Science.gov

Sample records for energy scenario perspectives

  1. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-07-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. We analyze strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in strengthening of hydrological cycle in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside the medium-high non-mitigation scenario SRES A1B, we considered a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than SRES A1B till around 2070. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in A1B throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that A1B achieves larger increase of global precipitation in the last

  2. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-11-01

    Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950-2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is

  3. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    PubMed

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered. PMID:21275398

  4. Present and Future Energy Scenario in India

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Bhattacharyya, B.; Gupta, V. K.

    2014-09-01

    India's energy sector is one of the most critical components of an infrastructure that affects India's economic growth and therefore is also one of the largest industries in India. India has the 5th largest electricity generating capacity and is the 6th largest energy consumer amounting for around 3.4 % of global energy consumption. India's energy demand has grown at 3.6 % pa over the past 30 years. The consumption of the energy is directly proportional to the progress of manpower with ever growing population, improvement in the living standard of the humanity and industrialization of the developing countries. Very recently smart grid technology can attribute important role in energy scenario. Smart grid refers to electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. This paper discusses the new communication infrastructure and scheme designed to integrate data.

  5. New cosmic accelerating scenario without dark energy

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Basilakos, S.; Costa, F. E. M.

    2012-11-01

    We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (ΛCDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes subdominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard ΛCDM model; however, there is no dark energy. The model evolves between two limiting (early and late time) de Sitter regimes. All the stages are also discussed in terms of a scalar field description. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by ρI/ρf=(HI/Hf)2˜10122, a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Λ growth index, γΛ≃6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a χ2 statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.

  6. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible

  7. Developing clinical scenarios from a European perspective: successes and challenges.

    PubMed

    Wiseman, Allison; Horton, Khim

    2011-10-01

    This paper presents developmental work involving students from the University College Dublin (UCD), Ireland (n=9), University of Surrey, England (n=8) and University of Ljubljana and University of Maribor, Slovenia (n=5) participating in the Erasmus Intensive Programme. The Erasmus programme offers a two week 'Summer School' in the Faculty of Health Sciences, University of Maribor, Slovenia. Using a participatory approach, facilitators from both the UCD and Surrey engaged with students from all of the universities to develop scenarios for simulated learning experiences, in the care of older people, for utilisation on an e learning facility and within the simulated clinical learning environment. Students developed key transferable skills in learning, such as information literacy, cultural diversity, team working, communication, and clinical skills acquisition whilst exploring differences in healthcare delivery in other European countries. PMID:21315498

  8. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    SciTech Connect

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  9. Sustainable WEE management in Malaysia: present scenarios and future perspectives

    NASA Astrophysics Data System (ADS)

    Rezaul Hasan Shumon, Md; Ahmed, S.

    2013-12-01

    Technological advances have resulted development of a lot of electronic products for continuously increasing number of customers. As the customer taste and features of these products change rapidly, the life cycles have come down tremendously. Therefore, a large volume of e-wastes are now emanated every year. This scenario is very much predominant in Malaysia. On one hand e-wastes are becoming environmental hazards and affecting the ecological imbalance. On the other, these wastes are remaining still economically valuable. In Malaysia, e-waste management system is still in its nascent state. This paper describes the current status of e-waste generation and recycling and explores issues for future e-waste management system in Malaysia from sustainable point of view. As to draw some factual comparisons, this paper reviews the e-waste management system in European Union, USA, Japan, as a benchmark. Then it focuses on understanding the Malaysian culture, consumer discarding behavior, flow of the materials in recycling, e-waste management system, and presents a comparative view with the Swiss e-waste system. Sustainable issues for e-waste management in Malaysia are also presented. The response adopted so far in collection and recovery activities are covered in later phases. Finally, it investigates the barriers and challenges of e-waste system in Malaysia.

  10. Perspectives on School Energy Use.

    ERIC Educational Resources Information Center

    Canipe, Stephen L.

    This paper offers a general perspective of school energy use based on national surveys and a state of North Carolina perspective based on the public school laws that can have energy impact. Data from two surveys conducted in 1972-73 and 1974-75 are analyzed. Findings show a shift away from oil and a shift from direct use of coal to use of…

  11. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two

  12. Phenomenology of hybrid scenarios of neutrino dark energy

    SciTech Connect

    Antusch, Stefan; Dutta, Koushik; Das, Subinoy E-mail: subinoy@nyu.edu

    2008-10-15

    We study the phenomenology of hybrid scenarios of neutrino dark energy, where in addition to a so-called mass-varying neutrino (MaVaN) sector a cosmological constant (from a false vacuum) is driving the accelerated expansion of the universe today. For general power law potentials we calculate the effective equation of state parameter w{sub eff}(z) in terms of the neutrino mass scale. Due to the interaction of the dark energy field ('acceleron') with the neutrino sector, w{sub eff}(z) is predicted to become smaller than -1 for z>0, which could be tested in future cosmological observations. For the scenarios considered, the neutrino mass scale additionally determines which fraction of the dark energy is dynamical, and which originates from the 'cosmological-constant-like' vacuum energy of the false vacuum. On the other hand, the field value of the 'acceleron' field today as well as the masses of the right-handed neutrinos, which appear in the seesaw-type mechanism for small neutrino masses, are not fixed. This, in principle, allows us to realize hybrid scenarios of neutrino dark energy with a 'high-scale' seesaw where the right-handed neutrino masses are close to the GUT scale. We also comment on how MaVaN hybrid scenarios with 'high-scale' seesaw might help to resolve stability problems of dark energy models with non-relativistic neutrinos.

  13. Scenario simulation based assessment of subsurface energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  14. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  15. Neutrino phenomenology of very low-energy seesaw scenarios

    SciTech Connect

    Gouvea, Andre de; Jenkins, James; Vasudevan, Nirmala

    2007-01-01

    The standard model augmented by the presence of gauge-singlet right-handed neutrinos proves to be an ideal scenario for accommodating nonzero neutrino masses. Among the new parameters of this 'new standard model' are right-handed neutrino Majorana masses M. Theoretical prejudice points to M much larger than the electroweak symmetry breaking scale, but it has recently been emphasized that all M values are technically natural and should be explored. Indeed, M around 1-10 eV can accommodate an elegant oscillation solution to the liquid scintillator neutrino detector (LSND) anomaly, while other M values lead to several observable consequences. We consider the phenomenology of low-energy (M < or approx. 1 keV) seesaw scenarios. By exploring such a framework with three right-handed neutrinos, we can consistently fit all oscillation data--including those from LSND--while partially addressing several astrophysical puzzles, including anomalous pulsar kicks, heavy element nucleosynthesis in supernovae, and the existence of warm dark matter. In order to accomplish all of this, we find that a nonstandard cosmological scenario is required. Finally, low-energy seesaws - regardless of their relation to the LSND anomaly - can also be tested by future tritium beta-decay experiments, neutrinoless double-beta decay searches, and other observables. We estimate the sensitivity of such probes to M.

  16. Long-term energy security in a national scale using LEAP. Application to de-carbonization scenarios in Andorra

    NASA Astrophysics Data System (ADS)

    Travesset-Baro, Oriol; Jover, Eric; Rosas-Casals, Marti

    2016-04-01

    This paper analyses the long-term energy security in a national scale using Long-range Energy Alternatives Planning System (LEAP) modelling tool. It builds the LEAP Andorra model, which forecasts energy demand and supply for the Principality of Andorra by 2050. It has a general bottom-up structure, where energy demand is driven by the technological composition of the sectors of the economy. The technological model is combined with a top-down econometric model to take into account macroeconomic trends. The model presented in this paper provides an initial estimate of energy demand in Andorra segregated into all sectors (residential, transport, secondary, tertiary and public administration) and charts a baseline scenario based on historical trends. Additional scenarios representing different policy strategies are built to explore the country's potential energy savings and the feasibility to achieve the Intended Nationally Determined Contribution (INDC) submitted in April 2015 to UN. In this climatic agreement Andorra intends to reduce net greenhouse gas emissions (GHG) by 37% as compared to a business-as-usual scenario by 2030. In addition, current and future energy security is analysed in this paper under baseline and de-carbonization scenarios. Energy security issues are assessed in LEAP with an integrated vision, going beyond the classic perspective of security of supply, and being closer to the sustainability's integrative vision. Results of scenarios show the benefits of climate policies in terms of national energy security and the difficulties for Andorra to achieving the de-carbonization target by 2030.

  17. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  18. Analysis of Long-range Clean Energy Investment Scenarios forEritrea, East Africa

    SciTech Connect

    Van Buskirk, Robert D.

    2004-05-07

    We discuss energy efficiency and renewable energy investments in Eritrea from the strategic long-term economic perspective of meeting Eritrea's sustainable development goals and reducing greenhouse gas emissions. Energy efficiency and renewable energy are potentially important contributors to national productive capital accumulation, enhancement of the environment, expansion of energy services, increases in household standard of living, and improvements in health. In this study we develop a spreadsheet model for calculating some of the national benefits and costs of different levels of investment in energy efficiency and renewable energy. We then present the results of the model in terms of investment demand and investment scenario curves. These curves express the contribution that efficiency and renewable energy projects can make in terms of reduced energy sector operating expenses, and reduced carbon emissions. We provide demand and supply curves that show the rate of return, the cost of carbon emissions reductions vs. supply, and the evolution of the marginal carbon emissions per dollar of GDP for different investment levels and different fuel-type subsectors.

  19. Energy Structure and Energy Security under Climate Mitigation Scenarios in China

    PubMed Central

    Matsumoto, Ken’ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  20. Energy Structure and Energy Security under Climate Mitigation Scenarios in China.

    PubMed

    Matsumoto, Ken'ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  1. Energy development scenarios and water demands and supplies: an overview

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1977-01-01

    On the basis of average mean annual flows, ample water exists in the upper Missouri River basin for energy development. The lack of storage and diversion works upstream as well as State compacts preclude the ready use of this surplus water. These surplus flows are impounded in mainstream reservoirs on the Missouri downstream from coal mining areas but could be transported back at some expense for use in Wyoming and North Dakota. There are limited water supplies available for the development of coal and oil shale industries in the upper Colorado River Basin. Fortunately oil shale mining, retorting and reclamation do not require as much water as coal conversion; in-situ oil shale retorting would seem to be particularly desirable in the light of reduced water consumption. Existing patterns of energy production, transport, and conversion suggest that more of the coal to be mined out West is apt to be transmitted to existing load centers rather than converted to electricity or gas in the water-short West. Scenarios of development of the West 's fossil fuels may be overestimating the need for water since they have assumed that major conversion industries would develop in the West. Transport of coal to existing users will require all means of coal movement including unit trains, barges, and coal slurry pipelines. The latter is considered more desirable than the development of conversion industries in the West when overall water consumption is considered. (Woodard-USGS)

  2. Future waste treatment and energy systems – examples of joint scenarios

    SciTech Connect

    Münster, M.; Finnveden, G.; Wenzel, H.

    2013-11-15

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

  3. The design of scenario-based training from the resilience engineering perspective: a study with grid electricians.

    PubMed

    Saurin, Tarcisio Abreu; Wachs, Priscila; Righi, Angela Weber; Henriqson, Eder

    2014-07-01

    Although scenario-based training (SBT) can be an effective means to help workers develop resilience skills, it has not yet been analyzed from the resilience engineering (RE) perspective. This study introduces a five-stage method for designing SBT from the RE view: (a) identification of resilience skills, work constraints and actions for re-designing the socio-technical system; (b) design of template scenarios, allowing the simulation of the work constraints and the use of resilience skills; (c) design of the simulation protocol, which includes briefing, simulation and debriefing; (d) implementation of both scenarios and simulation protocol; and (e) evaluation of the scenarios and simulation protocol. It is reported how the method was applied in an electricity distribution company, in order to train grid electricians. The study was framed as an application of design science research, and five research outputs are discussed: method, constructs, model of the relationships among constructs, instantiations of the method, and theory building. Concerning the last output, the operationalization of the RE perspective on three elements of SBT is presented: identification of training objectives; scenario design; and debriefing. PMID:23835132

  4. Dynamics of ultrafast photoinduced heterogeneous electron transfer, implications for recent solar energy conversion scenarios

    NASA Astrophysics Data System (ADS)

    Gundlach, Lars; Burfeindt, Bernd; Mahrt, Jürgen; Willig, Frank

    2012-08-01

    The general case of a heterogeneous electron transfer reaction is realized by ultrafast electron transfer from a photo-excited molecule to a wide continuum of electronic acceptor states. Two different theoretical model calculations addressing the injection dynamics have recently been presented. The first scenario predicts a wide energy distribution for the injected electron via excitations of high-energy vibrational modes in the ionized molecule, whereas the second scenario ascribes the width to thermal fluctuations. We present experimental data at different temperatures and identify the valid injection scenario for perylene/TiO2 systems. The results are discussed in view of recent solar energy conversion scenarios.

  5. Perspectives of Nuclear Energy for Human Development

    SciTech Connect

    Rouyer, Jean-Loup

    2002-07-01

    In this period of expectation and short term viewing, everyone has difficulties to draw long term perspectives. A positive global world vision of sustainable development gives confidence in the preparation of energy future in a moving international context. This presentation proposes to share such a long term vision inside which energy scenarios for nuclear development take their right place. It is founded on a specific analysis of an index of countries global development which is representative of a country efficiency. Human Development Index (HDI) is a composite international index recommended and calculated every year since 1990 by the United Nations Development Program (UNDP). This index is still very dependent of GNP, which ignores the disparities of revenues inside the country. That is why a Country Efficiency Index (CEI) has been defined to better represent the capacity of a country to utilize its resources for welfare of its inhabitants. CEI is a ratio of health and education levels to the capacity of the country to satisfy this welfare. CEI has been calculated for the 70 more populated countries of the world for the year 1997. CEI calculation has been also performed for European Countries, the United States, China and India on the period from 1965 to 1997. It is observed a growth of CEI. for France from 0.6 to 0.78, and from 0.7 to 0.85 for USA. In 1997, CEI of China was 0.46, and 0.38 for India. This index is a good tool to measure the progression of development of the countries and the related energy needs. Comparison of the evolutions of CEI of these different countries shows a similar positive trend with some delay between OECD countries and China or India. A positive scenario for the future is based on a similar curve for these developing countries with learning effect which produces development with less energy consumption. This simulation results however in energy needs that exceed fossil fuel today available resources in 2070. Ultimate fossil

  6. Neural correlates of the empathic perceptual processing of realistic social interaction scenarios displayed from a first-order perspective.

    PubMed

    Fehr, T; Achtziger, A; Roth, G; Strüber, D

    2014-10-01

    The neural processing of impulsive behavior is a central topic in various clinical and non-clinical contexts. To investigate neural and behavioral correlates of the empathic processing of complex social scenarios, especially considering ecological validity of the experimental procedure, we developed and investigated a video stimulus inventory. It includes realistic neutral, social-positive, and reactive-aggressive action scenarios. Short video-clips showing these social scenarios from a first-person perspective triggering different emotional states were presented to a non-clinical sample of 20 young adult male participants during fMRI measurements. Both affective interaction conditions (social-positive and reactive-aggressive) were contrasted against a neutral baseline condition and against each other. Behavioral evaluation data largely confirmed the validity of the emotion-inducing stimulus material. Reactive-aggressive and social-positive interaction scenarios produced widely overlapping fMRI activation patterns in hetero-modal association cortices, but also in subcortical regions, such as the peri-aqueductal gray. Reactive-aggressive compared to social-positive scenarios yielded a more anterior distribution of activations in pre-motor and inferior frontal brain regions associated to motor-preparation and inhibitory control processing as well as in the insula associated to pain- and/or aversion-processing. We argue that there are both principally common neural networks recruited for the processing of reactive-aggressive and social-positive scenarios, but also exclusive network parts in particular involved depending on individual socialization. PMID:24814646

  7. Parameter variation and scenario analysis in impact assessments of emerging energy technologies

    NASA Astrophysics Data System (ADS)

    Breunig, Hanna Marie

    There is a global need for energy technologies that reduce the adverse impacts of societal progress and that address today's challenges without creating tomorrow's problems. Life cycle impact assessment (LCIA) can support technology developers in achieving these prerequisites of sustainability by providing a systems perspective. However, modeling the early-stage scale up and impacts of technology systems may lead to unreliable or incomplete results due to a lack of representative technical, spatial, and temporal data. The goal of this dissertation is to support the acceleration of clean energy technology development by providing information about the regional variation of impacts and benefits resulting from plausible deployment scenarios. Three emerging energy technologies are selected as case studies: (1) brine management for carbon dioxide sequestration; (2) carbon dioxide capture, utilization, and sequestration; (3) stationary fuel cells for combined heat and power in commercial buildings. In all three case studies, priority areas are identified where more reliable data and models are necessary for reducing uncertainty, and vital information is revealed on how impacts vary spatially and temporally. Importantly, moving away from default technology and waste management hierarchies as a source of data fosters goal-driven systems thinking which in turn leads to the discovery of technology improvement potentials.

  8. Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles

    SciTech Connect

    Berry, G; Daily III, W

    2004-06-03

    This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing

  9. Scenarios for Benefits Analysis of Energy Research, Development,Demonstration and Deployment

    SciTech Connect

    Gumerman, Etan; Marnay, Chris

    2005-09-07

    For at least the last decade, evaluation of the benefits of research, development, demonstration, and deployment (RD3) by the U.S. Department of Energy has been conducted using deterministic forecasts that unrealistically presume we can precisely foresee our future 10, 25,or even 50 years hence. This effort tries, in a modest way, to begin a process of recognition that the reality of our energy future is rather one rife with uncertainty. The National Energy Modeling System (NEMS) is used by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EE) and Fossil Energy (FE) for their RD3 benefits evaluation. In order to begin scoping out the uncertainty in these deterministic forecasts, EE and FE designed two futures that differ significantly from the basic NEMS forecast. A High Fuel Price Scenario and a Carbon Cap Scenario were envisioned to forecast alternative futures and the associated benefits. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) implemented these scenarios into its version of NEMS,NEMS-LBNL, in late 2004, and the Energy Information Agency created six scenarios for FE in early 2005. The creation and implementation of the EE-FE scenarios are explained in this report. Both a Carbon Cap Scenario and a High Fuel Price Scenarios were implemented into the NEMS-LBNL. EIA subsequently modeled similar scenarios using NEMS. While the EIA and LBNL implementations were in some ways rather different, their forecasts do not significantly diverge. Compared to the Reference Scenario, the High Fuel Price Scenario reduces energy consumption by 4 percent in 2025, while in the EIA fuel price scenario (known as Scenario 4) reduction from its corresponding reference scenario (known as Scenario 0) in 2025 is marginal. Nonetheless, the 4 percent demand reduction does not lead to other cascading effects that would significantly differentiate the two scenarios. The LBNL and EIA carbon scenarios were mostly identical. The only major difference

  10. Viewing the Future of University Research Libraries through the Perspectives of Scenarios

    ERIC Educational Resources Information Center

    Cawthorne, Jon Edward

    2013-01-01

    This research highlights the scenarios that might serve as a strategic vision to describe a future beyond the current library, one which both guides provosts and creates a map for the transformation of human resources and technology in the university research libraries. The scenarios offer managerial leaders an opportunity to envision new roles…

  11. European air pollution in 2050, a regional air quality and climate perspective under CMIP5 scenarios

    NASA Astrophysics Data System (ADS)

    Colette, A.; Bessagnet, B.; Vautard, R.; Szopa, S.; Rao, S.; Schucht, S.; Klimont, Z.; Holland, M.; Menut, L.; Meleux, F.; Rouïl, L.

    2013-12-01

    Air pollution and climate change are closely related. They share both driving geophysical processes and mitigation strategies. Increased temperature, changes in weather regimes and precipitation patterns will alter the formation of pollution episodes. At the same time curbing greenhouse gases emission will also induce indirect co-benefits for air pollutant emissions. As a consequence, understanding the long-term efficiency of air pollution mitigation strategies requires the integrated implementation of comprehensive geophysical and economical models. Coupling air pollution and climate models for long term projections raise a number of scientific and technical issues. Global scale circulation outputs must be downscaled in order to provide high resolution three dimensional meteorological fields at high temporal frequency to the chemistry transport model. The computational cost of the air quality model is comparable to the cost of the regional climate model. So that the computing demand and storage call for an efficient design of a complex modelling suite. Moreover the cost of the project prohibits the implementation of large ensemble of model, thereby raising concerns on the treatment of uncertainty analyses of the projections. We present an integrated assessment of future air quality that relies on up-to-date emission scenarios and full-frame geophysical models of climate and atmospheric chemistry which are themselves embedded in monetised economical models to propose a cost-benefit assessment. Emissions: For long lived trace species, we use the Representative Concentrations Pathways (RCP) produced for the Fifth Assessment Report (AR5) of IPCC whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment (GEA) that offer an explicit representation of air quality policies. Climate and chemistry models: We use the latest sources of recent coordinated model intercomparison projects, each

  12. Physical simulation for low-energy astrobiology environmental scenarios.

    PubMed

    Gormly, Sherwin; Adams, V D; Marchand, Eric

    2003-01-01

    Speculations about the extent of life of independent origin and the potential for sustaining Earth-based life in subsurface environments on both Europa and Mars are of current and relevant interest. Theoretical modeling based on chemical energetics has demonstrated potential options for viable biochemical metabolism (metabolic pathways) in these types of environments. Also, similar environments on Earth show microbial activity. However, actual physical simulation testing of specific environments is required to confidently determine the interplay of various physical and chemical parameters on the viability of relevant metabolic pathways. This testing is required to determine the potential to sustain life in these environments on a specific scenario by scenario basis. This study examines the justification, design, and fabrication of, as well as the culture selection and screening for, a psychrophilic/halophilic/anaerobic digester. This digester is specifically designed to conform to physical testing needs of research relating to potential extent physical environments on Europa and other planetary bodies in the Solar System. The study is a long-term effort and is currently in an early phase, with only screening-level data at this time. Full study results will likely take an additional 2 years. However, researchers in electromagnetic biosignature and in situ instrument development should be aware of the study at this time, as they are invited to participate in planning for future applications of the digester facility. PMID:14987481

  13. Energy Perspective: Is Hydroelectricity Green?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2009-01-01

    The current worldwide concern over energy is primarily related to imported oil, oil drilling and refining capacity, and transportation capacity. However, this concern has bolstered interest in a broader range of "green" energy technologies. In this article, the author discusses the use of hydroelectricity as an alternative energy source and…

  14. Coal within a revised energy perspective

    SciTech Connect

    Darmstadter, J.

    2006-07-15

    The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

  15. Wave energy: a Pacific perspective.

    PubMed

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy. PMID:22184673

  16. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    NASA Astrophysics Data System (ADS)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input

  17. The implications of renewable energy research and development: Policy scenario analysis with experience and learning effects

    NASA Astrophysics Data System (ADS)

    Kobos, Peter Holmes

    This dissertation analyzes the current and potential future costs of renewable energy technology from an institutional perspective. The central hypothesis is that reliable technology cost forecasting can be achieved through standard and modified experience curves implemented in a dynamic simulation model. Additionally, drawing upon region-specific institutional lessons highlights the role of market, social, and political institutions throughout an economy. Socio-political influences and government policy pathways drive resource allocation decisions that may be predominately influenced by factors other than those considered in a traditional market-driven, mechanistic approach. Learning in economic systems as a research topic is an attractive complement to the notion of institutional pathways. The economic implications of learning by doing, as first outlined by Arrow (1962), highlight decreasing production costs as individuals, or more generally the firm, become more familiar with a production process. The standard approach in the literature has been to employ a common experience curve where cumulative production is the only independent variable affecting costs. This dissertation develops a two factor experience curve, adding research, development and demonstration (RD&D) expenditures as a second variable. To illustrate the concept in the context of energy planning, two factor experience curves are developed for wind energy technology and solar photovoltaic (PV) modules under different assumptions on learning rates for cumulative capacity and the knowledge stock (a function of past RD&D efforts). Additionally, a one factor experience curve and cost trajectory scenarios are developed for concentrated solar power and geothermal energy technology, respectively. Cost forecasts are then developed for all four of these technologies in a dynamic simulation model. Combining the theoretical framework of learning by doing with the fields of organizational learning and

  18. Interpreting global energy and emission scenarios: Methods for understanding and communicating policy insights

    NASA Astrophysics Data System (ADS)

    Hummel, Leslie

    Energy scenarios for the 21st century powerfully inform perceptions and expectations in the minds of energy investors, consumers, and policy-makers. Scenarios that stabilize global warming call for large-scale energy technology transitions, fueling debates about the relative roles for a range of technologies including nuclear power, carbon sequestration, biofuels, solar power, and efficient end-use devices. In the last decade, hundreds of scenarios have been published by more than a dozen research teams using different models, baselines and mitigation targets. Despite the efforts to summarize findings in a few major assessments, a gap in understanding remains at a critical science-policy juncture between scenario analysts and the audiences their work is designed to serve. Addressing the issue requires an interdisciplinary approach that incorporates knowledge and methods from the fields of energy engineering, economics, climate science, and policy analysis. This research applies two analytical techniques to investigate the effects of an imposed climate policy on the underlying energy system. The first disentangles the effect of a policy intervention on key demographic and technology drivers of fossil fuel use, and the second decomposes reductions in emissions by specific energy technology types. Because the techniques may be applied to any energy scenario with technology detail, this study demonstrates their application to ten sample stabilization scenarios from three leading models. Revealing the importance of data and assumptions overlooked or not well disclosed in the past, the results highlight an implausibly high pressure on energy supply innovations while the potential for energy efficiency improvements is systematically underestimated. The findings are significant to both scenario analysts and the decision-makers in public policy and private investment who are influenced by their work.

  19. U. S. Energy: aviation perspective

    SciTech Connect

    Blake, C.L.

    1983-11-01

    This report is a sequel/update of The Impact of Petroleum, Synthetic and Cryogenic Fuels on Civil Aviation, DOT/FAA/EM-82/29, June, 1982. Where the earlier report is more concerned with energy resources and availability, this report is more concerned with energy supply/demand balance and with prices. The report reviews world and U.S. energy, U.S. transportation energy, aviation fuel, natural gas, alternative fuels and energy sources, synthetic fuels, aviation fuel conservation, and petroleum price vulnerability. It draws heavily on The National Energy Policy Plan of 1983 and its supporting documents. World oil production and prices should remain generally steady for thirty to fifty years, growing slightly faster than the world economy. Near-term prices should be softer. OPEC can raise prices whenever demand for its production exceeds 80% of OPEC production capacity. The U.S. could delay or reverse future price rises by encouraging, or at least reducing restrictions against, domestic production. All future energy forecasts are risky. A disruption in crude production at any time until at least year 2000, can easily increase fuel prices by 100%.

  20. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU

  1. Lighting and energy in perspective

    SciTech Connect

    Fisher, W.S.

    1982-06-01

    Lighting has been used far too often as a symbol of energy use. As a result, much of the public is under the impression that lighting is one of the biggest energy users. In this paper the very opposite is proven. By pie diagrams it is seen that lighting uses only 5% of the nation's energy. Mandates to reduce lighting in the event of an oil emergency may be counterproductive as a result. Reductions would be better sought in transportation use (51%) and space heating. In a survey of Portland families, car use was 56%, lighting only 2%. It was also determined that ''Dad, Mom, and the kids'' use far more energy than all the stores, offices, schools, hotels, motels, and hospitals in the country.

  2. Social Networks and Workplace Risk: Classroom Scenarios from a U.S. and EU Perspective

    ERIC Educational Resources Information Center

    Binder, Perry; Mansfield, Nancy R.

    2013-01-01

    The explosion of social networks and the growing concern over privacy in the digital age--both in the United States and Europe--have provided an opportunity to introduce students to the legal risks of using social media in the workplace. This article builds on the authors' classroom experiences and provides social media scenarios and projects that…

  3. Reflections on Trends in Teacher Education in Europe Using the Scenario Perspective.

    ERIC Educational Resources Information Center

    Snoek, Marco; Fino, Carlos Nogueira; Halstead, Valerie; Hilton, Gillian; Mikl, Josef; Rehn, Joran; Sousa, Jesus Maria; Stomp, Lex; Viebahn, Peter

    2003-01-01

    Reflects on a collection of papers that examined the Association for Teacher Education in Europe's scenario model, suggesting that they indicated a trend toward a more pragmatic and individualistic approach in society that influences teacher education. However, these two trends (pragmatism and idealism) were not always strongly connected in the…

  4. Pre-Service Teachers' Perspectives on Using Scenario-Based Virtual Worlds in Science Education

    ERIC Educational Resources Information Center

    Kennedy-Clark, Shannon

    2011-01-01

    This paper presents the findings of a study on the current knowledge and attitudes of pre-service teachers on the use of scenario-based multi-user virtual environments in science education. The 28 participants involved in the study were introduced to "Virtual Singapura," a multi-user virtual environment, and completed an open-ended questionnaire.…

  5. The implications of future building scenarios for long-term building energy research and development

    SciTech Connect

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  6. Low carbon and clean energy scenarios for India: Analysis of targets approach

    SciTech Connect

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-12-01

    Low carbon energy technologies are gaining increasing importance in India for reducing emissions as well as diversifying its energy supply mix. The present paper presents and analyses a targeted approach for pushing solar, wind and nuclear technologies in the Indian energy market. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements and expert opinion. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario it is found that in the long run all solar, wind and nuclear will achieve their targets without any subsidy push. In the short run however, nuclear and solar energy require significant subsidy push. Nuclear energy requires a much higher subsidy allocation as compared to solar because the targets assumed are also higher for nuclear energy. Under a carbon price scenario, the carbon price drives the penetration of these technologies significantly. Still subsidy is required especially in the short run when the carbon price is low. It is also found that pushing solar, wind and nuclear technologies might lead to decrease in share of CCS under the price scenario and biomass under both BAU and price scenario, which implies that one set of low carbon technologies is substituted by other set of low carbon technologies. Thus the objective of emission mitigation might not be achieved due to this substitution. Moreover sensitivity on nuclear energy cost was done to represent risk mitigation for this technology and it was found that higher cost can significantly decrease the share of this technology under both the BAU and carbon price scenario.

  7. Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios

    NASA Astrophysics Data System (ADS)

    Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H.

    2014-04-01

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β >5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ =20 μm (95% C.L.).

  8. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.). PMID:24785025

  9. A high energy physics perspective

    SciTech Connect

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  10. New perspectives in offshore wind energy.

    PubMed

    Failla, Giuseppe; Arena, Felice

    2015-02-28

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. PMID:25583869

  11. New perspectives in offshore wind energy

    PubMed Central

    Failla, Giuseppe; Arena, Felice

    2015-01-01

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. PMID:25583869

  12. CMB lensing constraints on dark energy and modified gravity scenarios

    SciTech Connect

    Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.

    2009-11-15

    Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.

  13. Scenario analysis of energy-based low-carbon development in China.

    PubMed

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. PMID:25108719

  14. Energy from waste; A Canadian perspective

    SciTech Connect

    Rawson, K.L. )

    1990-01-01

    This paper reports on energy from waste from a Canadian perspective. The recovery of potential energy from waste products is not new in Canada, there are a number of existing facilities. The majority of in-service EFW facilities producing electricity are in the pulp and paper and wood products industries, but there are also several using Municipal Solid Wastes. While project proposals continue to come forward, the topic of energy from waste is receiving a fresh look from environmental regulators in light of growing environmental consciousness in society. Energy from waste continues to have a significant potential for growth in Canada, but the extent of future growth is directly dependent on public acceptability. This public acceptability, in turn, is dependent on the nature of the waste material and the location of the energy recovery facility.

  15. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  16. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  17. Energy use in Sweden: An international perspective

    SciTech Connect

    Schipper, L. |; Johnson, F.; Howarth, R.; Price, L.; Andersson, B.; Andersson, B.G. |

    1993-12-01

    This report analyzes the evolution of energy use in Sweden since the early 1970s. The purpose of the study, which is sponsored by NUTEK, Department of Energy Efficiency, the Swedish Agency for Technical and Industrial Development, is to shed light on the future path of energy use in Sweden by quantifying and understanding changes in past energy use. Energy efficiency has been identified by Swedish authorities in countless official studies as a key element in Sweden`s efforts to restrain oil imports, reduce reliance on nuclear power, reduce environmental impacts of energy use, and reduce CO{sub 2} emissions. To understand the role or performance of energy efficiency in the 1970s and 1980s in Sweden, and what this performance means about the future, the authors seek answers to three broad questions: (1) How has the structure and efficiency of energy use in Sweden evolved since the early 1970s, and where data permit, since even earlier? What caused these changes? (2) How does the structure of energy use in Sweden differ from that of other countries, and how has the evolution of energy use in Sweden differed from developments in other countries? (3) How much energy has Sweden saved, and why? Are these savings permanent? To what extent were they offset by changes in the structure of energy use? And to what extent is the magnitude of these savings dependent upon the way we measure energy use? The report reviews the long-term evolution of Swedish energy use, focusing on developments in five sectors of the economy: residential, service, industrial (manufacturing and {open_quotes}other industry{close_quotes} defined as mining, agriculture, forestry and fisheries, and construction), travel, and freight. The authors then examine Swedish energy use in a broader perspective, drawing detailed comparisons to other nations. Finally, they discuss a series of issues that hover over the future of energy demand in Sweden.

  18. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    SciTech Connect

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  19. PERSPECTIVE: REDD pilot project scenarios: are costs and benefits altered by spatial scale?

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Curran, Lisa M.

    2009-09-01

    area (Forest Carbon Portal 2009). From a time-series of Landsat satellite images, Gaveau et al calculate deforestation rates from 1990-2000 and 2000-2006. They apply these annual rates to deforestation probability maps, generated from forest condition in 2006 and six static spatial variables, to predict potential locations of future deforestation through 2030 under three different scenarios: (i) a business-as- usual with no REDD project; (ii) the current 7500 km2 project; and (iii) an extensive 65 000 km2 REDD scheme extending across the Aceh and Sumatra Utara provinces. Gaveau et al's chief contribution is identifying locations where forest carbon projects potentially have the greatest benefits for forest and orangutan conservation. By processing Landsat satellite imagery - now freely available - with relatively few spatial model inputs, this approach also has great potential for widespread application in tropical countries developing historical deforestation baselines. Yet Landsat satellite data also impose limitations for REDD. For example, Gaveau et al are unable to calculate forest degradation, which is highly problematic both to define and detect with Landsat imagery, yet critical especially in Indonesia with extensive logged forests (Curran et al 2004, Ramankutty et al 2007, Asner et al 2006). Nevertheless, Landsat remains one of the most appropriate satellite data products available for countries calculating previous rates of forest change. Assuming that technical roadblocks to REDD are overcome, another challenge surrounds assessing the feasibility of emission reduction scenarios, including those presented by Gaveau et al. Their estimates show that carbon and biodiversity gains would be 6- to 7-fold greater if the pilot project encompassed the 65 000 km2 northern Sumatra region. Yet, developers chose to implement this REDD project across 7500 km2, ~ 10% of Gaveau et al's expanded scenario region. If REDD programs are to be realized across large spatial scales

  20. Financial and feasibility implications of the treatment of hepatitis C virus in Italy: scenarios and perspectives

    PubMed Central

    Croce, Davide; Bonfanti, Marzia; Restelli, Umberto

    2016-01-01

    Background Hepatitis C virus (HCV) affects an estimated number of people between 130 million and 210 million worldwide. In the next few years, the Italian National Health Service will face a growing trend of patients requiring HCV antiviral treatments. The aim of the analysis was to estimate the time horizon in which it would be possible to treat HCV-infected patients and the related direct medical costs (antiviral treatment and monitoring activities) from the Italian National Health Service point of view. Methodology In order to estimate the number of HCV-infected patients in Italy, we considered a top-down (considering published data) and a bottom-up approach. The number of years needed for treatment and related direct costs were estimated through the development of a static deterministic model. Results The estimated number of HCV-infected patients in Italy varies from 2.7 (estimated through a top-down approach) to 0.6 million (estimated through a bottom-up approach) and 0.3 million (measured through a bottom-up approach). Considering the last two scenarios and the use of interferon-free therapies for 50,000 patients per year, treatment for HCV-infected patients could be at a cost of €13.7 billion and €7.0 billion by 2030 and 2023, respectively. Conclusion The treatment for HCV-infected patients in Italy is a challenging target for the financial implications of patient care. HCV infection could be controlled or eliminated in a 10- to 15-year time horizon. The cost of treatment can hardly be dealt with using the traditional economic tools but should be faced through multiyear investments, as health benefits are expected in the long period. National Health Service stakeholders (industry, government, insurance, and also patients) will have to identify suitable financial instruments to face the new expenditure required. PMID:27540306

  1. Health benefit evaluation of the energy use scenarios in Beijing, China.

    PubMed

    Pan, Xiaochuan; Yue, Wei; He, Kebin; Tong, Shilu

    2007-03-15

    Air pollution is one of the important causal factors for excess cardiorespiratory deaths and diseases. However, little information is available on health gains from clean energy usage in developing countries. In this study the expected population exposed to air pollutants was estimated under the different energy use scenarios by the year 2010, 2020 and 2030, respectively, in the urban area of Beijing, China. The concentration-response functions between air pollutants and the health endpoints were established using meta-analysis and regression models. The decreased cardiorespiratory deaths and diseases of the exposed population were predicted as the health benefits from air pollution reduction. We used daily measurements of particulate matter less than 10 mum in aerodynamic diameter (PM(10)) and sulphate dioxide (SO(2)) as air pollution indicators. The percentage of population exposed to higher level of PM(10) will be decreased significantly under the clean energy use scenario than that under the Baseline Scenario (i.e., business-as-usual scenario). Compared with the Baseline Scenario there will be, by 2010, 2020, and 2030, respectively, a decrease of 29-152, 30-212 and 39-287 acute excess deaths; and 340-1811, 356-2529 and 462-3424 chronic excess deaths associated with the reduction of PM(10) level; also a decrease of 237-331, 285-371 and 400-554 short-term excess deaths associated with the decrease of SO(2) level. Meanwhile, the number of respiratory and cardiovascular hospital admissions, outpatient visits to internal and paediatrics departments, total emergency room visits and asthma attacks will be remarkably reduced with the reduction of air pollution. Energy structure improvement could reduce ambient air pollution and produce substantial health benefits to the population in Beijing. These findings may have significant implications for other metropolitan cities, particularly in developing countries. PMID:17289123

  2. PERSPECTIVE: REDD pilot project scenarios: are costs and benefits altered by spatial scale?

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Curran, Lisa M.

    2009-09-01

    area (Forest Carbon Portal 2009). From a time-series of Landsat satellite images, Gaveau et al calculate deforestation rates from 1990-2000 and 2000-2006. They apply these annual rates to deforestation probability maps, generated from forest condition in 2006 and six static spatial variables, to predict potential locations of future deforestation through 2030 under three different scenarios: (i) a business-as- usual with no REDD project; (ii) the current 7500 km2 project; and (iii) an extensive 65 000 km2 REDD scheme extending across the Aceh and Sumatra Utara provinces. Gaveau et al's chief contribution is identifying locations where forest carbon projects potentially have the greatest benefits for forest and orangutan conservation. By processing Landsat satellite imagery - now freely available - with relatively few spatial model inputs, this approach also has great potential for widespread application in tropical countries developing historical deforestation baselines. Yet Landsat satellite data also impose limitations for REDD. For example, Gaveau et al are unable to calculate forest degradation, which is highly problematic both to define and detect with Landsat imagery, yet critical especially in Indonesia with extensive logged forests (Curran et al 2004, Ramankutty et al 2007, Asner et al 2006). Nevertheless, Landsat remains one of the most appropriate satellite data products available for countries calculating previous rates of forest change. Assuming that technical roadblocks to REDD are overcome, another challenge surrounds assessing the feasibility of emission reduction scenarios, including those presented by Gaveau et al. Their estimates show that carbon and biodiversity gains would be 6- to 7-fold greater if the pilot project encompassed the 65 000 km2 northern Sumatra region. Yet, developers chose to implement this REDD project across 7500 km2, ~ 10% of Gaveau et al's expanded scenario region. If REDD programs are to be realized across large spatial scales

  3. Electronics and telecommunications in Poland, issues and perspectives: Part III. Innovativeness, applications, economy, development scenarios, politics

    NASA Astrophysics Data System (ADS)

    Modelski, Józef; Romaniuk, Ryszard

    2010-09-01

    important role of ET is combined with the existence in the society of an adequate infrastructure which recreates the full development cycle of high technology embracing: people, institutions, finances and logistics, in this also science, higher education, education, continuous training, dissemination and outreach, professional social environment, legal basis, political support and lobbying, innovation structures, applications, industry and economy. The digest of chosen development tendencies in ET was made here from the academic perspective, in a wider scale and on this background the national one, trying to situate this branch in the society, determine its changing role to build a new technical infrastructure of a society based on knowledge, a role of builder of many practical gadgets facilitating life, a role of a big future integrator of today's single bricks into certain more useful unity. This digest does not have a character of a systematic analysis of ET. It is a kind of an arbitrary utterance of the authors inside their field of competence. The aim of this paper is to take an active part in the discussion of the academic community in this country on the development strategy of ET, choice of priorities for cyclically rebuilding economy, in competitive environments. The review paper was initiated by the Committee of Electronics and Telecommunications of Polish Academy of Sciences and was published in Polish as introductory chapter of a dedicated expertise, printed in a book format. This version makes the included opinions available for a wider community.

  4. Experimental Energy Consumption of Frame Slotted ALOHA and Distributed Queuing for Data Collection Scenarios

    PubMed Central

    Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis; Vilajosana, Xavier

    2014-01-01

    Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC) protocols, Frame Slotted ALOHA (FSA) and Distributed Queuing (DQ). We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA. PMID:25061839

  5. The role of renewable energy in climate stabilization: results from the EMF 27 scenarios

    SciTech Connect

    Luderer, Gunnar; Krey, Volker; Calvin, Katherine V.; Merrick, James; Mima, Silvana; Pietzcker, Robert; Van Vliet, Jasper; Wada, Kenichi

    2013-10-15

    This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; however—with the exception of low temperature heat—there is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)—which can serve as substitutes in low-carbon power supply—are available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.

  6. Experimental energy consumption of Frame Slotted ALOHA and Distributed Queuing for data collection scenarios.

    PubMed

    Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis; Vilajosana, Xavier

    2014-01-01

    Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC) protocols, Frame Slotted ALOHA (FSA) and Distributed Queuing (DQ). We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA. PMID:25061839

  7. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  8. Climate services for energy production: are regional climate models reliable for future solar power generation scenarios?

    NASA Astrophysics Data System (ADS)

    Petitta, Marcello; Castelli, Mariapina; Calmanti, Sandro

    2013-04-01

    In this study we present an analysis of surface solar radiation from Regional Climate Models (RCMs) scenario simulations produced during the ENSEMBLES project in order to understand the relation between changes in atmospheric properties and variation of the energy produced by solar power plants. Several studies have recently pointed out the inability and the scarce accuracy of IPCC models in capturing the past decadal variability of Surface Solar Radiation (SSR) (Wild 2009, Wild et al 2010). Most of these works compare observed and estimated SSR for the last 6-7 decades and show that only half of the models are able to reproduce partially the observed decrease (global dimming) and the increase (global brightening) in SSR which occurred respectively in the time intervals 1950-1980 and 1990-2000. We focus on the Euro-Mediterranean area and we compare the SSR data for the period 1951-2000 in order to assess the error associated to the model ensemble. Furthermore we analyze the XXI century regional ENSEMBLES scenarios in order to quantify potential future changes of SSR. The preliminary results obtained so far confirm the findings of Wild et al. for the period 1950-2000. For the future, the analysis shows a positive linear trend over the Mediterranean region. On the other hand, most of the models predict a negative linear trend over Central Europe. We also discuss future energy strategies considering the variability of energy production from solar panels estimated by probabilistic climate change scenarios.

  9. An Exploration Perspective of Beamed Energy Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John W.

    2007-01-01

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed.

  10. An Exploration Perspective of Beamed Energy Propulsion

    SciTech Connect

    Cole, John

    2008-04-28

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed.

  11. An Exploration Perspective of Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Cole, John

    2008-04-01

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed.

  12. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    SciTech Connect

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-03-01

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  13. Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario

    SciTech Connect

    Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

    1980-08-01

    An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

  14. A triple fouling layers perspective on evaluation of membrane fouling under different scenarios of membrane bioreactor operation.

    PubMed

    Pourabdollah, Mehdi; Torkian, Ayoob; Hashemian, Seyed Jamalodin; Bakhshi, Bita

    2014-01-01

    One of the main factors affecting membrane fouling in MBRs is operational conditions. In this study the influence of aeration rate, filtration mode, and SRT on hollow fiber membrane fouling was investigated using a triple fouling layers perspective. The sludge microbial population distribution was also determined by PCR method. Through various applied operational scenarios the optimal conditions were: aeration rate of 15 LPM; relaxation mode with 40s duration and 8 min. interval; and SRT of 30 days. The similarity between SMP variations in triple fouling layers with its corresponding hydraulic resistance confirmed the effect of SMP on membrane fouling. Among three fouling fractions, the upper (rinsed) layer found to have the most effect on membrane fouling which implies the critical role of aeration, but as for multilateral effects of aeration, the optimal aeration rate should be determined more precisely. Relaxation interval was more effective than its duration for fouling control. SRT variations in addition to influencing the amount of SMP, also affect on the structure of these material. At longer SRTs (20, 30 days) a greater percentage of SMP could penetrate into the membrane pores and for shorter SRTs they accumulate more on membrane surface. Results showed that there is a very good correlation between total hydraulic resistance (Log R) and protein to carbohydrate ratio at the rinsed layer (P1/C1). Considering significant effects of aeration and SRT conditions on this ratio (according to data), it is very determinative to apply the optimal aeration and SRT conditions. PMID:25002969

  15. Two fluid scenario for dark energy model in Brans-Dicke theory of gravitation

    NASA Astrophysics Data System (ADS)

    Reddy, D. R. K.; Anitha, S.; Umadevi, S.

    2014-04-01

    In this paper, we study the evolution of the dark energy parameter in the spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy in the scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 24:925, 1961). A determinate solution is presented using (i) the special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:183, 1983) and (ii) trace free energy momentum tensor of the two fluid. Two cases of interacting and non-interacting fluid (barotropic and dark energy) scenario is considered and general results are obtained. The physical aspects of the results obtained are, also, discussed.

  16. Modeling Urban Energy Savings Scenarios using Earth System Microclimate and Urban Morphology

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rose, A. N.; Branstetter, M. L.; Yuan, J.; New, J. R.; Omitaomu, O.; Wilbanks, T. J.

    2015-12-01

    In anticipation of emerging global urbanization, better understanding and quantification of climate effects on energy use are needed, requiring coordinated research of microclimate impacts on and from "human systems." To this end, we analyze and quantify the relationships among climatic conditions, urban morphology, population, land cover, and energy use so that these relationships can be used to inform energy-efficient urban development and planning. The focus of this research is on the analysis of measured and modeled energy efficiency of various building types in selected urban areas and temporal variations in energy use for different morphologies under different microclimatic conditions; implications for different morphologies of future climate and urban growth scenarios; and potential energy projections and savings by morphology for selected climatically distinct US cities. This work considers population projections to inform morphological design by incorporating two new datasets in which these projections have been made for years 2030 and 2050 at 30 arc-second resolution, in order to determine potential siting and design of new urban development. The overarching objective is the integration of different approaches across three research areas: earth system modeling; impacts, adaptation and vulnerability; and urban planning in order to address three major gaps in the existing capability in these areas: i) neighborhood resolution modeling and simulation of urban micrometeorological processes and their effect on and from regional climate; ii) projections for future energy use under urbanization and climate change scenarios identifying best strategies for urban morphological development and energy savings; iii) analysis and visualization tools to help planners optimally use these projections.

  17. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  18. Energy Education Programs: Perspectives for Community, Junior, and Technical Colleges.

    ERIC Educational Resources Information Center

    Settlemire, Mary Ann

    Discussed in this monograph are energy circumstances in the United States and the role two-year colleges can play in meeting future demands for energy technicians. Sections 1 through 4 offer perspectives on U.S. energy use, legislation, labor force projections, and two-year colleges. Some major program concerns appear in Section 5, while Section 6…

  19. High-energy neutrino signals from the Sun in dark matter scenarios with internal bremsstrahlung

    SciTech Connect

    Ibarra, Alejandro; Totzauer, Maximilian; Wild, Sebastian E-mail: maximilian.totzauer@mytum.de

    2013-12-01

    We investigate the prospects to observe a high energy neutrino signal from dark matter annihilations in the Sun in scenarios where the dark matter is a Majorana fermion that couples to a quark and a colored scalar via a Yukawa coupling. In this minimal scenario, the dark matter capture and annihilation in the Sun can be studied in a single framework. We find that, for small and moderate mass splitting between the dark matter and the colored scalar, the two-to-three annihilation q q-bar g plays a central role in the calculation of the number of captured dark matter particles. On the other hand, the two-to-three annihilation into q q-bar Z gives, despite its small branching fraction, the largest contribution to the neutrino flux at the Earth at the highest energies. We calculate the limits on the model parameters using IceCube observations of the Sun and we discuss their interplay with the requirement of equilibrium of captures and annihilations in the Sun and with the requirement of thermal dark matter production. We also compare the limits from IceCube to the limits from direct detection, antiproton measurements and collider searches.

  20. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways. PMID:24512511

  1. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    worked to bring the experience generated from over four decades of scenario development in other issue domains, including energy and security, to bear on environmental scenarios, and to bring into dialogue scenario practitioners, both producers and users, with social science scholars. The set of contributions to this focus issue of Environmental Research Letters arose out of this workshop and collectively examines key challenges facing the scenario community, synthesizes lessons, and offers recommendations for new research and practice in this field. One theme that emerged in many of the discussions at the workshop revolved around the distinction between two broad perspectives on the goals of scenario exercises: scenarios as products and scenarios as processes. Most global environmental change scenario exercises are product-oriented; the content of the scenarios developed is the main goal of many participants and those who commission or organize the scenario development process. Typically, what is of most interest are the environmental outcomes produced, how they relate to the various factors driving them, and what the results tell us about the prospects for future environmental change, for impacts, and for mitigation. A product-oriented perspective assumes that once produced, scenario products have lives of their own, divorced from the processes that generated them and able to serve multiple, often unspecified purposes. Thus, it is often assumed that the scenario products can be 'taken up' by a variety of users in a variety of fora. A contrasting scenario approach is process-oriented and self-consciously privileges the process of scenario development as the primary goal, for example as a means to motivate organizational learning, find commonalities across different perspectives, achieve consensus on goals, or come to a shared understanding of challenges. Focusing on scenarios as processes highlights the social contexts in which scenarios are created and used. Process

  2. Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios

    NASA Astrophysics Data System (ADS)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2016-03-01

    The nonobservation of new particles at the LHC suggests the existence of a mass gap above the electroweak scale. This situation is adequately described through a general electroweak effective theory with the established fields and Standard Model symmetries. Its couplings contain all information about the unknown short-distance dynamics which is accessible at low energies. We consider a generic strongly coupled scenario of electroweak symmetry breaking, with heavy states above the gap, and analyze the imprints that its lightest bosonic excitations leave on the effective Lagrangian couplings. Different quantum numbers of the heavy states imply different patterns of low-energy couplings, with characteristic correlations which could be identified in future data samples. The predictions can be sharpened with mild assumptions about the ultraviolet behaviour of the underlying fundamental theory.

  3. Emission scenario of non-CO2 gases from energy activities and other sources in China.

    PubMed

    Jiang, Kejun; Hu, Xiulian

    2005-09-01

    This paper gives a quantitative analysis on the non-CO(2) emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO(2) emission reduction effect. The research shows that the future non-CO(2) emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO(2) emissions is a problem as challenging and pressing as that of CO(2) emissions. This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO(2) emissions control and mitigation. PMID:20549450

  4. Emission scenario of non-CO2 gases from energy activities and other sources in China.

    PubMed

    Jiang, Kejun; Hu, Xiulian

    2005-12-01

    This paper gives a quantitative analysis on the non-CO2 emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO2 emission reduction effect. The research shows that the future non-CO2 emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO2 emissions is a problem as challenging and pressing as that of CO2 emissions. This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO2 emissions control and mitigation. PMID:16512217

  5. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect

    Yamaguchi, N.D.; Breazeale, K.

    1993-12-01

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  6. US National Climate Assessment (NCA) Scenarios for Assessing Our Climate Future: Issues and Methodological Perspectives Background Whitepaper for Participants

    SciTech Connect

    Moss, Richard H.; Engle, Nathan L.; Hall, John; Jacobs, Kathy; Lempert, Rob; Mearns, L. O.; Melillo, Jerry; Mote, Phil; O'Brien, Sheila; Rosenzweig, C.; Ruane, Alex; Sheppard, Stephen; Vallario, Robert W.; Wiek, Arnim; Wilbanks, Thomas

    2011-10-01

    This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for release in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes), changes in

  7. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  8. A Dark Energy Model with Generalized Uncertainty Principle in the Emergent, Intermediate and Logamediate Scenarios of the Universe

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Chattopadhyay, Surajit; Debnath, Ujjal

    2012-02-01

    This work is motivated by the work of Kim et al. (Mod. Phys. Lett. A 23:3049, 2008), which considered the equation of state parameter for the new agegraphic dark energy based on generalized uncertainty principle coexisting with dark matter without interaction. In this work, we have considered the same dark energy interacting with dark matter in emergent, intermediate and logamediate scenarios of the universe. Also, we have investigated the statefinder, kerk and lerk parameters in all three scenarios under this interaction. The energy density and pressure for the new agegraphic dark energy based on generalized uncertainty principle have been calculated and their behaviors have been investigated. The evolution of the equation of state parameter has been analyzed in the interacting and non-interacting situations in all the three scenarios. The graphical analysis shows that the dark energy behaves like quintessence era for logamediate expansion and phantom era for emergent and intermediate expansions of the universe.

  9. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.

    PubMed

    Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran

    2014-04-21

    One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the

  10. Perspectives on energy storage wheels for space station application

    SciTech Connect

    Oglevie, R.E.

    1984-11-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  11. Optimizing Aggregation Scenarios for Integrating Renewable Energy into the U.S. Electric Grid

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2010-12-01

    This study is an analysis of 2006 and 2007 electric load data, wind speed and solar irradiance data, and existing hydroelectric, geothermal, and other power plant data to quantify benefits of aggregating clean electric power from various Federal Energy Regulatory Commission (FERC) regions in the contiguous United States. First, various time series, statistics, and probability methods are applied to the electric load data to determine if there are any desirable demand-side results—specifically reducing variability and/or coincidence of peak events, which could reduce the amount of required carbon-based generators—in combining the electricity demands from geographically and temporally diverse areas. Second, an optimization algorithm is applied to determine the least-cost portfolio of energy resources to meet the electric load for a range of renewable portfolio standards (RPS’s) for each FERC region and for various aggregation scenarios. Finally, the installed capacities, ramp rates, standard deviation, and corresponding generator requirements from these optimization test runs are compared against the transmission requirements to determine the most economical organizational structure of the contiguous U.S. electric grid. Ideally, results from this study will help to justify and identify a possible structure of a federal RPS and offer insight into how to best organize regions for transmission planning.

  12. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    NASA Astrophysics Data System (ADS)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    International commerce places unique pressures on the sustainability of water resources and marine environments. System impacts include noise, emissions, and chemical and biological pollutants like introduction of invasive species into key ecosystems. At the same time, maritime trade also enables the sustainability ambition of intragenerational equity in the economy through the global circulation of commodities and manufactured goods, including agricultural, energy and mining resources (UN Trade and Development Board 2013). This paper presents a framework to guide the analysis of the multiple dimensions of the sustainable commerce-ocean nexus. As a demonstration case, we explore the social, economic and environmental aspects of the nexus framework using scenarios for the production and transportation of conventional and bio-based energy commodities. Using coupled LCA and GIS methodologies, we are able to orient the findings spatially for additional insight. Previous work on the sustainable use of marine resources has focused on distinct aspects of the maritime environment. The framework presented here, integrates the anthropogenic use, governance and impacts on the marine and coastal environments with the natural components of the system. A similar framework has been highly effective in progressing the study of land-change science (Turner et al 2007), however modification is required for the unique context of the marine environment. This framework will enable better research integration and planning for sustainability objectives including mitigation and adaptation to climate change, sea level rise, reduced dependence on fossil fuels, protection of critical marine habitat and species, and better management of the ocean as an emerging resource base for the production and transport of commodities and energy across the globe. The framework can also be adapted for vulnerability analysis, resilience studies and to evaluate the trends in production, consumption and

  13. Fermi Large Area Telescope observation of high-energy solar flares: constraining emission scenarios

    NASA Astrophysics Data System (ADS)

    Omodei, Nicola; Pesce-Rollins, Melissa; Petrosian, Vahe; Liu, Wei; Rubio da Costa, Fatima

    2015-08-01

    The Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This has also been demonstrated by its detection of quiescent gamma-ray emission from pions produced by cosmic-ray protons interacting in the solar atmosphere, and from cosmic-ray electron interactions with solar optical photons. The Fermi LAT has also detected high-energy gamma-ray emission associated with GOES M-class and X-class X-ray flares, each accompanied by a coronal mass ejection and a solar energetic particle event increasing the number of detected solar flares by almost a factor of 10 with respect to previous space observations. During the impulsive phase, gamma rays with energies up to several hundreds of MeV have been recorded by the LAT. Emission up to GeV energies lasting several hours after the flare has also been recorded by the LAT. Of particular interest are the recent detections of two solar flares whose position behind the limb was confirmed by the STEREO-B satellite. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.

  14. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melaina, Marc; Bush, Brian; Penev, Michael

    2015-05-12

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  15. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  16. Energy use in Denmark: An international perspective

    SciTech Connect

    Schipper, L.; Howarth, R.; Andersson, B.; Price, L.

    1992-08-01

    This report analyzes the evolution use in Denmark since the early 1970s in order to shed light on the future path of energy use in Denmark, with particular emphasis on the role of energy efficiency. The authors found that improvements in end-use energy efficiency reduced primary energy requirements in Denmark by 22% between 1972 and 1988. Focusing on developments in six individual sectors of the Danish economy (residential, manufacturing, other industry, service, travel, and freight), they found that the residential, manufacturing, and service sectors have led the improvements in efficiency. Travel showed few significant improvements and the efficiency of freight transportation worsened. The international comparisons showed that the structure of energy use in Denmark is less energy-intensive than that of most high-income OECD countries, with the exception of Japan. Overall, they concluded that most of the energy savings achieved in Denmark were brought about through improvements in technology. They also found that an important stimulus for improved efficiency was higher energy prices, led in no small part by significant taxes imposed on small consumers of heating oil, electricity, and motor fuels. Energy-efficiency programs accelerated energy savings in homes and commercial buildings. The rate of improvement of energy efficiency in Denmark has slowed down significantly since 1984, consistent with trends observed in other major countries. While many of the energy-efficiency goals stated or implied in Denmark`s Energi 2000 are achievable over a very long period, present trends do not point towards achievement of these goals by 2010 or even 2020. Strong measures will have to be developed by both public and private authorities if energy efficiency is to make a key contributions to reducing environmental problems associated with energy use in Denmark.

  17. Hydroelectric power generation in an Alpine basin: future water-energy scenarios in a run-of-the-river plant

    NASA Astrophysics Data System (ADS)

    Bongio, Marco; Avanzi, Francesco; De Michele, Carlo

    2016-08-01

    We investigate scenarios of hydroelectric power generation for an Alpine run-of-the-river plant in 2050. To this end, we include a conversion from streamflow to energy in a hydrological model of the basin, and we introduce a set of benchmark climate scenarios to evaluate expected future production. These are a "future-like-present" scenario assuming future precipitation and temperature inputs to be statistically equivalent to those observed during the recent past at the same location, a "warmer-future" scenario, which considers an additional increase in temperature, and a "liquid-only" scenario where only liquid precipitation is admitted. In addition, two IPCC-like climatic scenarios (RCP 4.5 and RCP 8.5) are considered. Uncertainty in glaciers' volume is accounted by initializing the hydrological model with two different inventories of glaciers. Ensemble results reveal that 1) an average decrease between -40% and -19% of hydroelectric power generation in 2050 is predicted at the plant considered (with respect to present condition); 2) an average decrease between -20% and -38% of cumulative incoming streamflow volume at the plant is also predicted, again with respect to present condition; 3) these effects are associated with a strong average decrease of the volume of glaciers (between -76% and -96%, depending on the initial value considered). However, Monte Carlo simulations show that results are also prone to high uncertainties. Implications of these results for run-of-the-river plants are discussed.

  18. The sustainable water-energy nexus: Life-cycle impacts and feasibility of regional energy and water supply scenarios

    NASA Astrophysics Data System (ADS)

    Dale, Alexander T.

    Water and energy are critical, interdependent, and regional resources, and effective planning and policies around which sources to use requires combining information on environmental impacts, cost, and availability. Questions around shifting energy and water sources towards more renewable options, as well as the potential role of natural gas from shale formations are under intense discussion. Decisions on these issues will be made in the shadow of climate change, which will both impact and be impacted by energy and water supplies. This work developed a model for calculating the life-cycle environmental impacts of regional energy and water supply scenarios (REWSS). The model was used to discuss future energy pathways in Pennsylvania, future electricity impacts in Brazil, and future water pathways in Arizona. To examine energy in Pennsylvania, this work also developed the first process-based life-cycle assessment (LCA) of shale gas, focusing on greenhouse gas (GHG) emissions, energy consumption, and water consumption. This LCA confirmed results that shale gas is similar to conventional gas in GHG emissions, though potentially has a lower net energy due to a wide range of production rates for wells. Brazil's electricity-related impacts will rise as development continues. GHG emissions are shown to double by 2020 due to expanded natural gas (NG) and coal usage, with a rise of 390% by 2040 posssible with tropical hydropower reservoirs. While uncertainty around reservoir impacts is large, Brazil's low GHG emissions intensity and future carbon emissions targets are threatened by likely electricity scenarios. Pennsylvania's energy-related impacts are likely to hinge on whether NG is used as a replacement for coal, allowing GHG emissions to drop and then plateau at 93% of 2010 values; or as a transition fuel to expanded renewable energy sources, showing a steady decrease to 86% in 2035. Increased use of biofuels will dominate land occupation and may dominate water

  19. Energy in Canada. Review and perspective

    NASA Astrophysics Data System (ADS)

    Dixon, R. S.

    1980-12-01

    Canada's historical energy consumption, its current consumption and its likely requirements by the turn of the century are reviewed. It is estimated that at least 50% more energy will be required in the year 2000 than is consumed now, assuming a minimum 2% growth rate in primary energy consumption. Both nonrenewable and renewable energy resources are examined in the light of these energy requirements and the need to substitute alternative energy sources for conventional oil in various end uses. The comparative risks involved in energy production are also reviewed. Most of the increase in energy consumption and the substitution of oil over the next 20 years is likely to be met by conventional energy sources, since indigenous reserves are extensive and the relevant technologies well established. Coal, nuclear and hydro reserves could cover the increase in energy demand until well into the next century, and natural gas reserves are sufficient to bridge the gap during conversion from oil to other energy sources. Nuclear power using advanced fuel cycles and oil from tar sands offer Canada long term security.

  20. Synthetic fuels development in Kentucky: Four scenarios for an energy future as constructed from lessons of the past

    NASA Astrophysics Data System (ADS)

    Musulin, Mike, II

    The continued failure of synthetic fuels development in the United States to achieve commercialization has been documented through the sporadic periods of mounting corporate and government enthusiasm and high levels of research and development efforts. Four periods of enthusiasm at the national level were followed by waning intervals of shrinking financial support and sagging R&D work. The continuing cycle of mobilization and stagnation has had a corresponding history in Kentucky. To better understand the potential and the pitfalls of this type of technological development the history of synthetic fuels development in the United States is presented as background, with a more detailed analysis of synfuels development in Kentucky. The first two periods of interest in synthetic fuels immediately after the Second World War and in the 1950s did not result in any proposed plants for Kentucky, but the third and fourth periods of interest created a great deal of activity. A theoretically grounded case study is utilized in this research project to create four different scenarios for the future of synthetic fuels development. The Kentucky experience is utilized in this case study because a fifth incarnation of synthetic fuels development has been proposed for the state in the form of an integrated gasification combined cycle power plant (IGCC) to utilize coal and refuse derived fuel (RDF). The project has been awarded a grant from the U.S. Department of Energy Clean Coal Technology program. From an examination and analysis of these periods of interest and the subsequent dwindling of interest and participation, four alternative scenarios are constructed. A synfuels breakthrough scenario is described whereby IGCC becomes a viable part of the country's energy future. A multiplex scenario describes how IGCC becomes a particular niche in energy production. The status quo scenario describes how the old patterns of project failure repeat themselves. The fourth scenario describes

  1. Energy efficiency: Perspectives on individual behavior

    SciTech Connect

    Kempton, W.; Neiman, M.

    1986-01-01

    A collection of research papers on the personal behavior and attitudes that affect residential energy use. Articles in the first section address the factors that affect decision-making by consumers; convenience and personal opinions often override rational economic choices. The research in the second section uses aggregate survey data to gain insight into energy behavior. Papers in the third section use detailed monitoring of individual households to analyze personal behavior and home energy management, and the fourth section includes papers on the interaction of building systems with occupants. These papers demonstrate that, to be successful, energy conservation programs must consider the ''human factor'' in addition to the conventional energy parameters (e.g. weather, insulation, and appliance efficiencies). Main emphasis was given to: energy conservation; consumers; personal behavior; economic decision-making; buildings; energy policy; hot water use; thermostats; attitudes; applied anthropology.

  2. Low-energy effective theory for a Randall-Sundrum scenario with a moving bulk brane

    SciTech Connect

    Cotta-Ramusino, Ludovica; Wands, David

    2007-05-15

    We derive the low-energy effective theory of gravity for a generalized Randall-Sundrum scenario, allowing for a third self-gravitating brane to live in the 5D bulk spacetime. At zero order the 5D spacetime is composed of two slices of anti-de Sitter spacetime, each with a different curvature scale, and the 5D Weyl tensor vanishes. Two boundary branes are at the fixed points of the orbifold whereas the third brane is free to move in the bulk. At first order, the third brane breaks the otherwise continuous evolution of the projection of the Weyl tensor normal to the branes. We derive a junction condition for the projected Weyl tensor across the bulk brane, and combining this constraint with the junction condition for the extrinsic curvature tensor, allows us to derive the first-order field equations on the middle brane. The effective theory is a generalized Brans-Dicke theory with two scalar fields. This is conformally equivalent to Einstein gravity and two scalar fields, minimally coupled to the geometry, but nonminimally coupled to matter on the three branes.

  3. Global energy perspectives: A summary of the joint study by the International Institute for Applied Systems Analysis and World Energy Council

    SciTech Connect

    Gruebler, A.; Nakicenovic, N. |; Jefferson, M.

    1996-03-01

    This article reports a study on Global Energy Perspectives to 2050 and Beyond conducted jointly by the International Institute for Applied Systems Analysis (IIASA) and the World Energy Council (WEC). All together three cases of economic and energy developments were developed that sprawl into six scenarios of energy supply alternatives extending until the end of the 21st century. The international consistency of the scenarios was assessed with the help of formal energy models. The study took close account of world population prospects, economic growth, technological advance, the energy resource base, environmental implications from the local to the global level, financing requirements, and the future prospects of both fossil and nonfossil fuels and industries. Although no analysis can turn an uncertain future into a sure thing, the study identifies patterns that are robust across a purposely broad range of scenarios. The study also enables one to relate alternative near-term research and development, technology, economic, and environmental policies to the possible long-term divergence of energy systems structures. Due to the long lead times involved in the turnover of capital stock and infrastructures of the energy system, policy would need to be implemented now in order to initiate long-term structural changes in the energy system that would, however, become significant only after the year 2020. 23 refs., 10 figs., 8 tabs.

  4. Energy use in buildings in a long-term perspective

    SciTech Connect

    Urge-Vorsatz, Diana; Petrichenko, Ksenia; Staniec, Maja; Eom, Jiyong

    2013-06-01

    Energy services in and related to buildings are responsible for approximately one-third of total global final energy demand and energy-related greenhouse gas emissions. They also contribute to the other key energy-related global sustainability challenges including lack of access to modern energy services, climate change, indoor and outdoor air pollution, related and additional health risks and energy dependence. The aim of this paper is to summarize the main sustainability challenges related to building thermal energy use and to identify the key strategies for how to address these challenges. The paper’s basic premises and results are provided by and updated from the analysis conducted for the Global Energy Assessment: identification of strategies and key solutions; scenario assessment; and the comparison of the results with other models in the literature.

  5. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    PubMed Central

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  6. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    PubMed

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  7. Restructuring the energy industry: A financial perspective

    SciTech Connect

    Abrams, W.A.

    1995-12-31

    This paper present eight tables summarizing financial aspects of energy industry restructuring. Historical, current, and future business characteristics of energy industries are outlined. Projections of industry characteristics are listed for the next five years and for the 21st century. Future independent power procedures related to financial aspects are also outlined. 8 tabs.

  8. The US textile industry: An energy perspective

    SciTech Connect

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  9. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  10. Scenarios of U.S. Carbon Reductions: Potential Impacts of Energy-Efficient and Low-Carbon Technologies by 2010 and Beyond

    SciTech Connect

    Brown, M.A.

    1997-01-01

    This report presents the results of a study conducted by five US Department of Energy national laboratories that quantifies the potential for energy-efficient and low-carbon technologies to reduce carbon emissions in the US. The stimulus for this study derives from a growing recognition that any national effort to reduce the growth of greenhouse gas emissions must consider ways of increasing the productivity of energy use. To add greater definition to this view, they quantify the reductions in carbon emissions that can be attained through the improved performance and increased penetration of efficient and low-carbon technologies by the year 2010. They also take a longer-term perspective by characterizing the potential for future research and development to produce further carbon reductions over the next quarter century. As such, this report makes a strong case for the value of energy technology research, development, demonstration, and diffusion as a public response to global climate change. Three overarching conclusions emerge from their analysis of alternative carbon reduction scenarios. First, a vigorous national commitment to develop and deploy cost-effective energy-efficient and low-carbon technologies could reverse the trend toward increasing carbon emissions. Along with utility sector investments, such a commitment could halt the growth in US energy consumption and carbon emissions so that levels in 2010 are close to those in 1997 (for energy) and in 1990 (for carbon). It must be noted that such a vigorous national commitment would have to go far beyond current efforts. Second, if feasible ways are found to implement the carbon reductions, the cases analyzed in the study are judged to yield energy savings that are roughly equal to or greater than costs. Third, a next generation of energy-efficient and low-carbon technologies promises to enable the continuation of an aggressive pace of carbon reductions over the next quarter century.

  11. The US steel industry: An energy perspective

    SciTech Connect

    Azimi, S. A.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US steel industry in terms of energy consumption and conservation. The specific objectives were: to update and verify energy and materials consumption data at the various process levels in 1983; to determine the potential energy savings attainable with current (1983), state-of-the-art, and future production practices and technologies (2000); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. The results of this study concluded that in year 2000, there is a potential to save between 40% and 46% of the energy used in current production practices, dependent on the projected technology mix. R and D needs and opportunities were identified for the industry. Potential R and D candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  12. Rural energy - ODA`s perspective

    SciTech Connect

    Woolnough, D.

    1997-12-01

    The Overseas Development Administration has as a goal `to improve the quality of life of people in poorer countries by contributing to sustainable development and reducing poverty and suffering.` Rural energy fits into this goal as a means to an end. The emphasis is firmly on the service provided, with the aim being provision of basic needs as a part of rural development. ODA plays a role in this task on a number of fronts: research and development; support for NGO`s; aid in a bilateral or multilateral form. The view of ODA is that even rural energy projects must emphasize the service provided and must be economically sustainable. Within its sphere of influence, there is a clearly growing position for the employment of rural energy programs.

  13. Perspectives on renewable energy and Village Power

    SciTech Connect

    Hoffman, A.R.

    1997-12-01

    The author provides a brief overview of the role the Department of Energy has been playing in the area of renewable energy sources and their applications at a village level. Energy demand is rising sharply, and shortages are becoming more acute. Developing countries will present a large demand, and market opportunity over the next 40 years. Environmental concerns are a factor in the choice for what sources to promote and develop. The author touches on the features of renewable sources which makes them attractive to DOE for some applications, and what the goals of the department are in supporting this technology. Examples of applications at the level of village power are presented for both the US and abroad.

  14. Energy crops for ethanol: a processing perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today’s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has bee...

  15. Primary energy: Present status and future perspectives

    NASA Astrophysics Data System (ADS)

    Thielheim, K. O.

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO2-greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  16. Ocean thermal energy conversion: Perspective and status

    NASA Astrophysics Data System (ADS)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  17. Current Perspectives in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  18. Unique Perspectives on a Transforming Energy Economy: 2014 Annual Report (Brochure)

    SciTech Connect

    Gossett, S.

    2014-03-01

    What makes JISEA unique? Unique perspectives. This brochure highlights the unique perspectives provided by the Joint Institute for Strategic Energy Analysis through JISEA's recent accomplishments and the people behind them.

  19. Talking with consumers about energy reductions: recommendations from a motivational interviewing perspective

    PubMed Central

    Klonek, Florian E.; Kauffeld, Simone

    2015-01-01

    Reduction of energy costs has become a concern for many organizations. First, we review energy-saving studies in organizations in which consumers showed resistance to change their behavior. Second, we relate resistance to change to the psycholinguistic construct “sustain talk” that describes verbal arguments against behavior change (e.g., “Work processes have priority here”). Third, we argue how Motivational Interviewing (MI)—an interaction-approach to facilitate behavior change—might be helpful in dealing with this behavior. We transfer MI to interactions about energy-savings in organizations and demonstrate how qualification in MI for energy managers may affect these interactions. Therefore, we present three short case scenarios (i.e., video vignettes) that demonstrate socio-interactional mechanisms underlying energy-relevant decisions and behaviors. Consumer' verbal responses are graphed as one single time-variant index of readiness versus resistance (R-index) in order to illustrate interactional dynamics. In sum, we combine theoretical and empirical perspectives from multiple disciplines and discuss an innovative socio-interaction approach that may facilitate energy-efficient behavior in organizations. PMID:25821440

  20. Talking with consumers about energy reductions: recommendations from a motivational interviewing perspective.

    PubMed

    Klonek, Florian E; Kauffeld, Simone

    2015-01-01

    Reduction of energy costs has become a concern for many organizations. First, we review energy-saving studies in organizations in which consumers showed resistance to change their behavior. Second, we relate resistance to change to the psycholinguistic construct "sustain talk" that describes verbal arguments against behavior change (e.g., "Work processes have priority here"). Third, we argue how Motivational Interviewing (MI)-an interaction-approach to facilitate behavior change-might be helpful in dealing with this behavior. We transfer MI to interactions about energy-savings in organizations and demonstrate how qualification in MI for energy managers may affect these interactions. Therefore, we present three short case scenarios (i.e., video vignettes) that demonstrate socio-interactional mechanisms underlying energy-relevant decisions and behaviors. Consumer' verbal responses are graphed as one single time-variant index of readiness versus resistance (R-index) in order to illustrate interactional dynamics. In sum, we combine theoretical and empirical perspectives from multiple disciplines and discuss an innovative socio-interaction approach that may facilitate energy-efficient behavior in organizations. PMID:25821440

  1. Perspectives on High-Energy-Density Physics

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare

  2. Michigan's energy resources: a geological perspective

    SciTech Connect

    Kalliokoski, J.

    1981-11-01

    In recent years, Michigan's main energy source has been oil, followed by gas and coal, respectively. Very little energy is derived from hydro or nuclear plants. Michigan's oil production has grown rapidly to slightly less than 35 million bbl/yr against a consumption of 200 million bbl/yr. In other words, Michigan is producing one-fifth of its needs from in-state reserves. Oil resources are quoted at 300 to 2700 million bbl. The major recent oil and gas production has been from the Silurian Pinnacle Reefs. Gas is recovered from similar geologic reservoirs as oil. In 1980, gas production was 0.150 trillion cu ft against an annual consumption of 0.08 trillion cu ft, or ca. one-fifth of the state's annual needs. Gas resources have been estimated at 1.8 to 10.9 trillion cu ft. Michigan can expect to maintain its 20% level of self-sufficiency from oil for the next 10 yr and from gas for the next 30 yr.

  3. Energy technology scenarios for use in water resources assessments under Section 13a of the Federal Nonnuclear Energy Research and Development Act

    SciTech Connect

    1980-10-01

    This document presents two estimates of future growth of emerging energy technology in the years 1985, 1990, and 2000 to be used as a basis for conducting Water Resources Council assessments as required by the Nonnuclear Energy Research and Development Act of 1974. The two scenarios are called the high world oil price (HWOP) and low world oil price (LWOP) cases. A national-level summary of the ASA tabulations is shown in Appendix A; the scenarios are presented at the ASA level of detail in Appendix B. The two scenarios were generally derived from assumptions of the Second National Energy Plant (NEP II), including estimates of high and low world oil price cases, growth rate of GNP, and related economic parameters. The overall national energy growth inherent in these assumptions was expressed as a detailed projection of various energy fuel cycles through use of the Fossil-2 model and regionalized through use of the Strategic Environmental Assessment System (SEAS). These scenarios are for the use of regional analysts in examining the availability of water for and the potential impacts of future growth of emerging energy technology in selected river basins of the Nation, as required by Section 13(a).

  4. Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)

    SciTech Connect

    Braccio, R.; Finch, P.; Frazier, R.

    2012-03-01

    This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

  5. Perspectives on high-energy-density physicsa)

    NASA Astrophysics Data System (ADS)

    Drake, R. P.

    2009-05-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very nontraditional plasmas. High-energy-density (HED) plasmas are often examples, variously involving strong Coulomb interactions and ≪1 particles per Debye sphere, dominant radiation effects, and strongly relativistic or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of "plasma." Here the specific ways in which HED plasmas differ from traditional plasmas are discussed. This is first done by comparison of important physical quantities across the parameter regime accessible by existing or contemplated experimental facilities. A specific discussion of some illustrative cases follows, including strongly radiative shocks and the production of relativistic, quasimonoenergetic beams of accelerated electrons.

  6. Adolescent energy drink consumption: An Australian perspective.

    PubMed

    Costa, Beth M; Hayley, Alexa; Miller, Peter

    2016-10-01

    Caffeinated Energy Drinks (EDs) are not recommended for consumption by children, yet there is a lack of age-specific recommendations and restrictions on the marketing and sale of EDs. EDs are increasingly popular among adolescents despite growing evidence of their negative health effects. In the current study we examined ED consumption patterns among 399 Australian adolescents aged 12-18 years. Participants completed a self-report survey of consumption patterns, physiological symptoms, and awareness of current ED consumption guidelines. Results indicated that ED consumption was common among the sample; 56% reported lifetime ED consumption, with initial consumption at mean age 10 (SD = 2.97). Twenty-eight percent of the sample consumed EDs at least monthly, 36% had exceeded the recommended two standard EDs/day, and 56% of consumers had experienced negative physiological health effects following ED consumption. The maximum number of EDs/day considered appropriate for children, adolescents, and adults varied, indicating a lack of awareness of current consumption recommendations. These findings add to the growing body of international evidence of adolescent ED consumption, and the detrimental impact of EDs to adolescent health. Enforced regulation and restriction of EDs for children's and adolescents' consumption is urgently needed in addition to greater visibility of ED consumption recommendations. PMID:27389033

  7. Free-Energy Calculations. A Mathematical Perspective

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2015-01-01

    conductance, defined as the ratio of ionic current through the channel to applied voltage, can be calculated in MD simulations by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. If the current is small, a voltage significantly higher than the experimental one needs to be applied to collect sufficient statistics of ion crossing events. Then, the calculated conductance has to be extrapolated to the experimental voltage using procedures of unknown accuracy. Instead, we propose an alternative approach that applies if ion transport through channels can be described with sufficient accuracy by the one-dimensional diffusion equation in the potential given by the free energy profile and applied voltage. Then, it is possible to test the assumptions of the equation, recover the full voltage/current dependence, determine the reliability of the calculated conductance and reconstruct the underlying (equilibrium) free energy profile, all from MD simulations at a single voltage. We will present the underlying theory, model calculations that test this theory and simulations on ion conductance through a channel that has been extensively studied experimentally. To our knowledge this is the first case in which the complete, experimentally measured dependence of the current on applied voltage has been reconstructed from MD simulations.

  8. An energy perspective on landfill gas

    SciTech Connect

    Hutchinson, P.J. )

    1993-01-01

    Globally, one billion metric tons of organic waste in the form of municipal solid waste are placed into solid-waste containment facilities every year. Complete biodegradation of this waste can generate approximately 2.8x10[sup 11] m[sup 3] (9.9 trillion cubic feet (Tcf) or 1.98x10[sup 8] metric tons) of biogas. Biogas consists of approximately equal proportions of methane and carbon dioxide; thus a year's worth of waste can potentially generate 1.4x10[sup 11] m[sup 3] (5 Tcf or 9.9x10[sup 7] metric tons) of methane. If we assume that landfill-biogas generation began only 20 years ago and has proceeded at a steady rate, then we can estimate that it can contribute 5x10[sup 10] m[sup 3] (1.8 Tcf or 36x10[sup 6] metric tons) of methane to the global atmospheric budget every year. Landfill gas is difficult to recover and use. Exploitation of biogas includes use as a raw product for heat energy, dehydration to produce electric generator fuel, refinement for commercial transportation, and use as a chemical feedstock. Controlled-reactor landfills, called [open quotes]biofills,[close quotes] are designed for optimum methane generation to ensure a steady and consistent rate of gas generation. Biofill mechanisms used to improve gas production include physical and chemical modifications to the modern landfill design. These methods can reduce the gas-generation time from 80 years to 5 years, can reduce the waste mass, and can reduce negative effects on the environment. 134 refs., 4 figs., 4 tabs.

  9. Is worst-case scenario streamflow drought underestimated in British Columbia? A multi-century perspective for the south coast, derived from tree-rings

    NASA Astrophysics Data System (ADS)

    Coulthard, Bethany; Smith, Dan J.; Meko, David M.

    2016-03-01

    Recent streamflow droughts in south coastal British Columbia have had major socioeconomic and ecological impacts. Increasing drought severity under projected climate change poses serious water management challenges, particularly in the small coastal watersheds that serve as primary water sources for most communities in the region. A 332-year dendrohydrological record of regionalized mean summer streamflow for four watersheds is analyzed to place recent drought magnitudes in a long-term perspective. We present a novel approach for optimizing tree-ring based reconstructions in small watersheds in temperate environments, combining winter snow depth and summer drought sensitive proxies as model predictors. The reconstruction model, estimated by regression of observed flows on Tsuga mertensiana ring-width variables and a tree-ring derived paleorecord of the Palmer Drought Severity Index, explains 64% of the regionalized streamflow variance. The model is particularly accurate at estimating lowest flow events, and provides the strongest annually resolved paleohydrological record in British Columbia. The extended record suggests that since 1658 sixteen natural droughts have occurred that were more extreme than any within the instrumental period. Flow-duration curves show more severe worst-case scenario droughts and a higher probability of those droughts in the long-term reconstruction than in the hydrometric data. Such curves also highlight the value of dendrohydrology for probabilistic drought assessment. Our results suggest current water management strategies based on worst-case scenarios from historical gauge data likely underestimate the potential magnitudes of natural droughts. If the low-flow magnitudes anticipated under climate change co-occur with lowest possible natural flows, streamflow drought severities in small watersheds in south coastal British Columbia could exceed any of those experienced in the past ∼350 years.

  10. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    NASA Astrophysics Data System (ADS)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  11. Low and high energy phenomenology of quark-lepton complementarity scenarios

    SciTech Connect

    Hochmuth, Kathrin A.; Rodejohann, Werner

    2007-04-01

    We conduct a detailed analysis of the phenomenology of two predictive seesaw scenarios leading to quark-lepton complementarity. In both cases we discuss the neutrino mixing observables and their correlations, neutrinoless double beta decay and lepton flavor violating decays such as {mu}{yields}e{gamma}. We also comment on leptogenesis. The first scenario is disfavored on the level of one to two standard deviations, in particular, due to its prediction for |U{sub e3}|. There can be resonant leptogenesis with quasidegenerate heavy and light neutrinos, which would imply sizable cancellations in neutrinoless double beta decay. The decays {mu}{yields}e{gamma} and {tau}{yields}{mu}{gamma} are typically observable unless the SUSY masses approach the TeV scale. In the second scenario leptogenesis is impossible. It is, however, in perfect agreement with all oscillation data. The prediction for {mu}{yields}e{gamma} is in general too large, unless the SUSY masses are in the range of several TeV. In this case {tau}{yields}e{gamma} and {tau}{yields}{mu}{gamma} are unobservable.

  12. Severe accidents in the energy sector: comparative perspective.

    PubMed

    Hirschberg, Stefan; Burgherr, Peter; Spiekerman, Gerard; Dones, Roberto

    2004-07-26

    This paper addresses one of the controversial issues in the current comparative studies of the environmental and health impacts of energy systems, i.e. the treatment of severe accidents. The work covers technical aspects of severe accidents and thus primarily reflects an engineering perspective on the energy-related risk issues, though some social implications are also touched upon. The assessment concerns fossil energy sources (coal, oil and gas), nuclear power and hydro power. The scope is not limited to the power production (conversion) step of these energy chains but, whenever applicable, also includes exploration, extraction, transports, processing, storage and waste disposal. With the exception of the nuclear chain the focus of the work has been on the evaluation of the historical experience of accidents. The basis used for this evaluation is a comprehensive database ENSAD (Energy-related Severe Accident Database), established by the Paul Scherrer Institut (PSI). For hypothetical nuclear accidents the probabilistic technique has also been employed and extended to cover the assessment of economic consequences of such accidents. The broader picture obtained by coverage of full energy chains leads on the world-wide basis to aggregated immediate fatality rates being much higher for the fossil chains than what one would expect if only power plants were considered. Generally, the immediate fatality rates are for all considered energy carriers significantly higher for the non-OECD countries than for OECD countries. In the case of hydro and nuclear the difference is in fact dramatic. The presentation of results is not limited to the aggregated values specific for each energy chain. Also frequency-consequence curves are provided. They reflect implicitly the ranking based on the aggregated values but include also such information as the observed or predicted chain-specific maximum extents of damages. This perspective on severe accidents may lead to different system

  13. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation)

    SciTech Connect

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-04-01

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  14. Estimating Renewable Energy Resources of Russia: Goals and Perspectives

    NASA Astrophysics Data System (ADS)

    Kiseleva, S.; Rafikova, J.; Shakun, V.

    2012-10-01

    During the last several years in some regions of Russian Federation one can observe a growing interest in renewable energy projects motivated by a necessity to have stable, affordable and autonomous energy sources. Besides, there has been an advance in legal initiatives designed to regulate the development of renewable energy sources in Russia. Some governmental regulations having for an object to stimulate this area, have already been accepted. The regulation contains the target value parameters of the output volume of the electric energy output volumes with the use of renewable energy sources (except hydroelectric power plants with the established capacity exceeding 25 MW. The work shows the results of resource estimating wind, solar, biomass energy resources for Russia, using GIS methods, which allow one to provide more exact predictions for the energy development, and therefore to prove investments and to pass to working out the equipment design of energy plants based on renewable energy sources. Current matters are relating to opportunities and perspectives of renewable sector in Russia.

  15. Scenario Planning to Identify Science Needs for the Management of Energy and Resource Development in the Arctic

    NASA Astrophysics Data System (ADS)

    Lassuy, D.

    2013-12-01

    The North Slope Science Initiative (NSSI) is an intergovernmental science collaboration forum in Arctic Alaska (USA). NSSI has initiated a 'Scenario Planning' effort with the focal question: 'What is the future of energy development, resource extraction, and associated support activities on the North Slope and adjacent seas through 2040?' With over 500 thousand square kilometers of land and sea, the area of the North Slope and adjacent seas is believed to have some of the largest oil, gas, and coal potential remaining in the United States, but it is also home to a diverse array of fish, wildlife, and plant resources that support a vibrant subsistence culture. Our scenario planning will involve a full and collaborative dialogue among a wide range of U.S. Arctic stakeholders, including Alaska Native subsistence users, local communities, academia, non-governmental organizations, and a variety of industries (oil and gas, mining, transportation, etc.) and government agencies (federal, state, local). The formulation of development scenarios and an understanding of their implications will provide a practical context for NSSI member agencies to make informed decisions about the research and monitoring that will be needed to sustain these resources and to plan for safe energy and resource development in the face of impending changes. The future of Arctic America is difficult to accurately predict, particularly in an era of intense pressures from both energy development and climate warming. However, it will almost surely be characterized by highly consequential and unprecedented changes. Complex and uncertain are appropriate descriptors of the Arctic and its future; and scenario planning has proven an effective tool to help engage diverse stakeholders in a focused dialogue and systematic thinking about plausible futures in complex and uncertain settings. The NSSI leadership recognized the critical need for this dialogue and has begun a scenario planning effort for the North

  16. Biomass Scenario Model: BETO Analysis Platform Peer Review; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Bush, B.

    2015-03-23

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art fourth-generation model of the domestic bioenergy supply chain which explicitly focuses on policy issues and their potential side effects. It integrates resource availability, behavior, policy, and physical, technological, and economic constraints. The BSM uses system-dynamics simulation to model dynamic interactions across the supply chain; it tracks the deployment of biofuels given technological development and the reaction of the investment community to those technologies in the context of land availability, the competing oil market, consumer demand for biofuels, and government policies over time. It places a strong emphasis on the behavior and decision-making of various economic agents. The model treats the major infrastructure-compatible fuels. Scenario analysis based on the BSM shows that the biofuels industry tends not to rapidly thrive without significant external actions in the early years of its evolution. An initial focus for jumpstarting the industry typically has strongest results in the BSM in areas where effects of intervention have been identified to be multiplicative. In general, we find that policies which are coordinated across the whole supply chain have significant impact in fostering the growth of the biofuels industry and that the production of tens of billions of gallons of biofuels may occur under sufficiently favorable conditions.

  17. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  18. ESPC Overview. Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    SciTech Connect

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  19. ESPC Overview: Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts

    SciTech Connect

    Tetreault, T.; Regenthal, S.

    2011-05-01

    This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

  20. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  1. Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua

    NASA Astrophysics Data System (ADS)

    Barido, Diego Ponce de Leon; Johnston, Josiah; Moncada, Maria V.; Callaway, Duncan; Kammen, Daniel M.

    2015-10-01

    The global carbon emissions budget over the next decades depends critically on the choices made by fast-growing emerging economies. Few studies exist, however, that develop country-specific energy system integration insights that can inform emerging economies in this decision-making process. High spatial- and temporal-resolution power system planning is central to evaluating decarbonization scenarios, but obtaining the required data and models can be cost prohibitive, especially for researchers in low, lower-middle income economies. Here, we use Nicaragua as a case study to highlight the importance of high-resolution open access data and modeling platforms to evaluate fuel-switching strategies and their resulting cost of power under realistic technology, policy, and cost scenarios (2014-2030). Our results suggest that Nicaragua could cost-effectively achieve a low-carbon grid (≥80%, based on non-large hydro renewable energy generation) by 2030 while also pursuing multiple development objectives. Regional cooperation (balancing) enables the highest wind and solar generation (18% and 3% by 2030, respectively), at the least cost (US127 MWh-1). Potentially risky resources (geothermal and hydropower) raise system costs but do not significantly hinder decarbonization. Oil price sensitivity scenarios suggest renewable energy to be a more cost-effective long-term investment than fuel oil, even under the assumption of prevailing cheap oil prices. Nicaragua’s options illustrate the opportunities and challenges of power system decarbonization for emerging economies, and the key role that open access data and modeling platforms can play in helping develop low-carbon transition pathways.

  2. Scenario Modeling Potential Eco-Efficiency Gains from a Transition to Organic Agriculture: Life Cycle Perspectives on Canadian Canola, Corn, Soy, and Wheat Production

    NASA Astrophysics Data System (ADS)

    Pelletier, N.; Arsenault, N.; Tyedmers, P.

    2008-12-01

    We used Life Cycle Assessment to scenario model the potential reductions in cumulative energy demand (both fossil and renewable) and global warming, acidifying, and ozone-depleting emissions associated with a hypothetical national transition from conventional to organic production of four major field crops [canola ( Brassica rapa), corn ( Zea mays), soy ( Glycine max), and wheat ( Triticum aestivum)] in Canada. Models of these systems were constructed using a combination of census data, published values, and the requirements for organic production described in the Canadian National Organic Standards in order to be broadly representative of the similarities and differences that characterize these disparate production technologies. Our results indicate that organic crop production would consume, on average, 39% as much energy and generate 77% of the global warming emissions, 17% of the ozone-depleting emissions, and 96% of the acidifying emissions associated with current national production of these crops. These differences were almost exclusively due to the differences in fertilizers used in conventional and organic farming and were most strongly influenced by the higher cumulative energy demand and emissions associated with producing conventional nitrogen fertilizers compared to the green manure production used for biological nitrogen fixation in organic agriculture. Overall, we estimate that a total transition to organic production of these crops in Canada would reduce national energy consumption by 0.8%, global warming emissions by 0.6%, and acidifying emissions by 1.0% but have a negligible influence on reducing ozone-depleting emissions.

  3. Scenario modeling potential eco-efficiency gains from a transition to organic agriculture: life cycle perspectives on Canadian canola, corn, soy, and wheat production.

    PubMed

    Pelletier, N; Arsenault, N; Tyedmers, P

    2008-12-01

    We used Life Cycle Assessment to scenario model the potential reductions in cumulative energy demand (both fossil and renewable) and global warming, acidifying, and ozone-depleting emissions associated with a hypothetical national transition from conventional to organic production of four major field crops [canola (Brassica rapa), corn (Zea mays), soy (Glycine max), and wheat (Triticum aestivum)] in Canada. Models of these systems were constructed using a combination of census data, published values, and the requirements for organic production described in the Canadian National Organic Standards in order to be broadly representative of the similarities and differences that characterize these disparate production technologies. Our results indicate that organic crop production would consume, on average, 39% as much energy and generate 77% of the global warming emissions, 17% of the ozone-depleting emissions, and 96% of the acidifying emissions associated with current national production of these crops. These differences were almost exclusively due to the differences in fertilizers used in conventional and organic farming and were most strongly influenced by the higher cumulative energy demand and emissions associated with producing conventional nitrogen fertilizers compared to the green manure production used for biological nitrogen fixation in organic agriculture. Overall, we estimate that a total transition to organic production of these crops in Canada would reduce national energy consumption by 0.8%, global warming emissions by 0.6%, and acidifying emissions by 1.0% but have a negligible influence on reducing ozone-depleting emissions. PMID:18574623

  4. Atmospheric energy and water balance perspective to projection of global-scale precipitation increase: may mitigation policies unexpectedly amplify precipitation?

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P.; Vichi, M.; Zeng, N.

    2012-12-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. From the perspective of changes in whole atmospheric water and energy budgets, we analyze strengthening of the hydrological cycle as measured by the increase in global-scale precipitation. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in precipitation increase in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside medium-high non-mitigation scenario (baseline), we considered an aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than baseline till around 2070, that is a couple of decades after that mitigation of global temperature was already well established in E1. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to baseline. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to baseline. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in baseline compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in baseline throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in

  5. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  6. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and

  7. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  8. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    SciTech Connect

    Fay, Stéphane

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  9. Debonding energy of PDMS: A new analysis of a classic adhesion scenario.

    PubMed

    Nase, Julia; Ramos, Osvanny; Creton, Costantino; Lindner, Anke

    2013-09-01

    We investigated the debonding energy between confined layers of a soft elastic solid (PDMS) and a circular steel indenter in a flat punch geometry. PDMS is extensively used in applications, but also a widespread model system for fundamental research. Varying systematically the pulling speed and the viscoelastic properties, notably the modulus, we determined scaling laws for the debonding energy. We showed that the debonding energy is independent of the sample thickness. Applying a new approach and separating the crack initiation and the propagation part of the force curves, we analyzed the thickness dependence more precisely and we demonstrated that the energy to propagate the crack at given average speed does not only depend on the modulus, but also on the sample thickness. PMID:24045983

  10. Choosing an electrical energy future for the Pacific Northwest: an alternative scenario

    SciTech Connect

    Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

    1980-05-19

    A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

  11. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    SciTech Connect

    McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

    2009-05-29

    This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

  12. An Indian scenario on renewable and sustainable energy sources with emphasis on algae.

    PubMed

    Hemaiswarya, S; Raja, Rathinam; Carvalho, Isabel S; Ravikumar, R; Zambare, Vasudeo; Barh, Debmalya

    2012-12-01

    India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India's economy is expected to grow at 6 to 8 %/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels. PMID:23070650

  13. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  14. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect

    Steward, D. M.

    2009-06-10

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  15. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  16. Sensitivity analysis of synergistic collaborative scenarios towards sustainable nuclear energy systems

    SciTech Connect

    Fesenko, G.; Kuznetsov, V.; Poplavskaya, E.

    2013-07-01

    The paper presents results of the study on the role of collaboration among countries towards sustainable global nuclear energy systems. The study explores various market shares for nuclear fuel cycle services, possible scale of collaboration among countries and assesses benefits and issues relevant for collaboration between suppliers and users of nuclear fuel cycle services. The approach used in the study is based on a heterogeneous world model with grouping of the non-personified nuclear energy countries according to different nuclear fuel cycle policies. The methodology applied in the analysis allocates a fraction of future global nuclear energy generation to each of such country-groups as a function of time. The sensitivity studies performed show the impacts of the group shares on the scope of collaboration among countries and on the resulting possible reactor mix and nuclear fuel cycle infrastructure versus time. The study quantitatively demonstrates that the synergistic approach to nuclear fuel cycle has a significant potential for offering a win-win collaborative strategy to both, technology holders and technology users on their joint way to future sustainable nuclear energy systems. The study also highlights possible issues on such a collaborative way. (authors)

  17. A developing country perspective on implementing sustainable energy programs

    SciTech Connect

    Ul Haq, Z.; James, J.A.; Kamal, S.

    1997-12-31

    Bangladesh is a developing country faced with many challenges such as high population growth rate, low literacy levels, and poverty. One of its most difficult tasks is providing the infrastructure necessary to sustain a growing population with a finite resource base. There is a need to develop a long term energy strategy that relies on sustainable resources while reducing environmental harm. Solar energy has the potential to meet these requirements and presents a highly attractive energy source for Bangladesh. Bangladesh is fortunate enough to have a significant amount of solar irradiance. A number of projects have been started in Bangladesh to exploit renewable energy resources. This paper will highlight the current status of these projects. Major interest and activity is directed towards development of photovoltaic and wind resources. The market for renewable technologies is vast in Bangladesh where a significant portion of the population is off-grid and in need of energy. Although this is not an affluent market technology costs have come down sufficiently such that it is becoming accessible to rural populations with credit schemes. While developing sustainable energy is a worthwhile goal and much encouraged by donor agencies, Bangladesh`s perspective on attempting to develop this sector suggests that it is not an easy road to follow, due to numerous internal and external barriers. A discussion of the barriers to the commercialization of renewables will be included in this paper. The objective of this paper is to shed some light on these issues and to stimulate discussions on how to overcome the barriers and encourage the dissemination of renewables in developing countries.

  18. Global energy shifts: Future possibilities in historical perspective

    NASA Astrophysics Data System (ADS)

    Podobnik, Bruce Michael

    2000-11-01

    This study adopts a macro-comparative, world-systems perspective in order to shed light on the dynamics that led to a global shift away from primary reliance on coal and towards over-reliance on petroleum. It is argued that the interaction of three global dynamics, those of geopolitical rivalry, commercial competition, and social unrest, undermined the nineteenth-century international coal system and paved the way for the consolidation of an international petroleum system in the twentieth century. Specifically, the historical analysis presented in this dissertation shows that: (1) intervention by state agents was absolutely crucial in the early development and later expansion of the international petroleum system; (2) private coal companies attempted to prevent the consolidation of an oil-based energy system, but these older companies were out-competed by newer, multinational petroleum corporations; and (3) waves of labor unrest in established coal industries played a key role in prompting a relatively rapid shift away from coal and towards petroleum. Indeed, a key conclusion of this study is that pressures exerted by such social movements as labor unions, nationalist movements, and environmental coalitions have played as important a role in influencing energy trajectories as the more commonly-recognized actions of governmental and corporate actors. By examining contemporary patterns of state and private investments in a cluster of new energy technologies, as well as the growing influence of environmental regulations it is argued that global dynamics are beginning to favor a shift towards new, more environmentally sustainable energy technologies. The fuel cell is highlighted as one new energy technology that is poised to enter into widespread diffusion in the coming decades, though potentials for expansions in wind, solar, small-scale hydro-electric, and modern biomass systems are also examined. Although significant hurdles must be overcome, this study concludes by

  19. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    /or different answers in response to a set of focused energy-related questions. The focus was on understanding reasons for model differences, not on policy implications, even though a policy of high renewable penetration was used for the analysis. A group process was used to identify the potential question (or questions) to be addressed through the project. In late 2006, increasing renewable energy penetration in the electricity sector was chosen from among several options as the general policy to model. From this framework, the analysts chose a renewable portfolio standard (RPS) as the way to implement the required renewable energy market penetration in the models. An RPS was chosen because it was (i) of interest and represented the group's consensus choice, and (ii) tractable and not too burdensome for the modelers. Because the modelers and analysts were largely using their own resources, it was important to consider the degree of effort required. In fact, several of the modelers who started this process had to discontinue participation because of other demands on their time. Federal and state RPS policy is an area of active political interest and debate. Recognizing this, participants used this exercise to gain insight into energy model structure and performance. The results are not intended to provide any particular insight into policy design or be used for policy advocacy, and participants are not expected to form a policy stance based on the outcomes of the modeling. The goals of this REMAP project - in terms of the main topic of renewable penetration - were to: (1) Compare models and understand why they may give different results to the same question, (2) Improve the rigor and consistency of assumptions used across models, and (3) Evaluate the ability of models to measure the impacts of high renewable-penetration scenarios.

  20. Building application of solar energy. Study no. 4: Scenarios for the utilization of solar energy in southern California buildings, change 1

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Hirshberg, A. S.

    1976-01-01

    Plausible future market scenarios for solar heating and cooling systems into buildings in the area served by the Southern California Edison Company. A range of plausible estimates for the number of solar systems which might be installed and the electrical energy which might be displaced by energy from these systems are provided. The effect on peak electrical load was not explicitly calculated but preliminary conclusions concerning peak load can be inferred from the estimates presented. Two markets are investigated: the single family market and the large power commercial market.

  1. The Current Energetics of Earth's Interior: A Gravitational Energy Perspective

    NASA Astrophysics Data System (ADS)

    Morgan, Jason; Rüpke, Lars; White, William

    2016-05-01

    The Earth's mantle convects to lose heat (Holmes, 1931); doing so drives plate tectonics (Turcotte and Oxburgh, 1967). Significant gravitational energy is created by the cooling of oceanic lithosphere atop hotter, less dense mantle. When slabs subduct, this gravitational energy is mostly (~86% for whole mantle flow in a PREM-like mantle) transformed into heat by viscous dissipation. Using this perspective, we reassess the energetics of Earth's mantle. We also reconsider the terrestrial abundances of heat producing elements U, Th, and K, and argue they are lower than previously considered and that consequently the heat produced by radioactive decay within the mantle is comparable to the present-day potential gravitational energy release by subducting slabs — both are roughly ~10-12 TW. We reassess possible core heat flow into the base of the mantle, and determine that the core may be still losing a significant amount of heat from its original formation, potentially more than the radioactive heat generation within the mantle. These factors are all likely to be important for Earth's current energetics, and argue that strong plume-driven upwelling is likely to exist within the convecting mantle.

  2. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  3. The Kra Isthmus Canal: A New Strategic Solution for China's Energy Consumption Scenario?

    NASA Astrophysics Data System (ADS)

    Lau, Cheng Yong; Lee, Jason Wai Chow

    2016-01-01

    This paper is a conceptual study that examines the viability of the construction of the Kra Isthmus within the context of the five dimensions of megaproject success of Sovacool and Cooper (The governance of energy megaprojects: politics, hubris, and energy security, 2013)—social (governance), technological (systems), democratic (politics), externalities (economics, ecology), and risks assessments (accountability), and its possible impact on China's strategic energy supply chain. One of the objectives of this study is also to discuss the current impacts, perceived benefits, and risks of China's dependence on its multinational and transnational pipelines. China could see the construction of Kra Canal as an alternative option for its strategic sourcing activities especially crude oil and gas at much lower costs. The megaproject would become a passageway that connects the Indian Ocean, Andaman Sea, and the Gulf of Siam at the choke point of Isthmus region in Thailand. However, this megaproject could also trigger the internal conflicts of Thailand, and affect the ASEAN countries' political and economic relationships.

  4. The Kra Isthmus Canal: A New Strategic Solution for China's Energy Consumption Scenario?

    PubMed

    Lau, Cheng Yong; Lee, Jason Wai Chow

    2016-01-01

    This paper is a conceptual study that examines the viability of the construction of the Kra Isthmus within the context of the five dimensions of megaproject success of Sovacool and Cooper (The governance of energy megaprojects: politics, hubris, and energy security, 2013)-social (governance), technological (systems), democratic (politics), externalities (economics, ecology), and risks assessments (accountability), and its possible impact on China's strategic energy supply chain. One of the objectives of this study is also to discuss the current impacts, perceived benefits, and risks of China's dependence on its multinational and transnational pipelines. China could see the construction of Kra Canal as an alternative option for its strategic sourcing activities especially crude oil and gas at much lower costs. The megaproject would become a passageway that connects the Indian Ocean, Andaman Sea, and the Gulf of Siam at the choke point of Isthmus region in Thailand. However, this megaproject could also trigger the internal conflicts of Thailand, and affect the ASEAN countries' political and economic relationships. PMID:26280310

  5. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal

  6. A tool for estimating the mix of energy conservation measures given competing acquisition scenarios

    SciTech Connect

    Schultz, R.W.

    1991-03-01

    Bonneville Power Administration (BPA) is conducting analyses that are to serve the Resource Program Environmental Impact Statement (RP/EIS). Parts of the RP/EIS are to address the impacts of commercial sector electricity conservation acquisitions under various conservation acquisition alternatives. These impacts include the energy conservation measure (ECM) mix adopted by the commercial sector and the equipment/technology that would be replaced by implementing new ECMs. The goal of this project was to develop a tool that has the capability to detail region-wide numerical estimates of the commercial sector ECM and replaced technology mix. The tool (hereafter called ECMMIX) was to be sufficiently flexible and user friendly that analysts could easily perform sensitivity tests of alternative forecasts of energy conservation acquisitions. It needed to have the capability to assess impacts across different building types, utility regions, vintage and end-use categories, as well as to aggregate similar ECMs across all categories. The aggregation capability was to exist for the replaced technology as well. Chapter 2 presents specific details about the methodology and assumptions adopted in developing ECMMIX. Included is a discussion of data disaggregation, adjustment to forecasted savings estimates, and incorporation of ADM and Ecotope ECMs. Chapter 3 contains a users guide to ECMMIX and concluding comments. 14 refs., 3 tabs.

  7. The role of surface energy in guanosine nucleotide alignment: an intriguing scenario.

    PubMed

    Tone, Caterina M; De Santo, Maria P; Ciuchi, Federica

    2014-07-01

    In this paper we report how the confining surfaces and the ionic effects of different concentration of guanosine solution can be used to vary the alignment of liquid crystal phases of guanosine nucleotides. Liquid crystal phases of guanosine 5'-monophosphate ammonium salt and guanosine 5'-monophosphate free acid in pure water, with and without silver sulphate, were studied by polarized optical microscope. A periodic modulation of the texture was observed. This modulation depends on both on the concentration and on the presence of silver ions in the liquid crystal phase. We demonstrate that, according to the surface energy of the alignment layers, it is possible to homeotropically align the guanosine chromonic phase without applying any external magnetic field. Finally, we report the formation of spherical, vesicle-like guanosine 5'-monophosphate aggregates, when the solution was confined between two hydrophobic surfaces containing exposed Si groups. PMID:24832053

  8. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective

    PubMed Central

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  9. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective.

    PubMed

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  10. An Energy Partitioning Perspective on Lake Evaporation Variations to Climate Change

    NASA Astrophysics Data System (ADS)

    Lee, X.; WANG, W.; Zhao, L.; Subin, Z. M.

    2015-12-01

    Lake evaporation, nexus between lake hydrological cycle and energy balance, is very sensitive to climate change. Despite considerable observational and modeling studies on water surface evaporation, mechanisms underlying the response of long-term lake evaporation variations to climate change are still uncertain. Two hypotheses have been proposed to explain interannual variations in lake evaporation. In the first hypothesis, water surface evaporation will increase as air temperature rises, at a rate of about 7% K-1 predicted by the Clausius-Clapeyron equation. The second hypothesis, supported by the universal decline trends in pan evaporation tied to global diming, is that evaporation variabilities are controlled by variabilities in the surface solar radiation. In this study, we firstly validated the evaporation simulations of NCAR's CLM4.5-LISSS (Lake, Ice, Snow, and Sediment Simulator) against 28 lake observations. Then historical (1991-2010) and future (2005-2100, RCP8.5) lake evaporation were simulated by the same lake model. Results show that global lake evaporation increases with air temperature at a rate faster under the RCP8.5 scenario (3.72 W m-2 oC-1) than in the historical case (3.03 W m-2 oC-1). With normalization of energy constrains, both observed and modeled lake evaporation fraction (the ratio of latent heat flux to net radiation minus heat storage) increase as air temperature rises at a rate perfectly captured by the Priestley-Taylor model with the model parameter of 1.26. From the energy partitioning perspective, the lake evaporation variations are explained primary by air temperature not by surface solar radiation.

  11. Comment on 'Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location'

    NASA Astrophysics Data System (ADS)

    McMahon, Stephen J.; Prise, Kevin M.; Currell, Fred J.

    2012-01-01

    A recent paper by Lechtman et al (2011 Phys. Med. Biol. 56 4631-47) presented Monte Carlo modelling of gold nanoparticle dose modification. In it, they predict that the introduction of gold nanoparticles has the strongest effect with x-rays at kilovoltage energies, and that negligible increases in dose are expected at megavoltage energies. While these results are in agreement with others in the literature (including those produced by our group), the conclusion that '(gold nanoparticle) radiosensitization using a 6 MV photon source is not clinically feasible' appears to conflict with recently published experimental studies which have shown radiosensitization using 6 MV x-ray sources with relatively low gold concentrations. The increasing disparity between theoretical predictions of dose enhancement and experimental results in the field of gold nanoparticle radiosensitization suggests that, while the ability of gold nanoparticles to modify dose within a tumour volume is well understood, the resulting radiosensitization is not simply correlated with this measure. This highlights the need to validate theoretical predictions of this kind against experimental measurements, to ensure that the scenarios and values being modelled are meaningful within a therapeutic context.

  12. Comment on 'implications on clinical scenario of gold nanoparticle radiosensitization in regard to photon energy, nanoparticle size, concentration and location'.

    PubMed

    McMahon, Stephen J; Prise, Kevin M; Currell, Fred J

    2012-01-01

    A recent paper by Lechtman et al (2011 Phys. Med. Biol. 56 4631-47) presented Monte Carlo modelling of gold nanoparticle dose modification. In it, they predict that the introduction of gold nanoparticles has the strongest effect with x-rays at kilovoltage energies, and that negligible increases in dose are expected at megavoltage energies. While these results are in agreement with others in the literature (including those produced by our group), the conclusion that ‘(gold nanoparticle) radiosensitization using a 6 MV photon source is not clinically feasible’ appears to conflict with recently published experimental studies which have shown radiosensitization using 6 MV x-ray sources with relatively low gold concentrations. The increasing disparity between theoretical predictions of dose enhancement and experimental results in the field of gold nanoparticle radiosensitization suggests that, while the ability of gold nanoparticles to modify dose within a tumour volume is well understood, the resulting radiosensitization is not simply correlated with this measure. This highlights the need to validate theoretical predictions of this kind against experimental measurements, to ensure that the scenarios and values being modelled are meaningful within a therapeutic context. PMID:22156112

  13. Including the temporal change in PM{sub 2.5} concentration in the assessment of human health impact: Illustration with renewable energy scenarios to 2050

    SciTech Connect

    Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Ranchin, Thierry; Wyrwa, Artur; Drebszok, Kamila; Cofala, Janusz; Fuss, Sabine

    2015-04-15

    This article proposes a new method to assess the health impact of populations exposed to fine particles (PM{sub 2.5}) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and the Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM{sub 2.5} concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM{sub 2.5} concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios. - Highlights: • A new method to assess health impact of PM{sub 2.5} for energy scenarios is proposed. • An algorithm to compute Loss of Life Expectancy attributable to exposure to PM{sub 2.5} is depicted. • Its capabilities are demonstrated for two pathways of European energy system development up to 2050. • Integrating the temporal evolution of PM{sub 2.5} is of great interest for assessing the potential impacts of energy scenarios.

  14. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    worked to bring the experience generated from over four decades of scenario development in other issue domains, including energy and security, to bear on environmental scenarios, and to bring into dialogue scenario practitioners, both producers and users, with social science scholars. The set of contributions to this focus issue of Environmental Research Letters arose out of this workshop and collectively examines key challenges facing the scenario community, synthesizes lessons, and offers recommendations for new research and practice in this field. One theme that emerged in many of the discussions at the workshop revolved around the distinction between two broad perspectives on the goals of scenario exercises: scenarios as products and scenarios as processes. Most global environmental change scenario exercises are product-oriented; the content of the scenarios developed is the main goal of many participants and those who commission or organize the scenario development process. Typically, what is of most interest are the environmental outcomes produced, how they relate to the various factors driving them, and what the results tell us about the prospects for future environmental change, for impacts, and for mitigation. A product-oriented perspective assumes that once produced, scenario products have lives of their own, divorced from the processes that generated them and able to serve multiple, often unspecified purposes. Thus, it is often assumed that the scenario products can be 'taken up' by a variety of users in a variety of fora. A contrasting scenario approach is process-oriented and self-consciously privileges the process of scenario development as the primary goal, for example as a means to motivate organizational learning, find commonalities across different perspectives, achieve consensus on goals, or come to a shared understanding of challenges. Focusing on scenarios as processes highlights the social contexts in which scenarios are created and used. Process

  15. Graphene-based technologies for energy applications, challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Quesnel, Etienne; Roux, Frédéric; Emieux, Fabrice; Faucherand, Pascal; Kymakis, Emmanuel; Volonakis, George; Giustino, Feliciano; Martín-García, Beatriz; Moreels, Iwan; Alkan Gürsel, Selmiye; Bayrakçeken Yurtcan, Ayşe; Di Noto, Vito; Talyzin, Alexandr; Baburin, Igor; Tranca, Diana; Seifert, Gotthard; Crema, Luigi; Speranza, Giorgio; Tozzini, Valentina; Bondavalli, Paolo; Pognon, Grégory; Botas, Cristina; Carriazo, Daniel; Singh, Gurpreet; Rojo, Teófilo; Kim, Gunwoo; Yu, Wanjing; Grey, Clare P.; Pellegrini, Vittorio

    2015-09-01

    Here we report on technology developments implemented into the Graphene Flagship European project for the integration of graphene and graphene-related materials (GRMs) into energy application devices. Many of the technologies investigated so far aim at producing composite materials associating graphene or GRMs with either metal or semiconducting nanocrystals or other carbon nanostructures (e.g., CNT, graphite). These composites can be used favourably as hydrogen storage materials or solar cell absorbers. They can also provide better performing electrodes for fuel cells, batteries, or supercapacitors. For photovoltaic (PV) electrodes, where thin layers and interface engineering are required, surface technologies are preferred. We are using conventional vacuum processes to integrate graphene as well as radically new approaches based on laser irradiation strategies. For each application, the potential of implemented technologies is then presented on the basis of selected experimental and modelling results. It is shown in particular how some of these technologies can maximize the benefit taken from GRM integration. The technical challenges still to be addressed are highlighted and perspectives derived from the running works emphasized.

  16. Health risks in perspective: Judging health risks of energy technologies

    SciTech Connect

    Rowe, M.D.

    1992-09-18

    Almost daily, Americans receive reports from the mass news media about some new and frightening risk to health and welfare. Most such reports emphasize the newsworthiness of the risks -- the possibility of a crisis, disagreements among experts, how things happened, who is responsible for fixing them, how much will it cost, conflict among parties involved, etc. As a rule, the magnitudes of the risks, or the difficulty of estimating those magnitudes, have limited newsworthiness, and so they are not mentioned. Because of this emphasis in the news media, most people outside the risk assessment community must judge the relative significance of the various risks to which we all are exposed with only that information deemed newsworthy by reporters. This information is biased and shows risks in isolation. There is no basis for understanding and comparing the relative importance of risks among themselves, or for comparing one risk, perhaps a new or newly-discovered one, in the field of all risks. The purpose of this report is to provide perspective on the various risks to which we are routinely exposed. It serves as a basis for understanding the meaning of quantitative risk estimates and for comparing new or newly-discovered risks with other, better-understood risks. Specific emphasis is placed on health risks of energy technologies.

  17. Attractive scenario writing.

    PubMed

    Takahashi, Yuzo; Oku, Sachiko Alexandra

    2009-05-01

    This article describes the key steps of scenario writing to facilitate problem-based learning discussion to aid student learning of basic medical science in combination with clinical medicine. The scenario has to amplify and deepen the students' thinking so that they can correlate findings from the case and knowledge from textbooks. This can be achieved in three ways: (1) a comparison of cases; (2) demonstrating a scientific link between symptoms and basic medicine; and (3) introducing a personal and emotional aspect to the scenario. A comparison of two cases enables us to shed light on the pathological differences and think about the underlying biological mechanisms. These include: (a) a comparison of two cases with similar symptoms, but different diseases; (b) a comparison of two cases with different symptoms, but the same cause; and (c) a comparison of two cases, with an easy case, followed by a complicated case. The scenarios may be disclosed in a sequence to show a scientific link between symptoms of the patient and basic medicine, which may help to cultivate a physician with a scientific mind. Examples are given by the relationship between: (a) symptoms, pathology and morphology; and (b) symptoms, pathology and physiology. When the scenario is written in such a way that students are personally and/or emotionally involved in the case, they will be more motivated in learning as if involved in the case themselves. To facilitate this, the scenario can be written in the first-person perspective. Examples include "I had a very bad headache, and vomited several times...", and "I noticed that my father was screaming at night...". The description of the events may be in chronological order with actual time, which makes students feel as if they are really the primary responding person. PMID:19502145

  18. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  19. An accelerator scenario for a hard X-ray free electron laser combined with high energy electron radiography

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Li, Yiding; Yang, Guojun; Pang, Jian; Li, Yuhui; Li, Peng; Pflueger, Joachim; He, Xiaozhong; Lu, Yaxin; Wang, Ke; Long, Jidong; Zhang, Linwen; Wu, Qiang

    2016-08-01

    In order to study the dynamic response of the material and the physical mechanism of fluid dynamics, an accelerator scenario which can be applied to both hard X-ray free electron laser and high energy electron radiography is proposed. This accelerator is mainly composed of a 12 GeV linac, an undulator branch and an eRad beamline. In order to characterize a sample’s dynamic behavior in situ and real-time with XFEL and eRad simultaneously, the linac should be capable of accelerating the two kinds of beam within the same operation mode. Combining in-vacuum and tapering techniques, the undulator branch can produce more than 1011 photons per pulse in 0.1% bandwidth at 42 keV. Finally, an eRad amplifying beamline with 1:10 ratio is proposed as an important complementary tool for the wider view field and density identification ability. Supported by China Academy of Engineering Physics (2014A0402016) and Institute of Fluid Physics (SFZ20140201)

  20. Chemical Transport and Reduced-Form Models for Assessing Air Quality Impacts of Current and Future Energy Scenarios

    NASA Astrophysics Data System (ADS)

    Adams, P. J.

    2015-12-01

    Though essential for informed decision-making, it is challenging to estimate the air quality and public health impacts associated with current and future energy generation scenarios because the analysis must address the complicated atmospheric processes that air pollutants undergo: emissions, dispersion, chemistry, and removal. Employing a chemical transport model (CTM) is the most rigorous way to address these atmospheric processes. However, CTMs are expensive from a computational standpoint and, therefore, beyond the reach of policy analysis for many types of problems. On the other hand, previously available reduced-form models used for policy analysis fall short of the rigor of CTMs and may lead to biased results. To address this gap, we developed the Estimating Air pollution Social Impacts Using Regression (EASIUR) method, which builds parameterizations that predict per-tonne social costs and intake fractions for pollutants emitted from any location in the United States. Derived from a large database of tagged CTM simulations, the EASIUR method predicts social costs almost indistinguishable from a full CTM but with negligible computational requirements. We found that the average mortality-related social costs from inorganic PM2.5 and its precursors in the United States are 150,000-180,000/t EC, 21,000-34,000/t SO2, 4,200-15,000/t NOx, and 29,000-85,000/t NH3. This talk will demonstrate examples of using both CTMs and reduced-form models for assessing air quality impacts associated with current energy production activities as well as a future deployment of carbon capture and sequestration.

  1. Perspectives.

    ERIC Educational Resources Information Center

    Robertson, Shari; Camerini, Michael

    2001-01-01

    Provides background information on the U.S. Immigration and Naturalization Service Asylum office. Uses the perspective of two movie producers as they filmed a documentary film, "Well-founded Fear", about asylum and refugee protection. Includes information on how to order a classroom aid and the film. (CMK)

  2. Perspectives

    ERIC Educational Resources Information Center

    Tarone, Elaine

    2013-01-01

    The topic of this "Perspectives" column is "Requiring a Proficiency Level as a Requirement for U.S. K-12 Teacher Licensure." In 1998, the American Council of Teachers of Foreign Languages (ACTFL) began to work with the National Council for Accreditation of Teacher Education (NCATE), which accredits teacher education programs…

  3. The US Department of Energy PFBC perspective, 1994 update

    SciTech Connect

    Carpenter, L.K.; Dellefield, R.J.

    1994-08-01

    Significant progress in the development and commercialization of pressurized fluidized-bed combustion (PFBC) technology has occurred since the 1992 Fluidized-Bed Combustion (FBC) Conference. The US Department of Energy (DOE) has been and continues to be an active partner in most of these activities. This paper presents the 1994 status of DOE activities and a discussion of the importance DOE places on the development and commercialization of PFBC systems. Specifically, this paper discusses the status and focus of DOE activities. Currently, first-generation PFBC systems are on the brink of commercial deployment. The DOE Clean Coal Technology (CCT) Program is assisting in this process by funding demonstration programs to validate that PFBC technologies are a low-risk, environmentally-attractive, cost-competitive option for utility and industrial users. A brief discussion of the scope and the status of major demonstrations are presented. This paper also presents a snapshot of the PFBC development activities that are part of the DOE Research and Development (R&D) Program, i.e., hot gas particulate removal systems and pilot-plant facilities in support of advanced PFBC combined-cycle systems. The R&D pilot plant activities discussed include advanced component development tests at the Foster Wheeler Development Facility and the status of the fully integrated advanced PFBC being built as part of the Power Systems Development Facility (PSDF) at Wilsonville, Alabama. Finally, a brief perspective is provided as to how PFBC systems will need to further evolve in order to continue to remain viable. As we look into the next century, there will be continual pressure to make power systems cleaner and more efficient. By increasing cycle efficiencies to over 50 percent and further reducing emissions, it is possible for PFBC systems to meet these challenges. Suggested goals and development targets for advanced, super-clean PFBC systems are briefly discussed.

  4. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    SciTech Connect

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim; Cauchy, Charles J.

    2013-02-12

    Abstract: Large amounts of waste heat are generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators because 60-70% of the fuel energy is typically lost in these processes. There is a strong need to develop technologies that recover this waste heat to increase fuel efficiency and minimize fuel requirements in these industrial processes, automotive and heavy vehicle engines, diesel generators, and incinerators. There are additional requirements to reduce CO2 production and environmental footprints in many of these applications. Recent work with the Strategic Environmental Research and Development Program office has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nano-composite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed creating unique efficiency-power maps that provide better understandings and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS® TE modeling capabilities have integrated heat exchanger performance models with ANSYS® TE models to extend

  5. Water-energy nexus in the Sava River Basin: energy security in a transboundary perspective

    NASA Astrophysics Data System (ADS)

    Ramos, Eunice; Howells, Mark

    2016-04-01

    impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the response of the regional energy systems in simulated trade conditions.

  6. Very-high-energy blazars: A broad(band) perspective

    NASA Astrophysics Data System (ADS)

    Furniss, Amy Kathryn

    Very high energy (VHE; E ≥ 100 GeV) blazars are a type of active galaxy detected above 100 GeV with a jet pointed toward the observer. This work investigates VHE blazars through broadband observations, starting with a description of the VHE-discovery and time-independent modeling of the non-thermal emission from RX J0648.7+1516. Additionally, synchrotron self-Compton models are applied to six non-VHE blazars, with the VHE flux of each blazar being constrained by non-detection during observation by VERITAS. The general lack of physical measurements of model parameters is highlighted and a scheme of supplementary observations involving millimeter carbon monoxide (CO) luminosity and soft X-ray absorption measurements is explored for three VHE blazars. The limited sample supports a possible connection between the existence of CO in the vicinity of the blazar and additional soft X-ray absorption beyond what can be attributed to the Milky Way. RGB J0710+590 and W Comae both lack a significant level of CO and do not require additional absorption for the description of the soft X-ray emission as observed by Swift XRT. 1ES 1959+650, on the other hand, shows a significant level of CO in the vicinity of the blazar and requires additional absorption to describe the soft X-ray emission. The positive detection of CO in the vicinity of 1ES 1959+650 is used as motivation to apply a mirrored emission scenario to broadband variability data. Limits on the redshifts of the two VHE blazars 3C 66A and PKS 1424+240 are derived from HST/COS observations of intervening Lyman absorption. These observations show 3C 66A to reside at a redshift below the tentative z = 0.444 at 99.9% confidence and reveal PKS 1424+240 to be the most distant VHE-detected blazar thus far. The redshift information is paired with VERITAS and Fermi Large Area Telescope gamma-ray observations to probe the density of the extragalactic background light and correct the observed gamma-ray spectra to the intrinsically

  7. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  8. Assessment of effectiveness of geologic isolation systems. Perspectives on the geological and hydrological aspects of long-term release scenario analyses

    SciTech Connect

    Stottlemyre, J.A.; Wallace, R.W.; Benson, G.L.; Zellmer, J.T.

    1980-06-01

    Information that may be relevant to individuals involved with analyzing long-term release scenarios of specific repositories for nuclear waste is presented. The bulk of the information is derived from recent studies in West Germany and the United States. Emphasis is on the specific geological and hydrological phenomena that, alone or in concert, could potentially perturb the area around specific repository sites. Research is continuing on most of the topics discussed within this report. Because research is ongoing, statements and conclusions described in this document are subject to change. The main topics of this report are: (1) fracturing, (2) geohydrology, (3) magmatic activity, and (4) geomorphology. Therefore, the site-specific nature of the problem cannot be overemphasized. As an example of how one might combine the many synergistic and time-dependent parameters into a concise format the reader is referred to A Conceputal Simulation Model for Release Scenario Analysis of a Hypothetical Site in Columbia Plateau Basalts, PNL-2892. For additional details on the topics in this report, the reader is referred to the Pacific Northwest Laboratory (PNL) consultant report listed in the bibliography.

  9. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.

    PubMed

    Lanzafame, Paola; Centi, Gabriele; Perathoner, Siglinda

    2014-11-21

    The use of biomass, bio-waste and CO2 derived raw materials, the latter synthesized using H2 produced using renewable energy sources, opens new scenarios to develop a sustainable and low carbon chemical production, particularly in regions such as Europe lacking in other resources. This tutorial review discusses first this new scenario with the aim to point out, between the different possible options, those more relevant to enable this new future scenario for the chemical production, commenting in particular the different drivers (economic, technological and strategic, environmental and sustainability and socio-political) which guide the selection. The case of the use of non-fossil fuel based raw materials for the sustainable production of light olefins is discussed in more detail, but the production of other olefins and polyolefins, of drop-in intermediates and other platform molecules are also analysed. The final part discusses the role of catalysis in establishing this new scenario, summarizing the development of catalysts with respect to industrial targets, for (i) the production of light olefins by catalytic dehydration of ethanol and by CO2 conversion via FTO process, (ii) the catalytic synthesis of butadiene from ethanol, butanol and butanediols, and (iii) the catalytic synthesis of HMF and its conversion to 2,5-FDCA, adipic acid, caprolactam and 1,6-hexanediol. PMID:24577063

  10. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out

  11. Energy: a historical perspective and 21st century forecast

    SciTech Connect

    Salvador, Amos

    2005-07-01

    Contents are: Preface; Chapter 1: introduction, brief history, and chosen approach; Chapter 2: human population and energy consumption: the future; Chapter 4: sources of energy (including a section on coal); Chapter 5: electricity: generation and consumption; and Chapter 6: energy consumption and probable energy sources during the 21st century.

  12. Status of fossil energy resources: A global perspective

    SciTech Connect

    Balat, M.

    2007-07-01

    This article deals with recently status of global fossil energy sources. Fossil energy sources have been split into three categories: oil,coal, and natural gas. Fossil fuels are highly efficient and cheap. Currently oil is the fastest primary energy source in the world (39% of world energy consumption). Coal will be a major source of energy for the world for the foreseeable future (24% of world energy consumption). In 2030, coal covers 45% of world energy needs. Natural gas is expected to be the fastest growing component of world energy consumption (23% of world energy consumption). Fossil fuel extraction and conversion to usable energy has several environmental impacts. They could be a major contributor to global warming and greenhouse gases and a cause of acid rain; therefore, expensive air pollution controls are required.

  13. Proceedings of Department of Energy/Office of the Environment Workshop on Enhanced Oil Recovery: problems, scenarios, risks

    SciTech Connect

    Kaplan, E.; Garrell, M.H.; Riedel, E.F.; Sathaye, J.

    1980-08-01

    A DOE/EV-sponsored workshop on enhanced oil recovery (EOR) was held at Montana State University, Bozeman, during August 24-27, 1980. The purpose of the workshop was to discuss the validity of scenarios for increased EOR production; to identify specific environmental, health, and safety issues related to EOR; and to identify quantitative methods for assessments of impacts. Workshop deliberations will be used by national laboratory scientists in their DOE-sponsored evaluation of the environmental, health, and safety (EH and S) aspects of increased EOR production. The following topics were discussed: EOR in the year 2000 - Production Estimates and Regulatory Constraints, Production and the Windfall Profits Tax; Environmental, Health, and Safety Impacts; Groundwater Contamination; and Special Technical and Legal Consideration. These discussions are included in the Proceedings along with appendices of: workshop agenda; list of attendees; biographical sketches of participants; handouts on potential critical problems for increased EOR, EIA production scenario for EOR, PNL production scenario for EOR; and results of questionnaires administered at workshop.

  14. From "farm to fork" strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and green house gas emissions.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Baudino, Claudio; Tecco, Nadia

    2014-03-01

    In this study, we analysed the environmental profile of the strawberry industry in Northern Italy. The analysis was conducted using two scenarios as reference systems: strawberry crops grown in unheated plastic tunnels using currently existing cultivation techniques, post-harvest management practices and consumption patterns (scenario 1) and the same strawberry cultivation chain in which some of the materials used were replaced with bio-based materials (scenario 2). In numerous studies, biodegradable polymers have been shown to be environmentally friendly, thus potentially reducing environmental impacts. These materials can be recycled into carbon dioxide and water through composting. Many materials, such as Mater-BI® and PLA®, are also derived from renewable resources. The methodology chosen for the environmental analysis was a life cycle assessment (LCA) based on a consequential approach developed to assess a product's overall environmental impact from the production system to its usage and disposal. In the field stage, a traditional mulching film (non-biodegradable) could be replaced with a biodegradable product. This change would result in waste production of 0 kg/ha for the bio-based product compared to 260 kg/ha of waste for polyethylene (PE). In the post-harvest stage, the issue addressed was the use and disposal of packaging materials. The innovative scenario evaluated herein pertains to the use of new packaging materials that increase the shelf life of strawberries, thereby decreasing product losses while increasing waste management efficiency at the level of a distribution platform and/or sales outlet. In the event of product deterioration or non-sale of the product, the packaging and its contents could be collected together as organic waste without any additional processes because the packaging is compostable according to EN13432. Scenario 2 would achieve reductions of 20% in the global warming potential and non-renewable energy impact categories. PMID

  15. Past, Present and Future Energy Education, A Federal Perspective.

    ERIC Educational Resources Information Center

    Duggan, Donald D.

    1981-01-01

    Energy education is a new field which should focus on an effort to bring together teachers, school officials, and parent groups with the objective of helping children understand the current international energy situation. Past, present, and future energy education strategies are discussed. (JN)

  16. Chinese hotel general managers' perspectives on energy-saving practices

    NASA Astrophysics Data System (ADS)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  17. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect

    Blair, Nate; Jenkin, Thomas; Milford, James; Short, Walter; Sullivan, Patrick; Evans, David; Lieberman, Elliot; Goldstein, Gary; Wright, Evelyn; Jayaraman, Kamala R.; Venkatesh, Boddu; Kleiman, Gary; Namovicz, Christopher; Smith, Bob; Palmer, Karen; Wiser, Ryan; Wood, Frances

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  18. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  19. Recent development and future perspectives of low energy laser shock peening

    NASA Astrophysics Data System (ADS)

    Kalainathan, S.; Prabhakaran, S.

    2016-07-01

    The first part of the review involves the parameters controlling and optimization of low energy laser shock peening process. The second part presents the effect of laser peening without coating on ferrous, aluminum and titanium alloys. Therefore, the recently developed techniques and challenges on it are discussed. Opportunities to tackle the current challenges are overviewed. Finally, in the third part, the future perspectives of low energy laser peening on metal matrix composites and single crystals for several typical applications are deliberated.

  20. Role of national labs in energy and environmental R & D: An industrial perspective

    SciTech Connect

    Vaz, N.

    1995-12-31

    The perceived role of national laboratories in energy and environmental research and development is examined from an industrial perspective. A series of tables are used to summarize issues primarily related to the automotive industry. Impacts of policy on energy, environment, society, and international competition are outlined. Advances and further needs in automotive efficiency and pollution control, and research roles for national labs and industry are also summarized. 6 tabs.

  1. Energy use in the U.S. steel industry: An historical perspective and future opportunities

    SciTech Connect

    Stubbles, John

    2000-09-01

    Renowned industry expert Dr. John Stubbles has projected the energy savings that the U.S. steel industry could reasonably expect to achieve in the report, Energy Use in the U.S. Steel Industry: Historical Perspective and Future Opportunities (PDF 432 KB). The report examines the potential impacts of state-of-the-art technologies and operating practices, as well as structural changes in the industry itself.

  2. Particle Energy Spectrum, Revisited from a Counting Statistics Perspective

    SciTech Connect

    2012-07-28

    In nuclear science, gamma and neutron spectra are counted energy by energy, and then particle by particle. Until recently, few studies have been performed on how exactly those energy spectra are counted, or how those counts are correlated. Because of lack of investigation, cross section covariance and correlation matrices are usually estimated using perturbation method. We will discuss a statistical counting scheme that shall mimic the gamma and neutron counting process used in nuclear science. From this counting scheme, the cross section covariance and correlation can be statistically derived.

  3. Energy security in the 1980s: economic and political perspectives

    SciTech Connect

    Bohi, D.R.; Quandt, W.B.

    1984-01-01

    This study emphasizes that the energy security problem of the 1980s will differ significantly from that of the 1970s. Lessons from the past are not always a good guide to the future. The authors do not, however, suggest that the energy problem is behind us and that markets alone can be left to work their magic. Diplomacy, military preparedness, and public policy still have a role in reducing the risks of future energy crises and in dealing with the consequences of oil-supply disruptions.

  4. PERSPECTIVE: Cultivating Strategic Foresight for Energy and Environmental Security

    SciTech Connect

    Bray, David A.; Costigan, Sean; Daum, Keith; Lavoix, Helene; Malone, Elizabeth L.; Pallaris, Chris

    2009-10-01

    Disastrous social, economic, and political instability can result from limited energy resources or deteriorating environmental conditions. Historically, understanding and preparing for potential turbulent events posed significant challenges for governments, due in part to complex connections and dependencies associated with multiple, inter-related issues. Moving forward, we propose world governments can better mitigate and even avert energy and environmental disasters by cultivating a shared, diverse community of physical and social scientists, engineers, security analysts, and other professionals from related fields to share concerns, discuss ideas, and coalesce key concepts from the vast amount of data available about energy and environmental issues. Bringing relevant parties from multiple disciplines into a dynamic, diverse, and more transparent forum will produce a greater range of discussion, deliberation, and feasible solutions to help address uncertain, global energy and environmental concerns of both the present-day and our future.

  5. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  6. Global perspective on energy. [Projecting into 21st century

    SciTech Connect

    Anderson, T.D.

    1980-04-11

    The technological world of today finds us with a population of over 4 billion with a doubling time of 30 to 40 years. Even with the rapid introduction of effective fertility control, the momentum of population - a phenomenon caused by a population age structure biased toward the young - will carry us to a population of 12 to 16 billion in the 21st century. With fixed land resources, the energy inputs to support the increased population will be several tims the present world energy consumption. How does this conclusion square with the notion that we are running out of energy. Are the billions of new people doomed to malnutrition and disease because we cannot provide the energy needed to support them. Answering in the negative, the author says: (1) proved reserves of conventional energy resources are substantial and the prospects of adding to these reserves are good; (2) unconventional resources of oil, gas, and uranium are many times larger than our present conventional reserves; and (3) nuclear fisson energy alone could support the world for several centuries. Even though the general energy picture is bright, the outlook for the less developed countries is not, he feels. To exploit the energy sources of the future requires large capital investments - something that only the developed countries can manage. One of the major contributions the developed countries can make to those that are less fortunate is to take the pressure off oil so as to stabilize the price and supply situation. In this regard, the US is in an excellent position to take the lead.

  7. Comparing energy technology alternatives from an environmental perspective

    SciTech Connect

    House, P W; Coleman, J A; Shull, R D; Matheny, R W; Hock, J C

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity.

  8. An ecological perspective of the energy basis of sustainable Bolivian natural resources: Forests and natural gas

    NASA Astrophysics Data System (ADS)

    Izursa, Jose-Luis

    Bolivia, traditionally known for being a country rich in natural resources, has suffered from a constant exploitation of its natural resources benefiting only small groups in and outside the country. The devastation of natural resources that occurred for many years was of concern to the latest government, rural communities and indigenous groups. As a result, Bolivia has a more sustainability-oriented forest law that has a strong orientation towards the utilization of natural resources at a national level and encompasses a fast-growing forestry industry than in previous years. In this dissertation, the wealth of Bolivia's national system was evaluated using solar emergy. Emergy (spelled with "m") is the sum of all energy of one form needed to develop a flow of energy of another form, over a period of time. The basic idea is that solar energy is our ultimate energy source and by expressing the value of products in solar emergy units, it becomes possible to compare different kinds of energy, allowing to express the value for the natural resources in Emergy Dollars. It was found out that Bolivia relies heavily in its natural resources and that its emergy exchange ratio with its international trading partners changed from 12.2 to 1 in 2001 to 6.2 to 1 in 2005. This means that Bolivia went from export 12.2 emdollars of goods for each 1 it received in 2001 to export 6.2 emdollars of products for each 1 it received in 2005. The study also showed that under forest certification practices less emergy is removed from forests (1.49E+19 sej/yr) compared to the amount of emergy removed (2.36E+19 sej/yr) under traditional uncertified practices, reflecting that forest ecology does better under certification. The "Ecologically-based Development for the Bolivian Industrial Forestry System" (DEBBIF) simulation model constructed during this study, compared four different scenarios: the Reference Scenario, the Increased Export Scenario, the Increased Domestic Use Scenario and the

  9. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim P.; Cauchy, Charles J.

    2013-07-01

    It is highly desirable to develop technologies that recover the large amounts of waste heat generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators to increase fuel efficiency and reduce CO2 production and the environmental footprint of these applications. Recent work has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small-form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nanocomposite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed, creating unique efficiency-power maps that provide better understanding and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives and mathematical foundations in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS® TE modeling capabilities have integrated heat exchanger performance models with ANSYS® TE models to extend its analysis capabilities beyond simple constant hot-side and cold-side temperature conditions. Analysis results portray external resistance effects, matched load conditions, and maximum power versus maximum efficiency points simultaneously, and show that maximum TE power occurs at external resistances slightly

  10. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melaina, M.

    2015-03-23

    This presentation provides an overview of the Scenario Evaluation and Regionalization Analysis (SERA) model, describes the methodology for developing scenarios for hydrogen infrastructure development, outlines an example "Hydrogen Success" scenario, and discusses detailed scenario metrics for a particular case study region, the Northeast Corridor.

  11. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    PubMed

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping. PMID:26817500

  12. Very high energy observations of the Galactic Centre: recent results and perspectives with CTA

    NASA Astrophysics Data System (ADS)

    Terrier, Regis

    2016-07-01

    The central 300 pc of our Galaxy are a major laboratory for high energy astrophysics. They harbor the closest supermassive black hole (SMBH) and are the site of a sustained star formation activity. The energy released by the supernovae on the ambient medium must be very strong. Similarly, albeit extremely faint nowadays, the SMBH must have experienced episodes of intense activity in the past which can influence significantly the central regions and beyond, e.g. powering the Fermi bubbles. I review observational results at very high energies from the central region and discuss their implications and the questions they leave open. I discuss the perspectives CTA offers for Galactic Centre astrophysics.

  13. High-energy neutrino astrophysics: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Katz, U. F.; Spiering, Ch.

    2012-07-01

    Neutrinos are unique cosmic messengers. Present attempts are directed to extend the window of cosmic neutrino observation from low energies (Sun, supernovae) to much higher energies. The aim is to study the most violent processes in the Universe which accelerate charged particles to highest energies, far beyond the reach of laboratory experiments on Earth. These processes must be accompanied by the emission of neutrinos. Neutrinos are electrically neutral and interact only weakly with ordinary matter; they thus propagate through the Universe without absorption or deflection, pointing back to their origin. Their feeble interaction, however, makes them extremely difficult to detect. The years 2008-2010 have witnessed remarkable steps in developing high energy neutrino telescopes. In 2010, the cubic-kilometre neutrino telescope IceCube at the South Pole has been completed. In the Mediterranean Sea the first-generation neutrino telescope ANTARES takes data since 2008, and efforts are directed towards KM3NeT, a telescope on the scale of several cubic kilometres. The next years will be key years for opening the neutrino window to the high energy Universe. With an instrumented volume of a cubic kilometre, IceCube is entering a region with realistic discovery potential. Discoveries or non-discoveries of IceCube will have a strong impact on the future of the field and possibly mark a "moment of truth". In this review, we discuss the scientific case for neutrino telescopes, describe the detection principle and its implementation in first- and second-generation installations and finally collect the existing physics results and the expectations for future detectors. We conclude with an outlook to alternative detection methods, in particular for neutrinos of extremely high energies.

  14. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    SciTech Connect

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  15. ENSO in CMIP5 models from an energy budget perspective

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leopold

    2015-04-01

    Vast amounts of energy are exchanged between ocean, atmosphere, and space in association with the primary mode of global climate variability, El Niño-Southern Oscillation (ENSO). Energy budgets of all tropical (30S-30N) ocean basins and the atmosphere are assessed separately to depict anomalous energy flows associated with ENSO in a consistent budget framework. First, state-of-the art atmospheric and oceanic reanalyses are employed to robustly quantify changes in ocean heat storage, anomalous ocean-atmosphere energy exchanges and atmospheric energy transports during ENSO. Variability of area-averaged tropical Pacific ocean heat content (OHC) to a large extent is modulated by energy flow through the ocean surface. While redistribution of OHC within the tropical Pacific is an integral part of ENSO dynamics, variability of lateral ocean heat transport out of the tropical Pacific region is found to be small. The only noteworthy contributions arise from the Indonesian Throughflow (ITF), which is anti-correlated with ENSO at a few months lag. Regression analysis reveals that atmospheric energy transport and RadTOA (radiation at top-of-the-atmosphere) almost perfectly balance the OHC changes and ITF variability associated with ENSO. Only a relatively small fraction of El Niño-related heat lost by the Pacific ocean is radiated to space (mainly in the Pacific subtropics), whereas the major part of the energy is transported away by the atmosphere. Ample changes in tropical atmospheric circulation lead to enhanced surface fluxes and consequently to an increase of tropical Atlantic and Indian OHC that to very large degree compensates tropical Pacific OHC loss. This signature of energy redistribution is robust across the employed datasets for all three tropical ocean basins and explains the small observed ENSO signal in global mean RadTOA. These results are then used as a benchmark to evaluate the energy pathways during ENSO as simulated by an ensemble of coupled climate

  16. Energy production risks: what perspective should we take

    SciTech Connect

    Whipple, C.

    1981-03-01

    The controversy over energy-production risks is in part due to uncertainties and disagree- ments over the specification of these systems and their characteristics and in part due to the lack of a solid conceptual framework for comparisons between qualitatively different types of risks. The difficulties in specifying energy risks arise primarily from the necessity of using oversimplified descriptions of energy systems and their effects. The major simplifications include the use of marginal analysis (even when inappropriate), the omission of indirect risks, and the incorrect specification of the systems to be analyzed. Comparisons between qualita- tively different risks are hampered by the lack of a solid basis for treating occupational risks relative to public risks, catastrophic risks versus chronic risks, and risks distributed differently in time. The difficult problems encountered when social values relating to risk change rapidly lead to delay and indecision. The choice of analytical simplifications and the specification of values systems for energy analysis are best made by considering the context and application of the analysis.

  17. Solid-State Lighting: An Energy Economics Perspective

    SciTech Connect

    Tsao, Jeffrey Y.; Saunders, Harry D.; Creighton, J. Randall; Coltrin, Michael E.; Simmons, Jerry A.

    2010-08-19

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb–Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  18. Energy Education from the Perspective of a Social Studies Educator.

    ERIC Educational Resources Information Center

    Marker, Gerald W.

    A social studies educator examines energy education and its place in the curriculum, discussing what should be taught, where, and by whom. Six recommendations are made. First, students must be made aware that sometime between now and the year 2000, world demand for oil and natural gas will actually exceed world supply. Life in the 21st Century…

  19. Influence of urban resilience measures in the magnitude and behaviour of energy fluxes in the city of Porto (Portugal) under a climate change scenario.

    PubMed

    Rafael, S; Martins, H; Sá, E; Carvalho, D; Borrego, C; Lopes, M

    2016-10-01

    Different urban resilience measures, such as the increase of urban green areas and the application of white roofs, were evaluated with the WRF-SUEWS modelling system. The case study consists of five heat waves occurring in Porto (Portugal) urban area in a future climate scenario. Meteorological forcing and boundary data were downscaled for Porto urban area from the CMIP5 earth system model MPI-ESM, for the Representative Concentration Pathway RCP8.5 scenario. The influence of different resilience measures on the energy balance components was quantified and compared between each other. Results show that the inclusion of green urban areas increases the evaporation and the availability of surface moisture, redirecting the energy to the form of latent heat flux (maximum increase of +200Wm(-2)) rather than to sensible heat. The application of white roofs increases the solar radiation reflection, due to the higher albedo of such surfaces, reducing both sensible and storage heat flux (maximum reductions of -62.8 and -35Wm(-2), respectively). The conjugations of the individual benefits related to each resilience measure shows that this measure is the most effective one in terms of improving the thermal comfort of the urban population, particularly due to the reduction of both sensible and storage heat flux. The obtained results contribute to the knowledge of the surface-atmosphere exchanges and can be of great importance for stakeholders and decision-makers. PMID:27317136

  20. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.

    PubMed

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik; Astrup, Thomas

    2012-12-18

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO₂-eq. ha⁻¹, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO₂-eq. ha⁻¹, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results. PMID:23126612

  1. A perspective on liquid salts for energy and materials.

    PubMed

    Irvine, J T S

    2016-08-15

    Liquid salts comprising molten salts and ionic liquids offer important media to address both energy and materials challenges. Here we review topics presented in this Faraday Discussion volume related to improved electrowinning of metals, optimisation of processes, new electrochemical device concepts, chemistry in ionic liquids, conversion of biomass, carbon chemistry and nuclear applications. The underlying phenomenology is then reviewed and commentary given. Some future applications are then discussed, further exemplifying the high potential rewards achievable from these chemistries. PMID:27483385

  2. Energy balance and obesity: a UK perspective on the gluttony v. sloth debate.

    PubMed

    Millward, D Joe

    2013-12-01

    Obesity in the UK was assumed to have developed against a population decline in physical activity, with health messages focused on diet and exercise prevention strategies. Doubly-labelled water (DLW) studies of energy expenditure have indicated the alternative scenario that the increased obesity prevalence reflects excessive food energy intake with physical activity levels unchanged. This analysis is questionable, deriving in part from a weakness of the DLW methodology in identifying changing physical activity levels within populations of increasing body weight. This has resulted in an underestimation of the reduction in physical activity in the overweight and obese, as revealed by direct studies of such behaviour. Furthermore, a close examination of food energy supply, household food purchases and individual food energy consumption since 1955, in relation to likely estimates of current intakes indicated by simple modelling of predicted energy expenditure, identifies: (a) food energy supply as markedly overestimating energy intakes; (b) individual food energy consumption as markedly underestimating energy intakes; and (c) household food purchase data as the closest match to predicted current food energy intakes. Energy intakes indicated by this latter method have fallen by between 20 to 30%, suggesting comparable falls in physical activity. Although unequivocal evidence for a matching UK trend in falling physical activity is limited, as is evidence that obesity follows reductions in physical activity, such a link has been recently suggested in a large prospective study in adolescents. Thus, for the UK, obesity has developed within a 'move less-eat somewhat less but still too much' scenario. A focus on both diet and exercise should remain the appropriate public health policy. PMID:23750809

  3. An integrated assessment of energy-water nexus at the state level in the United States: Projections and analyses under different scenarios through 2095

    NASA Astrophysics Data System (ADS)

    Liu, L.; Patel, P. L.; Hejazi, M. I.; Kyle, P.; Davies, E. G.; Zhou, Y.; Clarke, L.; Edmonds, J.

    2013-12-01

    Water withdrawals for thermoelectric power plants account for approximately half of the total water use in the United States. With growing electricity demands in the future and limited water supplies in many water-scarce states in the U.S., grasping the trade-off between energy and water requires an integrated modeling approach that can capture the interactions among energy, water availability, climate, technology, and economic factors at various scales. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, with 14 geopolitical regions that are further dissaggregated into up to 18 agro-ecological zones, was extended to model the electricity and water systems at the state level in the U.S. More specifically, GCAM was employed to estimate future state-level electricity generation and demands, and the associated water withdrawals and consumptions under a set of six scenarios with extensive levels of details on generation fuel portfolio, cooling technology mix, and water use intensities. The state-level estimates were compared against available inventories where good agreement was achieved on national and regional levels. We then explored the electric-sector water use up to 2095, focusing on implications from: 1) socioeconomics and growing demands, 2) the adoption of climate mitigation policy (e.g., RCP4.5 W/m2 vs. a reference scenario), 3) the transition of cooling systems, 4) constraints on electricity trading across states (full trading vs. limited trading), and 5) the adoption of water saving technologies. Overall, the fast retirement of once-through cooling, together with the gradual transition from fossil fuels dominant to a mixture of different fuels, accelerate the decline of water withdrawals and correspondingly compensate consumptive water use. Results reveal that U.S. electricity generation expands significantly as population grows

  4. High-Energy Astrophysics. American and Soviet Perspectives

    NASA Technical Reports Server (NTRS)

    Lewin, Walter H. G. (Editor); Clark, George W. (Editor); Sunyaev, Rashid A. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    The proceedings of the American-Soviet high energy astrophysics workshop, which was held at the Institute for Space Research in Moscow and the Abastumani Laboratory and Observatory in the republic of Georgia from June 18 to July 1, 1989, is presented. Topics discussed at the workshop include the inflationary universe; the large scale structure of the universe, the diffuse x-ray background; gravitational lenses, quasars, and active galactic nuclei (AGNs); infrared galaxies (results from IRAS); Supernova 1987A; millisecond radio pulsars; quasi-periodic oscillations in the x-ray flux of low mass X-ray binaries; and gamma ray bursts.

  5. Energy-water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California.

    PubMed

    Mo, Weiwei; Wang, Ranran; Zimmerman, Julie B

    2014-05-20

    Increased water demand and scarce freshwater resources have forced communities to seek nontraditional water sources. These challenges are exacerbated in coastal communities, where population growth rates and densities in the United States are the highest. To understand the current management dilemma between constrained surface and groundwater sources and potential new water sources, Tampa Bay, Florida (TB), and San Diego, California (SD), were studied through 2030 accounting for changes in population, water demand, and electricity grid mix. These locations were chosen on the basis of their similar populations, land areas, economies, and water consumption characters as well as their coastal locations and rising contradictions between water demand and supply. Three scenarios were evaluated for each study area: (1) maximization of traditional supplies; (2) maximization of seawater desalination; and (3) maximization of nonpotable water reclamation. Three types of impacts were assessed: embodied energy, greenhouse gas (GHG) emission, and energy cost. SD was found to have higher embodied energy and energy cost but lower GHG emission than TB in most of its water infrastructure systems because of the differences between the electricity grid mixes and water resources of the two regions. Maximizing water reclamation was found to be better than increasing either traditional supplies or seawater desalination in both regions in terms of the three impact categories. The results further imply the importance of assessing the energy-water nexus when pursuing demand-side control targets or goals as well to ensure that the potentially most economical options are considered. PMID:24730467

  6. DISENTANGLING HADRONIC AND LEPTONIC CASCADE SCENARIOS FROM THE VERY-HIGH-ENERGY GAMMA-RAY EMISSION OF DISTANT HARD-SPECTRUM BLAZARS

    SciTech Connect

    Takami, Hajime; Murase, Kohta; Dermer, Charles D. E-mail: murase@ias.edu

    2013-07-10

    Recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; {approx}> 100 GeV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311-1938. We consider the prospects for detection of the VHE sources by the planned Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above {approx}500 GeV (depending on source redshift) for several luminous sources with z {approx}< 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311-1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Accurate redshift measurements of hard-spectrum blazars are essential for this study.

  7. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    NASA Astrophysics Data System (ADS)

    Meyer, Patrick E.

    moderately inequitable. However, the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use solar-electrolysis-based FCVs can be extremely inequitable. Further, it is found that the method of production and delivery of hydrogen (i.e. centralized production or refueling station-based production) can have an impact on the equity of energy and environmental costs. The implications of these results are interesting, in that wealthy people purchase FCVs that have high upfront costs and very low societal energy and environmental costs. Simultaneously, however, low-income people purchase CGVs that have low upfront costs and very high societal energy and environmental costs. In this situation, due to the high-polluting nature of CGV technology in relation to FCV technology, CGV drivers account for more than their equitable share of energy and environmental costs. Scenarios are conducted which explore modifications of assumptions, such as the price of oil, price of natural gas, cost to offset emissions, consumer purchase price of FCVs, and the level of taxation on the cost streams. Among other findings, it is found that altering the purchase price of an FCV has the greatest impact on social equity whereas altering the cost to offset fuel-cycle emissions has the least impact, indicating that policy mechanisms aimed at incentivizing FCVs may have a more positive impact on social equity than policies aimed at mitigating emissions. Based on the results of the scenario analysis, policy recommendations are formulated which seek to maximize social equity in populations in which not all drivers use the same vehicular technology. The policies, if implemented as a single portfolio, would assist a systematic deviation away from the fossil fuel energy economy while ensuring that social equity is preserved to the greatest degree possible. (Abstract shortened by UMI.)

  8. Density dependence of the nuclear symmetry energy: A microscopic perspective

    SciTech Connect

    Vidana, Isaac; Providencia, Constanca; Polls, Artur; Rios, Arnau

    2009-10-15

    We perform a systematic analysis of the density dependence of nuclear symmetry energy within the microscopic Brueckner-Hartree-Fock (BHF) approach using the realistic Argonne V18 nucleon-nucleon potential plus a phenomenological three-body force of Urbana type. Our results are compared thoroughly with those arising from several Skyrme and relativistic effective models. The values of the parameters characterizing the BHF equation of state of isospin asymmetric nuclear matter fall within the trends predicted by those models and are compatible with recent constraints coming from heavy ion collisions, giant monopole resonances, or isobaric analog states. In particular we find a value of the slope parameter L=66.5 MeV, compatible with recent experimental constraints from isospin diffusion, L=88{+-}25 MeV. The correlation between the neutron skin thickness of neutron-rich isotopes and the slope L and curvature K{sub sym} parameters of the symmetry energy is studied. Our BHF results are in very good agreement with the correlations already predicted by other authors using nonrelativistic and relativistic effective models. The correlations of these two parameters and the neutron skin thickness with the transition density from nonuniform to {beta}-stable matter in neutron stars are also analyzed. Our results confirm that there is an inverse correlation between the neutron skin thickness and the transition density.

  9. Frontiers in plasma science: a high energy density perspective

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2015-11-01

    The potential for ground-breaking research in plasma physics in high energy density (HED) regimes is compelling. The combination of HED facilities around the world spanning microjoules to megajoules, with time scales ranging from femtoseconds to microseconds enables new regimes of plasma science to be experimentally probed. The ability to shock and ramp compress samples and simultaneously probe them allows dense, strongly coupled, Fermi degenerate plasmas relevant to planetary interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars are being probed. The physics and dynamics of magnetized plasmas relevant to astrophysics and inertial confinement fusion are also starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation. Turbulent, high magnetic Reynolds number flows are being experimentally generated to look for evidence of the turbulent magnetic dynamo effect. And new results from thermonuclear reactions in dense hot plasmas relevant to stellar interiors are starting to emerge. A selection of examples providing a compelling vision for frontier plasma science in the coming decade will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. A Perspective of petroleum, natural gas, and coal bed methane on the energy security of India

    SciTech Connect

    Ghose, M.K.; Paul, B.

    2008-07-01

    The global energy requirement has grown at a phenomenal rate and the consumption of primary energy sources has been a very high positive growth. This article focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy in the foreseeable future. It examines energy requirement perspectives for India and demands of petroleum, natural gas, and coal bed methane in the foreseeable future. It discusses the state of present day petroleum and petrochemical industries in the country and the latest advances in them to take over in the next few years. The regional pattern of consumption of primary energy sources shows that oil remains as the largest single source of primary energy in most parts of the world. However, gas dominates as the prime source in some parts of the world. Economic development and poverty alleviation depend on securing affordable energy sources and for the country's energy security; it is necessary to adopt the latest technological advances in petroleum and petrochemical industries by supportive government policies. But such energy is very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively. Environmental laws for the abatement of environmental degradation are discussed in this paper. The paper concludes that energy security leading to energy independence is certainly possible and can be achieved through a planned manner.

  11. Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, A.; Boselli, M.

    2016-05-01

    Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.

  12. Geologic sequestration of carbon dioxide - an energy resource perspective

    SciTech Connect

    Robert C. Burruss; Sean T. Brennan

    2003-03-15

    Most energy used to meet human needs is derived from the combustion of fossil fuels (natural gas, oil, and coal), which releases carbon to the atmosphere, primarily as carbon dioxide (CO{sub 2}). The atmospheric concentration of CO{sub 2}, a greenhouse gas, is increasing, raising concerns that solar heat will be trapped and the average surficial temperature of the Earth will rise in response. Global warming studies predict that climate changes resulting from increases in atmospheric CO{sub 2} will adversely affect life on Earth. In the 200 years since the industrial revolution, the world's population has grown from about 800 million to over 6 billion people and the CO{sub 2} content of the atmosphere has risen from about 280 to about 360 parts per million by volume, a 30 percent increase. International concern about potential global climate change has spurred discussions about limiting the amount of CO{sub 2} and other greenhouse gases released to the atmosphere. 1 ref., 3 figs.

  13. Peptide adsorption on the hydrophobic surface: A free energy perspective

    NASA Astrophysics Data System (ADS)

    Sheng, Yuebiao; Wang, Wei; Chen, P.

    2011-05-01

    Protein adsorption is a very attractive topic which relates to many novel applications in biomaterials, biotechnology and nanotechnology. Ionic complementary peptides are a group of novel nano-biomaterials with many biomedical applications. In this work, molecular dynamics simulations of the ionic-complementary peptide EAK16-II on a hydrophobic graphite surface were performed under neutral, acidic and basic solution conditions. Adsorption free energy contour maps were obtained by analyzing the dynamical trajectories. Hydrophobic interactions were found to govern the adsorption of the first peptide molecule, and both hydrophobic and electrostatic interactions contributed to the adsorption of the second peptide molecule. Especially under acidic and basic solution conditions, interplay existed among chain-chain hydrophobic, chain-surface hydrophobic and chain-chain electrostatic interactions during the adsorption of the second peptide molecule. Non-charged residues were found to lie on the graphite surface, while charged residue side-chains oriented towards the solution after the peptide deposited on the surface. These results provide a basis for understanding peptide adsorption on the hydrophobic surface under different solution conditions, which is useful for novel applications such as bioactive implant devices and drug delivery material design.

  14. A new perspective on dark energy modeling via genetic algorithms

    SciTech Connect

    Nesseris, Savvas; García-Bellido, Juan E-mail: juan.garciabellido@uam.es

    2012-11-01

    We use Genetic Algorithms to extract information from several cosmological probes, such as the type Ia supernovae (SnIa), the Baryon Acoustic Oscillations (BAO) and the growth rate of matter perturbations. This is done by implementing a model independent and bias-free reconstruction of the various scales and distances that characterize the data, like the luminosity d{sub L}(z) and the angular diameter distance d{sub A}(z) in the SnIa and BAO data, respectively, or the dependence with redshift of the matter density Ω{sub m}(a) in the growth rate data, fσ{sub 8}(z). These quantities can then be used to reconstruct the expansion history of the Universe, and the resulting Dark Energy (DE) equation of state w(z) in the context of FRW models, or the mass radial function Ω{sub M}(r) in LTB models. In this way, the reconstruction is completely independent of our prior bias. Furthermore, we use this method to test the Etherington relation, ie the well-known relation between the luminosity and the angular diameter distance, η≡d{sub L}(z)/(1+z){sup 2}d{sub A}(z), which is equal to 1 in metric theories of gravity. We find that the present data seem to suggest a 3-σ deviation from one at redshifts z ∼ 0.5. Finally, we present a novel way, within the Genetic Algorithm paradigm, to analytically estimate the errors on the reconstructed quantities by calculating a Path Integral over all possible functions that may contribute to the likelihood. We show that this can be done regardless of the data being correlated or uncorrelated with each other and we also explicitly demonstrate that our approach is in good agreement with other error estimation techniques like the Fisher Matrix approach and the Bootstrap Monte Carlo.

  15. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    SciTech Connect

    Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.; Dutton, Spencer M.; Berkeley, Pam M.; Spears, Michael

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  16. Department of Energy perspective on high-level waste standards for Yucca Mountain

    SciTech Connect

    Brocoum, S.J.; Gil, A.V.; Van Luik, A.E.; Lugo, M.A.

    1996-07-01

    This paper provides a regulatory perspective from the viewpoint of the potential licensee, the U.S. Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards issued in August 1995, and on how the recommendations in that report should be considered in the development of high-level radioactive waste standards applicable to Yucca Mountain. The paper first provides an overview of the DOE perspective and then discusses several of the issues that are of most importance in the development of the regulatory framework for Yucca Mountain, including both the U.S. Environmental Protection Agency (EPA) standard and the U.S. Nuclear Regulatory Commission (NRC) implementing regulation. These issues include: the regulatory time frame, the risk/dose limit, the definition of the reference biosphere, human intrusion, and natural processes and events.

  17. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    NASA Astrophysics Data System (ADS)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  18. Modeling the spectral energy distribution of 3C 454.3 in a "flat" broad-line region scenario

    NASA Astrophysics Data System (ADS)

    Lei, Maichang; Wang, Jiancheng

    2014-10-01

    The broad-line region (BLR) of flat-spectrum radio quasars (FSRQs) could have a "flat" geometrical structure to allow GeV gamma-ray photons to escape, to produce the observed gamma-ray flares with short timescales. In this paper, we collect the quasi-simultaneous spectral energy distributions (SEDs) of the FSRQ 3C 454.3 obtained by the multi-wavelength campaigns spanning from 2007 July to 2011 January, and use a model with a "flat" structure BLR, an accretion disc and a dust torus to explain the SEDs of gamma-ray outbursts. We obtain the following results: (i) the jet is almost in equipartition between magnetic and particle energy densities during the outbursts; (ii) when the emitting region is located inside the cavity of the BLR, the covering factor fBLR of the BLR is very small-as the emitting region goes into the BLR structure, fBLR increases; (iii) the aperture angle α describing the BLR structure is about 45°; (iv) the central black hole mass is about 5 × 108 M⊙ rather than 4.4 × 109 M⊙.

  19. Deleterious Emission Abatement through Structured Energy Use Pattern: A North Central Nigeria Perspective

    NASA Astrophysics Data System (ADS)

    Ajayi-Banji, Ademola; Omotosho, Olayinka; Amori, Anthony; Alao, Damilola; Igbode, Imoisime; Abimbola, Olufemi

    2016-05-01

    Holistic view of household energy consumption based on greenhouse gas emissions in the North Central cities of Nigeria was examined in this study. Scenarios considered were based on income level of energy users (low and high) and energy metering system (i.e. pre-paid and post-paid energy billing systems). Strong direct nexus was observed between energy use and emissions pattern. Energy utilization by post-paid category had higher weekly average value of 35.09 and 41.70 kWh as against 23.18 and 33.38 kWh for low and high income pre-paid consumers respectively. Energy use and greenhouse gas emissions from both classification followed similar trend. Data obtained and analysed in the study show that global warming and acidification potentials could be reduced by 33.94 and 19.95 % for low and high income category consumers when pre-paid meters are in place. Conclusively, energy system users with pre-paid metering system displayed reasonable level of management decisions that reduce energy wastage and consequently environmental negative impacts.

  20. Forensic nursing - Global scenario and Indian perspective.

    PubMed

    Dash, Shreemanta Kumar; Patel, Shailendra; Chavali, Krishnadutt

    2016-08-01

    Sexual violence is a significant cause of physical and psychological harm and suffering for women and children. Although sexual violence mostly affects women and girls, boys are also subject to child sexual abuse. Nurse is the person who attends the victim first. In order to meet the rigid and ever-changing demands of providing care to the victim and complying with our confusing system of laws, the nursing should has been forced to expand into a Forensic nursing, specialty of its own. Nursing roles in the criminal justice service known by many names worldwide-Custody nursing, Prison/Correctional nursing, Immigration centre nursing, Sexual Assault Nurse Examiner (SANE) or Sexual Assault Forensic Examiner (SAFE), SARTs (Sexual assault response team), SARCs (Sexual assault referral centre) and FNDIs (Forensic nurse death investigator). In India the premier institutes like AIIMS New Delhi and The PGI Chandigarh, do not have forensic content in their nursing curriculum manuals. The WHO and IAFN have urged inclusion of forensic content in both undergraduate and postgraduate nursing programs. Forensic Nurse Specialist can provide direct services to individual clients, consultation services to nursing, medical and law-related agencies, as well as providing expert court testimony in areas dealing with trauma and/or questioned death investigative processes, adequacy of services delivered, and specialized diagnoses of specific medical conditions. Research Findings on the Effectiveness of Sexual Assault Nurse Examiner (SANE) Programs suggests various improvements in each and every step in care of victim of sexual assault. PMID:27314972

  1. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  2. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  3. An evaluation of the impacts of energy tree plantations on water resources in the United Kingdom under present and future UKCIP02 climate scenarios

    NASA Astrophysics Data System (ADS)

    Calder, Ian R.; Nisbet, Tom; Harrison, Jennifer A.

    2009-07-01

    The Hydrological Land Use Change model was used to assess the range of water resource impacts associated with four potential energy tree species (Eucalyptus nitens, Eucalyptus gunnii, Nothofagus sp., and Fraxinus excelsior) at eight United Kingdom locations under present and future, Environment Agency Rainfall and Weather Impacts Generator, climate scenarios generated using UK Climate Impacts Programme 2002 (UKCIP02). Parameter values were derived using expert opinion and interpolation because of limited data. For Fraxinus excelsior, there are questions concerning the unusual, in a world context, published findings that evaporation from a tree crop is less than that from grass. Model predictions indicated that under the present climate all tree species, excepting Fraxinus excelsior, at all sites have greater mean annual evaporation, (8 to 84%) and reduced water yields (-6 to -97%) compared with grass. The predicted increase in tree evaporation arises from parameter values reflecting both increased rainfall interception and higher transpiration due to deeper rooting depths. Under future climate scenarios, (1) "potential annual yield" (difference between actual rainfall and potential evaporation) will decrease, becoming negative at all studied sites in England and Wales by 2080; (2) at drier sites and for species with highest evaporation rates, E. nitens and Nothofagus, evaporation rates will decrease; (3) at wetter sites and for all species, evaporation rates will increase; (4) at all sites and for all species, water yields will decrease; (5) differences between species remain the same, with evaporation rates increasing and water yield decreasing in the order Fraxinus excelsior, grass, E. gunnii, Nothofagus, and E. Nitens; and (6) there is an overall trend through time toward convergence in water yields from trees and grass. If higher water yield predictions for Fraxinus excelsior are proved correct, this would represent an attractive land use option for water and

  4. The Demand for Scientific and Technical Manpower in Selected Energy-Related Industries, 1970-85: A Methodology Applied to a Selected Scenario of Energy Output. A Summary.

    ERIC Educational Resources Information Center

    Gutmanis, Ivars; And Others

    The primary purpose of the study was to develop and apply a methodology for estimating the need for scientists and engineers by specialty in energy and energy-related industries. The projections methodology was based on the Case 1 estimates by the National Petroleum Council of the results of "maximum efforts" to develop domestic fuel sources by…

  5. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.

    PubMed

    De Vries, J W; Vinken, T M W J; Hamelin, L; De Boer, I J M

    2012-12-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Co-digestion with wastes or residues like roadside grass gave the best environmental performance. PMID:23026340

  6. Perspectives in Energy Research: How Can We Change the Game? (2011 Summit)

    ScienceCinema

    Isaacs, Eric (Director, Argonne National Laboratory)

    2012-03-14

    Eric Issacs, Director of DOE's Argonne National Laboratory, discussed the role of the EFRC Program and National Laboratories in developing game-changing energy technologies in the EFRC Summit session titled "Leading Perspectives in Energy Research." The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. Perspectives in Energy Research: How Can We Change the Game? (2011 Summit)

    SciTech Connect

    Isaacs, Eric

    2011-05-25

    Eric Issacs, Director of DOE's Argonne National Laboratory, discussed the role of the EFRC Program and National Laboratories in developing game-changing energy technologies in the EFRC Summit session titled "Leading Perspectives in Energy Research." The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  8. Physics perspectives of heavy-ion collisions at very high energy

    DOE PAGESBeta

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; Chen, Shi-yong; Chen, Zhen-yu; Ding, Heng-Tong; He, Min; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; et al

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less

  9. Physics perspectives of heavy-ion collisions at very high energy

    NASA Astrophysics Data System (ADS)

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; Chen, Shi-yong; Chen, Zhen-yu; Ding, Heng-Tong; He, Min; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; Rapp, Ralf; Schenke, Björn; Shen, Chun; Song, HuiChao; Xu, Hao-jie; Wang, Qun; Wang, Xin-Nian; Zhang, Ben-wei; Zhang, Han-zhong; Zhu, XiangRong; Zhuang, Peng-fei

    2016-02-01

    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.

  10. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent