approaches to mitigate the negative effects of water reuse within the context of water and energy saving are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    PubMed

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  6. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories

    PubMed Central

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016

  7. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  8. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.

    PubMed

    Adesanya, Victoria O; Cadena, Erasmo; Scott, Stuart A; Smith, Alison G

    2014-07-01

    A life cycle assessment (LCA) was performed on a putative biodiesel production plant in which the freshwater alga Chlorella vulgaris, was grown using an existing system similar to a published commercial-scale hybrid cultivation. The hybrid system couples airlift tubular photobioreactors with raceway ponds in a two-stage process for high biomass growth and lipid accumulation. The results show that microalgal biodiesel production would have a significantly lower environmental impact than fossil-derived diesel. Based on the functional unit of 1 ton of biodiesel produced, the hybrid cultivation system and hypothetical downstream process (base case) would have 42% and 38% savings in global warming potential (GWP) and fossil-energy requirements (FER) when compared to fossil-derived diesel, respectively. Sensitivity analysis was performed to identify the most influential process parameters on the LCA results. The maximum reduction in GWP and FER was observed under mixotrophic growth conditions with savings of 76% and 75% when compared to conventional diesel, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Young inflorescence-bearing shoots with roots of Tradescantia clone BNL 4430 cultivated in nutrient solution circulating systems: an alternative to potted plants and cuttings for mutagenicity tests.

    PubMed

    Shima, N; Xiao, L Z; Sakuramoto, F; Ichikawa, S

    1997-12-12

    The use of young inflorescence-bearing shoots with roots of Tradescantia clone BNL 4430 cultivated in a nutrient solution circulating (NSC) growth chamber was tested and developed as an alternative method for using Tradescantia plants in mutagenicity testings. The NSC growth chamber was designed for our requirements, based on trial cultivations of the shoots with roots in its smaller-sized prototype. The nutrient solution used was a 1/2500 Hyponex solution. The characteristics of this clone, i.e., many new shoots constantly emerging from the basal nodes one after another and its short height favorable for early flowering, made it possible to prepare many young inflorescence-bearing shoots with roots at one time. A simplified NSC cultivation system could also be developed at a lower cost, and by using it together with the NSC growth chamber, recycling of untreated materials was established for supplying steadily enough amounts of young inflorescence-bearing shoots with roots for mutagenicity testings. Compared with traditional methods of using potted plants or cuttings, the new method exhibited more stable flower production, better stamen-hair growth and a significantly lower spontaneous (background) mutation frequency, and could produce more inflorescences per space. The use of such young inflorescence-bearing shoots with roots was therefore judged to be satisfactory to serve as a new mutagenicity test system alternating with potted plants and cuttings.

  10. The energy cane alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, A.G.

    This book reviews the conceptual and theoretical background of Saccharum botany, which underlies the growing of cane as a total growth commodity. Management details are provided for energy cane planting, cultivation, harvest, and postharvest operations. Chapters on energy cane utilization stress new developments in lignocellulose conversion plus alternative options for fermentable solids usage. Chapters are also included for the management of alternative grasses to supplement energy cane, and the breeding of new hybrid canes with high biomass attributes at the intergeneric and interspecific levels.

  11. Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.

    2005-01-01

    The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.

  12. Synthesis, characterization and application of ion exchange resin as a slow-release fertilizer for wheat cultivation in space

    NASA Astrophysics Data System (ADS)

    Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen

    2016-10-01

    In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.

  13. Aggregate stability in soils cultivated with eucalyptus

    USDA-ARS?s Scientific Manuscript database

    Eucalyptus cultivation has increased in many Brazilian regions. In order to recommend good management practices, it is necessary to understand changes in soil properties where eucalyptus is planted. Aggregate stability analyses have proved to be a useful tool to measure soil effects caused by change...

  14. Use resources of human exometabolites of different oxidation levels for higher plants cultivation on the soil-like substrate as applied to closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Ushakova, Sofya; Tirranen, Lyalya; Gribovskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The technology of ‘wet incineration' of human exometabolites and inedible plants biomass by means of H2 O2 in alternating electromagnetic field to increase a closure of mass exchange processes in bioregenerative life support systems (BLSS) was developed at the Institute of Biophysics of the Siberian Branch of Russian Academy of Sciences (Krasnoyarsk, Russia). Human exometabolites mineralized can be used in a nutrient solution for plants cultivation in the BLSS phototrophic link. The objective of the given work appears to be the study of use resources of human exometabolites of different oxidation levels processed by the abovementioned method for higher plants cultivation on the soil-like substrate (SLS). The mineralized human wastes were tested for the purpose of their sterility. Then the effect of human exometabolites of different oxidation levels both on wheat productivity and on the SLS microflora composition was examined. The SLS extract with a definite amount of human mineralized wastes was used as an irrigation solution. The conducted experiments demonstrated that the H2 O2 decreasing to 1 ml on 1 g of feces and to 0.25 ml on 1 ml of urine had not affected the sterility of mineralized human wastes. Wheat cultivation on the SLS with the addition in an irrigation solution of mineralized human wastes in the amount simulating 1/6 of a daily human diet showed the absence of basic dependence of plants productivity on oxidation level of human exometabolites. Yet the analysis of the microflora composition of the irrigation solutions demonstrated its dependence on the oxidation level of the exometabolites introduced. The amount of yeast-like fungi increased in 20 times in the solutions containing less oxidized exometabolites in comparison with the variant in which the human wastes were subjected to a full-scale oxidation. Besides, the solutions with less oxidized exometabolites displayed a bigger content of plant pathogenic bacteria and denitrifies. Consequently the

  15. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea.

    PubMed

    Miller, Allison; Schaal, Barbara

    2005-09-06

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG-trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG-trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea.

  16. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea

    PubMed Central

    Miller, Allison; Schaal, Barbara

    2005-01-01

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG–trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG–trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea. PMID:16126899

  17. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  18. Degradation Processes of Pesticides Used in Potato Cultivations.

    PubMed

    Kurek, M; Barchańska, H; Turek, M

    Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.

  19. Production of deuterated switchgrass by hydroponic cultivation

    DOE PAGES

    Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; ...

    2015-04-21

    Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO 2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controlsmore » grown with H 2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D 2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.« less

  20. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  1. Energy saving and consumption reducing evaluation of thermal power plant

    NASA Astrophysics Data System (ADS)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  2. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods.

    PubMed

    Kaplan, Drora; Maymon, Maskit; Agapakis, Christina M; Lee, Andrew; Wang, Andrew; Prigge, Barry A; Volkogon, Mykola; Hirsch, Ann M

    2013-09-01

    Plant roots comprise more than 50% of the plant's biomass. Part of that biomass includes the root microbiome, the assemblage of bacteria and fungi living in the 1-3 mm region adjacent to the external surface of the root, the rhizosphere. We hypothesized that the microorganisms living in the rhizosphere and in bulk soils of the harsh environment of the Negev Desert of Israel had potential for use as plant-growth-promoting bacteria (PGPB) to improve plant productivity in nutrient-poor, arid soils that are likely to become more common as the climate changes. • We used cultivation-dependent methods including trap experiments with legumes to find nitrogen-fixing rhizobia, specialized culture media to determine iron chelation via siderophores and phosphate-solubilizing and cellulase activities; cultivation-independent methods, namely 16S rDNA cloning and sequencing; and also community-level physiological profiling to discover soil microbes associated with the Negev desert perennials Zygophyllum dumosum and Atriplex halimus during the years 2009-2010. • We identified a number of PGPB, both epiphytes and endophytes, which fix nitrogen, chelate iron, solubilize phosphate, and secrete cellulase, as well as many other bacteria and some fungi, thereby providing a profile of the microbiomes that support the growth of two desert perennials. • We generated a snapshot of the microbial communities in the Negev Desert, giving us an insight in its natural state. This desert, like many arid environments, is vulnerable to exploitation for other purposes, including solar energy production and dry land farming.

  3. The cultivation of energy crops for biogas production and the application of digestates are characterized by high variability of CO2 exchange and soil organic C stock changes

    NASA Astrophysics Data System (ADS)

    Augustin, Juergen; Fiedler, Sebastian; Heintze, Gawan; Rohwer, Marcus; Prescher, Anne-Katrin; Pohl, Madlen; Jurisch, Nicole; Hagemann, Ulrike

    2017-04-01

    variable positive and negative C budgets. This indicates that, in most cases, neither the selected crops nor the application of anaerobic digestates were sufficient to compensate for SOC losses. Apparently, the potential of anaerobic digestates to maintain or increase SOC stocks is considerably smaller than expected. If continuous decreases of SOC stocks due to energy crop cultivation are to be avoided, additional studies on the optimization of crop rotations (selection of plants with high C input), and digestate fertilization (type of digestate, amount and application technique) are required. A continuously improved version of the methodology used in this study promises faster and more precise results than classic long-term field trials.

  4. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    PubMed

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  5. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    PubMed

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  6. Report: Comparison of qualitative, quantitative analysis and antioxidant potential between wild and cultivated Borago officinalis leaves from palestine.

    PubMed

    Abu-Qaoud, Hassan; Shawarb, Nuha; Hussen, Fatima; Jaradat, Nidal; Shtaya, Munqez

    2018-05-01

    Borago officinalis plant is an important plant of high medicinal and nutritional values. This study designed to evaluate antioxidant activity, screen the existence of phytogenic chemical compounds and to determine the total flavonoid and phenol contents of wild and cultivated Borago officinalis. Total flavonoid contents of the wild and cultivated Borago officinalis were determined by using rutin reference standard method and total phenols determined by using Folin Ciocalteu's method while antioxidant activity evaluated by using 2, 2-diphenyl-1-picryl-hydrazyl-hydrate assay. Phytochemical analyses indicated the presence of carbohydrate, phenols, flavonoids, phytosteroids tannins and volatile oil. The total flavonoid content of the methanolic extract from the wild borage plant was 22.4mg RU/g this value was reduced to 13.1mg RU/g for the cultivated methanolic extract as well as the total phenols contents was dropped from 5.21mg GA/g to 2.37mg GA/g methanolic extracts. Total tannins content of the wild growing borage plant was 13.7mg GA/g methanolic extract. This value was higher in the cultivated borage with 21.33mg GA/g methanolic extract. The wild leaves extract had IC 50 =6.3μg/mL for wild leaves extract was closer to IC 50 value of Trolox (standard reference with high antioxidant activity), while the cultivated leaves extract had higher IC 50 = 8.7μg/mL which mean lower antioxidant activity than the wild growing one. The data of this study showed that the extracts of Borago officinalis possess antioxidant and free radical scavenging activities. Variation was clear between wild and cultivated species, these findings propose that such plant extract could have a wide range of applications in both food and pharmaceutical industries. Therefore, more research is necessary to investigate different cultural practices on the efficiency of borage plant.

  7. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    PubMed

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Lignocellulose pretreatment in a fungus-cultivating termite

    Treesearch

    Hongjie Li; Daniel J. Yelle; Chang Li; Mengyi Yang; Jing Ke; Ruijuan Zhang; Yu Liu; Na Zhu; Shiyou Liang; Xiaochang Mo; John Ralph; Cameron R. Currie; Jianchu Mo

    2017-01-01

    Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether– and carbon–carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating...

  9. A trial of production of the plant-derived high-value protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits.

    PubMed

    Kato, Kazuhisa; Maruyama, Shinichiro; Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Mizoguchi, Tsuyoshi; Goto, Eiji; Ezura, Hiroshi

    2011-08-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m(-2) s(-)1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.

  10. Energy conversion/power plant cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, K.

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  11. Impacts of biofuel cultivation on mortality and crop yields

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Wild, O.; Hewitt, C. N.

    2013-05-01

    Ground-level ozone is a priority air pollutant, causing ~ 22,000 excess deaths per year in Europe, significant reductions in crop yields and loss of biodiversity. It is produced in the troposphere through photochemical reactions involving oxides of nitrogen (NOx) and volatile organic compounds (VOCs). The biosphere is the main source of VOCs, with an estimated 1,150TgCyr-1 (~ 90% of total VOC emissions) released from vegetation globally. Isoprene (2-methyl-1,3-butadiene) is the most significant biogenic VOC in terms of mass (around 500TgCyr-1) and chemical reactivity and plays an important role in the mediation of ground-level ozone concentrations. Concerns about climate change and energy security are driving an aggressive expansion of bioenergy crop production and many of these plant species emit more isoprene than the traditional crops they are replacing. Here we quantify the increases in isoprene emission rates caused by cultivation of 72Mha of biofuel crops in Europe. We then estimate the resultant changes in ground-level ozone concentrations and the impacts on human mortality and crop yields that these could cause. Our study highlights the need to consider more than simple carbon budgets when considering the cultivation of biofuel feedstock crops for greenhouse-gas mitigation.

  12. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Aanes, Gjert; Schiefloe, Mona; Coelho, Liz H. F.; Millar, Katherine D. L.; Edelmann, Richard E.

    2014-03-01

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore topics in basic plant biology as well as applied research on the use of plants in bioregenerative life support systems. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seedling Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments performed in 2006 and 2010. Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: (1) improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies, (2) the use of infrared illumination to provide high-quality images of the seedlings, (3) modifications in procedures used in flight to improve the focus and overall quality of the images, and (4) changes in the atmospheric conditions in the EMCS incubator. In SG-1, a novel red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI was confirmed and now can be more precisely characterized based on the improvements in procedures. The lessons learned from sequential experiments in the TROPI hardware provide insights to other researchers developing space experiments in plant biology.

  13. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview.

    PubMed

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2015-06-05

    Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended.

  14. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview

    PubMed Central

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2015-01-01

    Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended. PMID:26057747

  15. The Utilization of a Space Flight Plant Growth Chamber in the Cultivation of Salad Crop Species: A Prelude to a Salad Machine

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.; Kliss, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The application of bioregenerative life support systems provides an attractive approach to minimize resupply requirement and ultimate self-sufficiency on long duration manned missions in space. The on-board cultivation of salad-type vegetables for crew consumption has been proposed as a first step approach towards reducing a total reliance on the resupply of food. The recent advances in the development of space flight plant growth facilities such as the Plant Generic Bioprocessing Apparatus (PGBA) have established a firm technical basis upon which the implementation of a 'salad machine' concept may be achieved. A presentation on ground based studies will be made evaluating (a) the operational performance of the PGBA facility in a crop production mode and (b) the qualitative and quantitative value of salad plant material produced within the chamber.

  16. Wind Plant Preconstruction Energy Estimates. Current Practice and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Smith, Aaron; Fields, Michael

    2016-04-19

    Understanding the amount of energy that will be harvested by a wind power plant each year and the variability of that energy is essential to assessing and potentially improving the financial viability of that power plant. The preconstruction energy estimate process predicts the amount of energy--with uncertainty estimates--that a wind power plant will deliver to the point of revenue. This report describes the preconstruction energy estimate process from a technical perspective and seeks to provide insight into the financial implications associated with each step.

  17. Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane.

    PubMed

    Joyce, Priya; Kuwahata, Melissa; Turner, Nicole; Lakshmanan, Prakash

    2010-02-01

    A reproducible method for transformation of sugarcane using various strains of Agrobacterium tumefaciens (A. tumefaciens) (AGL0, AGL1, EHA105 and LBA4404) has been developed. The selection system and co-cultivation medium were the most important factors determining the success of transformation and transgenic plant regeneration. Plant regeneration at a frequency of 0.8-4.8% occurred only when callus was transformed with A. tumefaciens carrying a newly constructed superbinary plasmid containing neomycin phosphotransferase (nptII) and beta-glucuronidase (gusA) genes, both driven by the maize ubiquitin (ubi-1) promoter. Regeneration was successful in plants carrying the nptII gene but not the hygromycin phosphotransferase (hph) gene. NptII gene selection was imposed at a concentration of 150 mg/l paromomycin sulphate and applied either immediately or 4 days after the co-cultivation period. Co-cultivation on Murashige and Skoog (MS)-based medium for a period of 4 days produced the highest number of transgenic plants. Over 200 independent transgenic lines were created using this protocol. Regenerated plants appeared phenotypically normal and contained both gusA and nptII genes. Southern blot analysis revealed 1-3 transgene insertion events that were randomly integrated in the majority of the plants produced.

  18. Biological limits on nitrogen use for plant photosynthesis: a quantitative revision comparing cultivated and wild species.

    PubMed

    Rotundo, José L; Cipriotti, Pablo A

    2017-04-01

    The relationship between leaf photosynthesis and nitrogen is a critical production function for ecosystem functioning. Cultivated species have been studied in terms of this relationship, focusing on improving nitrogen (N) use, while wild species have been studied to evaluate leaf evolutionary patterns. A comprehensive comparison of cultivated vs wild species for this relevant function is currently lacking. We hypothesize that cultivated species show increased carbon assimilation per unit leaf N area compared with wild species as associated with artificial selection for resource-acquisition traits. We compiled published data on light-saturated photosynthesis (A max ) and leaf nitrogen (LN area ) for cultivated and wild species. The relationship between A max and LN area was evaluated using a frontier analysis (90 th percentile) to benchmark the biological limit of nitrogen use for photosynthesis. Carbon assimilation in relation to leaf N was not consistently higher in cultivated species; out of 14 cultivated species, only wheat, rice, maize and sorghum showed higher ability to use N for photosynthesis compared with wild species. Results indicate that cultivated species have not surpassed the biological limit on nitrogen use observed for wild species. Future increases in photosynthesis based on natural variation need to be assisted by bioengineering of key enzymes to increase crop productivity. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae.

    PubMed

    Zhang, Zhen-Yu; Yuan, Yimin; Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4', 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species.

  20. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae

    PubMed Central

    Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4’, 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species. PMID:29304141

  1. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space.

    PubMed

    Wagner, Ines; Steinweg, Christian; Posten, Clemens

    2016-08-01

    Illumination with red and blue photons is known to be efficient for cultivation of higher plants. For microalgae cultivation, illumination with specific wavelengths rather than full spectrum illumination can be an alternative where there is a lack of knowledge about achievable biomass yields. This study deals with the usage of color LED illumination to cultivate microalgae integrated into closed life support systems for outer space. The goal is to quantify biomass yields using color illumination (red, blue, green and mixtures) compared to white light. Chlamydomonas reinhardtii was cultivated in plate reactors with color compared to white illumination regarding PCE, specific pigment concentration and cell size. Highest PCE values were achieved under low PFDs with a red/blue illumination (680 nm/447 nm) at a 90 to 10% molar ratio. At higher PFDs saturation effects can be observed resulting from light absorption characteristics and the linear part of PI curve. Cell size and aggregation are also influenced by the applied light color. Red/blue color illumination is a promising option applicable for microalgae-based modules of life support systems under low to saturating light intensities and double-sided illumination. Results of higher PCE with addition of blue photons to red light indicate an influence of sensory pigments. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    PubMed

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Preliminary Study on the Location Selection of Microalgae Cultivation In Nusa Tenggara Region As A Potential Feedstock For Bioavtur

    NASA Astrophysics Data System (ADS)

    Anggraini, Citrae Permata Kusuma; Sasongko, Nugroho Adi; Kuntjoro, Yanif Dwi

    2018-02-01

    NTT is a province located in strategic areas between Bali and South Sulawesi which has economic growth 5,08% in 2016. This causes air transportation in NTT to grow rapidly so the need for avtur is increased by 6% per year. To meet the needs of avtur in NTT would require energy diversification with bioavtur development in which one of them comes from microalgae. The content of lipid and hydrocarbon in microalgae can be used as a source of bioavtur feedstock. The suitability of location for cultivation will influence the success of microalgae cultivation that will be used as a source of bioavtur feedstock. The purpose of this research is to choose the best location for microalgae cultivation in NTT by AHP method. The criteria used in this research are nutrient, water and technology. Sub criteria of nutrient elements are coal power plant emission, cement industry emission and synthetic fertilizers, sub criteria from water that is sea water, brackish water and fresh water, while sub criteria of technology are Photobioreactor, Open Raceway Pond and membrane. The result of AHP analysis shows the selection of microalgae cultivation location in Kupang with the weight of 0.308, with the source of nutrient derived from coal power plant emission, the type of water used is sea water and the technology used is Photobioreactor. Microalgae species used were Nannochloropsis sp with a lipid content of 31-68%. Based on the author assumption, microalgae have the productivity for bioavtur manufacture which amount of 24.489kL/ha/ yr. That can be used to meet the needs of 2% avtur in NTT which amount of 1.052,22 kL/yr and the area requirement for microalgae cultivation is 2,14 hectare.

  4. Major Energy Plants and Their Potential for Bioenergy Development in China

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Hou, Shenglin; Su, Man; Yang, Mingfeng; Shen, Shihua; Jiang, Gaoming; Qi, Dongmei; Chen, Shuangyan; Liu, Gongshe

    2010-10-01

    China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut ( Jatropha curcas L.), Jerusalem artichoke ( Helianthus tuberosus L.), sweet sorghum ( Sorghum bicolor L.) and Chinese silvergrass ( Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.

  5. Energy prices and substitution in United States manufacturing plants

    NASA Astrophysics Data System (ADS)

    Grim, Cheryl

    Persistent regional disparities in electricity prices, growth in wholesale power markets, and recent deregulation attempts have intensified interest in the performance of the U.S. electric power industry, while skyrocketing fuel prices have brought renewed interest in the effect of changes in prices of all energy types on the U.S. economy. This dissertation examines energy prices and substitution between energy types in U.S. manufacturing. I use a newly constructed database that includes information on purchased electricity and electricity expenditures for more than 48,000 plants per year and additional data on the utilities that supply electricity to study the distribution of electricity prices paid by U.S. manufacturing plants from 1963 to 2000. I find a large compression in the dispersion of electricity prices from 1963 to 1978 due primarily to a decrease in quantity discounts for large electricity purchasers. I also find that spatial dispersion in retail electricity prices among states, counties and utility service territories is large, rises over time for smaller purchasers, and does not diminish as wholesale power markets expand in the 1990s. In addition, I examine energy type consumption patterns, prices, and substitution in U.S. manufacturing plants. I develop a plant-level dataset for 1998 with data on consumption and expenditures on energy and non-energy production inputs, output, and other plant characteristics. I find energy type consumption patterns vary widely across manufacturing plants. Further, I find a large amount of dispersion across plants in the prices paid for electricity, oil, natural gas, and coal. These high levels of dispersion are accounted for by the plant's location, industry, and purchase quantity. Finally, I present estimates of own- and cross-price elasticities of demand for both the energy and non-energy production inputs.

  6. Application of Hazard Analysis and Critical Control Points (HACCP) to the Cultivation Line of Mushroom and Other Cultivated Edible Fungi.

    PubMed

    Pardo, José E; de Figueirêdo, Vinícius Reis; Alvarez-Ortí, Manuel; Zied, Diego C; Peñaranda, Jesús A; Dias, Eustáquio Souza; Pardo-Giménez, Arturo

    2013-09-01

    The Hazard analysis and critical control points (HACCP) is a preventive system which seeks to ensure food safety and security. It allows product protection and correction of errors, improves the costs derived from quality defects and reduces the final overcontrol. In this paper, the system is applied to the line of cultivation of mushrooms and other edible cultivated fungi. From all stages of the process, only the reception of covering materials (stage 1) and compost (stage 3), the pre-fruiting and induction (step 6) and the harvest (stage 7) have been considered as critical control point (CCP). The main hazards found were the presence of unauthorized phytosanitary products or above the permitted dose (stages 6 and 7), and the presence of pathogenic bacteria (stages 1 and 3) and/or heavy metals (stage 3). The implementation of this knowledge will allow the self-control of their productions based on the system HACCP to any plant dedicated to mushroom or other edible fungi cultivation.

  7. [Studies on chemical constituents of cultivated Cistanche salsa].

    PubMed

    Yang, Jian-Hu; Hu, Jun-Ping; Rena, Kasimu; Du, Nian-Sheng

    2008-11-01

    To study the chemical constituents of cultivated Cistanche salsa. Compounds were isolated and purified on several chromatography, and then were identified by physico-chemical properties and structurally elucidated by spectral analysis. Seven compounds were isolated and identified as beta-sitosterol (I), daucosterol (II), beta-sitosteryl glucoside 3'-O-heptadecoicate (III), 8-hydroxygeraniol 1-beta-D-glucopyranoside (IV), 2-methanol-5-hydroxy-pyridine (V), betaine (VI), galactitol (VII). The chemical constituents of artificial cultivated Cistanche salsa are studied for the first time. Among them, compound III and IV are isolated from the plant for the first time, compound V is isolated from this genus for the first time.

  8. Cultivating the Deep Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system

  9. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    NASA Astrophysics Data System (ADS)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  10. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  11. Karyological features of wild and cultivated forms of myrtle (Myrtus communis, Myrtaceae).

    PubMed

    Serçe, S; Ekbiç, E; Suda, J; Gündüz, K; Kiyga, Y

    2010-03-09

    Myrtle is an evergreen shrub or small tree widespread throughout the Mediterranean region. In Turkey, both cultivated and wild forms, differing in plant and fruit size and fruit composition, can be found. These differences may have resulted from the domestication of the cultivated form over a long period of time. We investigated whether wild and cultivated forms of myrtle differ in karyological features (i.e., number of somatic chromosomes and relative genome size). We sampled two wild forms and six cultivated types of myrtle. All the samples had the same chromosome number (2n = 2x = 22). The results were confirmed by 4',6-diamidino-2-phenylindole (DAPI) flow cytometry. Only negligible variation (approximately 3%) in relative fluorescence intensity was observed among the different myrtle accessions, with wild genotypes having the smallest values. We concluded that despite considerable morphological differentiation, cultivated and wild myrtle genotypes in Turkey have similar karyological features.

  12. Bioenergy Landscape Design to Minimize the Environmental Impacts of Feedstock Cultivation

    NASA Astrophysics Data System (ADS)

    Field, J.; Dinh, T.; Paustian, K.

    2012-12-01

    The United States has adopted aggressive mandates for the use of biofuels in an attempt to improve domestic energy security, reduce greenhouse gas (GHG) emissions in the transportation sector, and stimulate rural development. The Renewable Fuel Standard requires that the environmental impact of all conventional, advanced, and cellulosic biofuels be evaluated through standardized lifecycle assessment (LCA) techniques relative to a baseline of petroleum-derived gasoline and diesel fuels. A significant fraction of the energy use, GHG emissions, and water quality impact of the production of all types of biofuel occurs during the cultivation of feedstocks (either starch- or oil-based or lignocellulosic), which requires some combination of crop switching, land use change, or cultivation intensification. Furthermore, these impacts exhibit a high degree of spatial variability with local climate, soil type, land use history, and farm management practices. Here we present a spatially-explicit LCA methodology based on the DayCent soil biogeochemistry model capable of accurately evaluating cultivation impacts for a variety of biofuel feedstocks. This methodology considers soil GHG emissions and nitrate leaching as well as the embodied emissions of agricultural inputs and fuels used for field operations and biomass transport to a centralized collection point (biorefinery or transportation hub). Model results are incorporated into a biomass production cost analysis in order to identify the impact of different system designs on production cost. Finally, the resulting multi-criteria optimization problem is solved by monetizing all environmental externalities based on figures from the non-market valuation literature and using a heuristic optimization algorithm to identify optimal cultivation areas and collection point locations to minimize overall environmental impacts at lowest possible cost. Preliminary analysis results are presented for an illustrative case study of switchgrass

  13. Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. (Agaricomycetideae) on grass plants in Taiwan.

    PubMed

    Liang, Zeng-Chin; Wu, Kuan-Jzen; Wang, Jinn-Chyi; Lin, Chorng-Horng; Wu, Chiu-Yeh

    2011-01-01

    Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius, on the stalks of three grass plants, i.e., Panicum repens, Pennisetum purpureum, and Zea mays were investigated. The effects of various combinatorial substrates on mushroom mycelial growth and yield calculated as biological efficiency (BE) were determined. Among 9 experimental substrates, the most suitable substrate for mycelial growth was 45ZMS:45S, followed by 45PRS:45S; their mycelial growth rates were obviously quicker than that of the control substrate. The BEs of all the experimental substrates respectively containing P. repens stalk, P. purpureum stalk and Z. mays stalk were higher than that of the control (39.55%) during the 2.5 months of cultivation period. The best substrate in terms of BE was 60ZMS:30S (58.33%), followed by 45PRS:45S (57.16%), 45ZMS:45S (49.86%), and 30ZMS:60S (47.20%). Based on the BE of the tested substrates, Z mays stalk appeared to be the best alternative material for the production of P. pulmonarius.

  14. Cannabis cultivation in Spain: A profile of plantations, growers and production systems.

    PubMed

    Alvarez, Arturo; Gamella, Juan F; Parra, Iván

    2016-11-01

    The European market for cannabis derivatives is being transformed. The cultivation of cannabis within the EU and the shift of demand from hashish to domestic marihuana are key aspects of this transformation. Spain, formerly central to the trade of Moroccan hashish, is becoming a marihuana-producing country. The emergence of "import-substitution" has been researched in other EU countries, but thus far the Spanish case remains undocumented. This paper is based on analysis of data of 748 cannabis plantations seized by Spanish police in 2013. The sample comprises reports of seizures identified through a survey of online news and police reports. "Event-analysis" methods were applied to these sources. The analysis offers a typology of plantations, a profile of participants and the different production systems, and a model of regional distribution. Half of the plantations were small (less than 42 plants) and half contained between 100 and 1000 plants, with an average size of 261 plants. About three-quarters of plants were cultivated indoors using stolen electricity. 86% of all plants seized were from large-scale plantations (more than 220 plants). Most plantations were located along the Mediterranean coast, where population and tourism are concentrated. Over three-quarters of those indicted by police were Spanish (85%). Among the foreign owners of big plantations, Dutch nationals predominated. The number of seized plants by province was directly associated with the number of grow shops (β=0.962, p<0.001). The rise of large-scale cannabis plantations in the Spanish Mediterranean coast is increasingly replacing import of Moroccan hashish. Indoor cultivation supported by grow shops, that provide the technology and know-how, seem to be the dominant form of organization in this emerging industry. Large-scale plantations may have met most of the demand for marihuana in 2013. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    PubMed

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    DTIC Science & Technology

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  17. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  18. Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway.

    PubMed

    Lund, Vidar; Fonahn, Wenche; Pettersen, Jens Erik; Caugant, Dominique A; Ask, Eirik; Nysaeter, Ase

    2014-09-01

    Cases of Legionnaires' disease associated with biological treatment plants (BTPs) have been reported in six countries between 1997 and 2010. However, knowledge about the occurrence of Legionella in BTPs is scarce. Hence, we undertook a qualitative and quantitative screening for Legionella in BTPs treating waste water from municipalities and industries in Norway, to assess the transmission potential of Legionella from these installations. Thirty-three plants from different industries were sampled four times within 1 year. By cultivation, 21 (16%) of 130 analyses were positive for Legionella species and 12 (9%) of 130 analyses were positive for Legionella pneumophila. By quantitative real-time polymerase chain reaction (PCR), 433 (99%) of 437 analyses were positive for Legionella species and 218 (46%) of 470 analyses were positive for L. pneumophila. This survey indicates that PCR could be the preferable method for detection of Legionella in samples from BTPs. Sequence types of L. pneumophila associated with outbreaks in Norway were not identified from the BTPs. We showed that a waste water treatment plant with an aeration basin can produce high concentrations of Legionella. Therefore, these plants should be considered as a possible source of community-acquired Legionella infections.

  19. Evaluating the landscape impact of renewable energy plants

    NASA Astrophysics Data System (ADS)

    Ioannidis, Romanos; Koutsoyiannis, Demetris

    2017-04-01

    Different types of renewable energy have been on an ongoing competition with each other. There has been a lot of research comparing the most common types of renewable energy plants in relation with their efficiency, cost and environmental impact. However, few papers so far have attempted to analyse their impact on landscape and there has never been in depth research on which type of renewable energy causes the least impact on the natural, cultural and aesthetic characteristics of a landscape. This seems to be a significant omission given the vast areas of land already covered with renewable energy plants and the worldwide plans for many more renewable energy projects in the future. Meanwhile, the low aesthetic quality of renewable energy plants has already been an obstacle to their further development, with several relevant examples from countries such as Spain and the Netherlands. There have even been cases where aesthetic degradation is the primary or even the single argument of the opposition to proposed plants. In any case, the aesthetic design and the integration of renewable energy plants into the landscape should really be important design parameters if we plan those projects to truly be sustainable and to be considered complete works of engineering. To initiate dialogue over those aspects of renewable energy, we provide a first comparison on hydro, solar and wind energy. To materialize this comparison, we use data from existing dams, photovoltaic and wind farms. Initially, the average area per MW covered by each type of energy plant is calculated and then evaluated qualitatively from a landscape-impact perspective. Although the area affected is comparable in these three cases, the analysis of the data suggests that dams offer a considerable amount of advantages compared to the other two types of plants. This conclusion arises from the fact that dams, whose basic impact to the landscape is the creation of an artificial lake, contribute much less to the

  20. Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP).

    PubMed

    Zhang, Zhao; Huang, Jim Junhui; Sun, Dongzhe; Lee, Yuankun; Chen, Feng

    2017-01-01

    In the present study, high light and nitrogen starvation with glucose-fed to the culture was found efficient to induce astaxanthin accumulation in Chlorella zofingiensis. Therefore, a two-step cultivation strategy including high biomass yield fermentation and outdoor induction with an energy-free RFP was conducted. During the fermentation, the highest cell density of 98.4gL -1 and astaxanthin yield of 73.3mgL -1 were achieved, which were higher than those so far reported in C. zofingiensis. During the outdoor induction, astaxanthin content was further increased by 1.5-fold leading to the highest astaxanthin productivity of 5.26mgL -1 day -1 under an optimal dilution of 5-fold. Our work thus provided an effective two-step cultivation strategy for production of astaxanthin by C. zofingiensis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Eucalyptus plantations for energy production in Hawaii. 1980 annual report, January 1980-December 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesell, C. D.

    1980-01-01

    In 1980 200 acres of eucalyptus trees were planted for a research and development biomass energy plantation bringing the total area under cultivation to 300 acres. Of this total acreage, 90 acres or 30% was planted in experimental plots. The remaining 70% of the cultivated area was closely monitored to determine the economic cost/benefit ratio of large scale biomass energy production. In the large scale plantings, standard field practices were set up for all phases of production: nursery, clearing, planting, weed control and fertilization. These practices were constantly evaluated for potential improvements in efficiency and reduced cost. Promising experimental treatmentsmore » were implemented on a large scale to test their effectiveness under field production conditions. In the experimental areas all scheduled data collection in 1980 has been completed and most measurements have been keypunched and analyzed. Soil samples and leaf samples have been analyzed for nutrient concentrations. Crop logging procedures have been set up to monitor tree growth through plant tissue analysis. An intensive computer search on biomass, nursery practices, harvesting equipment and herbicide applications has been completed through the services of the US Forest Service.« less

  2. Interface problems between material recycling systems and plants

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Oguchi, Mitsuo; Otsubo, Koji

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling system to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifier, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystems introduced in Plant Cultivation Modules.

  3. [Effects of stereoscopic cultivation on photosynthetic characteristics and growth of Tulipa edulis].

    PubMed

    Sun, Yuan; Guo, Qiao-Sheng; Zhu, Zai-Biao; Lin, Jian-Luo; Zhou, Bo-Ya; Zhao, Min-Jie

    2016-06-01

    The effect of stereoscopic cultivation on the growth, photosynthetic characteristics and yield of Tulipa edulis was studied to explore the feasibility of stereoscopic cultivation on efficient cultivation of T.edulis. Total leaf area and photosynthetic parameters of T.edulis under stereoscopic cultivation (the upper, middle and the lower layers ) and the control were measured using LI-3100 leaf area meter and LI-6400XT photosynthesis system in the growing peak period of T.edulis.Plant biomass and biomass allocation were also determined.In addition, the bulb regeneration and yield of T.edulis were measured in the harvesting time.The results indicated that in the middle layer of stereoscopic cultivation, leaf biomass proportion was the highest, but total bulb fresh and dry weight and output growth (fresh weight) were the lowest among the treatments.And total bulb fresh weight in the middle of stereoscopic cultivation reduced significantly, by 22.84%, compared with the control.Light intensity in the lower layer of stereoscopic cultivation was moderate, in which T.edulis net photosynthetic rate and water use efficiency were higher than those of the other layers of stereoscopic cultivation, and bulb biomass proportion was the highest in all the treatments.No significant difference was detected in the total bulb fresh weight, dry weight and output growth (fresh weight) between the middle layer of stereoscopic cultivation and the control.In general, there was no significant difference in the growth status of T.edulis between stereoscopic cultivation and the control.Stereoscopic cultivation increased the yield of T.edulis by 161.66% in fresh weight and 141.35% in dry weight compared with the control in the condition of the same land area, respectively.In conclusion, stereoscopic cultivation can improve space utilization, increase the production, and achieve the high density cultivation of T.edulis. Copyright© by the Chinese Pharmaceutical Association.

  4. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system.

    PubMed

    Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju

    2007-10-01

    A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.

  5. Recycling of organic wastes in burnt soils: combined application of poultry manure and plant cultivation.

    PubMed

    Villar, M C; Petrikova, V; Díaz-Raviña, M; Carballas, T

    2004-01-01

    A pot experiment was conducted to investigate the efficacy of a post-fire land management practice, including plant cultivation (Lolium perenne) combined with poultry manure addition, for restoring the protective vegetation cover in soils degraded by high intensity wildfires. The greenhouse experiment was performed with three burnt pine forest soils with added poultry manure at two doses of application and comparing the data with those obtained using NPK fertilizer. A significant effect of the amendment, soil properties and the interaction between amendment and soil properties on vegetation cover (phytomass production, nutrient content) was detected, but often the amendment treatment explained most of the variance. Changes induced by the organic amendment were more marked than those induced by inorganic fertilization. The increase of phytomass and nutrient uptake with poultry manure addition indicated the beneficial effects of this soil management practice. These findings can serve to develop field experiments and burnt soils reclamation technology.

  6. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    PubMed Central

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase. PMID:28102313

  7. Energy crops cultivated on the slag from incineration of the sewage sludge energy value assessment

    NASA Astrophysics Data System (ADS)

    Głowacka, Anna; Tarnowski, Krzysztof; Bering, Sławomira; Mazur, Jacek; Kiper, Justyna; Wołoszyk, Czesław

    2017-11-01

    In 2011-2013, research on the fertilizer value of slag from the incineration of municipal sewage sludge as an alternative source of phosphorus was carried out. The research scheme included 5 variants (in 4 repetitions) fertilization cultivated for grain with mineral fertilizers and ash. (P1, P2 and P3 - consecutive doses of phosphorus from ash) from municipal sewage sludge combustion: NK, NPK, NK+P1, NK+P2 and NK+P3. The obtained results indicate that the average of the three years of research, the value for the straw spring rape heat of combustion was 15.99 MJ/kg d.m., corn straw 16.20 MJ/kg d.m., triticale straw 17.06 MJ/kg d.m. and Miscanthus 17.34 MJ/kg d.m. The highest value of combustion heat for spring rape straw and miscanthus performed for objects fertilized with NK + P3 - 16.08 MJ/kg d.m. (Spring rape) and 17.57 MJ/kg d.m. (Miscanthus); For corn straw objects fertilized with nitrogen and potassium - 16.35 MJ/kg d.m. and triticale straw objects fertilized with NPK and NK + P2 - 17.10 MJ/kg d.m. Straw calorific value of tested plants was lower than the combustion heat by an average of 6.97% (triticale) to 7.38% (spring rape).

  8. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection.

    PubMed

    Kumar, Abhay; Elad, Yigal; Tsechansky, Ludmila; Abrol, Vikas; Lew, Beni; Offenbach, Rivka; Graber, Ellen R

    2018-01-01

    The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Cultivation-Independent Characterization of Methylobacterium Populations in the Plant Phyllosphere by Automated Ribosomal Intergenic Spacer Analysis▿ †

    PubMed Central

    Knief, Claudia; Frances, Lisa; Cantet, Franck; Vorholt, Julia A.

    2008-01-01

    Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNAAla gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems. PMID:18263752

  10. Effect of cultivation ages on Cu accumulation in Greenhouse Soils in North China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Wenmiao; Chen, Xin; Shi, Yi

    2017-11-01

    In this study, we determined the influence of cultivation age on Cu accumulation in greenhouse soils. The concentration of plant available Cu (A-Cu) decreased with depth, and the contents of top soils (0-40 cm) in greenhouses were higher than those of the open field. There was a positive correlation between A-Cu concentrations in soils and cultivation ages (R2=0.572). The contents of total Cu (T-Cu) decreased with depth, and positively correlated with cultivation ages in top soils (0-20cm) (R2=0.446). The long-term usage of manures can cause Cu increase and accumulation in greenhouse soils in comparison to the open field.

  11. Saving for a rainy day: Control of energy needs in resurrection plants.

    PubMed

    Asami, Pauline; Mundree, Sagadevan; Williams, Brett

    2018-06-01

    Plants constantly respond to threats in their environment by balancing their energy needs with growth, defence and survival. Some plants such as the small group of resilient angiosperms, the resurrection plants, do this better than most. Resurrection plants possess the capacity to tolerate desiccation in vegetative tissue and upon watering, regain full metabolic capacity within 72 h. Knowledge of how these plants survive such extremes has advanced in the last few decades, but the molecular mechanics remain elusive. Energy and water metabolism, cell cycle control, growth, senescence and cell death all play key roles in resurrection plant stress tolerance. Some resurrection plants suppress growth to improve energy efficiency and survival while sensitive species exhaust energy resources rapidly, have a diminished capacity to respond and die. How do the stress and energy metabolism responses employed by resurrection plants differ to those used by sensitive plants? In this perspective, we summarise recent findings defining the relationships between energy metabolism, stress tolerance and programmed cell death and speculate important roles for this regulation in resurrection plants. If we want to harness the strategies of resurrection plants for crop improvement, first we must understand the processes that underpin energy metabolism during growth and stress. Copyright © 2018. Published by Elsevier B.V.

  12. The cultivation of the mushroom Agaricus bisporus (Champignon) and some environmental and health aspects.

    PubMed

    Zicari, Giuseppe; Rivetti, Daniela; Soardo, Vincenzo; Cerrato, Elena

    2012-01-01

    The cultivation of the mushroom Agaricus bisporus, also known as button mushroom, requires the use of substrates for its cultivation, such as chicken and/or horse manure and the application of manufacturing steps, such as storage and composting that produce odours. The odours may cause disturbance to people living near the plant and may be a problem for workers. This article examines some measures that can be taken to reduce the odorous emissions during the production of Agaricus bisporus. The possibility of recovery of some organic matter left from the cultivation is examined. Finally, some occupational hazards for workers are highlighted.

  13. Cultivated Lands of Kuban and Features of Their Development

    ERIC Educational Resources Information Center

    Belyuchenko, Ivan S.

    2016-01-01

    The basis of cultivated lands consists of the interacting populations of annual and perennial weeds and updated annually cultural annual plants, which have very limited data on the aboveground net production, and even less information about the yield of their underground organs. The aim of the research is scientific and theoretical development of…

  14. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants.

    PubMed

    Siqueira, João Antonio; Hardoim, Pablo; Ferreira, Paulo C G; Nunes-Nesi, Adriano; Hemerly, Adriana S

    2018-06-19

    Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Lammers, Peter J.; Huesemann, Michael; Boeing, Wiebke; ...

    2016-12-12

    The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new cultivation reactor technologies, and development of methods for robust cultivation. The NAABB consortium testbeds produced over 1500 kg of biomass for downstream processing. The biomass production included a number of model production strains, but also took into production some of the more promising strains found through the prospecting efforts of the consortium. Cultivation efforts at large scale are intensive andmore » costly, therefore the consortium developed tools and models to assess the productivity of strains under various environmental conditions, at lab scale, and validated these against scaled outdoor production systems. Two new pond-based bioreactor designs were tested for their ability to minimize energy consumption while maintaining, and even exceeding, the productivity of algae cultivation compared to traditional systems. Also, molecular markers were developed for quality control and to facilitate detection of bacterial communities associated with cultivated algal species, including the Chlorella spp. pathogen, Vampirovibrio chlorellavorus, which was identified in at least two test site locations in Arizona and New Mexico. Finally, the consortium worked on understanding methods to utilize compromised municipal wastewater streams for cultivation. In conclusion, this review provides an overview of the cultivation methods and tools developed by the NAABB consortium to produce algae biomass, in robust low energy systems, for biofuel production.« less

  16. Geographic population structure in an outcrossing plant invasion after centuries of cultivation and recent founding events.

    PubMed

    Gaskin, John F; Schwarzländer, Mark; Gibson, Robert D; Simpson, Heather; Marshall, Diane L; Gerber, Esther; Hinz, Hariet

    2018-04-01

    Population structure and genetic diversity of invasions are the result of evolutionary processes such as natural selection, drift and founding events. Some invasions are also molded by specific human activities such as selection for cultivars and intentional introduction of desired phenotypes, which can lead to low genetic diversity in the resulting invasion. We investigated the population structure, diversity and origins of a species with both accidental and intentional introduction histories, as well as long-term selection as a cultivar. Dyer's woad ( Isatis tinctoria ; Brassicaceae) has been used as a dye source for at least eight centuries in Eurasia, was introduced to eastern USA in the 1600s, and is now considered invasive in the western USA. Our analyses of amplified fragment length polymorphisms (AFLPs) from 645 plants from the USA and Eurasia did not find significantly lower gene diversity ( H j ) in the invaded compared to the native range. This suggests that even though the species was under cultivation for many centuries, human selection of plants may not have had a strong influence on diversity in the invasion. We did find significantly lower genetic differentiation ( F st ) in the invasive range but our results still suggested that there are two distinct invasions in the western USA. Our data suggest that these invasions most likely originated from Switzerland, Ukraine and Germany, which correlates with initial biological control agent survey findings. Genetic information on population structure, diversity and origins assists in efforts to control invasive species, and continued combination of ecological and molecular analyses will help bring us closer to sustainable management of plant invasions.

  17. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  18. Accumulation and Translocation of Essential and Nonessential Elements by Tomato Plants (Solanum lycopersicum) Cultivated in Open-Air Plots under Organic or Conventional Farming Techniques.

    PubMed

    Liñero, Olaia; Cidad, Maite; Carrero, Jose Antonio; Nguyen, Christophe; de Diego, Alberto

    2015-11-04

    A 5-month experiment was performed to study the accumulation of several inorganic elements in tomato plants cultivated using organic or synthetic fertilizer. Plants were harvested in triplicate at six sampling dates during their life cycle. Statistical and chemometric analysis of data indicated the sequestration of toxic elements and of Na, Zn, Fe, and Co in roots, while the rest of the elements, including Cd, were mainly translocated to aboveground organs. A general decreasing trend in element concentrations with time was observed for most of them. A negative correlation between some element concentrations and ripening stage of fruits was identified. Conventionally grown plants seemed to accumulate more Cd and Tl in their tissues, while organic ones were richer in some nutrients. However, there was no clear effect of the fertilizer used (organic vs synthetic) on the elemental composition of fruits.

  19. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  20. Changes in carbon footprint when integrating production of filamentous fungi in 1st generation ethanol plants.

    PubMed

    Brancoli, Pedro; Ferreira, Jorge A; Bolton, Kim; Taherzadeh, Mohammad J

    2018-02-01

    Integrating the cultivation of edible filamentous fungi in the thin stillage from ethanol production is presently being considered. This integration can increase the ethanol yield while simultaneously producing a new value-added protein-rich biomass that can be used for animal feed. This study uses life cycle assessment to determine the change in greenhouse gas (GHG) emissions when integrating the cultivation of filamentous fungi in ethanol production. The result shows that the integration performs better than the current scenario when the fungal biomass is used as cattle feed for system expansion and when energy allocation is used. It performs worse if the biomass is used as fish feed. Hence, integrating the cultivation of filamentous fungi in 1st generation ethanol plants combined with proper use of the fungi can lead to a reduction of GHG emissions which, considering the number of existing ethanol plants, can have a significant global impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Functional genomics of bio-energy plants and related patent activities.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  2. Nootropic activity of extracts from wild and cultivated Alfredia cernua.

    PubMed

    Mustafin, R N; Shilova, I V; Suslov, N I; Kuvacheva, N V; Amelchenko, V P

    2011-01-01

    Antihypoxic and nootropic activities of extracts from aerial parts of wild and cultivated Alfredia cernua (L.) Cass. were studied on the models of pressure chamber hypoxia, open field test, and passive avoidance conditioning. The extracts of Alfredia cernua promoted retention of the orientation reflex and passive avoidance conditioned response and normalized orientation and exploratory activities disordered as a result of hypoxic injury. The efficiency of the extracts was superior to that of piracetam by the effect on retention of passive avoidance response throughout the greater part of the experiment. Nootropic activity of cultivated Alfredia cernua was not inferior to that of the wild plant.

  3. Cultivation of parasites.

    PubMed

    Ahmed, Nishat Hussain

    2014-07-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites.

  4. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  5. Polyhouse cultivation of invitro raised elite Stevia rebaudiana Bertoni: An assessment of biochemical and photosynthetic characteristics

    USDA-ARS?s Scientific Manuscript database

    Polyhouse cultivated Stevia rebaudiana Bertoni plants, initially raised from synthetic seeds, were assessed for biochemical and photosynthetic characteristics and compared with their mother plant. Synthetic seeds were produced using nodal segments containing single axillary buds excised from in vitr...

  6. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  7. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea).

    PubMed

    Lin, Xian Yong; Liu, Xiao Xia; Zhang, Ying Peng; Zhou, Yuan Qing; Hu, Yan; Chen, Qiu Hui; Zhang, Yong Song; Jin, Chong Wei

    2014-03-30

    Quality-associated problems, such as excessive in planta accumulation of oxalate, often arise in soillessly cultivated spinach (Spinacia oleracea). Maintaining a higher level of ammonium (NH₄⁺) compared to nitrate (NO₃⁻) during the growth period can effectively decrease the oxalate content in hydroponically cultivated vegetables. However, long-term exposure to high concentrations of NH₄⁺ induces toxicity in plants, and thus decreases the biomass production. Short-term application of NH₄⁺ before harvesting in soilless cultivation may provide an alternative strategy to decrease oxalate accumulation in spinach, and minimise the yield reduction caused by NH₄⁺ toxicity. The plants were pre-cultured in 8 mmol L⁻¹ NO₃⁻ nutrient solution. Next, 6 days before harvest, the plants were transferred to a nutrient solution containing 4 mmol L⁻¹ NO₃⁻ and 4 mmol L⁻¹ NH₄⁺. This new mix clearly reduced oxalate accumulation, increased levels of several antioxidant compounds, and enhanced antioxidant capacity in the edible parts of spinach plants, but it did not affect biomass production. However, when the 8 mmol L⁻¹ NO₃⁻ was shifted to either nitrogen-free, 4 mmol L⁻¹ NH₄⁺ or 8 mmol L⁻¹ NH₄⁺ treatments, although some of the quality indexes were improved, yields were significantly reduced. Short-term alteration of nitrogen supply prior to harvest significantly affects quality and biomass of spinach plants, and we strongly recommend to simultaneously use NO₃⁻ and NH₄⁺ in hydroponic cultivation, which improves vegetable quality without decreasing biomass production. © 2013 Society of Chemical Industry.

  8. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil.

    PubMed

    Gorim, Linda Y; Vandenberg, Albert

    2017-01-01

    Increasingly unpredictable annual rainfall amounts and distribution patterns have far reaching implications for pulse crop biology. Seedling and whole plant survival will be affected given that water is a key factor in plant photosynthesis and also influences the evolving disease spectrum that affects crops. The wild relatives of cultivated lentil are native to drought prone areas, making them good candidates for the evaluation of drought tolerance traits. We evaluated root and shoot traits of genotypes of cultivated lentil and five wild species grown under two water deficit regimes as well as fully watered conditions over a 13 week period indoors. Plants were grown in sectioned polyvinyl chloride (PVC) tubes containing field soil from the A, B, and C horizons. We found that root distribution into different soil horizons varied among wild lentil genotypes. Secondly, wild lentil genotypes employed diverse strategies such as delayed flowering, reduced transpiration rates, reduced plant height, and deep root systems to either escape, evade or tolerate drought conditions. In some cases, more than one drought strategy was observed within the same genotype. Sequence based classification of wild and cultivated genotypes did not explain patterns of drought response. The environmental conditions at their centers of origin may explain the patterns of drought strategies observed in wild lentils. The production of numerous small seeds by wild lentil genotypes may have implications for yield improvement in lentil breeding programs.

  9. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics.

    PubMed

    Sanchez, Diego H; Pieckenstain, Fernando L; Szymanski, Jedrzey; Erban, Alexander; Bromke, Mariusz; Hannah, Matthew A; Kraemer, Ute; Kopka, Joachim; Udvardi, Michael K

    2011-02-14

    One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl(-) correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, 'triangulation' from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species.

  10. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production.

    PubMed

    Cho, Sunja; Luong, Thanh Thao; Lee, Dukhaeng; Oh, You-Kwan; Lee, Taeho

    2011-09-01

    This study assessed the usability of effluent water discharged from a secondary municipal wastewater treatment plant for mass cultivation of microalgae for biofuel production. It was observed that bacteria and protozoa in the effluent water exerted a negative impact on the growth of Chlorella sp. 227. To reduce the effect, filtration or UV-radiation were applied on the effluent water as pre-treatment methods. Of all the pretreatment options tested, the filtration (by 0.2 μm) resulted in the highest biomass and lipid productivity. To be comparable with the growth in the autoclaved effluent water, the filtration with a proper pore size filter (less than 0.45 μm) or UV-B radiation of a proper dose (over 1620 mJ cm(-2)) are proposed. These findings led us to conclude that the utilization can be realized only when bacteria and other microorganisms are greatly reduced or eliminated from the effluent prior to its use. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Antioxidative and antitumor properties of in vitro-cultivated broccoli (Brassica oleracea var. italica).

    PubMed

    Cakar, Jasmina; Parić, Adisa; Maksimović, Milka; Bajrović, Kasim

    2012-02-01

    Broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)] contains substantial quantities of bioactive compounds, which are good free radical scavengers and thus might have strong antitumor properties. Enhancing production of plant secondary metabolites could be obtained with phytohormones that have significant effects on the metabolism of secondary metabolites. In that manner, in vitro culture presents good model for manipulation with plant tissues in order to affect secondary metabolite production and thus enhance bioactive properties of plants. Estimation of the antioxidative and antitumor properties of broccoli cultivated in different in vitro conditions. In vitro germinated and cultivated broccoli seedlings, as well as spontaneously developed calli, were subjected to Soxhlet extraction. Antioxidative activity of the herbal extracts was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) radical method. Antitumor properties of the extracts were determined using crown-gall tumor inhibition (potato disc) assay. Three, 10, 20, and 30 days old broccoli seedlings, cultivated in vitro on three different Murashige-Skoog media, two types of callus, and seedlings from sterile filter paper were used for extraction. In total, 15 aqueous extracts were tested for antioxidative and antitumor potential. Three day-old seedlings showed the highest antioxidative activity. Eleven out of 15 aqueous extracts demonstrated above 50% of crown-gall tumor inhibition in comparison with the control. Tumor inhibition was in association with types and concentrations of phytohormones presented in growing media. It is demonstrated that phytohormones in plant-growing media could affect the bioactive properties of broccoli either through increasing or decreasing their antioxidative and antitumor potential.

  12. A novel plant-based-sea water culture media for in vitro cultivation and in situ recovery of the halophyte microbiome.

    PubMed

    Saleh, Mohamed Y; Sarhan, Mohamed S; Mourad, Elhussein F; Hamza, Mervat A; Abbas, Mohamed T; Othman, Amal A; Youssef, Hanan H; Morsi, Ahmed T; Youssef, Gehan H; El-Tahan, Mahmoud; Amer, Wafaa A; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2017-11-01

    The plant-based-sea water culture medium is introduced to in vitro cultivation and in situ recovery of the microbiome of halophytes. The ice plant ( Mesembryanthemum crystallinum ) was used, in the form of juice and/or dehydrated plant powder packed in teabags, to supplement the natural sea water. The resulting culture medium enjoys the combinations of plant materials as rich source of nutrients and sea water exercising the required salt stress. As such without any supplements, the culture medium was sufficient and efficient to support very good in vitro growth of halotolerant bacteria. It was also capable to recover their in situ culturable populations in the phyllosphere, ecto-rhizosphere and endo-rhizosphere of halophytes prevailing in Lake Mariout, Egypt. When related to the total bacterial numbers measured for Suaeda pruinosa roots by quantitative-PCR, the proposed culture medium increased culturability (15.3-19.5%) compared to the conventional chemically-synthetic culture medium supplemented with (11.2%) or without (3.8%) NaCl. Based on 16S rRNA gene sequencing, representative isolates of halotolerant bacteria prevailed on such culture medium were closely related to Bacillus spp., Halomonas spp., and Kocuria spp. Seed germination tests on 25-50% sea water agar indicated positive interaction of such bacterial isolates with the germination and seedlings' growth of barley seeds.

  13. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    PubMed

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  14. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.

    PubMed

    Greger, Maria; Landberg, Tommy

    2015-01-01

    Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.

  15. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation.

    PubMed

    Guldhe, Abhishek; Kumari, Sheena; Ramanna, Luveshan; Ramsundar, Prathana; Singh, Poonam; Rawat, Ismail; Bux, Faizal

    2017-12-01

    Microalgae are recognized as one of the most powerful biotechnology platforms for many value added products including biofuels, bioactive compounds, animal and aquaculture feed etc. However, large scale production of microalgal biomass poses challenges due to the requirements of large amounts of water and nutrients for cultivation. Using wastewater for microalgal cultivation has emerged as a potential cost effective strategy for large scale microalgal biomass production. This approach also offers an efficient means to remove nutrients and metals from wastewater making wastewater treatment sustainable and energy efficient. Therefore, much research has been conducted in the recent years on utilizing various wastewater streams for microalgae cultivation. This review identifies and discusses the opportunities and challenges of different wastewater streams for microalgal cultivation. Many alternative routes for microalgal cultivation have been proposed to tackle some of the challenges that occur during microalgal cultivation in wastewater such as nutrient deficiency, substrate inhibition, toxicity etc. Scope and challenges of microalgal biomass grown on wastewater for various applications are also discussed along with the biorefinery approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations.

    PubMed

    Fernández-Arévalo, T; Lizarralde, I; Fdz-Polanco, F; Pérez-Elvira, S I; Garrido, J M; Puig, S; Poch, M; Grau, P; Ayesa, E

    2017-07-01

    The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents

  17. Unifying plant molecular data and plants.

    PubMed

    Jacobsen, N; Orgaard, M

    1996-01-01

    Located at a botanical department at an Agricultural University, our taxonomical and genetic research is mainly directed towards cultivated plants and their wild relatives. The investigations are usually under a common heading 'experimental taxonomy', and include basic systematics, cytogenetics, biodiversity, population dynamics, conservation and evolutionary questions correlating the wild species and the cultivated forms. Our point of initiation is the plants and questions/problems raised regarding these plants. Our way of approaching the problems is usually by applying different sets of data and testing them. Experimental taxonomy covers classical cytogenetics (chromosome counting and karyotyping) as well as molecular cytogenetic methods (RAPD, RFLP, in situ hybridization), and includes also chemical data on isoenzymes and anthocyanins. We have had good collaborations with other laboratories and found their expertise on the plants in question very helpful. The aim is always to unify various data on the same set of problems, in order to get a more complete understanding of the plants. At present the department is working on several, quite different plant genera, comprising herbs, aquatic plants, and trees. The methods vary, depending on the plants and the problems in question. Some of the current investigations concern the horticultural genera Lilium and Crocus, in which the main point of interest is the study of chromosome evolution using fluorescence in situ hybridization; preliminary investigations into the composition of anthocyanins in Crocus look very promising. In the tropical starch tuber crop Pachyrhizus (Fabaceae), molecular analyses of relationships between existing cultivars, landraces and wild material have been carried out. A genus which we, in cooperation with a number of other laboratories, have been working with for many years is Hordeum (Poaceae) with one cultivated species (barley) and 31 wild species. Here the main areas of investigation have

  18. Development of basic technologies for improvement of breeding and cultivation of Japanese gentian

    PubMed Central

    Nishihara, Masahiro; Tasaki, Keisuke; Sasaki, Nobuhiro; Takahashi, Hideyuki

    2018-01-01

    Japanese gentians are the most important ornamental flowers in Iwate Prefecture and their breeding and cultivation have been actively conducted for half a century. With its cool climate and large hilly and mountainous area, more than 60% of gentian production in Japan occurs in Iwate Prefecture. Recent advances in gentian breeding and cultivation have facilitated the efficient breeding of new cultivars; disease control and improved cultivation conditions have led to the stable production of Japanese gentians. Molecular biology techniques have been developed and applied in gentian breeding, including the diagnosis of viral diseases and analysis of physiological disorders to improve gentian production. This review summarizes such recent approaches that will assist in the development of new cultivars and support cultivation. More recently, new plant breeding techniques, including several new biotechnological methods such as genome editing and viral vectors, have also been developed in gentian. We, therefore, present examples of their application to gentians and discuss their advantages in future studies of gentians. PMID:29681744

  19. Biodiversity, evolution and adaptation of cultivated crops.

    PubMed

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Energy Conservation Study on Darigold Fluid Milk Plant, Issaquah, Washington.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seton, Johnson & Odell, Inc.

    This report presents the findings of an energy study done at Darigold dairy products plant in Issaquah, Washington. The study includes all electrical energy using systems at the plant, but does not address specific modifications to process equipment or the gas boilers. The Issaquah Darigold plant receives milk and cream, which are stored in large, insulated silos. These raw products are then processed into butter, cottage cheese, buttermilk, yogurt, sour cream, and powdered milk. This plant produces the majority of the butter used in the state of Washington. The Issaquah plant purchases electricity from Puget Sound Power and Light Company.more » The plant is on Schedule 31, primary metering. The plant provides transformers to step down the voltage to 480, 240, and 120 volts as needed. Based on utility bills for the period from July 1983 through July 1984, the Issaquah Darigold plant consumed 7,134,300 kWh at a total cost of $218,703.78 and 1,600,633 therms at a total cost of $889,687.48. Energy use for this period is shown in Figures 1.1 to 1.5. Demand charges account for approximately 23% of the total electrical bill for this period, while reactive charges account for less than 0.5%. The electrical usage for the plant was divided into process energy uses, as summarized in Figure 1.2. This breakdown is based on a 311-day processing schedule, with Sunday clean-up and holidays composing the 54 days of downtime.« less

  1. Flexible operation of thermal plants with integrated energy storage technologies

    NASA Astrophysics Data System (ADS)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  2. Allelopathy as a potential strategy to improve microalgae cultivation.

    PubMed

    Bacellar Mendes, Leonardo Brantes; Vermelho, Alane Beatriz

    2013-10-21

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production.

  3. Allelopathy as a potential strategy to improve microalgae cultivation

    PubMed Central

    2013-01-01

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production. PMID:24499580

  4. Factors Influencing Epidemiology and Management of Blackberry Rust in Cultivated Rubus laciniatus

    USDA-ARS?s Scientific Manuscript database

    The blackberry rust pathogen, Phragmidium violaceum, was first observed in Oregon in spring 2005 on both commercially cultivated Rubus laciniatus and feral Rubus armeniacus. Several commercial plantings suffered severe economic losses. In three seasons subsequent to 2005, all five spore stages of ...

  5. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  6. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  7. Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota.

    PubMed

    Gao, Weimin; Navarroli, Dena; Naimark, Jared; Zhang, Weiwen; Chao, Shih-Hui; Meldrum, Deirdre R

    2013-01-09

    The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications. We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis. MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

  8. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    NASA Astrophysics Data System (ADS)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    Population growth and changing diets due to economic development lead to an additional demand for land for food and feed production. Slowly but surely turning into a mass market, also the cultivation of non-food biomass crops for fibre (bio-based products) and fuel (biofuels and bioenergy) is increasingly contributing to the pressure on global agricultural land. As a consequence, the already prevailing competition for land might even intensify over the next decades. Against this background, the possibilities of shifting the cultivation of non-food biomass crops to so-called 'marginal lands' are investigated. The EC-funded project 'Sustainable exploitation of biomass for bioenergy from marginal lands in Europe' (SEEMLA) aims at the establishment of suitable innovative land-use strategies for a sustainable production of bioenergy from lignocellulosic crops on marginal lands while improving general ecosystem services. For a complete understanding of the environmental benefits and drawbacks of the envisioned cultivation of bioenergy crops on marginal land, life cycle assessments (LCA) have proven to be a suitable and valuable tool. Thus, embedded into a comprehensive sustainability assessment, a screening LCA is carried out for the entire life cycles of the bioenergy carriers researched in SEEMLA. Investigated systems, on the one hand, include the specific field trials carried out by the SEEMLA partners in Ukraine, Greece and Germany. On the other hand, generic scenarios are investigated in order to derive reliable general statements on the environmental impacts of bioenergy from marginal lands in Europe. Investigated crops include woody and herbaceous species such as black locust, poplar, pine, willow and Miscanthus. Conversion technologies cover the use in a domestic or a district heating plant, power plant, CHP as well as the production of Fischer-Tropsch diesel (FT diesel) and lignocellulosic ethanol. Environmental impacts are compared to conventional reference

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR ® Guide for Plant and Energy Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masanet, Eric; Therkelsen, Peter; Worrell, Ernst

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component,more » process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less

  10. Analysis on energy consumption index system of thermal power plant

    NASA Astrophysics Data System (ADS)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  11. Utilization of peatlands as possible land resource for low-input agriculture: cultivation of Vaccinium species as an example

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Rodima, Ako; Rannik, Kaire; Shanskiy, Merrit

    2013-04-01

    The best way of soil protection is its sustainable and expedient use, which secures soils ecological functioning. Recent years, by exploitation of peat soils for their different use, has raised important issues concerning their input to global climate change as important source of greenhouse gases (GHG) emitters. The dynamics of GHG are determined by different factors as: site specific conditions including hydrology, soil type, vegetation, area management, including meteorological and climatic conditions. Therefore, in this current paper we are presenting the study results were we estimated CO2, CH4 and N2O emissions from exhausted cultivated peatland with Vaccinium species and determined the soil chemical composition. For comparision a virgin state peatland was observed. The main goals of the paper are: (1) to present the experimental results of greenhouse gases generation and peat chemical composition (antioxidant activity of peat, C/N ratio, fiber content, water extractable phenolics) relationships on different microsites either on natural plant cover or Vaccinium species cultivation area on exhausted milled peat area; (2) to discuss how peat soil quality contributes to greenhouse gases emission; (3) and what kind of relationship reveals between low input agricultural system in which Vaccinium species are cultivated on exhausted milled peat area. The study are is located in nearby Ilmatsalu (58°23'N, 26°31'E) in South Estonia, inside of which the three microsites are determined. Microsites are different from each other by exploitation and plant cover type. 1). Natural plant cover, 2). Cultivated area with Vaccinium angustifolium x V. corymbosum, 3). Cultivated area with Vaccinium angustifolium. The determined soil type according to WRB was Fibri Dystric Histosol. The main part of study focuses on the analyses of greenhouse gases. For this purpose the closed chamber method was used. The greenhouse gas samples were collected from spring to autumn 2011 throughout

  12. Phytophthora taxa associated with cultivated Agothosmo, with emphasis on the P. citricola complex and P. capensis sp. nov.

    Treesearch

    C.M. Bezuidenhout; S. Deman; S.A. Kirk; W.J. Botha; L. Mostert; A. McLeod

    2010-01-01

    Agathosma species, which are indigenous to South Africa, are also cultivated for commercial use. Recently growers experienced severe plant loss, and symptoms shown by affected plants suggested that a soilborne disease could be the cause of death. A number of Phytophthora taxa were isolated from diseased plants, and this paper reports...

  13. Phytophthora taxa associated with cultivated Agathosma, with emphasis on the P. citricola complex and P. capensis sp. nov.

    Treesearch

    C.M. Bezuidenhout; S. Denman; S.A. Kirk; W.J. Botha; L. Mostert; A. McLeod

    2010-01-01

    Agathosma species, which are indigenous to South Africa, are also cultivated for commercial use. Recently growers experienced severe plant loss, and symptoms shown by affected plants suggested that a soilborne disease could be the cause of death. A number of Phytophthora taxa were isolated from diseased plants, and this paper...

  14. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    PubMed

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2018-03-01

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full

  15. Hydrothermal liquefaction of municipal wastewater cultivated algae: Increasing overall sustainability and value streams of algal biofuels

    NASA Astrophysics Data System (ADS)

    Roberts, Griffin William

    The forefront of the 21st century presents ongoing challenges in economics, energy, and environmental remediation, directly correlating with priorities for U.S. national security. Displacing petroleum-derived fuels with clean, affordable renewable fuels represents a solution to increase energy independence while stimulating economic growth and reducing carbon-based emissions. The U.S. government embodied this goal by passing the Energy Independence and Security Act (EISA) in 2007, mandating 36 billion gallons of annual biofuel production by 2022. Algae possess potential to support EISA goals and have been studied for the past 30-50 years as an energy source due to its fast growth rates, noncompetitive nature to food markets, and ability to grow using nutrient waste streams. Algae biofuels have been identified by the National Research Council to have significant sustainability concerns involving water, nutrient, and land use. Utilizing municipal wastewater to cultivate algae provides both water and nutrients needed for growth, partially alleviating these concerns. This dissertation demonstrates a pathway for algae biofuels which increases both sustainability and production of high-value products. Algae are cultivated in pilot-scale open ponds located at the Lawrence Wastewater Treatment Plant (Lawrence, KS) using solely effluent from the secondary clarifier, prior to disinfection and discharge, as both water and nutrient sources. Open ponds were self-inoculated by wastewater effluent and produced a mixed-species culture of various microalgae and macroalgae. Algae cultivation provided further wastewater treatment, removing both nitrogen and phosphorus, which have devastating pollution effects when discharged to natural watersheds, especially in large draining watersheds like the Gulf Coast. Algae demonstrated significant removal of other trace metals such as iron, manganese, barium, aluminum, and zinc. Calcium did not achieve high removal rate but did present a

  16. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization.

    PubMed

    Santana, Hugo; Cereijo, Carolina R; Teles, Valérya C; Nascimento, Rodrigo C; Fernandes, Maiara S; Brunale, Patrícia; Campanha, Raquel C; Soares, Itânia P; Silva, Flávia C P; Sabaini, Priscila S; Siqueira, Félix G; Brasil, Bruno S A F

    2017-03-01

    Sugarcane ethanol is produced at large scale generating wastes that could be used for microalgae biomass production in a biorefinery strategy. In this study, forty microalgae strains were screened for growth in sugarcane vinasse at different concentrations. Two microalgae strains, Micractinium sp. Embrapa|LBA32 and C. biconvexa Embrapa|LBA40, presented vigorous growth in a light-dependent manner even in undiluted vinasse under non-axenic conditions. Microalgae strains presented higher biomass productivity in vinasse-based media compared to standard Bold's Basal Medium in cultures performed using 15L airlift flat plate photobioreactors. Chemical composition analyses showed that proteins and carbohydrates comprise the major fractions of algal biomass. Glucose was the main monosaccharide detected, ranging from 46% to 76% of the total carbohydrates content according to the strain and culture media used. This research highlights the potential of using residues derived from ethanol plants to cultivate microalgae for the production of energy and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The changing role of ornamental horticulture in alien plant invasions.

    PubMed

    van Kleunen, Mark; Essl, Franz; Pergl, Jan; Brundu, Giuseppe; Carboni, Marta; Dullinger, Stefan; Early, Regan; González-Moreno, Pablo; Groom, Quentin J; Hulme, Philip E; Kueffer, Christoph; Kühn, Ingolf; Máguas, Cristina; Maurel, Noëlie; Novoa, Ana; Parepa, Madalin; Pyšek, Petr; Seebens, Hanno; Tanner, Rob; Touza, Julia; Verbrugge, Laura; Weber, Ewald; Dawson, Wayne; Kreft, Holger; Weigelt, Patrick; Winter, Marten; Klonner, Günther; Talluto, Matthew V; Dehnen-Schmutz, Katharina

    2018-03-05

    The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more

  18. Alcoa: Plant-Wide Energy Assessment Finds Potential Savings at Aluminum Extrusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2003-09-01

    Alcoa completed an energy assessment of its Engineered Products aluminum extrusion facility in Plant City, Florida, in 2001. The company identified energy conservation opportunities throughout the plant and prepared a report as an example for performing energy assessments at similar Alcoa facilities. If implemented, the cost of energy for the plant would be reduced by more than $800,000 per year by conserving 3 million kWh of electricity and 150,000 MMBtu of natural gas.

  19. Agro-ecological potential of the cup plant (Silphium perfoliatum L.) from a biodiversity perspective

    NASA Astrophysics Data System (ADS)

    Schrader, Stefan; Schorpp, Quentin; Lena Müller, Anna; Dauber, Jens

    2017-04-01

    The cup plant (Silphium perfoliatum L.) is an alternative bioenergy crop that may contribute to a more environmentally friendly production of renewable resources. The potential benefits of the cup plant are the perennial cultivation without tillage and its flowering-characteristics. Hence it can be hypothesized that beneficial organisms are promoted which in turn improves the provision of ecosystem services like soil fertility and pollination. To date biomass production in Germany is based mainly on cropping systems like intensive maize cultivation that bear a risk for biodiversity and ecosystem services. The importance to counteract this development increases considering the large land requirements for significant generation of energy from biomass. To what extent cropping of the cup plant meets the expectations of a sustainable biomass production was investigated within a comprehensive assessment of soil fauna communities (earthworms, collembolans, nematodes) including their functional groups as well as pollinating insects (bees and hoverflies) including the quantification of pollen and nectar in cup-plant cultivation systems with a crop management close to agricultural practice. From the results it became obvious that the cup plant as a bioenergy crop has got the necessary potential to mitigate the negative development of biodiversity and ecosystem services, especially in regions with a large share of maize monocultures. This agro-ecological potential can only be reached if certain agronomic requirements are met, i.e. a late harvest and cultivation periods of at least five years. Under these conditions the landscape context has to be considered. Semi-natural habitats in the surrounding landscape are required for nesting and larval development of wild pollinator groups. The development of biological functions in soil is tied to the land use history i.e. previous land use: Positive developments are expected for conversion of intensively managed crop fields to the

  20. Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost

    PubMed Central

    Kaur, Amandeep; Singh, Baldev; Ohri, Puja; Wang, Jia; Wadhwa, Renu; Pati, Pratap Kumar; Kaur, Arvinder

    2018-01-01

    Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20–100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves. PMID:29659590

  1. Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost.

    PubMed

    Kaur, Amandeep; Singh, Baldev; Ohri, Puja; Wang, Jia; Wadhwa, Renu; Kaul, Sunil C; Pati, Pratap Kumar; Kaur, Arvinder

    2018-01-01

    Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20-100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves.

  2. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    PubMed

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantitative and Qualitative Characterization of Gentiana rigescens Franch (Gentianaceae) on Different Parts and Cultivations Years by HPLC and FTIR Spectroscopy

    PubMed Central

    Qi, Lu-Ming; Zuo, Zhi-Tian

    2017-01-01

    Gentiana rigescens Franch (Gentianaceae) is a famous medicinal plant for treatments of rheumatism, convulsion, and jaundice. Comprehensive investigation of different parts and cultivation years of this plant has not yet been conducted. This study presents the quantitative and qualitative characterization of iridoid glycosides from G. rigescens performed by HPLC and FTIR spectroscopy techniques. The accumulations of loganic acid, swertiamarin, gentiopicroside, and sweroside were determined. Results indicated that their content and distribution in different parts and cultivation years exhibit great variations. Gentiopicroside was identified as the most abundant compound among iridoid glycosides and its highest level was observed in the root of 2-year-old plant. With respect to qualitative variation of metabolic profile, the 1800–800 cm−1 band of FTIR spectra successfully discriminated different parts and cultivation years with the aid of PLS-DA. In addition, combined with PLSR, the feasibility of FTIR spectroscopy for determination of gentiopicroside was investigated by selecting characteristic wavelengths (1800–800 cm−1), which presented a good performance with a residual predictive deviation (RPD) of 3.646. Our results suggested that HPLC and FTIR techniques can complement each other and could be simultaneously applied for comparing and analyzing different parts and cultivation years of G. rigescens. PMID:28656121

  4. Expanded algal cultivation can reverse key planetary boundary transgressions.

    PubMed

    Calahan, Dean; Osenbaugh, Edward; Adey, Walter

    2018-02-01

    Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 10 12 yr -1 , (3.0% of the 2016 global domestic product) and less than 1.9 × 10 7 ha (4.7 × 10 7 ac), 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.

  5. Green plants as solar energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    A survey covers the potential of energy production from biomass and solid wastes; various processes for the combustion of wastes, such as the co-combustion of solid waste and sewage sludge at the St. Paul/Seneca Treatment Plant Sludge Incinerator; various biological processes for the conversion of solid wastes to fuel such as the Institute of Gas Technology 400 l. digestor for the biogasification of municipal solid waste and sewage solids to a methane-rich product gas; the use of industrial wastes for fuel, such as slash and mill residues used as fuel in lumber mills; the biogasification of animal wastes by usingmore » small-scale on-site digesters to produce methane gas for cooking and lighting; energy farming methods, such as growing giant California kelp, sargassum, and plankton as suitable feedstock for the production of methane, fertilizers, and food; problems, such as the possible alteration of the reflectivity of large areas of the earth's surface by rapidly growing plants raised for biomass; and benefits such as the reduction in air, water, and land pollution associated with the use of wastes and biomass grown especially for energy.« less

  6. Cultivation Of Deep Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  7. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

    PubMed

    Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Chiu, Tzai-Wen; Lin, Hsiun-Yu; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2014-08-01

    The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It beginsmore » with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.« less

  9. Convergent adaptations: bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in Central Amazonia.

    PubMed

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for

  10. Convergent Adaptations: Bitter Manioc Cultivation Systems in Fertile Anthropogenic Dark Earths and Floodplain Soils in Central Amazonia

    PubMed Central

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for

  11. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector.

    PubMed

    Conti, Barbara; Leonardi, Michele; Pistelli, Luisa; Profeti, Raffaele; Ouerghemmi, Ines; Benelli, Giovanni

    2013-03-01

    Rutaceae are widely recognized for their toxic and repellent activity exerted against mosquitoes. In our research, the essential oils extracted from fresh leaves of wild and cultivated plants of Ruta chalepensis L. (Rutaceae) were evaluated for larvicidal and repellent activity against the Asian tiger mosquito, Aedes albopictus Skuse (Diptera: Culicidae), currently the most invasive mosquito worldwide. In this research, gas chromatography and gas chromatography-mass spectrometry analyses of the essential oils from wild and cultivated plants showed only quantitative differences, in particular relatively to the amounts of ketone derivatives, while the qualitative profile evidenced a similar chemical composition. Both essential oils from wild and cultivated R. chalepensis plants were able to exert a very good toxic activity against A. albopictus larvae (wild plants, LC(50) = 35.66 ppm; cultivated plants, LC(50) = 33.18 ppm), and mortality was dosage dependent. These data are the first evidence of the toxicity of R. chalepensis against mosquitoes. Furthermore, the R. chalepensis essential oil from wild plants was an effective repellent against A. albopictus, also at lower dosages: RD(50) was 0.000215 μL/cm(2) of skin, while RD(90) was 0.007613 μL/cm(2). Our results clearly evidenced that the larvicidal and repellent activity of R. chalepensis essential oil could be used for the development of new and safer products against the Asian tiger mosquito.

  12. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    USDA-ARS?s Scientific Manuscript database

    The primary goal of this research was to investigate the prokaryotic and fungal communities associated with the bulk soil, the rhizosphere, the phyllosphere, and the root and leaf endospheres, for three Agave species: the cultivated Agave tequilana and the native species, A. salmiana and A. deserti ...

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brush, Adrian; Masanet, Eric; Worrell, Ernst

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented atmore » the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less

  14. Energy audits of boiler chiller plants, Energy Engineering Analysis Program, Fort Bragg, North Carolina, volume 1: Narrative report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-03-01

    This document constitutes the Pre-Final Submittal for Contract DACA21-84-C-0603, Energy Audits of Boiler/Chiller Plants, Ft. Bragg, North Carolina. The purpose of this report is to indicate the work accomplished to date, show samples of field data collected, illustrate the methods and justifications of the approaches taken, outline the present conditions, and make recommendations for the potential energy efficiency improvements to the central energy plants of Fort Bragg. The specific buildings analyzed are: (1) Building C-1432 82nd Heating Plant; (2) Building D-3529 JFK Heating Cooling Plant, and (3) Building C-6039 82nd Chiller Plant. The following buildings were part of the originalmore » scope of work, but were deleted for reasons explained further in Section 1.0 of this report: (1) Building C-7549 Standby Plant for C-1432; (2) Building N-6002 New EM Barracks Complex; and (3) Building H-6240 `H` Area Chiller Plant.« less

  15. Growing Plants in School.

    ERIC Educational Resources Information Center

    Salt, Bernard

    1990-01-01

    Background information on the methods and varieties used to demonstrate the cultivation of plants without the use of chemical pesticides is provided. Discussed are species and variety selection, growing plants from seed and from seedlings, soil preparation, using cuttings, useful crops, and pest control. (CW)

  16. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems

    PubMed Central

    Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas

    2015-01-01

    Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications. PMID

  17. Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure

    PubMed Central

    Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J. Peter W.; Teaumroong, Neung

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585

  18. Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus × H. argophyllus).

    PubMed

    Doncheva, Snezhana; Moustakas, Michael; Ananieva, Kalina; Chavdarova, Martina; Gesheva, Emiliya; Vassilevska, Rumyana; Mateev, Plamen

    2013-02-01

    The aim of the present work was to study the response of two sunflower genotypes (cultivated sunflower Helianthus annuus cv. 1114 and newly developed genotype H. annuus × Helianthus argophyllus) to Pb medium-term stress and the role of exogenously applied EDTA in alleviating Pb toxicity in hydroponics. Plant growth, morpho-anatomical characteristics of the leaf tissues, electrolyte leakage, total antioxidant activity, free radical scavenging capacity, total flavonoid content, and superoxide dismutase isoenzyme profile were studied by conventional methods. Differential responses of both genotypes to Pb supplied in the nutrient solution were recorded. Pb treatment induced a decrease in the relative growth rate, disturbance of plasma membrane integrity, and changes in the morpho-anatomical characteristics of the leaf tissues and in the antioxidant capacity, which were more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype demonstrated higher tolerance to Pb when compared with the cultivar. This was mainly due to increased photosynthetically active area, maintenance of plasma membrane integrity, permanently high total antioxidant activity, and free radical scavenging capacity as well as total flavonoid content. The addition of EDTA into the nutrient solution led to limitation of the negative impact of Pb ions on the above parameters in both genotypes. This could be related to the reduced content of Pb in the roots, stems, and leaves, suggesting that the presence of EDTA limited the uptake of Pb. The comparative analysis of the responses to Pb treatment showed that the deleterious effect of Pb was more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype H. annuus × H. argophyllus was more productive and demonstrated higher tolerance to Pb medium-term stress, which could indicate that it may possess certain mechanisms to tolerate high Pb concentrations. This character could be inherited from the wild parent used in the

  19. Benchmarking of energy consumption in municipal wastewater treatment plants - a survey of over 200 plants in Italy.

    PubMed

    Vaccari, M; Foladori, P; Nembrini, S; Vitali, F

    2018-05-01

    One of the largest surveys in Europe about energy consumption in Italian wastewater treatment plants (WWTPs) is presented, based on 241 WWTPs and a total population equivalent (PE) of more than 9,000,000 PE. The study contributes towards standardised resilient data and benchmarking and to identify potentials for energy savings. In the energy benchmark, three indicators were used: specific energy consumption expressed per population equivalents (kWh PE -1 year -1 ), per cubic meter (kWh/m 3 ), and per unit of chemical oxygen demand (COD) removed (kWh/kgCOD). The indicator kWh/m 3 , even though widely applied, resulted in a biased benchmark, because highly influenced by stormwater and infiltrations. Plants with combined networks (often used in Europe) showed an apparent better energy performance. Conversely, the indicator kWh PE -1 year -1 resulted in a more meaningful definition of a benchmark. High energy efficiency was associated with: (i) large capacity of the plant, (ii) higher COD concentration in wastewater, (iii) separate sewer systems, (iv) capacity utilisation over 80%, and (v) high organic loads, but without overloading. The 25th percentile was proposed as a benchmark for four size classes: 23 kWh PE -1 y -1 for large plants > 100,000 PE; 42 kWh PE -1 y -1 for capacity 10,000 < PE < 100,000, 48 kWh PE -1 y -1 for capacity 2,000 < PE < 10,000 and 76 kWh PE -1 y -1 for small plants < 2,000 PE.

  20. Plant engineers solar energy handbook. [Includes glossaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-21

    This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less

  1. Optimisation of contained Nicotiana tabacum cultivation for the production of recombinant protein pharmaceuticals.

    PubMed

    Colgan, Richard; Atkinson, Christopher J; Paul, Matthew; Hassan, Sally; Drake, Pascal M W; Sexton, Amy L; Santa-Cruz, Simon; James, David; Hamp, Keith; Gutteridge, Colin; Ma, Julian K-C

    2010-04-01

    Nicotiana tabacum is emerging as a crop of choice for production of recombinant protein pharmaceuticals. Although there is significant commercial expertise in tobacco farming, different cultivation practices are likely to be needed when the objective is to optimise protein expression, yield and extraction, rather than the traditional focus on biomass and alkaloid production. Moreover, pharmaceutical transgenic tobacco plants are likely to be grown initially within a controlled environment, the parameters for which have yet to be established. Here, the growth characteristics and functional recombinant protein yields for two separate transgenic tobacco plant lines were investigated. The impacts of temperature, day-length, compost nitrogen content, radiation and plant density were examined. Temperature was the only environmental variable to affect IgG concentration in the plants, with higher yields observed in plants grown at lower temperature. In contrast, temperature, supplementary radiation and plant density all affected the total soluble protein yield in the same plants. Transgenic plants expressing a second recombinant protein (cyanovirin-N) responded differently to IgG transgenic plants to elevated temperature, with an increase in cyanovirin-N concentration, although the effect of the environmental variables on total soluble protein yields was the same as the IgG plants. Planting density and radiation levels were important factors affecting variability of the two recombinant protein yields in transgenic plants. Phenotypic differences were observed between the two transgenic plant lines and non-transformed N. tabacum, but the effect of different growing conditions was consistent between the three lines. Temperature, day length, radiation intensity and planting density all had a significant impact on biomass production. Taken together, the data suggest that recombinant protein yield is not affected substantially by environmental factors other than growth

  2. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer)

    PubMed Central

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili

    2017-01-01

    Abstract Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. PMID:28922794

  3. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  4. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    PubMed

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  5. On-Site Production of Cellulolytic Enzymes by the Sequential Cultivation Method.

    PubMed

    Farinas, Cristiane S; Florencio, Camila; Badino, Alberto C

    2018-01-01

    The conversion of renewable lignocellulosic biomass into fuels, chemicals, and high-value materials using the biochemical platform has been considered the most sustainable alternative for the implementation of future biorefineries. However, the high cost of the cellulolytic enzymatic cocktails used in the saccharification step significantly affects the economics of industrial large-scale conversion processes. The on-site production of enzymes, integrated to the biorefinery plant, is being considered as a potential strategy that could be used to reduce costs. In such approach, the microbial production of enzymes can be carried out using the same lignocellulosic biomass as feedstock for fungal development and biofuels production. Most of the microbial cultivation processes for the production of industrial enzymes have been developed using the conventional submerged fermentation. Recently, a sequential solid-state followed by submerged fermentation has been described as a potential alternative cultivation method for cellulolytic enzymes production. This chapter presents the detailed procedure of the sequential cultivation method, which could be employed for the on-site production of the cellulolytic enzymes required to convert lignocellulosic biomass into simple sugars.

  6. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  7. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].

    PubMed

    Schulze, E -D; Lange, O L; Koch, W

    1972-12-01

    The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves

  8. Searching for gene flow from cultivated to wild strawberries in Central Europe

    PubMed Central

    Schulze, Juerg; Stoll, Peter; Widmer, Alex; Erhardt, Andreas

    2011-01-01

    Background and Aims Experimental crosses between the diploid woodland strawberry (Fragaria vesca L.) and the octoploid garden strawberry (F. × ananassa Duch.) can lead to the formation of viable hybrids. However, the extent of such hybrid formation under natural conditions is unknown, but is of fundamental interest and importance in the light of the potential future cultivation of transgenic strawberries. A hybrid survey was therefore conducted in the surroundings of ten farms in Switzerland and southern Germany, where strawberries have been cultivated for at least 10 years and where wild strawberries occur in the close vicinity. Methods In 2007 and 2008, 370 wild F. vesca plants were sampled at natural populations around farms and analysed with microsatellite markers. In 2010, natural populations were revisited and morphological traits of 3050 F. vesca plants were inspected. DNA contents of cell nuclei of morphologically deviating plants were estimated by flow cytometry to identify hybrids. As controls, 50 hybrid plants from interspecific hand-crosses were analysed using microsatellite analysis and DNA contents of cell nuclei were estimated by flow cytometry. Key Results None of the wild samples collected in 2007 and 2008 contained F. × ananassa microsatellite markers, while all hybrids from hand-crosses clearly contained markers of both parent species. Morphological inspection of wild populations carried out in 2010 and subsequent flow cytometry of ten morphologically deviating plants revealed no hybrids. Conclusions Hybrid formation or hybrid establishment in natural populations in the survey area is at best a rare event. PMID:21307039

  9. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. Thismore » report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.« less

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implementedmore » at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different

  11. Strategies to improve energy efficiency in sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Au, Mau Teng; Pasupuleti, Jagadeesh; Chua, Kok Hua

    2013-06-01

    This paper discusses on strategies to improve energy efficiency in Sewage Treatment Plant (STP). Four types of STP; conventional activated sludge, extended aeration, oxidation ditch, and sequence batch reactor are presented and strategized to reduce energy consumption based on their influent flow. Strategies to reduce energy consumption include the use of energy saving devices, energy efficient motors, automation/control and modification of processes. It is envisaged that 20-30% of energy could be saved from these initiatives.

  12. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.

  13. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129

  14. Drying of medicinal plants with solar energy utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniewski, G.

    In the paper, a potential of solar energy for drying of medicinal plants in Polish conditions is estimated and development of solar drying technologies is presented. The results of economic assessment of flat-plate solar collectors applied for drying of medicinal plants on a farm are promising. In some specific conditions, e.g. drying of wild grown medicinal plants in remote areas, even application of photovoltaic modules for driving of a fan of a solar dryer is a profitable option and enables easy control of the drying air temperature.

  15. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    PubMed

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  16. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  17. Closure of mass exchange under use of a vegetable conveyer cultivated on a neutral and soil-like substrates as applied to BLSS

    NASA Astrophysics Data System (ADS)

    Velitchko, Vladimir; Tikhomirov, Alexander; Ushakova, Sofya

    To increase a closure level of mass exchange processes in bioregenerative life support systems (BLSS) including a human a technology of plants cultivation on a soil-like substrate (SLS) consisting in a gradual decomposition of inedible plants biomass under its addition in the SLS was developed at the Institute of Biophysics SB RAS (Russia). In the given work the effect of periodical introduction of inedible plant biomass in the SLS on plants photosynthetic productivity and on the closure of mass exchange has been analyzed. Thereupon CO2 gas exchange and the certain vegetables' productivity under their cultivation in a conveyor regime on the SLS and on a neutral substrate with reference to the closure of mass exchange processes in BLSS have been studied in this work. The vegetables Raphanus sativus L., Brassica caulorapa L. Daucus carota L. and Beta vulgaris L. being prospective plantsrepresentatives of the BLSS phototrophic unit were taken as the research objects. The SLS was taken as an experiment substrate and an expanded clay aggregate as the control. The changeable Knop solution was used for the control, and an irrigation solution with the SLS extract was used for the experiment. Rapidity dynamics of CO2 consumption showed sharp distinctions of the ‘plants-SLS' system from the ‘plantsexpanded clay aggregate' system connected with the oxidation processes coursing in the SLS. The intensity of CO2 evolution from the SLS on average was 70% of the total plants conveyor's respiration. Thus a balance between the system's respiration and photosynthesis was often determined by the processes coursing in the SLS. Here the sharp CO2 evolution was recorded after introduction of the plants inedible biomass in the SLS. That peak was gradually coming down during 10-14 days after the beginning of every cycle of plants cultivation that was connected with intensification of plants photosynthesis and drop of decomposition intensity of the biomass introduced. Comparative

  18. [Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].

    PubMed

    Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying

    2004-01-01

    Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P < 0.05). The fruit yield at the lower site by stream was significantly higher than that at upper site (P < 0.05). The yield difference between ravine rainforest and secondary forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.

  19. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr).

    PubMed

    Manzocco, Lara; Foschia, Martina; Tomasi, Nicola; Maifreni, Michela; Dalla Costa, Luisa; Marino, Marilena; Cortella, Giovanni; Cesco, Stefano

    2011-06-01

    Nowadays, there is an increasing interest in the hydroponic floating system to cultivate leafy vegetables for ready-to-eat salads. It is reasonable that different growing systems could affect the quality and shelf life of these salads. The quality and shelf life of ready-to-eat lamb's lettuce grown in protected environment in soil plot or in soil-less system over hydroponic solution with or without the addition of 30 µmol L⁻¹ silicon were evaluated. Minimum effects were observed on colour, firmness and microbial counts. Hydroponic cultivation largely affected plant tissue hydration, leading to weight loss and structural modifications during refrigerated storage. The shelf life of lamb's lettuce was limited by the development of visually detectable unpleasant sensory properties. Shelf life, calculated by survival analysis of consumer acceptability data, resulted about 7 days for soil-cultivated salad and 2 days for the hydroponically grown ones. The addition of silicon to the hydroponic solution resulted in an interesting strategy to increase plant tissue yield and reduce nitrate accumulation. Although hydroponic cultivation may have critical consequences on product quality and shelf life, these disadvantages could be largely counterbalance by increased yield and a reduction of nitrate accumulation when cultivation is performed on nutritive solutions with supplemental addition of silicon. Copyright © 2011 Society of Chemical Industry.

  20. Cultivating healthy places and communities: evidenced-based nature contact recommendations.

    PubMed

    Largo-Wight, Erin

    2011-02-01

    Cultivating healthful places is an important public health focus. This paper presents evidence-based recommendations related to nature contact. A multidisciplinary review was conducted in several fields of study and findings were organized into public health recommendations: (1) cultivate grounds for viewing, (2) maintain healing gardens, (3) incorporate wooded parks and green space in communities, (4) advocate for preservation of pristine wilderness, (5) welcome animals indoors, (6) provide a plethora of indoor potted plants within view, (7) light rooms with bright natural light, (8) provide a clear view of nature outside, (9) allow outside air and sounds in, (10) display nature photography and realistic nature art, (11) watch nature on TV or videos, and (12) listen to recorded sounds of nature. The findings should inform public health promoters in the design of healthy places and communities. Future research needs are highlighted.

  1. Impacts of surface water diversions for marijuana cultivation on aquatic habitat in four northwestern California watersheds.

    PubMed

    Bauer, Scott; Olson, Jennifer; Cockrill, Adam; van Hattem, Michael; Miller, Linda; Tauzer, Margaret; Leppig, Gordon

    2015-01-01

    Marijuana (Cannabis sativa L.) cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state- and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species.

  2. Impacts of Surface Water Diversions for Marijuana Cultivation on Aquatic Habitat in Four Northwestern California Watersheds

    PubMed Central

    Cockrill, Adam; van Hattem, Michael; Miller, Linda; Tauzer, Margaret; Leppig, Gordon

    2015-01-01

    Marijuana (Cannabis sativa L.) cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state-and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species. PMID:25785849

  3. Potential energy savings in buildings by an urban tree planting programme in California

    Treesearch

    E.G. McPherson; J.R. Simpson

    2003-01-01

    Tree canopy cover data from aerial photographs and building energy simulations were applied to estimate energy savings from existing trees and new plantings in California. There are approximately 177.3 million energy-conserving trees in California communities and 241.6 million empty planting sites. Existing trees are projected to reduce annual air conditioning energy...

  4. Plant cell cultures: bioreactors for industrial production.

    PubMed

    Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.

  5. Animal component-free Agrobacterium tumefaciens cultivation media for better GMP-compliance increases biomass yield and pharmaceutical protein expression in Nicotiana benthamiana.

    PubMed

    Houdelet, Marcel; Galinski, Anna; Holland, Tanja; Wenzel, Kathrin; Schillberg, Stefan; Buyel, Johannes Felix

    2017-04-01

    Transient expression systems allow the rapid production of recombinant proteins in plants. Such systems can be scaled up to several hundred kilograms of biomass, making them suitable for the production of pharmaceutical proteins required at short notice, such as emergency vaccines. However, large-scale transient expression requires the production of recombinant Agrobacterium tumefaciens strains with the capacity for efficient gene transfer to plant cells. The complex media often used for the cultivation of this species typically include animal-derived ingredients that can contain human pathogens, thus conflicting with the requirements of good manufacturing practice (GMP). We replaced all the animal-derived components in yeast extract broth (YEB) cultivation medium with soybean peptone, and then used a design-of-experiments approach to optimize the medium composition, increasing the biomass yield while maintaining high levels of transient expression in subsequent infiltration experiments. The resulting plant peptone Agrobacterium medium (PAM) achieved a two-fold increase in OD 600 compared to YEB medium during a 4-L batch fermentation lasting 18 h. Furthermore, the yields of the monoclonal antibody 2G12 and the fluorescent protein DsRed were maintained when the cells were cultivated in PAM rather than YEB. We have thus demonstrated a simple, efficient and scalable method for medium optimization that reduces process time and costs. The final optimized medium for the cultivation of A. tumefaciens completely lacks animal-derived components, thus facilitating the GMP-compliant large-scale transient expression of recombinant proteins in plants. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants.

    PubMed

    De Greef, J; Villani, K; Goethals, J; Van Belle, H; Van Caneghem, J; Vandecasteele, C

    2013-11-01

    Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Differential Expression of R-genes to Associate Leaf Spot Resistance in Cultivated Peanut

    USDA-ARS?s Scientific Manuscript database

    Breeding for acceptable levels of Early (ELS) or Late Leaf Spot (LLS) resistance in cultivated peanut has been elusive due to extreme variability of plant response in the field and the proper combinations of resistance (R)-genes in any particular peanut line. R-genes have been shown to be involved ...

  8. Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan.

    PubMed

    Mahmood, Adeel; Mahmood, Aqeel; Malik, Riffat Naseem; Shinwari, Zabta Khan

    2013-07-09

    This study was focused with the aim to investigate and document the indigenous medicinal knowledge and commonly used medicinal plants from Gujranwala district, Pakistan and to establish a baseline data in continuing studies aimed at more comprehensive investigations on bio-active compounds of indigenous medicinal plants. Rapid appraisal approach (RAA) was used along with the interviews, group meetings with people having knowledge about indigenous uses of medicinal plants and individual meetings with herbalists were conducted, to collect the ethnomedicinal data. About 71 species of medicinal plants belonging to 38 families have been documented through 203 informants. Most favored plant part used for indigenous medicine was leaves (38%) followed by the seed (13%), whole plant (11%), flower (9%), fruit (8%), root and bark (6%) and the main source of these medicines was wild herbs (54%) followed by the wild shrubs, wild trees (13%), cultivated herbs (10%), cultivated trees (5%), cultivated shrubs (3%) and wild grasses (2%). The herbal preparations were mainly administrated orally and topically. Gujranwala district has great diversity of medicinal plants and people are aware about their medicinal values. Few plants are playing vital role in the basic health care needs of study areas; such plants should be screened for detailed pharmacological studied to explore new biological compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback.

    PubMed

    Helander, Marjo; Saloniemi, Irma; Omacini, Marina; Druille, Magdalena; Salminen, Juha-Pekka; Saikkonen, Kari

    2018-06-11

    Our aim was to study the effects of glyphosate, tilling practice and cultivation history on mycorrhizal colonization and growth of target (weeds) and non-target (crops) plants. Glyphosate, the world's most widely used pesticide, inhibits an enzyme found in plants but also in microbes. We examined the effects of glyphosate treatment applied in the preceding fall on growth of a perennial weed, Elymus repens (target plant) and a forage grass, Festuca pratensis (non-target plant) and their arbuscular mycorrhizal fungal (AMF) root colonization in a field pot experiment. Non-target plants were sown in the following spring. Furthermore, we tested if glyphosate effects depend on tillage or soil properties modulated by long cultivation history of endophyte symbiotic grass (E+ grass). AMF root colonization, plant establishment and growth, glyphosate residues in plants, and soil chemistry were measured. Glyphosate reduced the mycorrhizal colonization and growth of both target and non-target grasses. The magnitude of reduction depended on tillage and soil properties due to cultivation history of E+ grass. We detected glyphosate residues in weeds and crop plants in the growing season following the glyphosate treatment. Residues were higher in plants growing in no-till pots compared to conspecifics in tilled pots. These results demonstrate negative effects of glyphosate on non-target organisms in agricultural environments and grassland ecosystems. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Water saving in chufa cultivation using flat raised beds and drip irrigation

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, N.; San Bautista, A.; López-Galarza, S.; Maroto, J. V.; Pascual, B.

    2012-04-01

    Chufa (Cyperus esculentus L. var. sativus), also known as tiger nut, is a typical crop in the Region of Valencia (Spain). Its tubers are used to produce a beverage called horchata. Chufa has been cultivated traditionally in ridges and furrow irrigated. Currently, the quality of water used is acceptable, there are no limitations on supply, and water is not expensive; therefore, large amounts of water are used. The European Water Framework Directive 2000/60 is based on the precautionary principle, considering preventive action for measures to be taken; thus, water use is an issue to improve. Moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. In this two year study (2007-2008), we analysed how yield and irrigation water use efficiency (IWUE) are affected by two cultivation factors: planting strategy and irrigation system. Three planting strategies were analysed: ridges (R) and flat raised beds, with two (B2) and three (B3) plant rows along them, while two irrigation systems were compared, furrow (FI) and drip irrigation (DI). Within the beds, the effect of the position of the plant row was considered, differing among plants grown in the north (n), central (c), and south (s) rows. Distances between ridge and bed axes were 60, 80 and 120 cm for R, B2 and B3, respectively. Irrigation was based on the Volumetric Soil Water Content (VSWC), which was continuously monitored with capacitance sensors (ECH2O EC-5 in FI and multidepth capacitance sensors C-Probe in DI). Each irrigation session started when the VSWC in R dropped to 60% and 80% of field capacity in FI and DI, respectively. Each DI session lasted 60 min in 2007; while in 2008 the installation was automated, stopping each session when the sum of the VSWC at 10, 20, and 30 cm soil depth reached its corresponding field capacity value. With both irrigation systems, beds were irrigated simultaneously with ridges and with the same irrigation duration. Plants from

  11. Plantings for wildlife

    Treesearch

    Samuel B. Kirby; Claude L. Ponder; Donald J. Smith

    1989-01-01

    Grains, forages, and other vegetation can be planted to provide critical habitat for desired wildlife species or to increase habitat diversity. Plantings may be in openings created in the forest (see Note 9.11 Wildlife Openings) or along the forest edge in cultivated or pastured fields if protected from domestic livestock. The first step in determining if and what type...

  12. Induction of a dwarf phenotype with IBH1 may enable increased production of plant-made pharmaceuticals in plant factory conditions.

    PubMed

    Nagatoshi, Yukari; Ikeda, Miho; Kishi, Hiroyuki; Hiratsu, Keiichiro; Muraguchi, Atsushi; Ohme-Takagi, Masaru

    2016-03-01

    Year-round production in a contained, environmentally controlled 'plant factory' may provide a cost-effective method to produce pharmaceuticals and other high-value products. However, cost-effective production may require substantial modification of the host plant phenotype; for example, using dwarf plants can enable the growth of more plants in a given volume by allowing more plants per shelf and enabling more shelves to be stacked vertically. We show here that the expression of the chimeric repressor for Arabidopsis AtIBH1 (P35S:AtIBH1SRDX) in transgenic tobacco plants (Nicotiana tabacum) induces a dwarf phenotype, with reduced cell size. We estimate that, in a given volume of cultivation space, we can grow five times more AtIBH1SRDX plants than wild-type plants. Although, the AtIBH1SRDX plants also showed reduced biomass compared with wild-type plants, they produced about four times more biomass per unit of cultivation volume. To test whether the dwarf phenotype affects the production of recombinant proteins, we expressed the genes for anti-hepatitis B virus antibodies (anti-HBs) in tobacco plants and found that the production of anti-HBs per unit fresh weight did not significantly differ between wild-type and AtIBH1SRDX plants. These data indicate that P35S:AtIBH1SRDX plants produced about fourfold more antibody per unit of cultivation volume, compared with wild type. Our results indicate that AtIBH1SRDX provides a useful tool for the modification of plant phenotype for cost-effective production of high-value products by stably transformed plants in plant factory conditions. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Tip Saves Energy, Money for Pennsylvania Plant

    EPA Pesticide Factsheets

    A wastewater treatment plant in Berks County, Pennsylvania is saving nearly $45,000 a year and reducing hundreds of metric tons of greenhouse gases since employing an energy conservation tip offered by the Water Protection Division in EPA’s R3 and PADEP.

  14. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer).

    PubMed

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili; Liu, Bao; Li, Lin-Feng

    2017-09-01

    Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in southwest Asia.

    PubMed

    Arranz-Otaegui, Amaia; Colledge, Sue; Zapata, Lydia; Teira-Mayolini, Luis Cesar; Ibáñez, Juan José

    2016-12-06

    Recent studies have broadened our knowledge regarding the origins of agriculture in southwest Asia by highlighting the multiregional and protracted nature of plant domestication. However, there have been few archaeobotanical data to examine whether the early adoption of wild cereal cultivation and the subsequent appearance of domesticated-type cereals occurred in parallel across southwest Asia, or if chronological differences existed between regions. The evaluation of the available archaeobotanical evidence indicates that during Pre-Pottery Neolithic A (PPNA) cultivation of wild cereal species was common in regions such as the southern-central Levant and the Upper Euphrates area, but the plant-based subsistence in the eastern Fertile Crescent (southeast Turkey, Iran, and Iraq) focused on the exploitation of plants such as legumes, goatgrass, fruits, and nuts. Around 10.7-10.2 ka Cal BP (early Pre-Pottery Neolithic B), the predominant exploitation of cereals continued in the southern-central Levant and is correlated with the appearance of significant proportions (∼30%) of domesticated-type cereal chaff in the archaeobotanical record. In the eastern Fertile Crescent exploitation of legumes, fruits, nuts, and grasses continued, and in the Euphrates legumes predominated. In these two regions domesticated-type cereal chaff (>10%) is not identified until the middle and late Pre-Pottery Neolithic B (10.2-8.3 ka Cal BP). We propose that the cultivation of wild and domesticated cereals developed at different times across southwest Asia and was conditioned by the regionally diverse plant-based subsistence strategies adopted by Pre-Pottery Neolithic groups.

  16. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in southwest Asia

    PubMed Central

    Arranz-Otaegui, Amaia; Colledge, Sue; Zapata, Lydia; Teira-Mayolini, Luis Cesar; Ibáñez, Juan José

    2016-01-01

    Recent studies have broadened our knowledge regarding the origins of agriculture in southwest Asia by highlighting the multiregional and protracted nature of plant domestication. However, there have been few archaeobotanical data to examine whether the early adoption of wild cereal cultivation and the subsequent appearance of domesticated-type cereals occurred in parallel across southwest Asia, or if chronological differences existed between regions. The evaluation of the available archaeobotanical evidence indicates that during Pre-Pottery Neolithic A (PPNA) cultivation of wild cereal species was common in regions such as the southern-central Levant and the Upper Euphrates area, but the plant-based subsistence in the eastern Fertile Crescent (southeast Turkey, Iran, and Iraq) focused on the exploitation of plants such as legumes, goatgrass, fruits, and nuts. Around 10.7–10.2 ka Cal BP (early Pre-Pottery Neolithic B), the predominant exploitation of cereals continued in the southern-central Levant and is correlated with the appearance of significant proportions (∼30%) of domesticated-type cereal chaff in the archaeobotanical record. In the eastern Fertile Crescent exploitation of legumes, fruits, nuts, and grasses continued, and in the Euphrates legumes predominated. In these two regions domesticated-type cereal chaff (>10%) is not identified until the middle and late Pre-Pottery Neolithic B (10.2–8.3 ka Cal BP). We propose that the cultivation of wild and domesticated cereals developed at different times across southwest Asia and was conditioned by the regionally diverse plant-based subsistence strategies adopted by Pre-Pottery Neolithic groups. PMID:27930348

  17. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress.

    PubMed

    Pu, Xiaojun; Lv, Xin; Tan, Tinghong; Fu, Faqiong; Qin, Gongwei; Lin, Honghui

    2015-09-01

    Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss

    NASA Astrophysics Data System (ADS)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana

    As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.

  19. [Distribution characteristics of soil aggregates and their associated organic carbon in gravel-mulched land with different cultivation years].

    PubMed

    DU, Shao Ping; Ma, Zhong Ming; Xue, Liang

    2017-05-18

    The distribution characteristics of soil aggregates and their organic carbon in gravel-mulched land with different planting years (5, 10, 15, 20 and 30 years) were studied based on a long-term field trial. The results showed that the soil aggregate fraction showed a fluctuation (down-up-down) trend with the decrease of soil aggregate size. The soil aggregates were distributed mainly in the size of >5 mm for less than 10 years cultivation, and 0.05-0.25 mm for more than 15 years. The content of aggregates over 0.25 mm (R 0.25 ) and the mean weight diameter (MWD) of soil aggregates all decreased with the increase of cultivation time. The content of organic carbon within soil aggregates increased with the decrease of soil aggregate size in gravel-mulched land with diffe-rent planting years. However, the content of organic carbon within soil aggregates, contribution rates of different aggregate fractions to soil organic carbon and soil organic carbon storage of aggregate fractions decreased with planting time extension and soil depth. Soil organic carbon in the aggregate sizes over 1 mm was sensitive to long term gravel-mulched field planting. Organic carbon storage of aggregate fractions with 10, 15, 20 and 30 years of planting decreased by 8.0%, 24.4%, 27.5% and 31.4% in the soil depth of 0-10 cm, and 1.4%, 15.8%, 19.4% and 21.8% in the soil depth of 10-20 cm, respectively. In conclusion, the ability of soil carbon sequestration in arid gravel-mulched field was reduced with planting time extension. Therefore, soil fertility of gravel-mulched fields which were cultivated for more than 15 years need to be improved.

  20. The role of transporters in supplying energy to plant plastids.

    PubMed

    Flügge, Ulf-Ingo; Häusler, Rainer E; Ludewig, Frank; Gierth, Markus

    2011-04-01

    The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.

  1. Safe genetically engineered plants

    NASA Astrophysics Data System (ADS)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  2. Comparison of essential oil components and in vitro anticancer activity in wild and cultivated Salvia verbenaca.

    PubMed

    Russo, Alessandra; Cardile, Venera; Graziano, Adriana C E; Formisano, Carmen; Rigano, Daniela; Canzoneri, Marisa; Bruno, Maurizio; Senatore, Felice

    2015-01-01

    The objectives of our research were to study the chemical composition and the in vitro anticancer effect of the essential oil of Salvia verbenaca growing in natural sites in comparison with those of cultivated (Sc) plants. The oil from wild (Sw) S. verbenaca presented hexadecanoic acid (23.1%) as the main constituent, while the oil from Sc plants contained high quantities of hexahydrofarnesyl acetone (9.7%), scarce in the natural oil (0.7%). The growth-inhibitory and proapoptotic effects of the essential oils from Sw and Sc S. verbenaca were evaluated in the human melanoma cell line M14, testing cell vitality, cell membrane integrity, genomic DNA fragmentation and caspase-3 activity. Both the essential oils were able to inhibit the growth of the cancer cells examined inducing also apoptotic cell death, but the essential oil from cultivated samples exhibited the major effects.

  3. Water and energy balances in the soil-plant atmosphere continuum

    USDA-ARS?s Scientific Manuscript database

    Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...

  4. Ecological niche modeling for a cultivated plant species: a case study on taro (Colocasia esculenta) in Hawaii.

    PubMed

    Kodis, Mali'o; Galante, Peter; Sterling, Eleanor J; Blair, Mary E

    2018-04-26

    Under the threat of ongoing and projected climate change, communities in the Pacific Islands face challenges of adapting culture and lifestyle to accommodate a changing landscape. Few models can effectively predict how biocultural livelihoods might be impacted. Here, we examine how environmental and anthropogenic factors influence an ecological niche model (ENM) for the realized niche of cultivated taro (Colocasia esculenta) in Hawaii. We created and tuned two sets of ENMs: one using only environmental variables, and one using both environmental and cultural characteristics of Hawaii. These models were projected under two different Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) for 2070. Models were selected and evaluated using average omission rate and area under the receiver operating characteristic curve (AUC). We compared optimal model predictions by comparing the percentage of taro plots predicted present and measured ENM overlap using Schoener's D statistic. The model including only environmental variables consisted of 19 Worldclim bioclimatic variables, in addition to slope, altitude, distance to perennial streams, soil evaporation, and soil moisture. The optimal model with environmental variables plus anthropogenic features also included a road density variable (which we assumed as a proxy for urbanization) and a variable indicating agricultural lands of importance to the state of Hawaii. The model including anthropogenic features performed better than the environment-only model based on omission rate, AUC, and review of spatial projections. The two models also differed in spatial projections for taro under anticipated future climate change. Our results demonstrate how ENMs including anthropogenic features can predict which areas might be best suited to plant cultivated species in the future, and how these areas could change under various climate projections. These predictions might inform biocultural

  5. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    PubMed Central

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M.; Bauer, Rudolf; Berg, Gabriele

    2013-01-01

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome. PMID:24391634

  6. Characterization of newly identified natural high-oleate mutant from the USDA cultivated peanut germplasm collection

    USDA-ARS?s Scientific Manuscript database

    In plants and animals, natural genetic variation may exist in germplasm collection. Mining and utilizing this variation may provide benefits for new breed/cultivar development. From screening over 4,000 cultivated peanut germplasm accessions, we identified two natural mutant lines with 80% oleic aci...

  7. Naval facility energy conversion plants as resource recovery system components

    NASA Astrophysics Data System (ADS)

    Capps, A. G.

    1980-01-01

    This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.

  8. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio A

    2018-03-01

    Residual municipal solid waste (MSW) has an average lower heating value higher than 10GJ/Mg in the EU, and can be recovered in modern Waste-to-Energy (WtE) plants, producing combined heat and power (CHP) and reaching high levels of energy recovery. CHP is pinpointed as the best technique for energy recovery from waste. However, in some cases, heat recovery is not technically feasible - due to the absence of a thermal user (industrial plant or district heating) in the vicinity of the WtE plant - and power production remains the sole possibility. In these cases, there are some challenges involved in increasing the energy performance as much as possible. High energy recovery efficiency values are very important for the environmental sustainability of WtE plants. The more electricity and heat is produced, the better the saving of natural resources that can be achieved. Within this frame, the aim of this work is to carry out an environmental assessment, through Life Cycle Assessment, of an MSW WtE plant, considering different sizes and operated in different ways, from power production only to full cogeneration. The main assumption is that the electric conversion efficiency increases as the plant size increases, introducing technical improvements thanks to the economies of scale. Impact assessment results were calculated using ReCiPe 2008 methods. The climate change indicator is positive when the WtE plant is operated in power production only mode, with values decreasing for the increasing size. Values for the climate change are negative when cogeneration is applied, requiring increasing cogeneration ratios for decreasing size. Similarly, the fossil fuel depletion indicator benefits from increase of both the plant size and the cogeneration rate, but it is always negative, meaning that the residual MSW burning with energy recovery always provides a saving of fossil primary energy. Other indicator values are in general negative and are also beneficially affected by

  9. The availability and economic analyses of using marginal land for bioenergy production in China

    NASA Astrophysics Data System (ADS)

    Yuqi, Chen; Xudong, Guo; Chunyan, Lv

    2017-04-01

    In recent years, China has witnessed rapid increase in the dependence of foreign oil import. In 2015, the primary energy consumption of China is 543 million tons, of which 328 million tons was imported. The total amount of imported foreign oil increased from 49.8% in 2008 to 60.41% in 2016. To address the national energy security and GHG emission reduction, China has made considerable progress in expanding renewable energy portfolio, especially liquid biofuels. However, under the pressure of high population and vulnerable food security, China's National Development and Reform Commission (NDRC) ruled that bioenergy is only allowed to be produced using non-cereal feedstock. In addition, the energy crops can only be planted on marginal land, which is the land not suitable for growing field crops due to edaphic and/or climatic limitations, and other environmental risks. Although there have been a number of studies about estimating the marginal land for energy plants' cultivation in China, as to the different definition of marginal land and land use data, the results are quite different. Furthermore, even if there is enough marginal land suitable for energy plants' cultivation, economic viability of cultivating energy plants on marginal land is critical. In order to analyze the availability and economic analyses of the marginal land for bioenergy production strategy, firstly, by using of the latest and most authoritative land use data, this study focused on the assessment of marginal land resources and bioenergy potential by planting five species of energy plants including Cassava, Jatropha curcas, Helianthus tuberous L, Pistacia chinensis, Xanthoceras sorbifolia Bunge. The results indicate that there are 289.71 million ha marginal land can be used for these five energy plants' cultivation, which can produce 24.45 million tons bioethanol and 8.77 million tons of biodiesel. Secondly, based on field survey data and literature reviews, we found that, from the farmers

  10. Modeling of energy release systems from OTEC plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denno, K.

    1983-12-01

    This paper presents analytical scope for the controlling functions of OTEC operation for the ultimate production of sizable bulk ..delta..T as well as H/sub 2/, N/sub 2/ and NH/sub 3/. The controlling parametric functions include the oceanic and ammonia Reynolds numbers which depend implicitly and explicitly on the ocean water velocity, mass-volume, duration of ..delta..T extraction, and the inlet and outlet water temperatures internally and externally. Solutions for the oceanic and amonia Reynolds numbers have been established setting the deciding constraints on water velocity, boundary temperatures, mass-volume as well as other plant parameters. Linkage between OTEC plant and other conventionalmore » as well as advanced energy systems has been expressed in terms of a set of balance and coordinating energy equations.« less

  11. Alcoa: Plant-Wide Energy Assessment Finds Potential Savings at Aluminum Extrusion Facility. Industrial Technologies Program, Aluminum BestPractices Plant-Wide Assessment Case Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-09-01

    Alcoa completed an energy assessment of its Engineered Products aluminum extrusion facility in Plant City, Florida, in 2001. The company identified energy conservation opportunities throughout the plant and prepared a report as an example for performing energy assessments at similar Alcoa facilities. If implemented, the cost of energy for the plant would be reduced by more than$800,000 per year by conserving 3 million kWh of electricity and 150,000 MMBtu of natural gas.

  12. Plant-parasitic nematodes in Hawaiian agriculture

    USDA-ARS?s Scientific Manuscript database

    Hawaii’s diverse and mild climate allows for the cultivation of many crops. The introduction of each crop plant brought along its associated nematode pests. These plant-parasitic nematodes became established and are now endemic to the islands. Plantation agriculture determined the major nematode ...

  13. [Effects of cultivation environments on Dendrobium catenatum].

    PubMed

    Lin, Yi-Kai; Zhu, Yu-Qiu; Si, Jin-Ping; Qin, Lang; Zhu, Yan; Wu, Ling-Shang; Liu, Jing-Jing

    2017-08-01

    The study was aimed to clarify the effect of three cultivation environments on the growth and metabolism of Dendrobium catenatum C13 group. There were three different cultivation conditions including rock epiphytic cultivation, pear epiphytic cultivation and pot cultivation. Morphological characteristics and agronomic characters of D. catenatum were observed and measured. Microstructure, contents of polysaccharide and alcohol-soluble extracts were measured by paraffin section method, phenol-sulfuric acid method and hot-dip method, respectively. The result showed that the cultivation environment significantly affected the growth of D. catenatum, the leaves of D. catenatum that cultivated on the rock and pear were sparse and small, the stems were short and purple and the root system was developed. Compare with potted cultivation, D. catenatum from rock epiphytic cultivation and pear epiphytic cultivation showed the following characteristics in the microstructure: the upper epidermis became thicker, the epidermal hair in the epidermis became denser, stomatal showed smaller and denser, the cell wall of exodermis, endoderm and medulla became thicker, the cell of velamen, exodermis, endoderm and medulla were smaller and arranged more closely, but the cultivation environment did not produce specific tissue structure, mainly changed in the structural parameters of size and quantity. The growth environments also influenced contents of polysaccharides and alcohol-soluble extracts. The dontents of polysaccharides and alcohol-soluble extracts in D. catenatum from rock epiphytic were the highest, reached 37.34% and 11.66%, the second was pear epiphytic, both higher than pot cultivation, alcohol-soluble extracts contents in D. catenatum from rock epiphytic are more complex, which shows that rock epiphytic is conducive to the accumulation of secondary metabolites in D. catenatum. Copyright© by the Chinese Pharmaceutical Association.

  14. Characterization of functional trait diversity among Indian cultivated and weedy rice populations

    PubMed Central

    Rathore, M.; Singh, Raghwendra; Kumar, B.; Chauhan, B. S.

    2016-01-01

    Weedy rice, a menace in rice growing areas globally, is biosimilar having attributes similar to cultivated and wild rice, and therefore is difficult to manage. A study was initiated to characterize the functional traits of 76 weedy rice populations and commonly grown rice cultivars from different agro-climatic zones for nine morphological, five physiological, and three phenological parameters in a field experiment under an augmented block design. Comparison between weedy and cultivated rice revealed a difference in duration (days) from panicle emergence to heading as the most variable trait and awn length as the least variable one, as evidenced from their coefficients of variation. The results of principal component analysis revealed the first three principal components to represent 47.3% of the total variation, which indicates an important role of transpiration, conductance, leaf-air temperature difference, days to panicle emergence, days to heading, flag leaf length, SPAD (soil-plant analysis development), grain weight, plant height, and panicle length to the diversity in weedy rice populations. The variations existing in weedy rice population are a major reason for its wider adaptability to varied environmental conditions and also a problem while trying to manage it. PMID:27072282

  15. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas:more » flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil

  16. Distinction between wild and cultivated enset (Ensete ventricosum) gene pools in Ethiopia using RAPD markers.

    PubMed

    Birmeta, Genet; Nybom, Hilde; Bekele, Endashaw

    2004-01-01

    In southwest Ethiopia, the cultivation area of Ensete ventricosum (enset) overlaps with the natural distribution area of this species. Analyses of genetic diversity were undertaken using RAPD to provide information for conservation strategies as well as evidence of possible gene flow between the different gene pools, which can be of interest for future improvement of cultivated enset. The extent of RAPD variation in wild enset was investigated in 5 populations in the Bonga area (Kefficho administrative region) and 9 cultivated clones. Comparisons were also made with some Musa samples of potential relevance for crop improvement. Nine oligonucleotide primers amplified 72 polymorphic loci. Population differentiation was estimated with the Shannon index (G'(ST)=0.10), Nei's G(ST) (0.12) and AMOVA (Phi(ST)=0.12), and appears to be relatively low when compared with outbreeding, perennial species in general. Cluster analysis (UPGMA) and principal component analysis (PCA) similarly indicated low population differentiation, and also demonstrated that cultivated clones essentially clustered distinctly from wild enset samples, suggesting that the present-day cultivated enset clones have been introduced to domestication from a limited number of wild progenitors. In addition, subsequent gene flow between wild and cultivated enset may have been prohibited by differences between modes of propagation and harvesting time; cultivated enset is propagated vegetatively through sucker production and the plant is generally harvested before maturity or flower set, thereby hindering pollination by wild enset or vice versa. A significant correlation was not found between genetic and geographical distances. The relatively high total RAPD diversity suggests that wild enset populations in the Bonga area harbour genetic variability which could potentially act as a source for useful or rare genes in the improvement of cultivated enset. As expected, E. ventricosum was clearly differentiated from

  17. A general model for techno-economic analysis of CSP plants with thermochemical energy storage systems

    NASA Astrophysics Data System (ADS)

    Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.

    2017-06-01

    Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.

  18. Metabolomic differentiation of maca (Lepidium meyenii) accessions cultivated under different conditions using NMR and chemometric analysis.

    PubMed

    Zhao, Jianping; Avula, Bharathi; Chan, Michael; Clément, Céline; Kreuzer, Michael; Khan, Ikhlas A

    2012-01-01

    To gain insights on the effects of color type, cultivation history, and growing site on the composition alterations of maca (Lepidium meyenii Walpers) hypocotyls, NMR profiling combined with chemometric analysis was applied to investigate the metabolite variability in different maca accessions. Maca hypocotyls with different colors (yellow, pink, violet, and lead-colored) cultivated at different geographic sites and different areas were examined for differences in metabolite expression. Differentiations of the maca accessions grown under the different cultivation conditions were determined by principle component analyses (PCAs) which were performed on the datasets derived from their ¹H NMR spectra. A total of 16 metabolites were identified by NMR analysis, and the changes in metabolite levels in relation to the color types and growing conditions of maca hypocotyls were evaluated using univariate statistical analysis. In addition, the changes of the correlation pattern among the metabolites identified in the maca accessions planted at the two different sites were examined. The results from both multivariate and univariate analysis indicated that the planting site was the major determining factor with regards to metabolite variations in maca hypocotyls, while the color of maca accession seems to be of minor importance in this respect. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation.

    PubMed

    Yeesang, Chittra; Cheirsilp, Benjamas

    2014-09-01

    Botryococcus braunii is a microalga that is regarded as a potential source of renewable fuel because of its ability to produce large amounts of lipid that can be converted into biodiesel. Agro-industrial by-products and wastes are of great interest as cultivation medium for microorganisms because of their low cost, renewable nature, and abundance. In this study, two strategies for low-cost production of B. braunii biomass with high lipid content were performed: (i) the mixotrophic cultivation using molasses, a cheap by-product from the sugar cane plant as a carbon source, and (ii) the photoautotrophic cultivation using nitrate-rich wastewater supplemented with CO2 as a carbon source. The mixotrophic cultivation added with 15 g L(-1) molasses produced a high amount of biomass of 3.05 g L(-1) with a high lipid content of 36.9 %. The photoautotrophic cultivation in nitrate-rich wastewater supplemented with 2.0 % CO2 produced a biomass of 2.26 g L(-1) and a lipid content of 30.3 %. The benefits of this photoautotrophic cultivation are that this cultivation would help to reduce accumulation of atmospheric carbon dioxide and more than 90 % of the nitrate could be removed from the wastewater. When this cultivation was scaled up in a stirred tank photobioreactor and run with semi-continuous cultivation regime, the highest microalgal biomass of 5.16 g L(-1) with a comparable lipid content of 32.2 % was achieved. These two strategies could be promising ways for producing cheap lipid-rich microalgal biomass that can be used as biofuel feedstocks and animal feeds.

  20. Identifying Energy Savings in Water and Wastewater Plants - Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  1. Identifying Energy Savings in Water and Wastewater Plants - Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  2. Identifying Energy Savings in Water and Wastewater Plants - Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  3. Identifying Energy Savings in Water and Wastewater Plants - Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  4. Nettle as a distinct Bronze Age textile plant.

    PubMed

    Bergfjord, C; Mannering, U; Frei, K M; Gleba, M; Scharff, A B; Skals, I; Heinemeier, J; Nosch, M-L; Holst, B

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe.

  5. Nettle as a distinct Bronze Age textile plant

    PubMed Central

    Bergfjord, C.; Mannering, U.; Frei, K. M.; Gleba, M.; Scharff, A. B.; Skals, I.; Heinemeier, J.; Nosch, M. -L; Holst, B.

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe. PMID:23024858

  6. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems.

    PubMed

    Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian

    2016-08-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive.

    PubMed

    Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy

  8. Chemical constituents and energy content of some latex bearing plants.

    PubMed

    Kalita, D; Saikia, C N

    2004-05-01

    The latex bearing plants Plumeria alba, Calotropis procera, Euphorbia nerrifolia, Nerium indicum and Mimusops elengi were evaluated as potential renewable sources of energy and chemicals. Plant parts (leaf, stem, bark) and also whole plants were analyzed for elemental composition, oil, polyphenol, hydrocarbons, crude protein, alpha-cellulose, lignin and ash. The dry biomass yields were between 4.47 and 13.74 kg/plant. The carbon contents in whole plants varied from 38.5% to 44.9%, while hydrogen and nitrogen contents varied from 5.86% to 6.72% and 1.26% to 2.34%, respectively. The bark of the plants contained the highest amount of hydrocarbons (1.78-3.93%) and the leaves contained the lowest amounts (0.26-1.82%). The unsaponifiable materials and fatty acids in the oil fractions of whole plants ranged from 22.8% to 56.4% and 24.7% to 58.7%, respectively. The highest gross heat value was exhibited by C. procera (6145 cal/g) and the lowest by N. indicum (4405 cal/g). Hydrocarbon fractions were characterized by IR and (1)H-NMR and by thermogravimetric analyses. The activation energy (E(a)) in the third stage of decomposition was the greatest in the hydrocarbon fraction obtained from M. elengi (16.40 kJ mol(-1)) and the lowest for C. procera (3.96 kJ mol(-1)). The study indicated that the plant species might be suitable as alternative source of hydrocarbons and other phytochemicals.

  9. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    PubMed

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids.

    PubMed

    Shivrain, Vinod K; Burgos, Nilda R; Gealy, David R; Sales, Marites A; Smith, Kenneth L

    2009-10-01

    Gene transfer from weeds to crops could produce weedy individuals that might impact upon the evolutionary dynamics of weedy populations, the persistence of escaped genes in agroecosystems and approaches to weed management and containment of transgenic crops. The present aim was to quantify the gene flowrate from weedy red rice to cultivated rice, and evaluate the morphology, phenology and fecundity of resulting hybrids. Field experiments were conducted at Stuttgart and Rohwer, Arkansas, USA. Twelve red rice accessions and an imazethapyr-resistant rice (Imi-R; Clearfield) were used. Hybrids between Imi-R rice x red rice were 138-150 cm tall and flowered 1-5 days later than the rice parent, regardless of the red rice parent. Hybrids produced 20-50% more seed than the rice parent, but had equivalent seed production to the majority of red rice parents. Seeds of all hybrids were red, pubescent and dehisced at maturity. For the majority of hybrids, seed germination was higher than that of the red rice parent. The gene flowrate from red rice to rice was 0.01-0.2% and differed by red rice biotype. The hybrids had higher fecundity and potential competitive ability than the rice parent, and in some cases also the red rice parent. Red rice plants are vectors of gene flow back to cultivated rice and other weedy populations. The progeny of red rice hybrids from cultivated rice mother plants have higher chances of persistence than those from red rice mother plants. Gene flow mitigation strategies should consider this scenario. Copyright 2009 Society of Chemical Industry.

  11. Central Plant Optimization for Waste Energy Reduction (CPOWER)

    DTIC Science & Technology

    2016-12-01

    data such as windspeed and solar radiation is recorded in CPOWER. For these periods, the following data fields from the CPOWER database and the weather...The solar radiation data did not appear reliable in the weather dataset for the location, and hence we did not use this. The energy consumption...that several factors affect the total energy consumption of the chiller plant and additional data and additional factors (e.g., solar insolation) may be

  12. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less

  13. A Novel Botrytis Species Is Associated with a Newly Emergent Foliar Disease in Cultivated Hemerocallis

    PubMed Central

    Grant-Downton, Robert T.; Terhem, Razak B.; Kapralov, Maxim V.; Mehdi, Saher; Rodriguez-Enriquez, M. Josefina; Gurr, Sarah J.; van Kan, Jan A. L.; Dewey, Frances M.

    2014-01-01

    Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease known as ‘spring sickness’ were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of ‘spring sickness’ symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants. PMID:24887415

  14. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin

  15. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    PubMed

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  16. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture.

    PubMed

    Rai, Prabhat Kumar; Kumar, Vanish; Lee, SangSoo; Raza, Nadeem; Kim, Ki-Hyun; Ok, Yong Sik; Tsang, Daniel C W

    2018-06-14

    In the recent techno-scientific revolution, nanotechnology has gained popularity at a rapid pace in different sectors and disciplines, specifically environmental, sensing, bioenergy, and agricultural systems. Controlled, easy, economical, and safe synthesis of nanomaterials is desired for the development of new-age nanotechnology. In general, nanomaterial synthesis techniques, such as chemical synthesis, are not completely safe or environmentally friendly due to harmful chemicals used or to toxic by-products produced. Moreover, a few nanomaterials are present as by-product during washing process, which may accumulate in water, air, and soil system to pose serious threats to plants, animals, and microbes. In contrast, using plants for nanomaterial (especially nanoparticle) synthesis has proven to be environmentally safe and economical. The role of plants as a source of nanoparticles is also likely to expand the number of options for sustainable green renewable energy, especially in biorefineries. Despite several advantages of nanotechnology, the nano-revolution has aroused concerns in terms of the fate of nanoparticles in the environment because of the potential health impacts caused by nanotoxicity upon their release. In the present panoramic review, we discuss the possibility that a multitudinous array of nanoparticles may find applications convergent with human welfare based on the synthesis of diverse nanoparticles from plants and their extracts. The significance of plant-nanoparticle interactions has been elucidated further for nanoparticle synthesis, applications of nanoparticles, and the disadvantages of using plants for synthesizing nanoparticles. Finally, we discuss future prospects of plant-nanoparticle interactions in relation to the environment, energy, and agriculture with implications in nanotechnology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    PubMed

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  18. Plant biotechnology in China.

    PubMed

    Huang, Jikun; Rozelle, Scott; Pray, Carl; Wang, Qinfang

    2002-01-25

    A survey of China's plant biotechnologists shows that China is developing the largest plant biotechnology capacity outside of North America. The list of genetically modified plant technologies in trials, including rice, wheat, potatoes, and peanuts, is impressive and differs from those being worked on in other countries. Poor farmers in China are cultivating more area of genetically modified plants than are small farmers in any other developing country. A survey of agricultural producers in China demonstrates that Bacillus thuringiensis cotton adoption increases production efficiency and improves farmer health.

  19. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  20. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  1. Bacterial community changes in response to oil contamination and perennial crop cultivation.

    PubMed

    Yan, Lijuan; Penttinen, Petri; Mikkonen, Anu; Lindström, Kristina

    2018-05-01

    We investigated bacterial community dynamics in response to used motor oil contamination and perennial crop cultivation by 16S rRNA gene amplicon sequencing in a 4-year field study. Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes were the major bacterial phyla, and Rhodococcus was the most abundant genus. Initially, oil contamination decreased the overall bacterial diversity. Actinobacteria, Betaproteobacteria, and Gammaproteobacteria were sensitive to oil contamination, exhibiting clear succession with time. However, bacterial communities changed over time, regardless of oil contamination and crop cultivation. The abundance difference of most OTUs between oil-contaminated and non-contaminated plots remained the same in later sampling years after the initial abundance difference induced by oil spike. The abundances of three oil-favored actinobacteria (Lysinimonas, Microbacteriaceae, and Marmoricola) and one betaproteobacterium (Aquabacterium) changed in different manner over time in oil-contaminated and non-contaminated soil. We propose that these taxa are potential bio-indicators for monitoring recovery from motor oil contamination in boreal soil. The effect of crop cultivation on bacterial communities became significant only after the crops achieved stable growth, likely associated with plant material decomposition by Bacteroidetes, Armatimonadetes and Fibrobacteres.

  2. Introducing cultivated trees into the wild: Wood pigeons as dispersers of domestic olive seeds

    NASA Astrophysics Data System (ADS)

    Perea, Ramón; Gutiérrez-Galán, Alejandro

    2016-02-01

    Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8-7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.

  3. Expert System Control of Plant Growth in an Enclosed Space

    NASA Technical Reports Server (NTRS)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  4. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com; Zebrowski, Jacek; Oklejewicz, Bernadetta

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic andmore » physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.« less

  5. About the development strategies of power plant in energy market

    NASA Astrophysics Data System (ADS)

    Duinea, Adelaida Mihaela

    2017-12-01

    The paper aims at identifying and assessing the revenues and costs incurred by various modernization and modernization-development strategies for a power plant in order to optimize the electric and thermal energy are produced and to conduct a sensitivity analysis of the main performance indicators. The Romanian energy system and the energy market have gone a long transition way, from the vertically integrated model, the responsibility for the delivery of the electricity comes exclusively to a state monopoly, to a decentralized system, characterized by the decentralization of production and transport, respectively distribution activities. Romania chose the liberal market model where the relations between the actors in the market - producers and suppliers free to make sales and purchase transactions for electrical energy - are mostly governed by contracts, which may be either bilaterally negotiated or are already regulated. Therefore, the importance of understanding the development trend of the Romanian energy market lies in its economic effects upon the solutions which could be adopted for the evolution of the cogeneration power plant in question.

  6. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  7. EMCS Experiment Container for the Plant Gravity Perception Experiment

    NASA Image and Video Library

    2018-02-08

    iss054e037079 (Feb. 8, 2018) --- Plant Gravity Perception experiment in a centrifuge on a European Modular Cultivation System (EMCS) Experiment Container (EC) to test the gravity-sensing ability of plants in microgravity.

  8. Development of a CSP plant energy yield calculation tool applying predictive models to analyze plant performance sensitivities

    NASA Astrophysics Data System (ADS)

    Haack, Lukas; Peniche, Ricardo; Sommer, Lutz; Kather, Alfons

    2017-06-01

    At early project stages, the main CSP plant design parameters such as turbine capacity, solar field size, and thermal storage capacity are varied during the techno-economic optimization to determine most suitable plant configurations. In general, a typical meteorological year with at least hourly time resolution is used to analyze each plant configuration. Different software tools are available to simulate the annual energy yield. Software tools offering a thermodynamic modeling approach of the power block and the CSP thermal cycle, such as EBSILONProfessional®, allow a flexible definition of plant topologies. In EBSILON, the thermodynamic equilibrium for each time step is calculated iteratively (quasi steady state), which requires approximately 45 minutes to process one year with hourly time resolution. For better presentation of gradients, 10 min time resolution is recommended, which increases processing time by a factor of 5. Therefore, analyzing a large number of plant sensitivities, as required during the techno-economic optimization procedure, the detailed thermodynamic simulation approach becomes impracticable. Suntrace has developed an in-house CSP-Simulation tool (CSPsim), based on EBSILON and applying predictive models, to approximate the CSP plant performance for central receiver and parabolic trough technology. CSPsim significantly increases the speed of energy yield calculations by factor ≥ 35 and has automated the simulation run of all predefined design configurations in sequential order during the optimization procedure. To develop the predictive models, multiple linear regression techniques and Design of Experiment methods are applied. The annual energy yield and derived LCOE calculated by the predictive model deviates less than ±1.5 % from the thermodynamic simulation in EBSILON and effectively identifies the optimal range of main design parameters for further, more specific analysis.

  9. Electrical efficiency in modern waste to energy plants -- The advanced solutions adopted in a new Italian plant (Milan)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchini, F.M.; Pezzella, B.

    1998-07-01

    The paper has the goal to give a general overview of the current approach for the design of modern Waste to Energy (WtE) plants. The thermal treatment of solid waste is an environmentally sound method to get rid of the garbage produced by everyone and to recover energy simultaneously. A typical waste to energy plant is divided in four segments: incineration/boiler, air pollution control, residues treatment and power generation. Still in the 80's a WtE plant was simply consisting of a these four segments without any particular effort in putting them together into a coordinated plant; therefore the results weremore » very poor in term of overall plant performances even if the single segments were properly designed. This paper shows how this approach is changing and how the synergism between the segments allows to reach interesting performances in term of electric efficiency, always keeping in mind that power must be considered a by-product of the incinerator. Therefore all these efforts have to be done without affecting the burning capacity of the station. The new Milan WtE plant is taken as example throughout the paper. The first section of the paper tries to consider the Municipal Solid Waste as standard fuel; then focal point becomes the electrical efficiency of the plant. In the fourth section the flue gas cleaning system is approached, pointing out the gas quality at stack. Then in the fifth and sixth paragraphs all most important and innovative technical solutions of the Milan plant are shown with some details on water/steam cycle, giving also some availability results. Chapter seven shows some interesting key-figures, related to the combustion of 1,000 kg of MSW at 11 MJ/kg, with also some economical evaluations in term of investment cost per ton of waste per day.« less

  10. The Cultivation of Arabidopsis for Experimental Research Using Commercially Available Peat-Based and Peat-Free Growing Media

    PubMed Central

    Drake, Tiffany; Keating, Mia; Summers, Rebecca; Yochikawa, Aline; Pitman, Tom

    2016-01-01

    Experimental research involving Arabidopsis thaliana often involves the quantification of phenotypic traits during cultivation on compost or other growing media. Many commercially-available growing media contain peat, but peat extraction is not sustainable due to its very slow rate of formation. Moreover, peat extraction reduces peatland biodiversity and releases stored carbon and methane into the atmosphere. Here, we compared the experimental performance of Arabidopsis on peat-based and several types of commercially-available peat-free growing media (variously formed from coir, composted bark, wood-fibre, and domestic compost), to provide guidance for reducing peat use in plant sciences research with Arabidopsis. Arabidopsis biomass accumulation and seed yield were reduced by cultivation on several types of peat-free growing media. Arabidopsis performed extremely poorly on coir alone, presumably because this medium was completely nitrate-free. Some peat-free growing media were more susceptible to fungal contamination. We found that autoclaving of control (peat-based) growing media had no effect upon any physiological parameters that we examined, compared with non-autoclaved control growing media, under our experimental conditions. Overall, we conclude that Arabidopsis performs best when cultivated on peat-based growing media because seed yield was almost always reduced when peat-free media were used. This may be because standard laboratory protocols and growth conditions for Arabidopsis are optimized for peat-based media. However, during the vegetative growth phase several phenotypic traits were comparable between plants cultivated on peat-based and some peat-free media, suggesting that under certain circumstances peat-free media can be suitable for phenotypic analysis of Arabidopsis. PMID:27088495

  11. The evolution of crop cultivation and paleoenvironment in the Longji Terraces, southern China: Organic geochemical evidence from paleosols.

    PubMed

    Jiang, Yongjian; Li, Shijie; Chen, Wei; Cai, Desuo; Liu, Yan

    2017-11-01

    The Longji ancient agricultural terraces in the Longji Mountain area (Guilin, southern China), which still remain in use, are famous for their magnificent terraced landscape with a mix of ecosystem and human inhabitation. Previous research has revealed the genesis and preliminary paleoenvironmental record of the agricultural terraces, but little is known about variations in crop cultivation over time. In this study, organic geochemical analyses and radiocarbon dating of an aggradational cultivated soil from a terrace profile were used to explore crop type variation and relevant paleoenvironmental change during the period of cultivation on the Longji Terraces. Hydroponic farming with rice (C 3 ) planting has been the dominant cultivation mode since the initial construction of the terraces. Warm-dry climate contributed to the growth of drought-tolerant crop (C 4 ) cultivation in the late 15th century. Temperature deterioration during the Little Ice Age had a negative impact on dry and hydroponic farming activities from the late 15th century to the late 19th century, while climate warming after the Little Ice Age promoted the redevelopment of hydroponic farming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Kudenko, Yu. A.; Ushakova, S. A.; Tirranen, L. S.; Gribovskaya, I. A.; Gros, J.-B.; Lasseur, Ch.

    2010-09-01

    To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H 2O 2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H 2O 2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of

  13. Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System

    PubMed Central

    Alguacil, Maria del Mar; Torrecillas, Emma; Hernández, Guillermina; Roldán, Antonio

    2012-01-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems. PMID:22536339

  14. Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method

    PubMed Central

    Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun

    2017-01-01

    In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)2. In the reaction process, Ca2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)2 content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)2 content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure. PMID:28686178

  15. Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method.

    PubMed

    Han, Shuai; Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun

    2017-07-07

    In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)₂. In the reaction process, Ca 2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)₂ content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)₂ content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure.

  16. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    PubMed

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  17. Plants and men in space - A new field in plant physiology

    NASA Technical Reports Server (NTRS)

    Andre, M.; Macelroy, R. D.

    1990-01-01

    Results are presented on a comparison of nutritional values of and human psychological responses to algae and of higher plants considered for growth as food on long-term missions in space, together with the technological complexities of growing these plants. The comparison shows the advantages of higher plants, with results suggesting that a high level of material recycling can be obtained. It is noted that the issue of space gravity may be not a major problem for plants because of the possibility that phototropism can provide an alternative sense of direction. Problems of waste recycling can be solved in association with plant cultivation, and a high degree of autonomy of food production can be obtained.

  18. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  19. Attitudes of cannabis growers to regulation of cannabis cultivation under a non-prohibition cannabis model.

    PubMed

    Lenton, Simon; Frank, Vibeke A; Barratt, Monica J; Dahl, Helle Vibeke; Potter, Gary R

    2015-03-01

    How cannabis cultivation is dealt with under various examples of cannabis legalization or regulation is an important consideration in design of such schemes. This study aimed to (i) investigate support among current or recent cannabis growers, for various potential policy options for cannabis cultivation if prohibition were repealed, and (ii) explore the support for these options across countries, scale of growing operations, demographics, drug use and cannabis supply involvement variables. This study utilized data from the online web survey of largely 'small-scale' cannabis cultivators, aged 18yrs and over, in eleven countries conducted by the Global Cannabis Cultivation Research Consortium (GCCRC). Data from 1722 current and recent cannabis growers in Australia, Denmark and the UK, who were all asked about policy, were included in the analysis. It investigated support for various frameworks for cultivation: (no regulation (free market); adult only; growing licenses; restrictions on plant numbers; licensed business-only sale; approved commercial growing; etc.). Among current growers, support for these options were compared across countries, across scale of growing operations, and by demographics, drug use and crime variables. Although there were some between country differences in support for the various policy options, what was striking was the similarity of the proportions for each of the eight most popular policy options. Among current growers, many of these positions were predicted by demographic, drug use and cannabis growing variables which were conceptually congruent with these positions. The results have relevance for the provisions regarding cannabis cultivation in the design of new non-prohibitionist models of cannabis which are increasingly under consideration. It should be of interest to policy makers, drug policy researchers, law enforcement and cannabis cultivators. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [Salvia officinalis l. I. Botanic characteristics, composition, use and cultivation].

    PubMed

    Daniela, T

    1993-06-01

    Salvia officinalis L. is an essential oil containing plant, which does not wildly grow in the territories of the Czech and Slovak Republics but it can be successfully cultivated. It is a perennial half-shrub, from which non-flowering herbaceous sprouts or leaves are collected for pharmaceutical purposes. After drying at a temperature not exceeding 35 degrees C they are the plant drugs Herba salviae or Folium salviae. In PhBs, Herba salviae is official. The drug contains mainly ethereal oil (1-2%), diterpenes, triterpenes and tannin. The pharmacopoeial criterion of quality is the content of essential oil, which is produced in an increased amount in the plant in warm summer months. Herba salviae and the extracts prepared from it are used as an antiseptic agent, an antiphlogistic agent, in the inflammations of the oral cavity and gingivitis and also as a stomachic and an antihydrotic agent. Its utilization in cosmetics and food industry is also of importance.

  1. Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria.

    PubMed

    Thomas, Pious; Sekhar, Aparna Chandra

    2017-05-01

    The interior of plants constitutes a unique environment for microorganisms with various organisms inhabiting as endophytes. Unlike subterranean plant parts, aboveground parts are relatively less explored for endophytic microbial diversity. We employed a combination of cultivation and molecular approaches to study the endophytic bacterial diversity in banana shoot-tips. Cultivable bacteria from 20 sucker shoot-tips of cv. Grand Naine included 37 strains under 16 genera and three phyla (Proteobacteria, Actinobacteria, Firmicutes). 16S rRNA gene-ribotyping approach on 799f and 1492r PCR-amplicons to avoid plant organelle sequences was ineffective showing limited bacterial diversity. 16S rRNA metagene profiling targeting the V3-V4 hypervariable region after filtering out the chloroplast (74.2 %), mitochondrial (22.9 %), and unknown sequences (1.1 %) revealed enormous bacterial diversity. Proteobacteria formed the predominant phylum (64 %) succeeded by Firmicutes (12.1 %), Actinobacteria (9.5 %), Bacteroidetes (6.4 %), Planctomycetes, Cyanobacteria, and minor shares (<1 %) of 14 phyla including several candidate phyla besides the domain Euryarchaeota (0.2 %). Microbiome analysis of single shoot-tips through 16S rRNA V3 region profiling showed similar taxonomic richness and diversity and was less affected by plant sequence interferences. DNA extraction kit ominously influenced the phylogenetic diversity. The study has revealed vast diversity of normally uncultivable endophytic bacteria prevailing in banana shoot-tips (20 phyla, 46 classes) with about 2.6 % of the deciphered 269 genera and 1.5 % of the 656 observed species from the same source of shoot-tips attained through cultivation. The predominant genera included several agriculturally important bacteria. The study reveals an immense ecosystem of endophytic bacteria in banana shoot tissues endorsing the earlier documentation of intracellular "Cytobacts" and "Peribacts" with possible roles in plant

  2. Tea waste: an effective and economic substrate for oyster mushroom cultivation.

    PubMed

    Yang, Doudou; Liang, Jin; Wang, Yunsheng; Sun, Feng; Tao, Hong; Xu, Qiang; Zhang, Liang; Zhang, Zhengzhu; Ho, Chi-Tang; Wan, Xiaochun

    2016-01-30

    Tea waste is the residue that remains after tea leaves have been extracted by hot water to obtain water-soluble components. The waste contains a re-usable energy substrate and nutrients which may pollute the environment if they are not dealt with appropriately. Other agricultural wastes have been widely studied as substrates for cultivating mushrooms. In the present study, we cultivated oyster mushroom using tea waste as substrate. To study the feasibility of re-using it, tea waste was added to the substrate at different ratios in different experimental groups. Three mushroom strains (39, 71 and YOU) were compared and evaluated. Mycelia growth rate, yield, biological efficiency and growth duration were measured. Substrates with different tea waste ratios showed different growth and yield performance. The substrate containing 40-60% of tea waste resulted in the highest yield. Tea waste could be used as an effective and economic substrate for oyster mushroom cultivation. This study also provided a useful way of dealing with massive amounts of tea waste. © 2015 Society of Chemical Industry.

  3. Sheep manure vermicompost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation.

    PubMed

    Gutiérrez-Miceli, F A; Moguel-Zamudio, B; Abud-Archila, M; Gutiérrez-Oliva, V F; Dendooven, L

    2008-10-01

    An orthogonal experimental design L9 (3(4)) with 10 repetitions was used to investigate the effect of Glomus claroideum (0, 1 or 2g(-1) plant), G. fasciculatum (0, 1 or 2g plant(-1)), native diazotrophic bacteria (0, 10(3) and 10(5) UFC ml(-1)) and sheep manure vermicompost (0%, 5% and 10% v/v) on maize plant growth, N and P in leaves and mycorrhization percent. Vermicompost explained most of the variation found for leaf number, wet weight, stem height, and diameter. Both mycorrhizas increased the plant wet weight but G. fasciculatum the most. Mycorrhization increased the P content, but not the N content. Mycorrhizal colonization increased when diazotrophic bacteria and vermicompost were added. It was found that weight of maize plants cultivated in peat moss amended with vermicompost increased when supplemented with G. fasciculatum and diazotrophic bacteria.

  4. Estimation of mating system parameters in an evolving gynodioecous population of cultivated sunflower (Helianthus annuus L.)

    PubMed Central

    Roumet, M; Ostrowski, M-F; David, J; Tollon, C; Muller, M-H

    2012-01-01

    Cultivated plants have been molded by human-induced selection, including manipulations of the mating system in the twentieth century. How these manipulations have affected realized parameters of the mating system in freely evolving cultivated populations is of interest for optimizing the management of breeding populations, predicting the fate of escaped populations and providing material for experimental evolution studies. To produce modern varieties of sunflower (Helianthus annuus L.), self-incompatibility has been broken, recurrent generations of selfing have been performed and male sterility has been introduced. Populations deriving from hybrid-F1 varieties are gynodioecious because of the segregation of a nuclear restorer of male fertility. Using both phenotypic and genotypic data at 11 microsatellite loci, we analyzed the consanguinity status of plants of the first three generations of such a population and estimated parameters related to the mating system. We showed that the resource reallocation to seed in male-sterile individuals was not significant, that inbreeding depression on seed production averaged 15–20% and that cultivated sunflower had acquired a mixed-mating system, with ∼50% of selfing among the hermaphrodites. According to theoretical models, the female advantage and the inbreeding depression at the seed production stage were too low to allow the persistence of male sterility. We discuss our methods of parameter estimation and the potential of such study system in evolutionary biology. PMID:21915147

  5. Analysis of the costs of fuel supply for wood-fired electric power plants in rural Liberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlack, R.D.; Barron, W.F.; Samuels, G.

    1985-06-01

    In recent years the quality of rural electric services in Liberia has been declining and the future economic viability of these power stations is a growing concern. Each of the ten operating and each of the planned rural public power stations is designed to operate exclusively on gas oil (diesel fuel). Fuel expenditures by the Liberian Electricity Corporation (LEC) for the rural public stations represent a major and growing burden on the financially hardpressed utility. Liberia has two potentially significant alternatives to oil-fired electric power for its up-country towns: small (1 to 5 MW) hydroelectric facilities, and wood-fired steam ormore » gasifier plants (0.2 to 2 MW). Although small hydroelectric facilities appear viable for several locations, they cannot serve all locations and will require thermal back-up. The economics of supplying wood to a rural electric power plant or rural grid were evaluated under several scenarios involving: (1) different sources of the feedstock, and (2) differences in wood supply requirements for plants based on the use of steam or gasifier technology, and variation in the utilization level for such plants. With a few minor exceptions, wood energy supplies are plentiful throughout Liberia. Liberia has four different potential sources of wood fuel supply: the commercial cutting of retired rubber trees; the harvesting of secondary growth forest just prior to the land returning to temporary cultivation as part of a system of shifting agriculture; adding to the system of shifting agriculture the planting of fast-growing wood species and harvesting these trees when the land again is brought back under cultivation (generally after about five to seven years); and the establishment of commercial short-rotation wood energy plantations. Results indicate that the use of wood to fuel rural power stations is a viable economic option.« less

  6. Content of total carotenoids in Calendula officinalis L. from different countries cultivated in Estonia.

    PubMed

    Raal, Ain; Kirsipuu, Kadri; Must, Reelika; Tenno, Silvi

    2009-01-01

    The aim of the present study was to investigate the content of total carotenoids in different collections of pot marigold (Calendula officinalis L.) inflorescences. Commercial seeds (42 samples) of C. officinalis were obtained from nine countries and cultivated in private gardens in three different counties of Estonia. The content of total carotenoids, determined spectrophotometrically (lambda=455 nm) varied in the investigated collections from 0.20 to 3.51%. The amount of pigments may depend on the type of plants, the importing company, the color of the ligulate and tubular florets, and the place and time of cultivation. For medicinal purposes, C. officinalis with brownish-yellow ligulate and tubular florets should be preferred. The best was found to be 'Golden Emperor' from Finland.

  7. A northward colonisation of the Andes by the potato cyst nematode during geological times suggests multiple host-shifts from wild to cultivated potatoes.

    PubMed

    Picard, Damien; Sempere, Thierry; Plantard, Olivier

    2007-02-01

    The cyst nematode Globodera pallida is a major pest of potato in South America where this specialist parasite is native. To investigate its phylogeography, we have genotyped individuals from 42 Peruvian populations using mitochondrial and nuclear molecular markers. A clear south-to-north phylogeographical pattern was revealed with five well-supported clades. The clade containing the southern populations is genetically more diverse and forms the most basal branch. The large divergence among cytochrome b haplotypes suggests that they diverged before human domestication of potato. As the nematodes studied have been sampled on cultivated potato, multiple host-shifts from wild to cultivated potatoes must have occurred independently in each clade. We hypothesise that this south-to-north pattern took place during the uplift of the Andes beginning 20 My ago and following the same direction. To our knowledge, this is the first study of a plant parasite sampled on cultivated plants revealing an ancient phylogeographical pattern.

  8. Somatic embryogenesis from corolla tubes of interspecific amphiploids between cultivated sunflower (Helianthus annuus L.) and its wild species

    USDA-ARS?s Scientific Manuscript database

    Somatic embryogenesis in vitro provides an efficient means of plant multiplication, facilitating sunflower improvement and germplasm innovation. In the present study, using interspecific amphiploids (2n=4x=68) between cultivated sunflower and wild perennial Helianthus species as explant donors, soma...

  9. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    PubMed

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

  10. Predicting the Impacts of Climate Change on the Potential Distribution of Major Native Non-Food Bioenergy Plants in China

    PubMed Central

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of “precipitation of the warmest quarter” and “annual mean temperature” were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China. PMID:25365425

  11. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.

    PubMed

    Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F

    2012-12-01

    Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Blending water- and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014.

    PubMed

    Park, Seonghwan; Kim, Jeongmi; Yoon, Youngjin; Park, Younghyun; Lee, Taeho

    2015-12-01

    The possibility of utilizing blended wastewaters from different streams was investigated for cost-efficient microalgal cultivation. The influent of a domestic wastewater treatment plant and the liquid fertilizer from a swine wastewater treatment plant were selected as water- and nutrient-source wastewaters, respectively. The growth of Micractinium inermum NLP-F014 in the blended wastewater medium without any pretreatment was comparable to that in Bold's Basal Medium. The optimum blending ratio of 5-15% (vv(-1)) facilitated biomass production up to 5.7 g-dry cell weight (DCW) L(-1), and the maximum biomass productivity (1.03 g-DCWL(-1)d(-1)) was achieved after three days of cultivation. Nutrient depletion induced lipid accumulation in the cell up to 39.1% (ww(-1)) and the maximum lipid productivity was 0.19 g-FAMEL(-1)d(-1). These results suggest that blending water- and nutrient-source wastewaters at a proper ratio without pretreatment can significantly cut costs in microalgae cultivation for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Population Structure and Domestication Revealed by High-Depth Resequencing of Korean Cultivated and Wild Soybean Genomes†

    PubMed Central

    Chung, Won-Hyong; Jeong, Namhee; Kim, Jiwoong; Lee, Woo Kyu; Lee, Yun-Gyeong; Lee, Sang-Heon; Yoon, Woongchang; Kim, Jin-Hyun; Choi, Ik-Young; Choi, Hong-Kyu; Moon, Jung-Kyung; Kim, Namshin; Jeong, Soon-Chun

    2014-01-01

    Despite the importance of soybean as a major crop, genome-wide variation and evolution of cultivated soybeans are largely unknown. Here, we catalogued genome variation in an annual soybean population by high-depth resequencing of 10 cultivated and 6 wild accessions and obtained 3.87 million high-quality single-nucleotide polymorphisms (SNPs) after excluding the sites with missing data in any accession. Nuclear genome phylogeny supported a single origin for the cultivated soybeans. We identified 10-fold longer linkage disequilibrium (LD) in the wild soybean relative to wild maize and rice. Despite the small population size, the long LD and large SNP data allowed us to identify 206 candidate domestication regions with significantly lower diversity in the cultivated, but not in the wild, soybeans. Some of the genes in these candidate regions were associated with soybean homologues of canonical domestication genes. However, several examples, which are likely specific to soybean or eudicot crop plants, were also observed. Consequently, the variation data identified in this study should be valuable for breeding and for identifying agronomically important genes in soybeans. However, the long LD of wild soybeans may hinder pinpointing causal gene(s) in the candidate regions. PMID:24271940

  14. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    PubMed

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  15. Genetic Differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) Populations on Cultivated Cowpea and Wild Host Plants: Implications for Insect Resistance Management and Biological Control Strategies

    PubMed Central

    Agunbiade, Tolulope A.; Coates, Brad S.; Datinon, Benjamin; Djouaka, Rousseau; Sun, Weilin; Tamò, Manuele; Pittendrigh, Barry R.

    2014-01-01

    Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation −0.68%) or F-statistics (F ST Loc = −0.01; P = 0.62). These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92). In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (F ST Host = 0.04; P = 0.01), which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa. PMID:24647356

  16. Cultivation of Cimicifuga racemosa (L.) nuttal and quality of CR extract BNO 1055.

    PubMed

    Popp, Michael; Schenk, Regina; Abel, Gudrun

    2003-03-14

    For Cimicifuga racemosa, well-founded investigations concerning multiplication, germination of seeds and field cultivation have not yet been published. Defined origins or varieties with certain agronomic properties and a specific pattern of active compounds are not commercially available. Special challenges are found with regard to growing of young plantlets from seeds. Comprehensive investigations have been started to find optimal conditions for all steps of the whole process to establish cultivation for Cimicifuga. Aim is to get defined varieties or sources with desirable agronomic characteristics and specific reproducible compound patterns in order to reach homogeneous plant raw material. For analytical tests, validated HPLC and TLC methods were used. Results from germination experiments with different temperature regimens show that the time for germination can be shortened from about 20 months to about 6 months. Gibberellic acid had positive influence on the development of the embryo. Content of triterpenglycosides and phenolic compounds was highest in May and June and decreased then from July until September. The quality of the ethanolic extract BNO 1055 (contained in Klimadynon(R) and Menofem(R)) differs from that of an isopropanolic extract. Comparison was carried out by means of TLC pattern of triterpenglycosides and phenolic compounds. Extensive systematic research on cultivation parameters with regard to all stages from the seeds to the herbal drug enables commercial field cultivation of Cimicifuga. Controlled cultivation (according to good agricultural practice or GAP) ensures the availability of homogenous standardized raw material. For pharmacological and clinical studies, standardized extracts and finished herbal medicinal products are required. Results of these studies are never transferable to other products and therefore valid only for the tested extracts/products.

  17. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  18. Analyses on Regional Cultivated Land Changebased on Quantitative Method

    NASA Astrophysics Data System (ADS)

    Cao, Yingui; Yuan, Chun; Zhou, Wei; Wang, Jing

    Three Gorges Project is the great project in the world, which accelerates economic development in the reservoir area of Three Gorges Project. In the process of development in the reservoir area of Three Gorges Project, cultivated land has become the important resources, a lot of cultivated land has been occupied and become the constructing land. In the same time, a lot of cultivated land has been flooded because of the rising of the water level. This paper uses the cultivated land areas and social economic indicators of reservoir area of Three Gorges in 1990-2004, takes the statistic analyses and example research in order to analyze the process of cultivated land, get the driving forces of cultivated land change, find the new methods to stimulate and forecast the cultivated land areas in the future, and serve for the cultivated land protection and successive development in reservoir area of Three Gorges. The results indicate as follow, firstly, in the past 15 years, the cultivated land areas has decreased 200142 hm2, the decreasing quantity per year is 13343 hm2. The whole reservoir area is divided into three different areas, they are upper reaches area, belly area and lower reaches area. The trends of cultivated land change in different reservoir areas are similar to the whole reservoir area. Secondly, the curve of cultivated land areas and per capita GDP takes on the reverse U, and the steps between the change rate of cultivated land and the change rate of GDP are different in some years, which indicates that change of cultivated land and change of GDP are decoupling, besides that, change of cultivated land is connection with the development of urbanization and the policy of returning forestry greatly. Lastly, the precision of multi-regression is lower than the BP neural network in the stimulation of cultivated land, then takes use of the BP neural network to forecast the cultivated land areas in 2005, 2010 and 2015, and the forecasting results are reasonable.

  19. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis.

    PubMed

    Zhang, Xu; Liu, Qun; Zhou, Wei; Li, Ping; Alolga, Raphael N; Qi, Lian-Wen; Yin, Xiaojian

    2018-06-15

    Cordyceps sinensis has gained increasing attention due to its nutritional and medicinal properties. Herein, we employed label-free quantitative mass spectrometry to explore the proteome differences between naturally- and artificially-cultivated C. sinensis. A total of 22,829 peptides with confidence ≥95%, corresponding to 2541 protein groups were identified from the caterpillar bodies/stromata of 12 naturally- and artificially-cultivated samples of C. sinensis. Among them, 165 proteins showed significant differences between the samples of natural and artificial cultivation. These proteins were mainly involved in energy production/conversion, amino acid transport/metabolism, and transcription regulation. The proteomic results were confirmed by the identification of 4 significantly changed metabolites, thus, lysine, threonine, serine, and arginine via untargeted metabolomics. The change tendencies of these metabolites were partly in accordance with changes in abundance of the proteins, which was upstream of their synthetic pathways. In addition, the nutritional value in terms of the levels of nucleosides, nucleotides, and adenosine between the artificially- and naturally-cultivated samples was virtually same. These proteomic data will be useful for understanding the medicinal value of C. sinensis and serve as reference for its artificial cultivation. C. sinensis is a precious and valued medicinal product, the current basic proteome dataset would provide useful information to understand its development/infection processes as well as help to artificially cultivate it. This work would also provide basic proteome profile for further study of C. sinensis. Copyright © 2018. Published by Elsevier B.V.

  20. REE Distribution in Cultivated and No Cultivated Soils in Two Viticultural Areas of Central Chile: Mineralogical, Pedological and Anthropic Influences

    NASA Astrophysics Data System (ADS)

    Castillo, P.; Townley, B.; Aburto, F.

    2017-12-01

    Within the scope of a Corfo-Innova Project (I+D Wines of Chile-University of Chile) we have recognized remarkable REE patterns in soils of two vineyards located in traditional vinicultural areas: Casablanca and Santa Cruz. Both vineyards have granitic parent rock, with similar petrographic features and REE patterns. We studied REE distribution on twelve cultivated soil profiles at each vineyard, where a full mineralogical, geochemical and pedogenic sampling and characterization was performed. To establish the effect of management no cultivated soil profiles were included from each vineyard location. REE in soil samples were measured by ICP-MS using two digestion methods: lithium metaborate/tetraborate fusion to obtain REE contents in total soil and MMI® partial extraction technique for REE contents on bioavailable phases.Soils display similar signatures of REEs respect to the rock source at both vineyards, but showing relative enrichments in soils of Casablanca and depletion in soils of Santa Cruz. Bioavailable phase data indicates a relative depletion of LREEs compared to HREEs and different anomalies for Ce (positive vs negative) in different areas of the same vineyard. Similar patterns of soils and parent rock suggest that REEs are adequate tracers of lithological source. Enrichments and/or depletions of REE patterns in soils respect to the rock source and Ce anomalies, evidence differential pedogenetic processes occurring at each sampled site. Results of bioavailable phase are coherent with the immobilization and fractionation of LREEs by stable minerals within soils as clays and Fe oxides. Mineralogical results in soil thin sections of Casablanca evidence the occurrence of Ti phases as sphene, ilmenite and rutile, which probably control the relative REE enrichment, since these minerals are considered more stable under pedogenic conditions.Finally, cultivated soils show a depleted but analogous pattern of REE regarding to no cultivated soil, indicating the

  1. Partition coefficient of cadmium between organic soils and bean and oat plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.

    Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated withmore » bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.« less

  2. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362

  3. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    USGS Publications Warehouse

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  4. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    PubMed

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  5. Sustainability appraisal of shifting cultivation in the Chittagong Hill Tracts of Bangladesh.

    PubMed

    Borggaard, Ole K; Gafur, Abdul; Petersen, Leif

    2003-03-01

    An integrated socioeconomic and erosion study on the sustainability of traditional shifting cultivation (Jhum) carried out in 1998 and 1999 in the Chittagong Hill Tracts (CHT) of Bangladesh showed the system to be nonsustainable under the current conditions with fallow periods of only 3-5 years and lack of land rights. An estimated input (mainly labor) of USD 380 ha(-1) yr(-1) results in only a total output of USD 360 ha(-1) yr(-1) and Jhum cultivated areas suffer severe loss of soil and valuable plant nutrients along with runoff during the rainy season. To compensate these losses by commercial fertilizers will cost nearly USD 2 million yr(-1) for CHT. To ensure long-term productivity of the soils, Jhum should therefore be adjusted to a tolerable level and farmers should be given rights and title to the land to motivate them to switch to improved, settled farming systems.

  6. Evapotranspiration of rubber (Hevea brasiliensis) cultivated at two plantation sites in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Giambelluca, Thomas W.; Mudd, Ryan G.; Liu, Wen; Ziegler, Alan D.; Kobayashi, Nakako; Kumagai, Tomo'omi; Miyazawa, Yoshiyuki; Lim, Tiva Khan; Huang, Maoyi; Fox, Jefferson; Yin, Song; Mak, Sophea Veasna; Kasemsap, Poonpipope

    2016-02-01

    To investigate the effects of expanding rubber (Hevea brasiliensis) cultivation on water cycling in Mainland Southeast Asia (MSEA), evapotranspiration (ET) was measured within rubber plantations at Bueng Kan, Thailand, and Kampong Cham, Cambodia. After energy closure adjustment, mean annual rubber ET was 1211 and 1459 mm yr-1 at the Thailand and Cambodia sites, respectively, higher than that of other tree-dominated land covers in the region, including tropical seasonal forest (812-1140 mm yr-1), and savanna (538-1060 mm yr-1). The mean proportion of net radiation used for ET by rubber (0.725) is similar to that of tropical rainforest (0.729) and much higher than that of tropical seasonal forest (0.595) and savanna (0.548). Plant area index (varies with leaf area changes), explains 88.2% and 73.1% of the variance in the ratio of latent energy flux (energy equivalent of ET) to potential latent energy flux (LE/LEpot) for midday rain-free periods at the Thailand and Cambodia sites, respectively. High annual rubber ET results from high late dry season water use, associated with rapid refoliation by this brevideciduous species, facilitated by tapping of deep soil water, and by very high wet season ET, a characteristic of deciduous trees. Spatially, mean annual rubber ET increases strongly with increasing net radiation (Rn) across the three available rubber plantation observation sites, unlike nonrubber tropical ecosystems, which reduce canopy conductance at high Rn sites. High water use by rubber raises concerns about potential effects of continued expansion of tree plantations on water and food security in MSEA.

  7. Nutrient and Antinutrient Compositions and Heavy Metal Uptake and Accumulation in S. nigrum Cultivated on Different Soil Types

    PubMed Central

    Ogundola, Adijat Funke; Bvenura, Callistus

    2018-01-01

    Solanum nigrum cultivated on different soil texture types, sandy clay loam, silty clay loam, clay loam, loam, and control soils, were evaluated for proximate compositions, antinutrients, vitamins, and mineral composition with plant age using standard analytical methods. Accumulation of trace elements using translocation factor was studied to determine their toxic levels in plant tissues. Data were analysed by ANOVA and results expressed as means and standard deviation. Ash content, crude fibre, protein, alkaloid, phytate, and saponin ranged between 11.4 and 12%, 19.24 and 19.95%, 34.23 and 38.98, 42.08 and 45.76 mg/ml, 0.84 and 1.17%, and 94.10 and 97.00%, respectively. Vitamins A, C, and B were present in high quantity. Macro- and micronutrients recorded showed that S. nigrum is a potential reservoir of minerals. Accumulation of micronutrients was observed to be the highest at the flowering stage between the 4th and 5th weeks after transplanting. Plants cultivated on clay loam, silty clay loam, and loam soils accumulated elevated nutritional compositions and abundant antinutrients. However, the accumulated trace metals in the plants are within the recommended safe levels. All nutrient values are in the recommended requirements for daily consumption. PMID:29576752

  8. Cultivation in Cottonwood Plantations - Practices and Equipment

    Treesearch

    Harvey E. Kennedy; Wilbur H. Henderson

    1976-01-01

    Thorough first-year cultivation in cottonwood plantations is mandatory to ensure optimum survival and growth. Poor cultivation can reduce growth and may kill trees. Some plantation managers feel that only first-year cultivation is necessary, while others routinely disk for 2, 3, or even 4 years. Chemical weed control shows promise but has not been adequately researched...

  9. Mechanism and capacities of reducing ecological cost through rice-duck cultivation.

    PubMed

    Long, Pan; Huang, Huang; Liao, Xiaolan; Fu, Zhiqiang; Zheng, Huabin; Chen, Aiwu; Chen, Can

    2013-09-01

    Rice-duck cultivation is the essence of Chinese traditional agriculture. A scientific assessment of the mechanism and its capacity is of theoretical significance and practical value in improving modern agricultural technology. The duck's secretions, excreta and their treading, pecking and predation decrease the occurrence of plant diseases, pests and weeds, enrich species diversity and improve the field environment. The rice-duck intergrowth system effectively prevents rice planthoppers and rice leafhoppers. The control effects can be up to 98.47% and 100% respectively; it also has effects on the control of Chilo suppressalis, Tryporyza incertulas and the rice leafrollers. Notable control results are found on sheath blight, while the effects on other diseases are about 50%. Harm from weeds is placed under primary control; prevention of weeds is sequenced by broadleaf weeds > sedge weeds > Gramineae weeds. Contents of soil organic matter, N, P and K are improved by the system; nutrient utilization is accelerated, resulting in decreased fertilizer application. Greenhouse gas emissions are reduced by 1-2% and duck fodder is saved in this system. There is also an obvious economic benefit. Compared to conventional rice cultivation, rice-duck cultivation shows great benefits to ecologic cost and economic income. © 2013 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  10. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement

    PubMed Central

    2014-01-01

    Background The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant. Results We used an integrated approach to compare the transcriptome, proteome and metabolome of the rhizome to other tissues of red rice. 116 Gb of transcriptome sequence was obtained from various tissues and used to identify rhizome-specific and preferentially expressed genes, including transcription factors and hormone metabolism and stress response-related genes. Proteomics and metabolomics approaches identified 41 proteins and more than 100 primary metabolites and plant hormones with rhizome preferential accumulation. Of particular interest was the identification of a large number of gene transcripts from Magnaportha oryzae, the fungus that causes rice blast disease in cultivated rice, even though the red rice plants showed no sign of disease. Conclusions A significant set of genes, proteins and metabolites appear to be specifically or preferentially expressed in the rhizome of O. longistaminata. The presence of M. oryzae gene transcripts at a high level in apparently healthy plants suggests that red rice is resistant to this pathogen, and may be able to provide genes to cultivated rice that will enable resistance to rice blast disease. PMID:24521476

  11. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants

    NASA Astrophysics Data System (ADS)

    Morstyn, Thomas; Farrell, Niall; Darby, Sarah J.; McCulloch, Malcolm D.

    2018-02-01

    Power networks are undergoing a fundamental transition, with traditionally passive consumers becoming `prosumers' — proactive consumers with distributed energy resources, actively managing their consumption, production and storage of energy. A key question that remains unresolved is: how can we incentivize coordination between vast numbers of distributed energy resources, each with different owners and characteristics? Virtual power plants and peer-to-peer (P2P) energy trading offer different sources of value to prosumers and the power network, and have been proposed as different potential structures for future prosumer electricity markets. In this Perspective, we argue they can be combined to capture the benefits of both. We thus propose the concept of the federated power plant, a virtual power plant formed through P2P transactions between self-organizing prosumers. This addresses social, institutional and economic issues faced by top-down strategies for coordinating virtual power plants, while unlocking additional value for P2P energy trading.

  12. Effect of different nitrogen sources on plant characteristics and yield of common bean (Phaseolus vulgaris L.).

    PubMed

    Fernández-Luqueño, F; Reyes-Varela, V; Martínez-Suárez, C; Salomón-Hernández, G; Yáñez-Meneses, J; Ceballos-Ramírez, J M; Dendooven, L

    2010-01-01

    Wastewater sludge can be used to fertilize crops, especially after vermicomposting (composting with earthworms to reduce pathogens). How wastewater sludge or vermicompost affects bean (Phaseolus vulgaris L.) growth is still largely unknown. In this study the effect of different forms of N fertilizer on common bean plant characteristics and yield were investigated in a Typic Fragiudepts (sandy loam) soil under greenhouse conditions. Beans were fertilized with wastewater sludge, or wastewater sludge vermicompost, or urea, or grown in unamended soil, while plant characteristics and yield were monitored (the unamended soil had no fertilization). Yields of common bean plants cultivated in unamended soil or soil amended with urea were lower than those cultivated in wastewater sludge-amended soil. Application of vermicompost further improved plant development and increased yield compared with beans cultivated in wastewater amended soil. It was found that application of organic waste products improved growth and yield of bean plants compared to those amended with inorganic fertilizer.

  13. Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany).

    PubMed

    Bauböck, Roland; Karpenstein-Machan, Marianne; Kappas, Martin

    2014-01-01

    Lower Saxony (Germany) has the highest installed electric capacity from biogas in Germany. Most of this electricity is generated with maize. Reasons for this are the high yields and the economic incentive. In parts of Lower Saxony, an expansion of maize cultivation has led to ecological problems and a negative image of bioenergy as such. Winter triticale and cup plant have both shown their suitability as alternative energy crops for biogas production and could help to reduce maize cultivation. The model Biomass Simulation Tool for Agricultural Resources (BioSTAR) has been validated with observed yield data from the region of Hannover for the cultures maize and winter wheat. Predicted yields for the cultures show satisfactory error values of 9.36% (maize) and 11.5% (winter wheat). Correlations with observed data are significant ( P  < 0.01) with R  = 0.75 for maize and 0.6 for winter wheat. Biomass potential calculations for triticale and cup plant have shown both crops to be high yielding and a promising alternative to maize in the region of Hanover and other places in Lower Saxony. The model BioSTAR simulated yields for maize and winter wheat in the region of Hannover at a good overall level of accuracy (combined error 10.4%). Due to input data aggregation, individual years show high errors though (up to 30%). Nevertheless, the BioSTAR crop model has proven to be a functioning tool for the prediction of agricultural biomass potentials under varying environmental and crop management frame conditions.

  14. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW

    PubMed Central

    Shuping, D.S.S.; Eloff, J.N.

    2017-01-01

    Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Materials and Methods: Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms “plant fungal pathogen”, “plant extracts” and “phytopathogens”. Proposals are made on the best extractants and bioassay techniques to be used. Results: In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Conclusions: Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant

  15. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    PubMed

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase

  16. Life table parameters for tarnished plant bug models

    USDA-ARS?s Scientific Manuscript database

    The tarnished plant bug, Lygus lineolaris (Palisot De Beauvois) is a highly polyphagous insect that feeds on numerous wild and cultivated host plants. Previous papers have reported the survival and developmental times of immature stages of TPB and the fecundity and longevity of adults on various ho...

  17. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation

    PubMed Central

    Weikl, Fabian; Ghirardo, Andrea; Schnitzler, Jörg-Peter; Pritsch, Karin

    2016-01-01

    Alternaria alternata is one of the most studied fungi to date because of its impact on human life – from plant pathogenicity to allergenicity. However, its sesquiterpene emissions have not been systematically explored. Alternaria regularly co-occurs with Fusarium fungi, which are common plant pathogens, on withering plants. We analyzed the diversity and determined the absolute quantities of volatile organic compounds (VOCs) in the headspace above mycelial cultures of A. alternata and Fusarium oxysporum under different conditions (nutrient rich and poor, single cultures and co-cultivation) and at different mycelial ages. Using stir bar sorptive extraction and gas chromatography–mass spectrometry, we observed A. alternata to strongly emit sesquiterpenes, particularly during the early growth stages, while emissions from F. oxysporum consistently remained comparatively low. The emission profile characterizing A. alternata comprised over 20 sesquiterpenes with few effects from nutrient quality and age on the overall emission profile. Co-cultivation with F. oxysporum resulted in reduced amounts of VOCs emitted from A. alternata although its profile remained similar. Both fungi showed distinct emission profiles, rendering them suitable biomarkers for growth-detection of their phylotype in ambient air. The study highlights the importance of thorough and quantitative evaluations of fungal emissions of volatile infochemicals such as sesquiterpenes. PMID:26915756

  18. Interference of three herbicides on iron acquisition in maize plants.

    PubMed

    Bartucca, Maria Luce; Di Michele, Alessandro; Del Buono, Daniele

    2018-05-07

    The use of herbicides to control weed species could lead to environmental threats due to their persistence and accumulation in the ecosystems and cultivated fields. Nonetheless, the effect of these compounds on plant mineral nutrition in crops has been barely investigated. This study aimed at ascertaining the effect of three herbicides (S-metolachlor, metribuzin and terbuthylazine) on the capacity of maize to acquire iron (Fe). Interferences on plant growth and reductions on the Fe contents were found in the plants treated. Furthermore, root cell viability and functionality losses were ascertained following the treatments, which, in turn, decreased the amount of phytosiderophores (PSs) released by the roots. An investigation carried out in greater depth on root apices of treated plants using an FE-SEM (Scanning Electron Microscope) coupled with EDX (Energy Dispersive X-ray) indicated that the reductions on Fe content started in this part of the roots. Lastly, decreases were found also in copper (Cu +2 ), zinc (Zn +2 ) and manganese (Mn +2 ) content in root apices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Seized cannabis seeds cultivated in greenhouse: A chemical study by gas chromatography-mass spectrometry and chemometric analysis.

    PubMed

    Mariotti, Kristiane de Cássia; Marcelo, Marcelo Caetano Alexandre; Ortiz, Rafael S; Borille, Bruna Tassi; Dos Reis, Monique; Fett, Mauro Sander; Ferrão, Marco Flôres; Limberger, Renata Pereira

    2016-01-01

    Cannabis sativa L. is cultivated in most regions of the world. In 2013, the Brazilian Federal Police (BFP) reported 220 tons of marijuana seized and about 800,000 cannabis plants eradicated. Efforts to eradicate cannabis production may have contributed to the development of a new form of international drug trafficking in Brazil: the sending of cannabis seeds in small amounts to urban centers by logistics postal. This new and increasing panorama of cannabis trafficking in Brazil, encouraged the chemical study of cannabis seeds cultivated in greenhouses by gas-chromatography coupled with mass spectrometry (GC-MS) associated with exploratory and discriminant analysis. Fifty cannabis seeds of different varieties and brands, seized by the BFP were cultivated under predefined conditions for a period of 4.5 weeks, 5.5 weeks, 7.5 weeks, 10 weeks and 12 weeks. Aerial parts were analyzed and cannabigerol, cannabinol, cannabidiol, cannabichromene Δ9-tetrahydrocannabinol (THC) and other terpenoids were detected. The chromatographic chemical profiles of the samples were significantly different, probably due to different variety, light exposition and age. THC content increased with the age of the plant, however, for other cannabinoids, this correlation was not observed. The chromatograms were plotted in a matrix with 50 rows (samples) and 3886 columns (abundance in a retention time) and submitted to PCA, HCA and PLS-DA after pretreatment (normalization, first derivative and autoscale). The PCA and HCA showed age separation between samples however it was not possible to verify the separation by varieties and brands. The PLS-DA classification provides a satisfactory prediction of plant age. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Plant-microbe genomic systems optimization for energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Samuel P.

    The overall objective of this project was to identify genetic variation within grasses that results in increased biomass yield and biofuel conversion efficiency. Improving energy crops hinges on identifying the genetic mechanisms underlying traits that benefit energy production. The exploitation of natural variation in plant species is an ideal approach to identify both the traits and the genes of interest in the production of biofuels. The specific goals of this project were to (1) quantify relevant genetic diversity for biofuel feedstock bioconversion efficiency and biomass accumulation, (2) identify genetic loci that control these traits, and (3) characterize genes for improvedmore » energy crop systems. Determining the key genetic contributors influencing biofuel traits is required in order to determine the viability of these traits as targets for improvement; only then will we be able to apply modern breeding practices and genetic engineering for the rapid improvement of feedstocks.« less

  2. [Status of termite-mushroom artificial domestication cultivation--a review].

    PubMed

    Zhang, Yujin; Guo, Huachun; Li, Rongchun

    2010-10-01

    Two models of domestication and cultivation of termite-mushroom were discussed: the cultivation of termitomyces model, which method of woodrotting fungi cultivation was emphasized and the original ecological model, which multiplication of symbiotic termites was focused. The problems and possible solutions during termite-mushroom cultivation were also discussed.

  3. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems.

    PubMed

    Akiyama, H; Nose, M; Ohtsuki, N; Hisaka, S; Takiguchi, H; Tada, A; Sugimoto, N; Fuchino, H; Inui, T; Kawano, N; Hayashi, S; Hishida, A; Kudo, T; Sugiyama, K; Abe, Y; Mutsuga, M; Kawahara, N; Yoshimatsu, K

    2017-01-01

    Glycyrrhiza uralensis roots used in this study were produced using novel cultivation systems, including artificial hydroponics and artificial hydroponic-field hybrid cultivation. The equivalency between G. uralensis root extracts produced by hydroponics and/or hybrid cultivation and a commercial Glycyrrhiza crude drug were evaluated for both safety and efficacy, and there were no significant differences in terms of mutagenicity on the Ames tests. The levels of cadmium and mercury in both hydroponic roots and crude drugs were less than the limit of quantitation. Arsenic levels were lower in all hydroponic roots than in the crude drug, whereas mean lead levels in the crude drug were not significantly different from those in the hydroponically cultivated G. uralensis roots. Both hydroponic and hybrid-cultivated root extracts showed antiallergic activities against contact hypersensitivity that were similar to those of the crude drug extracts. These study results suggest that hydroponic and hybrid-cultivated roots are equivalent in safety and efficacy to those of commercial crude drugs. Further studies are necessary before the roots are applicable as replacements for the currently available commercial crude drugs produced from wild plant resources.

  4. Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol.

    PubMed

    Yu, Changjiang; Sun, Changjiang; Yu, Li; Zhu, Ming; Xu, Hua; Zhao, Jinshan; Ma, Yubin; Zhou, Gongke

    2014-01-01

    Energy crises and environmental pollution have caused considerable concerns; duckweed is considered to be a promising new energy plant that may relieve such problems. Lemna aequinoctialis strain 6000, which has a fast growth rate and the ability to accumulate high levels of starch was grown in both Schenk & Hildebrandt medium (SH) and in sewage water (SW). The maximum growth rates reached 10.0 g DW m(-2) day(-1) and 4.3 g DW m(-2) day(-1), respectively, for the SH and SW cultures, while the starch content reached 39% (w/w) and 34% (w/w). The nitrogen and phosphorus removal rate reached 80% (SH) and 90% (SW) during cultivation, and heavy metal ions assimilation was observed. About 95% (w/w) of glucose was released from duckweed biomass hydrolysates, and then fermented by Angel yeast with ethanol yield of 0.19 g g(-1) (SH) and 0.17 g g(-1) (SW). The amylose/amylopectin ratios of the cultures changed as starch content increased, from 0.252 to 0.155 (SH) and from 0.252 to 0.174 (SW). Lemna aequinoctialis strain 6000 could be considered as valuable feedstock for bioethanol production and water resources purification.

  5. Comparative Analysis of Duckweed Cultivation with Sewage Water and SH Media for Production of Fuel Ethanol

    PubMed Central

    Yu, Li; Zhu, Ming; Xu, Hua; Zhao, Jinshan; Ma, Yubin; Zhou, Gongke

    2014-01-01

    Energy crises and environmental pollution have caused considerable concerns; duckweed is considered to be a promising new energy plant that may relieve such problems. Lemna aequinoctialis strain 6000, which has a fast growth rate and the ability to accumulate high levels of starch was grown in both Schenk & Hildebrandt medium (SH) and in sewage water (SW). The maximum growth rates reached 10.0 g DW m−2 day−1 and 4.3 g DW m−2 day−1, respectively, for the SH and SW cultures, while the starch content reached 39% (w/w) and 34% (w/w). The nitrogen and phosphorus removal rate reached 80% (SH) and 90% (SW) during cultivation, and heavy metal ions assimilation was observed. About 95% (w/w) of glucose was released from duckweed biomass hydrolysates, and then fermented by Angel yeast with ethanol yield of 0.19 g g−1 (SH) and 0.17 g g−1 (SW). The amylose/amylopectin ratios of the cultures changed as starch content increased, from 0.252 to 0.155 (SH) and from 0.252 to 0.174 (SW). Lemna aequinoctialis strain 6000 could be considered as valuable feedstock for bioethanol production and water resources purification. PMID:25517893

  6. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates.

    PubMed

    Khadempour, Lily; Burnum-Johnson, Kristin E; Baker, Erin S; Nicora, Carrie D; Webb-Robertson, Bobbie-Jo M; White, Richard A; Monroe, Matthew E; Huang, Eric L; Smith, Richard D; Currie, Cameron R

    2016-11-01

    Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants' fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. © 2016 John Wiley & Sons Ltd.

  7. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    PubMed Central

    Khadempour, Lily; Burnum-Johnson, Kristin E.; Baker, Erin S.; Nicora, Carrie D.; Webb-Robertson, Bobbie-Jo M.; White, Richard A.; Monroe, Matthew E.; Huang, Eric L.; Smith, Richard D.; Currie, Cameron R.

    2016-01-01

    Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants’ fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats, or a mixture of all three. Across all treatments, our analysis identified and quantified 1,766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of sub-colonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase, and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. PMID:27696597

  8. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity

    PubMed Central

    Ariza, Maria Teresa; Soria, Carmen; Martínez-Ferri, Elsa

    2015-01-01

    Environmental factors affecting flower development may limit the yields of fruiting crops worldwide. In temperate regions, chilling temperatures during flower development can compromise fruit production, but their negative effects vary depending on the differing susceptibilities of each developmental stage. The cultivated strawberry (Fragaria× ananassa Duch.) is widely grown worldwide but financial returns are influenced by sudden shifts to chilling temperatures occurring during the cropping cycle. Despite this important limitation, knowledge of F.× ananassa flower development is lacking, in contrast to the diploid wild-type strawberry (F. vesca). In this study we describe steps in floral development of cultivated strawberry and define their vulnerability to chilling temperatures. To achieve this, flower buds from strawberry plants of cv. ‘Camarosa’ were labelled and monitored from bud initiation until anthesis. Description of morphological and functional changes during flower development was based on histological sections and scanning electron microscopy. To determine the impact of low temperatures at different developmental stages, plants carrying buds of different sizes were chilled at 2 °C for 24 h. Several parameters related to male and female gametophyte development were later evaluated in flowers as they approached anthesis. Fragaria× ananassa flower development was divided into 16 stages according to landmark events. These stages were similar to those documented for F. vesca but three new additional intermediate stages were described. Timing of developmental processes was achieved by correlating developmental staging with specific bud sizes and days before anthesis. Time to reach anthesis from early bud stages was 17–18 days. During this period, we detected four critical periods vulnerable to low temperatures. These were mostly related to male gametophyte development but also to injury to female organs at late developmental stages. These results

  9. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae.

    PubMed

    Fournomiti, Maria; Kimbaris, Athanasios; Mantzourani, Ioanna; Plessas, Stavros; Theodoridou, Irene; Papaemmanouil, Virginia; Kapsiotis, Ioannis; Panopoulou, Maria; Stavropoulou, Elisavet; Bezirtzoglou, Eugenia E; Alexopoulos, Athanasios

    2015-01-01

    Oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) are aromatic plants with ornamental, culinary, and phytotherapeutic use all over the world. In Europe, they are traditionally used in the southern countries, particularly in the Mediterranean region. The antimicrobial activities of the essential oils (EOs) derived from those plants have captured the attention of scientists as they could be used as alternatives to the increasing resistance of traditional antibiotics against pathogen infections. Therefore, significant interest in the cultivation of various aromatic and medicinal plants is recorded during the last years. However, to gain a proper and marketable chemotype various factors during the cultivation should be considered as the geographical morphology, climatic, and farming conditions. In this frame, we have studied the antimicrobial efficiency of the EOs from oregano, sage, and thyme cultivated under different conditions in a region of NE Greece in comparison to the data available in literature. Plants were purchased from a certified supplier, planted, and cultivated in an experimental field under different conditions and harvested after 9 months. EOs were extracted by using a Clevenger apparatus and tested for their antibacterial properties (Minimum inhibitory concentration - MIC) against clinical isolates of multidrug resistant Escherichia coli (n=27), Klebsiella oxytoca (n=7), and Klebsiella pneumoniae (n=16) strains by using the broth microdilution assay. Our results showed that the most sensitive organism was K. oxytoca with a mean value of MIC of 0.9 µg/mL for oregano EOs and 8.1 µg/mL for thyme. The second most sensitive strain was K. pneumoniae with mean MIC values of 9.5 µg/mL for thyme and 73.5 µg/mL for oregano EOs. E. coli strains were among the most resistant to EOs antimicrobial action as the observed MICs were 24.8-28.6 µg/mL for thyme and above 125 µg/mL for thyme and sage. Most efficient were the EOs

  10. 29 CFR 780.207 - Operations with respect to wild plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Agriculture as It Relates to Specific Situations Nursery and Landscaping Operations § 780.207 Operations with respect to wild plants. Nurseries frequently obtain plants growing wild in the woods or fields which are to be further cultivated by the nursery before they are sold by it. Obtaining such plants is a...

  11. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    PubMed Central

    Safafar, Hamed; Hass, Michael Z.; Møller, Per; Holdt, Susan L.; Jacobsen, Charlotte

    2016-01-01

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry. PMID:27483291

  12. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.

    PubMed

    Safafar, Hamed; Hass, Michael Z; Møller, Per; Holdt, Susan L; Jacobsen, Charlotte

    2016-07-29

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry.

  13. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia.

    PubMed

    Jarju, Lamin B S; Fillinger, Ulrike; Green, Clare; Louca, Vasilis; Majambere, Silas; Lindsay, Steven W

    2009-07-27

    Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0-100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to fly. The traditional practice of 'swamp rice' cultivation uses

  14. Chemical composition and antimicrobial activity of the essential oil of Mentha mozaffarianii Jamzad growing wild and cultivated in Iran.

    PubMed

    Teymouri, Mehdi; Alizadeh, Ardalan

    2018-06-01

    The aerial parts of wild and cultivated Mentha mozaffarianii Jamzad were collected at full flowering stage from two provinces (Hormozgan and Fars) of Iran. The essential oils were extracted by a Clevenger approach and analysed using GC and GC-MS. The main components in wild plants were piperitenone (33.85%), piperitone (21.18%), linalool (6.89%), pulegone (5.93%), 1, 8.cineole (5.49%), piperitenone oxide (5.17%) and menthone (4.69%) and in cultivated plants, cis-piperitone epoxide (28.89%), linalool (15.36%), piperitone (11.57%), piperitenone oxide (10.14%), piperitenone (8.42%),1,8-cineole (3.60%) were the main constituents in essential oil. The in vitro antimicrobial activity of the essential oil of M. mozaffarianii was studied against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Candida albicans. The results of the bioassays showed that the oil exhibited high antimicrobial activity against all the tested pathogens.

  15. The effect of cultivation on the size, shape, and persistence of disease patches in fields.

    PubMed

    Truscott, J E; Gilligan, C A

    2001-06-19

    Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.

  16. Please Don't Eat the Daisies (A Guide to Harmful Plants).

    ERIC Educational Resources Information Center

    Manor, C. Robert

    1982-01-01

    Reviews common wild, cultivated, and household plants which may be harmful to humans by causing allergic reactions, dermatitis, physical injury, or internal poisoning. Includes brief descriptions of plants, their potential harm, and some illustrations. (DC)

  17. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  18. Jatropha curcas and Ricinus communis differentially affect arbuscular mycorrhizal fungi diversity in soil when cultivated for biofuel production in a Guantanamo (Cuba) tropical system.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Hernández, G.; Torres, P.; Roldán, A.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a control soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) disappeared in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were improved by the cultivation of the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the control soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable in long-term conservation and sustainable management of these tropical ecosystems.

  19. Year rather than farming system influences protein utilization and energy value of vegetables when measured in a rat model.

    PubMed

    Jørgensen, Henry; Brandt, Kirsten; Lauridsen, Charlotte

    2008-12-01

    The aim of the study was to measure protein utilization and energy value of dried apple, carrot, kale, pea, and potato prepared for human consumption and grown in 2 consecutive years with 3 different farming systems: (1) low input of fertilizer without pesticides (LIminusP), (2) low input of fertilizers and high input of pesticides (LIplusP), (3) and high input of fertilizers and high input of pesticides (HIplusP). In addition, the study goal was to verify the nutritional values, taking into consideration the physiologic state. In experiment 1, the nutritive values, including protein digestibility-corrected amino acid score, were determined in single ingredients in trials with young rats (3-4 weeks) as recommended by the Food and Agriculture Organization of the United Nations/World Health Organization for all age groups. A second experiment was carried out with adult rats to assess the usefulness of digestibility values to predict the digestibility and nutritive value of mixed diets and study the age aspect. Each plant material was included in the diet with protein-free basal mixtures or casein to contain 10% dietary protein. The results showed that variations in protein utilization and energy value determined on single ingredients between cultivation strategies were inconsistent and smaller than between harvest years. Overall, dietary crude fiber was negatively correlated with energy digestibility. The energy value of apple, kale, and pea was lower than expected from literature values. A mixture of plant ingredients fed to adult rats showed lower protein digestibility and higher energy digestibility than predicted. The protein digestibility data obtained using young rats in the calculation of protein digestibility-corrected amino acid score overestimates protein digestibility and quality and underestimates energy value for mature rats. The present study provides new data on protein utilization and energy digestibility of some typical plant foods that may

  20. Production of microbial biosurfactants by solid-state cultivation.

    PubMed

    Krieger, Nadia; Camilios Neto, Doumit; Mitchell, David Alexander

    2010-01-01

    In recent years biosurfactants have attracted attention because of their low toxicity, biodegradability and ecological acceptability. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Solid-state cultivation represents an alternative technology for biosurfactant production that can bring two important advantages: firstly, it allows the use of inexpensive substrates and, secondly, it avoids the problem of foaming that complicates submerged cultivation processes for biosurfactant production. In this chapter we show that, despite its potential, to date relatively little attention has been given to solid-state cultivation for biosurfactant production. We also note that this cultivation technique brings its own challenges, such as the selection of a bioreactor type that will allow adequate heat removal, of substrates with appropriate physico-chemical properties and of methods for monitoring of the cultivation process and recovering the biosurfactants from the fermented solid. With suitable efforts in research, solid-state cultivation can be used for large-scale production of biosurfactants.

  1. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controlled [correction of controled] environment conditions.

    PubMed

    Tikhomirov, A A; Ushakova, S A; Gribovskaya, I A; Tirranen, L S; Manukovsky, N S; Zolotukhin, I G; Karnachuk, R A; Gros, J B; Lasseur, Ch

    2003-01-01

    To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of

  2. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  3. Augusta Newsprint: Paper Mill Pursues Five Projects Following Plant-Wide Energy Efficiency Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-07-01

    Augusta Newsprint undertook a plant-wide energy efficiency assessment of its Augusta, Georgia, plant in 2001. The assessment helped the company decide to implement five energy efficiency projects. Four of the five projects will save the company 11,000 MWh of electrical energy (about$369,000) each year. The remaining project will produce more than$300,000 annually, from sale of the byproduct turpentine. The largest annual savings,$881,000, will come from eliminating Kraft pulp by using better process control. All of the projects could be applied to other paper mills and most of the projects could be applied in other industries.

  4. A straw-soil co-composting and evaluation for plant substrate in BLSS

    NASA Astrophysics Data System (ADS)

    Cheng, Quanyong; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Qin, Lifeng

    2013-02-01

    Material closure is important for the establishment of Bioregenerative Life Support System, and many studies have focused on transforming candidate plant residues into plant culture medium. For the limitations of using wheat straw compost as substrate for plant cultivation, a straw-soil co-composting technique was studied. The changes of pH, C/N value, germination index, cellulose, lignin and so on were monitored during the co-composting process. The maturity was evaluated by the C/N value and the germination index. The result showed that after 45 days' fermentation, the straw-soil final co-compost with inoculation (T1) became mature, while the co-compost without inoculation (T0) was not mature. In the plant culture test, the T1 substrate could satisfy the needs for lettuce's growth, and the edible biomass yield of lettuce averaged 74.42 g pot-1 at harvest. But the lettuces in T0 substrate showed stress symptoms and have not completed the growth cycle. Moreover, the results of nitrogen (N) transformation experiment showed that about 10.0% and 3.1% N were lost during the T1 co-composting and plant cultivation, respectively, 23.5% N was absorbed by lettuce, and 63.4% N remained in the T1 substrate after cultivation.

  5. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate

    PubMed Central

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10–20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution. PMID:28678884

  6. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    PubMed

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  7. Groundwater level deterioration issues and suggested solution for the water curtain cultivation area in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yongcheol; Lee, Bongju; Ha, Kucheol; Yoon, Yunyeol; Moon, Sangho; Cho, Suyoung; Kim, Seongyun

    2013-04-01

    Protected water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of the green house. But the issue is that the method results in groundwater level deterioration because it disposes the used groundwater to nearby stream. Reuse of the groundwater for water curtain cultivation is important Groundwater level, steam level, and groundwater usage rate are investigated at the five green house concentrated areas such as Cheongwon, Namyangju, Choongju, Namwon, Jinju. Groundwater usage rate is estimated using a ultrasonic flowmeter for a specific well and using the combination of pressure sensor and propeller type velocity counting equipment at a water disposal channel from November to April which is water curtain cultivating season. Groundwater usage rate ranges from 46.9m3/d to 108.0m3/d for a 10a greenhouse. Groundwater level change is strongly influenced by seasonal variation of rainfall and concentrated pumping activities in winter but the level is lower than stream level all year long resulting in all year around losing stream at Cheongwon, Namyangju, Jinju. At Nanwon, the stream is converted from losing one in winter to gaining one in summer. Groundwater level deterioration at concentrated water curtain cultivation area is found to be severe for some area where circulating water curtain cultivation system is need to be applied for groundwater restoration and sustainable cultivation in winter. Circulating water curtain cultivation system can restore the groundwater level by recharging the used groundwater through injection well and then pumping out from pumping well.

  8. Performance test of nutrient control equipment for hydroponic plants

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  9. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea

    PubMed Central

    Lux, Alexander; Vaculík, Marek; Martinka, Michal; Lišková, Desana; Kulkarni, Manoj G.; Stirk, Wendy A.; Van Staden, Johannes

    2011-01-01

    Background and Aims Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. Methods Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L−1 in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. Key Results The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. Conclusions It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress. PMID:21118841

  10. Mechanism and capacities of reducing ecological cost through rice–duck cultivation

    PubMed Central

    Long, Pan; Huang, Huang; Liao, Xiaolan; Fu, Zhiqiang; Zheng, Huabin; Chen, Aiwu; Chen, Can

    2013-01-01

    BACKGROUND: Rice–duck cultivation is the essence of Chinese traditional agriculture. A scientific assessment of the mechanism and its capacity is of theoretical significance and practical value in improving modern agricultural technology. RESULTS: The duck’s secretions, excreta and their treading, pecking and predation decrease the occurrence of plant diseases, pests and weeds, enrich species diversity and improve the field environment. The rice–duck intergrowth system effectively prevents rice planthoppers and rice leafhoppers. The control effects can be up to 98.47% and 100% respectively; it also has effects on the control of Chilo suppressalis, Tryporyza incertulas and the rice leafrollers. Notable control results are found on sheath blight, while the effects on other diseases are about 50%. Harm from weeds is placed under primary control; prevention of weeds is sequenced by broadleaf weeds > sedge weeds > Gramineae weeds. Contents of soil organic matter, N, P and K are improved by the system; nutrient utilization is accelerated, resulting in decreased fertilizer application. Greenhouse gas emissions are reduced by 1–2% and duck fodder is saved in this system. There is also an obvious economic benefit. CONCLUSION: Compared to conventional rice cultivation, rice–duck cultivation shows great benefits to ecologic cost and economic income. © 2013 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:23703299

  11. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    PubMed

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  12. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    PubMed

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Assessing the harms of cannabis cultivation in Belgium.

    PubMed

    Paoli, Letizia; Decorte, Tom; Kersten, Loes

    2015-03-01

    Since the 1990s, a shift from the importation of foreign cannabis to domestic cultivation has taken place in Belgium, as it has in many other countries. This shift has prompted Belgian policy-making bodies to prioritize the repression of cannabis cultivation. Against this background, the article aims to systematically map and assess for the first time ever the harms associated with cannabis cultivation, covering the whole spectrum of growers. This study is based on a web survey primarily targeting small-scale growers (N=1293) and on three interconnected sets of qualitative data on large-scale growers and traffickers (34 closed criminal proceedings, interviews with 32 criminal justice experts, and with 17 large-scale cannabis growers and three traffickers). The study relied on Greenfield and Paoli's (2013) harm assessment framework to identify the harms associated with cannabis cultivation and to assess the incidence, severity and causes of such harms. Cannabis cultivation has become endemic in Belgium. Despite that, it generates, for Belgium, limited harms of medium-low or medium priority. Large-scale growers tend to produce more harms than the small-scale ones. Virtually all the harms associated with cannabis cultivation are the result of the current criminalizing policies. Given the spread of cannabis cultivation and Belgium's position in Europe, reducing the supply of cannabis does not appear to be a realistic policy objective. Given the limited harms generated, there is scarce scientific justification to prioritize cannabis cultivation in Belgian law enforcement strategies. As most harms are generated by large-scale growers, it is this category of cultivator, if any, which should be the focus of law enforcement repression. Given the policy origin of most harms, policy-makers should seek to develop policies likely to reduce such harms. At the same time, further research is needed to comparatively assess the harms associated with cannabis cultivation (and

  14. An Evaluation of the Environmental Fate and Behavior of Munitions Material (TNT, RDX) in Soil and Plant Systems. Environmental Fate and Behavior of RDX

    DTIC Science & Technology

    1990-08-01

    2.2 2.2 SOIL CHARACTERIZATION AND SAMPLING ............................................. 2.7 2.3 PLANT CULTIVATION ...cycle. 2.3 Plant Cultivation and Samoling The chemical fate of RDX in plants was evaluated using bush beans K (Phaseolus vulgaris), wheat (Triticum...particularly in light of the high tissue concentrations observed, may be important from the standpoint of food-chain transfer and ecotoxicology

  15. Cultivation of Tuber melanosporum in firebreaks: short-term persistence of the fungus and effect of seedling age and soil treatment.

    PubMed

    Garcia-Barreda, Sergi; Reyna, Santiago

    2013-01-01

    Wildfires are a major threat to Mediterranean forests. Firebreaks are built as a prevention measure, but require a periodic and expensive maintenance. Cultivating the ectomycorrhizal mushroom Tuber melanosporum Vitt. in firebreaks could reduce costs and improve their sustainability. But firebreaks are built on forest soil, considered nonoptimum for T. melanosporum cultivation. A pot experiment was used to study the persistence of T. melanosporum in firebreak soils in the short term, as a first step to assess the viability of these plantations. The influence of seedlings, soil heating, and liming was also tested. During the 2 y after plantation, T. melanosporum mycorrhizas increased their number, showing its ability to proliferate. Percent root colonisation by native fungi importantly increased from month 12 to 22; although T. melanosporum remained dominant, with a colonisation level similar to those in standard truffle plantations. The age of seedlings at the time of planting influenced T. melanosporum proliferation, supporting a key role for nursery seedling quality in the performance of young plantations. Heating the soil before planting reduced the richness of native fungi, suggesting that this could increase plantation success. The results tend to support the viability of T. melanosporum cultivation in firebreaks, and encourage experimental field plantations. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. [Discussion on appraisal methods and key technologies of arbuscular mycorrhizal fungi and medicinal plant symbiosis system].

    PubMed

    Chen, Meilan; Guo, Lanping; Yang, Guang; Chen, Min; Yang, Li; Huang, Luqi

    2011-11-01

    Applications of arbuscular mycorrhizal fungi in research of medicinal plant cultivation are increased in recent years. Medicinal plants habitat is complicated and many inclusions are in root, however crop habitat is simple and few inclusions in root. So appraisal methods and key technologies about the symbiotic system of crop and arbuscular mycorrhizal fungi can't completely suitable for the symbiotic system of medicinal plants and arbuscular mycorrhizal fungi. This article discuss the appraisal methods and key technologies about the symbiotic system of medicinal plant and arbuscular mycorrhizal fungi from the isolation and identification of arbuscular mycorrhiza, and the appraisal of colonization intensity. This article provides guidance for application research of arbuscular mycorrhizal fungi in cultivation of medicinal plants.

  17. Limited energy studies, Holston Army Ammunition Plant, Kingport, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-08-01

    This study was conducted and this report prepared under Contract No. DACA 01-91-D-0032, Delivery Orders 2 and 3, issued by the U.S. Army Engineer District, Mobile on 9 September 1991. The purpose of this study was to determine the economic feasibility of the following specific energy conservation opportunities (ECOs) associated with the central heating plants at the Holston Army Ammunition Plant (HAAP).

  18. Land-use change in Indian tropical agro-ecosystems: eco-energy estimation for socio-ecological sustainability.

    PubMed

    Nautiyal, Sunil; Kaechele, Harald; Umesh Babu, M S; Tikhile, Pavan; Baksi, Sangeeta

    2017-04-01

    This study was carried out to understand the ecological and economic sustainability of floriculture and other main crops in Indian agro-ecosystems. The cultivation practices of four major flower crops, namely Jasminum multiflorum, Crossandra infundibuliformis, Chrysanthemum and Tagetes erecta, were studied in detail. The production cost of flowers in terms of energy was calculated to be 99,622-135,996 compared to 27,681-69,133 MJ ha -1 for the main crops, namely Oryza sativa, Eleusine coracana, Zea mays and Sorghum bicolor. The highest-energy input amongst the crops was recorded for Z. mays (69,133 MJ ha -1 ) as this is a resource-demanding crop. However, flower cultivation requires approximately twice the energy required for the cultivation of Z. mays. In terms of both energy and monetary inputs, flower cultivation needs two to three times the requirements of the main crops cultivated in the region. The monetary inputs for main crop cultivation were calculated to be ₹ 27,349 to ₹ 46,930 as compared to flower crops (₹ 62,540 to ₹ 144,355). Floriculture was found to be more efficient in monetary terms when compared to the main crops cultivated in the region. However, the energy efficiency of flower crops is lower than that of the main crops, and the energy output from flower cultivation was found to be declining in tropical agro-ecosystems in India. Amongst the various inputs, farmyard manure accounts for the highest proportion, and for its preparation, most of the raw material comes from the surrounding ecosystems. Thus, flower cultivation has a direct impact on the ecosystem resource flow. Therefore, keeping the economic and environmental sustainability in view, this study indicates that a more field-based research is required to frame appropriate policies for flower cultivation to achieve sustainable socio-ecological development.

  19. Plants: An International Scientific Open Access Journal to Publish All Facets of Plants, Their Functions and Interactions with the Environment and Other Living Organisms.

    PubMed

    Fernando, W G Dilantha

    2012-02-06

    Plants are one of the two major groups of living organisms that are an essential entity to the function of the biosphere. Plants can be found in all known parts of the earth, in all shapes and sizes. They include the green algae, mosses, ferns, vines, grasses, bushes, herbs, flowering plants and trees. Although some plants are parasitic, most produce their own food through photosynthesis. Most plants initiate from a seed. The importance of plants in the food chain dates back to ancient times. The first humans gathered wild plants for food. As settlements developed, food crops were cultivated, leading to selection of high-yielding cultivated varieties to feed the growing populations. Unlike plants, humans and other animals are unable to manufacture their own food. Therefore, they are dependent, directly or indirectly, on plants. Plants are found in natural ecosystems such as rain forests, and also in agricultural areas and urbanized settings. They are an essential part of our daily lives providing food, clean air, and important ecosystem functions. The study of plants and their function could be considered the most complex of interactions. From the time a seed germinates, it goes through a myriad of physiological processes that can be closely studied using modern tools and molecular biological methods. An open access journal such as Plants will give millions of readers access to that information around the world.

  20. Variation of active constituents of an important Tibet folk medicine Swertia mussotii Franch. (Gentianaceae) between artificially cultivated and naturally distributed.

    PubMed

    Yang, Huiling; Ding, Chenxu; Duan, Yuanwen; Liu, Jianquan

    2005-04-08

    Concentrations of seven phytochemical constituents (swertiamarin, mangiferin, swertisin, oleanolic acid, 1,5,8-trihydroxy-3-methoxyxanthone, 1,8-dihydroxy-3,7-dimethoxyxanthone and 1,8-dihydroxy-3,5-dimethoxyxanthone) of "ZangYinChen" (Swertia mussotii, a herb used in Tibetan folk medicine) were determined and compared in plants collected from naturally distributed high-altitude populations and counterparts that had been artificially cultivated at low altitudes. Levels of mangiferin, the most abundant active compound in this herb, were significantly lower in cultivated samples and showed a negative correlation with altitude. The other constituents were neither positively nor negatively correlated with cultivation at low altitude. Concentrations of all of the constituents varied substantially with growth stage and were highest at the bud stage in the cultivars, but there were no distinct differences between flowering and fruiting stages in this respect.

  1. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC...: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute). The...

  2. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    PubMed

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  3. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    USDA-ARS?s Scientific Manuscript database

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under vario...

  4. Preventing Establishment: An Inventory of Introduced Plants in Puerto Villamil, Isabela Island, Galapagos

    PubMed Central

    Guézou, Anne; Pozo, Paola; Buddenhagen, Christopher

    2007-01-01

    As part of an island-wide project to identify and eradicate potentially invasive plant species before they become established, a program of inventories is being carried out in the urban and agricultural zones of the four inhabited islands in Galapagos. This study reports the results of the inventory from Puerto Villamil, a coastal village representing the urban zone of Isabela Island. We visited all 1193 village properties to record the presence of the introduced plants. In addition, information was collected from half of the properties to determine evidence for potential invasiveness of the plant species. We recorded 261 vascular taxa, 13 of which were new records for Galapagos. Most of the species were intentionally grown (cultivated) (73.3%) and used principally as ornamentals. The most frequent taxa we encountered were Cocos nucifera (coconut tree) (22.1%) as a cultivated plant and Paspalum vaginatum (salt water couch) (13.2%) as a non cultivated plant. In addition 39 taxa were naturalized. On the basis of the invasiveness study, we recommend five species for eradication (Abutilon dianthum, Datura inoxia, Datura metel, Senna alata and Solanum capsicoides), one species for hybridization studies (Opuntia ficus-indica) and three species for control (Furcraea hexapetala, Leucaena leucocephala and Paspalum vaginatum). PMID:17940606

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  6. Microcontroller based automatic temperature control for oyster mushroom plants

    NASA Astrophysics Data System (ADS)

    Sihombing, P.; Astuti, T. P.; Herriyance; Sitompul, D.

    2018-03-01

    In the cultivation of Oyster Mushrooms need special treatment because oyster mushrooms are susceptible to disease. Mushroom growth will be inhibited if the temperature and humidity are not well controlled because temperature and inertia can affect mold growth. Oyster mushroom growth usually will be optimal at temperatures around 22-28°C and humidity around 70-90%. This problem is often encountered in the cultivation of oyster mushrooms. Therefore it is very important to control the temperature and humidity of the room of oyster mushroom cultivation. In this paper, we developed an automatic temperature monitoring tool in the cultivation of oyster mushroom-based Arduino Uno microcontroller. We have designed a tool that will control the temperature and humidity automatically by Android Smartphone. If the temperature increased more than 28°C in the room of mushroom plants, then this tool will turn on the pump automatically to run water in order to lower the room temperature. And if the room temperature of mushroom plants below of 22°C, then the light will be turned on in order to heat the room. Thus the temperature in the room oyster mushrooms will remain stable so that the growth of oyster mushrooms can grow with good quality.

  7. [Effects of phosphorus fertilization on biomass accumulation and phosphorus use efficiency of trellis-cultivated melon].

    PubMed

    Chen, Bo-lang; Wu, Hai-hua; Luo, Jia; Hao, Li-na; Qi, Xiao-chen; Zhao, Ku

    2016-02-01

    A field experiment applying six rates of P fertilizer (P2O5, 0, 150, 225, 300, 375 and 450 kg . hm-2, respectively) was conducted to investigate the effects of P fertilization on dry matter accumulation (DMA), P uptake and accumulation (PUA) and P use efficiency (PUE) of trellis-cultivated melon. Results showed that, P application increased DMA and PUA, for 150 and 225 kg P2O5 . hm-2 treatments, being 19.9% and 26.3%, 23.0% and 26.3% higher than that in no P fertilizer treatment at fruiting stage. With plant growth, DMA and PUA of different organs and the whole plant gradually increased. DMA and PUA were mainly distributed in the leaves during the early stage of the growth and in the fruit during the latter stage. P application decreased the recovery efficiency of applied P (REP), agronomic efficiency of applied P (AEP) and partial factor productivity of applied P (PFP). At 150 kg . hm-2 P application rate, the maximum REP, AEP and PFP were 11.1%, 152.9 kg . kg-1 and 476.3 kg . kg-1, respectively. Compared with no P fertilizer treatment, melon yields of 150 and 225 kg P2O5 . hm2 treatments increased by 47.3% and 39.7%, respectively. In summary, the vining stage and fruit expanding stage were the key periods for P application in trellis-cultivated melon system. Based on synthesized economic yield and P fertilizer efficiency, the recommendation of P fertilizer for trellis-cultivated melon is 150-225 kg P2O5 . hm-2 under the climatic condition of the experimental area.

  8. Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt

    PubMed Central

    Fayek, Nesrin M.; Monem, Azza R. Abdel; Mossa, Mohamed Y.; Meselhy, Meselhy R.; Shazly, Amani H.

    2012-01-01

    Background: Manilkara zapota (L.) Van Royen is an evergreen tree, native to the tropical Americas and introduced to Egypt as a fruiting tree in 2002. No previous study was reported on the plant cultivated in Egypt. Materials and Methods: In this study, the leaves of the plant cultivated in Egypt were subjected to phytochemical and biological investigations. The lipoidal matter was analyzed by GLC. Five compounds were isolated from the petroleum ether and ethyl acetate fractions of the alcoholic extract of the leaves by chromatographic fractionation on silica gel and sephadex, the structures of these compounds were identified using IR, UV, MS, 1H-NMR and 13C-NMR. The LD50 of the alcoholic and aqueous extracts of the leaves was determined and their antihyperglycemic, hypocholesterolemic and antioxidant activities were tested by enzymatic colorimetric methods using specific kits. Results: Unsaturated fatty acids represent 32.32 % of the total fatty acids, oleic acid (13.95%), linoleidic acid (10.18 %) and linoleic acid (5.96 %) were the major ones. The isolated compounds were identified as lupeol acetate, oleanolic acid, apigenin-7-O-α-L-rhamnoside, myricetin-3-O-α-L-rhamnoside and caffeic acid. This is the first report about isolation of these compounds from Manilkara zapota except myricetin-3-O-α-L-rhamnoside, which was previously isolated from the plant growing abroad. The LD50 recorded 80 g/Kg b. wt. for both the tested extracts, so they could be considered to be safe. They exhibited antihyperglycemic, hypocholesterolemic and antioxidant activities. Conclusion: The observed biological activities were attributed to the different chemical constituents present in the plant mainly its phenolic constituents. PMID:22518080

  9. Effect of Field Inoculation with Sinorhizobium meliloti L33 on the Composition of Bacterial Communities in Rhizospheres of a Target Plant (Medicago sativa) and a Non-Target Plant (Chenopodium album)—Linking of 16S rRNA Gene-Based Single-Strand Conformation Polymorphism Community Profiles to the Diversity of Cultivated Bacteria

    PubMed Central

    Schwieger, Frank; Tebbe, Christoph C.

    2000-01-01

    Fourteen weeks after field release of luciferase gene-tagged Sinorhizobium meliloti L33 in field plots seeded with Medicago sativa, we found that the inoculant also occurred in bulk soil from noninoculated control plots. In rhizospheres of M. sativa plants, S. meliloti L33 could be detected in noninoculated plots 12 weeks after inoculation, indicating that growth in the rhizosphere preceded spread into bulk soil. To determine whether inoculation affected bacterial diversity, 1,119 bacteria were isolated from the rhizospheres of M. sativa and Chenopodium album, which was the dominant weed in the field plots. Amplified ribosomal DNA restriction analysis (ARDRA) revealed plant-specific fragment size frequencies. Dominant ARDRA groups were identified by 16S rRNA gene nucleotide sequencing. Database comparisons indicated that the rhizospheres contained members of the Proteobacteria (α, β, and γ subgroups), members of the Cytophaga-Flavobacterium group, and gram-positive bacteria with high G+C DNA contents. The levels of many groups were affected by the plant species and, in the case of M. sativa, by inoculation. The most abundant isolates were related to Variovorax sp., Arthrobacter ramosus, and Acinetobacter calcoaceticus. In the rhizosphere of M. sativa, inoculation reduced the numbers of cells of A. calcoaceticus and members of the genus Pseudomonas and increased the number of rhizobia. Cultivation-independent PCR–single-strand conformation polymorphism (SSCP) profiles of a 16S rRNA gene region confirmed the existence of plant-specific rhizosphere communities and the effect of the inoculant. All dominant ARDRA groups except Variovorax species could be detected. On the other hand, the SSCP profiles revealed products which could not be assigned to the dominant cultured isolates, indicating that the bacterial diversity was greater than the diversity suggested by cultivation. PMID:10919821

  10. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer).

    PubMed

    Chelomina, Galina N; Rozhkovan, Konstantin V; Voronova, Anastasia N; Burundukova, Olga L; Muzarok, Tamara I; Zhuravlev, Yuri N

    2016-04-01

    Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.

  11. Wind Energy Conversion by Plant-Inspired Designs.

    PubMed

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  12. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    PubMed

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition.

  13. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  14. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae

    PubMed Central

    Fournomiti, Maria; Kimbaris, Athanasios; Mantzourani, Ioanna; Plessas, Stavros; Theodoridou, Irene; Papaemmanouil, Virginia; Kapsiotis, Ioannis; Panopoulou, Maria; Stavropoulou, Elisavet; Bezirtzoglou, Eugenia E.; Alexopoulos, Athanasios

    2015-01-01

    Background Oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) are aromatic plants with ornamental, culinary, and phytotherapeutic use all over the world. In Europe, they are traditionally used in the southern countries, particularly in the Mediterranean region. The antimicrobial activities of the essential oils (EOs) derived from those plants have captured the attention of scientists as they could be used as alternatives to the increasing resistance of traditional antibiotics against pathogen infections. Therefore, significant interest in the cultivation of various aromatic and medicinal plants is recorded during the last years. However, to gain a proper and marketable chemotype various factors during the cultivation should be considered as the geographical morphology, climatic, and farming conditions. In this frame, we have studied the antimicrobial efficiency of the EOs from oregano, sage, and thyme cultivated under different conditions in a region of NE Greece in comparison to the data available in literature. Methods Plants were purchased from a certified supplier, planted, and cultivated in an experimental field under different conditions and harvested after 9 months. EOs were extracted by using a Clevenger apparatus and tested for their antibacterial properties (Minimum inhibitory concentration – MIC) against clinical isolates of multidrug resistant Escherichia coli (n=27), Klebsiella oxytoca (n=7), and Klebsiella pneumoniae (n=16) strains by using the broth microdilution assay. Results Our results showed that the most sensitive organism was K. oxytoca with a mean value of MIC of 0.9 µg/mL for oregano EOs and 8.1 µg/mL for thyme. The second most sensitive strain was K. pneumoniae with mean MIC values of 9.5 µg/mL for thyme and 73.5 µg/mL for oregano EOs. E. coli strains were among the most resistant to EOs antimicrobial action as the observed MICs were 24.8–28.6 µg/mL for thyme and above 125 µg/mL for thyme and sage

  15. Use of fertigation and municipal solid waste compost for greenhouse pepper cultivation.

    PubMed

    Tzortzakis, Nikos; Gouma, Sofia; Dagianta, Eleni; Saridakis, Christos; Papamichalaki, Maria; Goumas, Dimitrios; Manios, Thrassyvoulos

    2012-01-01

    Municipal solid waste compost (MSWC) and/or fertigation used in greenhouse pepper (Capsicum annuum L.) cultivation with five different substrates with soil (S) and/or MSWC mixtures (0-5-10-20-40%) used with or without fertigation. Plants growth increased in 10-20% MSWC and fertigation enhanced mainly the plant height. Fruit number increased in S : MSWC 80 : 20 without fertilizer. Plant biomass increased as MSWC content increased. There were no differences regarding leaf fluoresces and plant yield. The addition of MSWC increased nutritive value (N, K, P, organic matter) of the substrate resulting in increased EC. Fruit fresh weight decreased (up to 31%) as plants grown in higher MSWC content. Fruit size fluctuated when different MSWC content used into the soil and the effects were mainly in fruit diameter rather than in fruit length. Interestingly, the scale of marketable fruits reduced as MSWC content increased into the substrate but addition of fertilizer reversed this trend and maintained the fruit marketability. MSWC affected quality parameters and reduced fruit acidity, total phenols but increased fruit lightness. No differences observed in fruit dry matter content, fruit firmness, green colour, total soluble sugars and EC of peppers and bacteria (total coliform and E. coli) units. Low content of MSWC improved plant growth and maintained fruit fresh weight for greenhouse pepper without affecting plant yield, while fertigation acted beneficially.

  16. Evolution of the content of THC and other major cannabinoids in drug-type cannabis cuttings and seedlings during growth of plants.

    PubMed

    De Backer, Benjamin; Maebe, Kevin; Verstraete, Alain G; Charlier, Corinne

    2012-07-01

    In Europe, authorities frequently ask forensic laboratories to analyze seized cannabis plants to prove that cultivation was illegal (drug type and not fiber type). This is generally done with mature and flowering plants. However, authorities are often confronted with very young specimens. The aim of our study was to evaluate when the chemotype of cannabis plantlets can be surely determined through analysis of eight major cannabinoids content during growth. Drug-type seedlings and cuttings were cultivated, sampled each week, and analyzed by high-performance liquid chromatography with diode array detection. The chemotype of clones was recognizable at any developmental stage because of high total Δ(9)-tetrahydrocannabinol (THC) concentrations even at the start of the cultivation. Conversely, right after germination seedlings contained a low total THC content, but it increased quickly with plant age up, allowing chemotype determination after 3 weeks. In conclusion, it is not necessary to wait for plants' flowering to identify drug-type cannabis generally cultivated in Europe. © 2012 American Academy of Forensic Sciences.

  17. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches.

    PubMed

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  19. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    NASA Astrophysics Data System (ADS)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  20. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed

    Preveena, Jagadesan; Bhore, Subhash J

    2013-01-01

    In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study.

  1. Toward Martian agriculture: responses of plants to hypobaria

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Barta, Daniel J.; Wheeler, Raymond M.

    2002-01-01

    The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture.

  2. Characterization of product capture resin during microbial cultivations.

    PubMed

    Frykman, Scott; Tsuruta, Hiroko; Galazzo, Jorge; Licari, Peter

    2006-06-01

    Various bioactive small molecules produced by microbial cultivation are degraded in the culture broth or may repress the formation of additional product. The inclusion of hydrophobic adsorber resin beads to capture these products in situ and remove them from the culture broth can reduce or prevent this degradation and repression. These product capture beads are often subjected to a dynamic and stressful microenvironment for a long cultivation time, affecting their physical structure and performance. Impact and collision forces can result in the fracturing of these beads into smaller pieces, which are difficult to recover at the end of a cultivation run. Various contaminating compounds may also bind in a non-specific manner to these beads, reducing the binding capacity of the resin for the product of interest (fouling). This study characterizes resin bead binding capacity (to monitor bead fouling), and resin bead volume distributions (to monitor bead fracture) for an XAD-16 adsorber resin used to capture epothilone produced during myxobacterial cultivations. Resin fouling was found to reduce the product binding capacity of the adsorber resin by 25-50%. Additionally, the degree of resin bead fracture was found to be dependent on the cultivation length and the impeller rotation rate. Microbial cultivations and harvesting processes should be designed in such a way to minimize bead fragmentation and fouling during cultivation to maximize the amount of resin and associated product harvested at the end of a run.

  3. Review and analysis of over 40 years of space plant growth systems

    NASA Astrophysics Data System (ADS)

    Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M.

    2016-08-01

    The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971. Continuous subsystem improvements and increasing knowledge of plant response to the spaceflight environment has led to the design of Veggie and the Advanced Plant Habitat, the latest in the series of plant growth systems. The paper reviews the different designs and technological solutions implemented in higher plant flight experiments. Using these analyses a comprehensive comparison is compiled to illustrate the development trends of controlled environment agriculture technologies in bio-regenerative life support systems, enabling future human long-duration missions into the solar system.

  4. Phytotechnological purification of water and bio energy utilization of plant biomass

    NASA Astrophysics Data System (ADS)

    Stom, D. I.; Gruznych, O. V.; Zhdanova, G. O.; Timofeeva, S. S.; Kashevsky, A. V.; Saksonov, M. N.; Balayan, A. E.

    2017-01-01

    The aim of the study was to explore the possibility of using the phytomass of aquatic plants as the substrate in the microbial fuel cells and selection of microorganisms suitable for the generation of electricity on this substrate. The conversion of chemical energy of phytomass of aquatic plants to the electrical energy was carried out in a microbial fuel cells by biochemical transformation. As biological agents in the generation of electricity in the microbial fuel cells was used commercial microbial drugs “Doctor Robic 109K” and “Vostok-EM-1”. The results of evaluation of the characteristics of electrogenic (amperage, voltage) and the dynamics of the growth of microorganisms in the microbial fuel cells presents in the experimental part. As a source of electrogenic microorganisms is possible to use drugs “Dr. Robic 109K” and “Vostok-EM-1” was established. The possibility of utilization of excess phytomass of aquatic plants, formed during the implementation of phytotechnological purification of water, in microbial fuel cells, was demonstrated. The principal possibility of creating hybrid phytotechnology (plant-microbe cells), allowing to obtain electricity as a product, which can be used to ensure the operation of the pump equipment and the creation of a full cycle of resource-saving technologies for water treatment, was reviewed.

  5. Short and erect rice (ser) mutant from 'Khao Dawk Mali' shapes plant architecture better

    USDA-ARS?s Scientific Manuscript database

    Plant architecture includes branching (tillering) pattern, plant height, leaf shape and angle, and the structure of reproductive organs. These structures are of major agronomic importance as they determine the adaptability of a plant to various methods of cultivation, which in turn influence harves...

  6. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates.

    PubMed

    Pontes, María Victoria Aguilar; Patyshakuliyeva, Aleksandrina; Post, Harm; Jurak, Edita; Hildén, Kristiina; Altelaar, Maarten; Heck, Albert; Kabel, Mirjam A; de Vries, Ronald P; Mäkelä, Miia R

    2018-03-01

    The white button mushroom Agaricus bisporus is one of the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. We therefore focused our analysis on the stages where the fungus is producing fruiting bodies. Growth profiling was used to identify A. bisporus strains with different abilities to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findingsmore » suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.« less

  8. Effect of artificial electric fields on plants grown under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Nechitailo, G.; Gordeev, A.

    2001-01-01

    Ionic and structural hetorogeneity of cells, tissues, and organs of plants are associated with a spectrum of electric characteristics such as bioelectric potentials, electrical conductance, and bioelectric permeability. An important determinant for the plant function is electric properties of the cell membranes and organelles which maintain energy and substance exchange with the environment. Enzymes and other biologically active substances have a powerful charge at the molecular level. Finally, all molecules, including those of water, represent dipoles, and this determines their reactive capacity. A major determinant is the bioelectric polarity of a plant is genetically predetermined and cannot be modified. It is an intrinsic structural feature of the organism whose evolution advent was mediated by gravity. An illustrative presentation of polarity is the downward growth of the roots and upward growth of stems in the Earth's gravitation field. However, gravity is a critical, but not the sole determinant of the plant organism polarization. Potent polarizing effects are exerted by light, the electromagnetic field, moisture, and other factors. It is known that plant cultivation in an upturned position is associated with impairment of water and nutrient uptake, resulting in dyscoordination of physiological processes, growth and developmental retardation. These abnormalities were characteristic when early attempts were made to grow plants in weightlessness conditions.

  9. Molten salt thermal energy storage subsystem for Solar Thermal Central Receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    The development of a low-cost thermal energy storage subsystem for large solar plants is analyzed. Molten nitrate salt is used as both the plant's working fluid and as the storage medium. The storage system comprises a specially designed hot tank to hold salt at a storage temperature of 839 K (1050 F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to lower the shell temperature to 561 K (550 F) so that a low-cost carbon steel shell can be used. A preliminary design is described for a large commercial-size plant (1200 MWht). Also described are a laboratory test program for the critical components and the design, construction, and test of a small-scale research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico.

  10. Crossing Methods and Cultivation Conditions for Rapid Production of Segregating Populations in Three Grain Amaranth Species.

    PubMed

    Stetter, Markus G; Zeitler, Leo; Steinhaus, Adrian; Kroener, Karoline; Biljecki, Michelle; Schmid, Karl J

    2016-01-01

    Grain amaranths (Amaranthus spp.) have been cultivated for thousands of years in Central and South America. Their grains are of high nutritional value, but the low yield needs to be increased by selection of superior genotypes from genetically diverse breeding populations. Amaranths are adapted to harsh conditions and can be cultivated on marginal lands although little is known about their physiology. The development of controlled growing conditions and efficient crossing methods is important for research on and improvement of this ancient crop. Grain amaranth was domesticated in the Americas and is highly self-fertilizing with a large inflorescence consisting of thousands of very small flowers. We evaluated three different crossing methods (open pollination, hot water emasculation and hand emasculation) for their efficiency in amaranth and validated them with genetic markers. We identified cultivation conditions that allow an easy control of flowering time by day length manipulation and achieved flowering times of 4 weeks and generation times of 2 months. All three different crossing methods successfully produced hybrid F1 offspring, but with different success rates. Open pollination had the lowest (10%) and hand emasculation the highest success rate (74%). Hot water emasculation showed an intermediate success rate (26%) with a maximum of 94% success. It is simple to perform and suitable for a more large-scale production of hybrids. We further evaluated 11 single nucleotide polymorphism (SNP) markers and found that they were sufficient to validate all crosses of the genotypes used in this study for intra- and interspecific hybridizations. Despite its very small flowers, crosses in amaranth can be carried out efficiently and evaluated with inexpensive SNP markers. Suitable growth conditions strongly reduce the generation time and allow the control of plant height, flowering time, and seed production. In combination, this enables the rapid production of segregating

  11. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria.

    PubMed

    Moreira, Helena; Marques, Ana P G C; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2014-01-01

    Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63% and led to a decrease of up to 81% in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186% in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

  12. Cultivation of Marine Sponges.

    PubMed

    Osinga; Tramper; Wijffels

    1999-11-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.

  13. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  14. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less

  15. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of

  16. Comparative analyses of viable bacterial counts in foods and seawater under microplate based liquid- and conventional agar plate cultivation: increased culturability of marine bacteria under liquid cultivation.

    PubMed

    Shigematsu, Toru; Ueno, Shigeaki; Tsuchida, Yasuharu; Hayashi, Mayumi; Okonogi, Hiroko; Masaki, Haruhiko; Fujii, Tomoyuki

    2007-12-01

    Bacterial counts under liquid cultivation using 96-well microplates were performed. The counts under liquid and under solid cultivation were equivalent in foods, although the counts under liquid cultivation exceeded those under solid cultivation in seawater, suggesting that some bacteria in seawater were viable but did not form detectable colonies. Phylogenetic analysis of bacteria obtained under liquid cultivation was also performed.

  17. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  18. Photobioreactor cultivation strategies for microalgae and cyanobacteria.

    PubMed

    Johnson, Tylor J; Katuwal, Sarmila; Anderson, Gary A; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2018-03-08

    The current burden on fossil-derived chemicals and fuels combined with the rapidly increasing global population has led to a crucial need to develop renewable and sustainable sources of chemicals and biofuels. Photoautotrophic microorganisms, including cyanobacteria and microalgae, have garnered a great deal of attention for their capability to produce these chemicals from carbon dioxide, mineralized water, and solar energy. While there have been substantial amounts of research directed at scaling-up production from these microorganisms, several factors have proven difficult to overcome, including high costs associated with cultivation, photobioreactor construction, and artificial lighting. Decreasing these costs will substantially increase the economic feasibility of these production processes. Thus, the purpose of this review is to describe various photobioreactor designs, and then provide an overview on lighting systems, mixing, gas transfer, and the hydrodynamics of bubbles. These factors must be considered when the goal of a production process is economic feasibility. Targets for improving microalgae and cyanobacteria cultivation media, including water reduction strategies will also be described. As fossil fuel reserves continue to be depleted and the world population continues to increase, it is imperative that renewable chemical and biofuel production processes be developed toward becoming economically feasible. Thus, it is essential that future research is directed toward improving these processes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  19. Technical evaluation of photobioreactors for microalgae cultivation

    NASA Astrophysics Data System (ADS)

    Płaczek, Małgorzata; Patyna, Agnieszka; Witczak, Stanisław

    2017-10-01

    This paper undertakes the description and assessment of various solutions applied for the design of photobioreactors as the type of apparatus, which can provide high output of green algae biomass. The design of such apparatus plays an important role in the context of the concurrent fulfillment of ecological and economic requirements, which are necessary to conduct an efficient and effective technology using cheap and easily accessible resources to produce different goods. Nowadays, algae is seen as one of the most promising sustainable way to produce energy in the future (biofuels, electricity, thermal energy) but technologies of biomass production and processing are still under development particularly to increase biomass and energy output. The cultivation costs in closed systems are still high, limiting their commercial applications to high-valued compounds but they can be reduced by efficient bioreactor designs, which are able to achieve high areal biomass productivities. This paper focuses on the advantages and drawbacks associated with the application of the particular types of bioreactors in algae production, description of their operation parameters and area for practical application, pointing of the constructions (tubular, flat panel, bubble column) that can contribute to improvement the profitability of large-scale production.

  20. Plants: An International Scientific Open Access Journal to Publish All Facets of Plants, Their Functions and Interactions with the Environment and Other Living Organisms

    PubMed Central

    Fernando, W.G. Dilantha

    2012-01-01

    Plants are one of the two major groups of living organisms that are an essential entity to the function of the biosphere. Plants can be found in all known parts of the earth, in all shapes and sizes. They include the green algae, mosses, ferns, vines, grasses, bushes, herbs, flowering plants and trees. Although some plants are parasitic, most produce their own food through photosynthesis. Most plants initiate from a seed. The importance of plants in the food chain dates back to ancient times. The first humans gathered wild plants for food. As settlements developed, food crops were cultivated, leading to selection of high-yielding cultivated varieties to feed the growing populations. Unlike plants, humans and other animals are unable to manufacture their own food. Therefore, they are dependent, directly or indirectly, on plants. Plants are found in natural ecosystems such as rain forests, and also in agricultural areas and urbanized settings. They are an essential part of our daily lives providing food, clean air, and important ecosystem functions. The study of plants and their function could be considered the most complex of interactions. From the time a seed germinates, it goes through a myriad of physiological processes that can be closely studied using modern tools and molecular biological methods. An open access journal such as Plants will give millions of readers access to that information around the world. PMID:27137635

  1. Optimization of laccase production by Trametes versicolor cultivated on industrial waste.

    PubMed

    Tišma, Marina; Znidaršič-Plazl, Polona; Vasić-Rački, Durđa; Zelić, Bruno

    2012-01-01

    Laccases are very interesting biocatalysts for several industrial applications. Its production by different white-rot fungi can be stimulated by a variety of inducing substrates, and the use of lignocellulosic wastes or industrial by-products is one of the possible approaches to reduce production costs. In this work, various industrial wastes were tested for laccase production by Trametes versicolor MZKI G-99. Solid waste from chemomechanical treatment facility of a paper manufacturing plant showed the highest potential for laccase production. Enzyme production during submerged cultivation of T. versicolor on the chosen industrial waste has been further improved by medium optimization using genetic algorithm. Concentrations of five components in the medium were optimized within 60 shake-flasks experiments, where the highest laccase activity of 2,378 U dm(-3) was achieved. Waste from the paper industry containing microparticles of CaCO(3) was found to stimulate the formation of freely dispersed mycelium and laccase production during submerged cultivation of T. versicolor. It was proven to be a safe and inexpensive substrate for commercial production of laccase and might be more widely applicable for metabolite production by filamentous fungi.

  2. Wind Energy Conversion by Plant-Inspired Designs

    PubMed Central

    Mosher, Curtis L.; Henderson, Eric R.

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a “vertical flapping stalk”—the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°–90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced << daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts << daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept. PMID:28085933

  3. Developmental and Environmental Effects on Sesquiterpene Lactones in Cultivated Arnica montana L.

    PubMed

    Todorova, Milka; Trendafilova, Antoaneta; Vitkova, Antonina; Petrova, Maria; Zayova, Ely; Antonova, Daniela

    2016-08-01

    The amount of sesquiterpene lactones and the lactone profile of Arnica montana L. in flowering and seed formation stages in vitro and in vivo propagated from seeds of German, Ukrainian, and Austrian origin and grown in two experimental fields were studied. It was found that in vitro propagated 2-year plants in full flowering stage accumulated higher amount of lactones in comparison to in vivo propagated 3-year plants and to the seed formation stage, respectively. Helenalins predominated in in vivo propagated 2-year or in vitro propagated 3-year plants. 2-Methylbutyrate (2MeBu) was the principal ester in the samples with prevalence of helenalins, while isobutyrate (iBu) was the major one in the samples with predominance of 11,13-dihydrohelenalins. The results revealed that the environmental conditions on Vitosha Mt. are more suitable for cultivation of A. montana giving higher content of lactones. © 2016 Wiley-VHCA AG, Zürich.

  4. Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus).

    PubMed

    Nam, Wai Lun; Phang, Xue Yee; Su, Man Huan; Liew, Rock Keey; Ma, Nyuk Ling; Rosli, Mohd Haqqi Nazilli Bin; Lam, Su Shiung

    2018-05-15

    Microwave vacuum pyrolysis of palm kernel shell (PKS) was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus). The pyrolysis approach produced biochar containing a highly porous structure with a high BET surface area of up to 270m 2 /g and low moisture content (≤10wt%), exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria) and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar recorded an impressive growth rate and a monthly production of up to about 550g of mushroom. A shorter time for mycelium growth on one whole baglog (21days) and the highest yield of Oyster mushroom (550g) were obtained from cultivation medium added with 20g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produced from microwave vacuum pyrolysis of PKS shows exceptional promise as growth promoting material for mushroom cultivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Production of bio-fertilizer from microwave vacuum pyrolysis of waste palm shell for cultivation of oyster mushroom (Pleurotus ostreatus)

    NASA Astrophysics Data System (ADS)

    Lun Nam, Wai; Huan Su, Man; Phang, Xue Yee; Chong, Min Yee; Keey Liew, Rock; Ma, Nyuk Ling; Lam, Su Shiung

    2017-11-01

    Microwave vacuum pyrolysis of waste palm shell (WPS) was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus). The pyrolysis approach generated a biochar containing a highly porous structure with a high BET surface area (up to 1250 m2/g) and a low moisture content (≤ 10 wt%), exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria) and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar record an impressive growth rate and a monthly production of up to about 550 g of mushroom. The shorter time for mycelium growth on whole baglog (30 days) and the highest yield of Oyster mushroom (550 g) was obtained from the cultivation medium added with 20 g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produce from microwave vacuum pyrolysis of WPS show exceptional promise as an alternative growing substrate for mushroom cultivation.

  6. Total flavonoid content and antioxidant activity in leaves and stems extract of cultivated and wild tabat barito (Ficus deltoidea Jack)

    NASA Astrophysics Data System (ADS)

    Manurung, Hetty; Kustiawan, Wawan; Kusuma, Irawan W.; Marjenah

    2017-02-01

    Tabat barito (Ficus deltoidea Jack) is a name given by Dayak Tribe who lived in Borneo-Kalimantan and it is belongs to the moraceae. Almost all of the parts of F. deltoidea plant is widely used as a medicinal property. The total flavonoid content (TFC) and antioxidant activity from cultivated and wild F. deltoidea leaves and stems extract were assessed. Total flavonoid content was estimated by using Aluminium chloride colorimetric method and expressed as catechin equivalents (mg CE g-1 extract) and the antioxidant activity by the DPPH (2,2-diphenyl-1-picryl hydrazyl) method. The content of total flavonoid of leaves and stems (430.77 and 371.80 µg CE mg-1 extract) of cultivated F. deltoidea were higher than in the wild leaves and stems (114.82 and 66.67 µg CE mg-1 extract). The IC50 of leaves extract of cultivated and wild F. deltoidea, based on the DPPH assay, has a strong antioxidant activity (34.19 and 39.31 µg mL-1 extract) as compared to stems extract. These results showed that the cultivated F. deltoidea are suitable source for medicinal properties and the leaves could be exploited as source of natural antioxidants.

  7. Influences of Urban Expansion on Cultivated Lands in China Since 1970S

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Z.; Zhao, X.; Yu, S.; Wang, X.; Zuo, L.

    2018-04-01

    Urban expansion has far-reaching influences on cultivated lands, and has a serious effect on grain output and safety. However, relatively little attention has been paid to monitor cultivated land losses through urban expansion over a long timeframe and multi-frequency, especially its differences on national scale systematically. In this work, the characteristics of Chinese cultivated land dynamics were described using annual occupied area per city, contribution rate of cultivated lands to urban expansion and the classification method of basic trend of cultivated land losses. Results indicate that: (1) in the past four decades, large amount of cultivated lands have been occupied during the urban expansion process, and have become the first land source for Chinese urban expansion. (2) Cultivated land loss among municipalities, provincial capitals and other cities was obviously different. The higher of cities' administrative level was, the more obvious of cultivated land loss in these cities appeared, and the earlier of acceleration loss stage of cultivated lands occurred. (3) Cultivated land loss in five population-size cities was unbalanced, representing obviously different loss process and contribution on urban expansion. The bigger of cities' population size was, the more obvious of cultivated land loss in these cities appeared, and the earlier of acceleration loss stage of cultivated lands occurred. (4) Cultivated land losses during urban expansion process were imbalanced in China, and were classified into seven trends. (5) Chinese cultivated land protection has been carried out from the awakening stage to the deep implementation stage.

  8. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

    PubMed Central

    Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.

    2015-01-01

    Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239

  9. Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields.

    PubMed

    Kiesel, Andreas; Nunn, Christopher; Iqbal, Yasir; Van der Weijde, Tim; Wagner, Moritz; Özgüven, Mensure; Tarakanov, Ivan; Kalinina, Olena; Trindade, Luisa M; Clifton-Brown, John; Lewandowski, Iris

    2017-01-01

    In Europe, the perennial C 4 grass miscanthus is currently mainly cultivated for energy generation via combustion. In recent years, anaerobic digestion has been identified as a promising alternative utilization pathway. Anaerobic digestion produces a higher-value intermediate (biogas), which can be upgraded to biomethane, stored in the existing natural gas infrastructure and further utilized as a transport fuel or in combined heat and power plants. However, the upgrading of the solid biomass into gaseous fuel leads to conversion-related energy losses, the level of which depends on the cultivation parameters genotype, location, and harvest date. Thus, site-specific crop management needs to be adapted to the intended utilization pathway. The objectives of this paper are to quantify (i) the impact of genotype, location and harvest date on energy yields of anaerobic digestion and combustion and (ii) the conversion losses of upgrading solid biomass into biogas. For this purpose, five miscanthus genotypes (OPM 3, 6, 9, 11, 14), three cultivation locations (Adana, Moscow, Stuttgart), and up to six harvest dates (August-March) were assessed. Anaerobic digestion yielded, on average, 35% less energy than combustion. Genotype, location, and harvest date all had significant impacts on the energy yield. For both, this is determined by dry matter yield and ash content and additionally by substrate-specific methane yield for anaerobic digestion and moisture content for combustion. Averaged over all locations and genotypes, an early harvest in August led to 25% and a late harvest to 45% conversion losses. However, each utilization option has its own optimal harvest date, determined by biomass yield, biomass quality, and cutting tolerance. By applying an autumn green harvest for anaerobic digestion and a delayed harvest for combustion, the conversion-related energy loss was reduced to an average of 18%. This clearly shows that the delayed harvest required to maintain biomass

  10. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  11. Synthetic Minor NSR Permit: Catamount Energy Partners - Ignacio Gas Treating Plant

    EPA Pesticide Factsheets

    Response to public comments on the proposed permit, the final synthetic minor NSR permit and the administrative permit record for the Catamount Energy Partners, Ignacio Gas Treating Plant, located on the Southern Ute Indian Reservation in Colorado.

  12. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant

    PubMed Central

    Troschl, Clemens; Meixner, Katharina; Drosg, Bernhard

    2017-01-01

    Cyanobacteria, as photoautotrophic organisms, provide the opportunity to convert CO2 to biomass with light as the sole energy source. Like many other prokaryotes, especially under nutrient deprivation, most cyanobacteria are able to produce polyhydroxyalkanoates (PHAs) as intracellular energy and carbon storage compounds. In contrast to heterotrophic PHA producers, photoautotrophic cyanobacteria do not consume sugars and, therefore, do not depend on agricultural crops, which makes them a green alternative production system. This review summarizes the recent advances in cyanobacterial PHA production. Furthermore, this study reports the working experience with different strains and cultivating conditions in a 200 L pilot plant. The tubular photobioreactor was built at the coal power plant in Dürnrohr, Austria in 2013 for direct utilization of flue gases. The main challenges were the selection of robust production strains, process optimization, and automation, as well as the CO2 availability. PMID:28952505

  13. Recuperators for compressed-air energy storage plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.

    1989-12-01

    An R D study was conducted to provide an engineering solution to the potential problem of corrosion in the cold-end sections of recuperators operating in compressed-air energy storage (CAES) plants. Two options were developed: (1) a conventional, counterflow recuperator with an easily replaceable cold-end section and (2) a recuperator design which eliminates operation at tube temperatures below the exhaust-gas dew point (advanced design). The advanced design consists of an optimized combination of counterflow and parallel-flow sections. The following data resulting from these studies are included: a history of recuperator operating experience, a summary of lab-testing of various materials for corrosionmore » resistance, detailed design and descriptions of the recuperator designs, additional detail descriptions of alternative air-preheating and turboexpander-exhaust systems, and a comparative economic analysis of the various designs developed. The study concluded that for use with No. 2 fuel oil or lower-grade fuels, the advanced recuperator design with carbon-steel tubes and fins would be more cost-effective and trouble-free than one with an easily replaceable tube section. For CAES plants firing very low-sulfur fuel oil or natural gas, the lower capital-cost, counter-flow design can be considered. It was also concluded that a compressed-air bypass of the recuperator be included in the plant design in the event of recuperator outage, and that the recuperator be designed for operation without cavern air going through it. The advanced recuperator concept is currently being implemented at the 110-MW CAES plant for the Alabama Electric Cooperative, Inc. 6 refs., 24 figs., 20 tabs.« less

  14. Use of Fertigation and Municipal Solid Waste Compost for Greenhouse Pepper Cultivation

    PubMed Central

    Tzortzakis, Nikos; Gouma, Sofia; Dagianta, Eleni; Saridakis, Christos; Papamichalaki, Maria; Goumas, Dimitrios; Manios, Thrassyvoulos

    2012-01-01

    Municipal solid waste compost (MSWC) and/or fertigation used in greenhouse pepper (Capsicum annuum L.) cultivation with five different substrates with soil (S) and/or MSWC mixtures (0–5–10–20–40%) used with or without fertigation. Plants growth increased in 10–20% MSWC and fertigation enhanced mainly the plant height. Fruit number increased in S : MSWC 80 : 20 without fertilizer. Plant biomass increased as MSWC content increased. There were no differences regarding leaf fluoresces and plant yield. The addition of MSWC increased nutritive value (N, K, P, organic matter) of the substrate resulting in increased EC. Fruit fresh weight decreased (up to 31%) as plants grown in higher MSWC content. Fruit size fluctuated when different MSWC content used into the soil and the effects were mainly in fruit diameter rather than in fruit length. Interestingly, the scale of marketable fruits reduced as MSWC content increased into the substrate but addition of fertilizer reversed this trend and maintained the fruit marketability. MSWC affected quality parameters and reduced fruit acidity, total phenols but increased fruit lightness. No differences observed in fruit dry matter content, fruit firmness, green colour, total soluble sugars and EC of peppers and bacteria (total coliform and E. coli) units. Low content of MSWC improved plant growth and maintained fruit fresh weight for greenhouse pepper without affecting plant yield, while fertigation acted beneficially. PMID:22645489

  15. Analysis of tarnished plant bug movement using carbon and nitrogen isotopes

    USDA-ARS?s Scientific Manuscript database

    Tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is the primary pest of cotton across the Midsouth of the United States. Movement into cotton fields occurs during the summer from other host plants, both cultivated and wild. Stable isotope analysis (SIA) has been used in other studies to ...

  16. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed Central

    Preveena, Jagadesan; Bhore, Subhash J.

    2013-01-01

    Background: In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. Objective: The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Materials and Methods: Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Results: Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Conclusion: Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study. PMID:24501447

  17. Sulfate determines the glucosinolate concentration of horseradish in vitro plants (Armoracia rusticana Gaertn., Mey. & Scherb.).

    PubMed

    Alnsour, Mohammad; Kleinwächter, Maik; Böhme, Julia; Selmar, Dirk

    2013-03-15

    Horseradish plants (Armoracia rusticana) contain high concentrations of glucosinolates. Former studies have revealed that Armoracia plants cultivated in vitro have markedly lower glucosinolate concentrations than those grown in soils. Yet, these studies neglected that the sulfate concentration in the growth medium may have had a strong impact on glucosinolate metabolism. Accordingly, in this study horseradish in vitro plants were cultivated with differing sulfate concentrations and the glucosinolate concentrations were quantified by ion pair HPLC. Cultivation in 1.7 mmol L(-1) sulfate (as used in the prior studies) resulted in the accumulation of 16.2 µmol g(-1) DW glucosinolates, while the glucosinolate concentration increased to more than 23 µmol g(-1) DW when 23.5 mmol L(-1) sulfate was used in the medium. Correspondingly, the glucosinolate concentration decreased to 1.6 µmol g(-1) DW when sulfate concentration was lowered to 0.2 mmol L(-1). Since the glucosinolate accumulation in relation to the sulfate concentration follows a typical saturation curve, we deduce that the availability of sulfate determines the glucosinolate concentration in horseradish in vitro plants. © 2012 Society of Chemical Industry.

  18. Characterizing pathways of invasion using Sternorryhncha on imported plant material in cargo

    Treesearch

    Timothy T. Work

    2011-01-01

    Non-indigenous Homoptera, mainly scales, aphids, and mealy bugs, intercepted on plants destined for cultivation represent an elevated risk for the establishment of invasive insects in North America. These insects [grouped as the suborder Sternorrhyncha] are often parthenogenic and are imported on viable host plants.

  19. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.

  20. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    PubMed

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.