Sample records for energy range procesy

  1. An integrable semi-discrete Degasperis-Procesi equation

    NASA Astrophysics Data System (ADS)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2017-06-01

    Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota’s bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

  2. Branes and the Kraft-Procesi transition: classical case

    NASA Astrophysics Data System (ADS)

    Cabrera, Santiago; Hanany, Amihay

    2018-04-01

    Moduli spaces of a large set of 3 d N=4 effective gauge theories are known to be closures of nilpotent orbits. This set of theories has recently acquired a special status, due to Namikawa's theorem. As a consequence of this theorem, closures of nilpotent orbits are the simplest non-trivial moduli spaces that can be found in three dimensional theories with eight supercharges. In the early 80's mathematicians Hanspeter Kraft and Claudio Procesi characterized an inclusion relation between nilpotent orbit closures of the same classical Lie algebra. We recently [1] showed a physical realization of their work in terms of the motion of D3-branes on the Type IIB superstring embedding of the effective gauge theories. This analysis is restricted to A-type Lie algebras. The present note expands our previous discussion to the remaining classical cases: orthogonal and symplectic algebras. In order to do so we introduce O3-planes in the superstring description. We also find a brane realization for the mathematical map between two partitions of the same integer number known as collapse. Another result is that basic Kraft-Procesi transitions turn out to be described by the moduli space of orthosymplectic quivers with varying boundary conditions.

  3. Storm surge and tidal range energy

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon

    2017-04-01

    The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and

  4. Thermodynamic Processes Involving Liquefied Natural Gas at the LNG Receiving Terminals / Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG

    NASA Astrophysics Data System (ADS)

    Łaciak, Mariusz

    2013-06-01

    The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations. Wzrost zapotrzebowania na gaz ziemny na świecie powoduje, że produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje się coraz bardziej powszechnym procesem związanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze około 111K pod ciśnieniem atmosferycznym. Przebieg procesu regazyfikacji niezbędny do zamiany LNG z fazy ciekłej w gazową dla dalszego transportu w sieci, umożliwia wykorzystanie egzergii LNG do różnych zastosowań, między innymi do produkcji energii elektrycznej. Analiza egzergii jest znaną techniką analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na określenie dystrybucji, źródła i wielkości nieodwracalnych strat w systemach energetycznych, a więc ustalić wytyczne dotyczące efektywnego zużycia energii. Ponieważ zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego są energochłonne, proces analizy egzergii jest niezbędny do projektowania wysoce wydajnych instalacji kriogenicznych.

  5. Range and Energy Straggling in Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tai, Hsiang

    2000-01-01

    A first-order approximation to the range and energy straggling of ion beams is given as a normal distribution for which the standard deviation is estimated from the fluctuations in energy loss events. The standard deviation is calculated by assuming scattering from free electrons with a long range cutoff parameter that depends on the mean excitation energy of the medium. The present formalism is derived by extrapolating Payne's formalism to low energy by systematic energy scaling and to greater depths of penetration by a second-order perturbation. Limited comparisons are made with experimental data.

  6. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  7. Long-ranged contributions to solvation free energies from theory and short-ranged models

    PubMed Central

    Remsing, Richard C.; Liu, Shule; Weeks, John D.

    2016-01-01

    Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object. PMID:26929375

  8. Long-range forecasts for the energy market - a case study

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Otto; Mäkelä, Antti; Kämäräinen, Matti; Gregow, Hilppa

    2017-04-01

    We examined the feasibility of long-range forecasts of temperature for needs of the energy sector in Helsinki, Finland. The work was done jointly by Finnish Meteorological Institute (FMI) and Helen Ltd, the main Helsinki metropolitan area energy provider, and especially provider of district heating and cooling. Because temperatures govern the need of heating and cooling and, therefore, the energy demand, better long-range forecasts of temperature would be highly useful for Helen Ltd. Heating degree day (HDD) is a parameter that indicates the demand of energy to heat a building. We examined the forecasted monthly HDD values for Helsinki using UK Met Office seasonal forecasts with the lead time up to two months. The long-range forecasts of monthly HDD showed some skill in Helsinki in winter 2015-2016, especially if the very cold January is excluded.

  9. NREL to Host Range of Activities for Energy Awareness Month

    Science.gov Websites

    Host Range of Activities for Energy Awareness Month Events devoted to energy savings Golden, Colo., Sept. 20, 2000 - Visitors will get an inside look at advanced energy technologies and learn tips for cutting utility bills when the U.S. Department of Energy's National Renewable Energy

  10. 'How many calories are in my burrito?' Improving consumers' understanding of energy (calorie) range information.

    PubMed

    Liu, Peggy J; Bettman, James R; Uhalde, Arianna R; Ubel, Peter A

    2015-01-01

    Energy (calorie) ranges currently appear on menu boards for customized menu items and will likely appear throughout the USA when menu-labelling legislation is implemented. Consumer welfare advocates have questioned whether energy ranges enable accurate energy estimates. In four studies, we examined: (i) whether energy range information improves energy estimation accuracy; (ii) whether misestimates persist because consumers misinterpret the meaning of the energy range end points; and (iii) whether energy estimates can be made more accurate by providing explicit information about the contents of items at the end points. Four studies were conducted, all randomized experiments. Study 1 took place outside a Chipotle restaurant. Studies 2 to 4 took place online. Participants in study 1 were customers exiting a Chipotle restaurant (n 306). Participants in studies 2 (n 205), 3 (n 290) and 4 (n 874) were from an online panel. Energy ranges reduced energy misestimation across different menu items (studies 1-4). One cause of remaining misestimation was misinterpretation of the low end point's meaning (study 2). Providing explicit information about the contents of menu items associated with energy range end points further reduced energy misestimation (study 3) across different menu items (study 4). Energy range information improved energy estimation accuracy and defining the meaning of the end points further improved accuracy. We suggest that when restaurants present energy range information to consumers, they should explicitly define the meaning of the end points.

  11. Phantom energy mediates a long-range repulsive force.

    PubMed

    Amendola, Luca

    2004-10-29

    Scalar field models with nonstandard kinetic terms have been proposed in the context of k inflation, of Born-Infeld Lagrangians, of phantom energy and, more in general, of low-energy string theory. In general, scalar fields are expected to couple to matter inducing a new interaction. In this Letter I derive the cosmological perturbation equations and the Yukawa correction to gravity for such general models. I find three interesting results: first, when the field behaves as phantom energy (equation of state less than -1), then the coupling strength is negative, inducing a long-range repulsive force; second, the dark-energy field might cluster on astrophysical scales; third, applying the formalism to a Brans-Dicke theory with a general kinetic term it is shown that its Newtonian effects depend on a single parameter that generalizes the Brans-Dicke constant.

  12. Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China

    NASA Astrophysics Data System (ADS)

    Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun

    2017-12-01

    La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.

  13. Long-range, low-cost electric vehicles enabled by robust energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ping; Ross, Russel; Newman, Aron

    2015-09-18

    ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less

  14. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. A convenient and accurate wide-range parameter relationship between Buckingham and Morse potential energy functions

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng; Dawson, James Alexander

    2018-05-01

    This study explores the close-range, short-range and long-range relationships between the parameters of the Morse and Buckingham potential energy functions. The results show that the close-range and short-range relationships are valid for bond compression and for very small changes in bond length, respectively, while the long-range relationship is valid for bond stretching. A wide-range relationship is proposed to combine the comparative advantages of the close-range, short-range and long-range parameter relationships. The wide-range relationship is useful for replacing the close-range, short-range and long-range parameter relationships, thereby preventing the undesired effects of potential energy jumps resulting from functional switching between the close-range, short-range and long-range interaction energies.

  16. Characteristic energy range of electron scattering due to plasmaspheric hiss

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2016-11-15

    In this paper, we investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4–200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L =more » 2–6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV–1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Finally, our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.« less

  17. Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range.

    PubMed

    Roberts, D A; Hansen, V N; Thompson, M G; Poludniowski, G; Niven, A; Seco, J; Evans, P M

    2012-03-01

    In this paper, the effect on image quality of significantly reducing the primary electron energy of a radiotherapy accelerator is investigated using a novel waveguide test piece. The waveguide contains a novel variable coupling device (rotovane), allowing for a wide continuously variable energy range of between 1.4 and 9 MeV suitable for both imaging and therapy. Imaging at linac accelerating potentials close to 1 MV was investigated experimentally and via Monte Carlo simulations. An imaging beam line was designed, and planar and cone beam computed tomography images were obtained to enable qualitative and quantitative comparisons with kilovoltage and megavoltage imaging systems. The imaging beam had an electron energy of 1.4 MeV, which was incident on a water cooled electron window consisting of stainless steel, a 5 mm carbon electron absorber and 2.5 mm aluminium filtration. Images were acquired with an amorphous silicon detector sensitive to diagnostic x-ray energies. The x-ray beam had an average energy of 220 keV and half value layer of 5.9 mm of copper. Cone beam CT images with the same contrast to noise ratio as a gantry mounted kilovoltage imaging system were obtained with doses as low as 2 cGy. This dose is equivalent to a single 6 MV portal image. While 12 times higher than a 100 kVp CBCT system (Elekta XVI), this dose is 140 times lower than a 6 MV cone beam imaging system and 6 times lower than previously published LowZ imaging beams operating at higher (4-5 MeV) energies. The novel coupling device provides for a wide range of electron energies that are suitable for kilovoltage quality imaging and therapy. The imaging system provides high contrast images from the therapy portal at low dose, approaching that of gantry mounted kilovoltage x-ray systems. Additionally, the system provides low dose imaging directly from the therapy portal, potentially allowing for target tracking during radiotherapy treatment. There is the scope with such a tuneable system

  18. Increasing power-law range in avalanche amplitude and energy distributions

    NASA Astrophysics Data System (ADS)

    Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard

    2018-02-01

    Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.

  19. Increasing power-law range in avalanche amplitude and energy distributions.

    PubMed

    Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard

    2018-02-01

    Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.

  20. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography.

    PubMed

    Esposito, M; Anaxagoras, T; Evans, P M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Poludniowski, G; Price, T; Waltham, C; Allinson, N M

    2015-06-03

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  1. Daily energy expenditure in free-ranging Gopher Tortoises (Gopherus polyphemus)

    USGS Publications Warehouse

    Jodice, P.G.R.; Epperson, D.M.; Visser, G. Henk

    2006-01-01

    Studies of ecological energetics in chelonians are rare. Here, we report the first measurements of daily energy expenditure (DEE) and water influx rates (WIRs) in free-ranging adult Gopher Tortoises (Gopherus polyphemus). We used the doubly labeled water (DLW) method to measure DEE in six adult tortoises during the non-breeding season in south-central Mississippi, USA. Tortoise DEE ranged from 76.7-187.5 kj/day and WIR ranged from 30.6-93.1 ml H2O/day. Daily energy expenditure did not differ between the sexes, but DEE was positively related to body mass. Water influx rates varied with the interaction of sex and body mass. We used a log/log regression model to assess the allometric relationship between DEE and body mass for Gopher Tortoises, Desert Tortoises (Gopherus agassizii), and Box Turtles (Terrapene carolina), the only chelonians for which DEE has been measured. The slope of this allometric model (0.626) was less than that previously calculated for herbivorous reptiles (0.813), suggesting that chelonians may expend energy at a slower rate per unit of body mass compared to other herbivorous reptiles. We used retrospective power analyses and data from the DLW isotope analyses to develop guidelines for sample sizes and duration of measurement intervals, respectively, for larger-scale energetic studies in this species. ?? 2006 by the American Society of Ichthyologists and Herpetologists.

  2. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory.

    PubMed

    Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-07

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  3. Short-range second order screened exchange correction to RPA correlation energies

    NASA Astrophysics Data System (ADS)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  4. Short-range second order screened exchange correction to RPA correlation energies.

    PubMed

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-28

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  5. Characteristics of an OSLD in the diagnostic energy range.

    PubMed

    Al-Senan, Rani M; Hatab, Mustapha R

    2011-07-01

    Optically stimulated luminescence (OSL) dosimetry has been recently introduced in radiation therapy as a potential alternative to the thermoluminescent dosimeter (TLD) system. The aim of this study was to investigate the feasibility of using OSL point dosimeters in the energy range used in diagnostic imaging. NanoDot OSL dosimeters (OSLDs) were used in this study, which started with testing the homogeneity of a new packet of nanoDots. Reproducibility and the effect of optical treatment (bleaching) were then examined, followed by an investigation of the effect of accumulated dose on the OSLD indicated doses. OSLD linearity, angular dependence, and energy dependence were also studied. Furthermore, comparison with LiF:Mg,Ti TLD chips using standard CT dose phantoms at 80 and 120 kVp settings was performed. Batch homogeneity showed a coefficient of variation of <5%. Single-irradiation measurements with bleaching after each OSL readout was found to be associated with a 3.3% reproducibility (one standard deviation measured with a 8 mGy test dose), and no systematic change in OSLDs sensitivity could be noted from measurement to measurement. In contrast, the multiple-irradiation readout without bleaching in between measurements was found to be associated with an uncertainty (using a 6 mGy test dose) that systematically increased with accumulated dose, reaching 42% at 82 mGy. Good linearity was shown by nanoDots under general x-ray, CT, and mammography units with an R2 > 0.99. The angular dependence test showed a drop of approximately 70% in the OSLD response at 90 degrees in mammography (25 kVp). With the general radiography unit, the maximum drop was 40% at 80 kVp and 20% at 120 kVp, and it was only 10% with CT at both 80 and 120 kVp. The energy dependence study showed a range of ion chamber-to-OSLDs ratios between 0.81 and 1.56, at the energies investigated (29-62 keV). A paired t-test for comparing the OSLDs and TLDs showed no significant variation (p > 0.1). OSLDs

  6. Energy Spectrum in the Dissipation Range of Fluid Turbulence

    NASA Technical Reports Server (NTRS)

    Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.

    1996-01-01

    High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.

  7. Geographical and temporal differences in electric vehicle range due to cabin conditioning energy consumption

    NASA Astrophysics Data System (ADS)

    Kambly, Kiran; Bradley, Thomas H.

    2015-02-01

    Electric vehicles (EVs) are vehicles that are propelled by electric motors powered by rechargeable battery. They are generally asserted to have GHG emissions, driveability and life cycle cost benefits over conventional vehicles. Despite this, EVs face significant challenges due to their limited on-board energy storage capacity. In addition to providing energy for traction, the energy storage device operates HVAC systems for cabin conditioning. This results in reduced driving range. The factors such as local ambient temperature, local solar radiation, local humidity, duration and thermal soak have been identified to affect the cabin conditions. In this paper, the development of a detailed system-level approach to HVAC energy consumption in EVs as a function of transient environmental parameters is described. The resulting vehicle thermal comfort model is used to address several questions such as 1) How does day to day environmental conditions affect EV range? 2) How does frequency of EV range change geographically? 3) How does trip start time affect EV range? 4) Under what conditions does cabin preconditioning assist in increasing the EV range? 5) What percentage increase in EV range can be expected due to cabin preconditioning at a given location?

  8. Renewable Energy Opportunities at White Sands Missile Range, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; Solana, Amy E.; States, Jennifer C.

    2008-09-01

    The document provides an overview of renewable resource potential at White Sands Missile Range (WSMR) based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewable Energy Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps (GSHPs) for heating and cooling buildings, as directed by IMCOM.

  9. Characteristics of an OSLD in the diagnostic energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Senan, Rani M.; Hatab, Mustapha R.

    2011-07-15

    Purpose: Optically stimulated luminescence (OSL) dosimetry has been recently introduced in radiation therapy as a potential alternative to the thermoluminescent dosimeter (TLD) system. The aim of this study was to investigate the feasibility of using OSL point dosimeters in the energy range used in diagnostic imaging. Methods: NanoDot OSL dosimeters (OSLDs) were used in this study, which started with testing the homogeneity of a new packet of nanoDots. Reproducibility and the effect of optical treatment (bleaching) were then examined, followed by an investigation of the effect of accumulated dose on the OSLD indicated doses. OSLD linearity, angular dependence, and energymore » dependence were also studied. Furthermore, comparison with LiF:Mg,Ti TLD chips using standard CT dose phantoms at 80 and 120 kVp settings was performed. Results: Batch homogeneity showed a coefficient of variation of <5%. Single-irradiation measurements with bleaching after each OSL readout was found to be associated with a 3.3% reproducibility (one standard deviation measured with a 8 mGy test dose), and no systematic change in OSLDs sensitivity could be noted from measurement to measurement. In contrast, the multiple-irradiation readout without bleaching in between measurements was found to be associated with an uncertainty (using a 6 mGy test dose) that systematically increased with accumulated dose, reaching 42% at 82 mGy. Good linearity was shown by nanoDots under general x-ray, CT, and mammography units with an R{sup 2} > 0.99. The angular dependence test showed a drop of approximately 70% in the OSLD response at 90 deg. in mammography (25 kVp). With the general radiography unit, the maximum drop was 40% at 80 kVp and 20% at 120 kVp, and it was only 10% with CT at both 80 and 120 kVp. The energy dependence study showed a range of ion chamber-to-OSLDs ratios between 0.81 and 1.56, at the energies investigated (29-62 keV). A paired t-test for comparing the OSLDs and TLDs showed no

  10. Personalized Vehicle Energy Efficiency & Range Predictor/MyGreenCar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAXENA, SAMVEG

    MyGreenCar provides users with the ability to predict the range capabilities, fuel economy, and operating costs for any vehicle for their individual driving patterns. Users launce the MyGreeCar mobile app on their smartphones to collect their driving patterns over any duration (e.g. serval days, weeks, months, etc) using a phones's locational capabilities. Using vehicle powertrain models for any user-specified vehicle type, MyGreenCar, calculates the component-level energy and power interactions for the chosen vehicle to predict several important quantities, including: 1. For Evs: Alleviating range anxiety 2. Comparing fuel economy, operating costs, and payback time across models and types.

  11. Advanced Range Safety System for High Energy Vehicles

    NASA Technical Reports Server (NTRS)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  12. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  13. Bounds on Energy Absorption and Prethermalization in Quantum Systems with Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Protopopov, Ivan; Abanin, Dmitry A.

    2018-05-01

    Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with physics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general rigorous bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as 1 /rα with α >d /2 . We show that the disorder averaged energy absorption rate at high temperatures decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of heating and new dynamical regimes described by effective Hamiltonians in such long-range systems.

  14. The relationship between professional operatic soprano voice and high range spectral energy

    NASA Astrophysics Data System (ADS)

    Barnes, Jennifer J.; Davis, Pamela; Oates, Jennifer; Chapman, Janice

    2004-07-01

    Operatic sopranos need to be audible over an orchestra yet they are not considered to possess a singer's formant. As in other voice types, some singers are more successful than others at being heard and so this work investigated the frequency range of the singer's formant between 2000 and 4000 Hz to consider the question of extra energy in this range. Such energy would give an advantage over an orchestra, so the aims were to ascertain what levels of excess energy there might be and look at any relationship between extra energy levels and performance level. The voices of six operatic sopranos (national and international standard) were recorded performing vowel and song tasks and subsequently analyzed acoustically. Measures taken from vowel data were compared with song task data to assess the consistency of the approaches. Comparisons were also made with regard to two conditions of intended projection (maximal and comfortable), two song tasks (anthem and aria), two recording environments (studio and anechoic room), and between subjects. Ranking the singers from highest energy result to lowest showed the consistency of the results from both vowel and song methods and correlated reasonably well with the performance level of the subjects. The use of formant tuning is considered and examined.

  15. Range prediction for tissue mixtures based on dual-energy CT

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u-1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  16. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    PubMed

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other

  17. Wide-range narrowband multilayer mirror for selecting a single-order harmonic in the photon energy range of 40-70 eV.

    PubMed

    Hatayama, Masatoshi; Ichimaru, Satoshi; Ohcni, Tadayuki; Takahashi, Eiji J; Midorikawa, Katsumi; Oku, Satoshi

    2016-06-27

    An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.

  18. Organizational, Design and Technology Issues in the Process of Protection of Underground Historic Monuments/ Probelmy Organizacyjne, Projektowe I Technologiczne W Procesie Zabezpieczania Zabytkowych Podziemi

    NASA Astrophysics Data System (ADS)

    Bartos, Maciej; Chmura, Janusz; Wieja, Tomasz

    2015-06-01

    Underground historic monuments constitute the immanent part of the cultural and natural heritage. Protecting and opening underground historic objects, as the investment aim, is a process of renewed actions taken in objects that are degraded or out of order, contributing to improvement of quality of life of residents, restoring new functions, reconstruction of social bonds. Underground historic buildings should be subjected to processes of protecting and revitalization. Determining the state of a given building and the adjustability of its spatial structure to introducing a new function or making it available to tourist purposes are the basis for these actions. Zabytkowe podziemia stanowią immanentną część dziedzictwa kulturowego i przyrodniczego. Zabezpieczenie i udostępnienie podziemnych obiektów zabytkowych, jako zamierzenia inwestycyjnego, jest procesem ponownych działań podejmowanych w zdegradowanych lub nieczynnych obiektach, przyczyniając się do poprawy jakości życia mieszkańców, przywrócenia nowych funkcji, odbudowy więzi społecznych. Podziemne obiekty zabytkowe powinny być poddane procesom zabezpieczenia i rewitalizacji. Podstawą tych działań jest określenie stanu zachowania danego obiektu oraz możliwości dostosowania jego struktury przestrzennej do wprowadzenia nowej funkcji lub udostępnienia w celach turystycznych. Zasadniczym problemem jest, na etapie organizacyjnym, brak jednolitego ustawodawstwa prawnego dotyczącego procesu zabezpieczania podziemnych obiektów. W artykule przedstawiamy zasadnicze problemy organizacyjne, projektowe i technologiczne występujące w procesie inwestycyjnym zabezpieczania podziemnych obiektów zabytkowych. Efektem tych prac jest transformacja podziemnego obiektu w strukturę przestrzenną o nowej funkcji użytkowej.

  19. Frequency up-converted piezoelectric energy harvester for ultralow-frequency and ultrawide-frequency-range operation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyang; Gao, Shiqiao; Li, Dongguang; Jin, Lei; Wu, Qinghe; Liu, Feng

    2018-04-01

    At present, frequency up-converted piezoelectric energy harvesters are disadvantaged by their narrow range of operating frequencies and low efficiency at ultralow-frequency excitation. To address these shortcomings, we propose herein an impact-driven frequency up-converted piezoelectric energy harvester composed of two driving beams and a generating beam. We find experimentally that the proposed device offers efficient energy output over an ultrawide-frequency-range and performs very well in the ultralow-frequency excitation. A maximum peak power of 29.3 mW is achieved under 0.5g acceleration at the excitation frequency of 12.7 Hz. The performance of the energy harvester can be adjusted and optimized by adjusting the spacing between the driving and generating beams. The results show that the proposed harvester has the potential to power miniaturized portable devices and wireless sensor nodes.

  20. Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range

    NASA Astrophysics Data System (ADS)

    Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina

    2018-02-01

    High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.

  1. SU-G-TeP1-02: Analytical Stopping Power and Range Parameterization for Therapeutic Energy Intervals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, W; Newhauser, W; Mary Bird Perkins Cancer Center, Baton Rouge, LA

    Purpose: To develop a simple, analytic parameterization of stopping power and range, which covers a wide energy interval and is applicable to many species of projectile ions and target materials, with less than 15% disagreement in linear stopping power and 1 mm in range. Methods: The new parameterization was required to be analytically integrable from stopping power to range, and continuous across the range interval of 1 µm to 50 cm. The model parameters were determined from stopping power and range data for hydrogen, carbon, iron, and uranium ions incident on water, carbon, aluminum, lead and copper. Stopping power andmore » range data was taken from SRIM. A stochastic minimization algorithm was used to find model parameters, with 10 data points per energy decade. Additionally, fitting was performed with 2 and 26 data points per energy decade to test the model’s robustness to sparse Results: 6 free parameters were sufficient to cover the therapeutic energy range for each projectile ion species (e.g. 1 keV – 300 MeV for protons). The model agrees with stopping power and range data well, with less than 9% relative stopping power difference and 0.5 mm difference in range. As few as, 4 bins per decade were required to achieve comparable fitting results to the full data set. Conclusion: This study successfully demonstrated that a simple analytic function can be used to fit the entire energy interval of therapeutic ion beams of hydrogen and heavier elements. Advantages of this model were the small number (6) of free parameters, and that the model calculates both stopping power and range. Applications of this model include GPU-based dose calculation algorithms and Monte Carlo simulations, where available memory is limited. This work was supported in part by a research agreement between United States Naval Academy and Louisiana State University: Contract No N00189-13-P-0786. In addition, this work was accepted for presentation at the American Nuclear Society Annual

  2. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  3. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    NASA Astrophysics Data System (ADS)

    Strugalska-Gola, Elzbieta; Bielewicz, Marcin; Kilim, Stanislaw; Szuta, Marcin; Tyutyunnikov, Sergey

    2017-03-01

    This work was performed within the international project "Energy plus Transmutation of Radioactive Wastes" (E&T - RAW) for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89) samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  4. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2018-04-01

    Spectroscopically accurate Potential Energy Surfaces (PESs) are fundamental for explaining and making predictions of the infrared and microwave spectra of van der Waals (vdW) complexes, and the model used for the potential energy function is critically important for providing accurate, robust and portable analytical PESs. The Morse/Long-Range (MLR) model has proved to be one of the most general, flexible and accurate one-dimensional (1D) model potentials, as it has physically meaningful parameters, is flexible, smooth and differentiable everywhere, to all orders and extrapolates sensibly at both long and short ranges. The Multi-Dimensional Morse/Long-Range (mdMLR) potential energy model described herein is based on that 1D MLR model, and has proved to be effective and accurate in the potentiology of various types of vdW complexes. In this paper, we review the current status of development of the mdMLR model and its application to vdW complexes. The future of the mdMLR model is also discussed. This review can serve as a tutorial for the construction of an mdMLR PES.

  5. Long-range energy transport in single supramolecular nanofibres at room temperature

    NASA Astrophysics Data System (ADS)

    Haedler, Andreas T.; Kreger, Klaus; Issac, Abey; Wittmann, Bernd; Kivala, Milan; Hammer, Natalie; Köhler, Jürgen; Schmidt, Hans-Werner; Hildner, Richard

    2015-07-01

    Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.

  6. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  7. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  8. Excitation energies from Görling-Levy perturbation theory along the range-separated adiabatic connection

    NASA Astrophysics Data System (ADS)

    Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien

    2018-06-01

    A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.

  9. Electron response of some low-Z scintillators in wide energy range

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  10. Low energy range dielectronic recombination of Fluorine-like Fe17+ at the CSRm

    NASA Astrophysics Data System (ADS)

    Khan, Nadir; Huang, Zhong-Kui; Wen, Wei-Qiang; Mahmood, Sultan; Dou, Li-Jun; Wang, Shu-Xing; Xu, Xin; Wang, Han-Bing; Chen, Chong-Yang; Chuai, Xiao-Ya; Zhu, Xiao-Long; Zhao, Dong-Mei; Mao, Li-Jun; Li, Jie; Yin, Da-Yu; Yang, Jian-Cheng; Yuan, You-Jin; Zhu, Lin-Fan; Ma, Xin-Wen

    2018-05-01

    The accuracy of dielectronic recombination (DR) data for astrophysics related ions plays a key role in astrophysical plasma modeling. The absolute DR rate coefficient of Fe17+ ions was measured at the main cooler storage ring at the Institute of Modern Physics, Lanzhou, China. The experimental electron-ion collision energy range covers the first Rydberg series up to n = 24 for the DR resonances associated with the {}2P1/2\\to {}2P3/2{{Δ }}n=0 core excitations. A theoretical calculation was performed by using FAC code and compared with the measured DR rate coefficient. Overall reasonable agreement was found between the experimental results and calculations. Moreover, the plasma rate coefficient was deduced from the experimental DR rate coefficient and compared with the available results from the literature. At the low energy range, significant discrepancies were found, and the measured resonances challenge state-of-the-art theory at low collision energies. Supported by the National Key R&D Program of China (2017YFA0402300), the National Natural Science Foundation of China through (11320101003, U1732133, 11611530684) and Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH006)

  11. Cross-Section Measurements in the Fast Neutron Energy Range

    NASA Astrophysics Data System (ADS)

    Plompen, Arjan

    2006-04-01

    Generation IV focuses research for advanced nuclear reactors on six concepts. Three of these concepts, the lead, gas and sodium fast reactors (LFR, GFR and SFR) have fast neutron spectra, whereas a fourth, the super-critical water reactor (SCWR), can be configured to have a fast spectrum. Such fast neutron spectra are essential to meet the sustainability objective of GenIV. Nuclear data requirements for GenIV concepts will therefore emphasize the energy region from about 1 keV to 10 MeV. Here, the potential is illustrated of the GELINA neutron time-of-flight facility and the Van de Graaff laboratory at IRMM to measure the relevant nuclear data in this energy range: the total, capture, fission and inelastic-scattering cross sections. In particular, measurement results will be shown for lead and bismuth inelastic scattering for which the need was recently expressed in a quantitative way by Aliberti et al. for Accelerator Driven Systems. Even without completion of the quantitative assessment of the data needs for GenIV concepts at ANL it is clear that this particular effort is of relevance to LFR system studies.

  12. 3He(α, γ)7Be cross section in a wide energy range

    NASA Astrophysics Data System (ADS)

    Szücs, Tamás; Gyürky, György; Halász, Zoltán; Kiss, Gábor Gy.; Fülöp, Zsolt

    2018-01-01

    The reaction rate of the 3He(α,γ)7 Be reaction is important both in the Big Bang Nucleosynthesis (BBN) and in the Solar hydrogen burning. There have been a lot of experimental and theoretical efforts to determine this reaction rate with high precision. Some long standing issues have been solved by the more precise investigations, like the different S(0) values predicted by the activation and in-beam measurement. However, the recent, more detailed astrophysical model predictions require the reaction rate with even higher precision to unravel new issues like the Solar composition. One way to increase the precision is to provide a comprehensive dataset in a wide energy range, extending the experimental cross section database of this reaction. This paper presents a new cross section measurement between Ecm = 2.5 - 4.4 MeV, in an energy range which extends above the 7Be proton separation threshold.

  13. A space bourne crystal diffraction telescope for the energy range of nuclear transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Ballmoos, P.; Naya, J.E.; Albernhe, F.

    1995-10-01

    Recent experimental work of the Toulouse-Argonne collaboration has opened for perspective of a focusing gamma-ray telescope operating in the energy range of nuclear transitions, featuring unprecedented sensitivity, angular and energy resolution. The instrument consists of a tunable crystal diffraction lens situated on a stabilized spacecraft, focusing gamma-rays onto a small array of Germanium detectors perched on an extendible boom. While the weight of such an instrument is less than 500 kg, it features an angular resolution of 15 in., an energy resolution of 2 keV and a 3 {sigma} narrow line sensitivity of a few times 10{sup {minus}7} photons s{supmore » {minus}1} cm{sup {minus}2} (10{sup 6} sec observation). This instrumental concept permits observation of any identified source at any selected line-energy in a range of typically 200 keV to 1300 keV. The resulting ``sequential`` operation mode makes sites of explosive nucleosynthesis natural scientific objectives for such a telescope: the nuclear lines of extragalactic supernovae ({sup 56}Ni, {sup 44}Ti, {sup 60}Fe) and galactic novae (p{sup {minus}}p{sup +} line, {sup 7}Be) are accessible to observation, one at a time, due to the erratic appearance and the sequence of half-lifes of these events. Other scientific objectives, include the narrow 511 keV line from galactic broad class annihilators (such as 1E1740-29, nova musca) and possible redshifted annihilation lines from AGN`s.« less

  14. Home in the heat: Dramatic seasonal variation in home range of desert golden eagles informs management for renewable energy development

    USGS Publications Warehouse

    Braham, Melissa A.; Miller, Tricia A.; Duerr, Adam E.; Lanzone, Michael J.; Fesnock, Amy; LaPre, Larry; Driscoll, Daniel; Katzner, Todd E.

    2015-01-01

    Renewable energy is expanding quickly with sometimes dramatic impacts to species and ecosystems. To understand the degree to which sensitive species may be impacted by renewable energy projects, it is informative to know how much space individuals use and how that space may overlap with planned development. We used global positioning system–global system for mobile communications (GPS-GSM) telemetry to measure year-round movements of golden eagles (Aquila chrysaetos) from the Mojave Desert of California, USA. We estimated monthly space use with adaptive local convex hulls to identify the temporal and spatial scales at which eagles may encounter renewable energy projects in the Desert Renewable Energy Conservation Plan area. Mean size of home ranges was lowest and least variable from November through January and greatest in February–March and May–August. These monthly home range patterns coincided with seasonal variation in breeding ecology, habitat associations, and temperature. The expanded home ranges in hot summer months included movements to cooler, prey-dense, mountainous areas characterized by forest, grasslands, and scrublands. Breeding-season home ranges (October–May) included more lowland semi-desert and rock vegetation. Overlap of eagle home ranges and focus areas for renewable energy development was greatest when eagle home ranges were smallest, during the breeding season. Golden eagles in the Mojave Desert used more space and a wider range of habitat types than expected and renewable energy projects could affect a larger section of the regional population than was previously thought.

  15. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    NASA Astrophysics Data System (ADS)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  16. The cosmic ray energy spectrum in the range 1016-1018 eV measured by KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2011-06-01

    The KASCADE-Grande experiment, located at Campus North of the Karlsruhe Institute of Technology (Germany) is a multi-component extensive air-shower experiment devoted to the study of cosmic rays and their interactions at primary energies 1014-1018 eV. One of the main goals of the experiment is the measurement of the all particle energy spectrum in the 1016-1018 eV range, i.e. extending the range accessible by KASCADE alone. The Grande detector samples the charged component (Nch) of the air shower while the original KASCADE array provides in addition a measurement of the muon component (Nμ). The combined information of Nch and Nμ is used to estimate the energy on an event-by-event basis and to derive the all-particle energy spectrum. Since the calibration of the observables in terms of the primary energy depends on Monte Carlo simulations, three different methods with partially different sources of uncertainties, have been considered and compared to each other to derive the systematics on the energy spectrum. The different methods employed to derive the spectrum and their uncertainties, as well as the implications of the obtained result, are discussed in detail.

  17. The GCR All-Particle Spectrum in the 0.1-100 TeV Energy Range

    NASA Astrophysics Data System (ADS)

    Tolstaya, Ekaterina D.; Grigorov, N. L.

    2003-07-01

    The results of direct measurements of the all particle spectra by five different instruments on satellites and balloons are considered. It is shown, that is the representatio as the flux multiplied by energy to the power of 2.6 the all-particle spectrum shows a 'step'. The parameters of this 'step' and its origin are analyzed. Historically it has so happ ened that the all-particle spectrum obtained as the sum individual components, the energy range 1 < E < (5 - 10) TeV in the proton spectrum is not covered by direct measurements. Usually this energy interval in the all-particle spectrum is filled via interp olation, which is bases on the assumption that the proton spectrum is similar to the spectrum of nuclei. This spectrum is usually considered to be the all-particle GCR spectrum Io (E ) [1]. Direct information on the all-particle spectrum in the energy range from 1 to 10 TeV can be obtained using direct measurements of the of the all-particle spectrum by electronic instruments. For the first time such information was obtained in 1972 as a result of the all-particle spectrum measurements by the SEZ-14 instrument on the 'Proton1,2,3' satellites and the SEZ-15 instrument on the 'Proton-4' satellite [2,3]. These measurements revealed an anomaly in the all-particle spectrum in the 1-10 TeV energy range. In 1997 the spectrum was measured again by the TIC instrument [4]. The TIC instrument measured the energy release of all-particles arriving from arbitrary directions. As it was shown by the authors in [4,5] the energy release spectrum revealed the same anomaly in the all-particle spectrum, previously observed in the measurements made on 'Proton' satellites [2]. The results of the measurements made by the TIC, SEZ-14 and SEZ-15 are shown in Fig.1. The solid line in Fig.1 shows the function Φ(E ), which gives a good approximation of the experimental all-particle spectrum at a =0.4 TeV. Φ(E ) = E 2.6 Io (E ) (E /a)3 0.11 } + 0.130m-2s-1 sr -1 T eV 1.6 (1) {1 + 0.37 = [1

  18. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  19. Physics of reflective optics for the soft gamma-ray photon energy range

    DOE PAGES

    Fernandez-Perea, Monica; Descalle, Marie -Anne; Soufli, Regina; ...

    2013-07-12

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takesmore » place in the mirrors but it does not affect the performance at the Bragg angles of operation. Furthermore, our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now.« less

  20. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes

    PubMed Central

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-01-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899

  1. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    PubMed

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  2. SU-F-T-52: Study of Energy Dependent Effect of Dosimetry Systems Used in Therapeutic Soft X-Ray Energy Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souri, S; Qian, X; Gill, G

    Purpose: To investigate energy dependent effects of different dosimetry systems which can be used as in vivo dosimetry monitoring for intraoperative radiotherapy in therapeutic soft x-ray energy range. Methods: Three dosimetry systems were evaluated in therapeutic soft x-ray energy range: optically stimulated luminescent dosimeter (OSLD) nanoDots, radiochromic EBT2 and EBT3 films. The x-ray photons were produced by a Zeiss Intrabeam 50 kV x-ray radiotherapy system. Solid water and bolus slabs with different thicknesses were used in the process of irradiation. An aluminum filter set was used to measure HVLs of X-rays. Calibration curves were made at different depth of boluses.more » Results: Half Value Layers at depths of 0, 3, 10, and 20 mm of solid water were measured to represent the energy change versus depth, yielding 0.306, 0.482, 0.865 and 0.901 respectively and indicating nearly unchanged HVL beyond 1 cm depth. The responses of each system at different depths were normalized to the response at 2 cm depth. In film dosimetry, the response is calculated as optical density (OD). The results show that there is nearly the same energy dependence for EBT2 and EBT3. At a HVL of 0.482 mm Al, the relative responses of nanoDots and EBT3 are 0.85 ± 0.04 and 0.89 ± 0.03 compared to those at 0.901 mm Al HVL, respectively, indicating no obvious difference between those two systems within the measurement uncertainty. Conclusion: It was observed that the studied dosimeter response increases about 13% from the x-ray energy of 0.48 mm Al to 0.90 mm Al. Therefore, caution should be exercised in using an appropriate calibration curve, and x-ray beam hardening effect has to be taken into account.« less

  3. Photodissociation of HCN and HNC isomers in the 7-10 eV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenel, Aurelie; Roncero, Octavio, E-mail: octavio.roncero@csic.es; Aguado, Alfredo

    2016-04-14

    The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereaftermore » electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.« less

  4. Fit Point-Wise AB Initio Calculation Potential Energies to a Multi-Dimension Long-Range Model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2016-06-01

    A potential energy surface (PES) is a fundamental tool and source of understanding for theoretical spectroscopy and for dynamical simulations. Making correct assignments for high-resolution rovibrational spectra of floppy polyatomic and van der Waals molecules often relies heavily on predictions generated from a high quality ab initio potential energy surface. Moreover, having an effective analytic model to represent such surfaces can be as important as the ab initio results themselves. For the one-dimensional potentials of diatomic molecules, the most successful such model to date is arguably the ``Morse/Long-Range'' (MLR) function developed by R. J. Le Roy and coworkers. It is very flexible, is everywhere differentiable to all orders. It incorporates correct predicted long-range behaviour, extrapolates sensibly at both large and small distances, and two of its defining parameters are always the physically meaningful well depth {D}_e and equilibrium distance r_e. Extensions of this model, called the Multi-Dimension Morse/Long-Range (MD-MLR) function, linear molecule-linear molecule systems and atom-non-linear molecule system. have been applied successfully to atom-plus-linear molecule, linear molecule-linear molecule and atom-non-linear molecule systems. However, there are several technical challenges faced in modelling the interactions of general molecule-molecule systems, such as the absence of radial minima for some relative alignments, difficulties in fitting short-range potential energies, and challenges in determining relative-orientation dependent long-range coefficients. This talk will illustrate some of these challenges and describe our ongoing work in addressing them. Mol. Phys. 105, 663 (2007); J. Chem. Phys. 131, 204309 (2009); Mol. Phys. 109, 435 (2011). Phys. Chem. Chem. Phys. 10, 4128 (2008); J. Chem. Phys. 130, 144305 (2009) J. Chem. Phys. 132, 214309 (2010) J. Chem. Phys. 140, 214309 (2010)

  5. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    PubMed

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  6. Extended law of corresponding states in short-range square wells: a potential energy landscape study.

    PubMed

    Foffi, Giuseppe; Sciortino, Francesco

    2006-11-01

    We study the statistical properties of the potential energy landscape of a system of particles interacting via a very short-range square-well potential (of depth -u0) as a function of the range of attraction Delta to provide thermodynamic insights of the Noro and Frenkel [M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000)] scaling. We exactly evaluate the basin free energy and show that it can be separated into a vibrational (Delta dependent) and a floppy (Delta independent) component. We also show that the partition function is a function of Deltaebetauo, explaining the equivalence of the thermodynamics for systems characterized by the same second virial coefficient. An outcome of our approach is the possibility of counting the number of floppy modes (and their entropy).

  7. A three-dimensional He-CO potential energy surface with improved long-range behavior

    NASA Astrophysics Data System (ADS)

    McBane, George C.

    2016-12-01

    A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.

  8. Energy scaling of passively Q-switched lasers In the Mj-range

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Huss, R.; Kolleck, C.; Kracht, Dietmar

    2017-11-01

    Q-switched lasers systems with ns pulse duration and energies ranging from 1 to more than 100mJ are utilized for many spaceborne applications such as altimetry of planets and moons. Furthermore, Q-switched lasers can be used for distance measurements during docking and landing manoeuvres. To keep the diameter of the beam small over a large distance and to consequently achieve a good lateral resolution, a good beam propagation factor M² is required. Moreover, Q-switched lasers can be used directly on the planetary surface for exploration by laser-induced breakdown spectroscopy or laser desorption mass spectrometry.

  9. Research on simulation system with the wide range and high-precision laser energy characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Ke-yan; Lou, Yan; He, Jing-yi; Tong, Shou-feng; Jiang, Hui-lin

    2012-10-01

    The Hardware-in-the-loop(HWIL) simulation test is one of the important parts for the development and performance testing of semi-active laser-guided weapons. In order to obtain accurate results, the confidence level of the target environment should be provided for a high-seeker during the HWIL simulation test of semi-active laser-guided weapons, and one of the important simulation parameters is the laser energy characteristic. In this paper, based on the semi-active laser-guided weapon guidance principles, an important parameter of simulation of confidence which affects energy characteristics in performance test of HWIL simulation was analyzed. According to the principle of receiving the same energy by using HWIL simulation and in practical application, HWIL energy characteristics simulation systems with the crystal absorption structure was designed. And on this basis, the problems of optimal design of the optical system were also analyzed. The measured results show that the dynamic attenuation range of the system energy is greater than 50dB, the dynamic attenuation stability is less than 5%, and the maximum energy changing rate driven by the servo motor is greater than 20dB/s.

  10. Degrees of locality of energy transfer in the inertial range. [Kolmogoroff notion in turbulence theory

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1993-01-01

    Measured raw transfer interactions from which local energy transfer is argued to result are summed in a way that directly indicates the scale disparity (s) of contributions to the net energy flux across the spectrum. It is found that the dependence upon s closely follows the s exp -4/3 form predicted by classical arguments. As a result, it is concluded that direct numerical simulation measurements lend support to the classical Kolmogorov phenomenology of local interactions and local transfer in an inertial range.

  11. Improving the range of UHF RFID transponders using solar energy harvesting under low light conditions

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.

    2015-11-01

    The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.

  12. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  13. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  14. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arunachalam, V.; Marlow, W.H.; Lu, J.X.

    1998-09-01

    The importance of the long-range Lifshitz{endash}van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters aremore » compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters{close_quote} circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. {copyright} {ital 1998} {ital The

  15. Dipole polarizability, sum rules, mean excitation energies, and long-range dispersion coefficients for buckminsterfullerene C 60

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-11-01

    Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.

  16. Choice of range-energy relationship for the analysis of electron-beam-induced-current line scans

    NASA Astrophysics Data System (ADS)

    Luke, Keung, L.

    1994-07-01

    The electron range in a material is an important parameter in the analysis of electron-beam-induced-current (EBIC) line scans. Both the Kanaya-Okayama (KO) and Everhart-Hoff (EH) range-energy relationships have been widely used by investigators for this purpose. Although the KO range is significantly larer than the EH range, no study has been done to examine the effect of choosing one range over the other on the values of the surface recombination velocity S(sub T) and minority-carrier diffusion length L evaluated from EBICF line scans. Such a study has been carried out, focusing on two major questions: (1) When the KO range is used in different reported methods to evaluate either or both S(sub T) and L from EBIC line scans, how different are their values thus determined in comparison to those using the EH range?; (2) from EBIC line scans of a given material, is there a way to discriminate between the KO and the EH ranges which should be used to analyze these scans? Answers to these questions are presented to assist investigators in extracting more reliable values of either or both S(sub T) and L and in finding the right range to use in the analysis of these line scans.

  17. Measurement of the cosmic ray spectrum and chemical composition in the 1015-1018 eV energy range

    NASA Astrophysics Data System (ADS)

    Chiavassa, Andrea

    2018-01-01

    Cosmic ray in the 1015-1018 eV energy range can only be detected with ground based experiments, sampling Extensive Air Showers (EAS) particles. The interest in this energetic interval is related to the search of the knee of the iron component of cosmic ray and to the study of the transition between galactic and extra-galactic primaries. The energy and mass calibration of these arrays can only be performed with complete EAS simulations as no sources are available for an absolute calibration. The systematic error on the energy assignment can be estimated around 30 ± 10%. The all particle spectrum measured in this energy range is more structured than previously thought, showing some faint features: a hardening slightly above 1016 eV and a steepening below 1017 eV. The studies of the primary chemical composition are quickly evolving towards the measurements of the primary spectra of different mass groups: up to now we are able to separate (on a event by event basis) light and heavy primaries. Above the knee a steepening of the heavy primary spectrum and a hardening of the light ones have been detected.

  18. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-01-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  19. Sensitization of ultra-long-range excited-state electron transfer by energy transfer in a polymerized film

    PubMed Central

    Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.

    2012-01-01

    Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698

  20. Short- and long-range energy strategies for Japan and the world after the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Muraoka, K.; Wagner, F.; Yamagata, Y.; Donné, A. J. H.

    2016-01-01

    The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO2-free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power—if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged

  1. The energy spectrum in the universal range of two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Kida, S.; Yamada, M.; Ohkitani, K.

    1988-12-01

    Direct numerical simulation of two-dimensional Navier-Stokes equations at large Reynolds numbers is made by the spectral method with 1364 2 modes starting from a high-symmetric random initial velocity field. Two wavenumber ranges, governed by different similarity laws are observed after the enstrophy dissipation rate η( t) takes the maximum value. At small wavenumbers the energy spectrum is stationary in time, while at larger wavenumbers it decays according to the similarity law predicted by the enstrophy cascade theory, and the shape of the energy spectrum E( k, t) is expressed by E(k,t) = Aη(t) 1/6v 3/2( k/kd-3 exp[- √2A( k/kd)] , where k is the wavenumber, t the time, v the kinematic viscosity of fluid, k d =η(t) 1/6/v 1/2 the dissipation wavenumber, and A ≈ 1.6. Concerning the enstrophy dissipation rate the following properties are observed: (i) As the Reynolds number R increases, the time of maximum enstrophy dissipation rate is delayed, probably in proportion to In R. (ii) It approaches finite positive values in the inviscid limit if the above-mentioned time-lag is taken into account, (iii) It decays inversely proportionally to the cubic of time, so that the enstrophy is expressed as a sum of a constant term and a term which decays inversely proportionally to the square of time. This paper discusses why power laws of the energy spectrum observed in most of previously reported direct numerical simulations of two-dimensional periodic flows were steeper than k-3.

  2. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  3. Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion.

    PubMed

    Espíndola-Heredia, Rodolfo; del Río, Fernando; Malijevsky, Anatol

    2009-01-14

    The free energy of square-well (SW) systems of hard-core diameter sigma with ranges 1 < or = lambda < or = 3 is expanded in a perturbation series. This interval covers most ranges of interest, from short-ranged SW fluids (lambda approximately 1.2) used in modeling colloids to long ranges (lambda approximately 3) where the van der Waals classic approximation holds. The first four terms are evaluated by means of extensive Monte Carlo simulations. The calculations are corrected for the thermodynamic limit and care is taken to evaluate and to control the various sources of error. The results for the first two terms in the series confirm well-known independent results but have an increased estimated accuracy and cover a wider set of well ranges. The results for the third- and fourth-order terms are novel. The free-energy expansion for systems with short and intermediate ranges, 1 < or = lambda < or = 2, is seen to have properties similar to those of systems with longer ranges, 2 < or = lambda < or = 3. An equation of state (EOS) is built to represent the free-energy data. The thermodynamics given by this EOS, confronted against independent computer simulations, is shown to predict accurately the internal energy, pressure, specific heat, and chemical potential of the SW fluids considered and for densities 0 < or = rho sigma(3) < or = 0.9 including subcritical temperatures. This fourth-order theory is estimated to be accurate except for a small region at high density, rho sigma(3) approximately 0.9, and low temperature where terms of still higher order might be needed.

  4. Geant4 Monte Carlo simulation of energy loss and transmission and ranges for electrons, protons and ions

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Vladimir

    Geant4 is a toolkit for Monte Carlo simulation of particle transport originally developed for applications in high-energy physics with the focus on experiments at the Large Hadron Collider (CERN, Geneva). The transparency and flexibility of the code has spread its use to other fields of research, e.g. radiotherapy and space science. The tool provides possibility to simulate complex geometry, transportation in electric and magnetic fields and variety of physics models of interaction of particles with media. Geant4 has been used for simulation of radiation effects for number of space missions. Recent upgrades of the toolkit released in December 2009 include new model for ion electronic stopping power based on the revised version of ICRU'73 Report increasing accuracy of simulation of ion transport. In the current work we present the status of Geant4 electromagnetic package for simulation of particle energy loss, ranges and transmission. This has a direct implication for simulation of ground testing setups at existing European facilities and for simulation of radiation effects in space. A number of improvements were introduced for electron and proton transport, followed by a thorough validation. It was the aim of the present study to validate the range against reference data from the United States National Institute of Standards and Technologies (NIST) ESTAR, PSTAR and ASTAR databases. We compared Geant4 and NIST ranges of electrons using different Geant4 models. The best agreement was found for Penelope, except at very low energies in heavy materials, where the Standard package gave better results. Geant4 proton ranges in water agreed with NIST within 1 The validation of the new ion model is performed against recent data on Bragg peak position in water. The data from transmission of carbon ions via various absorbers following Bragg peak in water demonstrate that the new Geant4 model significantly improves precision of ion range. The absolute accuracy of ion range

  5. Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0-0 Electronic Excitation Energies.

    PubMed

    Jacquemin, Denis; Moore, Barry; Planchat, Aurélien; Adamo, Carlo; Autschbach, Jochen

    2014-04-08

    Using a set of 40 conjugated molecules, we assess the performance of an "optimally tuned" range-separated hybrid functional in reproducing the experimental 0-0 energies. The selected protocol accounts for the impact of solvation using a corrected linear-response continuum approach and vibrational corrections through calculations of the zero-point energies of both ground and excited-states and provides basis set converged data thanks to the systematic use of diffuse-containing atomic basis sets at all computational steps. It turns out that an optimally tuned long-range corrected hybrid form of the Perdew-Burke-Ernzerhof functional, LC-PBE*, delivers both the smallest mean absolute error (0.20 eV) and standard deviation (0.15 eV) of all tested approaches, while the obtained correlation (0.93) is large but remains slightly smaller than its M06-2X counterpart (0.95). In addition, the efficiency of two other recently developed exchange-correlation functionals, namely SOGGA11-X and ωB97X-D, has been determined in order to allow more complete comparisons with previously published data.

  6. Designing an extended energy range single-sphere multi-detector neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Esposito, A.; Pola, A.; Introini, M. V.; Mazzitelli, G.; Quintieri, L.; Buonomo, B.

    2012-06-01

    This communication describes the design specifications for a neutron spectrometer consisting of 31 thermal neutron detectors, namely Dysprosium activation foils, embedded in a 25 cm diameter polyethylene sphere which includes a 1 cm thick lead shell insert that degrades the energy of neutrons through (n,xn) reactions, thus allowing to extension of the energy range of the response up to hundreds of MeV neutrons. The new spectrometer, called SP2 (SPherical SPectrometer), relies on the same detection mechanism as that of the Bonner Sphere Spectrometer, but with the advantage of determining the whole neutron spectrum in a single exposure. The Monte Carlo transport code MCNPX was used to design the spectrometer in terms of sphere diameter, number and position of the detectors, position and thickness of the lead shell, as well as to obtain the response matrix for the final configuration. This work focuses on evaluating the spectrometric capabilities of the SP2 design by simulating the exposure of SP2 in neutron fields representing different irradiation conditions (test spectra). The simulated SP2 readings were then unfolded with the FRUIT unfolding code, in the absence of detailed pre-information, and the unfolded spectra were compared with the known test spectra. The results are satisfactory and allowed approving the production of a prototypal spectrometer.

  7. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ionmore » fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 /times/ 10/sup 14/ cm/sup /minus/2/) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs.« less

  8. Cross sections for electron scattering by carbon disulfide in the low- and intermediate-energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brescansin, L. M.; Iga, I.; Lee, M.-T.

    2010-01-15

    In this work, we report a theoretical study on e{sup -}-CS{sub 2} collisions in the low- and intermediate-energy ranges. Elastic differential, integral, and momentum-transfer cross sections, as well as grand total (elastic + inelastic) and absorption cross sections, are reported in the 1-1000 eV range. A recently proposed complex optical potential composed of static, exchange, and correlation-polarization plus absorption contributions is used to describe the electron-molecule interaction. The Schwinger variational iterative method combined with the distorted-wave approximation is applied to calculate the scattering amplitudes. The comparison between our calculated results and the existing experimental and/or theoretical results is encouraging.

  9. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.

    PubMed

    Alford, Matthew H

    2003-05-08

    Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.

  10. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  11. Performance of Ga(0.47)In(0.53)As cells over a range of proton energies

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Jain, R. K.; Vargasaburto, C.; Wilt, D. M.; Scheiman, D. A.

    1995-01-01

    Ga(0.47)In(0.53)As solar cells were processed by OMVPE and their characteristics determined at proton energies of 0.2, 0.5, and 3 MeV. Emphasis was on characteristics applicable to use of this cell as the low bandgap member of a monolithic, two terminal high efficiency InP/GaInAs cell. It was found that the radiation induced degradation in efficiency, I(sub SC), V(sub OC) and diffusion length increased with decreasing proton energy. When efficiency degradations were compared with InP it was observed that the present cells showed considerably more degradation over the entire energy range. Similar to InP, R(sub C), the carrier removal rate, decreased with increasing proton energy. However, numerical values for R(sub C) differed from those observed with InP. The difference is attributed to differing defect behavior between the two cell types. It was concluded that particular attention should be paid to the effects of low energy protons especially when the particle's track ends in one cell of the multibandgap device.

  12. Contrasting accounts of direction and shape perception in short-range motion: Counterchange compared with motion energy detection.

    PubMed

    Norman, Joseph; Hock, Howard; Schöner, Gregor

    2014-07-01

    It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.

  13. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhichao; Guo Liang; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photonmore » energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.« less

  14. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.

    PubMed

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  15. Investigation of amorphization energies for heavy ion implants into silicon carbide at depths far beyond the projected ranges

    NASA Astrophysics Data System (ADS)

    Friedland, E.

    2017-01-01

    At ion energies with inelastic stopping powers less than a few keV/nm, radiation damage is thought to be due to atomic displacements by elastic collisions only. However, it is well known that inelastic processes and non-linear effects due to defect interaction within collision cascades can significantly increase or decrease damage efficiencies. The importance of these processes changes significantly along the ion trajectory and becomes negligible at some distance beyond the projected range, where damage is mainly caused by slowly moving secondary recoils. Hence, in this region amorphization energies should become independent of the ion type and only reflect the properties of the target lattice. To investigate this, damage profiles were obtained from α-particle channeling spectra of 6H-SiC wafers implanted at room temperature with ions in the mass range 84 ⩽ M ⩽ 133, employing the computer code DICADA. An average amorphization dose of (0.7 ± 0.2) dpa and critical damage energy of (17 ± 6) eV/atom are obtained from TRIM simulations at the experimentally observed boundary positions of the amorphous zones.

  16. Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Kniffen, D. A.

    1982-01-01

    A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.

  17. VUV Dissociative Photoionization of Quinoline in the 7-26 eV Photon Energy Range

    NASA Astrophysics Data System (ADS)

    Leach, Sydney; Jochims, Hans-Werner; Baumgärtel, Helmut; Champion, Norbert

    2018-05-01

    The dissociative photoionization of quinoline was studied by photoionization mass spectrometry and ion yield measurements over a synchrotron photon excitation energy range 7-26 eV. The ionic and neutral products were identified with the aid of thermochemical calculations that, in some cases, led to deeper understanding of photodissociation pathways and the determination of upper limits of heats of formation of ionic and neutral dissociation products. A detailed comparison between the 20 eV photon excitation and 70 eV electron impact mass spectra, coupled with estimation of thermochemical appearance energies, leads to assignment of the dissociative ionization cation and neutral products for each detected ion. Reaction schemes for formation of these products are proposed in a number of cases. Ion intensities in the photon and electron impact mass spectra were used to consider extending a rule of charge retention in simple bond cleavage to more complex cases of dissociative ionization.

  18. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, T.E.

    1996-05-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.

  19. Range-gated field disturbance sensor with range-sensitivity compensation

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.

  20. Elastic electron differential cross sections for argon atom in the intermediate energy range from 40 eV to 300 eV

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.

    2018-02-01

    Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.

  1. Energy spectrum of cascade showers induced by cosmic ray muons in the range from 50 GeV to 5 TeV

    NASA Technical Reports Server (NTRS)

    Ashitkov, V. D.; Kirina, T. M.; Klimakov, A. P.; Kokoulin, R. P.; Petrukhin, A. A.; Yumatov, V. I.

    1985-01-01

    The energy spectrum of cascade showers induced by electromagnetic interactions of high energy muons of horizontal cosmic ray flux in iron absorber was measured. The total observation time exceeded 22,000 hours. Both the energy spectrum and angular distributions of cascade showers are fairly described in terms of the usual muon generation processes, with a single power index of the parent meson spectrum over the muon energy range from 150 GeV to 5 TeV.

  2. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  3. The Dynamic Range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, Jun; LZ Collaboration

    2015-10-01

    The electronics of the LZ experiment, the 7-ton dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being developed to recover the information lost due to saturation. This work was supported by the Department of Energy, Grant DE-SC0006605.

  4. Short-range stabilizing potential for computing energies and lifetimes of temporary anions with extrapolation methods.

    PubMed

    Sommerfeld, Thomas; Ehara, Masahiro

    2015-01-21

    The energy of a temporary anion can be computed by adding a stabilizing potential to the molecular Hamiltonian, increasing the stabilization until the temporary state is turned into a bound state, and then further increasing the stabilization until enough bound state energies have been collected so that these can be extrapolated back to vanishing stabilization. The lifetime can be obtained from the same data, but only if the extrapolation is done through analytic continuation of the momentum as a function of the square root of a shifted stabilizing parameter. This method is known as analytic continuation of the coupling constant, and it requires--at least in principle--that the bound-state input data are computed with a short-range stabilizing potential. In the context of molecules and ab initio packages, long-range Coulomb stabilizing potentials are, however, far more convenient and have been used in the past with some success, although the error introduced by the long-rang nature of the stabilizing potential remains unknown. Here, we introduce a soft-Voronoi box potential that can serve as a short-range stabilizing potential. The difference between a Coulomb and the new stabilization is analyzed in detail for a one-dimensional model system as well as for the (2)Πu resonance of CO2(-), and in both cases, the extrapolation results are compared to independently computed resonance parameters, from complex scaling for the model, and from complex absorbing potential calculations for CO2(-). It is important to emphasize that for both the model and for CO2(-), all three sets of results have, respectively, been obtained with the same electronic structure method and basis set so that the theoretical description of the continuum can be directly compared. The new soft-Voronoi-box-based extrapolation is then used to study the influence of the size of diffuse and the valence basis sets on the computed resonance parameters.

  5. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer.

    PubMed

    Cnops, Kjell; Rand, Barry P; Cheyns, David; Verreet, Bregt; Empl, Max A; Heremans, Paul

    2014-03-07

    In order to increase the power conversion efficiency of organic solar cells, their absorption spectrum should be broadened while maintaining efficient exciton harvesting. This requires the use of multiple complementary absorbers, usually incorporated in tandem cells or in cascaded exciton-dissociating heterojunctions. Here we present a simple three-layer architecture comprising two non-fullerene acceptors and a donor, in which an energy-relay cascade enables an efficient two-step exciton dissociation process. Excitons generated in the remote wide-bandgap acceptor are transferred by long-range Förster energy transfer to the smaller-bandgap acceptor, and subsequently dissociate at the donor interface. The photocurrent originates from all three complementary absorbing materials, resulting in a quantum efficiency above 75% between 400 and 720 nm. With an open-circuit voltage close to 1 V, this leads to a remarkable power conversion efficiency of 8.4%. These results confirm that multilayer cascade structures are a promising alternative to conventional donor-fullerene organic solar cells.

  6. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin P.; Roy, Pierre-Nicholas

    2018-03-01

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  7. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures.

    PubMed

    Bishop, Kevin P; Roy, Pierre-Nicholas

    2018-03-14

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  8. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV-1 MeV

    NASA Astrophysics Data System (ADS)

    Sareen, R. A.; Urban, W.; Barnett, A. R.; Varley, B. J.

    1995-06-01

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168Er(α,2n)170Yb reaction at Eα=25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV.

  9. Study of the 2H(p,γ)3He reaction in the BBN energy range at LUNA

    NASA Astrophysics Data System (ADS)

    Trezzi, Davide; LUNA Collaboration

    2018-01-01

    Using Big Bang Nucleosynthesis with the recent cosmological parameters obtained by the Planck collaboration, a primordial deuterium abundance value D/H = (2.65 ± 0.07) × 10-5 is obtained. This one is a little bit in tension with astronomical observations on metal- poor damped Lyman alpha systems where D/H = (2.53 ± 0.04) × 105. In order to reduce the BBN calculation uncertainty, a measurement of the 2H(p,γ)3He cross section in the energy range 10-300 keV with a 3% accuracy is thus desirable. Thanks to the low background of the underground Gran Sasso Laboratories, and to the experience accumulated in more than twenty years of scientific activity, LUNA (Laboratory for Underground Nuclear Astrophysics) planned to measure the 2H(p,γ)3He fusion cross section at the BBN energy range in 2015-2016. A feasibility test of the measurement has been recently performed at LUNA. In this paper, the results obtained will be shown. Possible cosmological outcomes from the future LUNA data will be also discussed.

  10. Elastic and inelastic scattering of alpha particles from /sup 40,44/Ca over a broad range of energies and angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbar, T.; Gregoire, G.; Paic, G.

    1978-09-01

    Angular distributions for ..cap alpha.. particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3/sup -/ collective state of /sup 40/Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculatedmore » elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3/sup -/ state of /sup 40/Ca are presented.« less

  11. Emulsion chamber observations of primary cosmic-ray electrons in the energy range 30-1000 GeV

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Taira, T.; Aizu, E.; Hiraiwa, H.; Kobayashi, T.; Niu, K.; Ohta, I.; Golden, R. L.; Koss, T. A.

    1980-01-01

    The results of a series of emulsion exposures, beginning in Japan in 1968 and continued in the U.S. since 1975, which have yielded a total balloon-altitude exposure of 98,700 sq m sr s, are presented. The data are discussed in terms of several models of cosmic-ray propagation. Interpreted in terms of the energy-dependent leaky-box model, the spectrum results suggest a galactic electron residence time of 1.0(+2.0, -0.5) x 10 to the 7th yr, which is consistent with results from Be-10 observations. Finally, the possibility that departures from smooth power law behavior in the spectrum due to individual nearby sources will be observable in the energy range above 1 TeV is discussed.

  12. Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment

    NASA Astrophysics Data System (ADS)

    Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank

    2018-06-01

    Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with  >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in  ‑1.2  ±  1.2 mm (‑0.5%  ±  0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant

  13. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    DOE PAGES

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; ...

    2017-02-21

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. Here, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by constructionmore » captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. This approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.« less

  14. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.

    2017-03-01

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.

  15. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGES

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  16. Phase diagrams and free-energy landscapes for model spin-crossover materials with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-11-01

    We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.

  17. Wake loss and energy spread factor of the LEReC Booster cavity caused by short range wake field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Binping; Blaskiewicz, Michael; Fedotov, Alexei

    LEReC project uses a DC photoemission gun with multi-alkali (CsK 2Sb or NaK 2Sb) cathode [1]. To get 24 mm “flat-top” distribution, 32 Gaussian laser bunches with 0.6 mm rms length are stacked together with 0.75 mm distance [2]. In this case one cannot simply use a 1 cm rms length Gaussian/step/delta bunch for short range wake field simulation since a 0.6 mm bunch contains frequency much higher than the 1 cm bunch. A short range wake field simulation was done using CST Particle Studio™ with 0.6 mm rms Gaussian bunch at the speed of light, and this result wasmore » compared with the result for 1 cm rms Gaussian bunch in Figure 1, from where one notice that the wake potential for the 0.6 mm bunch is ~10 times higher than that of the 1 cm bunch. The wake potential of the 0.6 mm bunch, as well as the charge distribution, was then “shift and stack” every 0.75 mm, the normalized results are shown in Figure 2. The wake loss factor (WLF) is the integration of the product of wake potential and normalized bunch charge, and the energy spread factor (ESF) is the rms deviation from the average energy loss. It is calculated by summing the weighted squares of the differences and taking the square root of the sum. These two factors were then divided by β 2 for 1.6 MV beam energy. The wake loss factor is at 0.86 V/pC and energy spread factor is at 0.54 V/pC rms. With 100 pC electron bunch, the energy spread inter-bunch is 54 V rms.« less

  18. Photon interaction study of organic nonlinear optical materials in the energy range 122-1330 keV

    NASA Astrophysics Data System (ADS)

    Awasarmol, Vishal V.; Gaikwad, Dhammajyot K.; Raut, Siddheshwar D.; Pawar, Pravina P.

    2017-01-01

    In the present study, the mass attenuation coefficient (μm) of six organic nonlinear optical materials has been calculated in the energy range 122-1330 keV and compared with the obtained values from the WinXCOM program. It is found that there is a good agreement between theoretical and experimental values (<3%). The linear attenuation coefficients (μ) total atomic cross section (σt, a), and total electronic cross section (σt, el) have also been calculated from the obtained μm values and their variations with photon energy have been plotted. From the present work, it is observed that the variation of obtained values of μm, μ, σt, a, and σt, el strongly depends on the photon energy and decreases or increases due to chemical composition and density of the sample. All the samples have been studied extensively using transmission method with a view to utilize the material for radiation dosimetry. Investigated samples are good material for radiation dosimetry due their low effective atomic number. The mass attenuation coefficient (μm), linear attenuation coefficients (μ), total atomic cross section (σt, a), total electronic cross section (σt, el), effective atomic numbers (Zeff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa, en) of all sample materials have been carried out and transmission curves have been plotted. The transmission curve shows that the variation of all sample materials decreases with increasing photon energy.

  19. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Performance of Geant4 in simulating semiconductor particle detector response in the energy range below 1 MeV

    NASA Astrophysics Data System (ADS)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Kraev, I. S.; Knecht, A.; Porobić, T.; Zákoucký, D.; Severijns, N.

    2013-11-01

    Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range between 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to β particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data.

  1. Accuracy of parameterized proton range models; A comparison

    NASA Astrophysics Data System (ADS)

    Pettersen, H. E. S.; Chaar, M.; Meric, I.; Odland, O. H.; Sølie, J. R.; Röhrich, D.

    2018-03-01

    An accurate calculation of proton ranges in phantoms or detector geometries is crucial for decision making in proton therapy and proton imaging. To this end, several parameterizations of the range-energy relationship exist, with different levels of complexity and accuracy. In this study we compare the accuracy of four different parameterizations models for proton range in water: Two analytical models derived from the Bethe equation, and two different interpolation schemes applied to range-energy tables. In conclusion, a spline interpolation scheme yields the highest reproduction accuracy, while the shape of the energy loss-curve is best reproduced with the differentiated Bragg-Kleeman equation.

  2. First measurement of the VESUVIO neutron spectrum in the 30-80 MeV energy range using a Proton Recoil Telescope technique

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Tardocchi, M.; Croci, G.; Frost, C.; Giacomelli, L.; Grosso, G.; Hjalmarsson, A.; Rebai, M.; Rhodes, N. J.; Schooneveld, E. M.; Gorini, G.

    2013-11-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV < En < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum.

  3. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  4. Calculation of SF6-/SF6 and Cl-/CFCl3 electron attachment cross sections in the energy range 0-100 meV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1982-01-01

    Electron attachment cross sections for the processes SF6-/SF6 and Cl-/CFCl3 are calculated in a local theory using a model in which diatomic-like potential energy curves for the normal modes are constructed from available spectroscopic data. Thermally populated vibrational and rotational levels are included. Good agreement is found with experimental cross sections in the energy range 5-100 meV for a particular choice of potential energy curve parameters.

  5. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  6. /sup 13/C(/sup 6/Li,t)/sup 16/O reaction in the 20--32 MeV incident energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunsolo, A.; Foti, A.; Imme, G.

    1980-03-01

    The reaction /sup 13/C(/sup 6/Li,t)/sup 16/O has been studied in the 20 --32 MeV incident energy range. Angular distributions have been measured at E/sup 6/Li/=28 MeV; the data have been analyzed in terms of Hauser-Feshbach and exact finite range distorted-wave Born-approximation theories. The extracted relative /sup 3/He spectroscopic strengths show a satisfactory independence from the optical model parameters.

  7. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  8. Energy dependence of elliptic flow over a large pseudorapidity range in Au+Au collisions at the BNL relativistic heavy ion collider.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  9. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjue, S. K. L., E-mail: sjue@lanl.gov; Mariam, F. G.; Merrill, F. E.

    2016-01-15

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the imagemore » plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  10. The pulse profile of the Crab pulsar in the energy range 45 keV-1.2 MeV

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Fishman, G. J.

    1983-01-01

    The Crab Nebula pulsar (PSR 0531+21) is the best studied and most intense of the nontransient X-ray pulsars. However, since its spectrum drops rapidly with energy, a well-resolved pulse profile has not previously been obtained above 200 keV. In the hard X-ray and low-energy gamma-ray region, an accurate pulse profile can be obtained with a balloon-borne detector of sufficient area during a single transit of the source. A new measurement of the pulse profile of PSR 0531+21 in the energy range above 45 keV obtained with a large-area scintillation detector array is reported. The detector array was flown on a balloon launched from Palestine, Texas on 1980 October 6, reaching a float altitude 4.5 g/sq cm at 0230 UTC October 7. The primary objective of the experiment was to detect and study weak gamma-ray bursts.

  11. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  12. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  13. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  14. Improved Range Estimation Model for Three-Dimensional (3D) Range Gated Reconstruction

    PubMed Central

    Chua, Sing Yee; Guo, Ningqun; Tan, Ching Seong; Wang, Xin

    2017-01-01

    Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works. PMID:28872589

  15. Energy transport in the three coupled α-polypeptide chains of collagen molecule with long-range interactions effect

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Ben-Bolie, G. H.; Kofané, T. C.

    2015-06-01

    The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.

  16. Subwavelength dielectric nanorod chains for energy transfer in the visible range.

    PubMed

    Li, Dongdong; Zhang, Jingjing; Yan, Changchun; Xu, Zhengji; Zhang, Dao Hua

    2017-10-15

    We report a new type of energy transfer device, formed by a dielectric nanorod array embedded in a silver slab. Such dielectric chain structures allow surface plasmon wave guiding with large propagation length and highly suppressed crosstalk between adjacent transmission channels. The simulation results show that our proposed design can be used to enhance the energy transfer along the waveguide-like dielectric nanorod chains via coupled plasmons, where the energy spreading is effectively suppressed, and superior imaging properties in terms of resolution and energy transfer distance can be achieved.

  17. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalenko, V. N.; Vechernin, V. V.

    2016-01-22

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity.more » In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.« less

  18. Systematic measurement of lineal energy distributions for proton, He and Si ion beams over a wide energy range using a wall-less tissue equivalent proportional counter.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi

    2012-01-01

    The frequency distributions of the lineal energy, y, of 160 MeV proton, 150 MeV/u helium, and 490 MeV/u silicon ion beams were measured using a wall-less tissue equivalent proportional counter (TEPC) with a site size of 0.72 µm. The measured frequency distributions of y as well as the dose-mean values, y(D), agree with the corresponding data calculated using the microdosimetric function of the particle and heavy ion transport code system PHITS. The values of y(D) increase in the range of LET below ~10 keV µm(-1) because of discrete energy deposition by delta rays, while the relation is reversed above ~10 keV µm(-1) as the amount of energy escaping via delta rays increases. These results indicate that care should be taken with the difference between y(D) and LET when estimating the ionization density that usually relates to relative biological effectiveness (RBE) of energetic heavy ions.

  19. Electrostatic Spectrograph with a Wide Range of Simultaneously Recorded Energies Composed of Two Coaxial Electrodes with Closed End Faces and a Discrete Combined External Electrode

    NASA Astrophysics Data System (ADS)

    Fishkova, T. Ya.

    2018-01-01

    An optimal set of geometric and electrical parameters of a high-aperture electrostatic charged-particle spectrograph with a range of simultaneously recorded energies of E/ E min = 1-50 has been found by computer simulation, which is especially important for the energy analysis of charged particles during fast processes in various materials. The spectrograph consists of two coaxial electrodes with end faces closed by flat electrodes. The external electrode with a conical-cylindrical form is cut into parts with potentials that increase linearly, except for the last cylindrical part, which is electrically connected to the rear end electrode. The internal cylindrical electrode and the front end electrode are grounded. In the entire energy range, the system is sharply focused on the internal cylindrical electrode, which provides an energy resolution of no worse than 3 × 10-3.

  20. Degeneration of Bethe subalgebras in the Yangian of gl_n

    NASA Astrophysics Data System (ADS)

    Ilin, Aleksei; Rybnikov, Leonid

    2018-04-01

    We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.

  1. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  2. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Mohammad, E-mail: mohammadhasan786@gmail.com; Ghatak, Ananya, E-mail: gananya04@gmail.com; Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com

    2014-05-15

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights:more » •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.« less

  3. Daily energy expenditures of free-ranging Common Loon (Gavia immer) chicks

    USGS Publications Warehouse

    Fournier, F.; Karasov, W.H.; Meyer, M.W.; Kenow, K.P.

    2002-01-01

    We measured the daily energy expenditure of free-living Common Loon (Gavia immer) chicks using doubly labeled water (DLW). Average body mass of chicks during the DLW measures were 425, 1,052, and 1,963 g for 10 day-old (n = 5), 21 day-old (n = 6), and 35 day-old (n = 6) chicks, respectively, and their mean daily energy expenditures (DEE) were 686 kJ day−1, 768 kJ day−1, and 1,935 kJ day−1, respectively. Variation in DEE was not due solely to variation in body mass, but age was also a significant factor independent of body mass. Energy deposited in new tissue was calculated from age-dependent tissue energy contents and measured gains in body mass, which were 51, 54, and 33 g day−1 from the youngest to oldest chicks. Metabolizable energy (the sum of DEE and tissue energy) was used to estimate feeding rates of loon chicks and their exposure to mercury in the fish they consume. We calculated that loon chicks in Wisconsin consumed between 162 and 383 g wet mass of fish per day (depending on age), corresponding to intakes of mercury of 16–192 μg day−1.

  4. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell.

    PubMed

    Hong, Xinguo; Newville, Matthew; Prakapenka, Vitali B; Rivers, Mark L; Sutton, Stephen R

    2009-07-01

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/-3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  5. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X.; Newville, M.; Prakapenka, V.B.

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over amore » small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.« less

  6. Assessing the role of Hartree-Fock exchange, correlation energy and long range corrections in evaluating ionization potential, and electron affinity in density functional theory.

    PubMed

    Vikramaditya, Talapunur; Lin, Shiang-Tai

    2017-06-05

    Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Calculation of absorption parameters for selected narcotic drugs in the energy range from 1 keV to 100 GeV

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Kaçal, Mustafa Recep; Akdemir, Fatma; Araz, Aslı; Turhan, Mehmet Fatih; Durak, Rıdvan

    2017-04-01

    The total mass attenuation coefficients (μ/ρ), total molecular (σt,m), atomic (σt,a) and electronic (σt,e) cross sections, effective atomic numbers (Zeff) and electron density (NE) were computed in the wide energy region from 1 keV to 100 GeV for the selected narcotic drugs such as morphine, heroin, cocaine, ecstasy and cannabis. The changes of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE with photon energy for total photon interaction shows the dominance of different interaction process in different energy regions. The variations of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE depend on the atom number, photon energy and chemical composition of narcotic drugs. Also, these parameters change with number of elements, the range of atomic numbers in narcotic drugs and total molecular weight. These data can be useful in the field of forensic sciences and medical diagnostic.

  8. Increased fuel standards among broad range of energy options

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During simpler times, the mention of the word 'cafe' might have primarily conjured up images of sidewalk coffee and tea bars along Paris' Champs-Elysees. However, with today's concerns about energy needs, CAFE or Corporate Average Fuel Economy standards for automobile fuel efficiency is a hot topic.On August 2, the U.S. House of Representa tives passed an energy bill rejecting a proposal to substantially increase CAFE standards for increasingly popular sport utility vehicles (SUVs). The proposal, which would have required SUVs to increase their current fleet average of 20.5 miles per gallon (mpg) to 27.5 mpg by 2007, to equal the current passenger car fleet requirement, was shelved for a requirement to more modestly raise mpgs by cutting total SUV gasoline usage by 5 billion gallons over 6 years.

  9. Study of the 2H(p,γ)3He reaction in the Big Bang Nucleosynthesis energy range at LUNA

    NASA Astrophysics Data System (ADS)

    Mossa, Viviana

    2018-01-01

    Deuterium is the first nucleus produced in the Universe, whose accumulation marks the beginning of the so called Big Bang Nucleosynthesis (BBN). Its primordial abundance is very sensitive to some cosmological parameters like the baryon density and the number of the neutrino families. Presently the main obstacle to an accurate theoretical deuterium abundance evaluation is due to the poor knowledge of the 2H(p,γ)3He cross section at BBN energies. The aim of the present work is to describe the experimental approach proposed by the LUNA collaboration, whose goal is to measure, with unprecedented precision, the total and the differential cross section of the reaction in the 30 < Ec.m. [keV] < 300 energy range.

  10. Effective-range function methods for charged particle collisions

    NASA Astrophysics Data System (ADS)

    Gaspard, David; Sparenberg, Jean-Marc

    2018-04-01

    Different versions of the effective-range function method for charged particle collisions are studied and compared. In addition, a novel derivation of the standard effective-range function is presented from the analysis of Coulomb wave functions in the complex plane of the energy. The recently proposed effective-range function denoted as Δℓ [Ramírez Suárez and Sparenberg, Phys. Rev. C 96, 034601 (2017), 10.1103/PhysRevC.96.034601] and an earlier variant [Hamilton et al., Nucl. Phys. B 60, 443 (1973), 10.1016/0550-3213(73)90193-4] are related to the standard function. The potential interest of Δℓ for the study of low-energy cross sections and weakly bound states is discussed in the framework of the proton-proton S10 collision. The resonant state of the proton-proton collision is successfully computed from the extrapolation of Δℓ instead of the standard function. It is shown that interpolating Δℓ can lead to useful extrapolation to negative energies, provided scattering data are known below one nuclear Rydberg energy (12.5 keV for the proton-proton system). This property is due to the connection between Δℓ and the effective-range function by Hamilton et al. that is discussed in detail. Nevertheless, such extrapolations to negative energies should be used with caution because Δℓ is not analytic at zero energy. The expected analytic properties of the main functions are verified in the complex energy plane by graphical color-based representations.

  11. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus.

    PubMed

    Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A

    2011-08-01

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  12. Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ahmet

    2017-09-01

    Monte Carlo is a statistical technique for obtaining numerical solutions to physical or mathematical problems that are analytically impractical, if not impossible, to solve. For charged particle transport problems, it presents many advantages over deterministic methods since such problems require a realistic description of the problem geometry, as well as detailed tracking of every source particle. Thus, MC can be considered as a powerful alternative to the well-known Bethe-Bloche equation where an equation with various corrections is used to obtain stopping power and ranges of electrons, positrons, protons, alphas, etc. This study presents how a stochastic method such as MC can be utilized to obtain certain quantities of practical importance related to charged particle transport. Sample simulation geometries were formed for water medium where disk shaped thin detectors were employed to compute average values of absorbed dose and flux at specific distances. For each detector cell, these quantities were utilized to evaluate the values of the range and the stopping power, as well as the shape of Bragg curve, for mono-energetic point source pencil beams of protons. The results were found to be ±2% compared to the data from the NIST compilation. It is safe to conclude that this approach can be extended to determine dosimetric quantities for other media, energies and charged particle types.

  13. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.

    PubMed

    Marques, J M C; Pais, A A C C; Abreu, P E

    2012-02-05

    The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.

  14. MEASUREMENTS OF σ(e+e-→ μ±μ∓) IN THE ENERGY RANGE 1.2-3.0 GeV

    NASA Astrophysics Data System (ADS)

    Alles-Borelli, V.; Bernardini, M.; Bollini, D.; Giusti, P.; Massam, T.; Monari, L.; Palmonari, F.; Valenti, G.; Zichichi, A.

    The analysis of 1466 events of the type e+e-→ μ±μ∓ in the time-like range from 1.44 to 9.00 GeV2, shows that the absolute value of the cross-section and its energy dependence follow QED expectations within (± 3.2%) and (± 1.2%), respectively.

  15. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  16. On a coherent investigation of the spectrum of cosmic rays in the energy range of 1014 - 1018 eV with KASCADE and KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Schoo, S.; Apel, W. D.; Arteaga-Velázquez, J. C.; Beck, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-08-01

    The KASCADE experiment and its extension KASCADE-Grande have significantly contributed to the current knowledge about the energy spectrum and composition of cosmic rays (CRs) with energies between the knee and the ankle. However, the data of both experiments were analysed separately, although Grande used the muon information of the KASCADE-array. A coherent analysis based on the combined data of both arrays is expected to profit from reconstructed shower observables with even higher accuracy compared to the stand-alone analyses. In addition, a significantly larger fiducial area is available. The aim of this analysis is to obtain the spectrum and composition of CRs in the range from 1014 to 1018 eV with a larger number of events and further reduced uncertainties using one unique reconstruction procedure for the entire energy range. This contribution will describe the motivation, the concept, and the current status of the combined analysis.

  17. Study of Primary Cosmic Ray Electrons In Energy Range 10^11 - 10^13 Ev By Pamela Instrument.

    NASA Astrophysics Data System (ADS)

    Voronov, S.; Pamela Collaboration

    The main goal of the magnetic spectrometer PAMELA is the study of antiparticle fluxes with energy up to 300 GeV in cosmic rays on board satellite. A modification of instrument was done by introducing of neutron detector. This device was placed under imaging calorimeter and bottom scintillator counter. It consists of two layers of 36 3He gas counters enveloped by a polyethylene moderator. The neutron detector gives additional possibility to identify the antiprotons going in aperture of spectrome- ter and generating the nuclear cascade in tungsten plates of calorimeter. This shower is followed by big number of neutrons in contrast to electromagnetic one caused by elec- tron or positron. From other side the combination of the imaging calorimeter, bottom scintillator and neutron detector constitute the independent instrument with large field of view which gives the possibility to measure the electron-positron cosmic ray com- ponent in energy range 1011-1013 eV with a rejection factor of order 10-4 regarding to nuclear one.

  18. Effects of chiral three-nucleon forces on 4He-nucleus scattering in a wide range of incident energies

    NASA Astrophysics Data System (ADS)

    Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio

    2018-02-01

    An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.

  19. The ideal Kolmogorov inertial range and constant

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1993-01-01

    The energy transfer statistics measured in numerically simulated flows are found to be nearly self-similar for wavenumbers in the inertial range. Using the measured self-similar form, an 'ideal' energy transfer function and the corresponding energy flux rate were deduced. From this flux rate, the Kolmogorov constant was calculated to be 1.5, in excellent agreement with experiments.

  20. Analytical dependence of effective atomic number on the elemental composition of matter and radiation energy in the range 10-1000 keV

    NASA Astrophysics Data System (ADS)

    Eritenko, A. N.; Tsvetiansky, A. L.; Polev, A. A.

    2018-01-01

    In the present paper, a universal analytical dependence of effective atomic number on the composition of matter and radiation energy is proposed. This enables one to consider the case of a strong difference in the elemental composition with respect to their atomic numbers over a wide energy range. The contribution of photoelectric absorption and incoherent and coherent scattering during the interaction between radiation and matter is considered. For energy values over 40 keV, the contribution of coherent scattering does not exceed approximately 10% that can be neglected at a further consideration. The effective atomic numbers calculated on the basis of the proposed relationships are compared to the results of calculations based on other methods considered by different authors on the basis of experimental and tabulated data on mass and atomic attenuation coefficients. The examination is carried out for both single-element (e.g., 6C, 14Si, 28Cu, 56Ba, and 82Pb) and multi-element materials. Calculations are performed for W1-xCux alloys (x = 0.35; x = 0.4), PbO, ther moluminescent dosimetry compounds (56Ba, 48Cd, 41Sr, 20Ca, 12Mg, and 11Na), and SO4 in a wide energy range. A case with radiation energy between the K- and L1-absorption edges is considered for 82Pb, 74W, 56Ba, 48Cd, and 38Sr. This enables to substantially simplify the calculation of the atomic number and will be useful in technical and scientific fields related to the interaction between X-ray/gamma radiation and matter.

  1. Comparison of Martian meteorites with earth composition: Study of effective atomic numbers in the energy range 1 keV-100 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ün, Adem, E-mail: ademun25@yahoo.com; Han, İbrahim, E-mail: ibrahimhan25@hotmail.com; Ün, Mümine, E-mail: mun@agri.edu.tr

    2016-04-18

    Effective atomic (Z{sub eff}) and electron numbers (N{sub eff}) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Z{sub eff} and N{sub eff} for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  2. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.

    PubMed

    Saberi, Saeed; Farré, Pau; Cuvier, Olivier; Emberly, Eldon

    2015-05-23

    A variety of DNA binding proteins are involved in regulating and shaping the packing of chromatin. They aid the formation of loops in the DNA that function to isolate different structural domains. A recent experimental technique, Hi-C, provides a method for determining the frequency of such looping between all distant parts of the genome. Given that the binding locations of many chromatin associated proteins have also been measured, it has been possible to make estimates for their influence on the long-range interactions as measured by Hi-C. However, a challenge in this analysis is the predominance of non-specific contacts that mask out the specific interactions of interest. We show that transforming the Hi-C contact frequencies into free energies gives a natural method for separating out the distance dependent non-specific interactions. In particular we apply Principal Component Analysis (PCA) to the transformed free energy matrix to identify the dominant modes of interaction. PCA identifies systematic effects as well as high frequency spatial noise in the Hi-C data which can be filtered out. Thus it can be used as a data driven approach for normalizing Hi-C data. We assess this PCA based normalization approach, along with several other normalization schemes, by fitting the transformed Hi-C data using a pairwise interaction model that takes as input the known locations of bound chromatin factors. The result of fitting is a set of predictions for the coupling energies between the various chromatin factors and their effect on the energetics of looping. We show that the quality of the fit can be used as a means to determine how much PCA filtering should be applied to the Hi-C data. We find that the different normalizations of the Hi-C data vary in the quality of fit to the pairwise interaction model. PCA filtering can improve the fit, and the predicted coupling energies lead to biologically meaningful insights for how various chromatin bound factors influence the

  3. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.

    PubMed

    Rohrdanz, Mary A; Martins, Katie M; Herbert, John M

    2009-02-07

    We introduce a hybrid density functional that asymptotically incorporates full Hartree-Fock exchange, based on the long-range-corrected exchange-hole model of Henderson et al. [J. Chem. Phys. 128, 194105 (2008)]. The performance of this functional, for ground-state properties and for vertical excitation energies within time-dependent density functional theory, is systematically evaluated, and optimal values are determined for the range-separation parameter, omega, and for the fraction of short-range Hartree-Fock exchange. We denote the new functional as LRC-omegaPBEh, since it reduces to the standard PBEh hybrid functional (also known as PBE0 or PBE1PBE) for a certain choice of its two parameters. Upon optimization of these parameters against a set of ground- and excited-state benchmarks, the LRC-omegaPBEh functional fulfills three important requirements: (i) It outperforms the PBEh hybrid functional for ground-state atomization energies and reaction barrier heights; (ii) it yields statistical errors comparable to PBEh for valence excitation energies in both small and medium-sized molecules; and (iii) its performance for charge-transfer excitations is comparable to its performance for valence excitations. LRC-omegaPBEh, with the parameters determined herein, is the first density functional that satisfies all three criteria. Notably, short-range Hartree-Fock exchange appears to be necessary in order to obtain accurate ground-state properties and vertical excitation energies using the same value of omega.

  4. Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV

    NASA Astrophysics Data System (ADS)

    Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.

    2017-11-01

    Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.

  5. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.

    2016-02-01

    The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.

  6. Range-Separated Brueckner Coupled Cluster Doubles Theory

    NASA Astrophysics Data System (ADS)

    Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-04-01

    We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.

  7. The frequency range of TMJ sounds.

    PubMed

    Widmalm, S E; Williams, W J; Djurdjanovic, D; McKay, D C

    2003-04-01

    There are conflicting opinions about the frequency range of temporomandibular joint (TMJ) sounds. Some authors claim that the upper limit is about 650 Hz. The aim was to test the hypothesis that TMJ sounds may contain frequencies well above 650 Hz but that significant amounts of their energy are lost if the vibrations are recorded using contact sensors and/or travel far through the head tissues. Time-frequency distributions of 172 TMJ clickings (three subjects) were compared between recordings with one microphone in the ear canal and a skin contact transducer above the clicking joint and between recordings from two microphones, one in each ear canal. The energy peaks of the clickings recorded with a microphone in the ear canal on the clicking side were often well above 650 Hz and always in a significantly higher area (range 117-1922 Hz, P < 0.05 or lower) than in recordings obtained with contact sensors (range 47-375 Hz) or in microphone recordings from the opposite ear canal (range 141-703 Hz). Future studies are required to establish normative frequency range values of TMJ sounds but need methods also capable of recording the high frequency vibrations.

  8. Variable range hopping in ZnO films

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Ghosh, Subhasis

    2018-04-01

    We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.

  9. HESS J1427-608: An Unusual Hard, Unbroken Gamma-Ray Spectrum in a Very Wide Energy Range

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Lei; Xin, Yu-Liang; Liao, Neng-Hui; Yuan, Qiang; Gao, Wei-Hong; He, Hao-Ning; Fan, Yi-Zhong; Liu, Si-Ming

    2017-01-01

    We report the detection of a GeV γ-ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ-ray source HESS J1427-608 with the Pass 8 data recorded by the Fermi Large Area Telescope. The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3-500 GeV, and the measured flux connects smoothly with that of HESS J1427-608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV to TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427-608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427-608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ-rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs) and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ-ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.

  10. Report to Congress on Sustainable Ranges, 2013

    DTIC Science & Technology

    2013-04-01

    to renewable energy, particularly wind turbines offshore. DoD and BOEM have assessed over 2,000 lease blocks on the Atlantic Outer Continental Shelf... wind turbines off-range affects the accuracy and reliability of radar systems used on the range. An emerging challenge on ranges is the increased...adversely affect range operations. Concerns are site-specific but often include wind turbine impacts to radar, the impact of excessive lighting on

  11. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-07

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  12. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    NASA Astrophysics Data System (ADS)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  13. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  14. Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies

    DOE PAGES

    Khachatryan, Vardan

    2015-01-26

    The measurements of two-particle angular correlations between an identified strange hadron ( K 0 s or Λ/Λ - ) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 nb -1, were collected at a nucleon–nucleon center-of-mass energy (√s NN ) of 5.02 TeV with the CMS detector at the LHC. Our results are compared to semi-peripheral PbPb collision data at √s NN , covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are usedmore » to extract the second-order (v 2) and third-order (v 3) anisotropy harmonics of K 0 s and Λ/Λ - particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb events, a clear particle species dependence of v 2 and v 3 is observed. For p T<2 GeV, the v 2 and v 3 values of K 0 s particles are larger than those of particles at the same p T. This splitting effect between two particle species is found to be stronger in pPb than in PbPb collisions in the same multiplicity range. When divided by the number of constituent quarks and compared at the same transverse kinetic energy per quark, both v 2 and v 3 for K 0 s particles are observed to be consistent with those for Λ/Λ - particles at the 10% level in pPb collisions. This consistency extends over a wide range of particle transverse kinetic energy and event multiplicities.« less

  15. Theoretical and practical aspects of application of a low-energy electromagnetic radiation of the extremely high-frequency range in medicine

    NASA Astrophysics Data System (ADS)

    Lyapina, Elena P.; Chesnokov, Igor A.; Bushuev, Nikolay A.; Kuzyutkina, Svetlana E.; Shuldjakov, Andrey A.

    2006-02-01

    The questions concerning the mechanism of action of a low-energy electromagnetic radiation of the extremely high frequency range (EMR EHF) are considered. Also the features of biological effects are considered in their application as therapeutic actions. As an example the advantages of EHF treatment of patients with chronic brucellosis are shown, the algorithm of a choice of the scheme of treatment using EMR EHF is offered.

  16. Using the Moist Static Energy Budget to Understand Storm Track Shifts across a Range of Timescales

    NASA Astrophysics Data System (ADS)

    Barpanda, P.; Shaw, T.

    2017-12-01

    Storm tracks shift meridionally in response to forcing across a range of time scales. Here we formulate a moist static energy (MSE) framework for storm track position and use it to understand storm track shifts in response to seasonal insolation, El Niño minus La Niña conditions, and direct (increased CO2 over land) and indirect (increased sea surface temperature) effects of increased CO2. Two methods (linearized Taylor series and imposed MSE flux divergence) are developed to quantify storm track shifts and decompose them into contributions from net energy (MSE input to the atmosphere minus atmospheric storage) and MSE flux divergence by the mean meridional circulation and stationary eddies. Net energy is not a dominant contribution across the time scales considered. The stationary eddy contribution dominates the storm-track shift in response to seasonal insolation, El Niño minus La Niña conditions, and CO2 direct effect in the Northern Hemisphere, whereas the mean meridional circulation contribution dominates the shift in response to CO2 indirect effect during northern winter and in the Southern Hemisphere during May and October. Overall, the MSE framework shows the seasonal storm-track shift in the Northern Hemisphere is connected to the stationary eddy MSE flux evolution. Furthermore, the equatorward storm-track shift during northern winter in response to El Niño minus La Niña conditions involves a different regime than the poleward shift in response to increased CO2 even though the tropical upper troposphere warms in both cases.

  17. A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Lin, Chun-Hung

    2017-03-01

    Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for

  18. Report to Congress on Sustainable Ranges

    DTIC Science & Technology

    2014-02-01

    with the potential to impact Army training and testing. These energy initiatives include wind turbines , new energy corridors for gas/oil pipelines and...the capability to effectively test and train inside the range boundaries. This is particularly evident when the Doppler Effect from wind turbines ...adverse impacts from wind turbine installation. These “High Risk of Adverse Impact Zones” will provide developers with advance information on

  19. Neutron-Induced Fission Cross Sections of 240Pu, 243Am, and natW in the Energy Range 1-200 MeV

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Donets, A. Yu.; Dushin, V. N.; Fomichev, A. V.; Fomichev, A. A.; Haight, R. C.; Shcherbakov, O. A.; Soloviev, S. M.; Tuboltsev, Yu. V.; Vorobyev, A. S.

    2005-05-01

    A long-range research program devoted to measurements of neutron-induced fission cross-sections of actinides and stable isotopes is under way at the GNEIS facility. By now the new series of experiments for measurements of fission cross-section ratios relative to 235U has been completed for 240Pu, 243Am, and natW in a wide energy range of incident neutrons from 1 MeV to 200 MeV in the frame of the ISTC Project ♯1971. The measurements were performed using the multiplate ionization chamber and time-of-flight techniques. The results obtained in this measurement are presented in comparison with the other data.

  20. Non-Rutherford cross-sections for alpha elastic scattering off Z = 28-38 elements in the energy range up to 10 MeV

    NASA Astrophysics Data System (ADS)

    Gurbich, A. F.; Bokhovko, M. V.

    2018-04-01

    The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.

  1. Electron attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies.

    PubMed

    Mauracher, Andreas; Schöbel, Harald; Ferreira da Silva, Filipe; Edtbauer, Achim; Mitterdorfer, Christian; Denifl, Stephan; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul

    2009-10-01

    Electron attachment to the explosive trinitrotoluene (TNT) embedded in Helium droplets (TNT@He) generates the non-decomposed complexes (TNT)(n)(-), but no fragment ions in the entire energy range 0-12 eV. This strongly contrasts the behavior of single TNT molecules in the gas phase at ambient temperatures, where electron capture leads to a variety of different fragmentation products via different dissociative electron attachment (DEA) reactions. Single TNT molecules decompose by attachment of an electron at virtually no extra energy reflecting the explosive nature of the compound. The complete freezing of dissociation intermediates in TNT embedded in the droplet is explained by the particular mechanisms of DEA in nitrobenzenes, which is characterized by complex rearrangement processes in the transient negative ion (TNI) prior to decomposition. These mechanisms provide the condition for effective energy withdrawal from the TNI into the dissipative environment thereby completely suppressing its decomposition.

  2. Biochemical Foundations of Health and Energy Conservation in Hibernating Free-ranging Subadult Brown Bear Ursus arctos*

    PubMed Central

    Hansen, Rasmus; Sønderkær, Mads; Arinell, Karin; Swenson, Jon E.; Revsbech, Inge G.

    2016-01-01

    Brown bears (Ursus arctos) hibernate for 5–7 months without eating, drinking, urinating, and defecating at a metabolic rate of only 25% of the summer activity rate. Nonetheless, they emerge healthy and alert in spring. We quantified the biochemical adaptations for hibernation by comparing the proteome, metabolome, and hematological features of blood from hibernating and active free-ranging subadult brown bears with a focus on conservation of health and energy. We found that total plasma protein concentration increased during hibernation, even though the concentrations of most individual plasma proteins decreased, as did the white blood cell types. Strikingly, antimicrobial defense proteins increased in concentration. Central functions in hibernation involving the coagulation response and protease inhibition, as well as lipid transport and metabolism, were upheld by increased levels of very few key or broad specificity proteins. The changes in coagulation factor levels matched the changes in activity measurements. A dramatic 45-fold increase in sex hormone-binding globulin levels during hibernation draws, for the first time, attention to its significant but unknown role in maintaining hibernation physiology. We propose that energy for the costly protein synthesis is reduced by three mechanisms as follows: (i) dehydration, which increases protein concentration without de novo synthesis; (ii) reduced protein degradation rates due to a 6 °C reduction in body temperature and decreased protease activity; and (iii) a marked redistribution of energy resources only increasing de novo synthesis of a few key proteins. The comprehensive global data identified novel biochemical strategies for bear adaptations to the extreme condition of hibernation and have implications for our understanding of physiology in general. PMID:27609515

  3. Functional importance of short-range binding and long-range solvent interactions in helical antifreeze peptides.

    PubMed

    Ebbinghaus, Simon; Meister, Konrad; Prigozhin, Maxim B; Devries, Arthur L; Havenith, Martina; Dzubiella, Joachim; Gruebele, Martin

    2012-07-18

    Short-range ice binding and long-range solvent perturbation both have been implicated in the activity of antifreeze proteins and antifreeze glycoproteins. We study these two mechanisms for activity of winter flounder antifreeze peptide. Four mutants are characterized by freezing point hysteresis (activity), circular dichroism (secondary structure), Förster resonance energy transfer (end-to-end rigidity), molecular dynamics simulation (structure), and terahertz spectroscopy (long-range solvent perturbation). Our results show that the short-range model is sufficient to explain the activity of our mutants, but the long-range model provides a necessary condition for activity: the most active peptides in our data set all have an extended dynamical hydration shell. It appears that antifreeze proteins and antifreeze glycoproteins have reached different evolutionary solutions to the antifreeze problem, utilizing either a few precisely positioned OH groups or a large quantity of OH groups for ice binding, assisted by long-range solvent perturbation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiao-Lei; Gao, Wei-Hong; Xin, Yu-Liang

    2017-01-20

    We report the detection of a GeV γ -ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ -ray source HESS J1427−608 with the Pass 8 data recorded by the Fermi Large Area Telescope . The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3–500 GeV, and the measured flux connects smoothly with that of HESS J1427−608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV tomore » TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427−608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427−608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ -rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs) and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ -ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.« less

  5. Compton spectroscopy in the diagnostic x-ray energy range. I. Spectrometer design.

    PubMed

    Matscheko, G; Carlsson, G A

    1989-02-01

    The optimal design of a Compton spectrometer for measuring photon energy spectra from x-ray tubes in a clinical laboratory is analysed. The demands are: (i) coherent and multiple scattering distort the measurements and must be avoided; (ii) the measuring time should be as short as possible to avoid unnecessary wear on the x-ray tube; and (iii) the impairment in energy resolution due to the scattering geometry should be kept minimal. A scattering angle of 90 degrees is advocated. Scatterers (of low-atomic-number material) in the shape of long circular rods (0.5-4 mm diameter, 20-40 mm long) are preferable to scattering foils. Use of a short focus-scatterer distance (approximately 200 mm) is to be preferred compared to using a large detector area (greater than or equal to 4 mm diameter) in order to establish a sufficiently high count rate in the detector. Short focal distances and a 90 degrees scattering angle are advantages in measuring energy spectra in the gantry of CT machines where the available space is limited. To limit the geometrical energy broadening to less than 1 keV, the spread in scattering angles of registered photons must not exceed 1-2 degrees for incident photon energies of 100-150 keV.

  6. An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    NASA Technical Reports Server (NTRS)

    Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.

    1985-01-01

    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.

  7. Measurement of the e+e-→KSKLπ0 cross section in the energy range √{s }=1.3 -2.0 GeV

    NASA Astrophysics Data System (ADS)

    Achasov, M. N.; Aulchenko, V. M.; Barnyakov, A. Yu.; Beloborodov, K. I.; Berdyugin, A. V.; Berkaev, D. E.; Bogdanchikov, A. G.; Botov, A. A.; Dimova, T. V.; Druzhinin, V. P.; Golubev, V. B.; Kardapoltsev, L. V.; Kasaev, A. S.; Kharlamov, A. G.; Kirpotin, A. N.; Koop, I. A.; Korneev, L. A.; Korol, A. A.; Kovrizhin, D. P.; Koshuba, S. V.; Kupich, A. S.; Melnikova, N. A.; Martin, K. A.; Obrazovsky, A. E.; Otboev, A. V.; Pakhtusova, E. V.; Pugachev, K. V.; Rogovsky, Yu. A.; Senchenko, A. I.; Serednyakov, S. I.; Silagadze, Z. K.; Shatunov, Yu. M.; Shtol, D. A.; Shwartz, D. B.; Surin, I. K.; Usov, Yu. V.; Vasiljev, A. V.

    2018-02-01

    The e+e-→KSKLπ0 cross section is measured in the center-of-mass energy range √{s }=1.3 - 2.0 GeV . The analysis is based on the data sample with an integrated luminosity of 33.5 pb-1 collected with the SND detector at the VEPP-2000 e+e- collider.

  8. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.

    2016-08-01

    Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.

  9. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1977-01-01

    To observe the medium energy component of the intense galactic center gamma-ray emission, two balloon flights of a medium energy gamma-ray spark chamber telescope were flown in Brazil in 1975. The results indicate the emission is higher than previously thought and above the predictions of a theoretical model proposed.

  10. Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range

    NASA Astrophysics Data System (ADS)

    Gaines, J. L.; Wittmayer, F. J.

    1986-08-01

    The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

  11. Energy deposition processes in biological tissue: nonthermal biohazards seem unlikely in the ultra-high frequency range.

    PubMed

    Pickard, W F; Moros, E G

    2001-02-01

    The prospects of ultra high frequency (UHF, 300--3000 MHz) irradiation producing a nonthermal bioeffect are considered theoretically and found to be small. First, a general formula is derived within the framework of macroscopic electrodynamics for the specific absorption rate of microwaves in a biological tissue; this involves the complex Poynting vector, the mass density of the medium, the angular frequency of the electromagnetic field, and the three complex electromagnetic constitutive parameters of the medium. In the frequency ranges used for cellular telephony and personal communication systems, this model predicts that the chief physical loss mechanism will be ionic conduction, with increasingly important contributions from dielectric relaxation as the frequency rises. However, even in a magnetite unit cell within a magnetosome the deposition rate should not exceed 1/10 k(B)T per second. This supports previous arguments for the improbability of biological effects at UHF frequencies unless a mechanism can be found for accumulating energy over time and space and focussing it. Second, three possible nonthermal accumulation mechanisms are then considered and shown to be unlikely: (i) multiphoton absorption processes; (ii) direct electric field effects on ions; (iii) cooperative effects and/or coherent excitations. Finally, it is concluded that the rate of energy deposition from a typical field and within a typical tissue is so small as to make unlikely any significant nonthermal biological effect. Copyright 2001 Wiley-Liss, Inc.

  12. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  13. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  14. Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator

    NASA Astrophysics Data System (ADS)

    Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko

    2017-07-01

    In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.

  15. Single photoionization of the Zn II ion in the photon energy range 17.5-90.0 eV: experiment and theory

    NASA Astrophysics Data System (ADS)

    Hinojosa, G.; Davis, V. T.; Covington, A. M.; Thompson, J. S.; Kilcoyne, A. L. D.; Antillón, A.; Hernández, E. M.; Calabrese, D.; Morales-Mori, A.; Juárez, A. M.; Windelius, O.; McLaughlin, B. M.

    2017-10-01

    Measurements of the single-photoionization cross-section of Cu-like Zn+ ions are reported in the energy (wavelength) range 17.5 eV (708 Å) to 90 eV (138 Å). The measurements on this trans-Fe element were performed at the Advanced Light Source synchrotron radiation facility in Berkeley, California at a photon energy resolution of 17 meV using the photon-ion merged-beams end-station. Below 30 eV, the spectrum is dominated by excitation autoionizing resonance states. The experimental results are compared with large-scale photoionization cross-section calculations performed using a Dirac Coulomb R-matrix approximation. Comparisons are made with previous experimental studies, resonance states are identified and contributions from metastable states of Zn+ are determined.

  16. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnet, T.; Denis-Petit, D.; Gobet, F.

    2013-01-15

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, amore » model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.« less

  17. Comparison of the NIST and BIPM Air-Kerma Standards for Measurements in the Low-Energy X-Ray Range

    PubMed Central

    Burns, D. T.; Lamperti, P.; O’Brien, M.

    1999-01-01

    A direct comparison was made between the air-kerma standards used for the measurement of low-energy x rays at the National Institute of Standards and Technology (NIST) and the Bureau International des Poids et Mesures (BIPM). The comparison was carried out at the BIPM using the BIPM reference beam qualities in the range from 10 kV to 100 kV. The results show the standards to be in agreement to around 0.5 % at reference beam qualities up to 50 kV and at 100 kV. The result at the 80 kV beam quality is less favorable, with agreement at the 1 % level.

  18. Basis convergence of range-separated density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less

  19. Basis convergence of range-separated density-functional theory.

    PubMed

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

  20. Investigation of EBT2 and EBT3 films for proton dosimetry in the 4-20 MeV energy range.

    PubMed

    Reinhardt, S; Würl, M; Greubel, C; Humble, N; Wilkens, J J; Hillbrand, M; Mairani, A; Assmann, W; Parodi, K

    2015-03-01

    Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4-20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose-response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth-dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.

  1. Range parameters of slow gold ions implanted into light targets

    NASA Astrophysics Data System (ADS)

    Kuzmin, V.

    2009-08-01

    Interatomic potentials for Au-C, Au-B, Au-N and Au-Si systems, calculated with density-functional theory (DFT) methods, have been used to evaluate the range parameters of gold in B, Si, BN and SiC films at energies of about 10-400 keV. The potentials have been employed to describe scattering angles of a projectile and to calculate the nuclear stopping powers and the higher moments of the energy, transferred in single collisions. Utilizing these findings the range parameters have been obtained by the standard transport theory and by Monte-Carlo simulations. A velocity proportional electronic stopping was included into the consideration. The approach developed corresponds completely to the standard classical scheme of the calculation of range parameters. Good agreement between the computed range parameters and available experimental data allow us to conclude that correlation effects between the nuclear and electronic stopping can be neglected in the energy range in question. Moreover, it is proven for the first time that the model by Grande, et al. [P.L. Grande, F.C. Zawislak, D. Fink, M. Behar, Nucl. Instr. and Meth. B 61 (1991) 282], which relies on the importance of correlation effects, contains inherent contradictions.

  2. Extending the Dynamic Range of a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Estee, Justin; S πRIT Collaboration

    2017-09-01

    The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.

  3. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.

    PubMed

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-21

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  4. Characterization of nanoDot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40-300 kVp energy range.

    PubMed

    Poirier, Yannick; Kuznetsova, Svetlana; Villarreal-Barajas, Jose Eduardo

    2018-01-01

    To investigate empirically the energy dependence of the detector response of two in vivo luminescence detectors, LiF:Mg,Cu,P (MCP-N) high-sensitivity TLDs and Al 2 O 3 :C OSLDs, in the 40-300-kVp energy range in the context of in vivo surface dose measurement. As these detectors become more prevalent in clinical and preclinical in vivo measurements, knowledge of the variation in the empirical dependence of the measured response of these detectors across a wide spectrum of beam qualities is important. We characterized a large range of beam qualities of three different kilovoltage x-ray units: an Xstrahl 300 Orthovoltage unit, a Precision x-Ray X-RAD 320ix biological irradiator, and a Varian On-Board Imaging x-ray unit. The dose to water was measured in air according to the AAPM's Task Group 61 protocol. The OSLDs and TLDs were irradiated under reference conditions on the surface of a water phantom to provide full backscatter conditions. To assess the change in sensitivity in the long term, we separated the in vivo dosimeters of each type into an experimental and a reference group. The experimental dosimeters were irradiated using the kilovoltage x-ray units at each beam quality used in this investigation, while the reference group received a constant 10 cGy irradiation at 6 MV from a Varian clinical linear accelerator. The individual calibration of each detector was verified in cycles where both groups received a 10 cGy irradiation at 6 MV. The nanoDot OSLDs were highly reproducible, with ±1.5% variation in response following >40 measurement cycles. The TLDs lost ~20% of their signal sensitivity over the course of the study. The relative light output per unit dose to water of the MCP-N TLDs did not vary with beam quality for beam qualities with effective energies <50 keV (~150 kVp/6 mm Al). At higher energies, they showed a reduced (~75-85%) light output per unit dose relative to 6 MV x rays. The nanoDot OSLDs exhibited a very strong (120

  5. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    NASA Technical Reports Server (NTRS)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  6. Underground Tourist Routes in the Context of Sustainable Development / Podziemne Trasy Turystyczne W Procesie Zrównoważonego Rozwoju

    NASA Astrophysics Data System (ADS)

    Wieja, Tomasz; Chmura, Janusz; Bartos, Maciej

    2015-09-01

    residence patterns that have emerged over centuries. Well - preserved and protected excavations are the relics of the past, are part of the cultural heritage and become a rich source of knowledge about history. Ostanie lata przyniosły rozwój skoncentrowany na maksymalizacji zysków ekonomicznych i politycznych. Doprowadził on do kryzysów środowiskowych, społecznych, a nawet gospodarczych. Przyczyniło się to do powstania koncepcji zrównoważonego rozwoju. Jest to dążenie do poprawy jakości życia przy zachowaniu równości społecznej, bioróżnorodności i bogactwa zasobów naturalnych. Bardziej świadome i aktywne społeczeństwo ma do odegrania kluczową rolę w zrównoważonym rozwoju. Z jednej strony jest regulatorem wpływu gospodarki na środowisko, zaś z drugiej kapitał społeczny zapewnia ciągłość wizji rozwoju i planowania jej realizacji. Ochrona zabytkowych podziemi bardzo dobrze wpisuje sie w proces zrównoważonego rozwoju. Zachowane i udostępnione zabytkowe podziemia są częścią dziedzictwa kulturowego i mają za zadanie zachowania wartości historycznych, kulturowych, przyrodniczych, a także użytkowych. W ostatnich latach obserwuje się intensywny rozwój działań zmierzających do wykorzystania zabytkowych podziemi do celów użytkowych. Problem rewitalizacji zabytkowych podziemi, a więc przywracanie "do życia" starych wyrobisk, jest bardzo skomplikowanym procesem przywracania pierwotnych funkcji nieczynnym lub zdegradowanym obiektom podziemnym. W procesie projektowania bardzo ważne są działania zgodnie z procesami naturalnymi obowiązującymi w przyrodzie. Zabezpieczane i adaptowane podziemia muszą w rezultacie działań człowieka być "przyjazne" i akceptowane przez użytkowników, będąc elementem ochrony dziedzictwa kulturowego człowieka, a więc częścią składową zrównoważonego rozwoju. Problemy techniczne występujące przy adaptacji zabytkowych podziemi są nie tylko praktycznym zastosowaniem nauki, ale tak

  7. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  8. SU-E-CAMPUS-J-06: The Impact of CT-Scan Energy On Range Uncertainty in Proton Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, K; Li, H; Zhao, T

    2014-06-15

    Purpose: To investigate the impact of tube potential (kVp) on the CTnumber (HU) to proton stopping power ratio (PSPR) conversion table; the range uncertainty and the dosimetric change introduced by a mismatch in kVp between the CT and the HU to PSPR table used to calculate dose are analyzed. Methods: A CIRS CT-ED phantom was scanned with a Philips Brilliance 64-slice scanner under 90kVp and 120kVp tube potentials. Two HU to PSPR curves were then created. Using Eclipse (Varian) a treatment plan was created for a single beam in a water phantom (HU=0) passing through a wedge-shaped heterogeneity (HU=1488). Themore » dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in range (the distal 90% isodose line) relative to a distal structure was recorded as a function of heterogeneity thickness in the beam. To show the dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table, we repeated this procedure using a clinical plan comparing DVH data. Results: The HU to PSPR tables diverge for low-density bone and higher density structures. In the phantom plan, the divergence of the tables results in a change in range of ~1mm per cm of bone in the beam path for the HU used. For the clinical plan, a mismatch in kVp showed a 28% increase in mean dose to the brainstem along with a 10% increase in maximum dose to the brainstem center. Conclusion: A mismatch in kVp between the CT and the HU to PSPR table can introduce significant uncertainty in the proton beam range. For dense bone, the measured range uncertainty is about 1mm per cm of bone in the beam. CT-scan energy verification should be employed, particularly when high-density media is in the proton beam path.« less

  9. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device

    PubMed Central

    Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-01-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118

  10. Cross sections of projectile-like fragments in the reaction {sup 19}F+{sup 66}Zn in the beam energy range of 3-6 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.

    2009-06-15

    Angular distributions of projectile-like fragments (PLFs) have been measured in the reaction {sup 19}F+{sup 66}Zn at E{sub lab}=61,82,92, and 109 MeV to understand their formation in the low energy domain (< or approx. 7 MeV nucleon). In this energy range, maximum angular momentum 'l{sub max}' in the reaction is lower than or close to the critical or limiting angular momentum for complete fusion 'l{sub lim}(CF).' The sum-rule model was modified to explain the cross sections of PLFs in the present study. For the first time, the modified sum-rule model, with a competition of incomplete fusion (ICF) reaction with complete fusionmore » below l{sub lim}(CF) reasonably reproduced the cross sections of PLFs in the beam energy range of the present study. It was observed that the cross sections of lighter PLFs fall more rapidly with decreasing beam energy compared to those of heavier PLFs, suggesting a change in the reaction mechanism from heavier to lighter PLFs. Transfer probabilities for peripheral collisions were calculated within the framework of a semiclassical formalism. The parameters of the nuclear potential required for the calculation of transfer probability were obtained by fitting the elastic scattering data measured in the present work. Calculated transfer probabilities were significantly lower compared to the corresponding experimental values, suggesting a significant overlap of the projectile and the target nuclei in incomplete fusion reactions. The present analysis showed that the overlap of the projectile and the target nuclei increases with increasing mass transfer at a given beam energy and for a given PLF, overlap increases with increasing beam energy.« less

  11. Re-interpretation of the ERMINE-V experiment validation of fission product integral cross section in the fast energy range

    NASA Astrophysics Data System (ADS)

    Ros, Paul; Leconte, Pierre; Blaise, Patrick; Naymeh, Laurent

    2017-09-01

    The current knowledge of nuclear data in the fast neutron energy range is not as good as in the thermal range, resulting in larger propagated uncertainties in integral quantities such as critical masses or reactivity effects. This situation makes it difficult to get the full benefit from recent advances in modeling and simulation. Zero power facilities such as the French ZPR MINERVE have already demonstrated that they can contribute to significantly reduce those uncertainties thanks to dedicated experiments. Historically, MINERVE has been mainly dedicated to thermal spectrum studies. However, experiments involving fast-thermal coupled cores were also performed in MINERVE as part of the ERMINE program, in order to improve nuclear data in fast spectra for the two French SFRs: PHENIX and SUPERPHENIX. Some of those experiments have been recently revisited. In particular, a full characterization of ZONA-1 and ZONA-3, two different cores loaded in the ERMINE V campaign, has been done, with much attention paid to possible sources of errors. It includes detailed geometric descriptions, energy profiles of the direct and adjoint fluxes and spectral indices obtained thanks to Monte Carlo calculations and compared to a reference fast core configuration. Sample oscillation experiments of separated fission products such as 103Rh or 99Tc, which were part of the ERMINE V program, have been simulated using recently-developed options in the TRIPOLI-4 code and compared to the experimental values. The present paper describes the corresponding results. The findings motivate in-depth studies for designing optimized coupled-core conditions in ZEPHYR, a new ZPR which will replace MINERVE and will provide integral data to meet the needs of Gen-III and Gen-IV reactors.

  12. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  13. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  14. New Results on Short-Range Correlations in Nuclei

    DOE PAGES

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...

    2017-10-12

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  15. New Results on Short-Range Correlations in Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  16. Extrapolation of scattering data to the negative-energy region. II. Applicability of effective range functions within an exactly solvable model

    DOE PAGES

    Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.; ...

    2018-02-05

    A problem of analytical continuation of scattering data to the negative-energy region to obtain information about bound states is discussed within an exactly solvable potential model. This work is continuation of the previous one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)]. The goal of this paper is to determine the most effective way of analytic continuation for different systems. The d + α and α + 12C systems are considered and, for comparison, an effective-range function approach and a recently suggested Δ method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev.more » C 96, 034601 (2017).] are applied. We conclude that the method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light systems with small values of the Coulomb parameter the effective-range function method might be preferable.« less

  17. Extrapolation of scattering data to the negative-energy region. II. Applicability of effective range functions within an exactly solvable model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.

    A problem of analytical continuation of scattering data to the negative-energy region to obtain information about bound states is discussed within an exactly solvable potential model. This work is continuation of the previous one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)]. The goal of this paper is to determine the most effective way of analytic continuation for different systems. The d + α and α + 12C systems are considered and, for comparison, an effective-range function approach and a recently suggested Δ method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev.more » C 96, 034601 (2017).] are applied. We conclude that the method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light systems with small values of the Coulomb parameter the effective-range function method might be preferable.« less

  18. Compact range for variable-zone measurements

    DOEpatents

    Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

    1987-02-27

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

  19. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  20. Range Extension Opportunities While Heating a Battery Electric Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason A; Rugh, John P; Titov, Eugene V

    The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination (1). The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermalmore » storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 degrees C to -18 degrees C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.« less

  1. Many-body localization in a long range XXZ model with random-field

    NASA Astrophysics Data System (ADS)

    Li, Bo

    2016-12-01

    Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.

  2. Single Folding Optical Potential for Elastic Scattering of Protons from 14N and 16O in a Wide Range of Energies

    NASA Astrophysics Data System (ADS)

    Hamada, Sh.

    2018-03-01

    Available experimental data for protons elastically scattered from 14N and 16O target nuclei are reanalyzed within the framework of single folding optical potential (SFOP) model. In this model, the real part of the potential is derived on the basis of single folding potential. The renormalization factor N r is extracted for the two aforementioned nuclear systems. Theoretical calculations fairly reproduce the experimental data in the whole angular range. Energy dependence of real and imaginary volume integrals as well as reaction cross sections are discussed.

  3. Activation cross-sections of proton induced reactions on natHf in the 38-65 MeV energy range: Production of 172Lu and of 169Yb

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Ignatyuk, A. V.

    2018-07-01

    In the frame of a systematical study of light ion induced nuclear reactions on hafnium, activation cross sections for proton induced reactions were investigated. Excitation functions were measured in the 38-65 MeV energy range for the natHf(p,xn)180g,177,176,175,173Ta, natHf(p,x)180m,179m,175,173,172,171Hf, 177g,173,172,171,170,169Lu and natHf(p,x)169Yb reactions by using the activation method, combining stacked foil irradiation and off line gamma ray spectroscopy. The experimental results are compared with earlier results in the overlapping energy range, and with the theoretical predictions of the ALICE IPPE and EMPIRE theoretical codes and of the TALYS code reported in the TENDL-2015 and TENDL-2017 libraries. The production routes of 172Lu (and its parent 172Hf) and of 169Yb are reviewed.

  4. OVERLAP OF HEARING AND VOICING RANGES IN SINGING

    PubMed Central

    Hunter, Eric J.; Titze, Ingo R.

    2008-01-01

    Frequency and intensity ranges in voice production by trained and untrained singers were superimposed onto the average normal human hearing range. The vocal output for all subjects was shown both in Voice Range Profiles and Spectral Level Profiles. Trained singers took greater advantage of the dynamic range of the auditory system with harmonic energy (45% of the hearing range compared to 38% for untrained vocalists). This difference seemed to come from the trained singers ablily to exploit the most sensitive part of the hearing range (around 3 to 4 kHz) through the use of the singer’s formant. The trained vocalists’ average maximum third-octave spectral band level was 95 dB SPL, compared to 80 dB SPL for untrained. PMID:19844607

  5. OVERLAP OF HEARING AND VOICING RANGES IN SINGING.

    PubMed

    Hunter, Eric J; Titze, Ingo R

    2005-04-01

    Frequency and intensity ranges in voice production by trained and untrained singers were superimposed onto the average normal human hearing range. The vocal output for all subjects was shown both in Voice Range Profiles and Spectral Level Profiles. Trained singers took greater advantage of the dynamic range of the auditory system with harmonic energy (45% of the hearing range compared to 38% for untrained vocalists). This difference seemed to come from the trained singers ablily to exploit the most sensitive part of the hearing range (around 3 to 4 kHz) through the use of the singer's formant. The trained vocalists' average maximum third-octave spectral band level was 95 dB SPL, compared to 80 dB SPL for untrained.

  6. Long-range-corrected Rung 3.5 density functional approximations

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.

    2018-03-01

    Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.

  7. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range

    DTIC Science & Technology

    2009-02-01

    range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always

  8. Impact of Short-Range Forces on Defect Production from High-Energy Collisions

    DOE PAGES

    Stoller, R. E.; Tamm, A.; Béland, L. K.; ...

    2016-04-25

    Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. The distance between two colliding atoms can approach 0.05 nm during these collisions. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. But, there is nomore » accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.« less

  9. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    USGS Publications Warehouse

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  10. Landau parameters for energy density functionals generated by local finite-range pseudopotentials

    NASA Astrophysics Data System (ADS)

    Idini, A.; Bennaceur, K.; Dobaczewski, J.

    2017-06-01

    In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N2LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nuclear chart.

  11. Application of a range of turbulence energy models to the determination of M4 tidal current profiles

    NASA Astrophysics Data System (ADS)

    Xing, Jiuxing; Davies, Alan M.

    1996-04-01

    A fully nonlinear, three-dimensional hydrodynamic model of the Irish Sea, using a range of turbulence energy sub-models, is used to examine the influence of the turbulence closure method upon the vertical variation of the current profile of the fundamental and higher harmonics of the tide in the region. Computed tidal current profiles are compared with previous calculations using a spectral model with eddy viscosity related to the flow field. The model has a sufficiently fine grid to resolve the advection terms, in particular the advection of turbulence and momentum. Calculations show that the advection of turbulence energy does not have a significant influence upon the current profile of either the fundamental or higher harmonic of the tide, although the advection of momentum is important in the region of headlands. The simplification of the advective terms by only including them in their vertically integrated form does not appear to make a significant difference to current profiles, but does reduce the computational effort by a significant amount. Computed current profiles both for the fundamental and the higher harmonic determined with a prognostic equation for turbulence and an algebraic mixing length formula, are as accurate as those determined with a two prognostic equation model (the so called q2- q2l model), provided the mixing length is specified correctly. A simple, flow-dependent eddy viscosity with a parabolic variation of viscosity also performs equally well.

  12. Impact of range shifter material on proton pencil beam spot characteristics.

    PubMed

    Shen, Jiajian; Liu, Wei; Anand, Aman; Stoker, Joshua B; Ding, Xiaoning; Fatyga, Mirek; Herman, Michael G; Bues, Martin

    2015-03-01

    To quantitatively investigate the effect of range shifter materials on single-spot characteristics of a proton pencil beam. An analytic approximation for multiple Coulomb scattering ("differential Moliere" formula) was adopted to calculate spot sizes of proton spot scanning beams impinging on a range shifter. The calculations cover a range of delivery parameters: six range shifter materials (acrylonitrile butadiene styrene, Lexan, Lucite, polyethylene, polystyrene, and wax) and water as reference material, proton beam energies ranging from 75 to 200 MeV, range shifter thicknesses of 4.5 and 7.0 g/cm(2), and range shifter positions from 5 to 50 cm. The analytic method was validated by comparing calculation results with the measurements reported in the literature. Relative to a water-equivalent reference, the spot size distal to a wax or polyethylene range shifter is 15% smaller, while the spot size distal to a range shifter made of Lexan or Lucite is about 6% smaller. The relative spot size variations are nearly independent of beam energy and range shifter thickness and decrease with smaller air gaps. Among the six material investigated, wax and polyethylene are desirable range shifter materials when the spot size is kept small. Lexan and Lucite are the desirable range shifter materials when the scattering power is kept similar to water.

  13. Measurement of the total spectrum of electrons and positrons in the energy range of 300–1500 GeV in the PAMELA experiment with the aid of a sampling calorimeter and a neutron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karelin, A. V., E-mail: karelin@hotbox.ru; Voronov, S. A.; Galper, A. M.

    2015-03-15

    A method based on the use of a sampling calorimeter was developed for measuring the total energy spectrum of electrons and positrons from high-energy cosmic rays in the PAMELA satellite-borne experiment. This made it possible to extend the range of energies accessible to measurements by the magnetic system of the PAMELA spectrometer. Themethod involves a procedure for selecting electrons on the basis of features of a secondary-particle shower in the calorimeter. The results obtained by measuring the total spectrum of cosmic-ray electrons and positrons in the energy range of 300–1500 GeV by the method in question are presented on themore » basis of data accumulated over a period spanning 2006 and 2013.« less

  14. Tonopah test range - outpost of Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L.

    Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the centralmore » focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.« less

  15. Long-range Prethermal Time Crystals

    NASA Astrophysics Data System (ADS)

    Machado, Francisco; Meyer, Gregory D.; Else, Dominic; Olund, Christopher; Nayak, Chetan; Yao, Norman Y.

    2017-04-01

    Driven quantum systems have recently enabled the realization of a discrete time crystal - an intrinsically out-of-equilibrium phase of matter. One strategy to prevent the drive-induced, runaway heating of the time crystal is the presence of strong disorder leading to many-body localization (MBL). A more elegant, disorder-less approach is simply to work in the prethermal regime where time crystalline order can persist to exponentially long times. One key difference between prethermal and MBL time crystals is that the former is prohibited from existing in one dimensional systems with short-range interactions. In this work, we demonstrate that long-range interactions can stabilize a one dimensional prethermal time crystal. By numerically studying the pre-thermal regime, we find evidence for a phase transition out of the time crystal as a function of increasing energy density. Finally, generalizations of previous analytical bounds for the heating time-scale of driven quantum systems to long-range interactions will also be discussed.

  16. 197Au(n ,2 n ) reaction cross section in the 15-21 MeV energy range

    NASA Astrophysics Data System (ADS)

    Kalamara, A.; Vlastou, R.; Kokkoris, M.; Nicolis, N. G.; Patronis, N.; Serris, M.; Michalopoulou, V.; Stamatopoulos, A.; Lagoyannis, A.; Harissopulos, S.

    2018-03-01

    The cross section of the 197Au(n ,2 n )196Au reaction has been determined at six energies ranging from 15.3-20.9 MeV by means of the activation technique, relative to the 27Al(n ,α )24Na reaction. Quasimonoenergetic neutron beams were produced via the 3H(d ,n )4He reaction at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR "Demokritos". After the irradiations, the induced γ -ray activity of the target and reference foils was measured with high-resolution HPGe detectors. The cross section for the high spin isomeric state (12-) was determined along with the sum of the ground (2-), the first (5+), and second (12-) isomeric states. Theoretical calculations were carried out with the codes empire 3.2.2 and talys 1.8. Optimum input parameters were chosen in such a way as to simultaneously reproduce several experimental reaction channel cross sections in a satisfactory way, namely the (n ,elastic ), (n ,2 n ), (n ,3 n ), (n ,p ), (n ,α ), and (n ,total) ones.

  17. Comprehensive analysis of proton range uncertainties related to stopping-power-ratio estimation using dual-energy CT imaging

    NASA Astrophysics Data System (ADS)

    Li, B.; Lee, H. C.; Duan, X.; Shen, C.; Zhou, L.; Jia, X.; Yang, M.

    2017-09-01

    The dual-energy CT-based (DECT) approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation as compared to the conventional stoichiometric calibration approach. The objective of this study was to analyze the factors contributing to uncertainty in SPR estimation using the DECT-based approach and to derive a comprehensive estimate of the range uncertainty associated with SPR estimation in treatment planning. Two state-of-the-art DECT-based methods were selected and implemented on a Siemens SOMATOM Force DECT scanner. The uncertainties were first divided into five independent categories. The uncertainty associated with each category was estimated for lung, soft and bone tissues separately. A single composite uncertainty estimate was eventually determined for three tumor sites (lung, prostate and head-and-neck) by weighting the relative proportion of each tissue group for that specific site. The uncertainties associated with the two selected DECT methods were found to be similar, therefore the following results applied to both methods. The overall uncertainty (1σ) in SPR estimation with the DECT-based approach was estimated to be 3.8%, 1.2% and 2.0% for lung, soft and bone tissues, respectively. The dominant factor contributing to uncertainty in the DECT approach was the imaging uncertainties, followed by the DECT modeling uncertainties. Our study showed that the DECT approach can reduce the overall range uncertainty to approximately 2.2% (2σ) in clinical scenarios, in contrast to the previously reported 1%.

  18. Long-range electron tunneling.

    PubMed

    Winkler, Jay R; Gray, Harry B

    2014-02-26

    Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.

  19. The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Armstrong, Richard L.

    It is now just over a decade since OPEC escalated the price of oil and triggered a flurry of alternate energy research and changing energy consumption practices. One scientific impact of that historical economic turning point was the launching of geothermal exploration programs of unprecedented intensity that focused on Cenozoic volcanic rocks and active, as well as fossil, geothermal systems. The good science that was already being done on such rocks and systems was both accelerated and diluted by government-funded research and energy industry exploration efforts. After the initial flood of detailed reports, gray literature, and documents interred in company files, we are observing the appearance of syntheses of just what happened and what progress was achieved during the geothermal boom (which has now wilted to the quiet development of a few most promising sites). Recent examples of geothermal synthesis literature include the book Geothermal Systems by L. Rybach and L.J. Muffler (John Wiley, New York, 1981), publications like Oregon Department of Geology and Mineral Industries Paper 15 by G.R. Priest et al. (1983) entitled “Geology and geothermal resources of central Oregon Cascade range,” and informative maps like the U.S. Geological Survey series summarizing late Cenozoic volcanic rock distribution and age (R.G. Luedke and R.L. Smith, maps 1-1091 A to D, 1979 to 1982), and state and regional geothermal resources maps (NOAA National Geophysical Data Center, 1977-1982). The book under review here is part of this second literature wave, a useful primary reference, collection of syntheses, and literature guide but certainly not unique.

  20. Long-range interacting systems in the unconstrained ensemble.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín; Campa, Alessandro; Casetti, Lapo; Ruffo, Stefano

    2017-01-01

    Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using the temperature, pressure, and chemical potential as control parameters. The unconstrained ensemble is the statistical ensemble describing completely open systems and the replica energy is the appropriate free energy for these control parameters from which the thermodynamics must be derived. It turns out that macroscopic systems with short-range interactions cannot attain equilibrium configurations in the unconstrained ensemble, since temperature, pressure, and chemical potential cannot be taken as a set of independent variables in this case. In contrast, we show that systems with long-range interactions can reach states of thermodynamic equilibrium in the unconstrained ensemble. To illustrate this fact, we consider a modification of the Thirring model and compare the unconstrained ensemble with the canonical and grand-canonical ones: The more the ensemble is constrained by fixing the volume or number of particles, the larger the space of parameters defining the equilibrium configurations.

  1. Neutron-19C scattering: Emergence of universal properties in a finite range potential

    NASA Astrophysics Data System (ADS)

    Shalchi, M. A.; Yamashita, M. T.; Hadizadeh, M. R.; Frederico, T.; Tomio, Lauro

    2017-01-01

    The low-energy properties of the elastic s-wave scattering for the n-19C are studied near the critical condition for the occurrence of an excited Efimov state in n-n-18C. It is established to which extent the universal scaling laws, strictly valid in the zero-range limit, survive when finite range potentials are considered. By fixing the two-neutrons separation energy in 20C with available experimental data, it is studied the scaling of the real (δ0R) and imaginary parts of the s-wave phase-shift with the variation of the n-18C binding energy. We obtain some universal characteristics given by the pole-position of kcot ⁡ (δ0R) and effective-range parameters. By increasing the n-18C binding energy, it was verified that the excited state of 20C goes to a virtual state, resembling the neutron-deuteron behavior in the triton. It is confirmed that the analytical structure of the unitary cut is not affected by the range of the potential or mass asymmetry of the three-body system.

  2. Toward total implantability using free-range resonant electrical energy delivery system: achieving untethered ventricular assist device operation over large distances.

    PubMed

    Waters, Benjamin; Sample, Alanson; Smith, Joshua; Bonde, Pramod

    2011-11-01

    Heart failure is a terminal disease with a very poor prognosis. Although the gold standard of treatment remains heart transplant, only a minority of patients can benefit from transplants. Another promising alternative is mechanical circulatory assistance using ventricular assist devices. The authors envision a completely implantable cardiac assist system affording tether-free mobility in an unrestricted space powered wirelessly by the innovative Free-Range Resonant Electrical Energy Device (FREE-D) system. Patients will have no power drivelines traversing the skin, and this system will allow power to be delivered over room distances and will eliminate trouble-prone wirings, bulky consoles, and replaceable batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  4. Range and Endurance Tradeoffs on Personal Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2016-01-01

    Rotorcraft design has always been a challenging tradeoff among overall size, capabilities, complexity, and other factors based on available technology and customer requirements. Advancements in propulsion, energy systems and other technologies have enabled new vehicles and missions; complementary advances in analysis methods and tools enable exploration of these enhanced vehicles and the evolving mission design space. A system study was performed to better understand the interdependency between vehicle design and propulsion system capabilities versus hover / loiter requirements and range capability. Three representative vertical lift vehicles were developed to explore the tradeoff in capability between hover efficiency versus range and endurance capability. The vehicles were a single-main rotor helicopter, a tilt rotor, and a vertical take-off and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew) and maximum range within one hour of flight (100-200 miles, depending on vehicle). Two types of propulsion and energy storage systems were used in this study. First was traditional hydrocarbon-fueled cycles (such as Otto, diesel or gas turbine cycles). Second was an all-electric system using electric motors, power management and distribution, assuming batteries for energy storage, with the possibility of hydrocarbon-fueled range extenders. The high power requirements for hover significantly reduced mission radius capability. Loiter was less power intensive, resulting in about 1/2 the equivalent mission radius penalty. With so many design variables, the VTOL aircraft has the potential to perform well for a variety of missions. This vehicle is a good candidate for additional study; component model development is also required to adequately assess performance over the design space of interest.

  5. Range and Endurance Tradeoffs on Personal Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2016-01-01

    Rotorcraft design has always been a challenging tradeoff among overall size, capabilities, complexity, and other factors based on available technology and customer requirements. Advancements in propulsion, energy systems and other technologies have enabled new vehicles and missions; complementary advances in analysis methods and tools enable exploration of these enhanced vehicles and the evolving mission design space. A system study was performed to better understand the interdependency between vehicle design and propulsion system capabilities versus hover loiter requirements and range capability. Three representative vertical lift vehicles were developed to explore the tradeoff in capability between hover efficiency versus range and endurance capability. The vehicles were a single-main rotor helicopter, a tilt rotor, and a vertical take-off and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew) and maximum range within one hour of flight (100-200 miles, depending on vehicle). Two types of propulsion and energy storage systems were used in this study. First was traditional hydrocarbon-fueled cycles (such as Otto, diesel or gas turbine cycles). Second was an all-electric system using electric motors, power management and distribution, assuming batteries for energy storage, with the possibility of hydrocarbon-fueled range extenders. The high power requirements for hover significantly reduced mission radius capability. Loiter was less power intensive, resulting in about 12 the equivalent mission radius penalty. With so many design variables, the VTOL aircraft has the potential to perform well for a variety of missions. This vehicle is a good candidate for additional study; component model development is also required to adequately assess performance over the design space of interest.

  6. The performance and relationship among range-separated schemes for density functional theory

    NASA Astrophysics Data System (ADS)

    Nguyen, Kiet A.; Day, Paul N.; Pachter, Ruth

    2011-08-01

    The performance and relationship among different range-separated (RS) hybrid functional schemes are examined using the Coulomb-attenuating method (CAM) with different values for the fractions of exact Hartree-Fock (HF) exchange (α), long-range HF (β), and a range-separation parameter (μ), where the cases of α + β = 1 and α + β = 0 were designated as CA and CA0, respectively. Attenuated PBE exchange-correlation functionals with α = 0.20 and μ = 0.20 (CA-PBE) and α = 0.25 and μ = 0.11 (CA0-PBE) are closely related to the LRC-ωPBEh and HSE functionals, respectively. Time-dependent density functional theory calculations were carried out for a number of classes of molecules with varying degrees of charge-transfer (CT) character to provide an assessment of the accuracy of excitation energies from the CA functionals and a number of other functionals with different exchange hole models. Functionals that provided reasonable estimates for local and short-range CT transitions were found to give large errors for long-range CT excitations. In contrast, functionals that afforded accurate long-range CT excitation energies significantly overestimated energies for short-range CT and local transitions. The effects of exchange hole models and parameters developed for RS functionals for CT excitations were analyzed in detail. The comparative analysis across compound classes provides a useful benchmark for CT excitations.

  7. Trojan horse measurement of the 10B(p ,α0)7Be cross section in the energy range from 3 keV to 2.2 MeV

    NASA Astrophysics Data System (ADS)

    Cvetinović, A.; Spitaleri, C.; Spartá, R.; Rapisarda, G. G.; Puglia, S. M. R.; La Cognata, M.; Cherubini, S.; Guardo, G. L.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Tumino, A.

    2018-06-01

    The 10B(p ,α0)7Be excitation function has been studied in a wide energy range, from 2.2 MeV down to astrophysical energies, reproducing the cross section above and below the Coulomb barrier in a single experiment. An optimized experimental setup ensured good energy resolution and for the first time a clear separation of α0 and α1 channels of the 10B+2H interaction has been achieved by applying the Trojan Horse method. An improved normalization of the Trojan Horse bare-nucleus astrophysical S (E )-factor to direct data was performed and a value of Ue=391 ±74 eV was obtained for the electron screening potential.

  8. Driving range estimation for electric vehicles based on driving condition identification and forecast

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Dai, Wei; Chen, Liao; Chen, Long; Wang, Limei

    2017-10-01

    With the impact of serious environmental pollution in our cities combined with the ongoing depletion of oil resources, electric vehicles are becoming highly favored as means of transport. Not only for the advantage of low noise, but for their high energy efficiency and zero pollution. The Power battery is used as the energy source of electric vehicles. However, it does currently still have a few shortcomings, noticeably the low energy density, with high costs and short cycle life results in limited mileage compared with conventional passenger vehicles. There is great difference in vehicle energy consumption rate under different environment and driving conditions. Estimation error of current driving range is relatively large due to without considering the effects of environmental temperature and driving conditions. The development of a driving range estimation method will have a great impact on the electric vehicles. A new driving range estimation model based on the combination of driving cycle identification and prediction is proposed and investigated. This model can effectively eliminate mileage errors and has good convergence with added robustness. Initially the identification of the driving cycle is based on Kernel Principal Component feature parameters and fuzzy C referring to clustering algorithm. Secondly, a fuzzy rule between the characteristic parameters and energy consumption is established under MATLAB/Simulink environment. Furthermore the Markov algorithm and BP(Back Propagation) neural network method is utilized to predict the future driving conditions to improve the accuracy of the remaining range estimation. Finally, driving range estimation method is carried out under the ECE 15 condition by using the rotary drum test bench, and the experimental results are compared with the estimation results. Results now show that the proposed driving range estimation method can not only estimate the remaining mileage, but also eliminate the fluctuation of the

  9. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  10. Nonempirical range-separated hybrid functionals for solids and molecules

    DOE PAGES

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Moreover, we show thatmore » these functionals may be generalized to finite systems.« less

  11. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.

    1978-01-01

    The general scope of study on thermal energy storage development includes: (1) survey and review possible concepts for storing thermal energy; (2) evaluate the potentials of the surveyed concepts for practical applications in the low and high temperature ranges for thermal control and storage, with particular emphasis on the low temperature range, and designate the most promising concepts; and (3) determine the nature of further studies required to expeditiously convert the most promising concept(s) to practical applications. Cryogenic temperature control by means of energy storage materials was also included.

  12. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  13. Inertial Range Dynamics in Boussinesq Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    1996-01-01

    L'vov and Falkovich have shown that the dimensionally possible inertial range scaling laws for Boussinesq turbulence, Kolmogorov and Bolgiano scaling, describe steady states with constant flux of kinetic energy and of entropy respectively. These scaling laws are treated as similarity solutions of the direct interaction approximation for Boussinesq turbulence. The Kolmogorov scaling solution corresponds to a weak perturbation by gravity of a state in which the temperature is a passive scalar but in which a source of temperature fluctuations exists. Using standard inertial range balances, the renormalized viscosity and conductivity, turbulent Prandtl number, and spectral scaling law constants are computed for Bolgiano scaling.

  14. Comparison of Physical Therapy with Energy Healing for Improving Range of Motion in Subjects with Restricted Shoulder Mobility

    PubMed Central

    Linda Baldwin, Ann; Schwartz, Gary E.

    2013-01-01

    Two forms of energy healing, Reconnective Healing (RH) and Reiki, which involve light or no touch, were tested for efficacy against physical therapy (PT) for increasing limited range of motion (ROM) of arm elevation in the scapular plane. Participants were assigned to one of 5 groups: PT, Reiki, RH, Sham Healing, or no treatment. Except for no treatment, participants were blinded as to grouping. Range of Motion, self-reported pain, and heart rate variability (HRV) were assessed before and after a 10-minute session. On average, for PT, Reiki, RH, Sham Healing, and no treatment, respectively, ROM increased by 12°, 20°, 26°, 0.6°, and 3° and pain score decreased by 11.5%, 10.1%, 23.9%, 15.4%, and 0%. Physical therapy, Reiki, and RH were more effective than Sham Healing for increasing ROM (PT: F = 8.05, P = 0.008; Reiki: F = 10.48, P = 0.003; RH: F = 30.19, P < 0.001). It is possible that this improvement was not mediated by myofascial release because the subjects' HRV did not change, suggesting no significant increase in vagal activity. Sham treatment significantly reduced pain compared to no treatment (F = 8.4, P = 0.007) and was just as effective as PT, Reiki, and RH. It is the authors' opinion that the accompanying pain relief is a placebo effect. PMID:24327820

  15. Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to waveform data recorded in regional distance range

    NASA Astrophysics Data System (ADS)

    Hara, T.

    2012-12-01

    Hara (2007. EPS, 59, 227 - 231) developed a method to determine earthquake magnitudes using durations of high frequency energy radiation and displacement amplitudes of tele-seismic events, and showed that it was applicable to huge events such as the 2004 Sumatra earthquake (Mw 9.0 after the Global CMT catalog. In the following the moment magnitude are from their estimates). Since Hara (2007) developed this method, we have been applying it to large shallow events, and confirmed its effectiveness. The results for several events are available at the web site of our institute (http://iisee.kenken.go.jp/quakes.htm). Also, Hara (2011. EPS, 63, 525-528) applied this method to the 2011 Off the Pacific Coast of Tohoku Earthquake (Mw 9.1), and showed that it worked well. In these applications, we used only waveform data recorded in the tele-seismic distance range (30 - 85 degrees). In order to have a magnitude estimate faster, it is necessary to analyze regional distance range data. In this study, we applied the method of Hara (2007) to waveform data recorded in the regional distance range (8 - 30 degrees) to investigate its applicability. We slightly modified the method by changing durations of times series used for analysis considering arrivals of high amplitude Rayleigh waves. We selected the six recent huge (their moment magnitude are equal to or greater than 8.5) earthquakes; they are the December 26, 2004 Sumatra (Mw 9.0), the March 28, 2005 Northern Sumatra (Mw 8,6), the September 12, 2007 Southern Sumatra (Mw 8.5), the February 27, 2010 Chile (Mw 8.8), the March 11, 2011 off the Pacific Coast of Tohoku (Mw 9.1), the April 11, 2012 off West Coast of Northern Sumatra (Mw 8.6). We retrieved BHZ channel waveform data from IRIS DMC. For the 2004 Sumatra and 2010 Chile earthquakes, only a few waveform data are available. The estimated magnitudes are 9.16, 8.66, 8.53, 8.83, 9.15, and 8.70, respectively. Also, the estimated high frequency energy radiation durations are

  16. Semi-empirical calculations for the ranges of fast ions in silicon

    NASA Astrophysics Data System (ADS)

    Belkova, Yu. A.; Teplova, Ya. A.

    2018-04-01

    A semi-empirical method is proposed to calculate the ion ranges in energy region E = 0.025-10 MeV/nucleon. The dependence of ion ranges on the projectile nuclear charge, mass and velocity is analysed. The calculations presented for ranges of ions with nuclear charges Z = 2-10 in silicon are compared with SRIM results and experimental data.

  17. Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range

    DTIC Science & Technology

    2003-02-01

    frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA

  18. Fragmentation of tetrahydrofuran molecules by H(+), C(+), and O(+) collisions at the incident energy range of 25-1000 eV.

    PubMed

    Wasowicz, Tomasz J; Pranszke, Bogusław

    2015-01-29

    We have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H(+), C(+), and O(+) cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4-9, carbon atoms in the 2p3s (1)P1, 2p4p (1)D2, and 2p4p (3)P states and vibrationally and rotationally excited diatomic CH fragments in the A(2)Δ and B(2)Σ(-) states. Fragmentation yields of these excited fragments have been measured as functions of the projectile energy (velocity). Our results show that the fragmentation mechanism depends on the projectile cations and is dominated by electron transfer from tetrahydrofuran molecules to cations. It has been additionally hypothesized that in the C(+)+THF collisions a [C-C4H8O](+) complex is formed prior to dissociation. The possible reaction channels involved in fragmentation of THF under the H(+), C(+), and O(+) cations impact are also discussed.

  19. Comparison of Stopping Power and Range Databases for Radiation Transport Study

    NASA Technical Reports Server (NTRS)

    Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.

    1997-01-01

    The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.

  20. Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states

    NASA Astrophysics Data System (ADS)

    Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel

    2017-11-01

    The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.

  1. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  2. National energy policy

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The efforts of the U.S. government to cope with the national energy crisis are discussed. The provisions of several legislative actions to implement the actions for energy conservation are examined. Immediate conservation measures and the long range planning for energy resources are reported.

  3. Energy Facts 1988.

    ERIC Educational Resources Information Center

    Energy Information Administration (DOE), Washington, DC.

    This booklet is a compilation of energy data providing a reference to a much broader range of domestic and international energy data. It is designed especially as a quick reference to major facts about energy. The data includes information for 1976 through 1988, except for international energy data, which is for 1977 through 1987. Graphs, charts,…

  4. Long range intermolecular interactions between the alkali diatomics Na2, K2, and NaK

    NASA Astrophysics Data System (ADS)

    Zemke, Warren T.; Byrd, Jason N.; Michels, H. Harvey; Montgomery, John A.; Stwalley, William C.

    2010-06-01

    Long range interactions between the ground state alkali diatomics Na2-Na2, K2-K2, Na2-K2, and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential ELR=Eelec+Edisp+Eind is shown to accurately represent the intermolecular interactions for these systems at long range.

  5. Applicability of modified effective-range theory to positron-atom and positron-molecule scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Karwasz, Grzegorz; Instytut Fizyki, Uniwersytet Mikolaja Kopernika, 87-100 Torun

    2006-06-15

    We analyze low-energy scattering of positrons on Ar atoms and N{sub 2} molecules using the modified effective-range theory (MERT) developed by O'Malley, et al. [J. Math. Phys. 2, 491 (1961)]. We use the formulation of MERT based on exact solutions of the Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes the experimental data well, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4-2 eV). We estimate the values of the s-wave scattering length and themore » effective range for e{sup +}-Ar and e{sup +}-N{sub 2} collisions.« less

  6. WATER SPOTTERS: Water, energy, isotopes and experiential learning in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Noone, D. C.; Berkelhammer, M. B.; Raudzens Bailey, A.; Buhr, S. M.; Smith, L. K.

    2011-12-01

    Providing students with tangible examples of the two-way interaction between human society and the climate system is a pressing challenge. Water is at the core of many issues in environmental change from local to global scales. In climate research, there are significant uncertainties in the role water plays in the climate system. "Water" can also act as a central theme that provides opportunities for science education at all levels. WATER SPOTTERS takes advantage of the prominent agricultural landscape of the region, which is a poignant example of how society influences the climate through irrigation, evaporation/transpiration and run-off and whose productivity is influenced by the climate system. Both natural grasslands and alpine ecosystems in the surrounding regions serve as examples of the native landscape. The centerpiece of this project is a 300m tower that is fully implemented with gas sampling lines and micrometeorological equipment to study the energy and water budgets of the region. Middle Schools that surround this site, many of which exist in visual contact with the tall tower, are provided with meteorological stations, which provide rainfall rates, temperature, humidity and radiation data. In coordination with the St Vrain Valley School District MESA (Math Engineering Science Achievement) program, students collect rain water samples that are analyzed and used as a core component of the research goals. The students use the weather stations as a way to directly explore their local climatology and provide data that is needed in research. We present an overview of the curriculum goals and associated physical infrastructure designed for middle school students in the Colorado Front Range to explore their local water cycle using water isotopes. The fixed infrastructure at the schools and tall tower are supplemented by mobile instruments such as an automated precipitation collector and snowflake photography system, which both fulfill science needs and provide

  7. ACCURATE MEASUREMENT OF THE ENERGY DEPENDENCE OF THE PROCESS e+ + e- → e± + e∓, IN THE s-RANGE 1.44-9.0 GeV2

    NASA Astrophysics Data System (ADS)

    Bernardini, M.; Bollini, D.; Brunini, P. L.; Fiorentino, E.; Massam, T.; Monari, L.; Palmonari, F.; Rimondi, F.; Zichichi, A.

    The analysis of 12 827 e+ + e- → e± + e∓ events observed in the s-range 1.44-9.0 GeV2 allows measurement of the energy dependence of the cross-section for the most typical QED process, with ±2% accuracy. Within this limit the data follow QED, with first-order radiative corrections included.

  8. Cluster-collision frequency. I. The long-range intercluster potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadon, A.S.; Marlow, W.H.

    1991-05-15

    In recent years, gas-borne atomic and molecular clusters have emerged as subjects of basic physical and chemical interest and are gaining recognition for their importance in numerous applications. To calculate the evolution of the mass distribution of these clusters, their thermal collision rates are required. For computing these collision rates, the long-range interaction energy between clusters is required and is the subject of this paper. Utilizing a formulation of the iterated van der Waals interaction over discrete molecules that can be shown to converge with increasing numbers of atoms to the Lifshitz--van der Waals interaction for condensed matter, we calculatemore » the interaction energy as a function of center-of-mass separation for identical pairs of clusters of 13, 33, and 55 molecules of carbon tetrachloride in icosahedral and dodecahedral configurations. Two different relative orientations are chosen for each pair of clusters, and the energies are compared with energies calculated from the standard formula for continuum matter derived by summing over pair interactions with the Hamaker constant calculated according to Lifshitz theory. The results of these calculations give long-range interaction energies that assume typical adhesion-type values at cluster contact, unlike the unbounded results for the Lifshitz-Hamaker model. The relative difference between the discrete molecular energies and the continuum energies vanishes for {ital r}{sup *}{approx}2, where {ital r}{sup *} is the center-of-mass separation distance in units of cluster diameter. For larger separations, the relative difference changes sign, showing a value of approximately 15%, with the difference diminishing for increasing-sized clusters.« less

  9. Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron.

    PubMed

    Lehrack, Sebastian; Assmann, Walter; Bertrand, Damien; Henrotin, Sebastien; Herault, Joel; Heymans, Vincent; Stappen, Francois Vander; Thirolf, Peter G; Vidal, Marie; Van de Walle, Jarno; Parodi, Katia

    2017-08-18

    Proton ranges in water between 145 MeV to 227 MeV initial energy have been measured at a clinical superconducting synchrocyclotron using the acoustic signal induced by the ion dose deposition (ionoacoustic effect). Detection of ultrasound waves was performed by a very sensitive hydrophone and signals were stored in a digital oscilloscope triggered by secondary prompt gammas. The ionoacoustic range measurements were compared to existing range data from a calibrated range detector setup on-site and agreement of better than 1 mm was found at a Bragg peak dose of about 10 Gy for 220 MeV initial proton energy, compatible with the experimental errors. Ionoacoustics has thus the potential to measure the Bragg peak position with submillimeter accuracy during proton therapy, possibly correlated with ultrasound tissue imaging.

  10. 78 FR 18272 - Energy Labeling Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... FEDERAL TRADE COMMISSION 16 CFR Part 305 [3084-AB15] Energy Labeling Rule AGENCY: Federal Trade... ``Energy Label Ranges, Matter No. R611004'' on your comment, and file your comment online at https... Commission proposed to amend the Energy Labeling Rule (``Rule'') (16 CFR part 305) by updating ranges of...

  11. Probing Long-Range Configurations of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    McCormack, Elizabeth

    2011-05-01

    Very long-range molecular configurations are of interest in a variety of contexts, for example, in the astro-chemistry of cold molecular clouds and in planetary atmospheres, including our own. Such states can be more than 10 times the size of the ground state and often possess energies above multiple ionization potentials and dissociation limits resulting in diverse and complex decay dynamics. Many of these configurations possess a double-well character arising from the interaction of molecular Rydberg states, repulsive doubly-excited states, and ionic states. The ion pair in hydrogen, an unusual molecular configuration consisting of one proton shrouded in a cloud of two electrons separated very far from the other proton, is notoriously difficult to create and study. We report results from on our investigation of such states using resonantly enhanced multi-photon ionization via the E,F v = 6, J = 0, 1, and 2 states to probe the H(n = 1) + H(n = 3) dissociation threshold energy region. Both molecular and atomic ion production were detected as a function of wavelength by using a time-of-flight mass spectrometer. Below threshold a series of highly excited vibrational levels of several long range states are observed. Above threshold broad resonances are observed with energies that agree well with the predictions of a mass-scaled Rydberg formula for bound states of the H+ H- ion pair. Measured linewidths, quantum defects, and rotational dependences are reported for ion pair principal quantum numbers in the range of n = 130 to 206. Our new results can be compared to recent experimental work using a different excitation scheme, which was the first spectroscopic observation of heavy Rydberg states in hydrogen, and new ab initio theoretical work. Supported by the National Science Foundation.

  12. The All-Particle Spectrum of Primary Cosmic Rays in the Wide Energy Range from 10{sup 14} to 10{sup 17} eV Observed with the Tibet-III Air-Shower Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenomori, M.; Bi, X. J.; Ding, L. K.

    2008-05-10

    We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10{sup 14} to 10{sup 17} eV using 5.5 x 10{sup 7} events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m above sea level (an atmospheric depth of 606 g cm{sup -2}). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in the final result, assuming interaction modelsmore » QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure proton and pure iron primary models are also examined as extreme cases. A detector simulation was also performed to improve our accuracy in determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components, leading to a weak dependence on the interaction model or the primary mass. This is the highest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.« less

  13. Accurate measurements of the 63Cu(d,p)64Cu and natCu(d,x)65Zn cross-sections in the 2.77-5.62 MeV energy range

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Kreisel, A.; Hirsh, T.; Aviv, O.; Berkovits, D.; Girshevitz, O.; Eisen, Y.

    2015-01-01

    The cross sections of 63Cu(d,p)64Cu and natCu(d,x)65Zn were determined for deuteron beam energy range of 2.77-5.62 MeV at the SARAF Phase I variable energy LINAC. Thin copper foils were irradiated by a deuteron beam followed up by measurement of the produced activation at the Soreq NRC low-background γ-counting system. The results are consistent with data in the literature, but are of better accuracy. The data are important for assessment of the activation of components of Radio Frequency Quadrupole injectors and Medium Energy Beam Transport beam dumps in modern deuteron LINACs.

  14. Response function of a superheated drop neutron monitor with lead shell in the thermal to 400-MeV energy range.

    PubMed

    Itoga, Toshiro; Asano, Yoshihiro; Tanimura, Yoshihiko

    2011-07-01

    Superheated drop detectors are currently used for personal and environmental dosimetry and their characteristics such as response to neutrons and temperature dependency are well known. A new bubble counter based on the superheated drop technology has been developed by Framework Scientific. However, the response of this detector with the lead shell is not clear especially above several tens of MeV. In this study, the response has been measured with quasi-monoenergetic and monoenergetic neutron sources with and without a lead shell. The experimental results were compared with the results of the Monte Carlo calculations using the 'Event Generator Mode' in the PHITS code with the JENDL-HE/2007 data library to clarify the response of this detector with a lead shell in the entire energy range.

  15. Long range intermolecular interactions between the alkali diatomics Na(2), K(2), and NaK.

    PubMed

    Zemke, Warren T; Byrd, Jason N; Michels, H Harvey; Montgomery, John A; Stwalley, William C

    2010-06-28

    Long range interactions between the ground state alkali diatomics Na(2)-Na(2), K(2)-K(2), Na(2)-K(2), and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential E(LR)=E(elec)+E(disp)+E(ind) is shown to accurately represent the intermolecular interactions for these systems at long range.

  16. Ultrahigh-energy cosmic rays: physics and astrophysics at extreme energies.

    PubMed

    Sigl, G

    2001-01-05

    The origin of cosmic rays is one of the major unresolved questions in astrophysics. In particular, the highest energy cosmic rays observed have macroscopic energies up to several 10(20) electron volts and thus provide a probe of physics and astrophysics at energies unattained in laboratory experiments. Theoretical explanations range from astrophysical acceleration of charged particles, to particle physics beyond the established standard model, and processes taking place at the earliest moments of our universe. Distinguishing between these scenarios requires detectors with effective areas in the 1000-square-kilometer range, which are now under construction or in the planning stage. Close connections with gamma-ray and neutrino astrophysics add to the interdisciplinary character of this field.

  17. A quantum-rovibrational-state-selected study of the reaction in the collision energy range of 0.05-10.00 eV: translational, rotational, and vibrational energy effects.

    PubMed

    Xu, Yuntao; Xiong, Bo; Chang, Yih-Chung; Pan, Yi; Lo, Po Kam; Lau, Kai Chung; Ng, C Y

    2017-04-12

    We report detailed absolute integral cross sections (σ's) for the quantum-rovibrational-state-selected ion-molecule reaction in the center-of-mass collision energy (E cm ) range of 0.05-10.00 eV, where (vvv) = (000), (100), and (020), and . Three product channels, HCO + + OH, HOCO + + H, and CO + + H 2 O, are identified. The measured σ(HCO + ) curve [σ(HCO + ) versus E cm plot] supports the hypothesis that the formation of the HCO + + OH channel follows an exothermic pathway with no potential energy barriers. Although the HOCO + + H channel is the most exothermic, the σ(HOCO + ) is found to be significantly lower than the σ(HCO + ). The σ(HOCO + ) curve is bimodal, indicating two distinct mechanisms for the formation of HOCO + . The σ(HOCO + ) is strongly inhibited at E cm < 0.4 eV, but is enhanced at E cm > 0.4 eV by (100) vibrational excitation. The E cm onsets of σ(CO + ) determined for the (000) and (100) vibrational states are in excellent agreement with the known thermochemical thresholds. This observation, along with the comparison of the σ(CO + ) curves for the (100) and (000) states, shows that kinetic and vibrational energies are equally effective in promoting the CO + channel. We have also performed high-level ab initio quantum calculations on the potential energy surface, intermediates, and transition state structures for the titled reaction. The calculations reveal potential barriers of ≈0.5-0.6 eV for the formation of HOCO + , and thus account for the low σ(HOCO + ) and its bimodal profile observed. The E cm enhancement for σ(HOCO + ) at E cm ≈ 0.5-5.0 eV can be attributed to the direct collision mechanism, whereas the formation of HOCO + at low E cm < 0.4 eV may involve a complex mechanism, which is mediated by the formation of a loosely sticking complex between HCO + and OH. The direct collision and complex mechanisms proposed also allow the rationalization of the vibrational inhibition at low E cm and the vibrational enhancement at

  18. Deep seafloor arrivals in long range ocean acoustic propagation.

    PubMed

    Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M

    2013-10-01

    Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.

  19. A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals

    PubMed Central

    Ceballos, Gerardo; Steele, Michael A.

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR

  20. Energy Index For Aircraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R. (Inventor); Lynch, Robert E. (Inventor); Lawrence, Robert E. (Inventor); Amidan, Brett G. (Inventor); Ferryman, Thomas A. (Inventor); Drew, Douglas A. (Inventor); Ainsworth, Robert J. (Inventor); Prothero, Gary L. (Inventor); Romanowski, Tomothy P. (Inventor); Bloch, Laurent (Inventor)

    2006-01-01

    Method and system for analyzing, separately or in combination, kinetic energy and potential energy and/or their time derivatives, measured or estimated or computed, for an aircraft in approach phase or in takeoff phase, to determine if the aircraft is or will be put in an anomalous configuration in order to join a stable approach path or takeoff path. A 3 reference value of kinetic energy andor potential energy (or time derivatives thereof) is provided, and a comparison index .for the estimated energy and reference energy is computed and compared with a normal range of index values for a corresponding aircraft maneuver. If the computed energy index lies outside the normal index range, this phase of the aircraft is identified as anomalous, non-normal or potentially unstable.

  1. Research on volume metrology method of large vertical energy storage tank based on internal electro-optical distance-ranging method

    NASA Astrophysics Data System (ADS)

    Hao, Huadong; Shi, Haolei; Yi, Pengju; Liu, Ying; Li, Cunjun; Li, Shuguang

    2018-01-01

    A Volume Metrology method based on Internal Electro-optical Distance-ranging method is established for large vertical energy storage tank. After analyzing the vertical tank volume calculation mathematical model, the key processing algorithms, such as gross error elimination, filtering, streamline, and radius calculation are studied for the point cloud data. The corresponding volume values are automatically calculated in the different liquids by calculating the cross-sectional area along the horizontal direction and integrating from vertical direction. To design the comparison system, a vertical tank which the nominal capacity is 20,000 m3 is selected as the research object, and there are shown that the method has good repeatability and reproducibility. Through using the conventional capacity measurement method as reference, the relative deviation of calculated volume is less than 0.1%, meeting the measurement requirements. And the feasibility and effectiveness are demonstrated.

  2. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  3. Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from 7Li NMR field-cycling and field-gradient studies

    NASA Astrophysics Data System (ADS)

    Haaks, Michael; Martin, Steve W.; Vogel, Michael

    2017-09-01

    We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.

  4. Energy requirements of military personnel.

    PubMed

    Tharion, William J; Lieberman, Harris R; Montain, Scott J; Young, Andrew J; Baker-Fulco, Carol J; Delany, James P; Hoyt, Reed W

    2005-02-01

    Energy requirements of military personnel (Soldiers, Sailors, Airmen, and Marines) have been measured in garrison and in field training under a variety of climatic conditions. Group mean total energy expenditures for 424 male military personnel from various units engaged in diverse missions ranged from 13.0 to 29.8 MJ (3109-7131 kcal) per day. The overall mean was 19.3+/-2.7 MJ (mean+/-SD) (4610+/-650 kcal) per day measured over an average of 12.2 days (range 2.25-69 days). For the 77 female military personnel studied, mean total energy expenditures for individual experimental groups ranged from 9.8 to 23.4 MJ (2332-5597 kcal) per day, with an overall mean of 11.9+/-2.6 MJ (2850+/-620 kcal) per day, measured over an average of 8.8 days (range 2.25-14 days). Women, presumably due to their lower lean body mass, resting metabolic rate, and absolute work rates, had lower total energy expenditures. Combat training produced higher energy requirements than non-combat training or support activities. Compared to temperate conditions, total energy expenditures did not appear to be influenced by hot weather, but tended to be higher in the cold or high altitude conditions.

  5. Energy spectra variations of high energy electrons in magnetic storms observed by ARASE and HIMAWARI

    NASA Astrophysics Data System (ADS)

    Takashima, T.; Higashio, N.; Mitani, T.; Nagatsuma, T.; Yoshizumi, M.

    2017-12-01

    The ARASE spacecraft was launched in December 20, 2016 to investigate mechanisms for acceleration and loss of relativistic electrons in the radiation belts during space storms. The six particle instruments with wide energy range (a few eV to 10MeV) are onboard the ARASE spacecraft. Especially, two particle instruments, HEP and XEP observe high energy electron with energy range from 70keV to over 10Mev. Those instruments observed several geomagnetic storms caused by coronal hole high speed streams or coronal mass ejections from March in 2017. The relativistic electrons in the outer radiation belt were disappeared/increased and their energy spectra were changed dynamically in some storms observed by XEP/HEP onboard the ARASE spacecraft. In the same time, SEDA-e with energy range 200keV-4.5MeV for electron on board the HIMAWARI-8, Japanese weather satellite on GEO, observed increase of relativistic electron in different local time. We will report on energy spectra variations of high energy electrons including calibrations of differential flux between XEP and HEP and discuss comparisons with energy spectra between ARAE and HIMAWARI that observed each storm in different local time.

  6. DETERMINATION OF THE RANGE-ENERGY RELATION FOR NITROGEN AND OXYGEN IONS IN PHOTOGRAPHIC EMULSIONS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parfanovich, D.M.; Semchinova, A.M.; Flerov, G.N.

    1957-08-01

    The dependence of ramge on energy has been measured for N and O ions in E-1 Ilford emulsions for energies between 3 to 120 Mev. The results are compared with theoretical predictions. It is also estimated at what energy the N and O ions lose all their electrons on tranversal of matter. (tr-auth)

  7. Energy Choices for Consumers

    ERIC Educational Resources Information Center

    Nolan, William T.

    1977-01-01

    Sample problems concerning energy consumption and conservation with air conditioners, electric ranges, refrigerators and televisions are provided. The energy efficiency ratio (EER) is also discussed. (CP)

  8. Highly excited bound-state resonances of short-range inverse power-law potentials

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-11-01

    We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.

  9. The spatial range of protein hydration

    NASA Astrophysics Data System (ADS)

    Persson, Filip; Söderhjelm, Pär; Halle, Bertil

    2018-06-01

    Proteins interact with their aqueous surroundings, thereby modifying the physical properties of the solvent. The extent of this perturbation has been investigated by numerous methods in the past half-century, but a consensus has still not emerged regarding the spatial range of the perturbation. To a large extent, the disparate views found in the current literature can be traced to the lack of a rigorous definition of the perturbation range. Stating that a particular solvent property differs from its bulk value at a certain distance from the protein is not particularly helpful since such findings depend on the sensitivity and precision of the technique used to probe the system. What is needed is a well-defined decay length, an intrinsic property of the protein in a dilute aqueous solution, that specifies the length scale on which a given physical property approaches its bulk-water value. Based on molecular dynamics simulations of four small globular proteins, we present such an analysis of the structural and dynamic properties of the hydrogen-bonded solvent network. The results demonstrate unequivocally that the solvent perturbation is short-ranged, with all investigated properties having exponential decay lengths of less than one hydration shell. The short range of the perturbation is a consequence of the high energy density of bulk water, rendering this solvent highly resistant to structural perturbations. The electric field from the protein, which under certain conditions can be long-ranged, induces a weak alignment of water dipoles, which, however, is merely the linear dielectric response of bulk water and, therefore, should not be thought of as a structural perturbation. By decomposing the first hydration shell into polarity-based subsets, we find that the hydration structure of the nonpolar parts of the protein surface is similar to that of small nonpolar solutes. For all four examined proteins, the mean number of water-water hydrogen bonds in the nonpolar

  10. Energy.

    PubMed

    Chambers, David W

    2012-01-01

    Energy is the capacity to do the things we are capable of and desire to accomplish. Most often this is thought of in terms of PEP--personal energy potential--a reservoir of individual vivacity and zest for work. Like a battery, energy can be conceived of as a resource that is alternatively used and replenished. Transitions between activities, variety of tasks, and choices of what to spend energy on are part of energy management. Energy capacity can be thought of at four levels: (a) so little that harm is caused and extraordinary steps are needed for recovery, (b) a deficit that slightly impairs performance but will recover naturally, (c) the typical range of functioning, and (d) a surplus that may or may not be useful and requires continual investment to maintain. "Flow" is the experience of optimal energy use when challenges balance capacity as a result of imposing order on our environment. There are other energy resources in addition to personal vim. Effective work design reduces demands on energy. Money, office design, and knowledge are excellent substitutes for personal energy.

  11. Teaching Concepts of Energy to Nigerian Children in the 7-11 Year-Old Age Range.

    ERIC Educational Resources Information Center

    Urevbu, Andrew O.

    1984-01-01

    Investigated level of concept attainment of selected energy concepts for possible inclusion in the Nigerian Primary Science Project. Subjects (N=450) were taught energy concepts at descriptive, comparative, and quantitative levels. Suggests the need to describe these levels for particular grades and match curriculum with students' thinking…

  12. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C–C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedesmore » C–C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the “gateway states” for molecules with this orientation.« less

  13. Study of inelastic processes in Li+-Ar, K+-Ar, and Na+-He collisions in the energy range 0.5-10 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, Ramaz A.; Gochitashvili, Malkhaz R.; Kezerashvili, Roman Ya; Schulz, Michael

    2017-11-01

    Absolute cross sections are measured for charge-exchange, ionization, and excitation processes within the same experimental setup for the Li{}+-Ar, K{}+-Ar, and Na{}+-He collisions in the ion energy range of 0.5-10 keV. The results of the measurements and schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes occur with high probabilities and electrons are predominantly captured in ground states. The contributions of various partial inelastic channels to the total ionization cross section are estimated, and a primary mechanism for the process is identified. In addition, the energy-loss spectrum is applied in order to estimate the relative contribution of different inelastic channels, and to determine the mechanisms for the ionization and for some excitation processes of Ar resonance lines for the {{{K}}}+-Ar collision system. The excitation cross sections for the helium and for the sodium doublet lines for the Na{}+-He collision system both reveal some unexpected features. A mechanism to explain this observation is suggested.

  14. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  15. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime.

    PubMed

    Blackbourn, Luke A K; Tran, Chuong V

    2014-08-01

    We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r(0), with an emphasis on the latter. The regime of small r(0) corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum E(b)(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r(0). In particular, for fully developed turbulence with r(0) in the range [1/4,1/4096], E(b)(k) is found to scale as k(α), where α≳-1, including α>0. The extent of such a shallow spectrum is limited, becoming broader as r(0) is decreased. The slope α increases as r(0) is decreased, appearing to tend to +1 in the limit of small r(0). This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k(-1) of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total-energy

  16. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.

    PubMed

    Stadnik, Yevgeny V

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  17. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny V.

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  18. Energy and Environment Guide to Action - Chapter 4.2: Energy Efficiency Programs

    EPA Pesticide Factsheets

    Provides guidance and recommendations for designing, funding, and implementing effective energy efficiency programs, which provide a range of financial and other incentives to encourage investments in energy-efficient technologies and behavior change.

  19. Biofouling community composition across a range of environmental conditions and geographical locations suitable for floating marine renewable energy generation.

    PubMed

    Macleod, Adrian K; Stanley, Michele S; Day, John G; Cook, Elizabeth J

    2016-01-01

    Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.

  20. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  1. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor

    PubMed Central

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-01-01

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety. PMID:27304958

  2. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.

    PubMed

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-06-13

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.

  3. Elastic Scattering of {sup 7}Li+{sup 27}Al at Backward Angles in the 7-11 MeV Energy Range for Application in RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.

    2010-08-04

    We have measured elastic excitation functions for the {sup 7}Li+{sup 27}Al system, in an energy range close to its Coulomb barrier (E{sub lab} = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly {alpha} particles), a telescope-detector was used for atomic-number identification. Identical measurements for the {sup 6}Li+{sup 27}Al system are planned for the near future.

  4. Measuring the energy expenditure and water flux in free-ranging alpacas (Lama pacos) in the peruvian andes using the doubly labelled water technique.

    PubMed

    Riek, Alexander; Van Der Sluijs, Leendert; Gerken, Martina

    2007-12-01

    Energy expenditure and water flux were measured in free-ranging alpacas Lama pacos, a South American camelid, on natural pastures of the Peruvian Andes (altitude: 4,400 m above sea level). Water influx rate (WIR) was estimated in 16 males (age 2 years, weight 48.5+/-8.6 kg) labelled with 2H. In addition, the field metabolic rate (FMR) was measured in four of these animals labelled with both an oxygen (18O) and a hydrogen (2H) isotope. The WIR averaged 3.62 L H2O/day and the mean total body water 33.1 kg, equal to 68.2% of body weight (BW). The FMR of the four doubly labelled animals was 14.05 MJ/day. New allometric equations were calculated describing the relationships between WIR or FMR and BW, respectively, including published data on ruminants and the present alpaca results. The regression equation indicates that daily WIR scales to a similar metabolic size (kilograms of BW(0.94)) in alpacas than in wild or domesticated ruminants and camelids originating from arid and semiarid habitats. The resulting regression equation for FMR explained over 99% of the variation and corresponded to the function FMR (kilojoules per day)=1079 (kilograms of BW0.668) (n=5, r2=0.995, P<0.001). The FMR measured in this study, the first reported for a South American camelid species, suggests that free-ranging alpacas have similar energy expenditures on a metabolic weight basis as other wild ruminants living under harsh climatic conditions.

  5. Energy dependence of the response of lithium fluoride TLD rods in high energy electron fields.

    PubMed

    Holt, J G; Edelstein, G R; Clark, T E

    1975-07-01

    The energy dependence of lithium fluoride dosemeters is a complicated function of energy as well as of cavity size. In the application of TLD to charged particle dosimetry, a cavity perturbation effect may exist even though the ratios of the mass stopping powers are constant over the energies encountered. This effect was investigated for lithium fluoride rods in electron fields ranging in energy from 2-5 to 20 MeV. A 13% change of TL response per unit of absorbed dose was measured over that energy range. A semi-empirical theory was developed to account for the cavity effect, using Burlin cavity theory as a starting point. The agreement between theory and measurement is satisfactory.

  6. 16 CFR 309.22 - Determining estimated cruising range.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... set forth in Society of Automotive Engineers (“SAE”) Surface Vehicle Recommended Practice SAE J1634-1993-05-20, “Electric Vehicle Energy Consumption and Range Test Procedure.” This incorporation by... part 51. Copies of SAE J1634-1993-05-20 may be obtained from the Society of Automotive Engineers, 400...

  7. 16 CFR 309.22 - Determining estimated cruising range.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... set forth in Society of Automotive Engineers (“SAE”) Surface Vehicle Recommended Practice SAE J1634-1993-05-20, “Electric Vehicle Energy Consumption and Range Test Procedure.” This incorporation by... part 51. Copies of SAE J1634-1993-05-20 may be obtained from the Society of Automotive Engineers, 400...

  8. 16 CFR 309.22 - Determining estimated cruising range.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... set forth in Society of Automotive Engineers (“SAE”) Surface Vehicle Recommended Practice SAE J1634-1993-05-20, “Electric Vehicle Energy Consumption and Range Test Procedure.” This incorporation by... part 51. Copies of SAE J1634-1993-05-20 may be obtained from the Society of Automotive Engineers, 400...

  9. 16 CFR 309.22 - Determining estimated cruising range.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... set forth in Society of Automotive Engineers (“SAE”) Surface Vehicle Recommended Practice SAE J1634-1993-05-20, “Electric Vehicle Energy Consumption and Range Test Procedure.” This incorporation by... part 51. Copies of SAE J1634-1993-05-20 may be obtained from the Society of Automotive Engineers, 400...

  10. Energy spectrum control for modulated proton beams.

    PubMed

    Hsi, Wen C; Moyers, Michael F; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E; Farr, Jonathan B; Mascia, Anthony E; Schreuder, Andries N

    2009-06-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  11. Report to Congress on Sustainable Ranges, 2015

    DTIC Science & Technology

    2015-03-01

    obstruction concerns related to height of wind turbines and/or associated infrastructure (power/transmission lines) and glint and glare concerns caused by...boundaries. This is particularly evident when the Doppler Effect from wind turbines located outside of the range boundary degrades critical... turbines , and will establish High Risk of Adverse Impact Zones (HRAIZ) to inform wind energy developers of possible conflicts. Electronic Combat (EC

  12. Hierarchy of low-energy models of the electronic structure of cuprate HTSCs: The role of long-range spin-correlated hops

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.

    2018-02-01

    It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.

  13. Calibration of a proton beam energy monitor.

    PubMed

    Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E

    2007-06-01

    Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  14. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  15. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  16. An overview on incomplete fusion reaction dynamics at energy range ∼ 3-8 MeV/A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Rahbar, E-mail: rahbarali1@rediffmail.com; Singh, D.; Ansari, M. Afzal

    2014-08-14

    The information of ICF reaction has been obtained from the measurement of excitation function (EF) of ERs populated in the interaction of {sup 20}Ne and {sup 16}O on {sup 55}Mn, {sup 159}Tb and {sup 156}Gd targets. Sizable enhancement in the measured cross-sections has been observed in α-emitting channels over theoretical predictions, which has been attributed to ICF of the projectile. In order to confirm the findings of the measurements and analysis of EFs, the forward recoil range distributions of ERs populated in {sup 20}Ne+{sup 159}Tb (E ∼165MeV) and {sup 16}O+{sup 156}Gd (E ∼ 72, 82 and 93MeV) systems, have beenmore » measured. It has been observed that peaks appearing at different cumulative thicknesses in the stopping medium are related with different degree of linear momentum transfer from projectile to target nucleus by adopting the break-up fusion model consideration. In order to deduce the angular momentum involved in various CF and / or ICF reaction products, spin distribution and side-feeding intensity profiles of radio-nuclides populated via CF and ICF channels in {sup 16}O+{sup 160}Gd system at energy, E ∼ 5.6 MeV/A, have been studied. Spin distribution of ICF products are found to be distinctly different than that observed from CF products.« less

  17. Crystals of Janus colloids at various interaction ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preisler, Z.; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht; Vissers, T.

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete withmore » the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.« less

  18. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  19. Hard probes of short-range nucleon-nucleon correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nucleimore » and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.« less

  20. Effects of long-range interactions on curvature energies of viral shells

    NASA Astrophysics Data System (ADS)

    Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf

    2016-05-01

    We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.

  1. 40 CFR 86.1770-99 - All-Electric Range Test requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... purpose of determining the energy efficiency and operating range of a ZEV or of a hybrid electric vehicle... hours. During this time, the vehicle's battery shall be charged to a full state-of-charge. (2) Driving...

  2. 40 CFR 86.1770-99 - All-Electric Range Test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... purpose of determining the energy efficiency and operating range of a ZEV or of a hybrid electric vehicle... hours. During this time, the vehicle's battery shall be charged to a full state-of-charge. (2) Driving...

  3. 40 CFR 86.1770-99 - All-Electric Range Test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... purpose of determining the energy efficiency and operating range of a ZEV or of a hybrid electric vehicle... hours. During this time, the vehicle's battery shall be charged to a full state-of-charge. (2) Driving...

  4. 40 CFR 86.1770-99 - All-Electric Range Test requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... purpose of determining the energy efficiency and operating range of a ZEV or of a hybrid electric vehicle... hours. During this time, the vehicle's battery shall be charged to a full state-of-charge. (2) Driving...

  5. Low-Energy Proton Testing Methodology

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; hide

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  6. Guam Strategic Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.

    2013-07-01

    Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

  7. Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Calland, R. G.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-04-01

    We report a measurement of the νμ-nucleus inclusive charged-current cross section (=σc c ) on iron using data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0° to 1.1°. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σc c(1.1 GeV )=1.10 ±0.15 (1 0-38 cm2/nucleon) , σc c(2.0 GeV )=2.07 ±0.27 (1 0-38 cm2/nucleon) , and σc c(3.3 GeV )=2.29 ±0.45 (1 0-38 cm2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.

  8. Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    2003-01-01

    An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.

  9. Military Training: DOD’s Annual Sustainable Ranges Report Addressed Statutory Reporting Requirements

    DTIC Science & Technology

    2015-06-01

    electromagnetic spectrum, (5) continued growth in domestic use of Unmanned Aerial Systems, (6) early coordination with renewable energy industry, and (7...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 United States Government...challenges; (4) manage increasing military demand for range space; (5) address effects from new energy infrastructure and renewable energy effects; (6

  10. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, Richard L.

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF)more » has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.« less

  11. Interacting scales and energy transfer in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1993-01-01

    The dependence of the energy transfer process on the disparity of the interacting scales is investigated in the inertial and far-dissipation ranges of isotropic turbulence. The strategy for generating the simulated flow fields and the choice of a disparity parameter to characterize the scaling of the interactions is discussed. The inertial range is found to be dominated by relatively local interactions, in agreement with the Kolmogorov assumption. The far-dissipation is found to be dominated by relatively non-local interactions, supporting the classical notion that the far-dissipation range is slaved to the Kolmogorov scales. The measured energy transfer is compared with the classical models of Heisenberg, Obukhov, and the more detailed analysis of Tennekes and Lumley. The energy transfer statistics measured in the numerically simulated flows are found to be nearly self-similar for wave numbers in the inertial range. Using the self-similar form measured within the limited scale range of the simulation, an 'ideal' energy transfer function and the corresponding energy flux rate for an inertial range of infinite extent are constructed. From this flux rate, the Kolmogorov constant is calculated to be 1.5, in excellent agreement with experiments.

  12. Classical investigation of long-range coherence in biological systems

    NASA Astrophysics Data System (ADS)

    Preto, Jordane

    2016-12-01

    Almost five decades ago, H. Fröhlich [H. Fröhlich, "Long-range coherence and energy storage in biological systems," Int. J. Quantum Chem. 2(5), 641-649 (1968)] reported, on a theoretical basis, that the excitation of quantum modes of vibration in contact with a thermal reservoir may lead to steady states, where under high enough rate of energy supply, only specific low-frequency modes of vibration are strongly excited. This nonlinear phenomenon was predicted to occur in biomolecular systems, which are known to exhibit complex vibrational spectral properties, especially in the terahertz frequency domain. However, since the effects of terahertz or lower-frequency modes are mainly classical at physiological temperatures, there are serious doubts that Fröhlich's quantum description can be applied to predict such a coherent behavior in a biological environment, as suggested by the author. In addition, a quantum formalism makes the phenomenon hard to investigate using realistic molecular dynamics simulations (MD) as they are usually based on the classical principles. In the current paper, we provide a general classical Hamiltonian description of a nonlinear open system composed of many degrees of freedom (biomolecular structure) excited by an external energy source. It is shown that a coherent behaviour similar to Fröhlich's effect is to be expected in the classical case for a given range of parameter values. Thus, the supplied energy is not completely thermalized but stored in a highly ordered fashion. The connection between our Hamiltonian description, carried out in the space of normal modes, and a more standard treatment in the physical space is emphasized in order to facilitate the prediction of the effect from MD simulations. It is shown how such a coherent phenomenon may induce long-range resonance effects that could be of critical importance at the biomolecular level. The present work is motivated by recent experimental evidences of long-lived excited low

  13. Energy conservation in housing design using solar energy, mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, N.M.W.

    1985-01-01

    This paper presents the first experimental full-scale house built by the Solar Energy Research Center of Baghdad to be heated and cooled by solar energy. The various architectural and environmental considerations which entered into the design process are discussed, as well as the range of passive techniques examined for their compatibility with the local climate and their ability to optimize the energy efficiency of the house. The mechanical systems which were ultimately implemented are described.

  14. Live Fire Range Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Firemore » Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).« less

  15. Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.

    2018-05-01

    A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.

  16. Tonopah Test Range Air Monitoring: CY2016 Meteorological, Radiological, and Wind Transported Particulate Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Jenny; Nikolich, George; Shadel, Craig

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.« less

  17. Thermochemical energy storage: Proceedings from the International Seminar on hermochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Wettermark, G.

    1980-10-01

    Energy storage problems are explored. Tomorrow's energy sources will provide a continuous flow of energy. Matching supply and demand will necessitate a wide range of storage capabilities. For storing heat thermochemical and economic solutions may take advantage of the various options inherent in this kind of storage, namely heat pumping, transport of heat and direct conversion to other desired forms of energy such as electricity and mechanical work. There is a need to regularly summarize the knowledge and research in the field of thermochemical energy storage in different parts of the world.

  18. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this techniquemore » to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.« less

  19. Ranging behavior relates to welfare indicators pre- and post-range access in commercial free-range broilers.

    PubMed

    Taylor, Peta S; Hemsworth, Paul H; Groves, Peter J; Gebhardt-Henrich, Sabine G; Rault, Jean-Loup

    2018-06-01

    Little is known about the effect of accessing an outdoor range on chicken welfare. We tracked individual ranging behavior of 538 mixed-sex Ross 308 chickens on a commercial farm across 4 flocks in winter and summer. Before range access, at 17 to 19 d of age, and post-range access, at 30 to 33 and 42 to 46 d of age in winter and summer flocks respectively, welfare indicators were measured on chickens (pre-range: winter N = 292; summer N = 280; post-range: winter N = 131; summer N = 140), including weight, gait score, dermatitis and plumage condition. Post-ranging autopsies were performed (winter: N = 170; summer: N = 60) to assess breast burn, leg health, and ascites. Fewer chickens accessed the range in winter flocks (32.5%) than summer flocks (82.1%). Few relationships between welfare and ranging were identified in winter, likely due to minimal ranging and the earlier age of post-ranging data collection compared to summer flocks. In summer flocks prior to range access, chickens that accessed the range weighed 4.9% less (P = 0.03) than chickens that did not access the range. Pre-ranging weight, gait score, and overall plumage cover predicted the amount of range use by ranging chickens in summer flocks (P < 0.01), but it explained less than 5% of the variation, suggesting other factors are associated with ranging behavior. In summer flocks post-range access, ranging chickens weighed 12.8% less than non-ranging chickens (P < 0.001). More range visits were associated with lower weight (P < 0.01), improved gait scores (P = 0.02), greater breast plumage cover (P = 0.02), lower ascites index (P = 0.01), and less pericardial fluid (P = 0.04). More time spent on the range was associated with lower weight (P < 0.01) and better gait scores (P < 0.01). These results suggest that accessing an outdoor range in summer is partly related to changes in broiler chicken welfare. Further investigations are required to determine causation.

  20. Hidden asymmetry and long range rapidity correlations

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.; Zalewski, K.

    2012-04-01

    Interpretation of long-range rapidity correlations in terms of the fluctuating rapidity density distribution of the system created in high-energy collisions is proposed. When applied to recent data of the STAR Collaboration, it shows a substantial asymmetric component in the shape of this system in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at central rapidity. This effect may seriously influence the hydrodynamic expansion of the system.

  1. Energy Perspective: Is Hydroelectricity Green?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2009-01-01

    The current worldwide concern over energy is primarily related to imported oil, oil drilling and refining capacity, and transportation capacity. However, this concern has bolstered interest in a broader range of "green" energy technologies. In this article, the author discusses the use of hydroelectricity as an alternative energy source…

  2. Photoabsorption and S 2p photoionization of the SF6 molecule: resonances in the excitation energy range of 200-280 eV.

    PubMed

    Stener, M; Bolognesi, P; Coreno, M; O'Keeffe, P; Feyer, V; Fronzoni, G; Decleva, P; Avaldi, L; Kivimäki, A

    2011-05-07

    Photoabsorption and S 2p photoionization of the SF(6) molecule have been studied experimentally and theoretically in the excitation energy range up to 100 eV above the S 2p ionization potentials. In addition to the well-known 2t(2g) and 4e(g) shape resonances, the spin-orbit-resolved S 2p photoionization cross sections display two weak resonances between 200 and 210 eV, a wide resonance around 217 eV, a Fano-type resonance around 240 eV, and a second wide resonance around 260 eV. Calculations based on time-dependent density functional theory allow us to assign the 217-eV and 260-eV features to the shape resonances in S 2p photoionization. The Fano resonance is caused by the interference between the direct S 2p photoionization channel and the resonant channel that results from the participator decay of the S 2s(-1)6t(1u) excited state. The weak resonances below 210-eV photon energy, not predicted by theory, are tentatively suggested to originate from the coupling between S 2p shake-up photoionization and S 2p single-hole photoionization. The experimental and calculated angular anisotropy parameters for S 2p photoionization are in good agreement.

  3. Towards highest peak intensities for ultra-short MeV-range ion bunches

    NASA Astrophysics Data System (ADS)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  4. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  5. Long-range multiplicity correlations in proton-proton collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam

    The forward-backward long-range multiplicity correlations in proton-proton collisions are investigated in the model with two independent sources of particles: one left- and one right-moving wounded nucleon. A good agreement with the UA5 Collaboration proton-antiproton data at the c.m. energy of 200 GeV is observed. For comparison the model with only one source of particles is also discussed.

  6. Renewable Energy

    NASA Astrophysics Data System (ADS)

    Boyle, Godfrey

    2004-05-01

    Stimulated by recent technological developments and increasing concern over the sustainability and environmental impact of conventional fuel usage, the prospect of producing clean, sustainable power in substantial quantities from renewable energy sources arouses interest around the world. This book provides a comprehensive overview of the principal types of renewable energy--including solar, thermal, photovoltaics, bioenergy, hydro, tidal, wind, wave, and geothermal. In addition, it explains the underlying physical and technological principles of renewable energy and examines the environmental impact and prospects of different energy sources. With more than 350 detailed illustrations, more than 50 tables of data, and a wide range of case studies, Renewable Energy, 2/e is an ideal choice for undergraduate courses in energy, sustainable development, and environmental science. New to the Second Edition ·Full-color design ·Updated to reflect developments in technology, policy, attitides ·Complemented by Energy Systems and Sustainability edited by Godfrey Boyle, Bob Everett and Janet Ramage, all of the Open University, U.K.

  7. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    PubMed

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  8. Ranging Behaviour of Commercial Free-Range Laying Hens

    PubMed Central

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  9. H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center

    NASA Astrophysics Data System (ADS)

    Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Liu, R.; Lohse, T.; Lorentz, M.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Öttl, S.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-10-01

    A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l =-1.5 ° , b =0 ° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

  10. Long-range sound-mediated dark-soliton interactions in trapped atomic condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, A. J.; Jackson, D. P.; Barenghi, C. F.

    2011-01-15

    A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double-well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction.

  11. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  12. Teaching concepts of energy to nigerian children in the 7-11 year-old age range

    NASA Astrophysics Data System (ADS)

    Urevbu, Andrew O.

    This study investigated the level of concept attainment of selected energy concepts for possible inclusion in the Nigerian (Bendel State) Primary Science Project (BPSP). Using an experimental design suggested by Solomon (1949), subjects were taught energy concepts at three levels - descriptive, comparative and quantitative. Results showed that levels of concept comprehension were hierarchical with a signficant decrease in achievement from descriptive to comparative and quantitative concepts. The results of this study suggest the need to describe levels of concept for particular grades in the elementary school curriculum and to match curriculum with thinking strategies of children.

  13. Ranging Behaviour of Commercial Free-Range Laying Hens.

    PubMed

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-04-26

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  14. Energy spectrum of cosmic-ray electrons at TeV energies.

    PubMed

    Aharonian, F; Akhperjanian, A G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Benbow, W; Bernlöhr, K; Boisson, C; Bochow, A; Borrel, V; Braun, I; Brion, E; Brucker, J; Brun, P; Brucker, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L M; Clapson, A C; Coignet, G; Costamante, L; Dalton, M; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Fontaine, G; Füsling, M; Gabici, S; Gallant, Y A; Gérard, L; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jung, I; Katarzyński, K; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Niemiec, J; Nolan, S J; Ohm, S; Olive, J F; de Oña Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tibolla, O; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2008-12-31

    The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  15. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  16. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  17. A general range-separated double-hybrid density-functional theory

    NASA Astrophysics Data System (ADS)

    Kalai, Cairedine; Toulouse, Julien

    2018-04-01

    A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.

  18. Measurement of activation cross-section of long-lived products in deuteron induced nuclear reactions on palladium in the 30-50MeV energy range.

    PubMed

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2017-10-01

    Excitation functions were measured in the 31-49.2MeV energy range for the nat Pd(d,xn) 111,110m,106m,105,104g,103 Ag, nat Pd(d,x) 111m,109,101,100 Pd, nat Pd(d,x), 105,102m,102g,101m,101g,100,99m,99g Rh and nat Pd(d,x) 103,97 Ru nuclear reactions by using the stacked foil irradiation technique. The experimental results are compared with our previous results and with the theoretical predictions calculated with the ALICE-D, EMPIRE-D and TALYS (TENDL libraries) codes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range < 200 keV, far lower than the energy of the majority of photons in the LINAC energy range. In vitro studies were carried to demonstrate the tumoricidal effects of HZ sensitized F98 rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are

  20. Integral neutron kerma coefficient ratios for silicon, iron, and oxygen to carbon on the energy range from 15 to 30 MeV

    NASA Astrophysics Data System (ADS)

    Miranda, Juan Gustavo

    2001-07-01

    Kerma coefficient ratios are reported for carbon to oxygen, silicon, and iron in the energy range of 15 to 30 MeV. The determination was done by measuring dose to the gas of proportional counters exposed to a well characterized neutron field. The measured dose in the proportional counter gas was then converted to dose in the proportional counter wall material applying Bragg-Gray theory. The proportional counters were made of the material of interest. The oxygen measurement was done by irradiating simultaneously zirconium and zirconium oxide proportional counters and substracting the dose to the zirconium from the zirconium oxide. Neutrons were generated with the UW Tandem Accelerator. The reaction 3H(d, n)4 He provided our neutron source which consisted of monoenergetic neutrons. Neutron spectra measurements were carried out for the 27.3 MeV neutron energy. This was necessary because of the presence of contaminating breakup neutrons at this energy. The spectra were measured with a pulse beam time-of-flight spectrometer and a NE-213 liquid scintillator. The dose conversion factor r is reported for carbon, oxygen, silicon, iron, zirconium, and zirconium oxide relative to TE-propane gas at neutron energies of 20, 23 and 27 MeV. The factor r, which relates the dose to the gas to that of the proportional counter through the Bragg-Gray theory, was calculated from angle integrated differential cross sections. This required a calculation of the initial energy spectra as well as the differential secondary charged particle energy spectra and for the first time a complete treatment of all heavy ions is considered. Furthermore, as the conditions required to apply the Bragg-Gray theory are difficult to satisfy (infinitesimal cavity), we report the calculation of the dose conversion factor r for the finite cavity case for carbon/TE-gas in order to test the validity of the application of the theory to this type of applications. We found that the two conditions of the Bragg

  1. A new silicon detector telescope for measuring the linear energy transfer distribution over the range from 0.2 to 400 keV/micrometer in space.

    PubMed

    Doke, T; Hayashi, T; Hasebe, N; Kikuchi, J; Kono, S; Murakami, T; Sakaguchi, T; Takahashi, K; Takashima, T

    1996-12-01

    A new telescope consisting of three two-dimensional position-sensitive silicon detectors which can measure the linear energy transfer (LET) distribution over the range from 0.2 to 400keV/micrometers has been developed as a real-time radiation monitor in manned spacecraft. First, the principle of LET measurement and its design method are described. Second, suitable electronic parameters for the LET measurement are experimentally determined. Finally the telescope performance is investigated by using, relativistic heavy ions. The first in-flight test of this type of telescope on the US Space Shuttle (STS-84) is scheduled for May, 1997.

  2. University of Hawaii Lure Observatory. [lunar laser ranging system construction

    NASA Technical Reports Server (NTRS)

    Carter, W. E.; Williams, J. D.

    1973-01-01

    The University of Hawaii's Institute for Astronomy is currently constructing a lunar laser ranging observatory at the 3050-meter summit of Mt. Haleakala, Hawaii. The Nd YAG laser system to be employed provides three pulses per second, each pulse being approximately 200 picoseconds in duration. The energy contained in one pulse at 5320 A lies in the range from 250 to 350 millijoules. Details of observatory construction are provided together with transmitter design data and information concerning the lunastat, the feed telescope, the relative pointing system, the receiver, and the event timer system.

  3. Rethinking FCV/BEV Vehicle Range: A Consumer Value Trade-off Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhenhong; Greene, David L

    2010-01-01

    The driving range of FCV and BEV is often analyzed by simple analogy to conventional vehicles without proper consideration of differences in energy storage technology, infrastructure, and market context. This study proposes a coherent framework to optimize the driving range by minimizing costs associated with range, including upfront storage cost, fuel availability cost for FCV and range anxiety cost for BEV. It is shown that the conventional assumption of FCV range can lead to overestimation of FCV market barrier by over $8000 per vehicle in the near-term market. Such exaggeration of FCV market barrier can be avoided with range optimization.more » Compared to the optimal BEV range, the 100-mile range chosen by automakers appears to be near optimal for modest drivers, but far less than optimal for frequent drivers. With range optimization, the probability that the BEV is unable to serve a long-trip day is generally less than 5%, depending on driving intensity. Range optimization can help diversify BEV products for different consumers. It is also demonstrated and argued that the FCV/BEV range should adapt to the technology and infrastructure developments.« less

  4. The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Anne; Shepelsky, Dmitry

    2015-01-01

    We present an inverse scattering transform (IST) approach for the (differentiated) Ostrovsky-Vakhnenko equation This equation can also be viewed as the short wave model for the Degasperis-Procesi (sDP) equation. Our IST approach is based on an associated Riemann-Hilbert problem, which allows us to give a representation for the classical (smooth) solution, to get the principal term of its long time asymptotics, and also to describe loop soliton solutions. Dedicated to Johannes Sjöstrand with gratitude and admiration.

  5. Super-ranging. A new ranging strategy in European badgers.

    PubMed

    Gaughran, Aoibheann; Kelly, David J; MacWhite, Teresa; Mullen, Enda; Maher, Peter; Good, Margaret; Marples, Nicola M

    2018-01-01

    We monitored the ranging of a wild European badger (Meles meles) population over 7 years using GPS tracking collars. Badger range sizes varied seasonally and reached their maximum in June, July and August. We analysed the summer ranging behaviour, using 83 home range estimates from 48 individuals over 6974 collar-nights. We found that while most adult badgers (males and females) remained within their own traditional social group boundaries, several male badgers (on average 22%) regularly ranged beyond these traditional boundaries. These adult males frequently ranged throughout two (or more) social group's traditional territories and had extremely large home ranges. We therefore refer to them as super-rangers. While ranging across traditional boundaries has been recorded over short periods of time for extraterritorial mating and foraging forays, or for pre-dispersal exploration, the animals in this study maintained their super-ranges from 2 to 36 months. This study represents the first time such long-term extra-territorial ranging has been described for European badgers. Holding a super-range may confer an advantage in access to breeding females, but could also affect local interaction networks. In Ireland & the UK, badgers act as a wildlife reservoir for bovine tuberculosis (TB). Super-ranging may facilitate the spread of disease by increasing both direct interactions between conspecifics, particularly across social groups, and indirect interactions with cattle in their shared environment. Understanding super-ranging behaviour may both improve our understanding of tuberculosis epidemiology and inform future control strategies.

  6. Super-ranging. A new ranging strategy in European badgers

    PubMed Central

    Kelly, David J.; Good, Margaret; Marples, Nicola M.

    2018-01-01

    We monitored the ranging of a wild European badger (Meles meles) population over 7 years using GPS tracking collars. Badger range sizes varied seasonally and reached their maximum in June, July and August. We analysed the summer ranging behaviour, using 83 home range estimates from 48 individuals over 6974 collar-nights. We found that while most adult badgers (males and females) remained within their own traditional social group boundaries, several male badgers (on average 22%) regularly ranged beyond these traditional boundaries. These adult males frequently ranged throughout two (or more) social group’s traditional territories and had extremely large home ranges. We therefore refer to them as super-rangers. While ranging across traditional boundaries has been recorded over short periods of time for extraterritorial mating and foraging forays, or for pre-dispersal exploration, the animals in this study maintained their super-ranges from 2 to 36 months. This study represents the first time such long-term extra-territorial ranging has been described for European badgers. Holding a super-range may confer an advantage in access to breeding females, but could also affect local interaction networks. In Ireland & the UK, badgers act as a wildlife reservoir for bovine tuberculosis (TB). Super-ranging may facilitate the spread of disease by increasing both direct interactions between conspecifics, particularly across social groups, and indirect interactions with cattle in their shared environment. Understanding super-ranging behaviour may both improve our understanding of tuberculosis epidemiology and inform future control strategies. PMID:29444100

  7. Analysis of optical scheme for medium-range directed energy laser weapon system

    NASA Astrophysics Data System (ADS)

    Jabczyński, Jan K.; Kaśków, Mateusz; Gorajek, Łukasz; Kopczyński, Krzysztof

    2017-10-01

    The relations between range of operation and aperture of laser weapon system were investigated, taking into account diffraction and technical limitations as beam quality, accuracy of point tracking, technical quality of optical train, etc. As a result for the medium ranges of 1 - 2 km we restricted the analysis to apertures not wider than 150 mm and the optical system without adaptive optics. To choose the best laser beam shape, the minimization of aperture losses and thermooptical effects inside optics as well as the effective width of laser beam in far field should be taken into account. We have analyzed theoretically such a problem for the group of a few most interesting from that point of view profiles including for reference two limiting cases of Gaussian beam and `top hat' profile. We have found that the most promising is the SuperGaussian profile of index p = 2 for which the surfaces of beam shaper elements can be manufactured in the acceptable cost-effective way and beam quality does not decrease noticeably. Further, we have investigated the thermo-optic effects on the far field parameters of Gaussian and `top hat' beams to determine the influence of absorption in optical elements on beam quality degradation. The simplified formulae were derived for beam quality measures (parameter M2 and Strehl ratio) which enables to estimate the influence of absorption losses on degradation of beam quality.

  8. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  9. Stopping power and range calculations in human tissues by using the Hartree-Fock-Roothaan wave functions

    NASA Astrophysics Data System (ADS)

    Usta, Metin; Tufan, Mustafa Çağatay

    2017-11-01

    The object of this work is to present the consequences for the stopping power and range values of some human tissues at energies ranging from 1 MeV to 1 GeV and 1-500 MeV, respectively. The considered human tissues are lung, intestine, skin, larynx, breast, bladder, prostate and ovary. In this work, the stopping power is calculated by considering the number of velocity-dependent effective charge and effective mean excitation energies of the target material. We used the Hartree-Fock-Roothaan (HFR) atomic wave function to determine the charge density and the continuous slowing down approximation (CSDA) method for the calculation of the proton range. Electronic stopping power values of tissues results have been compared with the ICRU 44, 46 reports, SRIM, Janni and CasP data over the percent error rate. Range values relate to tissues have compared the range results with the SRIM, FLUKA and Geant4 data. For electronic stopping power results, ICRU, SRIM and Janni's data indicated the best fit with our values at 1-50, 50-250 MeV and 250 MeV-1 GeV, respectively. For range results, the best accordance with the calculated values have been found the SRIM data and the error level is less than 10% in proton therapy. However, greater 30% errors were observed in the 250 MeV and over energies.

  10. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    NASA Astrophysics Data System (ADS)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  11. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    PubMed

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  12. The Effect of Post-Burst Energy on Exploding Bridgewire Output

    NASA Astrophysics Data System (ADS)

    Lee, Elizabeth; Bowden, Mike

    2015-06-01

    For an EBW detonator, as the fireset energy is increased from threshold to all-fire level the post-burst energy delivered to the detonator increases, and the function times decrease. To gain an understanding of the processes through which the post-burst electrical energy influences the function times the effect of the post-burst energy on the explosion of bridgewires was studied. A fireset was developed which enabled the post-burst energy to be varied independent of the burst energy by terminating the current flow at pre-selected times. The effect of this on the bridgewires was characterised at a range of firing voltages and a range of termination times. The response of the bridgewire was characterised using Photonic Doppler Velocimetry. The velocimetry trace detected two families of velocities. The first family had initial velocities in the range 1-2 km.s-1 and the second family had velocities in the range 0-0.5 km.s-1. The relative position of the two families depended on the post burst energy. The results show that a reduction in the post-burst energy and therefore the total delivered energy, but for a constant energy delivered to burst, corresponds to a decrease in the acceleration and peak velocity of the bridgewire / plasma at burst.

  13. On the Monte Carlo simulation of electron transport in the sub-1 keV energy range.

    PubMed

    Thomson, Rowan M; Kawrakow, Iwan

    2011-08-01

    The validity of "classic" Monte Carlo (MC) simulations of electron and positron transport at sub-1 keV energies is investigated in the context of quantum theory. Quantum theory dictates that uncertainties on the position and energy-momentum four-vectors of radiation quanta obey Heisenberg's uncertainty relation; however, these uncertainties are neglected in "classical" MC simulations of radiation transport in which position and momentum are known precisely. Using the quantum uncertainty relation and electron mean free path, the magnitudes of uncertainties on electron position and momentum are calculated for different kinetic energies; a validity bound on the classical simulation of electron transport is derived. In order to satisfy the Heisenberg uncertainty principle, uncertainties of 5% must be assigned to position and momentum for 1 keV electrons in water; at 100 eV, these uncertainties are 17 to 20% and are even larger at lower energies. In gaseous media such as air, these uncertainties are much smaller (less than 1% for electrons with energy 20 eV or greater). The classical Monte Carlo transport treatment is questionable for sub-1 keV electrons in condensed water as uncertainties on position and momentum must be large (relative to electron momentum and mean free path) to satisfy the quantum uncertainty principle. Simulations which do not account for these uncertainties are not faithful representations of the physical processes, calling into question the results of MC track structure codes simulating sub-1 keV electron transport. Further, the large difference in the scale at which quantum effects are important in gaseous and condensed media suggests that track structure measurements in gases are not necessarily representative of track structure in condensed materials on a micrometer or a nanometer scale.

  14. Energy expenditure in caving

    PubMed Central

    Antoni, Giorgia; Marini, Elisabetta; Curreli, Nicoletta; Tuveri, Valerio; Comandini, Ornella; Cabras, Stefano; Gabba, Silvia; Madeddu, Clelia; Crisafulli, Antonio

    2017-01-01

    The aim of this study was to determine the energy expenditure of a group of cavers of both genders and different ages and experience during a 10 hour subterranean exploration, using portable metabolimeters. The impact of caving activity on body composition and hydration were also assessed through bioelectrical impedance, and nutritional habits of cavers surveyed. During cave activity, measured total energy expenditure (TEE) was in the range 225–287 kcal/h for women-men (MET = 4.1), respectively; subjects had an energy intake from food in the range 1000–1200 kcal, thus inadequate to restore lost calories. Bayesian statistical analysis estimated the effect of predictive variables on TEE, revealing that experienced subjects had a 5% lower TEE than the less skilled ones and that women required a comparatively larger energy expenditure than men to perform the same task. BIVA (bioelectrical impedance vector analysis) showed that subjects were within the range of normal hydration before and after cave activity, but bioelectrical changes indicated a reduction of extracellular water in men, which might result in hypo-osmolal dehydration in the case of prolonged underground exercise. All these facts should be considered when planning cave explorations, preparing training programs for subjects practising caving, and optimizing a diet for cavers. Further, information gathered through this study could be of value to reduce accidents in caves related to increase in fatigue. PMID:28158208

  15. Energy expenditure in caving.

    PubMed

    Antoni, Giorgia; Marini, Elisabetta; Curreli, Nicoletta; Tuveri, Valerio; Comandini, Ornella; Cabras, Stefano; Gabba, Silvia; Madeddu, Clelia; Crisafulli, Antonio; Rinaldi, Andrea C

    2017-01-01

    The aim of this study was to determine the energy expenditure of a group of cavers of both genders and different ages and experience during a 10 hour subterranean exploration, using portable metabolimeters. The impact of caving activity on body composition and hydration were also assessed through bioelectrical impedance, and nutritional habits of cavers surveyed. During cave activity, measured total energy expenditure (TEE) was in the range 225-287 kcal/h for women-men (MET = 4.1), respectively; subjects had an energy intake from food in the range 1000-1200 kcal, thus inadequate to restore lost calories. Bayesian statistical analysis estimated the effect of predictive variables on TEE, revealing that experienced subjects had a 5% lower TEE than the less skilled ones and that women required a comparatively larger energy expenditure than men to perform the same task. BIVA (bioelectrical impedance vector analysis) showed that subjects were within the range of normal hydration before and after cave activity, but bioelectrical changes indicated a reduction of extracellular water in men, which might result in hypo-osmolal dehydration in the case of prolonged underground exercise. All these facts should be considered when planning cave explorations, preparing training programs for subjects practising caving, and optimizing a diet for cavers. Further, information gathered through this study could be of value to reduce accidents in caves related to increase in fatigue.

  16. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  17. Forest biomass-based energy

    Treesearch

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  18. New test of the equivalence principle from lunar laser ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Dicke, R. H.; Bender, P. L.; Alley, C. O.; Currie, D. G.; Carter, W. E.; Eckhardt, D. H.

    1976-01-01

    An analysis of six years of lunar-laser-ranging data gives a zero amplitude for the Nordtvedt term in the earth-moon distance yielding the Nordtvedt parameter eta = 0.00 plus or minus 0.03. Thus, earth's gravitational self-energy contributes equally, plus or minus 3%, to its inertial mass and passive gravitational mass. At the 70% confidence level this result is only consistent with the Brans-Dicke theory for omega greater than 29. We obtain the absolute value of beta - 1 less than about 0.02 to 0.05 for five-parameter parametrized post-Newtonian theories of gravitation with energy-momentum conservation.

  19. Energy harvesting: small scale energy production from ambient sources

    NASA Astrophysics Data System (ADS)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  20. Studies of hot B subdwarfs. II - Energy distributions of three bright sdB/sdOB stars in the 950-5500 A range

    NASA Technical Reports Server (NTRS)

    Wesemael, F.; Veilleux, S.; Lamontagne, R.; Fontaine, G.; Holberg, J. B.

    1985-01-01

    Voyager ultraviolet spectrometer observations of the subdwarf B or OB stars HD 205805, UV 1758+36 and Feige 66 are presented. All three objects display the H I Layman series in absorption. These observations are combined with low dispersion IUE spectrophotometry and with Stromgren photometry to construct virtually complete energy distributions, which extend over the range 950-5500 angstroms. Effective temperatures based on model atmosphere calculations for high gravity, hygrogen rich stars are determined. Our analyses yield T sub e 28,200 + or - 1300 K for HD 205805, T sub e 31, 800 + or - 1100 K for UV 1758+36, and T sub e 35,700 + or 1500 K for Feige 66. The importance of far ultraviolet observations below L sub alpha in reducing the uncertainties associated with the interstellar extinction and the degradation of the IUE sensitivity is emphasized.

  1. Charpy Impact Energy and Microindentation Hardness of 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2012-01-01

    60-NITINOL (60 wt.% Ni 40 wt.% Ti) is being studied as a material for advanced aerospace components. The Charpy impact energy and microindentation hardness has been studied for this material, fabricated by vacuum induction skull melting (casting) and by hot isostatic pressing. Test specimens were prepared in various hardened and annealed heat treatment conditions. The average impact energy ranged from 0.33 to 0.49J for the hardened specimens while the annealed specimens had impact energies ranging from 0.89 to 1.18J. The average hardness values of the hardened specimens ranged from 590 to 676 HV while that of the annealed specimens ranged from 298 to 366 HV, suggesting an inverse relationship between impact energy and hardness. These results are expected to provide guidance in the selection of heat treatment processes for the design of mechanical components.

  2. Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection

    NASA Astrophysics Data System (ADS)

    Udani, Janav P.; Arrieta, Andres F.

    2017-11-01

    Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.

  3. SU-E-T-75: A Simple Technique for Proton Beam Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgdorf, B; Kassaee, A; Garver, E

    2015-06-15

    Purpose: To develop a measurement-based technique to verify the range of proton beams for quality assurance (QA). Methods: We developed a simple technique to verify the proton beam range with in-house fabricated devices. Two separate devices were fabricated; a clear acrylic rectangular cuboid and a solid polyvinyl chloride (PVC) step wedge. For efficiency in our clinic, we used the rectangular cuboid for double scattering (DS) beams and the step wedge for pencil beam scanning (PBS) beams. These devices were added to our QA phantom to measure dose points along the distal fall-off region (between 80% and 20%) in addition tomore » dose at mid-SOBP (spread out Bragg peak) using a two-dimensional parallel plate chamber array (MatriXX™, IBA Dosimetry, Schwarzenbruck, Germany). This method relies on the fact that the slope of the distal fall-off is linear and does not vary with small changes in energy. Using a multi-layer ionization chamber (Zebra™, IBA Dosimetry), percent depth dose (PDD) curves were measured for our standard daily QA beams. The range (energy) for each beam was then varied (i.e. ±2mm and ±5mm) and additional PDD curves were measured. The distal fall-off of all PDD curves was fit to a linear equation. The distal fall-off measured dose for a particular beam was used in our linear equation to determine the beam range. Results: The linear fit of the fall-off region for the PDD curves, when varying the range by a few millimeters for a specific QA beam, yielded identical slopes. The calculated range based on measured point dose(s) in the fall-off region using the slope resulted in agreement of ±1mm of the expected beam range. Conclusion: We developed a simple technique for accurately verifying the beam range for proton therapy QA programs.« less

  4. Effects of Low-Energy Excitations on Spectral Properties at Higher Binding Energy: The Metal-Insulator Transition of VO2

    NASA Astrophysics Data System (ADS)

    Gatti, Matteo; Panaccione, Giancarlo; Reining, Lucia

    2015-03-01

    The effects of electron interaction on spectral properties can be understood in terms of coupling between excitations. In transition-metal oxides, the spectral function close to the Fermi level and low-energy excitations between d states have attracted particular attention. In this work we focus on photoemission spectra of vanadium dioxide over a wide (10 eV) range of binding energies. We show that there are clear signatures of the metal-insulator transition over the whole range due to a cross coupling of the delocalized s and p states with low-energy excitations between the localized d states. This coupling can be understood by advanced calculations based on many-body perturbation theory in the G W approximation. We also advocate the fact that tuning the photon energy up to the hard-x-ray range can help to distinguish fingerprints of correlation from pure band-structure effects.

  5. Neutron production during the interaction of monoenergetic electrons with a Tungsten foil in the radiotherapeutic energy range

    NASA Astrophysics Data System (ADS)

    Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene

    2017-10-01

    The electron, photon, and neutron spectra produced during the interaction between monoenergetic electron beams (8, 10, 12, 15, and 18 MeV) and a 0.05 cm-thick tungsten scattering foil were estimated using Monte Carlo method. Incoming electrons is a pencil beam that after collide with the foil acquires a broader distribution peaked in the same direction of the incoming electrons. Electron spectra show the influence of the binding energy of electrons in the tungsten shells and the increase of the electron fluence. In the interaction between the electrons in the beam and the tungsten atoms in the foil, bremsstrahlung and characteristic photons are produced. These photons are also peaked in the same direction of the incoming beam, and the electron fluence increases as the energy of the electron beam raises. The electron and photon spectra have particles whose energy is larger than the binding energy of neutron in the nucleus. Thus neutron production was noticed for 10, 12, 15, and 18 MeV electron beam. The neutron fluence becomes larger as the energy of the electron beam increases, the neutron spectra are mainly evaporation neutrons for 10 and 12 MeV, and for 15 and 18 MeV knock-on neutrons are also produced. Neutrons are produced in the foil volume having a quasi-isotropic distribution.

  6. Solar energy in the context of energy use, energy transportation and energy storage.

    PubMed

    MacKay, David J C

    2013-08-13

    Taking the UK as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the area involved in collecting, converting and delivering sustainable energy, looking in particular detail at the potential role of solar power. Britain consumes energy at a rate of about 5000 watts per person, and its population density is about 250 people per square kilometre. If we multiply the per capita energy consumption by the population density, then we obtain the average primary energy consumption per unit area, which for the UK is 1.25 watts per square metre. This areal power density is uncomfortably similar to the average power density that could be supplied by many renewables: the gravitational potential energy of rainfall in the Scottish highlands has a raw power per unit area of roughly 0.24 watts per square metre; energy crops in Europe deliver about 0.5 watts per square metre; wind farms deliver roughly 2.5 watts per square metre; solar photovoltaic farms in Bavaria, Germany, and Vermont, USA, deliver 4 watts per square metre; in sunnier locations, solar photovoltaic farms can deliver 10 watts per square metre; concentrating solar power stations in deserts might deliver 20 watts per square metre. In a decarbonized world that is renewable-powered, the land area required to maintain today's British energy consumption would have to be similar to the area of Britain. Several other high-density, high-consuming countries are in the same boat as Britain, and many other countries are rushing to join us. Decarbonizing such countries will only be possible through some combination of the following options: the embracing of country-sized renewable power-generation facilities; large-scale energy imports from country-sized renewable facilities in other countries; population reduction; radical efficiency improvements and lifestyle changes; and the growth of non-renewable low

  7. CHARLES SHELDON ANTELOPE RANGE AND SHELDON NATIONAL ANTELOPE REFUGE, NEVADA AND OREGON.

    USGS Publications Warehouse

    Cathrall, J.B.; Tuchek, E.T.

    1984-01-01

    A mineral survey of the Charles Sheldon Antelope Range and Sheldon National Antelope Refuge, in Humboldt and Washoe Counties, Nevada, and Lake and Harney Counties, Oregon, was conducted. The investigation identified areas of mineral-resource potential within the range and refuge. The range and refuge have areas of substantiated resource potential for precious opal and uranium, a demonstrated resource of decorative building stone, and areas with probable resource potential for mercury and for base- and precious-metal sulfide deposits. Reservoir temperatures, estimated from the analysis of thermal springs, indicate that a probable potential for geothermal resources exists in two areas in the range. No other energy resources were identitied in the area.

  8. Density of states and magnetotransport in Weyl semimetals with long-range disorder

    NASA Astrophysics Data System (ADS)

    Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.

    2015-11-01

    We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.

  9. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    PubMed Central

    Hwang, Jenn-Jiang; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771

  10. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  11. Orbital Debris Assesment Tesing in the AEDC Range G

    NASA Technical Reports Server (NTRS)

    Polk, Marshall; Woods, David; Roebuck, Brian; Opiela, John; Sheaffer, Patti; Liou, J.-C.

    2015-01-01

    The space environment presents many hazards for satellites and spacecraft. One of the major hazards is hypervelocity impacts from uncontrolled man-made space debris. Arnold Engineering Development Complex (AEDC), The National Aeronautics and Space Administration (NASA), The United States Air Force Space and Missile Systems Center (SMC), the University of Florida, and The Aerospace Corporation configured a large ballistic range to perform a series of hypervelocity destructive impact tests in order to better understand the effects of space collisions. The test utilized AEDC's Range G light gas launcher, which is capable of firing projectiles up to 7 km/s. A non-functional full-scale representation of a modern satellite called the DebriSat was destroyed in the enclosed range enviroment. Several modifications to the range facility were made to ensure quality data was obtained from the impact events. The facility modifcations were intended to provide a high impact energy to target mass ratio (>200 J/g), a non-damaging method of debris collection, and an instrumentation suite capable of providing information on the physics of the entire imapct event.

  12. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  13. 76 FR 53119 - High Energy Physics Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  14. Long-range and short-range dihadron angular correlations in central PbPb collisions at sqrt {{{s_{text{NN}}}}} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hänsel, S.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, J.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Cortina Gil, E.; De Favereau De Jeneret, J.; Delaere, C.; Favart, D.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.; Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.; Cabrera, A.; Moreno, B. Gomez; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.; Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Khalil, S.; Mahmoud, M. A.; Hektor, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Azzolini, V.; Eerola, P.; Fedi, G.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; Van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; LeGrand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Lomidze, D.; Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.; Ata, M.; Bender, W.; Dietz-Laursonn, E.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Bontenackels, M.; Davids, M.; Duda, M.; Flügge, G.; Geenen, H.; Giffels, M.; Haj Ahmad, W.; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.; Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Pitzl, D.; Raspereza, A.; Raval, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schröder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Stiliaris, E.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.; Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J. B.; Singh, S. P.; Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gomber, B.; Gupta, P.; Jain, S.; Jain, S.; Khurana, R.; Kumar, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Mondal, N. K.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.; Azzia, P.; Bacchetta, N.; Bellan, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Branca, A.; Checchia, P.; De Mattia, M.; Dorigo, T.; Gasparini, F.; Gonella, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Passaseo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.; Biasini, M.; Bilei, G. M.; Caponeri, B.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foò, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.; Heo, S. G.; Nam, S. K.; Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D.; Son, D. C.; Son, T.; Kim, Zero; Kim, J. Y.; Song, S.; Choi, S.; Hong, B.; Jeong, M. S.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.; Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Tam, J.; Butler, P. H.; Doesburg, R.; Silverwood, H.; Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Varela, J.; Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Caballero, I. Gonzalez; Lloret Iglesias, L.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Coarasa Perez, J. A.; Curé, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Gomez-Reino Garrido, R.; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Racz, A.; Rodrigues Antunes, J.; Rolandi, G.; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tadel, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Bortignon, P.; Caminada, L.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Martinez Ruiz del Arbol, P.; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M.-C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.; Aguiló, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.; Chang, Y. H.; Chen, K. H.; Dutta, S.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Ekenel, A.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Yilmaz, S.; Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.; Deliomeroglu, M.; Demir, D.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.; Basso, L.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.; Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.; Hatakeyama, K.; Liu, H.; Bose, T.; Carrera Jarrin, E.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; T, W.; Vlimant, J. R.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.; Agostino, L.; Alexander, J.; Cassel, D.; Chatterjee, A.; Das, S.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Biselli, A.; Cirino, G.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.; Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.; Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hamdan, S.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.; Barfuss, A. f.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y.-J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Cushman, P.; Dahmes, B.; DeBenedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.; Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Lopes Pegna, D.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Jindal, P.; Parashar, N.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Yan, M.; Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Mattson, M.; Milstène, C.; Sakharov, A.; Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Flood, K.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Palmonari, F.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.

    2011-07-01

    First measurements of dihadron correlationsfor charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76TeV over a broad range in relative pseudorapidity (∆η) and the full range of relative azimuthal angle (∆ϕ). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (∆ϕ ≈ π) azimuthal correlation is observed at all ∆η, as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in ∆η are observed for particles with similar ϕ values. This phenomenon, also known as the "ridge", persists up to at least |∆η| = 4. For particles with transverse momenta ( p T) of2-4 GeV/ c, the ridge is found to be most prominent when these particles are correlated with particles of p T = 2-6 GeV/ c, and to be much reduced when paired with particles of p T = 10-12 GeV/ c.

  15. Singular dynamics and emergence of nonlocality in long-range quantum models

    NASA Astrophysics Data System (ADS)

    Lepori, L.; Trombettoni, A.; Vodola, D.

    2017-03-01

    We discuss how nonlocality originates in long-range quantum systems and how it affects their dynamics at and out of equilibrium. We focus in particular on the Kitaev chains with long-range pairings and on the quantum Ising chain with long-range antiferromagnetic coupling (both having a power-law decay with exponent α). By studying the dynamic correlation functions, we find that for every finite α two different behaviours can be identified, one typical of short-range systems and the other connected with locality violation. The latter behaviour is shown related also with the known power-law decay tails previously observed in the static correlation functions, and originated by modes—having in general energies far from the minima of the spectrum—where particular singularities develop as a consequence of the long-rangedness of the system. We refer to these modes as to ‘singular’ modes, and as to ‘singular dynamics’ to their dynamics. For the Kitaev model they are manifest, at finite α, in derivatives of the quasiparticle energy, the order of the derivatives at which the singularity occurs is increasing with α. The features of the singular modes and their physical consequences are clarified by studying an effective theory for them and by a critical comparison of the results from this theory with the lattice ones. Moreover, a numerical study of the effects of the singular modes on the time evolution after various types of global quenches is performed. We finally present and discuss the presence of singular modes and their consequences in interacting long-range systems by investigating in the long-range Ising quantum chain, both in the deep paramagnetic regime and at criticality, where they also play a central role for the breakdown of conformal invariance.

  16. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  17. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  18. Validation and verification of the laser range safety tool (LRST)

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Keppler, Kenneth S.; Thomas, Robert J.; Polhamus, Garrett D.; Smith, Peter A.; Trevino, Javier O.; Seaman, Daniel V.; Gallaway, Robert A.; Crockett, Gregg A.

    2003-06-01

    The U.S. Dept. of Defense (DOD) is currently developing and testing a number of High Energy Laser (HEL) weapons systems. DOD range safety officers now face the challenge of designing safe methods of testing HEL's on DOD ranges. In particular, safety officers need to ensure that diffuse and specular reflections from HEL system targets, as well as direct beam paths, are contained within DOD boundaries. If both the laser source and the target are moving, as they are for the Airborne Laser (ABL), a complex series of calculations is required and manual calculations are impractical. Over the past 5 years, the Optical Radiation Branch of the Air Force Research Laboratory (AFRL/HEDO), the ABL System Program Office, Logicon-RDA, and Northrup-Grumman, have worked together to develop a computer model called teh Laser Range Safety Tool (LRST), specifically designed for HEL reflection hazard analyses. The code, which is still under development, is currently tailored to support the ABL program. AFRL/HEDO has led an LRST Validation and Verification (V&V) effort since 1998, in order to determine if code predictions are accurate. This paper summarizes LRST V&V efforts to date including: i) comparison of code results with laboratory measurements of reflected laser energy and with reflection measurements made during actual HEL field tests, and ii) validation of LRST's hazard zone computations.

  19. Energy in a Planetary Context

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2017-01-01

    The potential present day habitability of solar system bodies beyond Earth is limited to subsurface environments, where the availability of energy in biologically useful form is a paramount consideration. Energy availability is commonly quantified in terms of molar Gibbs energy changes for metabolisms of interest, but this can provide an incomplete and even misleading picture. A second aspect of life's requirement for energy - the rate of delivery, or power - strongly influences habitability, biomass abundance, growth rates, and, ultimately, rates of evolution. We are developing an approach to quantify metabolic power, using a cell-scale reactive transport model in which physical and chemical environmental parameters are varied. Simultaneously, we evaluate cell-specific energy flux requirements and their dependence on environmental "extremes". Comparison of metabolic power supply and demand provides a constraint on how biomass abundance varies across a range of environmental parameters, and thereby a prediction of the relative habitability of different environments. We are evaluating the predictive capability of this approach through comparison to observed distributions of microbial abundance in a range of subsurface (predominantly serpentinizing) systems.

  20. Simultaneous determination of interfacial energy and growth activation energy from induction time measurements

    NASA Astrophysics Data System (ADS)

    Shiau, Lie-Ding; Wang, Hsu-Pei

    2016-05-01

    A model is developed in this work to calculate the interfacial energy and growth activation energy of a crystallized substance from induction time data without the knowledge of the actual growth rate. Induction time data for αL-glutamic acid measured with a turbidity probe for various supersaturations at temperatures from 293 to 313 K are employed to verify the developed model. In the model a simple empirical growth rate with growth order 2 is assumed because experiments are conducted at low supersaturation. The results indicate for αL-glutamic acid that the growth activation energy is 39 kJ/mol, which suggests that the growth rate of small nuclei in the agitated induction time experiments is integration controlled. The interfacial energy obtained from the current model is in the range of 5.2-7.4 mJ/m2, which is slightly greater than that obtained from the traditional method (ti-1∝J) for which the value is in the range 4.1-5.7 mJ/m2.

  1. Ranging Behaviour of Commercial Free-Range Broiler Chickens 2: Individual Variation

    PubMed Central

    Groves, Peter J.; Rault, Jean-Loup

    2017-01-01

    Simple Summary Although the consumption of free-range chicken meat has increased, little is known about the ranging behaviour of meat chickens on commercial farms. Studies suggest range use is low and not all chickens access the range when given the opportunity. Whether ranging behaviour differs between individuals within a flock remains largely unknown and may have consequences for animal welfare and management. We monitored individual chicken ranging behaviour from four mixed sex flocks on a commercial farm across two seasons. Not all chickens accessed the range. We identified groups of chickens that differed in ranging behaviour (classified by frequency of range visits): chickens that accessed the range only once, low frequency ranging chickens and high frequency ranging chickens, the latter accounting for one-third to one half of all range visits. Sex was not predictive of whether a chicken would access the range or the number of range visits, but males spent more time on the range in winter. We found evidence that free-range chicken ranging varies between individuals within the same flock on a commercial farm. Whether such variation in ranging behaviour relates to variation in chicken welfare remains to be investigated. Abstract Little is known about broiler chicken ranging behaviour. Previous studies have monitored ranging behaviour at flock level but whether individual ranging behaviour varies within a flock is unknown. Using Radio Frequency Identification technology, we tracked 1200 individual ROSS 308 broiler chickens across four mixed sex flocks in two seasons on one commercial farm. Ranging behaviour was tracked from first day of range access (21 days of age) until 35 days of age in winter flocks and 44 days of age in summer flocks. We identified groups of chickens that differed in frequency of range visits: chickens that never accessed the range (13 to 67% of tagged chickens), low ranging chickens (15 to 44% of tagged chickens) that accounted for <15

  2. Analytical Solution of a Generalized Hirota-Satsuma Equation

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Mabrouk, S.; Abd-el-Malek, M.

    A modified version of generalized Hirota-Satsuma is here solved using a two parameter group transformation method. This problem in three dimensions was reduced by Estevez [1] to a two dimensional one through a Lie transformation method and left unsolved. In the present paper, through application of symmetry transformation the Lax pair has been reduced to a system of ordinary equations. Three transformations cases are investigated. The obtained analytical solutions are plotted and show a profile proper to deflagration processes, well described by Degasperis-Procesi equation.

  3. Estimating the HVAC energy consumption of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Kambly, Kiran R.; Bradley, Thomas H.

    2014-08-01

    Plug in electric vehicles are vehicles that use energy from the electric grid to provide tractive and accessory power to the vehicle. Due to the limited specific energy of energy storage systems, the energy requirements of heating, ventilation, and air conditioning (HVAC) systems for cabin conditioning can significantly reduce their range between charges. Factors such as local ambient temperature, local solar radiation, local humidity, length of the trip and thermal soak have been identified as primary drivers of cabin conditioning loads and therefore of vehicle range. The objective of this paper is to develop a detailed systems-level approach to connect HVAC technologies and usage conditions to consumer-centric metrics of vehicle performance including energy consumption and range. This includes consideration of stochastic and transient inputs to the HVAC energy consumption model including local weather, solar loads, driving behavior, charging behavior, and regional passenger fleet population. The resulting engineering toolset is used to determine the summation of and geographical distribution of energy consumption by HVAC systems in electric vehicles, and to identify regions of US where the distributions of electric vehicle range are particularly sensitive to climate.

  4. Energy intake and sources of energy intake in the European Prospective Investigation into Cancer and Nutrition.

    PubMed

    Ocké, M C; Larrañaga, N; Grioni, S; van den Berg, S W; Ferrari, P; Salvini, S; Benetou, V; Linseisen, J; Wirfält, E; Rinaldi, S; Jenab, M; Halkjaer, J; Jakobsen, M U; Niravong, M; Clavel-Chapelon, F; Kaaks, R; Bergmann, M; Moutsiou, E; Trichopoulou, A; Lauria, C; Sacerdote, C; Bueno-de-Mesquita, H B; Peeters, P H M; Hjartåker, A; Parr, C L; Tormo, M J; Sanchez, M J; Manjer, J; Hellstrom, V; Mulligan, A; Spencer, E A; Riboli, E; Bingham, S; Slimani, N

    2009-11-01

    To describe energy intake and its macronutrient and food sources among 27 regions in 10 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Between 1995 and 2000, 36 034 subjects aged 35-74 years were administered a standardized 24-h dietary recall. Intakes of macronutrients (g/day) and energy (kcal/day) were estimated using standardized national nutrient databases. Mean intakes were weighted by season and day of the week and were adjusted for age, height and weight, after stratification by gender. Extreme low- and high-energy reporters were identified using Goldberg's cutoff points (ratio of energy intake and estimated basal metabolic rate <0.88 or >2.72), and their effects on macronutrient and energy intakes were studied. Low-energy reporting was more prevalent in women than in men. The exclusion of extreme-energy reporters substantially lowered the EPIC-wide range in mean energy intake from 2196-2877 to 2309-2866 kcal among men. For women, these ranges were 1659-2070 and 1873-2108 kcal. There was no north-south gradient in energy intake or in the prevalence of low-energy reporting. In most centres, cereals and cereal products were the largest contributors to energy intake. The food groups meat, dairy products and fats and oils were also important energy sources. In many centres, the highest mean energy intakes were observed on Saturdays. These data highlight and quantify the variations and similarities in energy intake and sources of energy intake among 10 European countries. The prevalence of low-energy reporting indicates that the study of energy intake is hampered by the problem of underreporting.

  5. A comparative study of optimum and suboptimum direct-detection laser ranging receivers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1978-01-01

    A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.

  6. Understanding the human dimensions of a sustainable energy transition.

    PubMed

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes.

  7. Understanding the human dimensions of a sustainable energy transition

    PubMed Central

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people’s perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705

  8. The effect of post-burst energy on exploding bridgewire output

    NASA Astrophysics Data System (ADS)

    Lee, Elizabeth; Bowden, Mike

    2017-01-01

    For an EBW detonator, as the fireset energy is increased from threshold to all-fire level the post-burst energy delivered to the detonator increases, and the function times decrease. To gain an understanding of the processes through which the post-burst electrical energy influences the function times the effect of the post-burst energy on the explosion of bridgewires was studied. A fireset was developed which enabled the post-burst energy to be varied independently of the burst energy by terminating the current flow at pre-selected times. The effect of this on the bridgewires was characterized at a range of firing voltages and a range of termination times. The expansion and explosion of the bridgewire was characterized using Photonic Doppler Velocimetry. The velocimetry trace detected two families of velocities. The first family had initial velocities in the range 1-2 km.s-1 and the second family had velocities in the range 0-0.5 km.s-1. The relative position of the two families depended on the post burst energy. The results show that a reduction in the post-burst energy corresponds to a decrease in the acceleration and peak velocity of the bridgewire / plasma at burst.

  9. Techniques for precise energy calibration of particle pixel detectors

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  10. Techniques for precise energy calibration of particle pixel detectors.

    PubMed

    Kroupa, M; Campbell-Ricketts, T; Bahadori, A; Empl, A

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  11. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system.

    PubMed

    Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji

    2016-04-01

    Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors' facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. The results of this study demonstrate that the authors' range check system is capable of quick and easy range verification with sufficient accuracy.

  12. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator blockmore » and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.« less

  13. Energy Production Demonstrator for Megawatt Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronskikh, Vitaly S.; Mokhov, Nikolai V.; Novitski, Igor

    2014-07-16

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton acceleratormore » facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.« less

  14. Study of the γ/p discrimination at ∼100 TeV energy range with LHAASO experiment

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Wang, Zhen; Liu, Ye; Guo, Yiqing; Ma, Xinhua; Hu, Hongbo

    2018-05-01

    The observation of high energy γ-rays is essential to unveil the long-standing enigma of the origin and acceleration of Galactic Cosmic Rays (CRs). Given its powerful capability of distinguishing between protons and γ-rays owing to its very large area of underground muon detectors, the LHAASO observatory will be the most sensitive ground-based detectors for γ-rays at 100 TeV with a CRs background rejection rate better than 10-5. To evaluate the very small rejection rate with sufficient precision at energies above 100 TeV, one needs a large number of Monte Carlo events which is time consuming and challenging. As only the μ-poor events are interesting in the calculation of the rejection rate and take up a tiny fraction of the all CRs events, we modify the popular air shower simulation package, CORSIKA, by outputting only the μ-poor events for the following full detector simulation. As a result, our method is fully consistent with the evaluation made with the official CORSIKA at lower energy. Particularly, our improvement significantly escalate the calculation efficiency above 100 TeV, where it can be at least 50 times faster than using all events in simulation. By virtue of this new method, the γ/p discrimination of the LHAASO experiment at energies above 100 TeV is obtained for the first time, which indicates that LHAASO can reject CR backgrounds at a level of 10-5 and 10-9 at 100 TeV and 1 PeV respectively.

  15. A New Wide-Range Equation of State for Xenon

    NASA Astrophysics Data System (ADS)

    Carpenter, John H.

    2011-06-01

    We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.

    PubMed

    Kananenka, Alexei A; Zgid, Dominika

    2017-11-14

    We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.

  17. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  18. Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250-915 eV.

    PubMed

    Vlachos, Dimitrios; Craven, Alan J; McComb, David W

    2005-03-01

    The effects of specimen charging on X-ray absorption spectroscopy using total electron yield have been investigated using powder samples of zirconia stabilized by a range of oxides. The stabilized zirconia powder was mixed with graphite to minimize the charging but significant modifications of the intensities of features in the X-ray absorption near-edge fine structure (XANES) still occurred. The time dependence of the charging was measured experimentally using a time scan, and an algorithm was developed to use this measured time dependence to correct the effects of the charging. The algorithm assumes that the system approaches the equilibrium state by an exponential decay. The corrected XANES show improved agreement with the electron energy-loss near-edge fine structure obtained from the same samples.

  19. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  20. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  1. Energy-balanced algorithm for RFID estimation

    NASA Astrophysics Data System (ADS)

    Zhao, Jumin; Wang, Fangyuan; Li, Dengao; Yan, Lijuan

    2016-10-01

    RFID has been widely used in various commercial applications, ranging from inventory control, supply chain management to object tracking. It is necessary for us to estimate the number of RFID tags deployed in a large area periodically and automatically. Most of the prior works use passive tags to estimate and focus on designing time-efficient algorithms that can estimate tens of thousands of tags in seconds. But for a RFID reader to access tags in a large area, active tags are likely to be used due to their longer operational ranges. But these tags use their own battery as energy supplier. Hence, conserving energy for active tags becomes critical. Some prior works have studied how to reduce energy expenditure of a RFID reader when it reads tags IDs. In this paper, we study how to reduce the amount of energy consumed by active tags during the process of estimating the number of tags in a system and make the energy every tag consumed balanced approximately. We design energy-balanced estimation algorithm that can achieve our goal we mentioned above.

  2. Potential for energy recovery from humid air streams.

    Treesearch

    Howard H. Rosen

    1979-01-01

    The potential for energy recovery from the vent stream of dryers is examined by assuming the vent stream transfers its energy in a regenerative heat exchanger. Tables present energy recovery over a range of conditions. Example problems demonstrate the use of the energy recovery tables.

  3. 78 FR 50405 - High Energy Physics Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Office of Science, Department of..., General Services Administration, notice is hereby given that the High Energy Physics Advisory Panel will... Sciences Directorate (NSF), on long-range planning and priorities in the national high-energy physics...

  4. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram

    2013-04-19

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select anmore » element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.« less

  5. Rotationally resolved pulsed field ionization photoelectron study of CO[sup +](X[sup 2][Sigma][sup +],v[sup +]=0[endash]42) in the energy range of 13. 98[endash]21. 92 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, M.; Ng, C.Y.

    1999-11-01

    We have obtained rotationally resolved pulsed field ionization[endash]photoelectron (PFI-PE) spectra of CO in the energy range of 13.98[endash]21.92 eV, covering the ionization transitions CO[sup +](X hthinsp;[sup 2][Sigma][sup +],v[sup +]=0[endash]42,N[sup +])[l arrow]CO(X hthinsp;[sup 1][Sigma][sup +],v[sup [double prime

  6. Ranging Behaviour of Commercial Free-Range Broiler Chickens 2: Individual Variation.

    PubMed

    Taylor, Peta S; Hemsworth, Paul H; Groves, Peter J; Gebhardt-Henrich, Sabine G; Rault, Jean-Loup

    2017-07-20

    Little is known about broiler chicken ranging behaviour. Previous studies have monitored ranging behaviour at flock level but whether individual ranging behaviour varies within a flock is unknown. Using Radio Frequency Identification technology, we tracked 1200 individual ROSS 308 broiler chickens across four mixed sex flocks in two seasons on one commercial farm. Ranging behaviour was tracked from first day of range access (21 days of age) until 35 days of age in winter flocks and 44 days of age in summer flocks. We identified groups of chickens that differed in frequency of range visits: chickens that never accessed the range (13 to 67% of tagged chickens), low ranging chickens (15 to 44% of tagged chickens) that accounted for <15% of all range visits and included chickens that used the range only once (6 to 12% of tagged chickens), and high ranging chickens (3 to 9% of tagged chickens) that accounted for 33 to 50% of all range visits. Males spent longer on the range than females in winter ( p < 0.05). Identifying the causes of inter-individual variation in ranging behaviour may help optimise ranging opportunities in free-range systems and is important to elucidate the potential welfare implications of ranging.

  7. 78 FR 43974 - Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ...The Commission amends the Energy Labeling Rule (``Rule'') by updating comparability ranges and unit energy costs for many EnergyGuide labels. The Commission also issues a conditional exemption and amendments for modified refrigerator and clothes washer labels to help consumers compare the labels for these products after the implementation of upcoming changes to the Department of Energy (``DOE'') test procedures.

  8. Maximizing noise energy for noise-masking studies.

    PubMed

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  9. Vortex scaling ranges in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.

    2017-11-01

    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  10. An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods

    NASA Astrophysics Data System (ADS)

    Han, Jining; Herzfeld, Judith

    1996-03-01

    The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.

  11. Science, Volume 184 Number 4134. Energy.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.

    1974-01-01

    This entire issue of the "Science" journal is devoted to the topic of energy and issues relating to the energy crisis. Its content was chosen to present material relevant to important public decisions of the next few years. Twenty-six articles cover a wide range of topics, including the impact of the energy crisis on people and…

  12. The B 1Πu potential energy curve and dissociation energy of 39K2

    NASA Astrophysics Data System (ADS)

    Heinze, Johannes; Engelke, Friedrich

    1988-07-01

    The 39K2 B 1Πu potential energy curve has been determined using laser spectroscopic techniques and quantum mechanical calculations. The dissociation energy is 2407.6±0.5 cm-1 (0.2985±0.0001 eV) including a potential barrier of 298±10 cm-1 (0.037±0.0013 eV) found with its maximum at 8.08±0.05 Å (15.3±0.1 bohr). The long-range behavior matches smoothly onto the form predicted from dispersion forces. The dissociation energy of the ground state X 1Σ+g, obtained by a long-range extrapolation of the vibrational separations, is De =4444±10 cm-1 (0.5506±0.0013 eV), in agreement with recent theoretical prediction.

  13. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions.

    PubMed

    Morteza Najarian, Amin; McCreery, Richard L

    2017-04-25

    Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp 2 hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K. Fluorene and anthraquinone show linear plots of ln J vs d with nearly identical J values for the range d = 3-10 nm, despite significant differences in their free-molecule orbital energy levels. The observed current densities for anthraquinone, fluorene, nitroazobenzene, and bis-thienyl benzene for d = 7-10 nm show no correlation with occupied (HOMO) or unoccupied (LUMO) molecular orbital energies, contrary to expectations for transport mechanisms based on the offset between orbital energies and the electrode Fermi level. UV-vis absorption spectroscopy of molecular layers bonded to carbon electrodes revealed internal energy levels of the chemisorbed films and also indicated limited delocalization in the film interior. The observed current densities correlate well with the observed UV-vis absorption maxima for the molecular layers, implying a transport mechanism determined by the HOMO-LUMO energy gap. We conclude that transport in carbon-based aromatic molecular junctions is consistent with multistep tunneling through a barrier defined by the HOMO-LUMO gap, and not by charge transport at the electrode interfaces. In effect, interfacial "injection" at the molecule/electrode interfaces is not rate limiting due to relatively strong electronic coupling, and transport is controlled by the "bulk" properties of the molecular layer interior.

  14. Elastic and inelastic scattering of alpha particles on /sup 5/8Ni and /sup 6/0Ni in a broad range of energy and angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzanowski, A.; Dabrowski, H.; Freindl, L.

    1978-03-01

    The differential cross sections for ..cap alpha.. particles elastically and inelastically scattered from /sup 5/8Ni (at 29, 34, 38, and 58 MeV) and elastically scattered from /sup 6/0Ni (at 29 and 34 MeV), are measured together with excitation functions in the 25--38 MeV region at 178.5/sup 0/ lab. These data together with the data of 26.5, 32.3, 104, and 139 MEV for /sup 5/8Ni and 32.3 and 104 MeV for /sup 6/0Ni from other sources were analyzed using an optical model with volume and surface absorptions and the Saxon-Woods square form factors. The analysis yielded energy dependent depths of bothmore » real and imaginary parts of the potential and constant geometric parameters. The analytical expressions for depths of the real and both absorption potentials are obtained. The coupled channel calculations using the above optical potential were performed for the first excited state of /sup 5/8Ni. Both elastic scattering data and coupling with the first excited state of /sup 5/8Ni are well reproduced using the above potential in the wide scattering energy range.« less

  15. Short, intermediate and long range order in amorphous ices

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto

    Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.

  16. Studies of hot B subdwarfs. Part 2: Energy distributions of three bright sdB/sdOB stars in the 950-5500 angstrom range

    NASA Technical Reports Server (NTRS)

    Wesemael, F.; Holberg, J. B.; Veilleux, S.; Lamontagne, R.; Fontaine, G.

    1985-01-01

    Voyager ultraviolet spectrometer observations of the subdwarf B or OB stars HD 205805, UV 1758+36 and Feige 66 are presented. All three objects display the H I Layman series in absorption. These observations are combined with low dispersion IUE spectrophotometry and with Stroemgren photometry to construct virtually complete energy distributions, which extend over the range 950-5500 angstroms. Effective temperatures based on model atmosphere calculations for high gravity, hydrogen rich stars are determined. Our analyses yield T Sub e 28,200 + or - 1300 K for HD 205805, T sub e 31, 800 + or - 1100 K for UV 1758+36, and T sub e 35,700 + or - 1500 K for Feige 66. The importance of far ultraviolet observations below L sub alpha in reducing the uncertainties associated with the interstellar extinction and the degradation of the IUE sensitivity is emphasized.

  17. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    PubMed

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Short-range density functional correlation within the restricted active space CI method

    NASA Astrophysics Data System (ADS)

    Casanova, David

    2018-03-01

    In the present work, I introduce a hybrid wave function-density functional theory electronic structure method based on the range separation of the electron-electron Coulomb operator in order to recover dynamic electron correlations missed in the restricted active space configuration interaction (RASCI) methodology. The working equations and the computational algorithm for the implementation of the new approach, i.e., RAS-srDFT, are presented, and the method is tested in the calculation of excitation energies of organic molecules. The good performance of the RASCI wave function in combination with different short-range exchange-correlation functionals in the computation of relative energies represents a quantitative improvement with respect to the RASCI results and paves the path for the development of RAS-srDFT as a promising scheme in the computation of the ground and excited states where nondynamic and dynamic electron correlations are important.

  19. Range and energetics of charge hopping in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Abdalla, Hassan; Zuo, Guangzheng; Kemerink, Martijn

    2017-12-01

    The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the material's initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.

  20. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolich, George; Shadel, Craig; Chapman, Jenny

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.« less

  1. Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy range 50-200 MeV per nucleon measured by the Voyager spacecraft during the solar minimum period

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    The isotopic composition of C, N, O, Ne, Mg, Si cosmic ray nuclei has been measured in the energy range 50-200 MeV per nucleon using data collected by the High-Energy Telescope of the cosmic-ray subsystem experiment on the Voyager 1 and 2 spacecraft. These data were collected during the period of minimum solar activity in 1986-1988 at an average distance of 27 AU with an effective solar modulation that was much less than at the Earth. The isotope analysis, based on the energy loss - total energy method, has a mass resolution of 0.2 amu for carbon and 0.4 amu at silicon. We find a (C-13)/(C-12) ratio slightly lower and a (O-18)/(O-16) ratio slightly enhanced over their solar system value. We also observe the previously reported enhancement of the (Ne-22)/(Ne-20) ratio relative to solar at the cosmic-ray source but only a weak, if any, enhancement of the (Mg-25)/(Mg-24), (Mg-26)/(Mg 24), and (Si-30)/(Si-28) ratios.

  2. Lateral distributions of EAS muons (Eμ > 800 MeV) measured with the KASCADE-Grande Muon Tracking Detector in the primary energy range 1016 -1017 eV

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-05-01

    The KASCADE-Grande large area (128 m2) Muon Tracking Detector has been built with the aim to identify muons ( Eμthr = 800 MeV) in Extensive Air Showers by track measurements under 18 r.l. shielding. This detector provides high-accuracy angular information (approx. 0.3 °) for muons up to 700 m distance from the shower core. In this work we present the lateral density distributions of muons in EAS measured with the Muon Tracking Detector of the KASCADE-Grande experiment. The density is calculated by counting muon tracks in a muon-to-shower-axis distance range from 100 m to 610 m from showers with reconstructed energy of 1016 -1017 eV and zenith angle θ < 18 ° . In the distance range covered by the experiment, these distributions are well described by functions phenomenologically determined already in the fifties (of the last century) by Greisen. They are compared also with the distributions obtained with the KASCADE scintillator array (Eμthr = 230 MeV) and with distributions obtained using simulated showers.

  3. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  4. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih

    2017-08-01

    In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

  5. Optical properties of InGaN thin films in the entire composition range

    NASA Astrophysics Data System (ADS)

    Kazazis, S. A.; Papadomanolaki, E.; Androulidaki, M.; Kayambaki, M.; Iliopoulos, E.

    2018-03-01

    The optical properties of thick InGaN epilayers, with compositions spanning the entire ternary range, are studied in detail. High structural quality, single phase InxGa1-xN (0001) films were grown heteroepitaxially by radio-frequency plasma assisted molecular-beam epitaxy on freestanding GaN substrates. Their emission characteristics were investigated by low temperature photoluminescence spectroscopy, whereas variable angle spectroscopic ellipsometry was applied to determine the complex dielectric function of the films, in the 0.55-4.0 eV photon range. Photoluminescence lines were intense and narrow, in the range of 100 meV for Ga-rich InGaN films (x < 0.3), around 150 meV for mid-range composition films (0.3 < x < 0.6), and in the range of 50 meV for In-rich alloys (x > 0.6). The composition dependence of the strain-free emission energy was expressed by a bowing parameter of b = 2.70 ± 0.12 eV. The films' optical dielectric function dispersion was obtained by the analysis of the ellipsometric data employing a Kramers-Kronig consistent parameterized optical model. The refractive index dispersion was obtained for alloys in the entire composition range, and the corresponding values at the band edge show a parabolic dependence on the InN mole fraction expressed by a bowing parameter of b = 0.81 ± 0.04. The bowing parameter describing the fundamental energy bandgap was deduced to be equal to 1.66 ± 0.07 eV, consistent with the ab initio calculations for statistically random (non-clustered) InGaN alloys.

  6. Surface mass diffusion over an extended temperature range on Pt(111)

    NASA Astrophysics Data System (ADS)

    Rajappan, M.; Swiech, W.; Ondrejcek, M.; Flynn, C. P.

    2007-06-01

    Surface mass diffusion is investigated on Pt(111) at temperatures in the range 710-1220 K. This greatly extends the range over which diffusion is known from step fluctuation spectroscopy (SFS). In the present research, a beam of Pt- self-ions is employed to create a suitable structure on step edges. The surface mass diffusion coefficients then follow from the decay of Fourier components observed by low-energy electron microscopy (LEEM) at selected annealing temperatures. The results agree with SFS values where they overlap, and continue smoothly to low temperature. This makes it unlikely that diffusion along step edges plays a major role in step edge relaxation through the temperature range studied. The surface mass diffusion coefficient for the range 710-1520 K deduced from the present work, together with previous SFS data, is Ds = 4 × 10-3 exp(-1.47 eV/kBT) cm2 s-1.

  7. Accuracy limitations of range-range (spherical) multilateration systems.

    DOT National Transportation Integrated Search

    1973-10-11

    This report presents a novel procedure for determining the accuracy of range-range (or spherical) multilateration systems. The procedure is a generalization of one previously described for hyperbolic multilateration systems. A central result is a dem...

  8. Development of thermal energy storage units for spacecraft cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.; Mahefkey, E. T.

    1980-01-01

    Thermal Energy Storage Units were developed for storing thermal energy required for operating Vuilleumier cryogenic space coolers. In the course of the development work the thermal characteristics of thermal energy storage material was investigated. By three distinctly different methods it was established that ternary salts did not release fusion energy as determined by ideality at the melting point of the eutectic salt. Phase change energy was released over a relatively wide range of temperature with a large change in volume. This strongly affects the amount of thermal energy that is available to the Vuilleumier cryogenic cooler at its operating temperature range and the amount of thermal energy that can be stored and released during a single storage cycle.

  9. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  10. Preparation for B4C/Mo2C multilayer deposition of alternate multilayer gratings with high efficiency in the 0.5-2.5 keV energy range

    NASA Astrophysics Data System (ADS)

    Choueikani, Fadi; Delmotte, Franck; Bridou, Françoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, François

    2013-03-01

    This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.

  11. Performance characterization of Lithium-ion cells possessing carbon-carbon composite-based anodes capable of operating over a wide temperature range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hossain, S.; Ratnakumar, B. V.; Loutfy, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.; Narayanan, S. R.

    2004-01-01

    NASA has interest in secondary energy storage batteries that display high specific energy, high energy density, long life characteristics, and perform well over a wide range of temperatures, in order to enable a number of future applications.

  12. Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy

    NASA Astrophysics Data System (ADS)

    Pantelis, E.; Karlis, A. K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J. M.

    2004-08-01

    The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.

  13. Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy.

    PubMed

    Pantelis, E; Karlis, A K; Kozicki, M; Papagiannis, P; Sakelliou, L; Rosiak, J M

    2004-08-07

    The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.

  14. The strain capacitor: A novel energy storage device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb Shuvra, Pranoy; McNamara, Shamus, E-mail: shamus.mcnamara@louisville.edu

    2014-12-15

    A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential formore » long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.« less

  15. Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.

    PubMed

    Neuhauser, Daniel; Rabani, Eran; Cytter, Yael; Baer, Roi

    2016-05-19

    We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach.

  16. 78 FR 48863 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... of Science (DOE), on long-range plans, priorities, and strategies for advancing plasma science...

  17. Energy neutral protocol based on hierarchical routing techniques for energy harvesting wireless sensor network

    NASA Astrophysics Data System (ADS)

    Muhammad, Umar B.; Ezugwu, Absalom E.; Ofem, Paulinus O.; Rajamäki, Jyri; Aderemi, Adewumi O.

    2017-06-01

    Recently, researchers in the field of wireless sensor networks have resorted to energy harvesting techniques that allows energy to be harvested from the ambient environment to power sensor nodes. Using such Energy harvesting techniques together with proper routing protocols, an Energy Neutral state can be achieved so that sensor nodes can run perpetually. In this paper, we propose an Energy Neutral LEACH routing protocol which is an extension to the traditional LEACH protocol. The goal of the proposed protocol is to use Gateway node in each cluster so as to reduce the data transmission ranges of cluster head nodes. Simulation results show that the proposed routing protocol achieves a higher throughput and ensure the energy neutral status of the entire network.

  18. Yerington Paiute Tribe Energy Plan Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consulting, BB9; Director, Environmental

    The Yerington Paiute Tribe has made energy management and planning a priority. The Tribal Council has recognized that energy is an important component of their goal of self-sufficiency. Recognizing energy development as a component of the Tribe’s natural resources provides for needed economic development.A number of priorities have been identified for energy development. These range from immediate housing needs such as weatherization and solar to interest in energy as economic development.

  19. Theory of domain patterns in systems with long-range interactions of Coulomb type.

    PubMed

    Muratov, C B

    2002-12-01

    We develop a theory of the domain patterns in systems with competing short-range attractive interactions and long-range repulsive Coulomb interactions. We take an energetic approach, in which patterns are considered as critical points of a mean-field free energy functional. Close to the microphase separation transition, this functional takes on a universal form, allowing us to treat a number of diverse physical situations within a unified framework. We use asymptotic analysis to study domain patterns with sharp interfaces. We derive an interfacial representation of the pattern's free energy which remains valid in the fluctuating system, with a suitable renormalization of the Coulomb interaction's coupling constant. We also derive integro-differential equations describing stationary domain patterns of arbitrary shapes and their thermodynamic stability, coming from the first and second variations of the interfacial free energy. We show that the length scale of a stable domain pattern must obey a certain scaling law with the strength of the Coulomb interaction. We analyzed the existence and stability of localized (spots, stripes, annuli) and periodic (lamellar, hexagonal) patterns in two dimensions. We show that these patterns are metastable in certain ranges of the parameters and that they can undergo morphological instabilities leading to the formation of more complex patterns. We discuss nucleation of the domain patterns by thermal fluctuations and pattern formation scenarios for various thermal quenches. We argue that self-induced disorder is an intrinsic property of the domain patterns in the systems under consideration.

  20. Mean excitation energies for molecular ions

    NASA Astrophysics Data System (ADS)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  1. 76 FR 69122 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ..., Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens) and for Certain Commercial and Industrial... 431--ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT 0 1. The authority...

  2. Long-Range Adiabatic Corrections to the Ground Molecular State of Alkali-Metal Dimers.

    NASA Astrophysics Data System (ADS)

    Marinescu, M.; Dalgarno, A.

    1997-04-01

    The structure of the long-range limit of the diagonal adiabatic corrections to the ground molecular state of diatomic molecules, may be expressed as a series of inverse powers of internuclear distance, R. The coefficients of this expansion are proportional to the inverse of the nuclear mass. Thus, they may be interpreted as a nuclear mass-dependent corrections to the dispersion coefficients. Using perturbation theory we have calculated the long-range coefficients of the diagonal adiabatic corrections up to the order of R-10. The final expressions are in terms of integrals over imaginary frequencies of products of atomic matrix elements involving Green's functions of complex energy. Thus, in our approach the molecular problem is reduced to an atomic one. Numerical evaluations have been done for all alkali-metal dimers. We acknowledge the support of the U.S. Dept. of Energy.

  3. Total electron scattering cross section from pyridine molecules in the energy range 10-1000 eV

    NASA Astrophysics Data System (ADS)

    Dubuis, A. Traoré; Costa, F.; da Silva, F. Ferreira; Limão-Vieira, P.; Oller, J. C.; Blanco, F.; García, G.

    2018-05-01

    We report on experimental total electron scattering cross-section (TCS) from pyridine (C5H5N) for incident electron energies between 10 and 1000 eV, with experimental uncertainties within 5-10%, as measured with a double electrostatic analyser apparatus. The experimental results are compared with our theoretical calculations performed within the independent atom model complemented with a screening corrected additivity rule (IAM-SCAR) procedure which has been updated by including interference effects. A good level of agreement is found between both data sources within the experimental uncertainties. The present TCS results for electron impact energy under study contribute, together with other scattering data available in the literature, to achieve a consistent set of cross section data for modelling purposes.

  4. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    NASA Astrophysics Data System (ADS)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  5. Angular-momentum couplings in ultra-long-range giant dipole molecules

    NASA Astrophysics Data System (ADS)

    Stielow, Thomas; Scheel, Stefan; Kurz, Markus

    2018-02-01

    In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.

  6. H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center.

    PubMed

    Abdalla, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Andersson, T; Angüner, E O; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; Devin, J; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Liu, R; Lohse, T; Lorentz, M; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Ohm, S; Ostrowski, M; Öttl, S; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-10-07

    A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

  7. Energy spectrum of multi-radiation of X-rays in a low energy Mather-type plasma focus device

    NASA Astrophysics Data System (ADS)

    Farzin, M. Aghamir; Reza, A. Behbahani

    2014-06-01

    The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu—Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu—Kα and Cu—Kβ was around 0.14 ± 0.02 (J/Sr) and 0.04 ± 0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (> 15 keV) was around 0.12 ± 0.02 (J/Sr).

  8. Variable-Range Hopping through Marginally Localized Phonons

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Altman, Ehud

    2016-03-01

    We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.

  9. Technical Note: Using dual step-wedge and 2D scintillator to achieve highly precise and robust proton range quality assurance.

    PubMed

    Deng, Wei; Liu, Wei; Robertson, Daniel G; Bues, Martin; Sio, Terence T; Keole, Sameer R; Shen, Jiajian

    2018-05-12

    To develop a fast method for proton range quality assurance (QA) using a dual step-wedge and 2D scintillator and to evaluate the robustness, sensitivity, and long term reproducibility of this method. An in-house customized dual step-wedge and a 2D scintillator were developed to measure proton ranges. Proton beams with homogenous fluence were delivered through wedge, and the images captured by the scintillator were used to calculate the proton ranges by a simple trigonometric method. The range measurements of 97 energies, comprising all clinically available synchrotron energies at our facility (ranges varying from 4 to 32 cm) were repeated 10 times in all four gantry rooms for range baseline values. They were then used for evaluating room-to-room range consistencies. The robustness to setup uncertainty was evaluated by measuring ranges with ±2mm setup deviations in the x, y, and z directions. The long term reproducibility was evaluated by one month of daily range measurements by this method. Ranges of all 97 energies were measured in less than 10 minutes including setup time. The reproducibility in a single day and daily over one month is within 0.1 mm and 0.15 mm, respectively. The method was very robust to setup uncertainty, with measured range consistencies within 0.15mm for ±2mm couch shifts. The method was also sensitive enough for validating range consistencies among gantry rooms and for detecting small range variations. The new method of using a dual step-wedge and scintillator for proton range QA was efficient, highly reproducible, and robust. This method of proton range QA was highly feasible, and appealing from a workflow point of view. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Study of the process e+e- → K+K- in the center-of-mass energy range 1010-1060 MeV with the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Kozyrev, E. A.; Solodov, E. P.; Akhmetshin, R. R.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kasaev, A. S.; Kazanin, V. F.; Korobov, A. A.; Koop, I. A.; Kozyrev, A. N.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Lysenko, A. P.; Mikhailov, K. Yu.; Okhapkin, V. S.; Perevedentsev, E. A.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, Yu. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.

    2018-04-01

    The process e+e- →K+K- has been studied using 1.7 ×106 events from a data sample corresponding to an integrated luminosity of 5.7 pb-1 collected with the CMD-3 detector in the center-of-mass energy range 1010-1060 MeV. The cross section is measured with about 2% systematic uncertainty and is used to calculate the contribution to the anomalous magnetic moment of the muon aμK+K- = (19.33 ± 0.40) ×10-10, and to obtain the ϕ (1020) meson parameters. We consider the relationship between the e+e- →K+K- and e+e- → KS0 KL0 cross sections and compare it to the theoretical prediction.

  11. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  12. Red ball ranging optimization based on dual camera ranging method

    NASA Astrophysics Data System (ADS)

    Kuang, Lei; Sun, Weijia; Liu, Jiaming; Tang, Matthew Wai-Chung

    2018-05-01

    In this paper, the process of positioning and moving to target red ball by NAO robot through its camera system is analyzed and improved using the dual camera ranging method. The single camera ranging method, which is adapted by NAO robot, was first studied and experimented. Since the existing error of current NAO Robot is not a single variable, the experiments were divided into two parts to obtain more accurate single camera ranging experiment data: forward ranging and backward ranging. Moreover, two USB cameras were used in our experiments that adapted Hough's circular method to identify a ball, while the HSV color space model was used to identify red color. Our results showed that the dual camera ranging method reduced the variance of error in ball tracking from 0.68 to 0.20.

  13. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  14. Largo hot water system long range thermal performance test report, addendum

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency, temperature distribution, and system performance degradation.

  15. Energy transfer, pressure tensor, and heating of kinetic plasma

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Matthaeus, William H.; Parashar, Tulasi N.; Haggerty, Colby C.; Roytershteyn, Vadim; Daughton, William; Wan, Minping; Shi, Yipeng; Chen, Shiyi

    2017-07-01

    Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade, and convert kinetic energy into heat are hotly debated. Here, we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spatial filtering on the Vlasov equation, we extract information at prescribed scales and introduce several energy transfer functions. This approach allows highly inhomogeneous energy cascade to be quantified as it proceeds down to kinetic scales. The pressure work, - ( P . ∇ ) . u , can trigger a channel of the energy conversion between fluid flow and random motions, which contains a collision-free generalization of the viscous dissipation in collisional fluid. Both the energy transfer and the pressure work are strongly correlated with velocity gradients.

  16. Excitation functions of parameters extracted from three-source (net-)proton rapidity distributions in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC

    NASA Astrophysics Data System (ADS)

    Gao, Li-Na; Liu, Fu-Hu; Sun, Yan; Sun, Zhu; Lacey, Roy A.

    2017-03-01

    Experimental results of the rapidity spectra of protons and net-protons (protons minus antiprotons) emitted in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions, measured by a few collaborations at the alternating gradient synchrotron (AGS), super proton synchrotron (SPS), and relativistic heavy ion collider (RHIC), are described by a three-source distribution. The values of the distribution width σC and fraction kC of the central rapidity region, and the distribution width σF and rapidity shift Δ y of the forward/backward rapidity regions, are then obtained. The excitation function of σC increases generally with increase of the center-of-mass energy per nucleon pair √{s_{NN}}. The excitation function of σF shows a saturation at √{s_{NN}}=8.8 GeV. The excitation function of kC shows a minimum at √{s_{NN}}=8.8 GeV and a saturation at √{s_{NN}} ≈ 17 GeV. The excitation function of Δ y increases linearly with ln(√{s_{NN}}) in the considered energy range.

  17. Photoionization of Cl+ from the 3s23p4 3P2,1,0 and the 3s23p4 1D2,1S0 states in the energy range 19-28 eV

    NASA Astrophysics Data System (ADS)

    McLaughlin, Brendan M.

    2017-01-01

    Absolute photoionization cross-sections for the Cl+ ion in its ground and the metastable states, 3s23p4 3P2,1,0 and 3s23p4 1D2,1S0, were measured recently at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at a photon energy resolution of 15 meV in the energy range 19-28 eV. These measurements are compared with large-scale Dirac-Coulomb R-matrix calculations in the same energy range. Photoionization of this sulphur-like chlorine ion is characterized by multiple Rydberg series of auto-ionizing resonances superimposed on a direct photoionization continuum. A wealth of resonance features observed in the experimental spectra is spectroscopically assigned, and their resonance parameters are tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from this study. Theoretical resonance energies and quantum defects of the prominent Rydberg series 3s23p3nd, identified in the spectra as 3p → nd transitions, are compared with the available measurements made on this element. Weaker Rydberg series 3s23p3ns, identified as 3p → ns transitions and window resonances 3s3p4(4P)np features, due to 3s → np transitions, are also found in the spectra.

  18. Polarization control of high order harmonics in the EUV photon energy range.

    PubMed

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  19. Transmission of wave energy in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  20. Energy calibration of CALET onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Asaoka, Y.; Akaike, Y.; Komiya, Y.; Miyata, R.; Torii, S.; Adriani, O.; Asano, K.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; Di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Kitamura, H.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.

    2017-05-01

    In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.

  1. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  2. Use of convolution/superposition-based treatment planning system for dose calculations in the kilovoltage energy range

    NASA Astrophysics Data System (ADS)

    Alaei, Parham

    2000-11-01

    A number of procedures in diagnostic radiology and cardiology make use of long exposures to x rays from fluoroscopy units. Adverse effects of these long exposure times on the patients' skin have been documented in recent years. These include epilation, erythema, and, in severe cases, moist desquamation and tissue necrosis. Potential biological effects from these exposures to other organs include radiation-induced cataracts and pneumonitis. Although there have been numerous studies to measure or calculate the dose to skin from these procedures, there have only been a handful of studies to determine the dose to other organs. Therefore, there is a need for accurate methods to measure the dose in tissues and organs other than the skin. This research was concentrated in devising a method to determine accurately the radiation dose to these tissues and organs. The work was performed in several stages: First, a three dimensional (3D) treatment planning system used in radiation oncology was modified and complemented to make it usable with the low energies of x rays used in diagnostic radiology. Using the system for low energies required generation of energy deposition kernels using Monte Carlo methods. These kernels were generated using the EGS4 Monte Carlo system of codes and added to the treatment planning system. Following modification, the treatment planning system was evaluated for its accuracy of calculations in low energies within homogeneous and heterogeneous media. A study of the effects of lungs and bones on the dose distribution was also performed. The next step was the calculation of dose distributions in humanoid phantoms using this modified system. The system was used to calculate organ doses in these phantoms and the results were compared to those obtained from other methods. These dose distributions can subsequently be used to create dose-volume histograms (DVHs) for internal organs irradiated by these beams. Using this data and the concept of normal tissue

  3. SU-E-T-641: Proton Range Measurements Using a Geometrically Calibrated Liquid Scintillator Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, C; Robertson, D; Alsanea, F

    2015-06-15

    Purpose: The purpose of this work is to develop a geometric calibration method to accurately calculate physical distances within a liquid scintillator detector and to assess the accuracy, consistency, and robustness of proton beam range measurements when using a liquid scintillator detector system with the proposed geometric calibration process. Methods: We developed a geometric calibration procedure to accurately convert pixel locations in the camera frame into physical locations in the scintillator frame. To ensure accuracy, the geometric calibration was performed before each experiment. The liquid scintillator was irradiated with spot scanning proton beams of 94 energies in two deliveries. Amore » CCD camera was used to capture the two-dimensional scintillation light profile of each of the proton energies. An algorithm was developed to automatically calculate the proton range from the acquired images. The measured range was compared to the nominal range to assess the accuracy of the detector. To evaluate the robustness of the detector between each setup, the experiments were repeated on three different days. To evaluate the consistency of the measurements between deliveries, three sets of measurements were acquired for each experiment. Results: Using this geometric calibration procedure, the proton beam ranges measured using the liquid scintillator system were all within 0.3mm of the nominal range. The average difference between the measured and nominal ranges was −0.20mm. The delivery-to-delivery standard deviation of the proton range measurement was 0.04mm, and the setup-to-setup standard deviation of the measurement was 0.10mm. Conclusion: The liquid scintillator system can measure the range of all 94 beams in just two deliveries. With the proposed geometric calibration, it can measure proton range with sub-millimeter accuracy, and the measurements were shown to be consistent between deliveries and setups. Therefore, we conclude that the liquid

  4. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  5. Conservation of Mechanical Energy Using Dry Ice Slider-Projectiles

    ERIC Educational Resources Information Center

    Gales, Jenna; Baker, Blane

    2008-01-01

    Energy concepts are fundamentally important for describing and analyzing systems ranging from subatomic particles to spiral galaxies. In general, students first encounter such concepts in introductory courses that typically focus on forms of energy, energy transfer, and conservation laws. Within these courses, conservation of mechanical energy is…

  6. Spatial filtering velocimeter for vehicle navigation with extended measurement range

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-05-01

    The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.

  7. Spatial Cognition and Range Use in Free-Range Laying Hens

    PubMed Central

    Campbell, Dana L. M.; Loh, Ziyang A.; Dyall, Tim R.; Lee, Caroline

    2018-01-01

    Simple Summary Individual free-range laying hens vary in their use of the outdoor range. The outdoor environment is typically more complex and variable than indoor housing and thus range use may be related to differences in spatial abilities. Individual adult hens that never went outside were slower to learn a T-maze task—which requires birds to repeatedly find a food reward in one arm of the maze, compared to outdoor-preferring hens. Pullets that were faster to learn the maze also showed more visits to the range in their first month of range access but only in one of two tested groups. Early enrichment improved learning of the maze but only when the birds were tested before onset of lay. Fear may play a role in inhibiting bird’s spatial learning and their range use. More studies of different enriched rearing treatments and their impacts on fear and learning would be needed to confirm these findings. Overall, these results contribute to our understanding of why some birds choose to never access the outdoor range area. Abstract Radio-frequency identification tracking shows individual free-range laying hens vary in range use, with some never going outdoors. The range is typically more environmentally complex, requiring navigation to return to the indoor resources. Outdoor-preferring hens may have improved spatial abilities compared to indoor-preferring hens. Experiment 1 tested 32 adult ISA Brown hens in a T-maze learning task that showed exclusively-indoor birds were slowest to reach the learning success criterion (p < 0.05). Experiment 2 tested 117 pullets from enriched or non-enriched early rearing treatments (1 pen replicate per treatment) in the same maze at 15–16 or 17–18 weeks. Enriched birds reached learning success criterion faster at 15–16 weeks (p < 0.05) but not at 17–18 weeks (p > 0.05), the age that coincided with the onset of lay. Enriched birds that were faster to learn the maze task showed more range visits in the first 4 weeks of range

  8. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    PubMed

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (p<0.001). Salads had the highest energy cost, while value items, meals that included a dessert and family meals had the lowest. Fast food chains could provide a wider range of affordable, lower-energy foods, use proportional pricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  9. Range-wide patterns of greater sage-grouse persistence

    USGS Publications Warehouse

    Aldridge, Cameron L.; Nielsen, Scott E.; Beyer, Hawthorne L.; Boyce, Mark S.; Connelly, John W.; Knick, Steven T.; Schroeder, Michael A.

    2008-01-01

    population growth and peripherality of populations. However, future range loss may relate less to historical mechanisms and more to recent changes in land use and habitat condition, including energy developments and invasions by non-native species such as cheatgrass (Bromus tectorum) and West Nile virus. In conjunction with local measures of population performance, landscape-scale predictions of future range loss may be useful for prioritizing management and protection. Our results suggest that initial conservation efforts should focus on maintaining large expanses of sagebrush habitat, enhancing quality of existing habitats, and increasing habitat connectivity.

  10. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  11. On the skill of various ensemble spread estimators for probabilistic short range wind forecasting

    NASA Astrophysics Data System (ADS)

    Kann, A.

    2012-05-01

    A variety of applications ranging from civil protection associated with severe weather to economical interests are heavily dependent on meteorological information. For example, a precise planning of the energy supply with a high share of renewables requires detailed meteorological information on high temporal and spatial resolution. With respect to wind power, detailed analyses and forecasts of wind speed are of crucial interest for the energy management. Although the applicability and the current skill of state-of-the-art probabilistic short range forecasts has increased during the last years, ensemble systems still show systematic deficiencies which limit its practical use. This paper presents methods to improve the ensemble skill of 10-m wind speed forecasts by combining deterministic information from a nowcasting system on very high horizontal resolution with uncertainty estimates from a limited area ensemble system. It is shown for a one month validation period that a statistical post-processing procedure (a modified non-homogeneous Gaussian regression) adds further skill to the probabilistic forecasts, especially beyond the nowcasting range after +6 h.

  12. Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions.

    PubMed

    Blood-Forsythe, Martin A; Markovich, Thomas; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán

    2016-03-01

    An accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al. , J. Chem. Phys. , 2014, 140 , 18A508], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent agreement with the wavefunction theory reference geometries of these systems (at a fraction of the computational cost) and find that MBD consistently outperforms the popular TS and D3(BJ) dispersion corrections. To demonstrate the performance of the MBD model on a larger system with supramolecular interactions, we optimized the C 60 @C 60 H 28 buckyball catcher host-guest complex. In our analysis, we also find that neglecting the implicit nuclear coordinate dependence arising from the charge density partitioning, as has been done in prior numerical treatments, leads to an unacceptable error in the MBD forces, with relative errors of ∼20% (on average) that can extend well beyond 100%.

  13. Energy use in the New Zealand food system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, M.G.; Earle, M.D.

    1985-03-01

    The study covered the total energy requirements of the production, processing, wholesale distribution, retailing, shopping and household sectors of the food system in New Zealand. This included the direct energy requirements, and the indirect energy requirements in supplying materials, buildings and equipment. Data were collected from a wide range of literature sources, and converted into forms required for this research project. Also, data were collected in supplementary sample surveys at the wholesale distribution, retailing and shopping sectors. The details of these supplementary surveys are outlined in detailed survey reports fully referenced in the text. From these base data, the totalmore » energy requirements per unit product (MJ/kg) were estimated for a wide range of food chain steps. Some clear alternatives in terms of energy efficiency emerged from a comparison of these estimates. For example, it was found that it was most energy efficient to use dehydrated vegetables, followed by fresh vegetables, freeze dried vegetables, canned vegetables and then finally frozen vegetables.« less

  14. State-dependent behavior alters endocrine–energy relationship: Implications for conservation and management

    USGS Publications Warehouse

    Jesmer, Brett R.; Goheen, Jacob R.; Monteith, Kevin L.; Kauffman, Matthew J.

    2017-01-01

    Glucocorticoids (GC) and triiodothyronine (T3) are two endocrine markers commonly used to quantify resource limitation, yet the relationships between these markers and the energetic state of animals has been studied primarily in small-bodied species in captivity. Free-ranging animals, however, adjust energy intake in accordance with their energy reserves, a behavior known as state-dependent foraging. Further, links between life-history strategies and metabolic allometries cause energy intake and energy reserves to be more strongly coupled in small animals relative to large animals. Because GC and T3 may reflect energy intake or energy reserves, state-dependent foraging and body size may cause endocrine–energy relationships to vary among taxa and environments. To extend the utility of endocrine markers to large-bodied, free-ranging animals, we evaluated how state-dependent foraging, energy reserves, and energy intake influenced fecal GC and fecal T3 concentrations in free-ranging moose (Alces alces). Compared with individuals possessing abundant energy reserves, individuals with few energy reserves had higher energy intake and high fecal T3 concentrations, thereby supporting state-dependent foraging. Although fecal GC did not vary strongly with energy reserves, individuals with higher fecal GC tended to have fewer energy reserves and substantially greater energy intake than those with low fecal GC. Consequently, individuals with greater energy intake had both high fecal T3 and high fecal GC concentrations, a pattern inconsistent with previous documentation from captive animal studies. We posit that a positive relationship between GC and T3 may be expected in animals exhibiting state-dependent foraging if GC is associated with increased foraging and energy intake. Thus, we recommend that additional investigations of GC– and T3–energy relationships be conducted in free-ranging animals across a diversity of body size and life-history strategies before these

  15. Direct energy inputs to the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Lanzerotti, L. J.

    1979-01-01

    As a working definition of the extent of the middle atmosphere (MA), the height range from 30 to 100 km was adopted. The neutral and ionic composition and the dynamics within this height range are, for the most part, poorly understood. From available information, the importance of various particle and photon energy sources, including their variability, for ionization of the neutral atmosphere in this height range is assessed. The following topics are discussed: (1) penetration of the MA by particle and electromagnetic energy; (2) ionization sources for the MA; (3) galactic cosmic rays; (4) solar H Ly alpha, other EUV, and X-rays; (5) magnetospheric electrons and bremsstrahlung X-rays; and (6) solar cosmic rays.

  16. Experimental studies of systematic multiple-energy operation at HIMAC synchrotron

    NASA Astrophysics Data System (ADS)

    Mizushima, K.; Katagiri, K.; Iwata, Y.; Furukawa, T.; Fujimoto, T.; Sato, S.; Hara, Y.; Shirai, T.; Noda, K.

    2014-07-01

    Multiple-energy synchrotron operation providing carbon-ion beams with various energies has been used for scanned particle therapy at NIRS. An energy range from 430 to 56 MeV/u and about 200 steps within this range are required to vary the Bragg peak position for effective treatment. The treatment also demands the slow extraction of beam with highly reliable properties, such as spill, position and size, for all energies. We propose an approach to generating multiple-energy operation meeting these requirements within a short time. In this approach, the device settings at most energy steps are determined without manual adjustments by using systematic parameter tuning depending on the beam energy. Experimental verification was carried out at the HIMAC synchrotron, and its results proved that this approach can greatly reduce the adjustment period.

  17. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  18. Caffeine Content in Popular Energy Drinks and Energy Shots.

    PubMed

    Attipoe, Selasi; Leggit, Jeffrey; Deuster, Patricia A

    2016-09-01

    The use of energy beverages is high among the general population and military personnel. Previous studies have reported discrepancies between the actual amount of caffeine in products and the amount of caffeine on stated labels. Thus, the purpose of this study was to examine the content of caffeine listed on the labels of various energy drinks and energy shots. Top-selling energy drinks (n = 9) and energy shots (n = 5) were purchased from retail stores. Three of each of the 14 products were purchased and analyzed for caffeine content by an independent laboratory. Of the 14 products tested, 5 did not provide caffeine amounts on their facts panel-of those, 3 listed caffeine as an ingredient and 2 listed caffeine as part of a proprietary blend. The remaining 9 (of 14) products stated the amounts of caffeine on their labels, all of which were within 15% of the amount indicated on the label. In this study, although the energy beverages that indicated the amount of caffeine it contained had values within ±15% of the amount listed on the label, a potentially acceptable range, this finding is not acceptable with regard to current labeling regulations, which require added ingredients to total 100%. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  19. Commonwealth of the Northern Mariana Islands Strategic Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    Describes various energy strategies available to CNMI to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption. The information presented in this strategic energy plan will be used by the CNMI Governor's Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, and expanding the use of a range of energy technologies, including renewable electricity production and buildings energy efficiency and conservation.

  20. The construction of a highly transportable laser ranging station

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The technology of the transportable Laser Ranging Station (TLRS) used in crustal dynamics studies was examined. The TLRS used a single photoelectron beam of limited energy density returned from the Laser Geodynamic Satellite (LAGEOS). Calibration was accomplished by the diversion of a small portion of the outgoing beam attenuated to the same level as the satellite return. Timing for the system was based on a self calibrating Ortec TD811, 100 picosec time interval device. The system was contained in a modified, single chassis recreational vehicle that allowed rapid deployment. The TLRS system was only airmobile on the largest transport aircraft. A 30 cm simple plano/concave transfer lens telescope aided in beam direction. The TLRS system fulfills the need for an accurate method of obtaining range measurements to the LAGEOS satellite incorporated in a mobile, air transportable, and economical configuration.