Science.gov

Sample records for energy spectrum adjustment

  1. Neutron energy spectrum adjustment using deposited metal films on Teflon in the miniature neutron source reactor.

    PubMed

    Nassan, L; Abdallah, B; Omar, H; Sarheel, A; Alsomel, N; Ghazi, N

    2016-01-01

    The focus of this article was on the experimental estimation of the neutron energy spectrum in the inner irradiation site of the miniature neutron source reactor (MNSR), using, for the first time, a selected set of deposited metal films on Teflon (DMFTs) neutron detectors. Gold, copper, zinc, titanium, aluminum, nickel, silver, and chromium were selected because of the dependence of their neutron cross-sections on neutron energy. Emphasis was placed on the usability of this new type of neutron detectors in the total neutron energy spectrum adjustment. The measured saturation activities per target nucleus values of the DMFTs, and the calculated neutron spectrum in the inner irradiation site using the MCNP-4C code were used as an input for the STAY'SL computer code during the adjustment procedure. The agreement between the numerically calculated and experimentally adjusted spectra results was discussed. PMID:26562448

  2. Factors Influencing Adjustment in Siblings of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Meyer, Katherine A.; Ingersoll, Brooke; Hambrick, David Z.

    2011-01-01

    Siblings of children with autism spectrum disorders (ASD) may be at an increased risk of adjustment problems. To examine possible predictors of adjustment difficulties in siblings, 70 mothers with at least one child with ASD and one typical child completed surveys of symptom severity in the child with ASD, impact of the child with ASD on the…

  3. Energy distribution in the quantum spectrum

    NASA Astrophysics Data System (ADS)

    Bi, Siwen

    2015-11-01

    At first this paper summarizes the current situation and historical development of the spectrum research, the difficulties and demand background. Then it introduces the research status of quantum spectrum and research ideas of energy distribution in quantum spectrum. We explain the concept of quantum spectrum, the difference between quantum spectrum and spectrum. We elaborate energy distribution in quantum spectrum from three aspects, which are representation, feature and mechanism of quantum spectrum energy distribution. Finally we describe the application of monochrome quantum spectrum about imaging and detection aspects and give an overview of the quantum spectrum. Based on above research results we continue to study and achieve the detection of multi-spectral imaging, which provide the technical basis for the application. We try access to an advanced stage of quantum spectrum study as soon as possible.

  4. Energy spectrum of sputtered uranium

    NASA Technical Reports Server (NTRS)

    Weller, R. A.; Tombrello, T. A.

    1977-01-01

    The fission track technique for detecting uranium 235 was used in conjunction with a mechanical time-of-flight spectrometer to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E to the -1.77 power for E is approximately greater than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the ramdom collision cascade model of sputtering.

  5. Study on demodulation algorithm of fiber optic Fabry-Perot sensors based on spectrum adjusting

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Dai, Jingyun; Sun, Baochen; Du, Yanliang

    2007-11-01

    This paper aims at proposing a modified algorithm based on spectrum adjusting. The theoretical analysis of the error between the real light source spectrum and the Gaussian spectrum is presented. The hardware of the demodulation system is introduced, including the coupler, collimation lens, volume phase grating, focus lens, CCD array, A/D card, and PC. The modified algorithm will adjust the interferometric spectrum of the sensor by getting rid of the effect of the light source spectrum. Experiment was carried out to test the performance of the demodulation system. It can be found from the result that the algorithm has improved the accuracy of the demodulation system significantly. The demodulation accuracy for the strain sensor is better than 0.5 microstrain.

  6. Matrix Algorithms for Dynamic Gain-Spectrum Adjustment of Backward-Pumped Distributed Fiber Raman Amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xiao, Li; Peng, Jiangde

    2006-03-01

    Two matrix algorithms aiming at a dynamic gain-spectrum adjustment in a backward-pumped distributed fiber Raman amplifier (B-DFRA) are developed based on the relation between changes in the pump power and the gain spectrum. Characteristic channels are chosen to reduce the dimension of matrices in the algorithm, which can be implemented by built-in microprocessors or DSP chips inside the B-DFRA module. Furthermore, as shown by the theoretical analysis and the numerical simulation, elements in the matrices can be directly and easily measured in deployed fiber plants without information on fiber parameters. These matrix algorithms are capable of adjusting the gain spectrum to fit the arbitrary profile desired in reality, while a wide dynamic range can be achieved by a multistage adjustment using matrices measured under several gain levels.

  7. Siblings of Youth with Autism Spectrum Disorders: Theoretical Perspectives on Sibling Relationships and Individual Adjustment

    ERIC Educational Resources Information Center

    McHale, Susan M.; Updegraff, Kimberly A.; Feinberg, Mark E.

    2016-01-01

    A burgeoning research literature investigates the sibling relationships of youth with autism spectrum disorder (ASD) and their implications for individual adjustment. Focusing on four relationship domains--behaviors, emotions, cognitions and involvement--and toward advancing this generally atheoretical literature, we review and apply tenets from a…

  8. NREL Spectrum of Clean Energy Innovation (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment. Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  9. Energy spectrum of C60 fullerene

    NASA Astrophysics Data System (ADS)

    Mironov, G. I.; Murzashev, A. I.

    2011-11-01

    The energy spectrum of the C60 fullerene has been calculated in terms of the Shubin-Vonsovskii-Hubbard model using an approximation of static fluctuations. Based on the spectrum, the optical absorption bands at 4.84, 5.88, and 6.30 eV observed experimentally have been successfully explained. It has been concluded that the model used is applicable for the calculation of the energy spectrum and the energy properties of other nanosystems, such as fullerenes of higher orders, carbon nanotubes, and grafen planes.

  10. Siblings of Youth with Autism Spectrum Disorders: Theoretical Perspectives on Sibling Relationships and Individual Adjustment.

    PubMed

    McHale, Susan M; Updegraff, Kimberly A; Feinberg, Mark E

    2016-02-01

    A burgeoning research literature investigates the sibling relationships of youth with autism spectrum disorder (ASD) and their implications for individual adjustment. Focusing on four relationship domains—behaviors,emotions, cognitions and involvement—and toward advancing this generally a theoretical literature, were view and apply tenets from a range of theoretical perspectives in an effort to illuminate the mechanisms underlying sibling relationship experiences and their adjustment implications. Our review suggests new directions for research to test theoretically-grounded hypotheses about how sibling relationships develop and are linked to individual adjustment. In addition, we consider how identifying underlying bio-psycho-social processes can aid in the development of interventions to promote warm and involved sibling relationships and positive youth development. PMID:26476737

  11. The energy spectrum in a barotropic atmosphere

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2008-03-01

    In a forced-dissipative barotropic model of the atmosphere on a spherical planet, by following mathematical techniques in (Thompson, P. D.: The equilibrium energy spectrum of randomly forced two-dimensional turbulence, Journal of the Atmospheric Sciences, 30, 1593-1598, 1973) but applying them in a novel context of the discrete spectrum on a rotating sphere, the "minus 2" energy spectrum for wavenumbers much greater than a characteristic wavenumber of the baroclinic forcing has been obtained if the forcing is taken in the simplest and most fundamental form. Some observation-based atmospheric kinetic energy spectra, with their slopes lying between "minus 2" and "minus 3" laws, are discussed from the perspective of the deduced "minus 2" energy spectrum.

  12. Multibunch energy and spectrum control in the SLC High Energy Linac

    SciTech Connect

    Seeman, J.T.; Decker, F.J.; Jobe, R.K.; Hsu, I.

    1991-05-01

    Three intense bunches (two electron and one positron) are accelerated on each rf pulse in the SLC Linac. Careful control of the energy and energy spectrum of each bunch is needed to provide acceptable beams at the collision point and the positron productive target. The required rf amplitude, timing, and phase adjustments can be calculated and adjusted in real time to correct for changing conditions. BNS damping and energy feedback systems reduce the available reserve energy, which is limited. Observations and stability of actual beams are reviewed. Implications for a future collider are discussed. 10 refs., 3 figs., 1 tab.

  13. Reference data file for neutron spectrum adjustment and related radiation damage calculations

    SciTech Connect

    Zsolnay, E.M. ); Nolthenius, H.J.; Greenwood, L.R.; Szondi, E.J. )

    1990-08-01

    The REAL-88 interlaboratory exercise organized by IAEA resulted in a neutron metrology file. (NMF-90) comprising problem dependent data for benchmark neutron fields, furthermore, nuclear data and computer programs for neutron spectrum adjustment and radiation damage parameter calculations for the service life assessment of nuclear facilities. Calculation results of some experienced laboratories are also present. This paper describes and analyses the content of the neutron metrology file and outlines the most important problems and tasks to be solved in the field of radiation damage parameter calculations. 14 refs., 2 figs., 1 tab.

  14. Determination of neutron energy spectrum at KAMINI shielding experiment location.

    PubMed

    Sen, Sujoy; Bagchi, Subhrojit; Prasad, R R; Venkatasubramanian, D; Mohanakrishnan, P; Keshavamurty, R S; Haridas, Adish; Arul, A John; Puthiyavinayagam, P

    2016-09-01

    The neutron spectrum at KAMINI reactor south beam tube end has been determined using multifoil activation method. This beam tube is being used for characterizing neutron attenuation of novel shield materials. Starting from a computed guess spectrum, the spectrum adjustment/unfolding procedure makes use of minimization of a modified constraint function representing (a) least squared deviations between the measured and calculated reaction rates, (b) a measure of sharp fluctuations in the adjusted spectrum and (c) the square of the deviation of adjusted spectrum from the guess spectrum. The adjusted/unfolded spectrum predicts the reaction rates accurately. The results of this new procedure are compared with those of widely used SAND-II code. PMID:27389881

  15. New calorimetric all-particle energy spectrum

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    Both the maximum size N sub m and the sea level muon size N sub mu have been used separately to find the all-particle energy spectrum in the air shower domain. However the conversion required, whether from N sub m to E or from N sub mu to E, has customarily been carried out by means of calculations based on an assumed cascase model. It is shown here that by combining present data on N sub m and N sub mu spectra with data on: (1); the energy spectrum of air shower muons and (2) the average width of the electron profile, one can obtain empirical values of the N sub m to E and N sub mu to E conversion factors, and an empirical calorimetric all-particle spectrum, in the energy range 2 x 10 to the 6th power E 2 x 10 to the 9th power GeV.

  16. Energy spectrum control for modulated proton beams

    SciTech Connect

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-06-15

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to {+-}21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than {+-}3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  17. Energy spectrum control for modulated proton beams.

    PubMed

    Hsi, Wen C; Moyers, Michael F; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E; Farr, Jonathan B; Mascia, Anthony E; Schreuder, Andries N

    2009-06-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies. PMID:19610318

  18. Psychosocial Adjustment and Sibling Relationships in Siblings of Children with Autism Spectrum Disorder: Risk and Protective Factors

    ERIC Educational Resources Information Center

    Walton, Katherine M.; Ingersoll, Brooke R.

    2015-01-01

    This study compared sibling adjustment and relationships in siblings of children with Autism Spectrum Disorder (ASD-Sibs; n = 69) and siblings of children with typical development (TD-Sibs; n = 93). ASD-Sibs and TD-Sibs demonstrated similar emotional/behavioral adjustment. Older male ASD-Sibs were at increased risk for difficulties. Sibling…

  19. Energy spectrum of buoyancy-driven turbulence.

    PubMed

    Kumar, Abhishek; Chatterjee, Anando G; Verma, Mahendra K

    2014-08-01

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Π(u), we demonstrate that, for stably stratified flows, the kinetic energy spectrum E(u)(k)∼k(-11/5), the potential energy spectrum E(θ)(k)∼k(-7/5), and Π(u)(k)∼k(-4/5) are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence E(u)(k) follows Kolmogorov's spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Π(u)(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Π(u)(k) and E(u)(k)∼k(-5/3) for a narrow band of wave numbers. PMID:25215829

  20. Energy spectrum of buoyancy-driven turbulence

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Chatterjee, Anando G.; Verma, Mahendra K.

    2014-08-01

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)˜k-11/5, the potential energy spectrum Eθ(k)˜k-7/5, and Πu(k)˜k-4/5 are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence Eu(k) follows Kolmogorov's spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Πu(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Πu(k) and Eu(k)˜k-5/3 for a narrow band of wave numbers.

  1. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  2. Universal energy spectrum from point sources

    NASA Technical Reports Server (NTRS)

    Tomozawa, Yukio

    1992-01-01

    The suggestion is made that the energy spectrum from point sources such as galactic black hole candidates (GBHC) and active galactic nuclei (AGN) is universal on the average, irrespective of the species of the emitted particles, photons, nucleons, or others. The similarity between the observed energy spectra of cosmic rays, gamma-rays, and X-rays is discussed. In other words, the existing data for gamma-rays and X-rays seem to support the prediction. The expected data from the Gamma Ray Observatory are to provide a further test.

  3. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a

  4. RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Salem, C. S.; Maruca, B. A.

    2013-06-20

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 yr of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of {sigma}{sub r} = -0.19 and mean Alfven ratio of r{sub A} = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cross helicity were also investigated, showing that globally balanced intervals with small residual energy contain local patches of larger imbalance and larger residual energy at all scales, as expected for nonlinear turbulent interactions.

  5. Interface Circuit for Vibration Energy Harvesting with Adjustable Bias Voltage

    NASA Astrophysics Data System (ADS)

    Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.

    2015-12-01

    This paper presents a new interface circuit for electrostatic vibration energy harvesting with adjustable bias voltage. An electronic switch is used to modify the circuit configuration so that the harvested energy increases the voltage across a biasing capacitor. Decrease of this biasing capacitor voltage occurs naturally due to the circuit imperfections. Such a control of the bias voltage enables to adjust the amount of energy converted by the variable capacitor on each cycle. This feature can be used to optimize the mechanical damping induced by the energy conversion process in order to maximize the harvested power. Another feature of this interface circuit is that it is capable to get high bias voltage whatever the battery voltage with low energy loss.

  6. The fractal energy measurement and the singularity energy spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Zhang, Shuning; Yang, Xiaoniu

    2012-12-01

    The singularity exponent (SE) is the characteristic parameter of fractal and multifractal signals. Based on SE, the fractal dimension reflecting the global self-similar character, the instantaneous SE reflecting the local self-similar character, the multifractal spectrum (MFS) reflecting the distribution of SE, and the time-varying MFS reflecting pointwise multifractal spectrum were proposed. However, all the studies were based on the depiction of spatial or differentiability characters of fractal signals. Taking the SE as the independent dimension, this paper investigates the fractal energy measurement (FEM) and the singularity energy spectrum (SES) theory. Firstly, we study the energy measurement and the energy spectrum of a fractal signal in the singularity domain, propose the conception of FEM and SES of multifractal signals, and investigate the Hausdorff measure and the local direction angle of the fractal energy element. Then, we prove the compatibility between FEM and traditional energy, and point out that SES can be measured in the fractal space. Finally, we study the algorithm of SES under the condition of a continuous signal and a discrete signal, and give the approximation algorithm of the latter, and the estimations of FEM and SES of the Gaussian white noise, Fractal Brownian motion and the multifractal Brownian motion show the theoretical significance and application value of FEM and SES.

  7. ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    SciTech Connect

    Byard D. Wood

    2004-04-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

  8. SLC energy spectrum monitor using synchrotron radiation

    SciTech Connect

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-04-01

    The SLAC Linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved Linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. the energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC Linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08%. The design considerations of this monitor are presented in this paper. A pair of these monitors is under construction with an installation date set for late summer 1986. 5 refs., 6 figs.

  9. Adjustment, Sibling Problems and Coping Strategies of Brothers and Sisters of Children with Autistic Spectrum Disorder

    ERIC Educational Resources Information Center

    Ross, Penelope; Cuskelly, Monica

    2006-01-01

    Background: Siblings of children with autistic spectrum disorder (ASD) express more problem behaviours and experience more difficulties in their relationships than do children in families where all children are developing typically. We know little about what contributes to these difficulties. Method: Mothers of a child with ASD completed the…

  10. On muon energy spectrum in muon groups underground

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Stenkin, Y. V.

    1985-01-01

    A method is described which was used to measure muon energy spectrum characteristics in muon groups underground using mu-e decays recording. The Baksan Telescope's experimental data on mu-e decays intensity in muon groups of various multiplicities are analyzed. The experimental data indicating very flat spectrum does not however represent the total spectrum in muon groups. Obviously the muon energy spectrum depends strongly on a distance from the group axis. The core attraction effect makes a significant distortion, making the spectrum flatter. After taking this into account and making corrections for this effect the integral total spectrum index in groups has a very small depencence on muon multiplicity and agrees well with expected one: beta=beta (sub expected) = 1.75.

  11. Energy spectrum of stably-stratified and convective turbulent flows

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra; Kumar, Abhishek

    2015-11-01

    In the inertial range of fluid turbulence, the energy flux is constant, while the energy spectrum scales as k - 5 / 3 (k=wavenumber). The buoyancy however could change the phenomenology dramatically. Bolgiano and Obukhov (1959) had conjectured that stably stratified flows (as in atmosphere) exhibits a decrease in the energy flux as k - 4 / 5 due to the conversion of kinetic energy to the potential energy, consequently, the energy spectrum scales as k - 11 / 5. We show using detailed numerical analysis that the stably stratified flows indeed exhibit k - 11 / 5 energy spectrum for Froude numbers Fr near unity. The flow becomes anisotropic for small Froude numbers. For weaker buoyancy (large Fr), the kinetic energy follows Kolmogorov's spectrum with a constant energy flux. However, in convective turbulence, the energy flux is a nondecreasing function of wavenumber since the buoyancy feeds positively into the kinetic energy. Hence, the kinetic energy spectrum is Kolmogorov-like (k - 5 / 3) or shallower. We also demonstrate the above scaling using a shell model of buoyancy-driven turbulence.

  12. Turbulent diffusion phase transition is due to singular energy spectrum.

    PubMed Central

    Wallstrom, T C

    1995-01-01

    The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion. Images Fig. 2 PMID:11607590

  13. One particularity of energy-angular secondary electrons spectrum

    NASA Astrophysics Data System (ADS)

    Borisov, S. S.; Zaitsev, S. I.

    2006-05-01

    In this work we discuss the problems of the energy-angular spectrum of backscattered and true secondary electrons simulation using the discrete (DLA) and the continuous (CLA) loss approximations. The presence of an angular spectrum artefact - the deviation from the sinusoidal distribution over the range of 177-18O° from the beam direction is shown.

  14. Explosive Products EOS: Adjustment for detonation speed and energy release

    SciTech Connect

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.

  15. DSM-5 PTSD and posttraumatic stress spectrum in Italian emergency personnel: correlations with work and social adjustment

    PubMed Central

    Carmassi, Claudia; Gesi, Camilla; Simoncini, Marly; Favilla, Luca; Massimetti, Gabriele; Olivieri, Maria Cristina; Conversano, Ciro; Santini, Massimo; Dell’Osso, Liliana

    2016-01-01

    The Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) has recently recognized a particular risk for posttraumatic stress disorder (PTSD) among first responders (criterion A4), acknowledging emergency units as stressful places of employment. Little data is yet available on DSM-5 among emergency health operators. The aim of this study was to assess DSM-5 symptomatological PTSD and posttraumatic stress spectrum, as well as their impact on work and social functioning, in the emergency staff of a major university hospital in Italy. One hundred and ten subjects (doctors, nurses, and health-care assistants) were recruited at the Emergency Unit of the Azienda Ospedaliero-Universitaria Pisana (Italy) and assessed by the Trauma and Loss Spectrum-Self Report (TALS-SR) and Work and Social Adjustment Scale (WSAS). A 15.7% DSM-5 symptomatological PTSD prevalence rate was found. Nongraduated persons reported significantly higher TALS-SR Domain IV (reaction to loss or traumatic events) scores and a significantly higher proportion of individuals presenting at least one maladaptive behavior (TALS-SR Domain VII), with respect to graduate ones. Women reported significantly higher WSAS scores. Significant correlations emerged between PTSD symptoms and WSAS total scores among health-care assistants, nongraduates and women. Our results showed emergency workers to be at risk for posttraumatic stress spectrum and related work and social impairment, particularly among women and nongraduated subjects. PMID:26937192

  16. DSM-5 PTSD and posttraumatic stress spectrum in Italian emergency personnel: correlations with work and social adjustment.

    PubMed

    Carmassi, Claudia; Gesi, Camilla; Simoncini, Marly; Favilla, Luca; Massimetti, Gabriele; Olivieri, Maria Cristina; Conversano, Ciro; Santini, Massimo; Dell'Osso, Liliana

    2016-01-01

    The Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) has recently recognized a particular risk for posttraumatic stress disorder (PTSD) among first responders (criterion A4), acknowledging emergency units as stressful places of employment. Little data is yet available on DSM-5 among emergency health operators. The aim of this study was to assess DSM-5 symptomatological PTSD and posttraumatic stress spectrum, as well as their impact on work and social functioning, in the emergency staff of a major university hospital in Italy. One hundred and ten subjects (doctors, nurses, and health-care assistants) were recruited at the Emergency Unit of the Azienda Ospedaliero-Universitaria Pisana (Italy) and assessed by the Trauma and Loss Spectrum-Self Report (TALS-SR) and Work and Social Adjustment Scale (WSAS). A 15.7% DSM-5 symptomatological PTSD prevalence rate was found. Nongraduated persons reported significantly higher TALS-SR Domain IV (reaction to loss or traumatic events) scores and a significantly higher proportion of individuals presenting at least one maladaptive behavior (TALS-SR Domain VII), with respect to graduate ones. Women reported significantly higher WSAS scores. Significant correlations emerged between PTSD symptoms and WSAS total scores among health-care assistants, nongraduates and women. Our results showed emergency workers to be at risk for posttraumatic stress spectrum and related work and social impairment, particularly among women and nongraduated subjects. PMID:26937192

  17. Spectrum and energy transfer in steady Burgers turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    The spectrum, energy transfer, and spectral interactions in steady Burgers turbulence are studied using numerically generated data. The velocity field is initially random and the turbulence is maintained steady by forcing the amplitude of a band of low wavenumbers to be invariant in time, while permitting the phase to change as dictated by the equation. The spectrum, as expected, is very different from that of Navier-Stokes turbulence. It is demonstrated that the far range of the spectrum scales as predicted by Burgers. Despite the difference in their spectra, in matters of the spectral energy transfer and triadic interactions Burgers turbulence is similar to Navier-Stokes turbulence.

  18. The High Energy Spectrum of NGC 4151

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Shrader, C.; Soldi, S.; Lubinski, P.; Zdziarski, A. A.; Petrucci, P.-O.; Malzac, J.

    2005-01-01

    We present first INTEGRAL observations of the type 1.5 Seyfert galaxy NGC 4151. Combining several INTEGRAL observations performed during 2003, totaling approximately 400 ksec of exposure time, allow us to study the spectrum in the 3 - 300 keV range. The measurements presented here reveal an overall spectrum from X-rays up to the soft gamma-rays that can be described by an absorbed (N(sub H) approximately equal to 5 x 10(exp 22) per square centimeter) and non-variable thermal component, plus a Fe Kalpha line, and an exponential cutoff occurs at 110 keV, consistent with earlier claims. The Galactic hydrogen column density in the line of sight is N(sub H), Gal approximately equal to 2.1 x 10 (exp 20) per square centimeter. The time resolved analysis shows little variation of the spectral parameters. The comparison with CGRO/OSSE data shows that the same spectral model can be applied over a time span of 15 years, while the flux varied by a factor of 2. Applying a Compton reflection component improves the model fit to the INTEGRAL data. Nonetheless the data available to date cannot significantly confirm or exclude the existence of reflection, nor is a high iron overabundance in the absorber, as had been previously suggested, clearly detectable.

  19. On the Linearly-Balanced Kinetic Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  20. Ion beam energy spectrum calculation via dosimetry data deconvolution.

    SciTech Connect

    Harper-Slaboszewicz, Victor Jozef; Sharp, Andrew Clinton

    2010-10-01

    The energy spectrum of a H{sup +} beam generated within the HERMES III accelerator is calculated from dosimetry data to refine future experiments. Multiple layers of radiochromic film are exposed to the beam. A graphic user interface was written in MATLAB to align the film images and calculate the beam's dose depth profile. Singular value regularization is used to stabilize the unfolding and provide the H{sup +} beam's energy spectrum. The beam was found to have major contributions from 1 MeV and 8.5 MeV protons. The HERMES III accelerator is typically used as a pulsed photon source to experimentally obtain photon impulse response of systems due to high energy photons. A series of experiments were performed to explore the use of Hermes III to generate an intense pulsed proton beam. Knowing the beam energy spectrum allows for greater precision in experiment predictions and beam model verification.

  1. NREL Spectrum of Clean Energy Innovation: Issue 3 (Book)

    SciTech Connect

    Not Available

    2012-11-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on the NREL Spectrum of Clean Energy Innovation.

  2. Hadron intensity and energy spectrum at 4380 m above level

    NASA Technical Reports Server (NTRS)

    Cananov, S. D.; Chadranyan, E. K.; Khizanishvili, L. A.; Ladaria, N. K.; Roinishvili, N. N.

    1985-01-01

    The flux value of hadrons with E (sup gamma) h or = 5 TeV, where E (sup gamma) h or = is the energy transferred into electromagnetic component is presented. It is shown that the energy spectrum slope beta of hadrons with E h or = 20 TeV is equal to 1.9.

  3. Spectrum tailoring of the neutron energy spectrum in the context of delayed neutron detection

    SciTech Connect

    Koehler, William E; Tobin, Steve J; Sandoval, Nathan P; Fensin, Mike L

    2010-01-01

    For the purpose of measuring plutonium mass in spent fuel, a delayed neutron instrument is of particular interest since, if properly designed, the delayed neutron signal from {sup 235}U is significantly stronger than the signature from {sup 239}Pu or {sup 241}Pu. A key factor in properly designing a delayed neutron instrument is to minimize the fission of {sup 238}U. This minimization is achieved by keeping the interrogating neutron spectrum below {approx} 1 MeV. In the context of spent fuel measurements it is desirable to use a 14 MeV (deuterium and tritium) neutron generator for economic reasons. Spectrum tailoring is the term used to describe the inclusion of material between the 14 MeV neutrons and the interrogated object that lower the neutron energy through nuclear reactions and moderation. This report quantifies the utility of different material combination for spectrum tailoring.

  4. Parameterizations of Pion Energy Spectrum in Nucleon-Nucleon Collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Franics A.; Wilson, John W.; Norbury, John W.

    1998-01-01

    The effects of pion (PI) production are expected to play an important role in radiation exposures in the upper atmosphere or on the Martian surface. Nuclear databases for describing pion production are developed for radiation transport codes to support these studies. We analyze the secondary energy spectrum of pions produced in nucleon-nucleon (NN) collisions in the relativistic one-pion exchange model. Parametric formulas of the isospin cross sections for one-pion production channels are discussed and are used to renormalize the model spectrum. Energy spectra for the deuteron related channels (NN yields dPi) are also described.

  5. Energy Spectrum in the Dissipation Range of Fluid Turbulence

    NASA Technical Reports Server (NTRS)

    Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.

    1996-01-01

    High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.

  6. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    NASA Astrophysics Data System (ADS)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  7. Wavelet Spatial Energy Spectrums Studies on Drag Reduction by Micro-bubble Injection

    SciTech Connect

    Ling Zhen; Yassin Hassan

    2006-07-01

    In this study, continuous wavelet transforms and spatial correlation techniques are employed to determine the space-localized wavenumber energy spectrum of the velocity signals in turbulent channel flow. The flow conditions correspond to single phase flow and micro-bubbles injected two phase flow. The wavelet energy spectrums demonstrate that the wavenumber (eddy size) content of the velocity signals is not only space-dependent but also micro-bubbles can impact the eddy size content. Visual observations of the wavelet energy spectrum spatial distribution was realized by using Particle Image Velocimetry (PIV) measurement technique. The two phase flow condition corresponds to a drag reduction of 38.4% with void fraction of 4.9%. The present results provide evidence that micro-bubbles in the boundary layer of a turbulent channel flow can help adjust the eddy size distributions near the wall. This can assist in explaining that micro-bubbles are performing as buffers to keep the energy of fluid particles going in stream-wise direction and reducing the energy of fluid particles going in normal direction. (authors)

  8. High energy primary electron spectrum observed by the emulsion chamber

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Aizu, H.; Hiraiwa, N.; Taira, T.; Kobayashi, T.; Niu, K.; Koss, T. A.; Lord, J. J.; Golden, R. L.

    1978-01-01

    A detector of the emulsion chamber type is used to measure the energy spectrum of cosmic-ray electrons. Two large emulsion chambers, each having an area of 40 by 50 sq cm, are exposed for about 25.5 hr at an average pressure altitude of 3.9 mbar. About 500 high-energy cascades (no less than about 600 GeV) are detected by searching for dark spots on the X-ray films. A power-law energy dependence formula is derived for the spectrum of primary cosmic-ray electrons in the energy region over 100 GeV. The results are in good agreement with the transition curves obtained previously by theoretical and Monte Carlo calculations.

  9. Limiting energy spectrum of a saturated radiation belt

    NASA Technical Reports Server (NTRS)

    Schulz, Michael; Davidson, Gerald T.

    1988-01-01

    The condition for magnetospheric wave growth in the presence of anisotropic charged particle distributions is used to extend the Kennel-Petschek theory that traditionally imposes an upper bound on the integral flux of charged particles at energies above a certain threshold to provide a limit on the differential flux at any energy above this threshold. A closed-form expression is derived for the limiting energy spectrum consistent with marginal occurrence of a magnetospheric maser at all wave frequencies below a certain fraction of the electron or proton gyrofrequency. The bounded integral can be recast in such a way that repeated differentiations with respect to v(parallel) actually generate a closed expression for the limiting form of the velocity space distribution, and thus for the limiting energy spectrum of the corresponding particles, whenever the anisotropy parameter is an integer.

  10. Sibling Adjustment and Maternal Well-Being: An Examination of Families with and without a Child with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Quintero, Nicole; McIntyre, Laura Lee

    2010-01-01

    Differences in sibling social, behavioral, and academic adjustment and maternal well-being in families with (n = 20) and without (n = 23) a preschooler with autism spectrum disorder (ASD) were explored. Results are interpreted to suggest that mothers of children with autism report more daily hassles, life stress, and depression than mothers…

  11. ENERGY SPECTRUM AND CHEMICAL COMPOSITION OF ULTRAHIGH ENERGY COSMIC RAYS FROM SEMI-RELATIVISTIC HYPERNOVAE

    SciTech Connect

    Liu Ruoyu; Wang Xiangyu

    2012-02-10

    It has been suggested that hypernova remnants, with a substantial amount of energy in semi-relativistic ejecta, can accelerate intermediate mass or heavy nuclei to ultrahigh energies and provide a sufficient amount of energy in cosmic rays to account for the observed flux. We here calculate the expected energy spectrum and chemical composition of ultrahigh energy cosmic rays from such semi-relativistic hypernovae. With a chemical composition equal to that of the hypernova ejecta and a flat or hard spectrum for cosmic rays at the sources, the spectrum and composition of the propagated cosmic rays observed at the Earth can be compatible with the measurements by the Pierre Auger Observatory.

  12. Linear energy transfer spectrum measurement experiment (P0006)

    SciTech Connect

    Benton, E.V.; Parnell, T.A.

    1984-02-01

    The linear energy transfer (LET) is the energy deposited per unit path length of charged particle traversing matter. For estimating the rate of damage from single-hit phenomena, the quantity that best combines the radiation environment, orbital situation, and spacecraft shielding is the linear energy transfer (LET) spectrum at the device location. This experiment will measure the LET spectrum behind different shielding configurations for approxmately 1 year. The shielding will be increased in increments of approximately 1 G/sq cm up to a maximum shieldng of 16 G/sq cm. In addition to providing critical information to future spacecraft designers, these measurements will also provide data that will be extremely valuable to other experiments on LDEF.

  13. Linear energy transfer spectrum measurement experiment (P0006)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Parnell, T. A.

    1984-01-01

    The linear energy transfer (LET) is the energy deposited per unit path length of charged particle traversing matter. For estimating the rate of damage from single-hit phenomena, the quantity that best combines the radiation environment, orbital situation, and spacecraft shielding is the linear energy transfer (LET) spectrum at the device location. This experiment will measure the LET spectrum behind different shielding configurations for approximately 1 year. The shielding will be increased in increments of approximately 1 G/sq cm up to a maximum shieldng of 16 G/sq cm. In addition to providing critical information to future spacecraft designers, these measurements will also provide data that will be extremely valuable to other experiments on LDEF.

  14. Anisotropy and the knee of the energy spectrum

    NASA Technical Reports Server (NTRS)

    Clay, R. W.

    1985-01-01

    The measured cosmic ray energy spectrum exhibits clear structure (the knee) at approx 3 x 10 to the 15th power eV (sea level shower size approx 3 x 10 to the 5th power particles). Additionally, at energies in this general region, there occur apparent changes in shower development such that the observed characteristics of showers at this energy appear different to those characteristics observed at somewhat higher energies. At energies just below this region, the cosmic ray anisotropy amplitude apparently begins a progressive increase with energy. The latter effect does not clearly fit with the first two since there appears to be no significant change exactly at the knee. However, the phase of the first harmonic of the anisotropy appears to show a substantial change just where the energy spectrum shows structure and in the middle of the shower development changes. The first harmonic phase appears to change from approx. 18 hours R.A. to approx. 5 hours R.A. as the energy of observation moves through the knee. In this paper the latter change is examined in some detail by taking into account information contained in the second harmonic of the anisotropy.

  15. The energy spectrum of Jovian electrons in interplanetary space

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Webber, W. R.

    1985-01-01

    The energy spectrum of electrons with energies approximately 10 to approximately 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is reported. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D1,D2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D3 to D8) which are interleaved with tungsten absorbers.

  16. The energy spectrum of Jovian electrons in interplanetary space

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Webber, W. R.

    1985-08-01

    The energy spectrum of electrons with energies approx 10 to approx 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is studied. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D1, D2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D3 to D8) which are interleaved with tungsten absorbers. From 1978 to 1983 (radial range approx 2 to approx 12 AU) electrons of Jovian origin were clearly observable for electrons stopping in D3(e or MeV) and in D4 (E or = 8 MeV). . For electrons stopping in D5 (E or = 12 MeV), the jovian flux dominated the galactic electron flux for a period of approximately one year near the encounter with Jupiter. Jovian electrons were also observed in D6(E or = 21 Mev) 1 MeV but not in D7(E 28 MeV). A detailed interpretation of the electron variations in all energy channels depends on an accurate subtraction of background induced by energetic protons of a few 100 MeV. This substraction is facilitated by laboratory calibration results at several energies. Further results on the differential energy spectrum of Jovian electrons and limits on the maximum detected energies will be reported.

  17. Energy Spectrum of Cosmic-Ray Electrons at TeV Energies

    SciTech Connect

    Aharonian, F.; Akhperjanian, A. G.; Sahakian, V.; Barres de Almeida, U.; Chadwick, P. M.; Cheesebrough, A.; Dickinson, H. J.; Hadjichristidis, C.; Keogh, D.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Rayner, S. M.; Rulten, C. B.; Spangler, D.; Ward, M.; Bazer-Bachi, A. R.; Borrel, V.; Olive, J-F.

    2008-12-31

    The very large collection area of ground-based {gamma}-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  18. 18 CFR 381.304 - Review of Department of Energy denial of adjustment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Energy denial of adjustment. 381.304 Section 381.304 Conservation of Power and Water Resources FEDERAL... adjustment request under subpart J of the Commission's Rules of Practice and Procedure, 18 CFR part 385... Federal Register citations affecting § 381.304, see the List of CFR Sections Affected, which appears...

  19. 18 CFR 381.304 - Review of Department of Energy denial of adjustment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Energy denial of adjustment. 381.304 Section 381.304 Conservation of Power and Water Resources FEDERAL... adjustment request under subpart J of the Commission's Rules of Practice and Procedure, 18 CFR part 385... Federal Register citations affecting § 381.304, see the List of CFR Sections Affected, which appears...

  20. 18 CFR 381.304 - Review of Department of Energy denial of adjustment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Energy denial of adjustment. 381.304 Section 381.304 Conservation of Power and Water Resources FEDERAL... adjustment request under subpart J of the Commission's Rules of Practice and Procedure, 18 CFR part 385... Federal Register citations affecting § 381.304, see the List of CFR Sections Affected, which appears...

  1. 18 CFR 381.304 - Review of Department of Energy denial of adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Energy denial of adjustment. 381.304 Section 381.304 Conservation of Power and Water Resources FEDERAL... adjustment request under subpart J of the Commission's Rules of Practice and Procedure, 18 CFR part 385... Federal Register citations affecting § 381.304, see the List of CFR Sections Affected, which appears...

  2. Fast energy and energy spectrum feedback in the SLC Linac

    SciTech Connect

    Abrams, G.S.; Soderstrom, E.; Seeman, J.T.; Campisi, I.E.; Herrmannsfeldt, W.; Lee, M.; Petersen, A.; Phinney, N.; Ross, M.; Thompson, K.

    1987-01-01

    The energies and energy spectra of the positron and electron beams emerging from the SLC Linac must be carefully maintained so that the beams can be transported through the Arcs to the Final Focus without phase space dilution and also to specify the collision energy. A fastback system has been designed and constructed to control these parameters. The energies and energy spectra are measured nondestructively using position monitors and synchrotron radiation width monitors. The controls consist of rf phases in the Damping Rings, SLED timing, and rf amplitude. Theoretical aspects of the feedback process, algorithms, and operational experience are discussed.

  3. Exact energy spectrum for models with equally spaced point potentials

    NASA Astrophysics Data System (ADS)

    Caudrelier, V.; Crampé, N.

    2006-03-01

    We describe a non-perturbative method for computing the energy band structures of one-dimensional models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz approach and the method is applicable even when periodicity is broken, that is when Bloch's theorem is not valid any more. We derive the general equation governing the energy spectrum and illustrate its use in various situations. In particular, we get exact results for boundary effects. We also study non-perturbatively the effects of impurities in such systems. Finally, we discuss the possibility of including interactions between the particles of these systems.

  4. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    SciTech Connect

    Silant’ev, A. V.

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  5. XTE Proposal #20102--"SS 433's High Energy Spectrum"

    NASA Technical Reports Server (NTRS)

    Band, David L.; Blanco, P.; Rothschild, R.; Kawai, N.; Kotani, T.; Oka, T.; Wagner, R. M.; Hjellming, R.; Rupen, M.; Brinkmann, W.

    1999-01-01

    We observed the jet-producing compact binary system SS 433 with RXTE during three multiwavelength campaigns, the first in conjunction with ASCA observations, the second simultaneous with a VLA-VLBA-MERLIN campaign, and the third associated with a Nobeyama millimeter-band campaign. All these campaigns included optical observations. Occurring at different jet precession and binary phases, the observations also monitored the system during a radio flare. The data provide SS 433's X-ray spectrum over more than an energy decade, and track the spectral variations as the X-ray source was partially eclipsed. The continuum can be modeled as a power law with an exponential cutoff, which can be detected to approximately 50 keV. Strong line emission is evident in the 5-10 keV range which can be modeled as a broad line whose energy is precession independent and a narrow line whose energy does vary with jet precession phase; this line model is clearly an over simplification since the PCA does not have sufficient energy resolution to detect the lines ASCA observed. The eclipses are deeper at high energy and at jet precession phases when the jets are more inclined towards and away from us. A large radio flare occurred between two sets of X-ray monitoring observations; an X-ray observation at the peak of the flare found a softer spectrum with a flux approximately 1/3 that of the quiescent level.

  6. Energy spectrum of sputtered uranium - A new technique

    NASA Technical Reports Server (NTRS)

    Weller, R. A.; Tombrello, T. A.

    1978-01-01

    The fission track technique for detecting U-235 has been used in conjunction with a mechanical time-of-flight spectrometer in order to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E exp -1.77 for E not less than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the random collision cascade model of sputtering.

  7. Sharp knee phenomenon of primary cosmic ray energy spectrum

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, Samvel

    2014-06-01

    Primary energy spectral models are tested in the energy range of 1-200 PeV using standardized extensive air shower responses from BASJE-MAS, Tibet, GAMMA and KASCADE scintillation shower arrays. Results point toward the two-component origin of observed cosmic ray energy spectra in the knee region consisting of a pulsar component superimposed upon rigidity-dependent power law diffuse Galactic flux. The two-component energy spectral model accounts for both the sharp knee shower spectral phenomenon and observed irregularity of all-particle energy spectrum in the region of 50-100 PeV. Alternatively, tested multipopulation primary energy spectra predicted by nonlinear diffusive shock acceleration models describe observed shower spectra in the knee region provided that the cutoff magnetic rigidities of accelerating particles are 6±0.3 and 45±2 PV for the first two populations, respectively. Both tested spectral models confirm the predominant H-He primary nuclei origin of observed shower spectral knee. The parameters of tested energy spectra are evaluated using solutions of the inverse problem on the basis of the corresponding parameterizations of energy spectra for primary H, He, O-like and Fe-like nuclei, standardized shower size spectral responses in the 550-1085 g/cm2 atmospheric slant depth range and near vertical muon truncated size spectra detected by the GAMMA array.

  8. Universal Raising and Lowering Operators for a Discrete Energy Spectrum

    NASA Astrophysics Data System (ADS)

    Torres-Vega, Gabino

    2016-03-01

    We consider the first-order finite-difference expression of the commutator between d / dx and x. This is the appropriate setting in which to propose commutators and time operators for a quantum system with an arbitrary potential function and a discrete energy spectrum. The resulting commutators are identified as universal lowering and raising operators. We also find time operators which are finite-difference derivations with respect to the energy. The matrix elements of the commutator in the energy representation are analyzed, and we find consistency with the equality [hat{T},hat{H}]=ihbar . We apply the theory to the particle in an infinite well and for the Harmonic oscillator as examples.

  9. Universal Raising and Lowering Operators for a Discrete Energy Spectrum

    NASA Astrophysics Data System (ADS)

    Torres-Vega, Gabino

    2016-06-01

    We consider the first-order finite-difference expression of the commutator between d / dx and x. This is the appropriate setting in which to propose commutators and time operators for a quantum system with an arbitrary potential function and a discrete energy spectrum. The resulting commutators are identified as universal lowering and raising operators. We also find time operators which are finite-difference derivations with respect to the energy. The matrix elements of the commutator in the energy representation are analyzed, and we find consistency with the equality [hat{T},hat{H}]=ihbar . We apply the theory to the particle in an infinite well and for the Harmonic oscillator as examples.

  10. Dose rate constant and energy spectrum of interstitial brachytherapy sources.

    PubMed

    Chen, Z; Nath, R

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125I and 103Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S(K)) standard for 125I seeds and has also established an S(K) standard for 103Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (inverted V) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of dose rate constant and to develop a simple method for a quick and accurate estimation of dose rate constant. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that dose rate constant may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S(K) and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for dose rate constant was derived for point sources with known photon energy spectra. This approach enabled a systematic study of dose rate constant as a function of energy. Using the measured energy spectra, the calculated dose rate constant for 125I model 6711 and 6702 seeds and for 192Ir seed agreed with the AAPM recommended values within +/-1%. For the 103Pd model 200 seed, the agreement was 5% with a recently measured value (within the +/-7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for dose rate constant proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known. PMID:11213926

  11. Spectrum and energy levels of kryptonlike ion Nb VI

    SciTech Connect

    Reader, J.; Ekberg, J.O.

    1993-05-01

    The spectrum of five-times ionized niobium, Nb, VI, was observed from 238 to 2700 {angstrom} with sliding spark discharges on 10.7-m normal- and grazing-incidence spectrographs. Experimental energies were determined for all levels of the 4s{sup 2}4p{sup 6}, 4s{sup 2}4p{sup 6}, 4s{sup 2}4p{sup 5}4d, 4f, 5s, 5p, 5g, 6s, and 4s4p{sup 6}4d configurations as well as some levels of 4p{sup 5}6g. A total of 291 lines were classified as transitions between 88 observed levels. A previous analysis of this spectrum was found to be totally erroneous. Large hyperfine splittings were found for several levels of the 4p{sup 5}5s and 5p configurations. The observed configurations were theoretically interpreted by means of Hartree-Fock calculations and least squares fits of the energy parameters to the observed levels. A revised value of the ionization energy was obtained from the 4p{sup 5}5g and 6g configurations.

  12. Search for the end of the cosmic ray energy spectrum

    SciTech Connect

    Linsley, John

    1998-06-15

    The title I was asked to speak about expresses an idea that occurred rather recently in the history of cosmic ray studies. I argue that the idea of a possible end of the cosmic ray energy spectrum came into being after a sequence of three rapid advances in knowledge which I describe, calling them 'breakthroughs'. I suggest that the present workshop be regarded as a step toward a fourth breakthrough. I argue that this may occur through application of the Space Airwatch concept--the earth atmosphere as target and signal generator--as embodied in the NASA OWL project.

  13. Understanding the Energy Spectrum from the Second Run of CDMSlite

    NASA Astrophysics Data System (ADS)

    Pepin, Mark; SuperCDMS Collaboration

    2015-04-01

    The first run of the CDMSlite experiment demonstrated the use of Neganov-Luke phonon amplification in a single SuperCDMS detector to achieve lower energy thresholds for the direct detection of dark matter. A longer physics run with improved noise rejection has been recorded with a larger voltage bias of -70 V applied across the same detector, yielding an amplification factor of 15 (for electron recoils) and reducing the statistical uncertainty of the measured background rate. In order to extract optimal dark-matter sensitivity with these data it is important to understand the shape and composition of the background spectrum at the lowest energies. The dominant backgrounds in this high-voltage mode are from Compton scatters, internal activation lines (primarily from 71 Ge decays), and microphonic noise. This presentation will consider the contributions from these sources and how the electric field geometry in the detector can distort the spectra. Prospects for new results will also be discussed.

  14. Energy spectrum of the optical polaron at finite total momentum

    NASA Astrophysics Data System (ADS)

    Gerlach, B.; Kalina, F.

    1999-10-01

    In the following discussion we are concerned with the standard Fröhlich model for an optical polaron. We clarify the qualitative properties of the energy spectrum for arbitrary total momentum Q. Concerning the ground-state energy, we establish an effective lower bound. Until now, we have to assume that the electron-phonon coupling parameter α does not exceed a specified positive value. Using this bound, we demonstrate that the ground-state energy coincides with the continuum edge for \\|Q\\|>=\\|QC\\|, QC being finite. Consequently, it is only for \\|Q\\|<\\|QC\\| that an isolated ground state exists at all. This behavior is strikingly different from that of the corresponding system in lower dimensions, which has been analyzed previously by other authors, the discussion of the three-dimensional case remaining incomplete. Concerning the overall behavior of the ground-state energy as a function of Q and α, we find an increase (strict decrease) with increasing \\|Q\\|(α). In addition, we present an approach to the excited states. Interestingly enough, this can be based entirely on the knowledge of the ground-state energy and ground-state wave function.

  15. Low energy photon mimic of the tritium beta decay energy spectrum

    NASA Astrophysics Data System (ADS)

    Malabre-O'Sullivan, Neville

    Tritium is a radioactive hydrogen isotope that is typically produced via neutron interaction with heavy water (D2O), producing tritiated water (DTO). As a result of this, tritium accounts for roughly a third of all occupational exposures at a CANDU type nuclear power plant. This identifies a need to study the biological effects associated with tritium (and low energy electrons in general). However, there are complications regarding the dosimetry of tritium, as well as difficulties in handling and using tritium for the purposes of biophysics experiments. To avoid these difficulties, an experiment has been proposed using photons to mimic the beta decay energy spectrum of tritium. This would allow simulation of the radiation properties of tritium, so that a surrogate photon source can be used for biophysics experiments. Through experimental and computational means, this work has explored the use of characteristic x-rays of various materials to modify the output spectrum of an x-ray source, such that it mimics the tritium beta decay spectrum. Additionally, the resultant primary electron spectrum generated in water from an x-ray source was simulated. The results from this research have indicated that the use of characteristic x-rays is not a viable method for simulating a tritium source. Also, the primary electron spectrum generated in water shows some promise for simulating tritium exposure, however further work must be done to investigate the slowing down electron spectrum. Keywords: Tritium, MCNP, low energy electrons, biophysics, characteristic x-rays.

  16. Psychological Adjustment and Sibling Relationships in Siblings of Children with Autism Spectrum Disorders: Environmental Stressors and the Broad Autism Phenotype

    ERIC Educational Resources Information Center

    Petalas, Michael A.; Hastings, Richard P.; Nash, Susie; Hall, Louise M.; Joannidi, Helen; Dowey, Alan

    2012-01-01

    Research with siblings of children with Autism Spectrum Disorders (ASD) suggests that they may be at increased risk for behavioural and emotional problems and relatively poor sibling relationships. This study investigated a diathesis-stress model, whereby the presence of Broad Autism Phenotype features in the typically developing siblings might…

  17. Spectrum of Quantized Energy for a Lengthening Pendulum

    SciTech Connect

    Choi, Jeong Ryeol; Song, Ji Nny; Hong, Seong Ju

    2010-09-30

    We considered a quantum system of simple pendulum whose length of string is increasing at a steady rate. Since the string length is represented as a time function, this system is described by a time-dependent Hamiltonian. The invariant operator method is very useful in solving the quantum solutions of time-dependent Hamiltonian systems like this. The invariant operator of the system is represented in terms of the lowering operator a(t) and the raising operator a{sup {dagger}}(t). The Schroedinger solutions {psi}{sub n}({theta}, t) whose spectrum is discrete are obtained by means of the invariant operator. The expectation value of the Hamiltonian in the {psi}{sub n}({theta}, t) state is the same as the quantum energy. At first, we considered only {theta}{sup 2} term in the Hamiltonian in order to evaluate the quantized energy. The numerical study for quantum energy correction is also made by considering the angle variable not only up to {theta}{sup 4} term but also up to {theta}{sup 6} term in the Hamiltonian, using the perturbation theory.

  18. 18 CFR 381.304 - Review of Department of Energy denial of adjustment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Energy denial of adjustment. 381.304 Section 381.304 Conservation of Power and Water Resources FEDERAL... Commission's Rules of Practice and Procedure, 18 CFR part 385, subpart J (1983), is $18,650. The fee must be... List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and...

  19. 77 FR 24192 - Energy Spectrum, Inc. and Riverbay Corporation v. New York Independent System Operator; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Spectrum, Inc. and Riverbay Corporation v. New York Independent... Commission (Commission), 18 CFR 385.206, Energy Spectrum, Inc. and Riverbay Corporation...

  20. A spectrum-adjusted white organic light-emitting diode for the optimization of luminous efficiency and color rendering index

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Shu-ming

    2015-01-01

    High luminous efficiency and high color rendering index (CRI) are both the foremost factors for white organic light-emitting diodes (WOLEDs) to serve as next generation solid-state lighting sources. In this paper, we show that both luminous efficiency and CRI can be improved by adjusting the green/red spectra of WOLEDs. With green emission spectra matching with the human photopic curve, the WOLEDs exhibit higher luminous efficiency and higher CRI. Theoretical calculation shows that by tuning the white emission spectra to maximally match with the human photopic curve, the luminous efficiency can be improved by 41.8% without altering the color coordinates, the color correlated temperature (CCT) and the external quantum efficiency (EQE) of the WOLEDs.

  1. Ultra high energy events in ECHOS series and primary energy spectrum

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Iwai, J.; Ogata, T.

    1985-01-01

    The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.

  2. The FiR 1 photon beam model adjustment according to in-air spectrum measurements with the Mg(Ar) ionization chamber.

    PubMed

    Koivunoro, H; Schmitz, T; Hippeläinen, E; Liu, Y-H; Serén, T; Kotiluoto, P; Auterinen, I; Savolainen, S

    2014-06-01

    The mixed neutron-photon beam of FiR 1 reactor is used for boron-neutron capture therapy (BNCT) in Finland. A beam model has been defined for patient treatment planning and dosimetric calculations. The neutron beam model has been validated with an activation foil measurements. The photon beam model has not been thoroughly validated against measurements, due to the fact that the beam photon dose rate is low, at most only 2% of the total weighted patient dose at FiR 1. However, improvement of the photon dose detection accuracy is worthwhile, since the beam photon dose is of concern in the beam dosimetry. In this study, we have performed ionization chamber measurements with multiple build-up caps of different thickness to adjust the calculated photon spectrum of a FiR 1 beam model. PMID:24588987

  3. VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.

    PubMed

    Goldberg, Lew; McIntosh, Chris; Cole, Brian

    2011-02-28

    A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens. PMID:21369256

  4. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory. PMID:27117814

  5. Simulation of energy absorption spectrum in NaI crystal detector for multiple gamma energy using Monte Carlo method

    SciTech Connect

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Handayani, Gunawan

    2015-04-16

    The spectrum of gamma energy absorption in the NaI crystal (scintillation detector) is the interaction result of gamma photon with NaI crystal, and it’s associated with the photon gamma energy incoming to the detector. Through a simulation approach, we can perform an early observation of gamma energy absorption spectrum in a scintillator crystal detector (NaI) before the experiment conducted. In this paper, we present a simulation model result of gamma energy absorption spectrum for energy 100-700 keV (i.e. 297 keV, 400 keV and 662 keV). This simulation developed based on the concept of photon beam point source distribution and photon cross section interaction with the Monte Carlo method. Our computational code has been successfully predicting the multiple energy peaks absorption spectrum, which derived from multiple photon energy sources.

  6. Energy spectrum of cascades generated by muons in Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    Spectrum of cascades generated by cosmic ray muons underground is presented. The mean zenith angle of the muon arrival is theta=35 deg the depth approx. 1000 hg/sq cm. In cascades energy range 700 GeV the measured spectrum is in agreement with the sea-level integral muon spectrum index gamma=3.0. Some decrease of this exponent has been found in the range 4000 Gev.

  7. Sewerage force adjustment technology for energy conservation in vacuum sanitation systems

    NASA Astrophysics Data System (ADS)

    Guo, Zhonghua; Li, Xiaoning; Kagawa, Toshiharu

    2013-03-01

    The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not adjustable and the energy consumption does not adapt to the real time sewerage requirement. Therefore, it is important to study the sewerage force adjustment to improve the energy efficiency. This paper proposes an energy conservation design in vacuum sanitation systems with pneumatic ejector circuits. The sewerage force is controlled by changing the systematic vacuum degree according to the amount of the excreta. In particular, the amount of the excreta is tested by liquid level sensor and mass sensor. According to the amount of the excreta, the relationship between the excreta amount and the sewerage force is studied to provide proper propulsive force. In the other aspect, to provide variable vacuum degrees for different sanitation requirements, the suction and discharge system is designed with pneumatic vacuum ejector. On the basis of the static flow-rate characteristics and the vacuum generation model, the pressure response in the ejector circuit is studied by using the static flow rate characteristics of the ejector and air status equation. The relationship is obtained between supplied compressed air and systematic vacuum degree. When the compressed air is supplied to the ejector continuously, the systematic vacuum degree increases until the vacuum degree reaches the extreme value. Therefore, the variable systematic vacuum degree is obtained by controlling the compressed air supply of the ejector. To verify the effect of energy conservation, experiments are carried out in the artificial excreta collection, and the variable vacuum-degree design saves more than 30% of the energy supply. The energy conservation is realized effectively in the new vacuum sanitation systems with good application prospect. The proposed technology provides technological

  8. On the massless gap'' adjustment of detected energy for passive material in front of a calorimeter

    SciTech Connect

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the massless gap'' idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  9. On the ``massless gap`` adjustment of detected energy for passive material in front of a calorimeter

    SciTech Connect

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the ``massless gap`` idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  10. The high energy X-ray spectrum of the Crab Nebula observed from OSO 8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, L. J.; Dennis, B. R.; Orwig, L. E.; Maurer, G. S.; Frost, K. J.

    1977-01-01

    The X-ray spectrum of the Crab Nebula was measured with the scintillation spectrometer on board the OSO-8 satellite. The total emission of the X-ray source shows no long term variability. The spectrum itself can be described by a single power law out to energies of at least 500 keV.

  11. Energy spectrum of the recurrent cosmic rays variation during the solar minimum 23/24

    NASA Astrophysics Data System (ADS)

    Gil, Agnieszka; Alania, Michael

    2016-07-01

    We study temporal changes of the power-law energy/ rigidity spectrum of the first three harmonics of the recurrent variation of the galactic cosmic rays (GCR) intensity during the unusual solar minimum 23/24 and compare with four previous minima. We show that the energy spectrum of the amplitudes of the recurrent variation is soft in the minimum 23/24. Moreover, while the energy spectrum of the amplitudes of the first harmonic of the recurrent variation of the GCR intensity practically behaves as during earlier four minima, the energy spectrum of the amplitudes of the second and the third harmonics demonstrate a valuable softening. We attribute this phenomenon to the decrease of an extension of heliosphere caused by the drop of the solar wind dynamic pressure during the solar minimum 23/24.

  12. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.

    2016-07-01

    Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.

  13. Revisiting the hardening of the cosmic ray energy spectrum at TeV energies

    NASA Astrophysics Data System (ADS)

    Thoudam, Satyendra; Hörandel, Jörg R.

    2013-11-01

    Measurements of cosmic rays by experiments such as ATIC, CREAM and PAMELA indicate a hardening of the cosmic ray energy spectrum at TeV energies. In our recent work, we showed that the hardening can be due to the effect of nearby supernova remnants. We showed it for the case of protons and helium nuclei. In this paper, we present an improved and more detailed version of our previous work, and extend our study to heavier cosmic ray species such as boron, carbon, oxygen and iron nuclei. Unlike our previous study, the present work involves a detailed calculation of the background cosmic rays and follows a consistent treatment of cosmic ray source parameters between the background and the nearby components. Moreover, we also present a detailed comparison of our results on the secondary-to-primary ratios, secondary spectra and the diffuse gamma-ray spectrum with the results expected from other existing models, which can be checked by future measurements at high energies.

  14. Evolution of the ultra high energy cosmic ray spectrum by transport equation

    SciTech Connect

    Hill, C.T.; Schramm, D.N.

    1983-04-01

    Ultra-high energy proton primaries interacting with the 3/sup 0/K photon background are treated as a transport phenomenon. Baryon number is explicitly conserved and the evolved spectrum develops a bump at a scale of order 5x10/sup 19/ eV, below the cutoff, due to the pile-up of energy degraded protons. This may correspond in part to the observed ankle structure in the CR spectrum.

  15. Phenomenological Rashba model for calculating the electron energy spectrum on a cylinder

    NASA Astrophysics Data System (ADS)

    Savinskiĭ, S. S.; Belosludtsev, A. V.

    2007-05-01

    The energy spectrum of an electron on the surface of a cylinder is calculated using the Pauli equation with an additional term that takes into account the spin-orbit interaction. This term is taken in the approximation of a phenomenological Rashba model, which provides exact expressions for the wave functions and the electron energy spectrum on the cylinder surface in a static magnetic field.

  16. Extragalactic radiation and the ultra-high-energy cosmic-ray spectrum

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1989-01-01

    The effect of extragalactic microwave and submillimeter-radiation fields on the ultrahigh-energy cosmic-ray spectrum is reexamined. It is found that the general characteristics of the spectrum can be derived from fairly simple analytical arguments. It is shown that the various spectral features obtained by numerical calculations can be explored by simpler and more general means. This approach is illustrated using a newly derived lifetime-energy relation based on the new submillimeter observations.

  17. Enhancement of high-energy cosmic-ray spectrum by type-II supernovae

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Miyaji, S.; Parnell, T. A.; Weisskopf, M. C.; Hayashi, T.

    1986-01-01

    The cosmic-ray spectrum has an intensity enhancement in the energy range 10 to the 14th to 10 to the 16th eV per nucleus. Recent observations of heavy cosmic rays in this energy range indicate that the Ca/Fe ratio may be as large as 10 times the solar value. It is suggested that pulsars in type-II supernova remnants are the origin of this component of the cosmic-ray spectrum.

  18. Energy spectrum and transport in narrow HgTe quantum wells

    SciTech Connect

    Germanenko, A. V.; Minkov, G. M.; Rut, O. E.; Sherstobitov, A. A.; Dvoretsky, S. A.; Mikhailov, N. N.

    2015-01-15

    The results of an experimental study of the transport phenomena and the hole energy spectrum of two-dimensional systems in the quantum well of HgTe zero-gap semiconductor with normal arrangement of quantum-confinement subbands are presented. An analysis of the experimental data allows us to reconstruct the carrier energy spectrum near the hole subband extrema. The results are interpreted using the standard kP model.

  19. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    SciTech Connect

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-10-20

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  20. Energy spectrum transfer equations of solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Tu, C.-Y.

    1995-01-01

    The recent studies of transfer equations for solar wind magnetohydrodynamic (MHD) turbulence are reviewed with emphasis on the comparison with the statistical observational results. Helios and Voyager missions provide an opportunity to study the the radial evolution of the power spectrum. the cross-helicity the Alfven ratio and the minimum variance direction. Spectrum transfer equations are considered as a tool to explore the nature of this radial evolution of the fluctuations. The transfer equations are derived from incompressible MHD equations. Generally one needs to make assumptions about the nature of the fluctuations and the nature of the turbulent non-linear interactions to obtain numerical results which can be compared with the observations. Some special model results for several simple cases SUCH as for structures or strong mixing. for Alfven waves with weak turbulent interactions. and for a superposition of structures and Alfven waves. are discussed. The difference between the various approaches to derive and handle the transfer equations are also addressed. Finally some theoretical description of the compressible fluctuations are also briefly reviewed.

  1. Segmentation-free x-ray energy spectrum estimation for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Zhang, Qiude; Niu, Tianye

    2016-03-01

    X-ray energy spectrum plays an essential role in imaging and related tasks. Due to the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and are usually suffered from various limitations. The recently proposed indirect transmission measurement-based method requires at least the segmentation of one material, which is insufficient for CT images of highly noisy and with artifacts. To combat for the bottleneck of spectrum estimation using segmented CT images, in this study, we develop a segmentation-free indirect transmission measurement based energy spectrum estimation method using dual-energy material decomposition. The general principle of the method is to compare polychromatic forward projection with raw projection to calibrate a set of unknown weights which are used to express the unknown spectrum together with a set of model spectra. After applying dual-energy material decomposition using high-and low-energy raw projection data, polychromatic forward projection is conducted on material-specific images. The unknown weights are then iteratively updated to minimize the difference between the raw projection and estimated projection. Both numerical simulations and experimental head phantom are used to evaluate the proposed method. The results indicate that the method provides accurate estimate of the spectrum and it may be attractive for dose calculations, artifacts correction and other clinical applications.

  2. EFTEM spectrum imaging at high-energy resolution.

    PubMed

    Schaffer, Bernhard; Kothleitner, Gerald; Grogger, Werner

    2006-01-01

    This paper deals with the application of high-energy resolution EFTEM image series and the corrections needed for reliable data interpretation. The detail of spectral information gained from an image series is largely determined by the intrinsic energy resolution. In this work we show that energy resolution values of as low as 0.8 eV in spectra extracted from EFTEM image series can be obtained with a small energy-selecting slit. At this resolution level aberrations of the energy filter, in particular the non-isochromaticity, can no longer be neglected. We show that the four most prominent factors for EFTEM image series data correction--spatial drift, non-isochromaticity, energy drift and image distortion--must not be treated independently but have to be corrected in unison. We present an efficient algorithm for this correction, and demonstrate the applied correction for the case of a GaN/AlN multilayer sample. PMID:16872748

  3. Influence of the Richtmyer-Meshkov instability on the kinetic energy spectrum.

    SciTech Connect

    Weber, Christopher R.

    2010-09-01

    The fluctuating kinetic energy spectrum in the region near the Richtmyer-Meshkov instability (RMI) is experimentally investigated using particle image velocimetry (PIV). The velocity field is measured at a high spatial resolution in the light gas to observe the effects of turbulence production and dissipation. It is found that the RMI acts as a source of turbulence production near the unstable interface, where energy is transferred from the scales of the perturbation to smaller scales until dissipation. The interface also has an effect on the kinetic energy spectrum farther away by means of the distorted reflected shock wave. The energy spectrum far from the interface initially has a higher energy content than that of similar experiments with a flat interface. These differences are quick to disappear as dissipation dominates the flow far from the interface.

  4. Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure

    NASA Astrophysics Data System (ADS)

    Pretzlaff, Iris; Kerth, Gerald; Dausmann, Kathrin H.

    2010-04-01

    Small endotherms must change roosting and thermoregulatory behaviour in response to changes in ambient conditions if they are to achieve positive energy balance. In social species, for example many bats, energy expenditure is influenced by environmental conditions, such as ambient temperature, and also by social thermoregulation. Direct measurements of daily fluctuations in metabolic rates in response to ambient and behavioural variables in the field have not been technologically feasible until recently. During different reproductive periods, we investigated the relationships between ambient temperature, group size and energy expenditure in wild maternity colonies of Bechstein’s bats ( Myotis bechsteinii). Bats used behavioural and physiological adjustments to regulate energy expenditure. Whether bats maintained normothermia or used torpor, the number of bats in the roosts as well changed with reproductive status and ambient temperature. During pregnancy and lactation, bats remained mostly normothermic and daily group sizes were relatively large, presumably to participate in the energetic benefits of social thermoregulation. In contrast, smaller groups were formed on days when bats used torpor, which occurred mostly during the post-lactation period. Thus, we were able to demonstrate on wild animals under natural conditions the significance of behavioural and physiological flexibility for optimal thermoregulatory behaviour in small endotherms.

  5. WAVELENGTHS, ENERGY LEVELS, LIFETIMES, AND WEIGHTED OSCILLATOR STRENGTHS FOR THE S VIII SPECTRUM

    SciTech Connect

    Pagan, C. J. B.; Cavalcanti, G. H.; Trigueiros, A. G.; Jupen, C.

    2011-10-01

    The weighted oscillator strengths (gf) and lifetimes for S VIII presented in this work were obtained by a multiconfigurational Hartree-Fock relativistic approach. In this calculation, the electrostatic energy parameters were optimized by a least-squares procedure in order to improve the adjustment to experimental energy levels. The values for gf and lifetimes were then calculated on the basis of these adjusted parameters. New classifications are proposed for energy levels belonging to the 4s and 4d configurations and lines related to them.

  6. Dual-Energy CT: Spectrum of Thoracic Abnormalities.

    PubMed

    Otrakji, Alexi; Digumarthy, Subba R; Lo Gullo, Roberto; Flores, Efren J; Shepard, Jo-Anne O; Kalra, Mannudeep K

    2016-01-01

    Recent studies have demonstrated that dual-energy computed tomography (CT) can provide useful information in several chest-related clinical indications. Compared with single-energy CT, dual-energy CT of the chest is feasible with the use of a radiation-dose-neutral scanning protocol. This article highlights the different types of images that can be generated by using dual-energy CT protocols such as virtual monochromatic, virtual unenhanced (ie, water), and pulmonary blood volume (ie, iodine) images. The physical basis of dual-energy CT and material decomposition are explained. The advantages of the use of virtual low-monochromatic images include reduced volume of intravenous contrast material and improved contrast resolution of images. The use of virtual high-monochromatic images can reduce beam hardening and contrast streak artifacts. The pulmonary blood volume images can help differentiate various parenchymal abnormalities, such as infarcts, atelectasis, and pneumonias, as well as airway abnormalities. The pulmonary blood volume images allow quantitative and qualitative assessment of iodine distribution. The estimation of iodine concentration (quantitative assessment) provides objective analysis of enhancement. The advantages of virtual unenhanced images include differentiation of calcifications, talc, and enhanced thoracic structures. Dual-energy CT has applications in oncologic imaging, including diagnosis of thoracic masses, treatment planning, and assessment of response to treatment. Understanding the concept of dual-energy CT and its clinical application in the chest are the goals of this article. PMID:26761530

  7. Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum?

    NASA Astrophysics Data System (ADS)

    Meldi, M.; Lucor, D.; Sagaut, P.

    2011-12-01

    We investigate the influence of uncertainties in the shape of the energy spectrum over the Smagorinsky ["General circulation experiments with the primitive equations. I: The basic experiment," Mon. Weather Rev. 91(3), 99 (1963)] subgrid scale model constant CS: the analysis is carried out by a stochastic approach based on generalized polynomial chaos. The free parameters in the considered energy spectrum functional forms are modeled as random variables over bounded supports: two models of the energy spectrum are investigated, namely, the functional form proposed by Pope [Turbulent Flows (Cambridge University Press, Cambridge, 2000)] and by Meyers and Meneveau ["A functional form for the energy spectrum parametrizing bottleneck and intermittency effects," Phys. Fluids 20(6), 065109 (2008)]. The Smagorinsky model coefficient, computed from the algebraic relation presented in a recent work by Meyers and Sagaut ["On the model coefficients for the standard and the variational multi-scale Smagorinsky model," J. Fluid Mech. 569, 287 (2006)], is considered as a stochastic process and is described by numerical tools streaming from the probability theory. The uncertainties are introduced in the free parameters shaping the energy spectrum in correspondence to the large and the small scales, respectively. The predicted model constant is weakly sensitive to the shape of the energy spectrum when large scales uncertainty is considered: if the large-eddy simulation (LES) filter cut is performed in the inertial range, a significant probability to recover values lower in magnitude than the asymptotic Lilly-Smagorinsky model constant is recovered. Furthermore, the predicted model constant occurrences cluster in a compact range of values: the correspondent probability density function rapidly drops to zero approaching the extremes values of the range, which show a significant sensitivity to the LES filter width. The sensitivity of the model constant to uncertainties propagated in the

  8. Particle Energy Spectrum, Revisited from a Counting Statistics Perspective

    SciTech Connect

    2012-07-28

    In nuclear science, gamma and neutron spectra are counted energy by energy, and then particle by particle. Until recently, few studies have been performed on how exactly those energy spectra are counted, or how those counts are correlated. Because of lack of investigation, cross section covariance and correlation matrices are usually estimated using perturbation method. We will discuss a statistical counting scheme that shall mimic the gamma and neutron counting process used in nuclear science. From this counting scheme, the cross section covariance and correlation can be statistically derived.

  9. Excitation energy dependent Raman spectrum of MoSe2

    PubMed Central

    Nam, Dahyun; Lee, Jae-Ung; Cheong, Hyeonsik

    2015-01-01

    Raman investigation of MoSe2 was carried out with eight different excitation energies. Seven peaks, including E1g, A1g, E2g1, and A2u2 peaks are observed in the range of 100–400 cm−1. The phonon modes are assigned by comparing the peak positions with theoretical calculations. The intensities of the peaks are enhanced at different excitation energies through resonance with different optical transitions. The A1g mode is enhanced at 1.58 and 3.82 eV, which are near the A exciton energy and the band-to-band transition between higher energy bands, respectively. The E2g1 mode is strongly enhanced with respect to the A1g mode for the 2.71- and 2.81-eV excitations, which are close to the C exciton energy. The different enhancements of the A1g and E2g1 modes are explained in terms of the symmetries of the exciton states and the exciton-phonon coupling. Other smaller peaks including E1g and A2u2 are forbidden but appear due to the resonance effect near optical transition energies. PMID:26601614

  10. Observation of energy spectrum of electron albedo in low latitude region at Hyderabad, India

    NASA Technical Reports Server (NTRS)

    Verma, S. D.; Bhatnagar, S. P.

    1985-01-01

    The preliminary results are presented of the measurement of the energy spectrum of low energy (5-24 MeV) albedo electrons, moving upward as well as downwards, at about 37 km (-4 mb) altitude, over Hyderabad, India, in low latitude region. The flux and energy spectrum was observed by a bi-directional, multidetector charged particle telescope which was flown in a high altitude balloon on 8th December 1984. Results based on a quick look data acquisition and analysis system are presented here.

  11. Material grain size characterization method based on energy attenuation coefficient spectrum and support vector regression.

    PubMed

    Li, Min; Zhou, Tong; Song, Yanan

    2016-07-01

    A grain size characterization method based on energy attenuation coefficient spectrum and support vector regression (SVR) is proposed. First, the spectra of the first and second back-wall echoes are cut into several frequency bands to calculate the energy attenuation coefficient spectrum. Second, the frequency band that is sensitive to grain size variation is determined. Finally, a statistical model between the energy attenuation coefficient in the sensitive frequency band and average grain size is established through SVR. Experimental verification is conducted on austenitic stainless steel. The average relative error of the predicted grain size is 5.65%, which is better than that of conventional methods. PMID:26995732

  12. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    SciTech Connect

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  13. Primary CR energy spectrum and mass composition by the data of Tunka-133 array

    NASA Astrophysics Data System (ADS)

    Prosin, V. V.; Berezhnev, S. F.; Budnev, N. M.; Chiavassa, A.; Chvalaev, O. A.; Dyachok, A. V.; Epimakhov, S. N.; Gress, O. A.; Gress, T. I.; Kalmykov, N. N.; Karpov, N. I.; Konstantinov, E. N.; Korobchenko, A. V.; Korosteleva, E. E.; Kozhin, V. A.; Kuzmichev, L. A.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Mirgazov, R. R.; Monkhoev, R. D.; Osipova, E. A.; Pakhorukov, A. L.; Panasyuk, M. I.; Pankov, L. V.; Popova, E. G.; Ptuskin, V. S.; Semeney, Y. A.; Silaev, A. A.; Silaev, A. A., Jr.; Skurikhin, A. V.; Spiering, C.; Sveshnikova, L. G.; Zagorodnikov, A. V.

    2015-08-01

    The Cherenkov light array for the registration of extensive air showers (EAS) Tunka-133 collected data during 5 winter seasons from 2009 to 2014.-The differential energy spectrum of all particles and the dependence of the average maximum depth on the energy in the range of 6 ṡ 1015-1018 eV measured for 1540 hours of observation are presented.

  14. Expected spectrum of high-energy photons from ball lightning

    NASA Astrophysics Data System (ADS)

    Shmatov, M. L.

    2006-04-01

    Two methods for identifying the flux of high-energy photons as emitted by ball lightning are proposed. It is assumed that ball lightning has a core consisting of oscillating clouds of electrons and totally ionized ions. A search for tooth enamel changes due to the influence of high-energy photons from ball lightning to reveal the influence of such photons on human beings is also proposed. This diagnostic measure should be taken if after observation of ball lightning symptoms similar to those of radiation sickness arise or ball lightning causes heavy burns.

  15. Energy spectrum of neutrals formed in an ion accelerator

    SciTech Connect

    Fink, J.H.

    1982-03-15

    This work presents an estimate of the energy distribution of the neutrals formed in the ion beam accelerator. However it does not determine the fraction of those neutrals which leave the neutral beam injector and go on into the reactor. To do that, more details of the beam line performance are needed.

  16. Energy spectrum and wavefunction of electrons in hybrid superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Kruchinin, S. P.

    2016-03-01

    Recent experiments have fabricated structured arrays. We study hybrid nanowires, in which normal and superconducting regions are in close proximity, by using the Bogoliubov-de Gennes equations for superconductivity in a cylindrical nanowire. We succeed to obtain the quantum energy levels and wavefunctions of a superconducting nanowire. The obtained spectra of electrons remind Hofstadter’s butterfly.

  17. Electron energy spectrum in circularly polarized laser irradiated overdense plasma

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.; Shao, Xi; Kumar, Pawan

    2014-10-15

    A circularly polarized laser normally impinged on an overdense plasma thin foil target is shown to accelerate the electrons in the skin layer towards the rear, converting the quiver energy into streaming energy exactly if one ignores the space charge field. The energy distribution of electrons is close to Maxwellian with an upper cutoff ε{sub max}=mc{sup 2}[(1+a{sub 0}{sup 2}){sup 1/2}−1], where a{sub 0}{sup 2}=(1+(2ω{sup 2}/ω{sub p}{sup 2})|a{sub in}|{sup 2}){sup 2}−1, |a{sub in}| is the normalized amplitude of the incident laser of frequency ω, and ω{sub p} is the plasma frequency. The energetic electrons create an electrostatic sheath at the rear and cause target normal sheath acceleration of protons. The energy gain by the accelerated ions is of the order of ε{sub max}.

  18. ON THE VERY HIGH ENERGY SPECTRUM OF THE CRAB PULSAR

    SciTech Connect

    Chkheidze, N.; Machabeli, G.; Osmanov, Z.

    2011-04-01

    In the present paper, we construct a self-consistent theory interpreting the observations from the MAGIC Cherenkov Telescope of the very high energy (VHE) pulsed emission from the Crab pulsar. In particular, on the basis of Vlasov's kinetic equation, we study the process of quasi-linear diffusion (QLD) developed by means of the cyclotron instability. This mechanism provides simultaneous generation of low (radio) and VHE (0.01-25 GeV) emission on light cylinder scales in one location of the pulsar magnetosphere. A different approach to the synchrotron emission is considered, giving the spectral index of the VHE emission ({beta} = 2) and the exponential cutoff energy (23 GeV) in good agreement with the observational data.

  19. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    NASA Astrophysics Data System (ADS)

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-01

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the 252Cf (sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  20. On the groundstate energy spectrum of magnetic knots and links

    NASA Astrophysics Data System (ADS)

    Ricca, Renzo L.; Maggioni, Francesca

    2014-05-01

    By using analytical results for the constrained minimum energy of magnetic knots we determine the influence of internal twist on the minimum magnetic energy levels of knots and links, and by using ropelength data from the RIDGERUNNER tightening algorithm (Ashton et al 2011 Exp. Math. 20 57-90) we obtain the groundstate energy spectra of the first 250 prime knots and 130 prime links. The two spectra are found to follow an almost identical logarithmic law. By assuming that the number of knot types grows exponentially with the topological crossing number, we show that this generic behavior can be justified by a general relationship between ropelength and crossing number, which is in good agreement with former analytical estimates (Buck and Simon 1999 Topol. Appl. 91 245-57, Diao 2003 J. Knot Theory Ramifications 12 1-16). Moreover, by considering the ropelength averaged over a given knot family, we establish a new connection between the averaged ropelength and the topological crossing number of magnetic knots.

  1. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    SciTech Connect

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-25

    The prompt neutron emission in spontaneous fission of {sup 252}Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the {sup 252}Cf(sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 10{sup 7} fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  2. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2015-02-01

    We measure the spectrum of cosmic rays with energies greater than 1018.2 eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  3. The spectrum of flare protons in the low-energy range

    NASA Astrophysics Data System (ADS)

    Daibog, E. I.; Kurt, V. G.; Stolpovskii, V. G.

    1981-09-01

    An analysis is presented of the spectra of flare protons in the 0.08-150 MeV energy range, measured at about 1 AE on the Prognoz-6 satellite. The spectral data are compared with the energy dependence of the observation time of the maximum flux of flare protons. It is shown that changes in the slope in the spectrum and in the energy dependence of maximum times occur at approximately the same energy. Energy losses of protons in the interplanetary medium due to adiabatic cooling are determined. This effect is significant for protons with energies less than 1 MeV, and, in the case of flares of low importance, plays a decisive role in the formation of the spectrum of the observed flare protons.

  4. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  5. The matter power spectrum of dark energy models and the Harrison-Zel'dovich prescription

    SciTech Connect

    Duran, Ivan; Pavón, Diego; Atrio-Barandela, Fernando E-mail: atrio@usal.es

    2012-04-01

    According to the Harrison-Zel'dovich prescription, the amplitude of matter density perturbations at horizon crossing is the same at all scales. Based on this prescription, we show how to construct the matter power spectrum of generic dark energy models from the power spectrum of a ΛCDM model without the need of solving in full the dynamical equations describing the evolution of all energy density perturbations. Our approach allows to make model predictions of observables that can be expressed in terms of the matter power spectrum alone, such as the amplitude of matter fluctuations, peculiar velocities, cosmic microwave background temperature anisotropies on large angular scales or the weak lensing convergence spectrum. Then, models that have been tested only at the background level using the rate of the expansion of the Universe can now be tested using data on gravitational clustering and on large scale structure. This method can save a lot of effort in checking the validity of dark energy models. As an example of the accurateness of the approximation used, we compute the power spectrum of different dark energy models with constant equation of state parameter (w{sub DE} = −0.1, -0.5 and -0.8, ruled out by observations but easy to compare to numerical solutions) using our methodology and discuss the constraints imposed by the low multipoles of the cosmic microwave background.

  6. Energy spectrum of cosmic-ray iron nucleus observed with emulsion chamber

    NASA Technical Reports Server (NTRS)

    Ohta, I.; Tasaka, S.; Sato, Y.; Shimada, E.; Tanaka, S.; Sugimoto, H.; Taira, K.; Tateyama, N.

    1985-01-01

    Energy spectrum of cosmic-ray Fe-nucleus has been measured from 4 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using emulsion chambers on a balloon from Sanriku, Japan. The energies were estimated by the opening angle method after calibrated using 1.88 GeV per nucleon Fe collisions. The spectrum of Fe is approximately E-2.5 in the range from 10 to 200 GeV per nucleon. This result is in good agreement with those of other experiments.

  7. Less-energy-dense diets of low-income women in California are associated with higher energy-adjusted diet costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-energy-density diets have been shown to be associated with higher diet quality and with better health outcomes. However, such diets have also been associated with higher diet costs. This study examined the impact of dietary energy density on energy-adjusted diet costs among a sample of low-incom...

  8. Holographic lens spectrum splitting photovoltaic system for increased diffuse collection and annual energy yield

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.

    2015-09-01

    Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.

  9. All-Particle Cosmic Ray Energy Spectrum Measured with 26 Icetop Stations

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Stamatikos, M.

    2013-01-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, thesurface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysiswere taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 square kilometers.The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenithangle ranges between 0 and 46. Because of the isotropy of cosmic rays in this energy range the spectrafrom all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under differentassumptions on the primary mass composition. Good agreement of spectra in the three zenithangle ranges was found for the assumption of pure proton and a simple two-component model. Forzenith angles theta less than 30 deg., where the mass dependence is smallest, the knee in the cosmic ray energy spectrumwas observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indicationof a flattening of the spectrum above 22 PeV was observed.

  10. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    SciTech Connect

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  11. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.

    PubMed

    Salim, Shelly; Moh, Sangman

    2016-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290

  12. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman

    2016-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290

  13. A new neutron energy spectrum unfolding code using a two steps genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shahabinejad, H.; Hosseini, S. A.; Sohrabpour, M.

    2016-03-01

    A new neutron spectrum unfolding code TGASU (Two-steps Genetic Algorithm Spectrum Unfolding) has been developed to unfold the neutron spectrum from a pulse height distribution which was calculated using the MCNPX-ESUT computational Monte Carlo code. To perform the unfolding process, the response matrices were generated using the MCNPX-ESUT computational code. Both one step (common GA) and two steps GAs have been implemented to unfold the neutron spectra. According to the obtained results, the new two steps GA code results has shown closer match in all energy regions and particularly in the high energy regions. The results of the TGASU code have been compared with those of the standard spectra, LSQR method and GAMCD code. The results of the TGASU code have been demonstrated to be more accurate than that of the existing computational codes for both under-determined and over-determined problems.

  14. Neutron energy spectrum characterization on TMR-1 at the Indiana University neutron source

    NASA Astrophysics Data System (ADS)

    Halstead, Matthew R.; Lee, Sangjin; Petrosky, James; Bickley, Abigail; Sokol, Paul

    The energy spectrum of the Neutron Radiation Effects Program (NREP) beam line, Target-Moderator-Reflector-1 (TMR-1), at Indiana University has not been previously characterized. The facility has a unique proton source with variable pulse length (15-600 ms) and energy (13 MeV). Thus, it can produce a unique and tailored neutron beam when incident on a beryllium target. Through a combination of MCNP-X particle simulations, neutron activation experiments, and application of a spectrum unfolding code (SAND-II), the neutron source is characterized. Eight activation foils and wires were irradiated in the target area and the gamma activity measured. This information was used in an unfolding code, SAND-II, to deconvolve the spectrum, using the MCNP simulations as a basis for the spectral fitting.

  15. Long-term differential energy spectrum for solar-flare iron-group particles

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Fruland, R. M.; Morrison, D. A.

    1975-01-01

    A long-term solar-flare differential energy spectrum for iron-group nuclei from approximately 0.1 to approximately 600 MeV/amu is derived from track density profile measurements in sample 64455 and sample 68815. Measurements from uneroded surfaces were obtained from quench crystals of plagioclase in 64455, and a Kr-81/Kr method indicates that the exposure age of this sample is 2,010,000 yrs. The power laws which best fit the normalized track density data are reported; the energy spectrum consists of two power law curves smoothly joined together which in turn are smoothly connected to a modulated galactic cosmic-ray spectrum. Standard track production versus depth profiles can be used to determine solar-flare track exposure ages and erosion rates for lunar samples.

  16. A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Xiong, Tian-Yi

    2015-04-01

    Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the secondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman-Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the China Postdoctoral Science Foundation (Grant No. 2014M550479), and the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011).

  17. Study of La-binding energies by analysis of its photodetachment spectrum

    NASA Astrophysics Data System (ADS)

    Pan, Lin; Beck, Donald

    2016-05-01

    In this study, relativistic configuration interaction (RCI) is employed to investigate the electron affinity and binding energies of the negative ion of lanthanum, by reinterpreting an earlier experimental photoelectron kinetic energy spectrum of La-. For the electron affinity of lanthanum, our study revises the original experimental interpretation of 0.47 +/- 0.02 eV and agrees well with the earlier RCI value of 0.545 eV. The calculation yields also the binding energies for thirteen excited states of La-. These energies are compared to results of recent experimental studies on La-. The details of the calculation, identities of main features in the experimental spectrum will be presented in our poster. National Science Foundation, Grant No. PHY-0968205

  18. Semiclassical analysis of the Efimov energy spectrum in the unitary limit

    SciTech Connect

    Bhaduri, Rajat K.; Brack, Matthias; Murthy, M. V. N.

    2011-06-15

    We demonstrate that the (s-wave) geometric spectrum of the Efimov energy levels in the unitary limit is generated by the radial motion of a primitive periodic orbit (and its harmonics) of the corresponding classical system. The action of the primitive orbit depends logarithmically on the energy. It is shown to be consistent with an inverse-squared radial potential with a lower cutoff radius. The lowest-order WKB quantization, including the Langer correction, is shown to reproduce the geometric scaling of the energy spectrum. The (WKB) mean-squared radii of the Efimov states scale geometrically like the inverse of their energies. The WKB wave functions, regularized near the classical turning point by Langer's generalized connection formula, are practically indistinguishable from the exact wave functions even for the lowest (n=0) state, apart from a tiny shift of its zeros that remains constant for large n.

  19. The energy spectrum of electrons and cosmic-ray confinement A new measurement and its interpretation

    NASA Technical Reports Server (NTRS)

    Tang, K.-K.

    1984-01-01

    Measurements of the cosmic ray flux and electron energy spectrum from 5 GeV to 300 GeV, with an absolute uncertainty in the flux level of + or - 10 percent at low energies and + or - 30 percent at 100 GeV, are described. The measured spectrum appears to represent the competing processes of radiative energy loss in the interstellar medium and leakage out of the Galaxy. In the framework of the leaky box model and diffusion models, the result is most consistent with the picture of cosmic ray electrons spending an average of 10 million years in the Galaxy independent of electron energy, probably propagating in a halo as well as in the galactic disk.

  20. Semiclassical analysis of the Efimov energy spectrum in the unitary limit

    NASA Astrophysics Data System (ADS)

    Bhaduri, Rajat K.; Brack, Matthias; Murthy, M. V. N.

    2011-06-01

    We demonstrate that the (s-wave) geometric spectrum of the Efimov energy levels in the unitary limit is generated by the radial motion of a primitive periodic orbit (and its harmonics) of the corresponding classical system. The action of the primitive orbit depends logarithmically on the energy. It is shown to be consistent with an inverse-squared radial potential with a lower cutoff radius. The lowest-order WKB quantization, including the Langer correction, is shown to reproduce the geometric scaling of the energy spectrum. The (WKB) mean-squared radii of the Efimov states scale geometrically like the inverse of their energies. The WKB wave functions, regularized near the classical turning point by Langer’s generalized connection formula, are practically indistinguishable from the exact wave functions even for the lowest (n=0) state, apart from a tiny shift of its zeros that remains constant for large n.

  1. Balloon measurements of the energy spectrum of cosmic electrons between 1 and 25 GeV.

    NASA Technical Reports Server (NTRS)

    Earl, J. A.; Neely, D. E.; Rygg, T. A.

    1972-01-01

    During three balloon flights made in 1966 and 1967, cosmic electrons were investigated with the aid of a hodoscope detector that provided extensive and detailed information on each cosmic-ray event triggering the apparatus. Similar information obtained during calibration exposures to protons and pions as well as to electrons was used to provide identification of cosmic electrons and to determine their energies. Differential primary electron intensities measured in the range from 1 to 25 GeV were substantially larger than some earlier measurements. In conjunction with existing measurements at energies above 100 GeV, this finding indicates that the energy spectrum of cosmic electrons is steeper than that of cosmic-ray nuclei and consequently suggests that Compton/synchrotron energy loss plays a significant role in shaping the electron spectrum.

  2. Power Versus Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Han, Weijia; Li, Di; Zhang, Ping; Cui, Shuguang

    2015-12-01

    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem.

  3. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  4. Testing oscillating primordial spectrum and oscillating dark energy with astronomical observations

    SciTech Connect

    Liu, Jie; Li, Hong; Zhang, Xinmin; Xia, Jun-Qing E-mail: hongli@ihep.ac.cn E-mail: xmzhang@ihep.ac.cn

    2009-07-01

    In this paper we revisit the issue of determining the oscillating primordial scalar power spectrum and oscillating equation of state of dark energy from the astronomical observations. By performing a global analysis with the Markov Chain Monte Carlo method, we find that the current observations from five-year WMAP and SDSS-LRG matter power spectrum, as well as the ''union'' supernovae sample, constrain the oscillating index of primordial spectrum and oscillating equation of state of dark energy with the amplitude less than |n{sub amp}| < 0.116 and |w{sub amp}| < 0.232 at 95% confidence level, respectively. This result shows that the oscillatory structures on the primordial scalar spectrum and the equation of state of dark energy are still allowed by the current data. Furthermore, we point out that these kinds of modulation effects will be detectable (or gotten a stronger constraint) in the near future astronomical observations, such as the PLANCK satellite, LAMOST telescope and the currently ongoing supernovae projects SNLS.

  5. Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Scully, S. T.; Stecker, F. W.

    2009-01-01

    There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.

  6. Mars Energy Spectrum studies from Assimilated MCS data using the UK MGCM

    NASA Astrophysics Data System (ADS)

    Valeanu, Alexandru; Read, Peter; Wang, Yixiong; Lewis, Stephen; Montabone, Luca; Tabataba-Vakili, Fachreddin

    2015-04-01

    Introduction The energy spectrum (ES) analysis is a renowned tool for understanding the driving mechanisms behind atmospheric turbulence (Lindborg, 1998). We aim to investigate whether energy and enstrophy inertial ranges exist in the kinetic energy spectrum (KES), and to quantify the corresponding cascades (with their ranges), and relationship with the atmospheric forcing and energy dissipation scales. The calculation of the ES from observational data is known to be highly non-trivial due to the lack of global coverage in space and time. Gage and Nastrom (1984) were the first to overcome this problem for Earth but this has not so far been attempted for Mars. Our approach is to take the sparse observational data and assimilate it using a global numerical model. We present preliminary results using the Mars Climate Sounder (MCS) retrievals and the LMD-UK Mars GCM (MGCM). This was pioneered by Lewis and Read (1999). Methodology The equations we used to calculate the Eddy and Zonal Mean kinetic energies are derived from total KES formula presented in Lindborg and Augier (2013). Hence, adding the two spectra together, we obtain the full KES spectrum as presented in their paper. For the Available Potential Energy Spectrum (APES), we have used a preliminary simplified version of the approach presented in Lindborg and Augier (2013). The Energy Spectra To date we have assimilated the MCS data at the resolution of T31 (triangular truncation), hence the ES only spans up to total wavenumber 31. This encompasses a portion of the energy inertial range, which might be expected to manifest the -3 exponential law by analogy with the Earth (Gage & Nastrom, 1984). Features: - velocities and corresponding KEs are higher with increasing height compared to Earth, - "-3" slope is restricted to ~30 km altitude, suggesting an early departure from the enstrophy inertial range, - boundary layer velocities are similar to Earth References 1. Gage and Nastrom, A Climatology of Atmospheric

  7. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  8. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. PMID:27062543

  9. Measuring the neutron energy spectrum of laser-fusion targets with CR-39

    SciTech Connect

    Lane, S.M.

    1983-09-01

    We are developing a detector capable of measuring the neutron energy spectrum from a laser fusion target containing DT fuel. From such a spectrum the compressed areal density of the DT can be inferred by observing the fraction of 14.1 MeV neutrons down-shifted in energy by elastic scattering. The detector consists of a 0.1 cm thick Ta x-ray and debris shield backed by a 50 to 200 ..mu..m polyethylene radiator followed by layers of CR-39. The energy of each neutron producing a knock-on proton in the radiatior, that in turn creates a damage track in the CR-39, can be derived from the resultant track diameter, location, and orientation. We have analyzed the proton sensitivity and sample readability of 5 types of CR-39 in the energy range 3 to 11 MeV and have found a type fabricated by American Acrylics from a monomer made by a French company, Allymer, to be the most acceptable. Calibration curves were obtained for this plastic at energies of 3 to 15 MeV and dip angles ranging from 75 to 90/sup 0/. These curves were subsequently used to unfold a 14.7 MeV spectrum generated at the Livermore Rotating Target Neutron Source.

  10. Spectrum and energy levels of five-times ionized zirconium (Zr VI)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Lindsay, Mark D.

    2016-02-01

    We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ˜420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ˜135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm-1 (96.38 ± 0.04 eV).

  11. The puzzle of the ankle in the Ultrahigh Energy Cosmic Ray Spectrum, and composition indicators

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    The sharp change in slope of the ultra-high energy cosmic ray spectrum around 10^18.6 eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle and intermediate composition above, has proved exceedingly challenging to understand theoretically. In this talk I discuss two possible solutions to the puzzle and how they can be (in)validated.First, I present a new mechanism whereby photo-disintegration of ultra-high energy nuclei in the region surrounding a UHECR accelerator naturally accounts for the observed spectrum and inferred composition (using LHC-tuned models extrapolated to UHE) at Earth. We discuss the conditions required to reproduce the spectrum above 10^17.5 eV and the composition, which -- in our model -- consists below the ankle of extragalactic protons and the high energy tail of Galactic Cosmic Rays, and above the ankle of surviving nuclei from the extended source. Predictions for the spectrum and flavors of neutrinos resulting from this process will be presented, and also implications for candidate sources.The other possible explanation is that in actuality UHECRs are entirely or almost entirely protons, and the cross-section for p-Air scattering increases more rapidly above center-of-mass energy of 70 TeV (10 times the current LHC cm energy) than predicted in conventional models. This gives an equally good fit to the depth-of-shower maximum behavior obverved by Auger, while being an intriguing sign of new state in QCD at extremely high energy density.

  12. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    SciTech Connect

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  13. The knee in the cosmic ray energy spectrum from the simultaneous EAS charged particles and muon density spectra

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Banik, Prabir; Bhadra, Arunava

    2016-09-01

    In this work we examine with the help of Monte Carlo simulation whether a consistent primary energy spectrum of cosmic rays emerges from both the experimentally observed total charged particles and muon size spectra of cosmic ray extensive air showers considering primary composition may or may not change beyond the knee of the energy spectrum. It is found that EAS-TOP observations consistently infer a knee in the primary energy spectrum provided the primary is pure unchanging iron whereas no consistent primary spectrum emerges from simultaneous use of the KASCADE observed total charged particle and muon spectra. However, it is also found that when primary composition changes across the knee the estimation of spectral index of total charged particle spectrum is quite tricky, depends on the choice of selection of points near the knee in the size spectrum.

  14. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE PAGESBeta

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructure changes exhibitedmore » a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  15. Diffuse gamma radiation. [intensity, energy spectrum and spatial distribution from SAS 2 observations

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1978-01-01

    Results are reported for an investigation of the intensity, energy spectrum, and spatial distribution of the diffuse gamma radiation detected by SAS 2 away from the galactic plane in the energy range above 35 MeV. The gamma-ray data are compared with relevant data obtained at other wavelengths, including 21-cm emission, radio continuum radiation, and the limited UV and radio information on local molecular hydrogen. It is found that there are two quite distinct components to the diffuse radiation, one of which shows a good correlation with the galactic matter distribution and continuum radiation, while the other has a much steeper energy spectrum and appears to be isotropic at least on a coarse scale. The galactic component is interpreted in terms of its implications for both local and more distant regions of the Galaxy. The apparently isotropic radiation is discussed partly with regard to the constraints placed on possible models by the steep energy spectrum, the observed intensity, and an upper limit on the anisotropy.

  16. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    NASA Astrophysics Data System (ADS)

    Sedrati, R.; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥ 10 GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  17. Cosmic ray energy spectrum around the knee obtained by the Tibet Experiment and future prospects

    NASA Astrophysics Data System (ADS)

    Katayose, Yusaku

    The measurement of the energy spectrum and the chemical composition of cosmic rays at the 'Knee' energy region have been made in the Tibet-AS experiment since 1990. The 1st phase of the Tibet hybrid experiment(1996-1999) consisted of Tibet II air-shower array(AS), Emulsion Chamber(EC) and burst detector(BD). The EC was used to detect high energy-gamma-families of the energy greater than 20 TeV at the core of ASs of which more than 80% are induced by light nuclei like protons or helium. Due to the high spatial resolution of the EC, proton and helium events were separated from others and we obtained the energy spectrum of each of them using 177 family events. We also obtained all-particle energy spectrum of primary cosmic rays in a wide range from 1014 eV to 1017 eV by the Tibet-III air-shower array. The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. These results strongly indicated that the fraction of the light component to the all particle spectrum is decreasing around the knee.The observation of the AS core has been continued with upgraded Tibet III array and burst detectors without using X-ray films, which still works as the selector for the air showers induced by light component (pHe). This second phase experiment shows that the dominance of the heavy elements at the knee reported by the first phase experiment is confirmed with higher statistics by one order.Our results suggest that the main component at the knee is heavy elements (heavier than helium) because of the low intensities of observed proton and helium fluxes, whose summed flux are less than 30% of all particles. A new air-shower-core detector(YAC) will be added to the Tibet AS array to explicitly measure the heavy elements around the knee and beyond. In this paper, the results of composition study with the Tibet experiment are summarized and the prospects for the next phase experiment are described.

  18. Measurements of the spectrum of galactic electrons at very high energies

    NASA Technical Reports Server (NTRS)

    Mueller, D.

    1974-01-01

    A counter telescope has been exposed in three balloon flights in 1970 to measure the flux and energy spectrum of cosmic ray electrons between 10 and 1000 GeV. This instrument has been modified by incorporating a large area CsI crystal as well as highly efficient time of flight circuitry, and was flown again twice during 1972. The methods of data analysis are based on extensive accelerator calibrations at SLAC. The resulting electron spectrum fits well to a single power law with an index (gamma) equal to 2.66 over the whole energy region. No obvious steepening can be observed, although statistical uncertainties prohibit definite claims beyond 250 GeV.

  19. The energy spectrum and geometrical structure of Galactic turbulent magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Gaensler, Bryan; Mcclure-Griffiths, Naomi; Purcell, Cormac; Hill, Alex; Burkhart, Blakesley; Lazarian, Alex

    2012-04-01

    The energy spectrum and geometrical structure of the turbulent magnetic field can offer a solid test of different theoretical models on the generation and evolution of Galactic magnetic fields. They are also pivotal to understanding the propagation of cosmic-ray particles. However, the energy spectrum has been difficult to determine and the geometrical structure has never been obtained so far, due to lack of proper methods and observations. We aim to infer these quantities by applying our newly developed techniques to polarisation images. These images are required to be observed with high angular resolution and broadband multi-channel polarimetry, which is possible only recently using the ATCA. As a pilot study, we plan to map the 2X2 degree high-latitude field centred at l=255.5 degree and b=-38 degree at 1.1-3.1 GHz in total intensity and polarisation.

  20. The energy spectrum and geometrical structure of Galactic turbulent magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Gaensler, Bryan; Mcclure-Griffiths, Naomi; Purcell, Cormac; Hill, Alex; Burkhart, Blakesley; Lazarian, Alex

    2012-10-01

    The energy spectrum and geometrical structure of the turbulent magnetic field can offer a solid test of different theoretical models on the generation and evolution of Galactic magnetic fields. They are also pivotal to understanding the propagation of cosmic-ray particles. However, the energy spectrum has been difficult to determine and the geometrical structure has never been obtained so far, due to lack of proper methods and observations. We aim to infer these quantities by applying our newly developed techniques to polarisation images. These images are required to be observed with high angular resolution and broadband multi-channel polarimetry, which is possible only recently using the ATCA. As a pilot study, we plan to map the 2X2 degree high-latitude field centred at l=255.5 degree and b=-38 degree at 1.1-3.1 GHz in total intensity and polarisation.

  1. Electron energy spectrum in cylindrical quantum dots and rods: approximation of separation of variables

    NASA Astrophysics Data System (ADS)

    Nedzinskas, R.; Karpus, V.; Čechavičius, B.; Kavaliauskas, J.; Valušis, G.

    2015-06-01

    A simple analytical method for electron energy spectrum calculations of cylindrical quantum dots (QDs) and quantum rods (QRs) is presented. The method is based on a replacement of an actual QD or QR hamiltonian with an approximate one, which allows for a separation of variables. Though this approach is known in the literature, it is essentially expanded in the present paper by taking into account a discontinuity of the effective mass, which is of importance in actual semiconductor heterostructures, e.g., InGaAs QDs or QRs embedded in GaAs matrix. Several examples of InGaAs QDs and QRs are considered—their energy spectrum calculations show that the suggested method yields reliable results both for the ground and excited states. The proposed analytical model is verified by numerical calculations, results of which coincide with an accuracy of ∼1 meV.

  2. The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M. G.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-08-01

    The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.

  3. Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus

    NASA Astrophysics Data System (ADS)

    Voronov, B. L.; Gitman, D. M.; Levin, A. D.; Ferreira, R.

    2016-05-01

    We consider the peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus and discuss the long history of an incorrect interpretation of this problem in the case of a pointlike nucleus and its current correct solution. We consider the spectral problem in the case of a regularized Coulomb potential. For some special regularizations, we derive an exact equation for the point spectrum in the energy interval (-m,m) and find some of its solutions numerically. We also derive an exact equation for charges yielding bound states with the energy E = -m; some call them supercritical charges. We show the existence of an infinite number of such charges. Their existence does not mean that the oneparticle relativistic quantum mechanics based on the Dirac Hamiltonian with the Coulomb field of such charges is mathematically inconsistent, although it is physically unacceptable because the spectrum of the Hamiltonian is unbounded from below. The question of constructing a consistent nonperturbative second-quantized theory remains open, and the consequences of the existence of supercritical charges from the standpoint of the possibility of constructing such a theory also remain unclear.

  4. The Spectrum of Ultrahigh Energy Cosmic Rays and Constraints on Lorentz Invariance Violation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2008-01-01

    There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn off photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then use a chi-squared analysis to compare our results with the experimental UHECR data and thereby place limits on the amount of LIV. We also discuss how a small amount of LIV that is consistent with the experimental data can still lead to a recovery of the cosmic ray flux at higher energies than presently observed.

  5. Hydromorphological adjustments and re-adjustments of low energy rivers in a sub-urban catchment following historical engineering and recent urbanization

    NASA Astrophysics Data System (ADS)

    Jugie, Marion; Gob, Frédéric; Slawson, Deborah; Le-Coeur, Charles

    2014-05-01

    The EU Water Framework Directive (WFD, October 2000) mandated that the Member States of the European Union achieve the general objective of protection of aquatic ecology by 2015. European rivers and streams have to attain "good ecological status" through the preservation and restoration of aquatic environments. Member will have to ensure environmental continuity through "the adequate distribution of fish species and transport of sediments". In France, more than 61,000 transverse structures - mill dams, weirs, diversion gates - have been identified on rivers as being obstacles to ecological and sedimentary continuity. Because of their historical occupation by societies, rivers flowing in the Paris area have long been anthropized and artificialized. River courses, channel shape, sediment transport and hydrological regime modifications have tremendously transformed the hydrosystems surrounding the city of Paris. The Merantaise's catchment is one of this low energy river watershed, near Paris, that have been modified by historical engineering, especially during medieval-modern times and by the building of the Versailles Castle (XVIIth century). The hydraulic infrastructures are still there and impact the hydromorphogical conditions of the river (incision, lateral erosion, …). In addition to these ancient pressures a rapid and massive urbanization of the suburban areas has applied a new type of constraint to the hydrosystems in recent decades. This undermines the balance that was established following ancient engineering and disturbs the current functioning of the valley. These new types of land occupation have significantly altered the ecological circumstances and transformed the hydrological responses of rivers. In this study, we therefore seek to understand these processes of successive adjustments (ancient and recent) of a small river from the urban margins of the Orge watershed (to the south of Paris). We use a multi-scalar spatial and temporal approach to

  6. The spectrum of cosmic electron with energies between 6 and 100 GeV

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Earl, J. A.

    1974-01-01

    This experiment was carried out during three balloon flights which provided a total exposure of 3500 + or - 60 sq m sec sterad at an average depth of 4.8 g/sq cm The detector, in which the development of cascade showers in a 33.7 rl absorber was sampled by 10 scintillation counters and 216 Geiger-Muller tubes, was calibrated at the Cornell Electron Synchrotron, the separation of cosmic electrons from the nuclear background was confirmed by extensive analysis of data from the flights, from the calibration and from ground level exposure. The spectral intensity of primary cosmic ray electrons were found in particles/sq m sec sterad GeV. Similarly, the ground level spectrum of secondary cosmic ray electrons was also found. The steepness of the spectrum of cosmic electrons relative to that of nuclei implies one of the following conclusions: either the injection spectrum of electrons is steeper than that of nuclei, or the electron spectrum has been steepened by Compton/synchrotron losses in the energy range covered by the experiment.

  7. Study of the energy spectrum of primary cosmic rays: EAS size fluctuations at a fixed primary energy

    NASA Technical Reports Server (NTRS)

    Tashpulatov, R.; Khristiansen, G. B.; Allev, N.; Alimov, T.; Kakhharov, N.; Khakimov, K.; Rakhimova, N.

    1985-01-01

    During the initial period of the Samarkand EAS array operations the showers were selected on the basis of charged-particle flux density, and during the subsequent periods the showers were selected on the basis of Cerenkov light flux density. This procedure made it possible to measure the shower energy, to estimate the EAS size fluctuations at a fixed primary energy, and to experimentally obtain the scaling factor K(Ne, Eo) from the EAS size spectrum to the primary energy spectrum. Six scintillators of area S = 2 sq m each were added to the array. The fluctuations of EAS sizes in the showers of fixed primary energies and the scaling factors K(Ne, Eo) were inferred from the data obtained. The showers with zenith angles 30 deg were selected. The EAS axis positions were inferred from the amplitude data of the scintillators. The primary energy Eo was determined by the method of least squares for the known EAS axis position using the data of the Cerenkov detector located at 80 to 150 m EAS axis. It is shown that the Cerenkov light flux fluctuations at 100 m from EAS axis, q sub 100, do not exceed 10% at a fixed EAS energy, so the parameter q sub 100 may be used to estimate the EAS-generating primary particle-energy.

  8. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    SciTech Connect

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W.; Aida, R.; Azuma, R.; Fukuda, T.; Cheon, B. G.; Cho, E. J.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukushima, M.; and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  9. Energy spectrum and Landau levels in bilayer graphene with spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Mireles, Francisco; Schliemann, John

    2012-09-01

    We present a theoretical study of the band structure and Landau levels in bilayer graphene at low energies in the presence of a transverse magnetic field and Rashba spin-orbit interaction in the regime of negligible trigonal distortion. Within an effective low-energy approach the (Löwdin partitioning theory), we derive an effective Hamiltonian for bilayer graphene that incorporates the influence of the Zeeman effect, the Rashba spin-orbit interaction and, inclusively, the role of the intrinsic spin-orbit interaction on the same footing. Particular attention is paid to the energy spectrum and Landau levels. Our modeling unveils the strong influence of the Rashba coupling λR in the spin splitting of the electron and hole bands. Graphene bilayers with weak Rashba spin-orbit interaction show a spin splitting linear in momentum and proportional to λR, but scaling inversely proportional to the interlayer hopping energy γ1. However, at robust spin-orbit coupling λR, the energy spectrum shows a strong warping behavior near the Dirac points. We find that the bias-induced gap in bilayer graphene decreases with increasing Rashba coupling, a behavior resembling a topological insulator transition. We further predict an unexpected asymmetric spin splitting and crossings of the Landau levels due to the interplay between the Rashba interaction and the external bias voltage. Our results are of relevance for interpreting magnetotransport and infrared cyclotron resonance measurements, including situations of comparatively weak spin-orbit coupling.

  10. Measurements of the energy spectrum of electrons emanating from solid materials irradiated by a picosecond laser

    SciTech Connect

    Di Stefano, C. A. Kuranz, C. C.; Thomas, A. G. R.; Drake, R. P.; Keiter, P. A.; Rasmus, A. M.; Wan, W. C.; Joglekar, A. S.; McKelvey, A.; Zhao, Z.; Klein, S. R.; Seely, J. F.; Williams, G. J.; Park, J.; Chen, H.; Kemp, G. E.; MacDonald, M. J.; Pereira, N. R.; Jarrott, L. C.; Peebles, J.; and others

    2015-04-15

    In this work, we present the results of experiments observing the properties of the electron stream generated laterally when a laser irradiates a metal. We find that the directionality of the electrons is dependent upon their energies, with the higher-energy tail of the spectrum (∼1 MeV and higher) being more narrowly focused. This behavior is likely due to the coupling of the electrons to the electric field of the laser. The experiments are performed by using the Titan laser to irradiate a metal wire, creating the electron stream of interest. These electrons propagate to nearby spectator wires of differing metals, causing them to fluoresce at their characteristic K-shell energies. This fluorescence is recorded by a crystal spectrometer. By varying the distances between the wires, we are able to probe the divergence of the electron stream, while by varying the medium through which the electrons propagate (and hence the energy-dependence of electron attenuation), we are able to probe the energy spectrum of the stream.

  11. A Monte Carlo study of reflection electron energy loss spectroscopy spectrum of a carbon contaminated surface

    SciTech Connect

    Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.

    2014-09-28

    It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.

  12. Advantages of Real-Time Spectrum Analyzers in High-Energy Physics Applications

    NASA Astrophysics Data System (ADS)

    Parker, Louis

    2004-11-01

    Typically, particles are injected into the ring at low energy levels and then "ramped up" to higher levels. During ramping, it is important that the horizontal and vertical tune frequencies do not shift, lest they hit upon a resonant combination that causes beam instability or sudden total loss of ring beam current (beam blow up). Beam instabilities can be caused by a number of factors. Non-linearities and/or different response times of independent controls such as beam position monitor (BPM) cables and circuits, magnets for guidance and focusing of the beam, Klystrons or Tetrodes (which provide power to RF cavities that transmit energy to the beam), and vacuum pumps and monitors can all cause beam instabilities. Vibrations and lack of proper shielding are other factors. The challenge for operators and researchers is to correctly identify the factors causing beam instabilities and blow up so that costly accelerator time is not interrupted and experimental results are not compromised. The instrument often used to identify problems in particle accelerator applications is the spectrum analyzer. This paper will discuss the advantages of real time spectrum analyzers (RSA) versus swept frequency spectrum analyzers in HEP applications. The main focus will be on monitoring beam position and stability, especially during ramp-up. Also covered will be use of RSA for chromaticity measurements, Phase Locked Loop (PLL) diagnostics, and vibration analysis.

  13. Advantages of Real-Time Spectrum Analyzers in High-Energy Physics Applications

    SciTech Connect

    Parker, Louis

    2004-11-10

    Typically, particles are injected into the ring at low energy levels and then 'ramped up' to higher levels. During ramping, it is important that the horizontal and vertical tune frequencies do not shift, lest they hit upon a resonant combination that causes beam instability or sudden total loss of ring beam current (beam blow up). Beam instabilities can be caused by a number of factors. Non-linearities and/or different response times of independent controls such as beam position monitor (BPM) cables and circuits, magnets for guidance and focusing of the beam, Klystrons or Tetrodes (which provide power to RF cavities that transmit energy to the beam), and vacuum pumps and monitors can all cause beam instabilities. Vibrations and lack of proper shielding are other factors. The challenge for operators and researchers is to correctly identify the factors causing beam instabilities and blow up so that costly accelerator time is not interrupted and experimental results are not compromised. The instrument often used to identify problems in particle accelerator applications is the spectrum analyzer. This paper will discuss the advantages of real time spectrum analyzers (RSA) versus swept frequency spectrum analyzers in HEP applications. The main focus will be on monitoring beam position and stability, especially during ramp-up. Also covered will be use of RSA for chromaticity measurements, Phase Locked Loop (PLL) diagnostics, and vibration analysis.

  14. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  15. Measurement of the UHECR Energy Spectrum by the Telescope Array Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas

    2013-04-01

    Ultra-high-energy cosmic rays (UHECRs), subatomic charged particles of extraterrestrial origin and with kinetic energies near or exceeding 10^18 eV, are very rare. The Telescope Array (TA) experiment in western Utah is the northern hemisphere's largest UHECR detector, and consists of three atmospheric fluorescence detectors (FDs) and a ground array of 507 scintillator detectors. In stand-alone ``monocular'' operation, the FDs can observe the widest range in primary UHECR energies. One FD employs refurbished hardware from the High-Resolution Fly's Eye experiment; the remaining two FDs were designed for TA and employ new hardware and analysis. We will present the UHECR energy spectrum measured by the FDs in monocular mode using data collected during the first four years of operation.

  16. Primary Energy Spectrum as Reconstructed from S(500) Measurements by KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Toma, G.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2010-01-01

    In cosmic ray investigations by observations of extensive air showers (EAS) the general question arises how to relate the registered EAS observables to the energy of the primary particle from the cosmos entering into the atmosphere. We present results on the reconstruction of the primary energy spectrum of cosmic rays from the experimentally recorded S(500) observable using the KASCADE-Grande detector array. The KASCADE-Grande experiment is installed in Forschungszentrum Karlsruhe, Germany, and driven by an international collaboration. Previous EAS investigations have shown that for a fixed energy the charged particle density becomes independent of the primary mass at certain distances from the shower core. This feature can be used as an estimator for the primary energy. The particular radial distance from the shower core where this effect shows up is a characteristic of the detector. For the KASCADE-Grande experiment it was shown to be around 500 m, hence a notation S(500). Extensive simulation studies have shown that S(500) is mapping the primary energy. The constant intensity cut (CIC) method is applied to evaluate the attenuation of the S(500) observable with the zenith angle. An attenuation correction is applied and all recorded S(500) values are corrected for attenuation. A calibration of S(500) values with the primary energy has been worked out by simulations and was used for conversion providing the possibility to obtain the primary energy spectrum (in the energy range accessible to KASCADE-Grande 1010-1018 eV). The systematic uncertainties induced by different factors are considered.

  17. SPECTRUM AND ENERGY LEVELS OF Pr{sup 3+} IN ThBr{sub 4}

    SciTech Connect

    Conway, J. G.; Krupa, J. C.; Delamoye, P.; Genet, M.

    1980-06-01

    The strong features in the absorption spectrum and the laser excited fluorescence spectrum have been interpreted as arising from levels of Pr{sup 3+} in the D{sub 2d} symmetry site of ThBr{sub 4} . 43 energy levels have been fitted to the parameters with an RMS deviation of 61 cm{sup -1}. The values of the crystal field parameters are. B{sub 0}{sup 2} = 260.0 cm {sup -1}, B{sub 0}{sup 4} = - 644.2 cm{sup -1}, B{sub 4}{sup 4} = 929.2 cm{sup -1}, B{sub 0}{sup 6} = 1089.0 cm{sup -1} and B{sub 4}{sup 6} = 240.6 cm{sup -1}. The presence of other crystal symmetry sites is observed.

  18. Monocular measurement of the ultra-high energy cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Shah, Priti Dhanesh

    The Telescope Array Project was designed to observe cosmic rays with energies greater than 1018 eV. Its goals are to study the physics of cosmic rays by measuring their anisotropy, composition, and energy spectrum. This work makes a monocular measurement of the ultra high energy cosmic ray spectrum and analyzes the physics produced from that spectrum. The flux of cosmic rays observed on Earth follows a power law over 12 decades in energy and 32 decades in flux. At the highest energies, the spectrum has detailed structure. Studying these features can tell us about the astrophysics of the production and propagation of cosmic rays. First, it can tell us about the sources of cosmic rays such as they capable of producing a power law spectrum and the maximum energy of cosmic rays that they can produce. Second, the acceleration mechanisms that can boost cosmic rays to ultra high energies can be studied. Third, the spectral features themselves can tell us about their possible cause for formation. For example, the ankle feature in the ultra high energy regime can tell us if it is the galactic-extragalactic transition or if it is due to e+e- pair production. Fourth, the energy losses that cosmic rays incur can tell us about their physical interactions during propagation. Studying the physics of the cosmic ray spectrum in the ultra high energy regime with data from the Telescope Array Project is the goal of this analysis. The Telescope Array Project consists of three fluorescence detectors overlooking an array of 507 scintillation surface detectors. Due to their extremely low flux at these energies, cosmic rays can only be observed indirectly via an extensive air shower produced when they collide with the nucleus of an atom in the Earth's atmosphere. These charged secondary particles produce fluorescence light. The array of surface detectors observes the lateral footprint of the extensive air shower when it reaches the ground. The fluorescence detectors observe the

  19. Adjustable atrial and ventricular temporary electrode for low-energy termination of tachyarrhythmias early after cardiac surgery.

    PubMed

    Mehmanesh, H; Bauernschmitt, R; Lange, R; Hagl, S

    1999-12-01

    Supraventricular and ventricular tachycardias are common and serious postoperative complications early after cardiac surgery. We introduce a completely removable temporary adjustable defibrillation electrode (TADE) for low energy cardioversion/defibrillation of postoperative atrial and ventricular tachyarrhythmias. The electrode consists of three loops of steel wires connected to one steel wire, which are movable within an isolation sheet for adjusting the active surface to the individual size of the heart chambers. Evaluation of the electrode was performed in 10 open-chest beagles with a mean weight of 25.5 kg. The electrodes were first positioned on the left and right atrium. Atrial fibrillation (AF) was induced via a bipolar temporary heart wire. Atrial defibrillation thresholds (DFTs) were measured according to a step-down shock protocol (5-0.4 J). Thereafter, the electrodes were adjusted and positioned on the right and left ventricle. Ventricular fibrillation (VF) was induced and DFTs were recorded the same way. Aortic flow and pressure and left ventricular pressure were continuously monitored throughout the experiment. For termination of AF, mean DFTs were 0.4 +/- 0 J (lowest possible shock level) with a mean shock impedance of 70 +/- 7.6 ohms. VF was terminated with a mean DFT of 3 +/- 1.1 J with a mean impedance 56.1 +/- 7.9 ohms. Complete transcutaneous removal of the electrodes was possible in all animals without any complications. In conclusion, successful low energy termination of AF and VF is possible with the tested temporary adjustable electrode. A clinical study is planned for further evaluation. PMID:10642135

  20. Reconstruction of the Primary Energy Spectrum from Fluorescence Telescope Data of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Geenen, H.

    2007-07-01

    The Pierre Auger Observatory is the largest extensive air-shower (EAS) experiment in operation. It is still being constructed, and the final configuration will have detectors at the two sites Argentina and USA observing both celestial hemispheres. The aim of the experiment is to determine the energy, composition and origin of ultra-high energy cosmic-rays (UHECR) using two complementary detection techniques. The detector at the southern site presently contains more than 1400 (Jul. 2007) water-Cherenkov detectors at ground level (870 gcm^-2). Completion of the 3000 km^2 large detector array is expected by the end of 2007 with finally more than 1600 tanks. The atmosphere above the site is observed by 24 fluorescence telescopes located in four buildings at the boundary of the array. During clear moon-less nights, this configuration permits hybrid measurement of both longitudinal development of an EAS and lateral particle density at ground. All fluorescence telescopes are fully operational since February 2007. The aim of this work is to reconstruct the cosmic ray energy spectrum between a few 10^17 eV up to 10^20 eV. This would provide an overlap to spectral results from other experiments at lower energies. The hybrid detection provides an accurate geometry determination and thereby a good energy resolution. However, the energy threshold is limited to the threshold of the surface array: larger than a few 10^18 eV. The advantage of FD-monocular events (FD-mono) is a lower energy threshold in the aimed 10^17 eV regime. In addition, the present FD-mono exposure is about 1.5 times larger than the hybrid one. However, the energy resolution of FD-mono events is worse compared to hybrid, and the detector acceptance is strongly energy dependent. Therefore, the determination of the energy spectrum requires an unfolding procedure, which considers both the limited acceptance and the limited resolution. In this analysis the FD-mono data are reconstructed. The reconstruction

  1. Height-adjustable desks: Energy expenditure, liking, and preference of sitting and standing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Sedentary occupations likely promote weight gain. Standing may be a passive means of increasing energy expenditure throughout the workday. The purpose was to determine the energy expenditure and liking of word processing while sitting and standing. Methods: Energy expenditure was measu...

  2. LDEF (Postflight), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF. The Trapped Proton Energy Spectrum Determination Experiment is one of four experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experiments are located in periph eral LDEF integrated experiment trays in the D03 and D09 tray locations. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, appears to be intact with no apparent physical damage. The brown discoloration appears to be much lighter in this photograph than in the flight photograph, however, the postflight photograph of the individual experiment verifies the darker discoloration in the flight photograph. The light ing angle and intensity appear to have washed out the colors in the upper half of the integrated tray. The sub experiments appear to be intact and secure.

  3. Energy spectrum of iron nuclei measured inside the MIR space craft using CR-39 track detectors.

    PubMed

    Gunther, W; Leugner, D; Becker, E; Flesch, F; Heinrich, W; Huntrup, G; Reitz, G; Rocher, H; Streibel, T

    1999-06-01

    We have exposed stacks of CR-39 plastic nuclear track detectors inside the MIR space craft during the EUROMIR95 space mission for almost 6 months. Over this long period a large number of tracks of high LET events was accumulated in the detector foils. The etching and measuring conditions for this experiment were optimized to detect tracks of stopping iron nuclei. We found 185 stopping iron nuclei inside the stack and identified their trajectories through the material of the experiment. Based on the energy-range relation the energy at the surface of the stack was determined. These particles allow the determination of the low energy part of the spectrum of iron nuclei behind shielding material inside the MIR station. PMID:12025843

  4. Classification of vibrational resonances in the energy spectrum of the formaldehyde molecule and Katz's branch points

    NASA Astrophysics Data System (ADS)

    Bykov, A. D.; Duchko, A. N.

    2016-05-01

    The Rayleigh-Schrödinger perturbation theory of high orders and the algebraic Padé-Hermite approximants are used to determine the singular points of a vibrational energy function of the formaldehyde molecule dependent on a complex perturbation parameter as on the argument. It is shown that the Fermi, Darling-Dennison, and other higher-order vibrational resonances are related to Katz's points—common branch points on the complex plane of the energy of two vibrational states. Analysis of Katz's points that connect different vibrational states allows one to reveal essential resonance perturbations, to introduce an additional classification for them, and to determine the polyad structure of an energy spectrum.

  5. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    NASA Astrophysics Data System (ADS)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  6. The energy spectrum of X-rays from rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Dwyer, J. R.; Cramer, E. S.; Grove, J. E.; Gwon, C.; Hill, J. D.; Jordan, D. M.; Lucia, R. J.; Vodopiyanov, I. B.; Uman, M. A.; Rassoul, H. K.

    2015-10-01

    Although the production of X-rays from natural and rocket-triggered lightning leaders have been studied in detail over the last 10 years, the energy spectrum of the X-rays has never been well measured because the X-rays are emitted in very short but intense bursts that result in pulse pileup in the detectors. The energy spectrum is important because it provides information about the source mechanism for producing the energetic runaway electrons and about the electric fields that they traverse. We have recently developed and operated the first spectrometer for the energetic radiation from lightning. The instrument is part of the Atmospheric Radiation Imagery and Spectroscopy (ARIS) project and will be referred to as ARIS-S (ARIS Spectrometer). It consists of seven 3'' NaI(Tl)/photomultiplier tube scintillation detectors with different thicknesses of attenuators, ranging from no attenuator to more than 1'' of lead placed over the detector (all the detectors are in a 1/8'' thick aluminum box). Using X-ray pulses preceding 48 return strokes in 8 rocket-triggered lightnings, we found that the spectrum of X-rays from leaders is too soft to be consistent with Relativistic Runaway Electron Avalanche. It has a power law dependence on the energies of the photons, and the power index, λ, is between 2.5 and 3.5. We present the details of the design of the instrument and the results of the analysis of the lightning data acquired during the summer of 2012.

  7. Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wu, Wei

    2014-06-01

    We designed a high-efficiency dispersive mirror based on multi-layer dielectric meta-surfaces. By replacing the secondary mirror of a dome solar concentrator with this dispersive mirror, the solar concentrator can be converted into a spectrum-splitting photovoltaic system with higher energy harvesting efficiency and potentially lower cost. The meta-surfaces are consisted of high-index contrast gratings (HCG). The structures and parameters of the dispersive mirror (i.e. stacked HCG) are optimized based on finite-difference time-domain and rigorous coupled-wave analysis method. Our numerical study shows that the dispersive mirror can direct light with different wavelengths into different angles in the entire solar spectrum, maintaining very low energy loss. Our approach will not only improve the energy harvesting efficiency, but also lower the cost by using single junction cells instead of multi-layer tandem solar cells. Moreover, this approach has the minimal disruption to the existing solar concentrator infrastructures.

  8. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential.

    PubMed

    Tanese, D; Gurevich, E; Baboux, F; Jacqmin, T; Lemaître, A; Galopin, E; Sagnes, I; Amo, A; Bloch, J; Akkermans, E

    2014-04-11

    We report on the study of a polariton gas confined in a quasiperiodic one-dimensional cavity, described by a Fibonacci sequence. Imaging the polariton modes both in real and reciprocal space, we observe features characteristic of their fractal energy spectrum such as the opening of minigaps obeying the gap labeling theorem and log-periodic oscillations of the integrated density of states. These observations are accurately reproduced solving an effective 1D Schrödinger equation, illustrating the potential of cavity polaritons as a quantum simulator in complex topological geometries. PMID:24765996

  9. Calculation of quasiparticle energy spectrum of silicon using the correlated Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Ishihara, Takamitsu; Yamagami, Hiroshi; Matsuzawa, Kazuya; Yasuhara, Hiroshi

    1999-06-01

    We present quasiparticle energy spectrum calculations of silicon using the correlated Hartree-Fock method proposed by Yasuhara and Takada [Phys. Rev. B 43, 7200 (1991)], in which the information on the effective mass of an electron liquid is included in the form of a nonlocal spin-parallel potential in addition to a local potential. The calculated band gaps of silicon are much improved, compared with the local density approximation values. The minimum indirect band gap is evaluated to be 1.37 eV.

  10. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  11. Quantum control of isomerization by robust navigation in the energy spectrum

    SciTech Connect

    Murgida, G. E.; Arranz, F. J.; Borondo, F.

    2015-12-07

    In this paper, we present a detailed study on the application of the quantum control technique of navigation in the energy spectrum to chemical isomerization processes, namely, CN–Li⇆ Li–CN. This technique is based on the controlled time variation of a Hamiltonian parameter, an external uniform electric field in our case. The main result of our work establishes that the navigation involved in the method is robust, in the sense that quite sizable deviations from a pre-established control parameter time profile can be introduced and still get good final results. This is specially relevant thinking of a experimental implementation of the method.

  12. Comparative characteristics of electron energy spectrum in PIG and arc type discharge plasmas

    NASA Technical Reports Server (NTRS)

    Romanyuk, L. I.; Suavilnyy, N. Y.

    1978-01-01

    The electron distribution functions relative to the velocity component directed along the magnetic field are compared for PIG and arc type discharges. The identity of these functions for the plasma region pierced by the primary electron beam and their difference in the peripheral part of the discharge are shown. It is concluded that the electron distribution function in the PIG type discharge is formed during one transit of the primary electron through the discharge gap. The mechanisms of electron energy spectrum formation in both the axis region and the peripheral region of the discharge are discussed.

  13. Excitation energy-dependent nature of Raman scattering spectrum in GaInNAs/GaAs quantum well structures

    PubMed Central

    2012-01-01

    The excitation energy-dependent nature of Raman scattering spectrum, vibration, electronic or both, has been studied using different excitation sources on as-grown and annealed n- and p-type modulation-doped Ga1 − xInxNyAs1 − y/GaAs quantum well structures. The samples were grown by molecular beam technique with different N concentrations (y = 0%, 0.9%, 1.2%, 1.7%) at the same In concentration of 32%. Micro-Raman measurements have been carried out using 532 and 758 nm lines of diode lasers, and the 1064 nm line of the Nd-YAG laser has been used for Fourier transform-Raman scattering measurements. Raman scattering measurements with different excitation sources have revealed that the excitation energy is the decisive mechanism on the nature of the Raman scattering spectrum. When the excitation energy is close to the electronic band gap energy of any constituent semiconductor materials in the sample, electronic transition dominates the spectrum, leading to a very broad peak. In the condition that the excitation energy is much higher than the band gap energy, only vibrational modes contribute to the Raman scattering spectrum of the samples. Line shapes of the Raman scattering spectrum with the 785 and 1064 nm lines of lasers have been observed to be very broad peaks, whose absolute peak energy values are in good agreement with the ones obtained from photoluminescence measurements. On the other hand, Raman scattering spectrum with the 532 nm line has exhibited only vibrational modes. As a complementary tool of Raman scattering measurements with the excitation source of 532 nm, which shows weak vibrational transitions, attenuated total reflectance infrared spectroscopy has been also carried out. The results exhibited that the nature of the Raman scattering spectrum is strongly excitation energy-dependent, and with suitable excitation energy, electronic and/or vibrational transitions can be investigated. PMID:23190628

  14. Galactic antiproton spectrum at high energies: Background expectation versus exotic contributions

    SciTech Connect

    Bringmann, Torsten; Salati, Pierre

    2007-04-15

    A new generation of upcoming space-based experiments will soon start to probe the spectrum of cosmic-ray antiparticles with an unprecedented accuracy and, in particular, will open up a window to energies much higher than those accessible so far. It is thus timely to carefully investigate the expected antiparticle fluxes at high energies. Here, we perform such an analysis for the case of antiprotons. We consider both standard sources as the collision of other cosmic rays with interstellar matter, as well as exotic contributions from dark matter annihilations in the galactic halo. Up to energies well above 100 GeV, we find that the background flux in antiprotons is almost uniquely determined by the existing low-energy data on various cosmic-ray species; for even higher energies, however, the uncertainties in the parameters of the underlying propagation model eventually become significant. We also show that if the dark matter is composed of particles with masses at the TeV scale, which is naturally expected in extra-dimensional models as well as in certain parameter regions of supersymmetric models, the annihilation flux can become comparable to--or even dominate--the antiproton background at the high energies considered here.

  15. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  16. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it

    NASA Astrophysics Data System (ADS)

    Unger, Michael; Farrar, Glennys R.; Anchordoqui, Luis A.

    2015-12-01

    The sharp change in slope of the ultrahigh energy cosmic ray (UHECR) spectrum around 1 018.6 eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle and intermediate composition above, has proved exceedingly challenging to understand theoretically, without fine-tuning. We propose a mechanism whereby photo-disintegration of ultrahigh energy nuclei in the region surrounding a UHECR accelerator accounts for the observed spectrum and inferred composition at Earth. For suitable source conditions, the model reproduces the spectrum and the composition over the entire extragalactic cosmic ray energy range, i.e. above 1 017.5 eV . Predictions for the spectrum and flavors of neutrinos resulting from this process are also presented.

  17. Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders

    NASA Astrophysics Data System (ADS)

    Celestin, Sebastien; Xu, Wei; Pasko, Victor P.

    2015-12-01

    In this paper, we model the production and acceleration of thermal runaway electrons during negative corona flash stages of stepping lightning leaders and the corresponding terrestrial gamma ray flashes (TGFs) or negative cloud-to-ground (-CG) lightning-produced X-ray bursts in a unified fashion. We show how the source photon spectrum and fluence depend on the potential drop formed in the lightning leader tip region during corona flash and how the X-ray burst spectrum progressively converges toward typical TGF spectrum as the potential drop increases. Additionally, we show that the number of streamers produced in a negative corona flash, the source electron energy distribution function, the corresponding number of photons, and the photon energy distribution and transport through the atmosphere up to low-orbit satellite altitudes exhibit a very strong dependence on this potential drop. This leads to a threshold effect causing X-rays produced by leaders with potentials lower than those producing typical TGFs extremely unlikely to be detected by low-orbit satellites. Moreover, from the number of photons in X-ray bursts produced by -CGs estimated from ground observations, we show that the proportionality between the number of thermal runaway electrons and the square of the potential drop in the leader tip region during negative corona flash proposed earlier leads to typical photon fluences on the order of 1 ph/cm2 at an altitude of 500 km and a radial distance of 200 km for intracloud lightning discharges producing 300 MV potential drops, which is consistent with observations of TGF fluences and spectra from satellites.

  18. Observation of variations in the T +T neutron spectrum with varying center-of-mass energy

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J. A.; Zylstra, A.; Petrasso, R. D.; Forrest, C.; Glebov, V. Yu.; Knauer, J. P.; Marshall, F. J.; Michel, T.; Sangster, T. C.; Seka, W.; Shmayda, W.; Stoeckl, C.; Sayre, D.; Caggiano, J. A.; Casey, D. T.; Hatarik, R.; McNabb, D. P.; Pino, J. E.; Bacher, A.; Herrmann, H.; Kim, Y.; Bourgade, J.-. L.; Landoas, O.; Rosse, B.

    2014-10-01

    C. BRUNE, Ohio University - The T +T fusion reaction, which produces two neutrons and an alpha particle in a 3-body final state, has been studied in a series of direct-drive, T2-gas-filled thin (~3 μm) glass-capsule implosions at OMEGA. The shapes of the reaction product spectra are dictated by the final-state interactions between n- α (5He in the ground- and excited states) and n-n (di-neutron interaction). The theory behind final-state interactions is not well understood and detailed study of the reaction product spectra can teach us about the intricacies of the nuclear theory involved. In this presentation, measured neutron spectra are interpreted in terms of the sequential decay through 5He in the ground- and excited states. A clear energy dependence in relative reaction-channel strength at low center-of-mass energy (18-55 keV) is observed in the data. The role of the di-neutron interaction could be more clearly deduced through study of the alpha particle spectrum. In the presentation, we also identify steps required to successfully measure the T +T alpha spectrum in future experiments. This work was supported in part by the U.S. DOE, NLUF, LLNL and LLE.

  19. The spectrum of galactic electrons with energies between 10 and 900 GeV

    NASA Technical Reports Server (NTRS)

    Mueller, D.; Meyer, P.

    1973-01-01

    A cosmic-ray electron detector has been exposed during 1970 in three high-altitude balloon flights from Palestine, Texas. The data analysis is based on results from accelerator calibrations with electrons and pions at SLAC. Discrimination against a contamination of the electron data due to interacting protons has been achieved by statistical methods. The resulting differential energy spectrum of cosmic-ray electrons can be well described by a single power law with spectral index 2.66 plus or minus 0.1 up to energies around 250 GeV. Within the experimental uncertainty, no change in this spectral slope up to almost 1000 GeV can be detected. Some implications of these results are discussed.

  20. Analysis of the Zeeman effect on the energy spectrum in graphenes

    SciTech Connect

    Feng, Sze-Shiang; Mochena, Mogus

    2011-08-15

    An analysis of the Zeeman effect with a strong external magnetic field on the energy spectrum in graphene is presented. In general, the Hamiltonian of graphene in applied electric and magnetic fields is not of SO(1, 2) invariance even in the nearest-neighbor approximation because of the Zeeman coupling. But an approximate SO(1, 2) invariance can be obtained when the applied magnetic field is very strong. This approximate invariance can be used to relate the energy structure of graphene in the presence of both electric and magnetic fields to that when there is only magnetic field. Therefore, it can help explain the recently found quantum Hall conductance (4q{sup 2}/h)L for L = 0.1.

  1. Exclusive Measurements of the b to s gamma Transition Rate and Photon Energy Spectrum

    SciTech Connect

    Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, David Nathan; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; Khan, A.; Blinov, V.E.; Buzykaev, A.R.; /more authors..

    2012-08-30

    We use 429 fb{sup -1} of e{sup +}e{sup -} collision data collected at the {Upsilon}(4S) resonance with the BABAR detector to measure the radiative transition rate of b {yields} s{gamma} with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be {Beta}({bar B} {yields} Xs{gamma}) = (3.29 {+-} 0.19 {+-} 0.48) x 10{sup -4} where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, m{sub b} and {mu}{sub {pi}}{sup 2}, in the kinetic and shape function models.

  2. Vertical transition energies vs. absorption maxima: illustration with the UV absorption spectrum of ethylene.

    PubMed

    Lasorne, Benjamin; Jornet-Somoza, Joaquim; Meyer, Hans-Dieter; Lauvergnat, David; Robb, Michael A; Gatti, Fabien

    2014-02-01

    We revisit the validity of making a direct comparison between measured absorption maxima and computed vertical transition energies within 0.1 eV to calibrate an excited-state level of theory. This is illustrated on the UV absorption spectrum of ethylene for which the usual experimental values of 7.66 eV (V←N) and 7.11 eV (R(3s)←N) cannot be compared directly to the results of electronic structure calculations for two very different reasons. After validation of our level of theory against experimental data, a new experimental reference of 7.28 eV is suggested for benchmarking the Rydberg state, and the often-cited average transition energy (7.80 eV) is confirmed as a safer estimate for the valence state. PMID:23711543

  3. Intensity and energy spectrum of electrons accelerated in the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1974-01-01

    Shock waves accelerate charged particles in the solar atmosphere, in interplanetary space and around the earth's magnetosphere. Acceleration of both electrons and protons occurs in the earth's bow-shock. The acceleration of protons up to 100 keV appears to be a steady state process and may even occur upstream from the bow shock due to waves generated by reflected solar wind protons. The electrons, on the other hand, are known to be accelerated in or near the shock. The intensity of these electrons ranges from about 100 to 2,000 per sr-sq cm-sec-keV at 14 keV. The energy spectrum is not a simple power low and is highly variable. If segments of the spectra are fitted to a power low, slopes ranging from -2 to -4.5 result over the energy range 0.5 to 100 keV.

  4. Possible Interpretations of the High Energy Cosmic Ray Electron Spectrum Measured with the Fermi Space Telescope

    SciTech Connect

    Grasso, D.; Profumo, S.; Strong, A.W.; Baldini, L.; Bellazzini, R.; Bloom, E.D.; Bregeon, J.; Di Bernardo, G.; Gaggero, D.; Giglietto, N.; Kamae, T.; Latronico, L.; Longo, F.; Mazziotta, M.N.; Moiseev, A.A.; Morselli, A.; Ormes, J.F.; Pesce-Rollins, M.; Pohl, M.; Razzano, M.; Sgro, C.; /INFN, Pisa /INFN, Pisa /NASA, Ames

    2012-04-25

    The Fermi Large Area Telescope has provided the measurement of the high energy (20 GeV to 1 TeV) cosmic ray electrons and positrons spectrum with unprecedented accuracy. This measurement represents a unique probe for studying the origin and diffusive propagation of cosmic rays as well as for looking for possible evidences of Dark Matter. In this contribution we focus mainly on astrophysical sources of cosmic ray electrons and positrons which include the standard primary and secondary diffuse galactic contribution, as well as nearby point-sources which are expected to contribute more significantly to higher energies. In this framework, we discuss possible interpretations of Fermi results in relation with other recent experimental data on energetic electrons and positrons (specifically the most recent ones reported by PAMELA, ATIC, PPB-BETS and H.E.S.S.).

  5. Energy enhancement and spectrum narrowing in terahertz electron sources due to negative mass instability

    NASA Astrophysics Data System (ADS)

    Lurie, Yu.; Bratman, V. L.; Savilov, A. V.

    2016-05-01

    Simulations of coherent spontaneous undulator radiation in a waveguide demonstrate that the use of negative mass instability (NMI) for retaining longitudinal sizes of dense electron bunches, which are formed in laser-driven photoinjectors, allows one to increase power capabilities of a terahertz radiation source by many times. The NMI is realized in an undulator with combined helical and over-resonance uniform longitudinal magnetic fields due to nonisochronous longitudinal oscillations of electrons, whose frequencies increase/decrease with increasing/decreasing particle energy. In such conditions, an effective longitudinal size of the bunches can be preserved at long distance even at an extremely high electron density. Correspondingly, an energy extraction efficiency of more than 20% is revealed at a narrow frequency radiation spectrum, suggesting realization of a compact and powerful THz source.

  6. Spectrum and energy levels of the sodiumlike ion Sr/sup 27+/

    SciTech Connect

    Reader, J.

    1986-06-01

    The spectrum of Sr/sup 27+/ was observed with a laser-produced plasma and a 2.2-m grazing-incidence spectrograph in the region 12--160 A-circle. From the identification of 37 lines, a system of 27 energy levels of the type 2p-italic/sup 6/n-italicl-italic was determined. The level system includes the configurations n-italics-italic(n-italic = 3-5), n-italicp-italic(n-italic = 3-6), n-italicd-italic(n-italic = 3-7), n-italicf-italic(n-italic = 4-6), and 5g-italic. The ionization energy is determined as 11 188200 +- 1000 cm/sup -1/ (1387.16 +- 0.12 eV).

  7. Very heavy solar cosmic rays: Energy spectrum and implications for lunar erosion

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.; Comstock, G. M.

    1972-01-01

    Particle tracks were investigated in the glass plate of a neutral density (clear flint) optical filter housed in the Surveyor 3 TV camera but exposed directly to space. The track density vs depth curve was determined and descends sharply from approximately 2.6 million tracks/sq cm at a depth of 3.6 mg/sq cm to about 35/sq cm at 700 mg/sq cm. Several tracks were of V-shapes characteristic of high energy induced fission. The erosion rate on the moon due to solar wind ions was determined from the energy spectrum, and was found to be low (0 to 2 x 10 to the minus 8th power cm/yr).

  8. Neutron energy spectrum from 120 GeV protons on a thick copper target

    SciTech Connect

    Shigyo, Nobuhiro; Sanami, Toshiya; Kajimoto, Tsuyoshi; Iwamoto, Yosuke; Hagiwara, Masayuki; Saito, Kiwamu; Ishibashi, Kenji; Nakashima, Hiroshi; Sakamoto, Yukio; Lee, Hee-Seock; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  9. LDEF (Postflight), P0006 : Linear Energy Transfer Spectrum Measurement Experiment, Tray F02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), P0006 : Linear Energy Transfer Spectrum Measurement Experiment, Tray F02 EL-1994-00193 LDEF (Postflight), P0006 : Linear Energy Transfer Spectrum Measurement Experiment, Tray F02 The postflight photograph was taken in the SAEF II at KSC after the experiment was removed from the LDEF. The Linear Energy Transfer (LET) Experiment (P0006) is one of three passive experiments located in a 6 inch deep LDEF peripheral tray. The experiment consist of two types of detectors, thermal luminescence and track type, assembled in a sealed container and a silvered TEFLON® thermal cover. Two other experiments, the Seeds in Space Experiment (P0004-01) and the Space Exposed Experiment Developed for Students (SEEDS) P0004-02 were companion experiments in the tray. The experiment hardware was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. Areas of the experiment tray flanges covered by the tray clamp blocks are unstained and clearly visible. The sealed Linear Energy Transfer (LET) Experiment container was machined from aluminum and assembled together with a Buna-N o-ring seal. The canister, approximately 6 inches in diameter and 4.5 inches high, was mounted on the top side of the experiment tray and painted white with Chemglaze II A-276. Thermal control was accomplished by placing the canister on fiberglass isolators and covering the experiment tray with a thin (5 mil) silvered TEFLON® specular cover secured with Velcro pads located on each of the P0004 canister domes and on clips attached to the tray sidewalls. The silvered TEFLON® thermal cover appears to be intact with no apparent damage. The surroundings reflected in the thermal covers specular surface provides an array of colors including white, browns, silver, red, and aqua.

  10. The deep space galactic cosmic ray lineal energy spectrum at solar minimum

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Spence, H. E.; Zeitlin, C. J.; Looper, M. D.; Golightly, M. J.; Schwadron, N. A.; Townsend, L. W.; Mazur, J. E.; Blake, J. B.; Iwata, Y.

    2013-06-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument is an energetic particle telescope on board the Lunar Reconnaissance Orbiter spacecraft. CRaTER measures energetic charged particles that have sufficient energy to penetrate the outer shielding of the instrument (about 12 MeV/nucleon). Galactic cosmic rays (GCR) with these energies are the primary radiation concern for spacecraft and astronauts outside of the Earth's magnetosphere during times of minimal solar activity. These particles can easily penetrate typical shielding and damage electronics, causing increased electronics failure rates and single event upsets. When this radiation impacts biological cells, it causes an increased risk of cancer. The CRaTER instrument was built to characterize the radiation dose and lineal energy with unprecedented time and energy resolution and was fortuitously flown during a period of time that coincided with the highest GCR fluxes in the modern space age. We report here this worst-case GCR lineal energy spectrum. Observations are made behind a thin aluminum window and different thicknesses of tissue-equivalent plastic. These measurements provide important observational data points to compare with current model predictions of the dose deposited by energetic particles within a tissue-like material.

  11. Prediction of background in low-energy spectrum of Phoswich detector.

    PubMed

    Arun, B; Manohari, M; Mathiyarasu, R; Rajagopal, V; Jose, M T

    2014-12-01

    In vivo monitoring of actinides in occupational workers is done using Phoswich detector by measuring the low-energy X ray and gamma rays. Quantification of actinides like plutonium and americium in the lungs is extremely difficult due to higher background in the low-energy regions, which is from ambient background as well as from the subject. In the latter case, it is mainly due to the Compton scattering of body potassium, which varies person-to-person. Hence, an accurate prediction of subject-specific background counts in the lower-energy regions is an essential element in the in vivo measurement of plutonium and americium. Empirical equations are established for the prediction of background count rate in (239)Pu and (241)Am lower-energy regions, called 'target regions', as a function of count rate in the monitoring region (97-130 keV)/(40)K region in the high-energy spectrum, weight-to-height ratio of the subject (scattering parameter) and the gender. PMID:24300341

  12. Long-term channel adjustment and geomorphic feature creation by vegetation in a lowland, low energy river

    NASA Astrophysics Data System (ADS)

    Grabowski, Robert; Gurnell, Angela

    2016-04-01

    Physical habitat restoration is increasingly being used to improve the ecological status of rivers. This is particularly true for lowland streams which are perceived to lack sufficient energy to create new features or to flush out fine sediment derived from agricultural and urban sources. However, this study has found that even in low-energy, base-flow dominated chalk streams, physical habitat improvement can happen naturally without direct human intervention. Furthermore this positive change is achieved by components of the river that are often regarded as management problems: in-stream macrophytes (i.e. weed), riparian trees, woody debris, and most importantly fine sediment. This project investigated the long-term changes in channel planform for the River Frome (Dorset, UK) over the last 120 years and the role of aquatic and riparian vegetation in driving this change. Agricultural census data, historical maps, recent aerial images and field observations were analysed within a process-based, hierarchical framework for hydromorphological assessment, developed in the EU FP7 REFORM project, to investigate the source and timing of fine sediment production in the catchment, to quantify the reach-scale geomorphic response, and to identify vegetation-related bedforms that could be responsible for the adjustment. The analysis reveals that the channel has narrowed and become more sinuous in the last 50-60 years. The timing of this planform adjustment correlates with substantial changes in land use and agricultural practices (post-World War II) that are known to increase soil erosion and sediment connectivity. The field observations and recent aerial images suggest that the increased delivery of fine sediment to the channel has been translated into geomorphic adjustment and diversification though the interactions between vegetation, water flow and sediment. Emergent aquatic macrophytes are retaining fine sediment, leading to the development of submerged shelves that aggrade

  13. Fat or lean: adjustment of endogenous energy stores to predictable and unpredictable changes in allostatic load

    USGS Publications Warehouse

    Schultner, Jannik; Kitaysky, Alexander S.; Welcker, Jorg; Hatch, Scott

    2013-01-01

    6. Overall, results of this study support the ‘lean and fit’ hypothesis. We conclude that increased energy stores may not necessarily reflect better environmental conditions experienced by individuals or predict their higher fitness. A major advantage of adopting a lean physique when environmental conditions allow may be the avoidance of additional energetic costs for moving a heavy body. In breeding seabirds, this advantage may be more important during chick-rearing. In the focal species, the secretion of glucocorticoids might be involved in regulation of energy stores within a life history stage but does not appear to mediate an adaptive shift in energy stores between the incubating and chick-rearing stages of reproduction.

  14. Turbulence in the solar wind: what controls the slope of the energy spectrum?

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland

    2016-04-01

    The spectrum of solar wind fluctuations is well described by a power law with an average spectral index -5/3 for periods between a few hours and a few minutes. However, the spectral index varies with stream speed and with the correlation of velocity and magnetic field fluctuations (Alfvénicity): the spectrum is softer in fast and Alfvénic streams. Roughly, this variation can be understood in term of the turbulent age of fluctuations at a given scale: the faster is the wind or the stronger is the correlation than the younger is the turbulence. Since the coronal spectrum is supposed to be rather flat (at least in the fast solar wind), smaller spectral indices correspond to less evolved spectra. According to this interpretation, one would expect spectral slope to change with distance as the turbulence ages, while observations report fairly stable spectral slopes. In order to quantify the effect of wind speed and Alfvénicity on the spectral slope, we ran a series of numerical simulations of MHD turbulence in the framework of the Expanding Box Model (EBM). In EBM we can vary the expansion rate and the initial correlation of fluctuations so as to investigate the existence of a threshold value for each parameter or for a combination of the two that could explain the observed variation and stability of the spectral index. We present preliminary results that indicate that the expansion rate does control the spectral index of energy when the Alfvénicity is high.

  15. Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-01-01

    We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.

  16. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra

    PubMed Central

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-01-01

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail. PMID:24225900

  17. Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.

    1978-01-01

    A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.

  18. Two-atom energy spectrum in a harmonic trap near a Feshbach resonance at higher partial waves

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Liang, Yi; Bhaduri, Rajat K.

    2009-09-01

    Two atoms in an optical lattice may be made to interact strongly at higher partial waves near a Feshbach resonance. These atoms, under appropriate constraints, could be bosonic or fermionic. The universal l=2 energy spectrum for such a system, with a caveat, is presented in this paper and checked with the spectrum obtained by direct numerical integration of the Schrödinger equation. The results reported here extend those of Yip for p -wave resonance [S.-K. Yip, Phys. Rev. A 78, 013612 (2008)], while exploring the limitations of a universal expression for the spectrum for the higher partial waves.

  19. Chandra Low Energy Transmission Grating Spectrum of SS Cygni in Outburst

    NASA Astrophysics Data System (ADS)

    Mauche, Christopher W.

    2004-07-01

    We have fitted the Chandra Low Energy Transmission Grating (LETG) spectrum of SS Cygni in outburst with a single-temperature blackbody suffering the photoelectric opacity of a neutral column density and the scattering opacity of an outflowing wind. We find that this simple model is capable of reproducing the essential features of the observed spectrum with the blackbody temperature Tbl~250+/-50 kK, hydrogen column density NH~5.0+2.9-1.5×1019cm-2, fractional emitting area f~5.6+60-4.5×10-3, boundary layer luminosity Lbl~5+18-3×1033ergss-1, wind velocity v~2500kms-1, wind mass-loss rate Mw~1.1×1016gs-1, and arbitrary values of the wind ionization fractions of 20 ions of O, Ne, Mg, Si, S, and Fe. Given that in outburst the accretion disk luminosity Ldisk~1×1035ergss-1, Lbl/Ldisk~0.05+0.18-0.03, which can be explained if the white dwarf (or an equatorial belt thereon) is rotating with an angular velocity Ωwd~0.7+0.1-0.2 Hz, hence Vrotsini~2300kms-1. This paper is dedicated to the memory and accomplishments of my colleague and friend Janet Akyüz Mattei, who died on 2004 March 22 after a long battle with acute myelogenous leukemia. Her passing is a great loss to the astronomical community, both amateur and professional.

  20. Accurate variational calculations and analysis of the HOCl vibrational energy spectrum

    SciTech Connect

    Skokov, S.; Qi, J.; Bowman, J.M.; Yang, C.; Gray, S.K.; Peterson, K.A. |; Mandelshtam, V.A.

    1998-12-01

    Large scale variational calculations for the vibrational states of HOCl are performed using a recently developed, accurate {ital ab initio} potential energy surface. Three different approaches for obtaining vibrational states are employed and contrasted; a truncation/recoupling scheme with direct diagonalization, the Lanczos method, and Chebyshev iteration with filter diagonalization. The complete spectrum of bound states for nonrotating HOCl is computed and analyzed within a random matrix theory framework. This analysis indicates almost entirely regular dynamics with only a small degree of chaos. The nearly regular spectral structure allows us to make assignments for the most significant part of the spectrum, based on analysis of coordinate expectation values and eigenfunctions. Ground state dipole moments and dipole transition probabilities are also calculated using accurate {ital ab initio} data. Computed values are in good agreement with available experimental data. Some exact rovibrational calculations for J=1, including Coriolis coupling, are performed. The exact results are nearly identical with those obtained from the adiabatic rotation approximation and very close to those from the centrifugal sudden approximation, thus indicating a very small degree of asymmetry and Coriolis coupling for the HOCl molecule. {copyright} {ital 1998 American Institute of Physics.}

  1. Cathodoluminescence Spectrum Imaging Software

    Energy Science and Technology Software Center (ESTSC)

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  2. a New Study on the Energy Spectrum and Composition of Primary Cosmic Ray Flux at Energies ~ 1014 - 1016 EV Using the GRAPES-3 Array at Ooty

    NASA Astrophysics Data System (ADS)

    Tonwar, S. C.; Gupta, S. K.; Mohanty, D. K.; Mohanty, P. K.; Sivaprasad, K.; Sreekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Nonaka, T.; Tanaka, H.; Yoshikoshi, T.

    Data collected with the 217-detector air shower array and the 560 m2 area tracking muon detector, being operated at Ooty in southern India by the India-Japan (Tata Institute-Osaka City University) collaboration, GRAPES, have been analyzed to study the shape of the energy spectrum and the composition around the knee. It is shown that the muon multiplicity distribution, observed with the highly modular muon detector, permits a relatively reliable measurement on the composition of primary flux which then helps in a more accurate reconstruction of the energy spectrum from the observed shower size spectrum. The highlights of the GRAPES array, the analysis procedure and the results are presented.

  3. THE {gamma}-RAY SPECTRUM OF GEMINGA AND THE INVERSE COMPTON MODEL OF PULSAR HIGH-ENERGY EMISSION

    SciTech Connect

    Lyutikov, Maxim

    2012-09-20

    We reanalyze the Fermi spectra of the Geminga and Vela pulsars. We find that the spectrum of Geminga above the break is well approximated by a simple power law without the exponential cutoff, making Geminga's spectrum similar to that of Crab. Vela's broadband {gamma}-ray spectrum is equally well fit with both the exponential cutoff and the double power-law shapes. In the broadband double power-law fits, for a typical Fermi spectrum of a bright {gamma}-ray pulsar, most of the errors accumulate due to the arbitrary parameterization of the spectral roll-off. In addition, a power law with an exponential cutoff gives an acceptable fit for the underlying double power-law spectrum for a very broad range of parameters, making such fitting procedures insensitive to the underlying Fermi photon spectrum. Our results have important implications for the mechanism of pulsar high-energy emission. A number of observed properties of {gamma}-ray pulsars-i.e., the broken power-law spectra without exponential cutoffs and stretching in the case of Crab beyond the maximal curvature limit, spectral breaks close to or exceeding the maximal breaks due to curvature emission, patterns of the relative intensities of the leading and trailing pulses in the Crab repeated in the X-ray and {gamma}-ray regions, presence of profile peaks at lower energies aligned with {gamma}-ray peaks-all point to the inverse Compton origin of the high-energy emission from majority of pulsars.

  4. Cooperative Spectrum Sensing with Multiple Antennas Using Adaptive Double-Threshold Based Energy Detector in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Bagwari, A.; Tomar, G. S.

    2014-04-01

    In Cognitive radio networks, spectrum sensing is used to sense the unused spectrum in an opportunistic manner. In this paper, multiple antennas based energy detector utilizing adaptive double-threshold for spectrum sensing is proposed, which enhances detection performance and overcomes sensing failure problem as well. The detection threshold is made adaptive to the fluctuation of the received signal power in each local detector of cognitive radio (CR) user. Numerical results show that by using multiple antennas at the CRs, it is possible to significantly improve detection performance at very low signal-to-noise ratio (SNR). Further, the scheme was analyzed in conjunction with cooperative spectrum sensing (CSS), where CRs utilize selection combining of the decision statistics obtained by an adaptive double-threshold energy detector for making a binary decision of the presence or absence of a primary user. The decision of each CR is forwarded over error free orthogonal channels to the fusion centre, which takes the final decision of a spectrum hole. It is further found that CSS with multiple antenna-based energy detector with adaptive double-threshold improves detection performance around 26.8 % as compared to hierarchical with quantization method at -12 dB SNR, under the condition that a small number of sensing nodes are used in spectrum sensing.

  5. Effects of live weight adjusted feeding strategy on plasma indicators of energy balance in Holstein cows managed for extended lactation.

    PubMed

    Gaillard, C; Vestergaard, M; Weisbjerg, M R; Sehested, J

    2016-04-01

    In early lactation, most of the dairy cows are in negative energy balance; the extent and duration depend in part on the feeding strategy. Previous studies showed an increased lactation milk yield by use of a live weight (LW) adjusted feeding strategy with a high energy diet before and a reduced energy diet after LW nadir compared with a standard diet throughout lactation. The objective of the present study was to examine how such an individualized feeding strategy affects plasma indicators of energy status. It was hypothesized that an energy-enriched diet until LW nadir will reduce the severity of the negative energy balance, and that the reduction in diet energy concentration from LW nadir will extend the negative energy balance period further. Sixty-two Holstein cows (30% first parity) were managed for 16 months extended lactation and randomly allocated to one of two feeding strategies at calving. Two partially mixed rations were used, one with a high energy density (HD) and a 50 : 50 forage : concentrate ratio, and one with a lower energy density (LD, control diet) and a 60 : 40 forage : concentrate ratio. Half of the cows were offered the HD diet until they reached at least 42 days in milk and a LW gain⩾0 kg/day based on a 5-days LW average, and were then shifted to the LD diet (strategy HD-LD). The other half of the cows were offered the LD diet throughout lactation (control strategy LD-LD). Weekly blood samples were drawn for analysis of plasma metabolites and hormones. Before the shift in diet, the HD-LD cows had higher glucose and lower beta-hydroxybutyrate and non-esterified fatty acids (NEFA) concentrations than the LD-LD cows. After the shift until 36 weeks after calving, plasma NEFA was higher in HD-LD than LD-LD cows. Insulin and insulin-like growth factor-1 were not affected by the feeding strategy. To conclude, in early lactation, the energy-enriched diet reduced the negative energy balance. Plasma NEFA was higher in HD-LD than LD-LD cows from

  6. Energy spectrum of cascade showers induced by cosmic ray muons in the range from 50 GeV to 5 TeV

    NASA Technical Reports Server (NTRS)

    Ashitkov, V. D.; Kirina, T. M.; Klimakov, A. P.; Kokoulin, R. P.; Petrukhin, A. A.; Yumatov, V. I.

    1985-01-01

    The energy spectrum of cascade showers induced by electromagnetic interactions of high energy muons of horizontal cosmic ray flux in iron absorber was measured. The total observation time exceeded 22,000 hours. Both the energy spectrum and angular distributions of cascade showers are fairly described in terms of the usual muon generation processes, with a single power index of the parent meson spectrum over the muon energy range from 150 GeV to 5 TeV.

  7. Energy space entanglement spectrum of pairing models with s-wave and p-wave symmetry

    NASA Astrophysics Data System (ADS)

    Rodríguez-Laguna, Javier; Berganza, Miguel Ibáñez; Sierra, Germán

    2014-07-01

    We study the entanglement between blocks of energy levels in 1D models for s-wave and p-wave superconductivity. The ground state entanglement entropy and entanglement spectrum (ES) of a block of ℓ levels around the Fermi point is obtained and related to its physical properties. In the superconducting phase at large coupling, the maximal entropy grows with the number of levels L as 1/2ln(L). The number of levels presenting maximal entanglement is shown to estimate the number of Cooper pairs involved in pairing correlations. Moreover, the properties of the ES signal the presence of the Read-Green quantum phase transition in the p +ip model, and of the Moore-Read line, which is difficult to characterize. This work establishes a link between physical properties of superconducting phases and quantum entanglement.

  8. Turbulent magnetic energy spectrum and the cancellation function of solar photospheric magnetic fields

    NASA Astrophysics Data System (ADS)

    Marschalkó, G.; Petrovay, K.; Petrovay, K.

    2013-11-01

    A simple analytical relation of form α=2κ-1 between the magnetic energy spectral exponent α of the turbulent magnetic field in the solar photosphere and its magnetic flux cancellation exponent κ, valid under certain restrictive assumptions, is tested and extended outside its range of validity in a series of Monte Carlo simulations. In these numerical tests artificial ``magnetograms'' are constructed in 1D and 2D by superposing a discrete set of Fourier modes of the magnetic field distribution with amplitudes following a power law spectrum and measuring the cancellation function on these simulated magnetograms. Our results confirm the validity of the analytical relation and extend it to the domain α<-1 where κ-> 0 as α-> -∞. The observationally derived upper limit of 0.38 on κ implies α<-0.24 in the granular size range, apparently at odds with a small scale dynamo driven in the inertial range.

  9. Investigation of energy transfer mechanisms between Bi(2+) and Tm(3+) by time-resolved spectrum.

    PubMed

    Li, Yang; Sharafudeen, Kaniyarakkal; Dong, Guoping; Ma, Zhijun; Qiu, Jianrong

    2013-11-01

    Here, we report for the first time the optical properties of Bi(2+) and Tm(3+) co-doped germanate glasses and elucidate the potential of this material as substrates to improve the performance of CdTe solar cell. A strong emission peak at 800nm is observed under the excitation of 450-700nm in this material. The energy transfer processes from the transitions of Bi(2+) [(2)P3/2(1)→(2)P1/2]: Tm(3+) [(3)H6→(3)H4] are investigated by time-resolved luminescence spectroscopy. A cover glass exhibiting an ultra-broadband response spectrum covering the entire solar visible wavelength region is suggested to enhance the conversion efficiency of CdTe solar cells significantly. PMID:23850790

  10. High-energy x-ray backlighter spectrum measurements using calibrated image plates

    SciTech Connect

    Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q.

    2012-10-10

    The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji{trademark} MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

  11. Work function, field emitted electron energy spectrum and surface composition of silicon covered molybdenum

    NASA Astrophysics Data System (ADS)

    Osamu Nishikawa; Haruhiko Koyama; Masahiko Tomitori

    1991-04-01

    The variation of work functions and electronic structures of Mo surfaces with Si coverages was studied using the atom-probe with a field emission electron spectrometer (AP/FEES). The field emission microscope images of a Si/Mo surface indicate that the deposited Si atoms form micro-clusters, the work function of which is found to be more than 10% larger than the Mo substrate. The FEES spectrum of the clusters implies that the Si/Mo surface is semiconductive even if the Si coverage is reduced to a fraction of a monolayer. The work functions of the Mo silicides formed by heating the Si/Mo tips are about 10% smaller than that of a clean Mo surface and the FEES analysis indicates that the silicide surface is metallic. At the Si-Mo and silicide-Mo interfaces, energy spectra, work functions and compositions vary abruptly in the range of one to a few atomic layers.

  12. LDEF (Prelaunch), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Trapped Proton Energy Spectrum Determination Experiment is one of four (4) experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experiments are located in peripheral LDEF integrated experiment trays in the D03 and D09 tray locations. The identifica tion plate on the lower right corner of the experiment mounting plate identifies the experiments location and orientation in the experiment tray. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, consist of a primary experiment and three (3) sub experiments mounted on an aluminum mount ing plate. The primary experiment components include six (6) stacks of CR-39 passive detectors in individual aluminum housings and an aluminum mounting structure, configured to provide the desired exposure for the detector stacks. The secondary experiments consist of the Neutron and Proton Activation experiment that expose metal samples to the ambient flux throughout the mis sion, the Microsphere Dosimetry experiment housed in a cylindrical aluminum container and the Flux Measurement by Ion Trapping experiment consisting of a variety of sample materials that are exposed to the space environment for the total mission. The exterior surfaces of the mounting plate, the experiment housings and the support structure are coated with IITRI S13G-LO white paint.The experiment is assembled using non-magnetic stainless steel fasteners and safety wire.

  13. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks

    PubMed Central

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network’s life time. PMID:27447489

  14. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    PubMed

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time. PMID:27447489

  15. Energy spectrum and arrival direction of primary cosmic rays of energy above 10 to the 18th power eV

    NASA Technical Reports Server (NTRS)

    Nagano, M.; Honda, M.; Mori, M.; Teshima, M.; Hayashida, N.; He, C. X.; Ishikawa, F.; Kamata, K.; Matsubara, Y.; Ohoka, H.

    1985-01-01

    The observation of ultra high energy cosmic rays with 20 sq km array has started at Akeno. The preliminary results on energy spectrum and arrival direction of energies above 10 to the 18th eV are prsented with data accumulated for four years with the 1 sq km array, for two years with the 4 sq km array and for a half year with the new array. The energy spectrum is consistent with the previous experiments showing the flattening above 10 to the 18.5 eV.

  16. Measurement of low energy neutron spectrum below 10 keV with the slowing down time method

    NASA Astrophysics Data System (ADS)

    Maekawa, F.; Oyama, Y.

    1996-02-01

    No general-purpose method of neutron spectrum measurement in the energy region around eV has been established so far. Neutron spectrum measurement in this energy region was attempted by applying the slowing down time (SDT) method, for the first time, inside two types of shield for fusion reactors, type 316 stainless steel (SS316) and SS316/water layered assemblies, incorporating with pulsed neutrons. In the SS316 assembly, neutron spectra below 1 keV were measured with an accuracy less than 10%. Although application of the SDT method was expected very difficult for SS316/water assembly since it contained lightest atoms of hydrogen, the measurement demonstrated that the SDT method was still effective for such shield assembly. The SDT method was also extended to thermal flux measurement in the SS316/water assembly. The present study demonstrated that the SDT method was effective for neutron spectrum measurement in the energy region around eV.

  17. Energy spectrum and flux of 3- to 20-Mev neutrons and 1- to 10-Mev gamma rays in the atmosphere

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lockwood, J. A.; Saint Onge, R. N.; Friling, L. A.

    1973-01-01

    An experiment is described which was designed to measure the neutron and gamma ray energy spectrums and fluxes in the energy intervals 3 to 20 MeV and 1 to 10 MeV, respectively. In addition, from the 3 to 20-MeV proton recoil spectrums it is possible to infer the shape of the neutron energy spectrum from 20 to 50 MeV. The detecting system utilized a separate charged particle rejection scheme and a two-parameter display system for the output from the pulse shape discrimination which separated gamma rays from neutrons (n). Two long-duration flights were made with this detector in 1970 at Palestine, Tex. (P sub c = 4.6 Gv) and at Ft. Churchill, Canada (P sub c = 0.3 Gv).

  18. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  19. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect

    Xu, Tong; Chen, Min Li, Fei-Yu; Yu, Lu-Le; Sheng, Zheng-Ming; SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG ; Zhang, Jie; Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  20. The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector

    SciTech Connect

    IceCube Collaboration; Abbasi, R.

    2010-05-11

    The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

  1. On the Evolution of and High-Energy Emission from GHz-Peaked-Spectrum Sources

    SciTech Connect

    Stawarz, L.; Ostorero, L.; Begelman, M.C.; Moderski, R.; Kataoka, J.; Wagner, S.

    2007-12-18

    Here we discuss evolution and broad-band emission of compact (< kpc) lobes in young radio sources. We propose a simple dynamical description for these objects, consisting of a relativistic jet propagating into a uniform gaseous medium in the central parts of an elliptical host. In the framework of the proposed model, we follow the evolution of ultrarelativistic electrons injected from a terminal hotspot of a jet to expanding lobes, taking into account their adiabatic energy losses as well as radiative cooling. This allows us to discuss the broad-band lobe emission of young radio sources. In particular, we argue that the observed spectral turnover in the radio synchrotron spectra of these objects cannot originate from the synchrotron self-absorption process but is most likely due to free-free absorption effects connected with neutral clouds of interstellar medium engulfed by the expanding lobes and photoionized by active centers. We also find a relatively strong and complex high-energy emission component produced by inverse-Compton up-scattering of various surrounding photon fields by the lobes electrons. We argue that such high energy radiation is strong enough to account for several observed properties of GHz-peaked-spectrum (GPS) radio galaxies at UV and X-ray frequencies. In addition, this emission is expected to extend up to GeV (or possibly even TeV) photon energies and can thus be probed by several modern {gamma}-ray instruments. In particular, we suggest that GPS radio galaxies should constitute a relatively numerous class of extragalactic sources detected by GLAST.

  2. Heisenberg antiferromagnet on Cayley trees: Low-energy spectrum and even/odd site imbalance

    NASA Astrophysics Data System (ADS)

    Changlani, Hitesh J.; Ghosh, Shivam; Henley, Christopher L.; Läuchli, Andreas M.

    2013-02-01

    To understand the role of local sublattice imbalance in low-energy spectra of s=(1)/(2) quantum antiferromagnets, we study the s=(1)/(2) quantum nearest neighbor Heisenberg antiferromagnet on the coordination 3 Cayley tree. We perform many-body calculations using an implementation of the density matrix renormalization group (DMRG) technique for generic tree graphs. We discover that the bond-centered Cayley tree has a quasidegenerate set of a low-lying tower of states and an “anomalous” singlet-triplet finite-size gap scaling. For understanding the construction of the first excited state from the many-body ground state, we consider a wave function ansatz given by the single-mode approximation, which yields a high overlap with the DMRG wave function. Observing the ground-state entanglement spectrum leads us to a picture of the low-energy degrees of freedom being “giant spins” arising out of sublattice imbalance, which helps us analytically understand the scaling of the finite-size spin gap. The Schwinger-boson mean-field theory has been generalized to nonuniform lattices, and ground states have been found which are spatially inhomogeneous in the mean-field parameters.

  3. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  4. The Energy Spectrum of Energetic Particles Downstream of Turbulent Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Giacalone, Joe; Neugebauer, Marcia

    2008-01-01

    Using simple analytic considerations, numerical simulations, and data analysis, we discuss the physics of charged-particle acceleration by turbulent, rippled, collisionless shocks. The standard theory of diffusive shock acceleration predicts that the energetic-particle energy spectrum, in the region of shocked plasma, is a function of the plasma density jump. But because of the interaction of the shock with plasma turbulence, the jump in plasma density varies in time and from place to place on the shock front. Here we show that for reasonable parameters, the shape of the energetic-particle energy spectra downstream of any given shock is nearly independent of location along the shock front, even though the density jump varies. This is because energetic particles are mobile and sample many turbulent fluctuations during their acceleration. This result holds for shocks having smaller scale ripples than the large-scale radius of curvature (Dc) of the shock. Thus, it applies to the interpretation of spacecraft observations of traveling interplanetary shocks provided the spacecraft separation is less than Dc. This result is confirmed with simple analytic considerations and numerical simulations that solve the combined magnetohydrodynamic equations for a plasma and energetic test particles using the well-known Parker transport equation. This conclusion is further supported by our analysis of ACE and Geotail observations of a few interplanetary shocks.

  5. Photoionization mass spectrometric study of HOCl: Photoionization efficiency spectrum and ionization energy

    SciTech Connect

    Thorn, R.P. Jr.; Stief, L.J.

    1999-02-18

    The photoionization efficiency (PIE) spectrum of HOCl was measured over the wavelength range {lambda} = 102--115 nm, using a discharge flow-photoionization mass spectrometer (DF-PIMS) apparatus coupled to a synchrotron radiation source. The PIE spectra displayed steplike behavior near threshold. This study represents the first determination of the HOCl photoionization efficiency spectrum and the photoionization threshold. A value of 11.12{sub 3} {+-} 0.01{sub 8} eV was obtained for the adiabatic ionization energy (IE) of HOCl from analysis of photoion thresholds, corresponding to the HOCl{sup +}(X{sup 2}A{double_prime}) {l_arrow} HOCl(X{sup 1}A{double_prime}) transition. The PIMS result is identical to the only previous experimental measurement and in good agreement with a recent ab initio calculation. From the result for IE(HOCl), a value of 999.4 {+-} 3.6 kJ mol{sup {minus}1} was calculated for {Delta}{sub f}H{degree}{sub 0}(HOCl{sup +}), and from the latter, the proton affinity of ClO at T = 0 K, PA{sub 0}(ClO), was determined to be 629.6 {+-} 3.6 kJ mol{sup {minus}1}. At 298 K, the computed values for {Delta}{sub f}H{degree}{sub 298}(HOCl{sup +}) and PA{sub 298}(ClO) are 996.5 {+-} 3.6 and 635.1 {+-} 3.6 kJ mol{sup {minus}1}, respectively.

  6. Adjustment disorder

    MedlinePlus

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, Va: American Psychiatric Publishing. 2013. Powell AD. Grief, bereavement, and adjustment disorders. In: Stern TA, Rosenbaum ...

  7. Spectrum and anisotropy of cosmic rays at TeV-PeV-energies and contribution of nearby sources

    NASA Astrophysics Data System (ADS)

    Sveshnikova, L. G.; Strelnikova, O. N.; Ptuskin, V. S.

    2013-12-01

    The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of "two-dimensional" anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV-1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.

  8. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  9. Time-resolved energy spectrum of the ion beam generated in the plasma focus

    SciTech Connect

    Kilic, H.

    1984-01-01

    A major feature of plasma focus devices in the acceleration of deuterons to energy values of several MeV with an externally applied voltage of only 15 kV on the electrodes. A plasma focus machine (49 ..mu..f, 15 kV, 5.5 kJ) was built and operated in six different pressure regimes (8-3 Torr, D/sub 2/ filling) to measure deuteron beam energies, beam emission time, and absolute beam intensity as a function of drilling pressure and of hard x-ray intensities. A Faraday cup used as an ion collector was placed in a differentially pumped chamber (10/sup -4/ 10/sup -5/ Torr) which was separated from the plasma focus chamber via a 150 /sup +/m diameter pinhole. The energy spectrum of the deuteron beam from a plasma focus discharge was determined with a new time-of-flight method and with a differential filter (2.5 ..mu..m - 750 ..mu..m, mylar filters) method in the energy interval 0.2 to 9 MeV. The ion time-of-flight method accounts for the time structure of the ion beam source on a nanosecond time scale. The new experimental results show that, in beam mode operation (3 - 4 Torr D/sub 2/), more than 10/sup 14/ deuterons with energy 0.2-0.5 MeV are accelerated in each discharge in the electrode axis (2.3 x 10/sup -4/ sr) with corresponding peak ion current approx. = 200 mA, and more than 10/sup 12/ deuterons are accelerated in the energy interval 0.5 - 9 MeV with a peak current of 10 mA. The ion beam acceleration mechanism is strongly dependent on the filling pressure of the discharge chamber. The deuteron beam intensity increases with hard x-ray intensity which fits a particle acceleration process in which the same field accelerates both ion and electron beams.

  10. Magnetotransport in double quantum well with inverted energy spectrum: HgTe/CdHgTe

    NASA Astrophysics Data System (ADS)

    Yakunin, M. V.; Suslov, A. V.; Popov, M. R.; Novik, E. G.; Dvoretsky, S. A.; Mikhailov, N. N.

    2016-02-01

    We present an experimental study of the double-quantum-well (DQW) system made of two-dimensional layers with inverted energy band spectrum: HgTe. The magnetotransport reveals a considerably larger overlap of the conduction and valence subbands than in known HgTe single quantum wells (QW), which may be regulated here by an applied gate voltage Vg. This large overlap manifests itself in a much higher critical field Bc separating the range above it with a plain behavior of the Hall magnetoresistance ρx y(B ) , where the quantum peculiarities shift linearly with Vg, and the range below with a complicated behavior. In the latter case, specific structures in ρx y(B ) are formed like a double-N -shaped ρx y(B ) , reentrant sign-alternating quantum Hall effect with transitions into a zero-filling-factor state, etc., which are clearly manifested here due to better magnetic quantization at high fields, as compared to the features seen earlier in a single HgTe QW. The coexisting electrons and holes were found in the whole investigated range of positive and negative Vg as revealed (i) from fits to the low-field N -shaped ρx y(B ) , (ii) from the Fourier analysis of oscillations in ρx x(B ) , and (iii) from a specific behavior of ρx y(B ) at high positive Vg. A peculiar feature here is that the found electron density n remains almost constant in the whole range of investigated Vg while the hole density p drops down from the value a factor of 6 larger than n at extreme negative Vg to almost zero at extreme positive Vg passing through the charge-neutrality point. We show that this difference between n and p stems from an order of magnitude larger density of states for holes in the lateral valence subband maxima than for electrons in the conduction subband minimum. We analyze our observations on the basis of a calculated picture of magnetic levels in a DQW and suggest that their specificity is due to (i) a nonmonotonic course of the valence subband magnetic levels and an

  11. Energy Spectrum of the Recurrent Variation of Galactic Cosmic Rays During the Solar Minimum of Cycles 23/24

    NASA Astrophysics Data System (ADS)

    Gil, Agnieszka; Alania, Michael V.

    2016-08-01

    The Sun during the recent epoch of solar activity operated in a different way than during the last 60 years, being less active. We study temporal changes of the energy spectrum of the first three harmonics of the 27-day variation of the galactic cosmic rays (GCR) intensity during the unusual, recent solar minimum, between Solar Cycles 23 and 24 (SC 23/24) and compare with four previous minima. We show that the energy spectrum of the amplitudes of the recurrent variation of the GCR intensity is hard in the maximum epochs and is soft in the minimum epochs during Solar Cycles 20 - 24, but with peculiarities during the Solar Minimum 23/24. In particular, while the energy/rigidity spectrum of the amplitudes of the first harmonic of the recurrent variation of the GCR intensity behaves practically the same as for previous epochs, the energy/rigidity spectrum of the amplitudes of the second and the third harmonics demonstrates a pronounced softening. We attribute this phenomenon to the decrease of the extension of the heliosphere caused by the decrease of the solar-wind dynamic pressure during the unusual Solar Minimum 23/24.

  12. A rigorous description of the energy spectrum of the isopropanol molecule taking into account the internal rotation of hydroxyl

    NASA Astrophysics Data System (ADS)

    Burenin, A. V.

    2016-06-01

    Using the methods of a group chain, a rigorous algebraic model is constructed to describe the energy spectrum of the isopropanol molecule (CH3)2CHOH with an allowance for the internal rotation of hydroxyl. The model is rigorous in the sense that its correctness is limited only by the correctness of a chosen symmetry of internal dynamics of the molecule.

  13. Energy Spectrum of the Recurrent Variation of Galactic Cosmic Rays During the Solar Minimum of Cycles 23/24

    NASA Astrophysics Data System (ADS)

    Gil, Agnieszka; Alania, Michael V.

    2016-07-01

    The Sun during the recent epoch of solar activity operated in a different way than during the last 60 years, being less active. We study temporal changes of the energy spectrum of the first three harmonics of the 27-day variation of the galactic cosmic rays (GCR) intensity during the unusual, recent solar minimum, between Solar Cycles 23 and 24 (SC 23/24) and compare with four previous minima. We show that the energy spectrum of the amplitudes of the recurrent variation of the GCR intensity is hard in the maximum epochs and is soft in the minimum epochs during Solar Cycles 20 - 24, but with peculiarities during the Solar Minimum 23/24. In particular, while the energy/rigidity spectrum of the amplitudes of the first harmonic of the recurrent variation of the GCR intensity behaves practically the same as for previous epochs, the energy/rigidity spectrum of the amplitudes of the second and the third harmonics demonstrates a pronounced softening. We attribute this phenomenon to the decrease of the extension of the heliosphere caused by the decrease of the solar-wind dynamic pressure during the unusual Solar Minimum 23/24.

  14. Measurement of the B→Xsγ branching fraction and photon energy spectrum using the recoil method

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Tico, J. Garra; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Del Amo Sanchez, P.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Bevan, A. J.; George, K. A.; di Lodovico, F.; Sacco, R.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de La Vaissière, Ch.; Hamon, O.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Perez, A.; Prendki, J.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Biesiada, J.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Neal, H.

    2008-03-01

    We present a measurement of the branching fraction and photon-energy spectrum for the decay B→Xsγ using data from the BABAR experiment. The data sample corresponds to an integrated luminosity of 210fb-1, from which approximately 680 000 B Bmacr events are tagged by a fully reconstructed hadronic decay of one of the B mesons. In the decay of the second B meson, an isolated high-energy photon is identified. We measure B(B→Xsγ)=(3.66±0.85stat±0.60syst)×10-4 for photon energies Eγ above 1.9 GeV in the B rest frame. From the measured spectrum we calculate the first and second moments for different minimum photon energies, which are used to extract the heavy-quark parameters mb and μπ2. In addition, measurements of the direct CP asymmetry and isospin asymmetry are presented.

  15. The energy spectrum of 20 keV-20 MeV electrons accelerated in large solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Mewaldt, R. A.; Van Hollebeke, M. A. I.

    1982-01-01

    IMP 6, 7, and 8 measurements of the energy spectrum of 20 keV to 20 MeV electrons observed from large solar flares are presented. To minimize propagation effects, only events from flares at W30 deg to W90 deg solar longitude are considered. The energy spectra are constructed using the maximum flux observed at each energy. It is shown that these spectra are representative of the spectra of the electrons escaping from the sun over this range of energies. It is found that every event shows the same spectral shape: a double power law with a smooth transition around 100-200 keV and power law exponents of 0.6-2.0 below and 2.4-4.3 above. The more intense the event, the harder the observed spectrum; in certain cases, the spectra are observed to steepen above 3 MeV.

  16. Energy spectrum of cosmic protons and helium nuclei by a hybrid measurement at 4300 m a.s.l.

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; J. Bi, X.; Bolognino, I.; Branchini, P.; Budano, A.; K. Calabrese Melcarne, A.; Camarri, P.; Cao, Z.; Cardarelli, R.; Catalanotti, S.; Z. Chen, S.; L. Chen, T.; Creti, P.; W. Cui, S.; Z. Dai, B.; D'Amone, A.; Danzengluobu; I. De, Mitri; B. D'Ettorre, Piazzoli; T. Di, Girolamo; G. Di, Sciascio; F. Feng, C.; Zhaoyang, Feng; Zhenyong, Feng; B. Gou, Q.; Q. Guo, Y.; H. He, H.; Haibing, Hu; Hongbo, Hu; Iacovacci, M.; Iuppa, R.; Y. Jia, H.; Labaciren; J. Li, H.; Liguori, G.; C., Liu; J., Liu; Y. Liu, M.; H., Lu; L. Ma, L.; H. Ma, X.; Mancarella, G.; M. Mari, S.; Marsella, G.; Martello, D.; Mastroianni, S.; Montini, P.; C. Ning, C.; Panareo, M.; Panico, B.; Perrone, L.; Pistilli, P.; Ruggieri, F.; Salvini, P.; Santonico, R.; N. Sbano, S.; R. Shen, P.; D. Sheng, X.; Shi, F.; Surdo, A.; H. Tan, Y.; Vallania, P.; Vernetto, S.; Vigorito, C.; H., Wang; Y. Wu, C.; R. Wu, H.; Xue, L.; Y. Yang, Q.; C. Yang, X.; G. Yao, Z.; F. Yuan, A.; Zha, M.; M. Zhang, H.; Zhang, L.; Y. Zhang, X.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; X. Zhou, X.; R. Zhu, F.; Q. Zhu, Q.; Zizzi, G.; X. Bai, Y.; J. Chen, M.; Y., Chen; H. Feng, S.; Gao, B.; H. Gu, M.; Hou, C.; X. Li, X.; J., Liu; L. Liu, J.; X., Wang; Xiao, G.; K. Zhang, B.; S. Zhang, S.; B., Zhou; Zuo, X.

    2014-04-01

    The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called “knee” by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100-700 TeV). The observed energy spectrum is compatible with a single power law with index γ=-2.63±0.06.

  17. Balloon measurements of the energy spectrum of cosmic electrons between 1 GeV and 25 GeV

    NASA Technical Reports Server (NTRS)

    Earl, J. A.; Neely, D. E.; Rygg, T. A.

    1971-01-01

    During three balloon flights made in 1966 and 1967, cosmic electrons were investigated with the aid of a hodoscope detector which provided extensive and detailed information on each cosmic ray event triggering the apparatus. Similar information obtained during calibration exposures to protons and pions as well as to electrons was used to provide identification of cosmic electrons and to determine their energies. Differential primary electron intensities measured in the range from 1 GeV to 25 GeV were substantially larger than some earlier measurements. Taken in conjunction with existing measurements at energies above 100 GeV, this indicates that the energy spectrum of cosmic electrons is steeper than that of cosmic-ray nuclei and, consequently, suggests that Compton/synchrotron energy loss plays a significant role in shaping the electron spectrum.

  18. Measurement of the composition and energy spectrum of cosmic rays above 10 sup 15 eV

    SciTech Connect

    Berley, D. ); Ellsworth, R.W. )

    1990-03-20

    The availability of a launch vehicle with the capability of carrying a heavy payload, would make possible several definitive experiments including: (1) the determination of the composition and energy spectrum of cosmic rays up to 10{sup 12} electron volts (eV) (2) the observation of gamma rays from compact sources, up to energies of 10{sup 12} eV. The instrument proposed, weighing about 30 tons, is designed to address these fundamental questions.

  19. Infrared properties of the energy spectrum in freely decaying isotropic turbulence.

    PubMed

    McComb, W D

    2016-01-01

    The low wave number expansion of the energy spectrum takes the well known form E(k,t)=E_{2}(t)k^{2}+E_{4}(t)k^{4}+⋯, where the coefficients are weighted integrals against the correlation function C(r,t). We show that expressing E(k,t) in terms of the longitudinal correlation function f(r,t) immediately yields E_{2}(t)=0 by cancellation. We verify that the same result is obtained using the correlation function C(r,t), provided only that f(r,t) falls off faster than r^{-3} at large values of r. As power-law forms are widely studied for the purpose of establishing bounds, we consider the family of model correlations f(r,t)=α_{n}(t)r^{-n}, for positive integer n, at large values of the separation r. We find that for the special case n=3, the relationship connecting f(r,t) and C(r,t) becomes indeterminate, and (exceptionally) E_{2}≠0, but that this solution is unphysical in that the viscous term in the Kármán-Howarth equation vanishes. Lastly, we show that E_{4}(t) is independent of time, without needing to assume the exponential decrease of correlation functions at large distances. PMID:26871151

  20. Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Doert, M.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Nowak, N.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zanin, R.; Horns, D.; Martín, J.; Meyer, M.

    2015-03-01

    The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (χred2 = 35 / 26). Using systematic uncertainties of the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 ±3stat +31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state-of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 μG magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.

  1. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  2. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-04-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  3. High intensity discharge lamp self-adjusting ballast system sensitive to the radiant energy or heat of the lamp

    SciTech Connect

    Kuhnel, D.S.; Ottenstein, S.A.

    1987-07-21

    This patent describes a self-adjusting ballast system for mercury vapor, high intensity discharge lamps having outputs of 100 watts or greater, comprising: a direct current source; a lamp circuit containing a high intensity discharge lamp; sensing means for sensing the radiant energy output of the lamp; a pulse width modulator which, in response to the output of the sensing means, varies the width of the pulses that power the lamp during warm-up of the lamp; a high frequency oscillator; a DC to AC converter that converts current from the direct source to pulses of alternating current for powering the lamp, the converter comprising: at least one switch for gating current to the lamp; a switch control means, responsive to the high frequency oscillator, for controlling the switch and controlling the frequency of the alternating current pulses that power the lamp; current sensing means for sensing the current being supplied to the lamp; and current control means for limiting the current through the lamp to a predetermined safe level when the current sensed by the current sensing means exceeds a reference value.

  4. Adjustable microforceps.

    PubMed

    Bao, J Y

    1991-04-01

    The commonly used microforceps have a much greater opening distance and spring resistance than needed. A piece of plastic ring or rubber band can be used to adjust the opening distance and reduce most of the spring resistance, making the user feel more comfortable and less fatigued. PMID:2051437

  5. The energy spectrum of 0.16 to 2 MeV electrons during solar quiet times

    NASA Technical Reports Server (NTRS)

    Hurford, G. J.; Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    New observations of the quiet-time energy spectrum of 0.16 to 2 MeV electrons were made with the Caltech Electron/Isotope Spectrometer which was launched on IMP-7 in September 1972. Earlier measurements of quiet-time electrons in this energy range by other groups have resulted in spectra differing by more than an order of magnitude in intensity. A minimum quiet-time flux somewhat lower than the lowest previously reported spectra and consistent with an extrapolation of the spectrum measured at higher energies was found. A galactic secondary source of knock-on electrons is consistent with the results and with independent studies of the interstellar spectra of cosmic ray nuclei provided that solar modulation does not suppress the 0.162 MeV electron flux by more than a factor of approximately 3. Although not required, other recently suggested sources may also contribute to the observed fluxes.

  6. Statistical and evaporation models for the neutron emission energy spectrum in the center-of-mass system from fission fragments

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Talou, P.; Stetcu, I.; Chadwick, M. B.

    2013-09-01

    The neutron emission energy spectra in the CMS (center-of-mass) frame from two compound nuclei produced by fission are studied. The neutron spectra calculated with the Hauser-Feshbach statistical model are compared with the evaporation theory, and the definition of the temperature is revisited. Using the Monte Carlo technique we average the CMS neutron spectra from many fission fragments to construct the representative CMS spectrum from both the light and heavy fragments. The CMS spectra for each fission fragment pair are also converted into the laboratory frame to calculate the total prompt fission neutron spectrum that can be observed experimentally. This is compared to measured laboratory data for thermal neutron induced fission on 235U. We show that the Hauser-Feshbach calculation gives a different spectrum shape than the Madland-Nix model calculation.

  7. Double Threshold Energy Detection Based Cooperative Spectrum Sensing for Cognitive Radio Networks with QoS Guarantee

    NASA Astrophysics Data System (ADS)

    Hu, Hang; Yu, Hong; Zhang, Yongzhi

    2013-03-01

    Cooperative spectrum sensing, which can greatly improve the ability of discovering the spectrum opportunities, is regarded as an enabling mechanism for cognitive radio (CR) networks. In this paper, we employ a double threshold detection method in energy detector to perform spectrum sensing, only the CR users with reliable sensing information are allowed to transmit one bit local decision to the fusion center. Simulation results will show that our proposed double threshold detection method could not only improve the sensing performance but also save the bandwidth of the reporting channel compared with the conventional detection method with one threshold. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of CR users, it has been shown that the optimal number of CR users is related to the price of these Quality-of-Service (QoS) requirements.

  8. An accurate method for energy spectrum reconstruction of Linac beams based on EPID measurements of scatter radiation

    NASA Astrophysics Data System (ADS)

    Juste, B.; Miró, R.; Verdú, G.; Santos, A.

    2014-06-01

    This work presents a methodology to reconstruct a Linac high energy photon spectrum beam. The method is based on EPID scatter images generated when the incident photon beam impinges onto a plastic block. The distribution of scatter radiation produced by this scattering object placed on the external EPID surface and centered at the beam field size was measured. The scatter distribution was also simulated for a series of monoenergetic identical geometry photon beams. Monte Carlo simulations were used to predict the scattered photons for monoenergetic photon beams at 92 different locations, with 0.5 cm increments and at 8.5 cm from the centre of the scattering material. Measurements were performed with the same geometry using a 6 MeV photon beam produced by the linear accelerator. A system of linear equations was generated to combine the polyenergetic EPID measurements with the monoenergetic simulation results. Regularization techniques were applied to solve the system for the incident photon spectrum. A linear matrix system, A×S=E, was developed to describe the scattering interactions and their relationship to the primary spectrum (S). A is the monoenergetic scatter matrix determined from the Monte Carlo simulations, S is the incident photon spectrum, and E represents the scatter distribution characterized by EPID measurement. Direct matrix inversion methods produce results that are not physically consistent due to errors inherent in the system, therefore Tikhonov regularization methods were applied to address the effects of these errors and to solve the system for obtaining a consistent bremsstrahlung spectrum.

  9. Measurements of the T(t,2n)4He neutron spectrum at low reactant energies from inertial confinement implosions.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Manuel, M J-E; Sinenian, N; Zylstra, A B; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Radha, P B; Meyerhofer, D D; Sangster, T C; McNabb, D P; Amendt, P A; Boyd, R N; Hatchett, S P; Quaglioni, S; Rygg, J R; Thompson, I J; Bacher, A D; Herrmann, H W; Kim, Y H

    2012-07-13

    Measurements of the neutron spectrum from the T(t,2n)4He (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium (DT) gas-filled capsules were imploded to study the tt reaction in thermonuclear plasmas at low reactant center-of-mass (c.m.) energies. In contrast to accelerator experiments at higher c.m. energies (above 100 keV), these results indicate a negligible n + 5He reaction channel at a c.m. energy of 23 keV. PMID:23030170

  10. Application of the BINS superheated drop detector spectrometer to the {sup 9}Be(p,xn) neutron energy spectrum determination

    SciTech Connect

    Di Fulvio, A.; Ciolini, R.; Mirzajani, N.; Romei, C.; D'Errico, F.; Bedogni, R.; Esposito, J.; Zafiropoulos, D.; Colautti, P.

    2013-07-18

    In the framework of TRASCO-BNCT project, a Bubble Interactive Neutron Spectrometer (BINS) device was applied to the characterization of the angle-and energy-differential neutron spectra generated by the {sup 9}Be(p,xn)reaction. The BINS spectrometer uses two superheated emulsion detectors, sequentially operated at different temperatures and thus provides a series of six sharp threshold responses, covering the 0.1-10 MeV neutron energy range. Spectrum unfolding of the data was performed by means of MAXED code. The obtained angle, energy-differential spectra were compared with those measured with a Bonner sphere spectrometer, a silicon telescope spectrometer and literature data.

  11. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    SciTech Connect

    Borovskiy, A. V.; Galkin, A. L.; Kalashnikov, M. P.

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  12. Review of Cosmic Background Radiation Spectrum Measurements:Limits on Distortions, Energy Release, and Cosmological Processes

    SciTech Connect

    Smoot, G.F.

    1986-01-01

    This paper reviews the three major cosmic microwave background radiation (CMBR) spectrum measurement programs conducted and published since the last (XVII) IAU General Assembly. The results are consistent with a Planckian spectrum with temperature 2.72 {+-} 0.03 K spanning a wavelength range of 0.1 to 12 cm. Limits on possible distortions and implications are outlined. Ongoing and future measurements are discussed.

  13. Review of cosmic background radiation spectrum measurements: limits on distortions, energy release, and cosmological processes

    SciTech Connect

    Smoot, G.F.

    1986-01-01

    This paper reviews the three major cosmic microwave background radiation (CMBR) spectrum measurement programs conducted and published since the last (XVII) IAU General Assembly. The results are consistent with a Planckian spectrum with temperature 2.72 +- 0.03 K spanning a wavelength range of 0.1 to 12 cm. Limits on possible distortions and implications are outlined. Ongoing and future measurements are discussed.

  14. Shaft adjuster

    DOEpatents

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  15. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    PubMed

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-01-01

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191

  16. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks

    PubMed Central

    Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal

    2015-01-01

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191

  17. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  18. The lunar neutron energy spectrum inferred from the isotope compositions of rare-earth elements and hafnium in Apollo samples

    NASA Astrophysics Data System (ADS)

    Albalat, Emmanuelle; Blichert-Toft, Janne; Telouk, Philippe; Albarède, Francis

    2015-11-01

    The isotopic abundances of Sm, Gd, Dy, Er, Yb, and Hf have been measured in nine lunar samples by MC-ICP-MS. The data were corrected for both instrumental mass bias and natural isotope fractionation. We used the data to calculate the total flux and energy spectrum of the neutrons absorbed by the rocks. We write the constitutive equations of the isotopic changes for these elements induced by neutrons and solve the inverse problem by computing local energy averages. Resonant absorption peaks can be used as convenient kernels to define the spectrum of epithermal neutrons. We find that 149Sm and 157Gd anomalies correlate with neutron flux density for E < 0.015 eV (r2 > 0.98) and E ≈ 0.13 eV (r2 > 0.85), while no significant correlation exists between the ratio of these anomalies and the epithermal/thermal flux ratio at any value of energy. Neutron flux density variations can be used to trace the proportions of neutrons scattered out of the samples. The spectrum in the thermal region follows the expected E - 1 / 2 dependence but with 'notches' corresponding to neutron absorption. A major notch at the lowest end of the epithermal neutron spectrum (0.2-0.8 eV) is possibly due to absorption of neutrons by 151Eu, 167Er, and 149Sm. In general, we find a rather good correlation between the neutron flux density at specific energies and the exposure age, which suggests a mean residence time of the samples at the surface of the regolith of 2-300 Ma. Another correlation of epithermal neutrons with sample wt% FeO + TiO2 is consistent with orbital reflectance observations.

  19. Theoretical Study of the Energy Spectrum of the 2p3 3p in S IX and Related Electron Transitions

    NASA Astrophysics Data System (ADS)

    Boganovich, P.; Karpuškienė, R.; Udris, A.

    The energy spectrum of S IX was calculated by the configuration interaction method. Calculated wavelengths and oscillator strengths of the electric dipole transitions 2s22p33p-2s22p33d, 2s22p33s-2s22p33p and the two-electron transitions 2s2p5-2s22p33p are presented. The results obtained were compared with the available experimental data.

  20. Rigorous description of an energy spectrum of the isopropanol molecule taking into account the internal rotation of methyl tops

    NASA Astrophysics Data System (ADS)

    Burenin, A. V.

    2016-06-01

    By using the group chain methods, a rigorous algebraic model is constructed to describe the energy spectrum of the isopropanol molecule (CH3)2CHOH with an allowance for the internal motion of hydroxil and two identical methyl tops. The model is rigorous in the sense that its correctness is limited only by the correctness of a symmetry chosen to describe internal dynamics of the molecule.

  1. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system.

    PubMed

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error. PMID:20059163

  2. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  3. Parameterizations of the linear energy transfer spectrum for the CRaTER instrument during the LRO mission

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Charara, Y. M.; Delauder, N.; Pourarsalan, M.; Anderson, J. A.; Fisher, C. M.; Spence, H. E.; Schwadron, N. A.; Golightly, M. J.; Cucinotta, F. A.

    2010-03-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument was launched as part of the Lunar Reconnaissance Orbiter (LRO) spacecraft in June 2009. Its purpose is to measure the linear energy transfer (LET) spectrum in lunar orbit as an aid in determining risks to human crews on future lunar missions. Part of the preparations for the mission involved estimating the LET spectrum for the anticipated environment that the instrument is likely to see during the 1 year operational phase of the LRO mission. Detailed estimates of LET spectra in the six silicon detectors and two tissue equivalent plastic segments were made using the beta version of the HETC-HEDS Monte Carlo transport code. Tables of LET in each detector component, for incident particle elemental species from hydrogen through iron, were carried out at incident particle energies from 20 MeV per nucleon to 3 GeV per nucleon. The LET values in these tables have been parameterized by elemental species and energy for ease in quickly and accurately estimating the LET response for any input solar or galactic cosmic ray spectrum likely to be encountered during the lifetime of the instrument. The parameterized LET values are in excellent agreement with the HETC-HEDS calculations. Typical differences are on the order of a few percent. These parameterizations will also be useful in validation studies of the Earth-Moon-Mars Radiation Environment Module using CRaTER measurements in lunar orbit.

  4. Scaling Laws of the Two-Electron Sum-Energy Spectrum in Strong-Field Double Ionization.

    PubMed

    Ye, Difa; Li, Min; Fu, Libin; Liu, Jie; Gong, Qihuang; Liu, Yunquan; Ullrich, J

    2015-09-18

    The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT). At higher intensities the spectra collapse into a single distribution. This behavior can be well explained within a semiclassical model providing clear evidence of the importance of multiple recollisions in the BRT regime. Here, ultrafast thermalization between both electrons is found occurring within three optical cycles only and leaving its clear footprint in the sum-energy spectra. PMID:26430991

  5. Evidence for variability of the hard X-ray feature in the Hercules X-1 energy spectrum

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Boclet, D.; Durochoux, P.; Hameury, J. M.; Prantzos, N.; Haymes, R. C.

    1983-01-01

    The hard X-ray spectrum of HER X-1 was measured for the first time with a high resolution (1.4 keV FWHM) germanium spectrometer. The observation was performed near the peak of the on-state in the 35 day cycle and the 1.24 pulsations were observed between the energies of 20 keV and 70 keV. The feature corresponds to an excess of 7.5 sigma over the low energy continuum. Smooth continuum models are poor fits to the entire energy range (chance probabilities of 2 percent or less). The best fit energies are 35 keV for an absorption line and 39 keV for an emission line. These are significantly lower energies than those derived from previous experiments. A direct comparison of our data with the results of the MPI/AIT group shows statistically significant variations which strongly suggest variability in the source.

  6. Parametrized energy spectrum of cosmic-ray protons with kinetic energies down to 1 GeV

    NASA Technical Reports Server (NTRS)

    Tan, L. C.

    1985-01-01

    A new estimation of the interstellar proton spectrum is made in which the source term of primary protons is taken from shock acceleration theory and the cosmic ray propagation calculation is based on a proposed nonuniform galactic disk model.

  7. Novel patterns of torsion-inversion-rotation energy levels in the ν11 asymmetric CH-stretch spectrum of methylamine.

    PubMed

    Dawadi, Mahesh B; Michael Lindsay, C; Chirokolava, Andrei; Perry, David S; Xu, Li-Hong

    2013-03-14

    The high-resolution infrared spectrum of methylamine (CH3NH2) has been recorded using slit-jet direct absorption spectroscopy in the ν11 CH-stretch region (2965-3005 cm(-1)) with a resolution of 0.0025 cm(-1). The 621 lines assigned by ground state combination differences represent 27 substates with |K(')| ≤ 2 for the A, B, E1, and E2 symmetries. The spectrum of CH3NH2 is complicated by torsion and inversion tunneling connecting six equivalent minima. The upper states K(') = 0, ± 1 for E1 and E2 are substantially perturbed by "dark" states. The result in the spectrum is multiplets of 2 or 3 states with mixed bright∕dark character. The analysis of the spectrum reveals two qualitative differences in the energy level pattern relative to the vibrational ground state and relative to available data on the lower frequency vibrations (NH2 wag and CN stretch). First at J(') = 0, there is a different ordering of the levels connected by torsion-inversion tunneling. Second, the low-J splittings indicative of torsion-rotation coupling are greatly reduced in the ν11 excited state relative to the vibrational ground state for both the E1 and E2 species, suggesting the partial suppression of torsional tunneling in the ν11 CH-stretch excited state. PMID:23514487

  8. Absolute determination of inelastic mean-free paths and surface excitation parameters by absolute reflection electron energy loss spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2005-11-01

    An analytical approach was proposed for simultaneously determining an inelastic mean-free path (IMFP) and a surface excitation parameter (SEP) with absolute units by the analysis of an absolute experimental reflection electron energy loss spectrum. The IMFPs and SEPs in Ni were deduced for electrons of 300 to 3000 eV. The obtained IMFPs were in good agreement with those calculated using the TPP-2M equation. The Chen-type empirical formula was proposed for determining the SEP. The results confirmed the applicability of the present approach for determining the IMFP and SEP for medium-energy electrons.

  9. ENERGY-DEPENDENT GAMMA-RAY BURST PULSE WIDTH DUE TO THE CURVATURE EFFECT AND INTRINSIC BAND SPECTRUM

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Zhao, X. H.; Yin, Y.; Bao, Y. Y.

    2012-06-20

    Previous studies have found that the width of the gamma-ray burst (GRB) pulse is energy dependent and that it decreases as a power-law function with increasing photon energy. In this work we have investigated the relation between the energy dependence of the pulse and the so-called Band spectrum by using a sample including 51 well-separated fast rise and exponential decay long-duration GRB pulses observed by BATSE (Burst and Transient Source Experiment on the Compton Gamma Ray Observatory). We first decompose these pulses into rise and decay phases and find that the rise widths and the decay widths also behave as a power-law function with photon energy. Then we investigate statistically the relations between the three power-law indices of the rise, decay, and total width of the pulse (denoted as {delta}{sub r}, {delta}{sub d}, and {delta}{sub w}, respectively) and the three Band spectral parameters, high-energy index ({alpha}), low-energy index ({beta}), and peak energy (E{sub p} ). It is found that (1) {alpha} is strongly correlated with {delta}{sub w} and {delta}{sub d} but seems uncorrelated with {delta}{sub r}; (2) {beta} is weakly correlated with the three power-law indices, and (3) E{sub p} does not show evident correlations with the three power-law indices. We further investigate the origin of {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha}. We show that the curvature effect and the intrinsic Band spectrum could naturally lead to the energy dependence of the GRB pulse width and also the {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha} correlations. Our results hold so long as the shell emitting gamma rays has a curved surface and the intrinsic spectrum is a Band spectrum or broken power law. The strong {delta}{sub d}-{alpha} correlation and inapparent correlations between {delta}{sub r} and the three Band spectral parameters also suggest that the rise and decay phases of the GRB pulses have different origins.

  10. Cosmic ray charge and energy spectrum measurements using a new large area Cerenkov x dE/dx telescope

    NASA Technical Reports Server (NTRS)

    Schrier, D. A.; Webber, W. R.; Kish, J. C.

    1985-01-01

    In September, 1981, a new 0.5 square meter ster cosmic ray telescope was flown to study the charge composition and energy spectrum of cosmic ray nuclei between 0.3 and 4 GeV/nuc. A high resolution Cerenkov counter, and three dE/dx measuring scintillation counters, including two position scintillators were contained in the telescope used for the charge and energy spectrum measurements. The analysis procedures did not require any large charge or energy dependent corrections, and absolute fluxes could be obtained to an accuracy approximately 5%. The spectral measurements made in 1981, at a time of extreme solar modulation, could be compared with measurements with a similar telescope made by our group in 1977, at a time of minimum modulation and can be used to derive absolute intensity values for the HEAO measurements made in 1979 to 80. Using both data sets precise energy spectra and abundance ratios can be derived over the entire energy range from 0.3 to greater than 15 GeV/nuc.

  11. Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation.

    PubMed

    Hilaire, Estelle; Sarrut, David; Peyrin, Françoise; Maxim, Voichiţa

    2016-04-21

    In proton therapy, the prompt-γ (PG) radiation produced by the interactions between protons and matter is related to the range of the beam in the patient. Tomographic Compton imaging is currently studied to establish a PG image and verify the treatment. However the quality of the reconstructed images depends on a number of factors such as the volume attenuation, the spatial and energy resolutions of the detectors, incomplete absorptions of high energy photons and noise from other particles reaching the camera. The impact of all these factors was not assessed in details. In this paper we investigate the influence of the PG energy spectrum on the reconstructed images. To this aim, we describe the process from the Monte Carlo simulation of the proton irradiation, through the Compton imaging of the PG distribution, up to the image reconstruction with a statistical MLEM method. We identify specific PG energy windows that are more relevant to detect discrepancies with the treatment plan. We find that for the simulated Compton device, the incomplete absorption of the photons with energy above about 2 MeV prevents the observation of the PG distributions at specific energies. It also leads to blurred images and smooths the distal slope of the 1D PG profiles obtained as projections on the central beam axis. We show that a selection of the events produced by γ photons having deposited almost all their energy in the camera allows to largely improve the images, a result that emphasizes the importance of the choice of the detector. However, this initial-energy-based selection is not accessible in practice. We then propose a method to estimate the range of the PG profile both for specific deposited-energy windows and for the full spectrum emission. The method relies on two parameters. We use a learning approach for their estimation and we show that it allows to detect few millimeter shifts of the PG profiles. PMID:27008459

  12. Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation

    NASA Astrophysics Data System (ADS)

    Hilaire, Estelle; Sarrut, David; Peyrin, Françoise; Maxim, Voichiţa

    2016-04-01

    In proton therapy, the prompt-γ (PG) radiation produced by the interactions between protons and matter is related to the range of the beam in the patient. Tomographic Compton imaging is currently studied to establish a PG image and verify the treatment. However the quality of the reconstructed images depends on a number of factors such as the volume attenuation, the spatial and energy resolutions of the detectors, incomplete absorptions of high energy photons and noise from other particles reaching the camera. The impact of all these factors was not assessed in details. In this paper we investigate the influence of the PG energy spectrum on the reconstructed images. To this aim, we describe the process from the Monte Carlo simulation of the proton irradiation, through the Compton imaging of the PG distribution, up to the image reconstruction with a statistical MLEM method. We identify specific PG energy windows that are more relevant to detect discrepancies with the treatment plan. We find that for the simulated Compton device, the incomplete absorption of the photons with energy above about 2 MeV prevents the observation of the PG distributions at specific energies. It also leads to blurred images and smooths the distal slope of the 1D PG profiles obtained as projections on the central beam axis. We show that a selection of the events produced by γ photons having deposited almost all their energy in the camera allows to largely improve the images, a result that emphasizes the importance of the choice of the detector. However, this initial-energy-based selection is not accessible in practice. We then propose a method to estimate the range of the PG profile both for specific deposited-energy windows and for the full spectrum emission. The method relies on two parameters. We use a learning approach for their estimation and we show that it allows to detect few millimeter shifts of the PG profiles.

  13. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    SciTech Connect

    Vins, M.

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  14. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  15. Measurement of the B to Xs gammaBranching Fraction and Photon Energy Spectrum usingthe Recoil Method

    SciTech Connect

    Aubert, B.

    2007-12-04

    We present a measurement of the branching fraction and photon energy spectrum for the decay B {yields} X{sub s}{gamma} using data from the BABAR experiment. The data sample corresponds to an integrated luminosity of 210 fb{sup -1}, from which approximately 680,000 B{bar B} events are tagged by a fully reconstructed hadronic decay of one of the B mesons. In the decay of the second B meson, an isolated high-energy photon is identified. We measure {Beta}(B {yields} X{sub s}{gamma}) = (3.66 {+-} 0.85{sub stat} {+-} 0.60{sub syst}) x 10{sup -4} for photon energies E{sub {gamma}} above 1.9 GeV in the B rest frame. From the measured spectrum we calculate the first and second moments for different minimum photon energies, which are used to extract the heavy-quark parameters m{sub b} and {mu}{sub {pi}}{sup 2}. In addition, measurements of the direct CP asymmetry and isospin asymmetry are presented.

  16. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  17. The Cosmic Ray p+He energy spectrum in the 3-3000 TeV energy range measured by ARGO-YBJ

    NASA Astrophysics Data System (ADS)

    Mari, S. M.; Montini, P.

    2016-07-01

    The ARGO-YBJ experiment is a full coverage air shower detector operated at the Yangbajing International Cosmic Ray Observatory. The detector has been in stable data taking in its full configuration since November 2007 to February 2013. The high altitude and the high segmentation and spacetime resolution offer the possibility to explore the cosmic ray energy spectrum in a very wide range, from a few TeV up to the PeV region. The high segmentation allows a detailed measurement of the lateral distribution, which can be used in order to discriminate showers produced by light and heavy elements. In this work we present the measurement of the cosmic ray light component spectrum in the energy range 3-3000 TeV. The analysis has been carried out by using a two-dimensional unfolding method based on the Bayes' theorem.

  18. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    SciTech Connect

    Byard D. Wood; Jeff D. Muhs

    2004-08-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility and commercial viability of this technology. (1) TRNSYS Modeling of a Hybrid Lighting System: Building Energy Loads and Chromaticity Analysis; (2) High Lumens Screening Test Setup for Optical Fibers; (3) Photo-Induced Heating in Plastic Optical Fiber Bundles; (4) Low-Cost Primary Mirror Development; (5) Potential Applications for Hybrid Solar Lighting; (6) Photobioreactor Population Experiments and Productivity Measurements; and (7) Development of a Microalgal CO2-Biofixation Photobioreactor.

  19. Solar modulation of the deep space galactic cosmic ray lineal energy spectrum measured by CRaTER, 2009-2014

    NASA Astrophysics Data System (ADS)

    Zeitlin, C.; Case, A. W.; Schwadron, N. A.; Spence, H. E.; Mazur, J. E.; Joyce, C. J.; Looper, M. D.; Jordan, A.; Rios, R. R.; Townsend, L. W.; Kasper, J. C.; Blake, J. B.; Smith, S.; Wilson, J.; Iwata, Y.

    2016-03-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) is an energetic particle detector flying aboard the Lunar Reconnaissance Orbiter. Since arriving at the Moon in 2009, CRaTER has observed the deep solar minimum of solar cycle 23, the ascending phase of cycle 24, the very weak maximum of cycle 24, and in recent months, what appears to be the start of the descending phase of cycle 24. In earlier work, we presented lineal energy spectra of galactic cosmic rays (GCRs) at solar minimum for different shielding depths. The long period of CRaTER observations allows us to study the evolution of these spectra as a function of solar modulation. As solar modulation increases, the total flux of GCRs decreases, and lower-energy ions are preferentially removed from the spectrum of ions that arrive in the inner heliosphere. These effects lead to modest variations in the lineal energy spectrum as a function of time. GCR fluxes at the 2009/2010 solar minimum were high by historical standards and at solar maximum remained high compared to earlier maxima.

  20. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  1. High-energy properties of the high-redshift flat spectrum radio quasar PKS 2149-306

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2016-01-01

    We investigate the γ-ray and X-ray properties of the flat spectrum radio quasar PKS 2149-306 at redshift z = 2.345. A strong γ-ray flare from this source was detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope satellite in 2013 January, reaching on January 20 a daily peak flux of (301 ± 36) × 10-8 ph cm-2 s-1 in the 0.1-100 GeV energy range. This flux corresponds to an apparent isotropic luminosity of (1.5 ± 0.2) × 1050 erg s-1, comparable to the highest values observed by a blazar so far. During the flare the increase of flux was accompanied by a significant change of the spectral properties. Moreover significant flux variations on a 6-h time-scale were observed, compatible with the light crossing time of the event horizon of the central black hole. The broad-band X-ray spectra of PKS 2149-306 observed by Swift-XRT and NuSTAR are well described by a broken power-law model, with a very hard spectrum (Γ1 ˜ 1) below the break energy, at E break = 2.5-3.0 keV, and Γ2 ˜ 1.4-1.5 above the break energy. The steepening of the spectrum below ˜3 keV may indicate that the soft X-ray emission is produced by the low-energy relativistic electrons. This is in agreement with the small variability amplitude and the lack of spectral changes in that part of the X-ray spectrum observed between the two NuSTAR and Swift joint observations. As for the other high-redshift FSRQ detected by both Fermi-LAT and Swift-BAT, the photon index of PKS 2149-306 in hard X-ray is 1.6 or lower and the average γ-ray luminosity higher than 2 × 1048 erg s-1.

  2. Failure of Energy Transfer between Identical Aromatic Molecules on Excitation at the Long Wave Edge of the Absorption Spectrum

    PubMed Central

    Weber, Gregorio; Shinitzky, Meir

    1970-01-01

    Electronic energy transfer among identical molecules has been followed by the depolarization of the fluorescence in concentrated solutions as well as in dimers, polymers, and micelle systems. In the many aromatic fluorophores examined, unlike a few nonaromatic ones, transfer is much decreased or altogether undetectable on excitation at the red edge of the absorption spectrum. The phenomenon is not due to the transfer taking place during a small fraction of the total fluorescence lifetime, nor is it explainable by a decrease in overlap of absorption and emission upon edge excitation. PMID:16591825

  3. First estimate of the primary cosmic ray energy spectrum above 3-EeV from the Pierre Auger Observatory

    SciTech Connect

    Sommers, Paul; /Utah U.

    2005-07-01

    Measurements of air showers are accumulating at an increasing rate while construction proceeds at the Pierre Auger Observatory. Although the southern site is only half complete, the cumulative exposure is already similar to those achieved by the largest forerunner experiments. A measurement of the cosmic ray energy spectrum in the southern sky is reported here. The methods are simple and robust, exploiting the combination of fluorescence detector (FD) and surface detector (SD). The methods do not rely on detailed numerical simulation or any assumption about the chemical composition.

  4. Two-dimensional semimetal in wide HgTe quantum wells: Charge-carrier energy spectrum and magnetotransport

    SciTech Connect

    Germanenko, A. V.; Minkov, G. M.; Rut, O. E.; Sherstobitov, A. A.; Dvoretsky, S. A.; Mikhailov, N. N.

    2013-12-15

    The magnetoresistivity and the Hall and Shubnikov-de Haas effects in heterostructures with a single 20.2-nm-wide quantum well made from the gapless semiconductor HgTe are studied experimentally. The measurements are performed on gated samples over a wide range of electron and hole densities. The data obtained are used to reconstruct the energy spectrum of electrons and holes in the vicinity of the extrema of the quantum-confinement subbands. It is shown that the charge-carrier dispersion relation in the investigated systems differs from that calculated within the framework of the conventional kp model.

  5. Separation of coexisting dynamical regimes in multistate intermittency based on wavelet spectrum energies in an erbium-doped fiber laser.

    PubMed

    Hramov, Alexander E; Koronovskii, Alexey A; Moskalenko, Olga I; Zhuravlev, Maksim O; Jaimes-Reategui, Rider; Pisarchik, Alexander N

    2016-05-01

    We propose a method for the detection and localization of different types of coexisting oscillatory regimes that alternate with each other leading to multistate intermittency. Our approach is based on consideration of wavelet spectrum energies. The proposed technique is tested in an erbium-doped fiber laser with four coexisting periodic orbits, where external noise induces intermittent switches between the coexisting states. Statistical characteristics of multistate intermittency, such as the mean duration of the phases for every oscillation type, are examined with the help of the developed method. We demonstrate strong advantages of the proposed technique over previously used amplitude methods. PMID:27300891

  6. Separation of coexisting dynamical regimes in multistate intermittency based on wavelet spectrum energies in an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Koronovskii, Alexey A.; Moskalenko, Olga I.; Zhuravlev, Maksim O.; Jaimes-Reategui, Rider; Pisarchik, Alexander N.

    2016-05-01

    We propose a method for the detection and localization of different types of coexisting oscillatory regimes that alternate with each other leading to multistate intermittency. Our approach is based on consideration of wavelet spectrum energies. The proposed technique is tested in an erbium-doped fiber laser with four coexisting periodic orbits, where external noise induces intermittent switches between the coexisting states. Statistical characteristics of multistate intermittency, such as the mean duration of the phases for every oscillation type, are examined with the help of the developed method. We demonstrate strong advantages of the proposed technique over previously used amplitude methods.

  7. Wide-spectrum energy harvesting out of colored Lévy-like fluctuations, by monostable piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Deza, J. Ignacio; Deza, Roberto R.; Wio, Horacio S.

    2012-11-01

    This work aims to optimize the overall performance of a model oscillator, as an energy harvester of Lévy-like mesoscopic fluctuations through piezoelectric conversion. As a further step in the description of a realistic harvesting device we consider a monostable Woods-Saxon oscillator, which can interpolate between square well and harmonic-like behaviors. We study the interplay between the potential shape and the noise's spectrum and statistics. The dependence of the power output on the parameters determining those features indicates the directions in which the former can be increased.

  8. Development of the MICROMEGAS detector for measuring the energy spectrum of alpha particles by using a 241Am source

    NASA Astrophysics Data System (ADS)

    Kim, Do Yoon; Ham, Cheolmin; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-05-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting a particles emitted from an 241Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of a particles from the 241Am source can be varied by changing the flight path of the a particle from the 241Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the a particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for a particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that a particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for a particles under the present conditions is found to be ~97.3%.

  9. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: Application to a neutron spectrum similar to that from an improvised nuclear device

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-09-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  10. Measurement of the cosmic-ray energy spectrum above 1016 eV with the LOFAR Radboud Air Shower Array

    NASA Astrophysics Data System (ADS)

    Thoudam, S.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Trinh, T. N. G.; van Kessel, L.

    2016-01-01

    The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ˜2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.

  11. Quasi-energy spectrum and dynamical localizations of two charged particles in a one-dimensional lattice system

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Suqing, Duan; Zhao, Xian-Geng

    2006-04-01

    The quasi-energy spectrum of two charged particles in a one-dimensional lattice system driven by an external field are theoretically studied with the help of numerical calculations. It is found that the quasi-energy spectrum splits into two regions. In the gourd-shaped region the Floquet states mainly contain the Wannier states |l,m> (l≠m), which describe the two particles occupy the different sites. The (avoid) crossing points in this region are corresponding to the dynamical localizations of the two particles which initially occupy on different sites when the distance between the initial sites is large. These conditions of dynamical localization are the same as that in single particle system. In the other region (electron electron or electron hole pair region), the Floquet states mainly contain the Wannier states |l,l>, which describe the two particles simultaneously occupy the lth site. The (avoid) crossing points in this region are corresponding to the dynamical localizations of the two particles happening which initially occupy on same site.

  12. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  13. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    NASA Astrophysics Data System (ADS)

    Ruhe, T.; Scheriau, F.; Schmitz, M.

    2016-04-01

    IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs) is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  14. Evolution of the Deep-space Galactic Cosmic Ray Lineal Energy Transfer Spectrum through Tissue Equivalent Plastic

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Spence, H. E.; Golightly, M. J.; Schwadron, N. A.; Mazur, J. E.; Blake, J. B.; Looper, M. D.; Townsend, L.; Zeitlin, C. J.

    2011-12-01

    The Cosmic Ray Telescope for the Effects of Radiation is an energetic particle telescope that resides on the Lunar Reconnaissance Orbiter spacecraft, currently in a 50 km circular lunar polar orbit. The telescope consists of 6 silicon semi-conductor detectors placed in pairs that surround two pieces of Tissue Equivalent Plastic (TEP), which serve to absorb energy from particles as they transit through the instrument. Particles with energies greater than 12 MeV/nucleon can penetrate the outermost shield and be measured by the instrument. The primary measurement made by the instrument is of the Linear Energy Transfer (LET) of energetic particles as they transit through the telescope. CRaTER measures the LET spectrum with unprecedented energy resolution and has done so during a period of historically low solar activity that led to record high intensities of Galactic Cosmic Rays (GCR). These LET spectra are used to study changes in the properties of the incoming particles, and to make detailed measurements of the radiation doses human explorers will experience in deep space on missions to the moon, to asteroids, or to Mars. We present LET spectra accumulated during 2009 and 2010. We show how the LET spectrum evolves through the instrument as the GCR interact with the TEP. Due to the importance of these measurements for human effects, our extensive absolute calibration procedures are presented. Of particular note is a significant reduction in the flux of particles with LET greater than 10 keV/um for detectors that lie deeper within the telescope stack, due to the attenuation of high LET particles within the TEP. By measuring this attenuation we can estimate the depth in human tissue where the highest LET particles that are most likely to cause genetic damage pose the greatest threat to humans in space.

  15. Evidence for variability of the hard X-ray feature in the Hercules X-1 energy spectrum

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Boclet, D.; Durouchoux, PH.; Hameury, J. M.; Prantzos, N.; Haymes, R. C.

    1984-01-01

    The hard X-ray spectrum of HER X-1 was measured for the first time with a high resolution (1.4 keV FWHM) germanium spectrometer. The observation was performed near the peak of the on-state in the 35 day cycle and the 1.24 pulsations were observed between the energies of 20 keV and 70 keV. The feature corresponds to an excess of 7.5 sigma over the low energy continuum. Smooth continuum models are poor fits to the entire energy range (chance probabilities of 2 percent or less). The best fit energies are 35 keV for an absorption line and 39 keV for an emission line. These are significantly lower energies than those derived from previous experiments. A direct comparison of the data with the results of the MPI/AIT group shows statistically significant variations which strongly suggest variability in the source. Previously announced in STAR as N83-37036

  16. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    SciTech Connect

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  17. Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target

    NASA Astrophysics Data System (ADS)

    Altana, C.; Lanzalone, G.; Mascali, D.; Muoio, A.; Cirrone, G. A. P.; Schillaci, F.; Tudisco, S.

    2016-02-01

    In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.

  18. Time-resolved energy spectrum measurement of a linear induction accelerator with the magnetic analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Xiao-Guo; Yang, Guo-Jun; Chen, Si-Fu; Zhang, Zhuo; Wei, Tao; Li, Jin

    2015-01-01

    We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.

  19. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    SciTech Connect

    Zelener, B. B. Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E.

    2015-12-15

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  20. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    NASA Astrophysics Data System (ADS)

    Zelener, B. B.; Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E.

    2015-12-01

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  1. Energy spectrum of corona impulses generated from insulated wires under high a.c. voltages

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Padiyar, K. R.; Crowell, C. S.

    1978-01-01

    This paper suggests methods for calculating spectral energy densities of corona impulses generated from insulated conductors. The calculation is based on the data obtained from the measurement of corona pulse waveforms, repetition rates and relevant statistical properties of corona impulses.

  2. First Results on the High Energy Cosmic Ray Electron Spectrum from Fermi Lat

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    This viewgraph presentation addresses energy reconstruction, electron-hadron separation, validation of Monte Carlo with flight data and an assessment of systematic errors from the Fermi Large Area Telescope.

  3. The Number of High-Energy Bands in the Photoelectron Spectrum of Alkanes

    NASA Astrophysics Data System (ADS)

    Merris, Russell; Gutman, Ivan

    2000-12-01

    It was observed that within the Bieri-Dill-Heilbronner-Schmelzer model for the calculation of the ion-ization energies of alkanes CnH2n+2, there are exactly n C2s -electron energy levels lying below the degenerate α-ß manifold. We now show that, indeed, this regularity is obeyed by practically all alkane species. Exceptions do exist, but they must possess a (chemically infeasible) group of more than six mutually connected quaternary carbon atoms.

  4. Comment on `` Eigenvalue spectrum of the independent-fermion kinetic-energy kernel''

    NASA Astrophysics Data System (ADS)

    Garza, Jorge; Vela, Alberto

    1998-10-01

    Recently Joubert [Phys. Rev. A 54, 2479 (1996)] showed that the independent-fermion kinetic-energy kernel has a zero mode. In this Comment we remark that Joubert's main expression, which leads one to conclude that the contribution arising from the independent-fermion kinetic-energy functional to the local hardness is null, was previously deduced by Garza and Robles [Int. J. Quantum Chem. 49, 159 (1994)].

  5. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  6. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  7. 10 CFR 905.34 - Adjustment provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Adjustment provisions. 905.34 Section 905.34 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.34 Adjustment... continue to take place based on existing contract/marketing criteria principles....

  8. 10 CFR 905.34 - Adjustment provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Adjustment provisions. 905.34 Section 905.34 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.34 Adjustment... continue to take place based on existing contract/marketing criteria principles....

  9. 10 CFR 905.34 - Adjustment provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Adjustment provisions. 905.34 Section 905.34 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.34 Adjustment... continue to take place based on existing contract/marketing criteria principles....

  10. 10 CFR 905.34 - Adjustment provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Adjustment provisions. 905.34 Section 905.34 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.34 Adjustment... continue to take place based on existing contract/marketing criteria principles....

  11. 10 CFR 905.34 - Adjustment provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Adjustment provisions. 905.34 Section 905.34 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.34 Adjustment... continue to take place based on existing contract/marketing criteria principles....

  12. Analytical yield spectrum approach to electron energy degradation in earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Haider, S. A.; Singhal, R. P.

    1983-09-01

    The analytical yield spectrum approach developed by Green et al. (1977) and Jackman and Green (1979) and extended by Singhal et al. (1980) and Singhal and Green (1981) is used to calculate the electron flux, excitation, and ionization profiles. The method, as applied in its full detail to the earth's atmosphere, is introduced, and the results it yields are compared with those obtained by Banks et al. (1974) and Mantas and Walker (1976). With regard to excitation, good agreement with the results of Mantas and Walker is found as far as the position of the peak is concerned. At low altitudes, the results obtained here show a gradual fall off of the excitation rate; this is in contrast to the sharp cutoff obtained by Mantas and Walker. A possible reason for this is that the present results are based on Monte Carlo studies in which the electrons are followed down to the lowest excitation threshold. This leads to more straggling. Another reason for the low altitude tail may involve the use of smooth analytical functions.

  13. The threshold photoelectron spectrum of cyanovinylacetylene leads to an upward revision of the ionization energy

    NASA Astrophysics Data System (ADS)

    Holzmeier, Fabian; Lang, Melanie; Fischer, Ingo; Hemberger, Patrick

    2015-10-01

    Cyanovinylacetylene C5H3N was investigated by threshold photoelectron spectroscopy. The ionization energy (IE) was determined to be 10.04 eV. This value constitutes an upward revision of the earlier value of 9.33 eV. For both stereoisomers (trans and cis) computations predict very similar IEs and spectra. At 11.08 eV and 11.17 eV excited cationic states are observed. For the precursor 3-bromopyridine an IE of 9.34 eV was obtained. The appearance energy AE0K (3-bromopyridine, 3-pyridyl+) was determined to be 11.71 eV and a bond dissociation energy of the Csbnd Br bond in the 3-bromopyridine cation of 229 kJ mol-1 was derived.

  14. Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velàzquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-04-01

    Recent results of the KASCADE-Grande experiment provided evidence for a mild knee-like structure in the all-particle spectrum of cosmic rays at E=1016.92±0.10eV, which was found to be due to a steepening in the flux of heavy primary particles. The spectrum of the combined components of light and intermediate masses was found to be compatible with a single power law in the energy range from 1016.3 to 1018eV. In this paper, we present an update of this analysis by using data with increased statistics, originating both from a larger data set including more recent measurements and by using a larger fiducial area. In addition, optimized selection criteria for enhancing light primaries are applied. We find a spectral feature for light elements, namely, a hardening at E=1017.08±0.08eV with a change of the power law index from -3.25±0.05 to -2.79±0.08.

  15. THE EXTRAGALACTIC BACKGROUND LIGHT FROM THE MEASUREMENTS OF THE ATTENUATION OF HIGH-ENERGY GAMMA-RAY SPECTRUM

    SciTech Connect

    Gong Yan; Cooray, Asantha

    2013-07-20

    The attenuation of high-energy gamma-ray spectrum due to the electron-positron pair production against the extragalactic background light (EBL) provides an indirect method to measure the EBL of the universe. We use the measurements of the absorption features of the gamma-rays from blazars as seen by the Fermi Gamma-ray Space Telescope to explore the EBL flux density and constrain the EBL spectrum, star formation rate density (SFRD), and photon escape fraction from galaxies out to z = 6. Our results are basically consistent with the existing determinations of the quantities. We find a larger photon escape fraction at high redshifts, especially at z = 3, compared to the result from recent Ly{alpha} measurements. Our SFRD result is consistent with the data from both gamma-ray burst and ultraviolet (UV) observations in the 1{sigma} level. However, the average SFRD we obtain at z {approx}> 3 matches the gamma-ray data better than the UV data. Thus our SFRD result at z {approx}> 6 favors the fact that star formation alone is sufficiently high enough to reionize the universe.

  16. Model potential calculation of the thermal donor energy spectrum in silicon

    NASA Astrophysics Data System (ADS)

    Chen, C. S.; Schroder, D. K.

    1988-06-01

    The two-parameter model potential originally proposed by Ning and Sah [Phys. Rev. B 4, 3468 (1971)] for calculating the ground-state energies of group V and group VI impurities in silicon is extended to the variational calculation of the thermal donor ionization energies. In the multivalley effective mass approximation, the theoretical results are in excellent agreement with the reported experimental data. This provides additional evidence for the assumption that thermal donors consist of five to thirteen oxygen atoms, as first proposed by Ourmazd, Schröter, and Bourret [J. Appl. Phys. 56, 1670 (1984)].

  17. Model potential calculation of the thermal donor energy spectrum in silicon

    SciTech Connect

    Chen, C.S.; Schroder, D.K.

    1988-06-15

    The two-parameter model potential originally proposed by Ning and Sah (Phys. Rev. B 4, 3468 (1971)) for calculating the ground-state energies of group V and group VI impurities in silicon is extended to the variational calculation of the thermal donor ionization energies. In the multivalley effective mass approximation, the theoretical results are in excellent agreement with the reported experimental data. This provides additional evidence for the assumption that thermal donors consist of five to thirteen oxygen atoms, as first proposed by Ourmazd, Schroeter, and Bourret (J. Appl. Phys. 56, 1670 (1984)).

  18. Imprints of dark energy on cosmic structure formation - I. Realistic quintessence models and the non-linear matter power spectrum

    NASA Astrophysics Data System (ADS)

    Alimi, J.-M.; Füzfa, A.; Boucher, V.; Rasera, Y.; Courtin, J.; Corasaniti, P.-S.

    2010-01-01

    Quintessence has been proposed to account for dark energy (DE) in the Universe. This component causes a typical modification of the background cosmic expansion, which, in addition to its clustering properties, can leave a potentially distinctive signature on large-scale structures. Many previous studies have investigated this topic, particularly in relation to the non-linear regime of structure formation. However, no careful pre-selection of viable quintessence models with high precision cosmological data was performed. Here we show that this has led to a misinterpretation (and underestimation) of the imprint of quintessence on the distribution of large-scale structures. To this purpose, we perform a likelihood analysis of the combined Supernova Ia UNION data set and Wilkinson Microwave Anisotropy Probe 5-yr data to identify realistic quintessence models. These are specified by different model parameter values, but still statistically indistinguishable from the vanilla Λ cold dark matter (ΛCDM). Differences are especially manifest in the predicted amplitude and shape of the linear matter power spectrum though these remain within the uncertainties of the Sloan Digital Sky Survey data. We use these models as a benchmark for studying the clustering properties of dark matter haloes by performing a series of high-resolution N-body simulations. In this first paper, we specifically focus on the non-linear matter power spectrum. We find that realistic quintessence models allow for relevant differences of the dark matter distribution with respect to the ΛCDM scenario well into the non-linear regime, with deviations of up to 40 per cent in the non-linear power spectrum. Such differences are shown to depend on the nature of DE, as well as the scale and epoch considered. At small scales (k ~ 1-5hMpc-1, depending on the redshift), the structure formation process is about 20 per cent more efficient than in ΛCDM. We show that these imprints are a specific record of the cosmic

  19. Energy spectrum of 50-250 MeV/nucleon iron nuclei inside the MIR space craft.

    PubMed

    Gunther, W; Leugner, D; Becker, E; Heinrich, W; Reitz, G

    2002-10-01

    Stacks of CR-39 plastic nuclear track detectors were mounted inside the MIR spacecraft during the EUROMIR95 space mission for a period of 6 months. This long exposure time resulted in a large number of tracks of HZE-particles in the detector foils. All trajectories of stopping iron nuclei could be reconstructed by optimizing the etching conditions so that an automatic track measurement using image analysis techniques was possible. We found 185 stopping iron nuclei and used the énergy-range relation to calculate their energies at the stack surface. The measured spectrum of iron nuclei inside the MIR station is compared to results of model predictions considering the effect of the solar modulation for the mission period, the geomagnetic shielding effect for the MIR orbit and the shielding by material of the spacecraft walls and its instrumentation. PMID:12442748

  20. Energy spectrum of D{sup 0} centre in a spherical Gaussian quantum dot

    SciTech Connect

    Boda, Aalu Chatterjee, Ashok

    2015-05-15

    The properties of a neutral hydrogenic donor (D{sup 0}) centres have been studied for a GaAs semiconductor quantum dot with the Gaussian confinement potential. The energy levels of the ground state (n = 1) and the excited states of both the first excited (n = 2) and second excited (n = 3) configurations have been calculated by variational method. It has been shown that the excited states of the (D{sup 0}) centre in quantum dot are bound for sufficiently strong confinement potential. The conditions of binding for the ground state as well as excited states have been determined as functions of the potential strength and quantum dot radius. The ground state electron energy is compared with those available in the literature.

  1. Energy spectrum of layered semiconductors in a magnetic field parallel to the layers: Voigt geometry

    NASA Astrophysics Data System (ADS)

    Yoo, K. H.; Ram-Mohan, L. R.

    2010-11-01

    The electronic band structure of zinc-blende layered semiconductor heterostructures is investigated theoretically in the presence of an in-plane magnetic field, a configuration we label as the Voigt geometry. We use a Lagrangian formulation for modeling the band structure in the individual layers within the kṡP model. This approach has been shown by us to provide the correct ordering of the derivatives appearing in the multiband description of Schrödinger’s equations for the envelope functions through the application of the principle of stationary action. Finite element modeling of the action integral provides a natural and efficient approach to the inclusion of in-plane magnetic fields in the energy-level analysis. Calculations for quantum wells and superlattices are presented, and the complex energy-level structure obtained for the layered structures.

  2. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  3. Eigenvalue spectrum of the independent-fermion kinetic-energy kernel

    SciTech Connect

    Joubert, D.

    1996-09-01

    The constrained minimization independent-fermion kinetic-energy kernel, {delta}{sup 2}{ital T}{sub {ital s}}[{rho}]/{delta}{rho}({bold r}){delta}{rho}({bold r}{sup {prime}}), has a zero mode for all {rho}({bold r}), while it is non-negative for {rho}({bold r}) noninteracting {ital v} representable. {copyright} {ital 1996 The American Physical Society.}

  4. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  5. Effect of a phase transition on the electron energy spectrum in Ag{sub 2}S

    SciTech Connect

    Aliev, F. F. Jafarov, M. B.; Tairov, B. A.; Pashaev, G. P.; Saddinova, A. A.; Kuliev, A. A.

    2008-10-15

    Temperature dependences of electrical conductivity {sigma}, Hall coefficient R, and thermopower {alpha}{sub 0} in Ag{sub 2}S are reported. It is established that at T {approx} 435 {+-} 5 K, all kinetic parameters vary drastically, which is associated with a change in parameters of the conduction band. It is shown that the dispersion law of electron energy in {beta}-Ag{sub 2}S corresponds to the Kane model.

  6. Hadron energy spectrum in polarized top-quark decays considering the effects of hadron and bottom quark masses

    NASA Astrophysics Data System (ADS)

    Nejad, S. Mohammad Moosavi; Balali, Mahboobe

    2016-03-01

    We present the analytical expressions for the next-to-leading order corrections to the partial decay width t(\\uparrow ) rightarrow bW^+, followed by brightarrow H_bX, for nonzero b-quark mass (m_bne 0) in the fixed-flavor-number scheme (FFNs). To make the predictions for the energy distribution of outgoing hadrons H_b, as a function of the normalized H_b-energy fraction x_H, we apply the general-mass variable-flavor-number scheme (GM-VFNs) in a specific helicity coordinate system where the polarization of top quark is evaluated relative to the b-quark momentum. We also study the effects of gluon fragmentation and finite hadron mass on the hadron energy spectrum so that hadron masses are responsible for the low-x_H threshold. In order to describe both the b-quark and the gluon hadronizations in top decays we apply realistic and nonperturbative fragmentation functions extracted through a global fit to the e^+e^- annihilation data from CERN LEP1 and SLAC SLC by relying on their universality and scaling violations.

  7. The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2016-07-01

    The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 1017.2eV measured by the fluorescence detectors and a comparison with previously published results.

  8. Exposure dose reduction for the high energy spectrum in the photon counting mammography: simulation study based on Japanese breast glandularity and thickness

    NASA Astrophysics Data System (ADS)

    Niwa, Naoko; Yamazaki, Misaki; Kodera, Yoshie; Yamamuro, Mika; Yamada, Kanako; Asai, Yoshiyuki; Yamada, Koji

    2015-03-01

    Recently, digital mammography with a photon counting silicon detector has been developed. With the aim of reducing the exposure dose, we have proposed a new mammography system that uses a cadmium telluride series photon counting detector. In addition, we also propose to use a high energy X-ray spectrum with a tungsten anode. The purpose of this study was assessed that the effectiveness of the high X-ray energy spectrum in terms of image quality using a Monte Carlo simulation. The proposed photon counting system with the high energy X-ray is compared to a conventional flat panel detector system with a Mo/Rh spectrum. The contrast-to-noise ratio (CNR) is calculated from simulation images with the use of breast phantoms. The breast model phantoms differed by glandularity and thickness, which were determined from Japanese clinical mammograms. We found that the CNR values were higher in the proposed system than in the conventional system. The number of photons incident on the detector was larger in the proposed system, so that the noise values was lower in comparison with the conventional system. Therefore, the high energy spectrum yielded the same CNR as using the conventional spectrum while allowing a considerable dose reduction to the breast.

  9. On the Energy Spectrum of Protons Produced in {sup 16}Op Collisions at a Momentum of 3.25 GeV/c per Nucleon

    SciTech Connect

    Bazarov, E.Kh.

    2005-09-01

    New experimental data concerning the mechanisms of the production of protons originating as fragments from oxygen-nucleus interactions in a hydrogen bubble chamber at high energies are presented. It is shown that anomalies observed in the energy spectrum of protons at kinetic energies in the range T = 70 - 90 MeV are associated with the absorption of slow pions by a quasideuteron nucleon pair.

  10. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Influence of a Single Frequency Electromagnetic Wave on Energy Spectrum of Nonpolariton System in a Kerr Nonlinear Blackbody

    NASA Astrophysics Data System (ADS)

    Zeng, Qi-Jun; Cheng, Ze

    2010-06-01

    In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helicities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.

  11. Extended fine structures in the electron energy loss spectrum of InAs

    NASA Technical Reports Server (NTRS)

    Schowengerdt, F. D.; Grunthaner, F. J.

    1988-01-01

    The possibility of using electron energy loss fine structure (EELFS) for the characterization of thin pseudomorphic quantum wells of InAs and GaAs(100) is investigated. It is shown that the EELFS technique can yield reliable radial distribution functions for bulk InAs, provided beam-induced sample degradation is controlled stringently. Additional improvements in the data collection procedures, including better control of the sample condition, are required as well as more detailed work on separating contributions from multiple edges in the data analysis.

  12. Measuring the energy spectrum of primary cosmic rays with the Yakutsk EAS array

    NASA Technical Reports Server (NTRS)

    Khristiansen, G. B.

    1986-01-01

    The Yakutsk Extensive Air Showers (EAS) array was designed for detecting the showers generated by the 10 to the 47th power to 10 to the 20th power eV primary cosmic rays and consists of numerous electron, muon, and Cerenkov light detectors arranged on a 20 sq km area terrain. The array is featured by the feasibility to detect the EAS-produced Cerenkov light, hence, as will be shown, to find the mean energy of the primary particles generating an ensemble of EAS of given size. Date collected is discussed.

  13. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    NASA Astrophysics Data System (ADS)

    Kinsey, Geoffrey S.

    2015-09-01

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  14. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    SciTech Connect

    Kinsey, Geoffrey S.

    2015-09-28

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  15. Solar neutrons and the energy spectrum of flare-accelerated particles

    NASA Astrophysics Data System (ADS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1987-10-01

    The Monte Carlo method is used to calculate the generation and escape of neutrons in the framework of the magnetic-arc model. It is shown that the generation of neutrons lasts for 20-30 minutes; the characteristic time of the intensity decline increases with magnetic field gradient and the radius of the coronal part of the arc. The angular distribution of escaping neutrons is anisotropic, with the maximum flux occurring at the limb. The neutron energy spectra are different in different directions. Particular attention is given to the solar-longitude dependence of neutron fluxes in a flare with gamma-ray emission.

  16. Factor demand in Swedish manufacturing industry with special reference to the demand for energy. Instantaneous adjustment models; some results

    NASA Astrophysics Data System (ADS)

    Sjoeholm, K. R.

    1981-02-01

    The dual approach to the theory of production is used to estimate factor demand functions of the Swedish manufacturing industry. Two approximations of the cost function, the translog and the generalized Leontief models, are used. The price elasticities of the factor demand do not seem to depend on the choice of model. This is at least true as to the sign pattern and as to the inputs capital, labor, total energy and other materials. Total energy is separated into solid fuels, gasoline, fuel oil, electricity and a residual. Fuel oil and electricity are found to be substitutes by both models. Capital and energy are shown to be substitutes. This implies that Swedish industry will save more energy if the capital cost can be reduced. Both models are, in the best versions, able to detect an inappropriate variable. The assumption of perfect competition on the product market, is shown to be inadequate by both models. When this assumption is relaxed, the normal substitution pattern among the inputs is resumed.

  17. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km. PMID:25404349

  18. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  19. Primary cosmic ray spectrum in the 10 to the 12th power - 10 to the 16th power eV energy range from the NUSEX experiment

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bloise, C.; Bologna, G.; Campana, P.; Castagnoli, C.; Castellina, A.; Chiarella, V.; Ciocio, A.; Cundy, D.

    1985-01-01

    A primary cosmic ray spectrum was derived which fits both experimental multiple muon rates and the all-nucleon flux derived from the single muon intensities underground. In the frame of the interaction model developed by Gaisser, Elbert and Stanev, it is possible to reproduce NUSEX muon data with a primary composition in which the iron spectrum is only slightly flatter than the proton one. This result rules out the popular idea that the primary composition varies drastically with increasing energy, leading to the dominance of heavier nuclei at energies 10 to the 15th power to 10 to the 16th power eV.

  20. All particle energy spectrum of cosmic rays in 10 to the 15th power - 10 to the 20th power eV region

    NASA Technical Reports Server (NTRS)

    Kolosov, V. A.; Lischenyuk, F. F.; Krasilnikov, D. D.; Dyakonov, M. N.; Ivanov, A. A.; Sleptsov, I. Y.

    1985-01-01

    Average estimations of the shower energy components are presented and their sum gives E sub 0 (Rho sub 600) - an average function of the relation of E sub 0 with the shower size parameter Rho sub 600 measured at the Yakutsk extensive air showers (EAS) array. Using this relation to the EAS spectrum obtained at the Akeno and Yakutsk arrays the energy spectrum of the cosmic ray total flux within 15 lg (E sub 0,eV) 20 by the EAS methods is recovered.

  1. High-resolution Rotational Spectrum, Dunham Coefficients, and Potential Energy Function of NaCl

    NASA Astrophysics Data System (ADS)

    Cabezas, C.; Cernicharo, J.; Quintana-Lacaci, G.; Peña, I.; Agundez, M.; Velilla Prieto, L.; Castro-Carrizo, A.; Zuñiga, J.; Bastida, A.; Alonso, J. L.; Requena, A.

    2016-07-01

    We report laboratory spectroscopy for the first time of the J = 1–0 and J = 2–1 lines of Na35Cl and Na37Cl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δv = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to J = 150 and v = 8, from which the ALMA data of evolved stars can be modeled and interpreted.

  2. Bio-hybrid integrated system for wide-spectrum solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Martin, Kathleen; Erdman, Matthew; Quintana, Hope; Shelnutt, John; Nogan, John; Swartzentruber, B.; Martinez, Julio; Lavrova, Olga; Busani, Tito

    2014-03-01

    An integrated hybrid photovoltaic-thermoelectric system has been developed using multiple layers of organic photosensitizers on inorganic semiconductors in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of 3.32 eV. The visible-UV light-active organic layer was deposited between the anode and cathode at room temperature using a layer-by-layer deposition onto ITO and ZnO and Bi2Te3 nanowires from aqueous solution. The organic layer, a cooperative binary ionic (CBI) solid is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH-)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Efficiency of the integrated device, was found to be 35 at 0.2 suns illumination and thermoelectric properties are enhanced by the charge transfer between the CBI and the Bi2Te3 is presented in terms of photo- and thermogenerated current and advantages of the low cost fabrication process is discussed.

  3. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  4. 10 CFR 436.22 - Adjusted internal rate of return.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Adjusted internal rate of return. 436.22 Section 436.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.22 Adjusted internal rate of return. The adjusted internal rate of return is the overall...

  5. 10 CFR 436.22 - Adjusted internal rate of return.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Adjusted internal rate of return. 436.22 Section 436.22 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.22 Adjusted internal rate of return. The adjusted internal rate of return is the overall...

  6. A bi-directional charged particle telescope to observe flux, energy spectrum and angular distribution of relativistic and non-relativistic particles

    NASA Technical Reports Server (NTRS)

    Verma, S. D.; Bhatnagar, S. P.; Kothari, S. K.

    1985-01-01

    A Charged Particle Telescope (CPT) was designed, fabricated and calibrated to make the following observations: (1) discrimination between various singly charged particles, e.g., electrons, muons and protons, in about 5 to 100 MeV energy range; (2) measurement of the flux and the energy of the charged particles incident to the telescope from two opposite directions and stopping in the telescope, thus obtaining flux and energy spectrum of downward and upward moving charged particles; and (3) measurement of the broad angular distribution of selected particles as a function of azimuthal angle. This telescope can be used to study low energy electron, muon and proton energy spectra. The experiment was flown in a high altitude balloon from Hyderabad, India, in December 1984. This same equipment is also useful in ground level electron, muon spectrum study.

  7. The low-energy interstellar spectrum of galactic electrons and implications for their re-acceleration at the heliospheric termination shock

    NASA Astrophysics Data System (ADS)

    Prinsloo, Phillip; Toit Strauss, Du; Potgieter, Marius

    2016-07-01

    Since the diffusive shock acceleration process of particles at any given energy is dependent on the shape of their distribution at lower energies, it becomes essential to specify the interstellar spectrum for electrons below 1 MeV to study the re-acceleration of these particles at the heliospheric termination shock. Informed by the results of both radio data surveys and galactic propagation modelling, a number of illustrative scenarios are considered for this very low-energy local interstellar spectrum. Using a cosmic-ray transport model and assuming rigidity-independent diffusion at the considered energies, the contribution of re-accelerated electrons to intensity levels is probed for each of the aforementioned scenarios. The magnitudes of the resultant intensity increases are concluded to be highly dependent on the spectral shape specified for interstellar spectra at these very low energies, with the softer distributions predictably yielding greater re-acceleration effects.

  8. [BIOLOGICAL EFFECTIVENESS OF FISSION SPECTRUM NEUTRONS AND PROTONS WITH ENERGIES OF 60-126 MEV DURING ACUTE AND PROLONGED IRRADIATION].

    PubMed

    Shafirkin, A V

    2015-01-01

    Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40. PMID:26934784

  9. Method to extract the primary cosmic ray spectrum from very high energy {gamma}-ray data and its application to SNR RX J1713.7-3946

    SciTech Connect

    Villante, F. L.; Vissani, F.

    2007-12-15

    Supernova remnants are likely to be the accelerators of the galactic cosmic rays. Assuming the correctness of this hypothesis, we develop a method to extract the parent cosmic ray spectrum from the very high energy gamma-ray flux emitted by supernova remnants (and other gamma transparent sources). Namely, we calculate semianalytically the (inverse) operator which relates an arbitrary gamma-ray flux to the parent cosmic ray spectrum, without relying on any theoretical assumption about the shape of the cosmic ray and/or photon spectrum. We illustrate the use of this technique by applying it to the young SNR RX J1713.7-3946 which has been observed by the High Energy Stereoscopic System (H.E.S.S.) experiment during the last three years. Specific implementations of the method permit using as an input either the parametrized very high energy gamma-ray flux or directly the raw data. The possibility to detect features in the cosmic rays spectrum and the error in the determination of the parent cosmic ray spectrum are also discussed.

  10. Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chester G. Motloch; William H. Morrison

    2012-04-01

    Harmonic compensated synchronous detection (HCSD) is a technique that can be used to measure wideband impedance spectra within seconds based on an input sum-of-sines signal having a frequency spread separated by harmonics. The battery (or other energy storage device) is excited with a sum-of-sines current signal that has a duration of at least one period of the lowest frequency. The voltage response is then captured and synchronously detected at each frequency of interest to determine the impedance spectra. This technique was successfully simulated using a simplified battery model and then verified with commercially available Sanyo lithium-ion cells. Simulations revealed the presence of a start-up transient effect when only one period of the lowest frequency is included in the excitation signal. This transient effect appears to only influence the low-frequency impedance measurements and can be reduced when a longer input signal is used. Furthermore, lithium-ion cell testing has indicated that the transient effect does not seem to impact the charge transfer resistance in the mid-frequency region. The degradation rates for the charge transfer resistance measured from the HCSD technique were very similar to the changes observed from standardized impedance spectroscopy methods. Results from these studies, therefore, indicate that HCSD is a viable, rapid alternative approach to acquiring impedance spectra.

  11. Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Sivalingam, Kantharuban; Neese, Frank; Chan, Garnet Kin-Lic

    2014-10-01

    Iron-sulfur clusters are a universal biological motif. They carry out electron transfer, redox chemistry and even oxygen sensing, in diverse processes including nitrogen fixation, respiration and photosynthesis. Their low-lying electronic states are key to their remarkable reactivity, but they cannot be directly observed. Here, we present the first ever quantum calculation of the electronic levels of [2Fe-2S] and [4Fe-4S] clusters free from any model assumptions. Our results highlight the limitations of long-standing models of their electronic structure. In particular, we demonstrate that the widely used Heisenberg double exchange model underestimates the number of states by one to two orders of magnitude, which can conclusively be traced to the absence of Fe dd excitations, thought to be important in these clusters. Furthermore, the electronic energy levels of even the same spin are dense on the scale of vibrational fluctuations and this provides a natural explanation for the ubiquity of these clusters in catalysis in nature.

  12. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  13. Reconstruction of the energy spectrum of electrons accelerated in the April 15, 2002 solar flare based on IRIS X-ray spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Motorina, G. G.; Kudryavtsev, I. V.; Lazutkov, V. P.; Savchenko, M. I.; Skorodumov, D. V.; Charikov, Yu. E.

    2016-04-01

    We reconstruct the energy distribution of electrons accelerated in the April 15, 2002 solar flare on the basis of the data from the IRIS X-ray spectrometer onboard the CORONAS-F satellite. We obtain the solution to the integral equations describing the transformation of the spectrum of X-ray photons during the recording and reconstruction of the spectrum of accelerated electrons in the bremsstrahlung source using the random search method and the Tikhonov regularization method. In this event, we detected a singularity in the electron spectrum associated with the existence of a local minimum in the energy range 40-60 keV, which cannot be detected by a direct method.

  14. Training Reactor VR-1 Neutron Spectrum Determination

    NASA Astrophysics Data System (ADS)

    Vins, M.; Kolros, A.; Katovsky, K.

    2009-08-01

    The main objective of the investigations presented in the paper is to determine the neutron energy spectrum at the specified position in the reactor core used for neutron activation analysis. The methodology is based on irradiation of certified activation foils, measurements of their reaction rates, and consecutive deconvolution of the spectrum using various adjustments/unfolding computer codes. The activation detectors consist of foils of high purity elements (i.e. gold, nickel, indium, tungsten, scandium, manganese, vanadium, and copper were used). Some foils were irradiated also in cadmium cover for suppressing of thermal neutrons. All gamma measurements were performed on a HPGe detector. The measured reaction rates served as an input for computer deconvolution codes as SAND-II, STAY-SL, MAXED (from the UMG package) and GRAVEL (from the UMG package). Libraries of response functions (cross sections of observed reactions) for the all used codes were adopted from the IRDF-2002 library or generated from the ENDF/B-VII.0 using NJOY99. Monte Carlo calculation code MCNP5 was used for calculation of the first approximation of the neutron spectrum. The used codes solve the adjustment issue with a different mathematical approach and a comparison of different neutron adjustment/unfolding methods is a part of the result. Neutron capture and (n,p) reactions were produced during irradiation. The high ratio of thermal and epithermal neutrons in the spectra and low contribution of fast neutrons was expected and was also observed. The results will be used for evaluation of neutron activation analysis exercises on reactor VR-1 and for further innovation of experimental methods. The neutron fluence rates in thermal, epithermal and fast energy regions were also obtained and represent the important part of results.

  15. The expected high-energy to ultra-high-energy gamma-ray spectrum of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    De Jager, O. C.; Harding, A. K.

    1992-01-01

    The inverse Compton scattering model for the unpulsed TeV emission from the Crab Nebula is reexamined using the magnetic field distribution derived from MHD flow models of the nebula. It is shown that the observed flux can be explained if the average nebular field is indeed about 0.0003, as is predicted by the spectral break between radio and optical. The brightness distribution of the TeV gamma-ray signal is expected to extend out to about 1.5 arcmin from the pulsar. The present estimates predict a steady flux of unpulsed ultrahigh-energy gamma-rays due to the inverse Compton scattering of soft photons by shock-accelerated electrons and/or positrons in the vicinity of the shock.

  16. EAS spectrum in the primary energy region above 10 to the 15th power eV by the Akeno and Yakutsk array data

    NASA Technical Reports Server (NTRS)

    Krasilnikov, D. D.; Krasilnikov, A. D.; Knurenko, S. P.; Pavlov, V. N.; Sleptsov, I. Y.; Yegorova, V. P.

    1985-01-01

    The extensive air showers spectrum on scintillation desity Rko in primary energy region E sub approx. 10 to the 15th power - 10 to the 20th power eV on the Yakutsk array data and recent results of the Akeno is given.

  17. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    NASA Technical Reports Server (NTRS)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  18. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling. PMID:25803753

  19. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    SciTech Connect

    Byard D. Wood; Jeff D. Muhs

    2003-01-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report describes several investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility of this technology.

  20. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    SciTech Connect

    Byard D. Wood; Jeff D. Muhs

    2002-09-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report describes eleven investigations on various aspects of the system. Taken as a whole, they confirm the technical feasibility of this technology.

  1. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    SciTech Connect

    Byard D. Wood; Jeff D. Muhs

    2003-10-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report emphasizes the design of the thermophotovoltaic receiver and the whole system simulation model.

  2. Ultra-high energy cosmic rays: 40 years retrospective of continuous observations at the Yakutsk array: Part 1. Cosmic ray spectrum in the energy range 1015-1018 eV and its interpretation

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor; Petrov, Zim; Sleptsov, Ivan

    2015-08-01

    The experimental data on the cosmic ray energy spectrum obtained from the Small Cherenkov Array in Yakutsk on the measurement of Cherenkov radiation in showers with energy 1015-1018 eV are discussed. The data were obtained by means of continuous array operation since 1994. The all particle spectrum in this energy region was found to have a complex shape and cannot be described by a simple exponential function with a single slope indicator, g. After the first kink at energy 3 · 1015 eV (knee), the spectrum becomes steeper at Δγ = 0.4 up to energy <2 · 1016 eV, then part of the spectrum becomes flat to >8 · 1016 eV, the slope of the spectrum is 2.92 ± 0.03 and then again changes slope by Δγ = 0.32 ± 0.05 from about ˜2· 1017 eV. The second kink in the spectrum observed at the Yakutsk EAS array at ˜2·1017 eV, or also called second knee, is a significant result for space astrophysics of ultra-high cosmic rays. In this paper we discuss possible scenarios for spectrum formation of cosmic rays by galactic sources to energies <1017 eV, mainly supernovae remnants (SNR) and Metagalactic origins in the energy range 1017-1018 eV. Most likely, that measurement of the second knee is related with the transitional region, galactic to extragalactic origin of cosmic rays.

  3. Intensity and Energy Level Analysis of the Vacuum Ultraviolet Spectrum of Four Times Ionize Nickel (Ni V)

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2016-01-01

    Recent measurements of four times ionized iron and nickel (Fe V & Ni V) wavelengths in the vacuum ultraviolet (VUV) have been taken using the National Institute for Standards and Technology (NIST) Normal Incidence Vacuum Spectrograph (NIVS) with a sliding spark light source with invar electrodes. The wavelengths observed in those measurements make use of high resolution photographic plates with the majority of observed lines having uncertainties of approximately 3mÅ. In addition to observations made with photographic plates, the same wavelength region was observed with phosphor image plates, which have been demonstrated to be accurate as a method of intensity calibration when used with a deuterium light source. This work will evaluate the use of phosphor image plates and deuterium lamps as an intensity calibration method for the Ni V spectrum in the 1200-1600Å region of the VUV. Additionally, by pairing the observed wavelengths of Ni V with accurate line intensities, it is possible to create an energy level optimization for Ni V providing high accuracy Ritz wavelengths. This process has previously been applied to Fe V and produced Ritz wavelengths that agreed with the above experimental observations.

  4. ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Arefiev, V.; Pavlinsky, M.; Lapshov, I.; Thachenko, A.; Sazonov, S.; Revnivtsev, M.; Semena, N.; Buntov,M.; Vikhlinin, A.; Gubarev, M.; ODell, S.; Ramsey, B.; Romaine, S.; Swartz. D/; Weisskopf, M.; Hasinger, G.; Predehl, P.; Grigorovich, S.; Litvin, D.; Meidinger, N.; Strueder, L. W.

    2008-01-01

    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs.

  5. Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum

    NASA Astrophysics Data System (ADS)

    Kyhl, Line; Balog, Richard; Angot, Thierry; Hornekær, Liv; Bisson, Régis

    2016-03-01

    Hydrogen atom adsorption on high-quality graphene on Ir(111) [gr/Ir(111)] is investigated using high-resolution electron energy loss spectroscopy. The evolution of the vibrational spectrum, up to 400 meV, of gr/Ir(111) upon increasing hydrogen atom exposures is measured. The two dominant binding configurations of atomic hydrogen are identified as (1) graphanelike hydrogen clusters on the parts of the graphene more strongly interacting with the Ir(111) surface and (2) dimers bound more weakly to the freestanding parts of the graphene. The graphanelike surface structures lead to increased corrugation of the graphene sheet, yielding graphane-related phonon components. Additionally, a recent theoretical prediction of the existence of a bending character for a LO/TO graphane chair phonon mode is experimentally verified. No clear evidence was found for hydrogen bound on both sides of a high-quality graphene sheet and phonon features strongly suggest interactions between graphanelike hydrogen clusters and Ir atoms in the substrate.

  6. Adaptive Full-Spectrum Solar Energy Systems Cross-Cutting R&D on adaptive full-spectrum solar energy systems for more efficient and affordable use of solar energy in buildings and hybrid photobioreactors

    SciTech Connect

    Wood, Byard; Kim, Kwang

    2006-03-30

    This RD&D project is a multi-institutional effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae for CO{sub 2} sequestration or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the third generation (beta) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of 3 mm diameter fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the major achievements from this research that began in August 2001.

  7. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS Cross-Cutting R & D on adaptive full-spectrum solar energy systems for more efficient and affordable use of solar energy in buildings and hybrid photobioreactors

    SciTech Connect

    Byard D. Wood; David L. Beshears

    2006-02-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the third generation (beta) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of 3 mm diameter fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations: Niche applications for HSL technology, Luminaire design characteristics for linear and point lighting fixtures, and Daylight affects on productivity.

  8. Effective dose of A-bomb radiation in Hiroshima and Nagasaki as assessed by chromosomal effectiveness of spectrum energy photons and neutrons.

    PubMed

    Sasaki, M S; Endo, S; Ejima, Y; Saito, I; Okamura, K; Oka, Y; Hoshi, M

    2006-07-01

    The effective dose of combined spectrum energy neutrons and high energy spectrum gamma-rays in A-bomb survivors in Hiroshima and Nagasaki has long been a matter of discussion. The reason is largely due to the paucity of biological data for high energy photons, particularly for those with an energy of tens of MeV. To circumvent this problem, a mathematical formalism was developed for the photon energy dependency of chromosomal effectiveness by reviewing a large number of data sets published in the literature on dicentric chromosome formation in human lymphocytes. The chromosomal effectiveness was expressed by a simple multiparametric function of photon energy, which made it possible to estimate the effective dose of spectrum energy photons and differential evaluation in the field of mixed neutron and gamma-ray exposure with an internal reference radiation. The effective dose of reactor-produced spectrum energy neutrons was insensitive to the fine structure of the energy distribution and was accessible by a generalized formula applicable to the A-bomb neutrons. Energy spectra of all sources of A-bomb gamma-rays at different tissue depths were simulated by a Monte Carlo calculation applied on an ICRU sphere. Using kerma-weighted chromosomal effectiveness of A-bomb spectrum energy photons, the effective dose of A-bomb neutrons was determined, where the relative biological effectiveness (RBE) of neutrons was expressed by a dose-dependent variable RBE, RBE(gamma, D (n)), against A-bomb gamma-rays as an internal reference radiation. When the newly estimated variable RBE(gamma, D (n)) was applied to the chromosome data of A-bomb survivors in Hiroshima and Nagasaki, the city difference was completely eliminated. The revised effective dose was about 35% larger in Hiroshima, 19% larger in Nagasaki and 26% larger for the combined cohort compared with that based on a constant RBE of 10. Since the differences are significantly large, the proposed effective dose might have an

  9. Spectrum and mass composition of cosmic rays in the energy range 1015-1018 eV derived from the Yakutsk array data

    NASA Astrophysics Data System (ADS)

    Knurenko, S. P.; Sabourov, A.

    2013-06-01

    A spectrum of cosmic rays within energy range 1015 - 3 × 1017 eV was derived from the data of the small Cherenkov setup, which is a part of the Yakutsk complex EAS array. In this, work a new series of observation is covered. These observations lasted from 2000 till 2010 and resulted in increased number of registered events within interval 1016-1018 eV, which in turn made it possible to reproduce cosmic ray spectrum in this energy domain with better precision. A sign of a thin structure is observed in the shape of the spectrum. It could be related to the escape of heavy nuclei from our Galaxy. Cosmic ray mass composition was obtained for the energy region 1016-1018 eV. A joint analysis of spectrum and mass composition of cosmic rays was performed. Obtained results are considered in the context of theoretical computations that were performed with the use of hypothesis of galactic and meta-galactic origin of cosmic rays.

  10. Visual adjustments to temporal blur

    NASA Astrophysics Data System (ADS)

    Bilson, Aaron C.; Mizokami, Yoko; Webster, Michael A.

    2005-10-01

    After observers have adapted to an edge that is spatially blurred or sharpened, a focused edge appears too sharp or blurred, respectively. These adjustments to blur may play an important role in calibrating spatial sensitivity. We examined whether similar adjustments influence the perception of temporal edges, by measuring the appearance of a step change in the luminance of a uniform field after adapting to blurred or sharpened transitions. Stimuli were square-wave alternations (at 1 to 8 Hz) filtered by changing the slope of the amplitude spectrum. A two-alternative-forced-choice task was used to adjust the slope until it appeared as a step change, or until it matched the perceived transitions in a reference stimulus. Observers could accurately set the waveform to a square wave, but only at the slower alternation rates. However, these settings were strongly biased by prior adaptation to filtered stimuli, or when the stimuli were viewed within temporally filtered surrounds. Control experiments suggest that the latter induction effects result directly from the temporal blur and are not simply a consequence of brightness induction in the fields. These results suggest that adaptation and induction adjust visual coding so that images are focused not only in space but also in time.

  11. Measurement and Interpretation of Moments of the Combined Hadronic Mass and Energy Spectrum in Inclusive Semileptonic B-Meson Decays

    SciTech Connect

    Klose, Verena

    2011-08-12

    This thesis presents first measurements of moments of the hadronic nX2 distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → Xcℓν. The variable nX2 is a combination of the invariant mass of the charmed meson mX, its energy in the B-meson rest-frame EX;BRF, and a constant ~Λ = 0.65 GeV, nX2 = mX2c4-2~ΛEX,BRF + ~Λ2. The moments Xk> with k = 2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e+e- → Υ(4S) {yields} B$\\bar{B}$ events recorded with the BABAR experiment at the PEP-II e+e--storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the nX2 distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments Xk> up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B → Xcℓν and moments of the photon-energy spectrum in decays B → Xsγ, we determine the quark-mixing parameter |Vcb|, the bottom and charm quark masses, the semileptonic branching fraction β(B → Xcℓν), and four non-perturbative heavy quark

  12. On a coherent investigation of the spectrum of cosmic rays in the energy range of 1014 - 1018 eV with KASCADE and KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Schoo, S.; Apel, W. D.; Arteaga-Velázquez, J. C.; Beck, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-08-01

    The KASCADE experiment and its extension KASCADE-Grande have significantly contributed to the current knowledge about the energy spectrum and composition of cosmic rays (CRs) with energies between the knee and the ankle. However, the data of both experiments were analysed separately, although Grande used the muon information of the KASCADE-array. A coherent analysis based on the combined data of both arrays is expected to profit from reconstructed shower observables with even higher accuracy compared to the stand-alone analyses. In addition, a significantly larger fiducial area is available. The aim of this analysis is to obtain the spectrum and composition of CRs in the range from 1014 to 1018 eV with a larger number of events and further reduced uncertainties using one unique reconstruction procedure for the entire energy range. This contribution will describe the motivation, the concept, and the current status of the combined analysis.

  13. Zero-energy modes and valley asymmetry in the Hofstadter spectrum of bilayer graphene van der Waals heterostructures with hBN

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wallbank, J. R.; Mucha-Kruczyński, M.; McCann, E.; Fal'ko, V. I.

    2016-07-01

    We investigate the magnetic minibands of a heterostructure consisting of bilayer graphene (BLG) and hexagonal boron nitride (hBN) by numerically diagonalizing a two-band Hamiltonian that describes electrons in BLG in the presence of a moiré potential. Due to inversion-symmetry breaking characteristic for the moiré potential, the valley symmetry of the spectrum is broken, but despite this, the zero-energy Landau level in BLG survives, albeit with reduced degeneracy. In addition, we derive effective models for the low-energy features in the magnetic minibands and demonstrate the appearance of secondary Dirac points in the valence band, which we confirm by numerical simulations. Then, we analyze how single-particle gaps in the fractal energy spectrum produce a sequence of incompressible states observable under a variation of carrier density and magnetic field.

  14. A new measurement of the cosmic ray energy spectrum between 3 x 10 to the 15th power eV and 3 x 10 to the 16th power eV

    NASA Technical Reports Server (NTRS)

    Gregory, A. G.; Patterson, J. R.; Protheroe, R. J.

    1985-01-01

    A new Cerenkov photon density spectrum measurement is reported. The derivation of the primary cosmic ray energy spectrum for energies from 3x10 to the 15th power eV to 3x10 to the 16th power eV are presented.

  15. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  16. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    SciTech Connect

    Byard D. Wood; Jeff D. Muhs

    2005-02-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system: (1) Performance specifications were developed for the tracking subsystem and collector optics, (2) Thermal management experiments for the fiber optic bundle entrance region, and (3) Bioreactor testing, cost-modeling, and redesign. Much of the planned work has been slowed due to significant procurement delays of the primary mirror. However, taken as a whole, they do confirm progress towards the technical feasibility and commercial viability of this technology. Due to this procurement delay, a no-cost extension of the project completion date has been requested and approved.

  17. Measurements of the T(t,2n)He4 Neutron Spectrum at Low Reactant Energies from Inertial Confinement Implosions

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Manuel, M. J.-E.; Sinenian, N.; Zylstra, A. B.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu; Radha, P. B.; Meyerhofer, D. D.; Sangster, T. C.; McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Hatchett, S. P.; Quaglioni, S.; Rygg, J. R.; Thompson, I. J.; Bacher, A. D.; Herrmann, H. W.; Kim, Y. H.

    2012-07-01

    Measurements of the neutron spectrum from the T(t,2n)He4 (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium (DT) gas-filled capsules were imploded to study the tt reaction in thermonuclear plasmas at low reactant center-of-mass (c.m.) energies. In contrast to accelerator experiments at higher c.m. energies (above 100 keV), these results indicate a negligible n+He5 reaction channel at a c.m. energy of 23 keV.

  18. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  19. Adjustable sutures in children.

    PubMed

    Engel, J Mark; Guyton, David L; Hunter, David G

    2014-06-01

    Although adjustable sutures are considered a standard technique in adult strabismus surgery, most surgeons are hesitant to attempt the technique in children, who are believed to be unlikely to cooperate for postoperative assessment and adjustment. Interest in using adjustable sutures in pediatric patients has increased with the development of surgical techniques specific to infants and children. This workshop briefly reviews the literature supporting the use of adjustable sutures in children and presents the approaches currently used by three experienced strabismus surgeons. PMID:24924284

  20. Power-law partition and entropy production of high-energy cosmic rays: Knee-ankle structure of the all-particle spectrum

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2013-10-01

    A statistical description of the all-particle cosmic-ray spectrum is given in the 10^{14}\\ \\text{eV} to 10^{20}\\ \\text{eV} interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases of low density and high temperature. Each plasma component is described by an ultra-relativistic power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle” features of the high- and ultra-high-energy spectrum turn out to be the global and local extrema of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed. The all-particle spectrum is covered by recent data sets from several air shower arrays, and can be modeled as three-component plasma in the indicated energy range extending over six decades. The temperature, specific number density, internal energy and entropy of each plasma component are extracted from the partial fluxes in the broadband fit. The grand partition function and the extensive entropy functional of a non-equilibrated gas mixture with power-law components are derived in phase space by ensemble averaging.

  1. Convective adjustment in baroclinic atmospheres

    NASA Technical Reports Server (NTRS)

    Emanuel, Kerry A.

    1986-01-01

    Local convection in planetary atmospheres is generally considered to result from the action of gravity on small regions of anomalous density. That in rotating baroclinic fluids the total potential energy for small scale convection contains a centrifugal as well as a gravitational contribution is shown. Convective adjustment in such an atmosphere results in the establishment of near adiabatic lapse rates of temperature along suitably defined surfaces of constant angular momentum, rather than in the vertical. This leads in general to sub-adiabatic vertical lapse rates. That such an adjustment actually occurs in the earth's atmosphere is shown by example and the magnitude of the effect for several other planetary atmospheres is estimated.

  2. Cognitive wideband spectrum sensing using cosine-modulated filter banks

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Pu, Fangling; Xu, Xin; Chen, Nengcheng

    2015-11-01

    A multichannel joint spectrum sensing strategy based on cosine-modulated filter banks (CMFBs) was developed to improve sensing efficiency. The received wideband signal was split into several bands through the filters that are constructed by grouping continuous sub-band filters. Through flexibly designing prototype filter, not only the spectrum of non-uniform bandwidth can be estimated, but also the spectral leakage between adjacent channels can be adjusted. The probabilities of false alarm and detection for multichannel jointly spectrum sensing in the Rayleigh fading channel were deduced. The decision thresholds of different channels were obtained as regards the probability of false alarm. Simulation results show that compared with the traditional energy detector, the detection capability and sensing efficiency have been improved, especially at low signal-to-noise ratio. The CMFB-based multichannel joint sensing scheme not only increases the efficiency of detection, but also enhances the flexibility on the control of bandwidth and spectral leakage between neighbouring channels.

  3. A theoretical study of the vibrational energy spectrum of the HOCl/HClO system on an accurate {ital ab initio} potential energy surface

    SciTech Connect

    Peterson, K.A.; Skokov, S.; Bowman, J.M.

    1999-10-01

    A new, global analytical potential energy surface is constructed for the X&hthinsp;{sup 1}A{sup {prime}} electronic ground state of HOCl that accurately includes the HClO isomer. The potential is obtained by using accurate {ital ab initio} data from a previously published surface [Skokov {ital et al.}, J. Chem. Phys. {bold 109}, 2662 (1998)], as well as a significant number of new data for the HClO region of the surface at the same multireference configuration interaction, complete basis set limit level of theory. Vibrational energy levels and intensities are computed for both HOCl and HClO up to the OH+Cl dissociation limit and above the isomerization barrier. After making only minor adjustments to the {ital ab initio} surface, the errors with respect to experiment for HOCl are generally within a few cm{sup {minus}1} for 22 vibrational levels with the largest error being 26 cm{sup {minus}1}. A total of 813 bound vibrational states are calculated for HOCl. The HClO potential well supports 57 localized states, of which only the first 3 are bound. The strongest dipole transitions for HClO were computed for the fundamentals{emdash}33, 2.9, and 25 km/mol for {nu}{sub 1}, {nu}{sub 2}, and {nu}{sub 3}, respectively. From exact J=1 ro-vibrational calculations, state dependent rotational constants have been calculated for HClO. Lastly, resonance calculations with the new potential demonstrate that the presence of the HClO minimum has a negligible effect on the resonance states of HOCl near the dissociation threshold due to the relatively high and wide isomerization barrier. {copyright} {ital 1999 American Institute of Physics.}

  4. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    DOE PAGESBeta

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less

  5. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    SciTech Connect

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.

  6. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    SciTech Connect

    Merritt, E. C. Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-06-15

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.

  7. Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H. P.; Brown, A. M.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J. H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; Morik, K.

    2015-03-01

    We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.

  8. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  9. Measurement of the atmospheric ν μ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; Al Samarai, I.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Classen, F.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Decowski, M. P.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Michael, T.; Montaruli, T.; Morganti, M.; Motz, H.; Mueller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Shanidze, R.; Sieger, C.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vernin, P.; Visser, E.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.

    2013-10-01

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is ˜25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index γ meas=3.58±0.12. With the present statistics the contribution of prompt neutrinos cannot be established.

  10. Economics of spectrum allocation

    NASA Astrophysics Data System (ADS)

    Melody, W. H.

    The effective and efficient allocation and use of the spectrum can be ensured only by a set of sharing rules that will reflect the interests, values, and power of all affected parties. What is now happening is that the new interests and different values of the developing countries are pressing to change the international sharing rules established by a small group of high-technology nations. It is noted that the latter have established a massive telecommunications infrastructure on the basis of inherited sharing rules that reflect only their interests and a much simplified scarcity problem. Once long-term goals and underlying principles of allocation are established, communication technologies and markets can be directed, through a series of adjustment policies, to achieve them. A crucial first step in the creation of an international information environment in which 'free' flows will be balanced flows is the establishment of a balanced and equitable set of sharing rules for the radio spectrum.

  11. NREL Spectrum of Innovation

    ScienceCinema

    None

    2013-05-29

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  12. DISENTANGLING HADRONIC AND LEPTONIC CASCADE SCENARIOS FROM THE VERY-HIGH-ENERGY GAMMA-RAY EMISSION OF DISTANT HARD-SPECTRUM BLAZARS

    SciTech Connect

    Takami, Hajime; Murase, Kohta; Dermer, Charles D. E-mail: murase@ias.edu

    2013-07-10

    Recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; {approx}> 100 GeV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311-1938. We consider the prospects for detection of the VHE sources by the planned Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above {approx}500 GeV (depending on source redshift) for several luminous sources with z {approx}< 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311-1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Accurate redshift measurements of hard-spectrum blazars are essential for this study.

  13. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    ERIC Educational Resources Information Center

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  14. Energy spectrum of longitudinal ion losses in the GDT facility under development of Alfvén ion-cyclotron instability

    SciTech Connect

    Anikeev, A. V. Bagryansky, P. A.; Zaitsev, K. V.; Korobeinikova, O. A.; Murakhtin, S. V. Skovorodin, D. I.; Yurov, D. V.

    2015-10-15

    The influence of Alfvén ion cyclotron instability on the longitudinal losses of particles and energy from the GDT gas-dynamic trap was studied experimentally. To record the energy spectrum of ions escaping from the facility along magnetic field lines, a wide-range energy analyzer was attached to the expander. Processing of the experimental data made it possible to determine the time evolution of the ion energy distribution function and showed that the relative increase in the loss power during the development of instability did not exceed 1%. This result confirms the main conclusion of the theoretical model describing the interaction between an Alfvén wave and resonance particles and predicting that this microinstability insignificantly affects the confinement of hot ions in open magnetic traps.

  15. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.

    2011-08-15

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  16. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus

    NASA Astrophysics Data System (ADS)

    Ceccolini, E.; Rocchi, F.; Mostacci, D.; Sumini, M.; Tartari, A.

    2011-08-01

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  17. Examining the Relationship between Autistic Traits and College Adjustment

    ERIC Educational Resources Information Center

    Trevisan, Dominic; Birmingham, Elina

    2016-01-01

    We examined the relationship between characteristics associated with autism spectrum disorder and college adjustment in a sample of neurotypical college students. Using the Broad Autism Phenotype Questionnaire and the Student Adaptation to College Questionnaire, we found that higher levels of autism spectrum disorder characteristics were…

  18. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

    SciTech Connect

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.

    2011-01-01

    A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18 000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject misreconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than 1%. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric {nu}{sub {mu}+{nu}{mu}} flux.

  19. Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hague, J. D.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Nedbal, D.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spieß, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2013-11-01

    Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z=0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, gγa<2.1×10-11GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic field.

  20. Adjusting the Chain Gear

    NASA Astrophysics Data System (ADS)

    Koloc, Z.; Korf, J.; Kavan, P.

    The adjustment (modification) deals with gear chains intermediating (transmitting) motion transfer between the sprocket wheels on parallel shafts. The purpose of the adjustments of chain gear is to remove the unwanted effects by using the chain guide on the links (sliding guide rail) ensuring a smooth fit of the chain rollers into the wheel tooth gap.

  1. Adjustment to Recruit Training.

    ERIC Educational Resources Information Center

    Anderson, Betty S.

    The thesis examines problems of adjustment encountered by new recruits entering the military services. Factors affecting adjustment are discussed: the recruit training staff and environment, recruit background characteristics, the military's image, the changing values and motivations of today's youth, and the recruiting process. Sources of…

  2. Determination of Neutron Spectrum by the Dosimetry Foil Method up to 37 Mev

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; Bém, P.; Burjan, V.; Fischer, U.; Forrest, R. A.; Götz, M.; Honusek, M.; Kroha, V.; Novàk, J.; Šimečková, E.

    2009-08-01

    The dosimetry activation foil technique was used for the determination of a white neutron spectrum at the U120M cyclotron facility of NPI/Řež. The neutrons were produced by 37 MeV protons slowing down in the thick heavy water target and have an energy distribution extending up to 37 MeV. To cover the whole energy range a set of 10 foils Al, Ti, Fe, Co, Ni, Y, Nb, In, Lu, and Au was used. The γ-rays from the decaying nuclei produced in 26 activation reactions were detected. The cross sections for these reaction were chosen from European Activation File EAF-2007 (up to 55 MeV) after intercomparison with the dosimetry cross section library IRDF-2002 which represents the cross section only up to 20 MeV and other high energy libraries. For the spectrum determination the SAND-II code was used after it had been modified to input dosimetry cross sections above 20 MeV in an arbitrary group structure. The guessed neutron spectrum which is needed to start an adjustment procedure was combined from those measured and calculated by the MCNPX code. The uncertainty of the adjusted neutron spectrum was estimated using the uncertainties of measured specific γ-activities induced in nuclides and dosimetry cross sections. It is less than 10% in the energy range below 25 MeV, the sensitivity domain of the most dosimetry reactions, but increases above this energy.

  3. On Possible Interpretations of the High Energy Electron-Positron Spectrum Measured by the Fermi Large Area Telescope

    SciTech Connect

    Grasso, D.; Profumo, S.; Strong, A.W.; Baldini, L.; Bellazzini, R.; Bloom, E.D.; Bregeon, J.; Di Bernardo, G.; Gaggero, D.; Giglietto, N.; Kamae, T.; Latronico, L.; Longo, F.; Mazziotta, M.N.; Moiseev, A.A.; Morselli, A.; Ormes, J.F.; Pesce-Rollins, M.; Pohl, M.; Razzano, M.; Sgro, C.

    2009-05-15

    The Fermi-LAT experiment recently reported high precision measurements of the spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. Here we discuss several interpretations of the Fermi results based either on a single large scale Galactic CRE component or by invoking additional electron-positron primary sources, e.g. nearby pulsars or particle Dark Matter annihilation. We show that while the reported Fermi-LAT data alone can be interpreted in terms of a single component scenario, when combined with other complementary experimental results, specifically the CRE spectrum measured by H.E.S.S. and especially the positron fraction reported by PAMELA between 1 and 100 GeV, that class of models fails to provide a consistent interpretation. Rather, we find that several combinations of parameters, involving both the pulsar and dark matter scenarios, allow a consistent description of those results. We also briefly discuss the possibility of discriminating between the pulsar and dark matter interpretations by looking for a possible anisotropy in the CRE flux.

  4. 25 CFR 175.12 - Procedures for adjusting electric power rates except for adjustments due to changes in the cost...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... adjustments due to changes in the cost of purchased power or energy. 175.12 Section 175.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Service Fees... adjustments due to changes in the cost of purchased power or energy. Except for adjustments to rates due...

  5. 25 CFR 175.12 - Procedures for adjusting electric power rates except for adjustments due to changes in the cost...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... adjustments due to changes in the cost of purchased power or energy. 175.12 Section 175.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Service Fees... adjustments due to changes in the cost of purchased power or energy. Except for adjustments to rates due...

  6. 25 CFR 175.12 - Procedures for adjusting electric power rates except for adjustments due to changes in the cost...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... adjustments due to changes in the cost of purchased power or energy. 175.12 Section 175.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Service Fees... adjustments due to changes in the cost of purchased power or energy. Except for adjustments to rates due...

  7. A properly adjusted forage harvester can save time and money

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  8. Examining the relationship between autistic traits and college adjustment.

    PubMed

    Trevisan, Dominic; Birmingham, Elina

    2016-08-01

    We examined the relationship between characteristics associated with autism spectrum disorder and college adjustment in a sample of neurotypical college students. Using the Broad Autism Phenotype Questionnaire and the Student Adaptation to College Questionnaire, we found that higher levels of autism spectrum disorder characteristics were associated with poorer adjustment to college. One subscale of the Broad Autism Phenotype Questionnaire, pragmatic language difficulties, explained the most variance in adjustment. In addition, students who met the previously established cut-off scores for possessing the broad autism phenotype scored significantly lower on all Student Adaptation to College Questionnaire subscales. Finally, pragmatic language difficulties mediated the relationship between college major and academic adjustment. These findings underscore the need for future research to examine how pragmatic language difficulties may impede college success in students with autism spectrum disorder and in the typical population. PMID:26471426

  9. Study of Harmonics-to-Noise Ratio and Critical-Band Energy Spectrum of Speech as Acoustic Indicators of Laryngeal and Voice Pathology

    NASA Astrophysics Data System (ADS)

    Shama, Kumara; krishna, Anantha; Cholayya, Niranjan U.

    2006-12-01

    Acoustic analysis of speech signals is a noninvasive technique that has been proved to be an effective tool for the objective support of vocal and voice disease screening. In the present study acoustic analysis of sustained vowels is considered. A simple[InlineEquation not available: see fulltext.]-means nearest neighbor classifier is designed to test the efficacy of a harmonics-to-noise ratio (HNR) measure and the critical-band energy spectrum of the voiced speech signal as tools for the detection of laryngeal pathologies. It groups the given voice signal sample into pathologic and normal. The voiced speech signal is decomposed into harmonic and noise components using an iterative signal extrapolation algorithm. The HNRs at four different frequency bands are estimated and used as features. Voiced speech is also filtered with 21 critical-bandpass filters that mimic the human auditory neurons. Normalized energies of these filter outputs are used as another set of features. The results obtained have shown that the HNR and the critical-band energy spectrum can be used to correlate laryngeal pathology and voice alteration, using previously classified voice samples. This method could be an additional acoustic indicator that supplements the clinical diagnostic features for voice evaluation.

  10. Measurement of B (B→Xsγ), the B→Xsγ photon energy spectrum, and the direct CP asymmetry in B→Xs+dγ decays

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.; Winstrom, L.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Uwer, U.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Mallik, U.; Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Dallapiccola, C.; Cowan, R.; Dujmic, D.; Sciolla, G.; Cheaib, R.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Neri, N.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C. P.; Knoepfel, K.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Lu, M.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Grünberg, O.; Hartmann, T.; Leddig, T.; Schröder, H.; Voss, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Zambito, S.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.

    2012-12-01

    The photon spectrum in B→Xsγ decay, where Xs is any strange hadronic state, is studied using a data sample of (382.8±4.2)×106 e+e-→Υ(4S)→BB¯ events collected by the BABAR experiment at the PEP-II collider. The spectrum is used to measure the branching fraction B(B→Xsγ)=(3.21±0.15±0.29±0.08)×10-4 and the first, second, and third moments ⟨Eγ⟩=2.267±0.019±0.032±0.003GeV, ⟨(Eγ-⟨Eγ⟩)2⟩=0.0484±0.0053±0.0077±0.0005GeV2, and ⟨(Eγ-⟨Eγ⟩)3⟩=-0.0048±0.0011±0.0011±0.0004GeV3, for the range Eγ>1.8GeV, where Eγ is the photon energy in the B-meson rest frame. Results are also presented for narrower Eγ ranges. In addition, the direct CP asymmetry ACP(B→Xs+dγ) is measured to be 0.057±0.063. The spectrum itself is also unfolded to the B-meson rest frame; that is the frame in which theoretical predictions for its shape are made.

  11. Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum

    SciTech Connect

    Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.

  12. Numerical calculation of radiative corrections to the. beta. energy spectrum of semileptonic decays of light- and charm-quark charged baryons

    SciTech Connect

    Martinez V., A.; Juarez W., S.R. ); Garcia, A. )

    1992-07-01

    In this paper we calculate, for the {beta} energy spectrum of several semileptonic decays of interest, the numerical values of the radiative correction coefficients of an analytic expression previously obtained. The results can be readily used in a Monte Carlo simulation in an experimental analysis of those decays. We estimate the theoretical uncertainty involved in the analytic expression and show that it remains small even in high-{ital q} decays. Therefore, that expression is valid for charm-baryon semileptonic decays, to a high degree of precision.

  13. The SCR Ne-21 and Ar-38 in lunar rock 68815: The solar proton energy spectrum over the past 2 MYR

    NASA Technical Reports Server (NTRS)

    Garrison, D. H.; Rao, M. N.; Bogard, D. D.

    1993-01-01

    We determined concentration profiles of Ne-21, Ne-22, and Ar-38 produced by solar protons as a function of depth in oriented lunar rock 68815. A comparison with model predictions indicate a solar proton flux J(4(pi)(r); E greater than 10 MeV) of 100-125 p/sq. cm/s and a rigidity, R sub 0, of 85-100 MV, assuming an erosion rate of 1-2 mm/Myr. These results for 68815 and similar results on 61016 define the integrated solar proton energy spectrum at the moon over the past approximately 2 Myr.

  14. SLIT ADJUSTMENT CLAMP

    DOEpatents

    McKenzie, K.R.

    1959-07-01

    An electrode support which permits accurate alignment and adjustment of the electrode in a plurality of planes and about a plurality of axes in a calutron is described. The support will align the slits in the electrode with the slits of an ionizing chamber so as to provide for the egress of ions. The support comprises an insulator, a leveling plate carried by the insulator and having diametrically opposed attaching screws screwed to the plate and the insulator and diametrically opposed adjusting screws for bearing against the insulator, and an electrode associated with the plate for adjustment therewith.

  15. CMS Frailty Adjustment Model

    PubMed Central

    Kautter, John; Pope, Gregory C.

    2004-01-01

    The authors document the development of the CMS frailty adjustment model, a Medicare payment approach that adjusts payments to a Medicare managed care organization (MCO) according to the functional impairment of its community-residing enrollees. Beginning in 2004, this approach is being applied to certain organizations, such as Program of All-Inclusive Care for the Elderly (PACE), that specialize in providing care to the community-residing frail elderly. In the future, frailty adjustment could be extended to more Medicare managed care organizations. PMID:25372243

  16. An experiment to measure the energy spectrum of cosmic ray antiprotons from 100 to 1000 MeV

    NASA Technical Reports Server (NTRS)

    Price, P. B.; Barwick, S. W.; Lowder, D. M.; Ahlen, S. P.; Salamon, M. H.

    1985-01-01

    Production models were developed and the confirmation of each one had significant astrophysical impact. These include radical modifications of propagation models, cosmic ray antiprotons injection from neighboring domains of antimatter, p production by evaporating primordial black holes, and cosmic ray p's as annihilation products of supersymmetry particles that might make up the dark dynamical mass of the Galaxy. It is that p's originating from supersymmetric parents might have distinct spectral features that would survive solar modulation; in one model, higgsino annihilation proceeds through the bb quark-antiquark channel, producing a spectral bump at approx. 0.3 GeV in the p spectrum.

  17. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  18. Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering

    PubMed Central

    Gor'kov, Lev P.; Teitel'baum, Gregory B.

    2015-01-01

    In the search for mechanisms of high-temperature superconductivity it is critical to know the electronic spectrum in the pseudogap phase from which superconductivity evolves. The lack of angle-resolved photoemission data for every cuprate family precludes an agreement as to its structure, doping and temperature dependence and the role of charge ordering. Here we show that, in the entire Fermi-liquid-like regime that is ubiquitous in underdoped cuprates, the spectrum consists of holes on the Fermi arcs and an electronic pocket. We argue that experiments on the Hall coefficient identify the latter as a permanent feature at doped hole concentration x > 0.08–0.10, in contrast to the idea of the Fermi surface reconstruction via charge ordering. The longstanding issue of the origin of the negative Hall coefficient in YBCO and Hg1201 at low temperature is resolved: the electronic contribution prevails as mobility of the latter (evaluated by the Dingle temperature) becomes temperature independent, while the mobility of holes scattered by the short-wavelength charge density waves decreases. PMID:25688011

  19. Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering.

    PubMed

    Gor'kov, Lev P; Teitel'baum, Gregory B

    2015-01-01

    In the search for mechanisms of high-temperature superconductivity it is critical to know the electronic spectrum in the pseudogap phase from which superconductivity evolves. The lack of angle-resolved photoemission data for every cuprate family precludes an agreement as to its structure, doping and temperature dependence and the role of charge ordering. Here we show that, in the entire Fermi-liquid-like regime that is ubiquitous in underdoped cuprates, the spectrum consists of holes on the Fermi arcs and an electronic pocket. We argue that experiments on the Hall coefficient identify the latter as a permanent feature at doped hole concentration x > 0.08-0.10, in contrast to the idea of the Fermi surface reconstruction via charge ordering. The longstanding issue of the origin of the negative Hall coefficient in YBCO and Hg1201 at low temperature is resolved: the electronic contribution prevails as mobility of the latter (evaluated by the Dingle temperature) becomes temperature independent, while the mobility of holes scattered by the short-wavelength charge density waves decreases. PMID:25688011

  20. Weighted triangulation adjustment

    USGS Publications Warehouse

    Anderson, Walter L.

    1969-01-01

    The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.

  1. The X-ray spectrum and spectral energy distribution of FIRST J155633.8+351758: a LoBAL quasar with a probable polar outflow

    NASA Astrophysics Data System (ADS)

    Berrington, Robert C.; Brotherton, Michael S.; Gallagher, Sarah C.; Ganguly, Rajib; Shang, Zhaohui; DiPompeo, Michael; Chatterjee, Ritaban; Lacy, Mark; Gregg, Michael D.; Hall, Patrick B.; Laurent-Muehleisen, S. A.

    2013-12-01

    We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We investigated a number of models of varied sophistication to fit the 531-photon spectrum. These models ranged from simple power laws to power laws absorbed by hydrogen gas in differing ionization states and degrees of partial covering. Preferred fits indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity, i.e. an intrinsic, dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter at a >99 per cent confidence for a neutral hydrogen absorber model). Absorption is present, with a column density a few times 1023 cm-2, with both partially ionized models and partially covering neutral hydrogen models providing good fits. We present several lines of argument that suggest the fraction of X-ray emissions associated with the radio jet is not large. We combine our Chandra data with observations from the literature to construct the spectral energy distribution of FIRST J1556+3517 from radio to X-ray energies. We make corrections for Doppler beaming for the pole-on radio jet, optical dust reddening and X-ray absorption, in order to recover a probable intrinsic spectrum. The quasar FIRST J1556+3517 seems to be an intrinsically normal radio-quiet quasar with a reddened optical/UV spectrum, a Doppler-boosted but intrinsically weak radio jet and an X-ray absorber not dissimilar from that of other broad absorption line quasars.

  2. Least-Squares Neutron Spectral Adjustment with STAYSL PNNL

    NASA Astrophysics Data System (ADS)

    Greenwood, L. R.; Johnson, C. D.

    2016-02-01

    The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator

  3. Multifractal spectrums for volumes of spatial forms on surface of ZnxCd1-xTe-Si (111) heterostructures and estimation of the fractal surface energy

    NASA Astrophysics Data System (ADS)

    Moskvin, Pavel; Kryzhanivskyy, Vyacheslav; Lytvyn, Petro; Rashkovetskyi, Liubomyr

    2016-09-01

    Multifractal (MF) analysis is used to describe volumes of spatial forms that are formed on the surface of thin layers of ZnxCd1-xTe solid solution grown on the Si (111) substrate. MF analysis is performed on the basis of AFM images of the solid solution surface. The parameters of the MF spectrums for the distribution of volumes of the spatial forms, which formed the surface relief, were found. On the basis of a formal approach and data on the multifractal parameters for the volume and the area of the surface spatial forms the mathematic expression which takes into account the contribution of the fractal surface structure in its surface energy were proposed. The behavior of the surface energy of the system depending on the fractal parameters that describe the volume and the area of the spatial forms on the fractal surface were discussed.

  4. Energy Spectrum and Anisotropy of Cosmic Rays with E{sub 0} {>=} 10{sup 17} eV from Yakutsk EAS Array Data

    SciTech Connect

    Glushkov, A.V.; Pravdin, M.I.

    2005-07-01

    Data from the Yakutsk extensive air shower array for the period 1974-2004 are used to analyze the energy spectrum and anisotropy of primary cosmic rays (PCRs) with energy E{sub 0} {>=} 10{sup 17} eV. The spectra from different regions of the sky are shown to differ in shape. Enhanced and reduced particle fluxes come from the disks of the Galaxy and the Supergalaxy (the Local Supercluster of galaxies) at E{sub 0} {>=} 5 x 10{sup 18} eV and E{sub 0} {<=} (2-3) x 10{sup 18} eV, respectively. This is interpreted as a manifestation of the possible interaction between extragalactic PCRs and the matter of these spatial structures.

  5. Peculiar high energy cosmic ray stratospheric event reveals a heavy primary origin particle above the knee region of the cosmic ray spectrum

    SciTech Connect

    Kopenkin, V.; Fujimoto, Y.

    2005-01-15

    We wish to put forward an explanation for a peculiar cosmic ray event with energy {sigma}E{sub {gamma}}{>=}2x10{sup 15} eV detected in 1975 by the balloon borne emulsion chamber experiment performed in the stratosphere, at the altitude {>=}30 km above sea level. For almost 30 years the event has been described as unusual, invoking new exotic mechanisms or models. In our opinion there is no need for an extraordinary explanation. Contrary to the widespread belief, the event gives us an example of 'unrecognized standard physics'. At the same time this event revealed a variety of features which are of considerable interest for cosmic rays, nuclear physics, and astrophysics. Here we show that the observed family is most likely to be a result of a heavy nucleus interaction with an air nucleus. In this case a primary particle would originally have been in the energy region above 'the knee' of the cosmic ray spectrum.

  6. Measurement of the D-D fusion neutron energy spectrum and variation of the peak width with plasma ion temperature

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1983-11-01

    We report a set of neutron spectrum measurements made at the Alcator-C tokamak under Ohmic-heating conditions. It has been found that the width of the D-D fusion neutron peak increases with the plasma ion temperature consistent with the theoretical prediction. In particular, the neutron spectra resulting from the sum of many plasma discharges with ion temperatures of 780 and 1050 eV have been obtained. The width for the 780-eV case is 64+ 9-11 keV and that of the 1050-eV case, 81+10-14 keV (full width at half maximum), corresponding to ion temperatures of 740 and 1190 eV, respectively.

  7. Spectroscopic analysis of transition state energy levels - Bending-rotational spectrum and lifetime analysis of H3 quasibound states

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Mladenovic, Mirjana; Truhlar, Donald G.; Schwenke, David W.; Sharafeddin, Omar

    1989-11-01

    Converged quantum mechanical calculations of scattering matrices and transition probabilities are reported for the reaction of H with H2 with total angular momentum 0, 1, and 4 as functions of total energy in the range 0.85-1.15 eV on an accurate potential energy surface. The resonance structure is illustrated with Argand diagrams. State-to-state reactive collision delay times and lifetimes are presented. For J = 0, 1, and 4, the lowest-energy H3 resonance is at total energies of 0.983, 0.985, and 1.01 eV, respectively, with lifetimes of about 16-17 fs. For J = 1 and 4 there is a higher-energy resonance at 1.10-1.11 eV. For J = 1 the lifetime is about 4 fs and for J = 4 it is about 1 fs.

  8. Spectroscopic analysis of transition state energy levels - Bending-rotational spectrum and lifetime analysis of H3 quasibound states

    NASA Technical Reports Server (NTRS)

    Zhao, Meishan; Mladenovic, Mirjana; Truhlar, Donald G.; Schwenke, David W.; Sharafeddin, Omar

    1989-01-01

    Converged quantum mechanical calculations of scattering matrices and transition probabilities are reported for the reaction of H with H2 with total angular momentum 0, 1, and 4 as functions of total energy in the range 0.85-1.15 eV on an accurate potential energy surface. The resonance structure is illustrated with Argand diagrams. State-to-state reactive collision delay times and lifetimes are presented. For J = 0, 1, and 4, the lowest-energy H3 resonance is at total energies of 0.983, 0.985, and 1.01 eV, respectively, with lifetimes of about 16-17 fs. For J = 1 and 4 there is a higher-energy resonance at 1.10-1.11 eV. For J = 1 the lifetime is about 4 fs and for J = 4 it is about 1 fs.

  9. Partial covariate adjusted regression

    PubMed Central

    Şentürk, Damla; Nguyen, Danh V.

    2008-01-01

    Covariate adjusted regression (CAR) is a recently proposed adjustment method for regression analysis where both the response and predictors are not directly observed (Şentürk and Müller, 2005). The available data has been distorted by unknown functions of an observable confounding covariate. CAR provides consistent estimators for the coefficients of the regression between the variables of interest, adjusted for the confounder. We develop a broader class of partial covariate adjusted regression (PCAR) models to accommodate both distorted and undistorted (adjusted/unadjusted) predictors. The PCAR model allows for unadjusted predictors, such as age, gender and demographic variables, which are common in the analysis of biomedical and epidemiological data. The available estimation and inference procedures for CAR are shown to be invalid for the proposed PCAR model. We propose new estimators and develop new inference tools for the more general PCAR setting. In particular, we establish the asymptotic normality of the proposed estimators and propose consistent estimators of their asymptotic variances. Finite sample properties of the proposed estimators are investigated using simulation studies and the method is also illustrated with a Pima Indians diabetes data set. PMID:20126296

  10. Studies of internal bremsstrahlung spectrum of (35)S beta emitter in the photon energy region of 1-100 keV.

    PubMed

    Singh, Amrit; Dhaliwal, A S

    2014-12-01

    The internal bremsstrahlung (IB) spectral photon distribution, produced by soft beta particles of (35)S (Wmax=164keV), in the photon energy region of 1-100keV, is measured by using a Si(Li) detector, having high energy resolution and efficiency at low energy region. The measured spectral IB photon distribution is compared with KUB theory and Coulomb corrected IB theories given by Nilsson, and Lewis and Ford. After applying the necessary corrections, the experimental and theoretical IB spectral photon distributions are compared in terms of the number of IB photon of energy k per moc(2) per unit photon yield. In the low energy region (below 10keV), the experimental results are in agreement with all the theories. However, in photon energy region of 10-50keV, experimental results are in agreement with Coulomb corrected Nilsson theory only, within the experimental errors. Further, beyond 50keV, the Nilsson theory is more close to the experimental results than the KUB, and the Lewis and Ford theories. Hence, the Nilsson theory is more accurate than the other theories given by KUB and Lewis and Ford, particularly at a high energy end. The experimental results reported here with Si(Li) detector are free from number of ambiguities in earlier measurements reported with NaI(Tl) and HPGe detectors. The present results are indicating a relook into the theoretical considerations, given by different theories, while taking into account the Coulomb corrections for predicting the IB spectrum, particularly at high photon energy region. PMID:25103247

  11. Use of ITS to develop a methodology for determining mammographic X-ray spectrum end-point energies

    SciTech Connect

    Napolitano, M.E.; Hertel, N.E.; Trueblood, J.H.

    1995-12-31

    Quality control of mammography is very important. The kilovoltage across the X-ray tube affects low-level contrast and image quality, which are important in detecting masses and calcifications in mammography. Creating an easily reproducible method to determine the end-point energy, or peak kilovoltage, of the X-ray beam is important to provide consistent, high standards for all mammography units. Currently, the end-point energy is routinely measured at all mammography sites, but different measuring devices and methods are used. Use of a phantom, or test object, which records the results on film for centralized analysis of the end-point energy would be useful. A phantom with foils of different elements and various thicknesses embedded in acrylic is proposed for use with the film as a detector to determine the end-point energy.

  12. Magnetically Coupled Adjustable Speed Drive Systems

    SciTech Connect

    Chvala, William D.; Winiarski, David W.

    2002-08-18

    Adjustable speed drive (ASD) technologies have the ability to precisely control motor sytems output and produce a numbr of benefits including energy and demand savings. This report examines the performance and cost effectiveness of a specific class of ASDs called magnetically-coupled adjustable speed drives (MC-ASD) which use the strength of a magnetic field to control the amount of torque transferred between motor and drive shaft. The MagnaDrive Adjustable Speed Coupling System uses fixed rare-earth magnets and varies the distance between rotating plates in the assembly. the PAYBACK Variable Speed Drive uses an electromagnet to control the speed of the drive

  13. 78 FR 56868 - Adjustment of Indemnification for Inflation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Secretary of Labor. DOE's initial adjustment increased the indemnification amount to $11.961 billion, 74 FR... Adjustment of Indemnification for Inflation AGENCY: Office of General Counsel, U.S Department of Energy... requires an inflation adjustment of the indemnification amount at least once during each 5- year...

  14. 10 CFR 903.11 - Advance announcement of rate adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Power and Transmission Rate Adjustments and Extensions for the Alaska, Southeastern, Southwestern, and Western Area Power Administrations § 903.11 Advance announcement of rate adjustment. The Administrator may... 10 Energy 4 2010-01-01 2010-01-01 false Advance announcement of rate adjustment. 903.11...

  15. An Application of the Direct Coulomb Electron Pair Production Process to the Energy Measurement of the "VH-Group" in the "Knee" Region of the "All-Particle" Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Wu, J.; Christl, M. J.; Fountain, W. F.; Parnell, T. A.

    1999-01-01

    The "all-particle" cosmic ray energy spectrum appears to be exhibiting a significant change in the spectral index just above approximately 3000 TeV. This could indicate (1) a change in the propagation of the cosmic rays in the galactic medium, and/or (2) the upper limit of the supernova shock wave acceleration mechanism, and/or (3) a new source of high-energy cosmic rays. Air shower and JACEE data indicate the spectral change is associated with a composition change to a heavier element mixture whereas DICE does not indicate this. A detector concept will be presented that utilizes the energy dependence of the production of direct Coulomb electron-positron pairs by energetic heavy ions. Monte Carlo simulations of a direct electron pair detector consisting of Pb target foils interleaved with planes of 1-mm square scintillating optical fibers will be discussed. The goal is to design a large area, non-saturating instrument to measure the energy spectrum of the individual cosmic ray elements in the "VH-group" for energies greater than 10 TeV/nucleon.

  16. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Reimbursement Criteria § 765.12 Inflation index adjustment procedures. (a)...

  17. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Reimbursement Criteria § 765.12 Inflation index adjustment procedures. (a)...

  18. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Reimbursement Criteria § 765.12 Inflation index adjustment procedures. (a)...

  19. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Reimbursement Criteria § 765.12 Inflation index adjustment procedures. (a)...

  20. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING SITES Reimbursement Criteria § 765.12 Inflation index adjustment procedures. (a)...

  1. In Pursuit of the Far-Infrared Spectrum of Cyanogen Iso-Thiocyanate Ncncs, Under the Influence of the Energy Level Dislocation due to Quantum Monodromy

    NASA Astrophysics Data System (ADS)

    Winnewisser, Manfred; Winnewisser, Brenda P.; Medvedev, Ivan R.; De Lucia, Frank, C.; Ross, Stephen C.; Koput, Jacek

    2010-06-01

    Quantum Monodromy has a strong impact on the ro-vibrational energy levels of chain molecules whose bending potential energy function has the form of the bottom of a champagne bottle (i.e. with a hump or punt) around the linear configuration. NCNCS is a particularly good example of such a molecule and clearly exhibits a distinctive monodromy-induced dislocation of the energy level pattern at the top of the potential energy hump. The generalized semi-rigid bender (GSRB) wave functions are used to show that the expectation values of any physical quantity which varies with the large amplitude bending coordinate will also have monodromy-induced dislocations. This includes the electric dipole moment components. High level ab initio calculations not only provided the molecular equilibrium structure of NCNCS, but also the electric dipole moment components μa and μb as functions of the large-amplitude bending coordinate. The calculated expectation values of these quantities indicate large ro-vibrational transition moments that will be discussed in pursuit of possible far-infrared bands. To our knowledge there is no NCNCS infrared spectrum reported in the literature. B. P. Winnewisser, M. Winnewisser, I. R. Medvedev, F. C. De Lucia, S. C. Ross and J. Koput, Phys. Chem. Chem. Phys., 2010, DOI:10.1039/B922023B.

  2. The Optical Spectrum of LaAlO3: Quasiparticle Energies and the Effect of Lattice Screening

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, Andre

    Lanthanum aluminate (LaAlO3) is a commonly used high- κ dielectric material but its exact optical properties are not well understood. By solving the Bethe-Salpeter Equation for the optical polarization function, which describes the interaction between electrons and holes, a precise prediction of the dielectric function can be obtained. However, for LaAlO3, there are two major problems limiting the computational study: The first problem is that due to the complicated conduction band structure, the quasiparticle effect needs to be taken into account, which makes the calculations costly. We resolved this problem by interpolating accurate eigenenergies computed using a hybrid exchange-correlation functional to a dense k-point grid. Another problem is that for such high- κ materials, the lattice contribution to the dielectric screening may be important. We investigated this by computing the optical spectrum using electronic constant, static dielectric constant and the average of both and found that taking lattice contribution into account significantly reduces excitonic effects. All results are compared to available experiments.

  3. On the determination of the cosmic infrared background radiation from the high-energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Slavin, Jonathan

    1994-01-01

    In a recent paper Stecker, De Jager, & Salamon have suggested using the observed approximately MeV to TeV spectra of extragalactic gamma-ray sources as probes of the local density of the cosmic infrared background radiation (CIBR) and have subsequently claimed a first possible measurement of the CIBR from the analysis of the gamma-ray spectrum of Mrk 421 (De Jager, Stecker, & Salamon). The CIBR from normal galaxies consists of two components: a stellar emission component (CIBRs), and a thermal dust emission component (CIBRd). Photons with energies in the approximately 0.1-2 TeV range interact primarily with the CIBRs, whereas interactions with CIBRd dominate the absorption of photons in the approximately 2-100 TeV energy range. SDS 92 and DSS94 considered only the interaction of the gamma-rays with the dust emission component of the CIBR. We present here an improved analysis of the absorption of extragalactic TeV gamma rays by the CIBR, taking the dual nature of its origin into account. Applying the analysis to the observed gamma-ray spectrum of Mrk 421, a BL Lac object at z = 0.031, we find agreement with DSS94 tentative evidence for absorption by the CINRs. Our analysis therefore limits the detection of the CIBR to the approximately 15-40 micron wavelength regime which, considering the uncertainties in the highest energy (greater than 4 TeV) data and ion the possibility of absorption inside the source, many turn out to be an upper limit on its energy density. At shorter wavelengths (lambda approximately = 1-15 microns), where the gamma-ray interactions are dominated by the CIBRs, our analysis definitely yields only an upper limit on the energy density of the CIBR. In contrast, DSS94 have claimed a possible first measurement of the CIBR over the entire 1-120 micron wavelength region. The upper limit on the CIBRs and tentative detection of the CIBRd are consistent with normal galaxies contributing most of the energy to the CIBR, and constrain the contribution of

  4. Spectroscopic investigation (FTIR spectrum), NBO, HOMO-LUMO energies, NLO and thermodynamic properties of 8-Methyl-N-vanillyl-6-nonenamideby DFT methods

    NASA Astrophysics Data System (ADS)

    Sherin Percy Prema Leela, J.; Hemamalini, R.; Muthu, S.; Al-Saadi, Abdulaziz A.

    2015-07-01

    Capsicum a hill grown vegetable is also known as red pepper or chili pepper. Capsaicin(8-Methyl-N-vanillyl-6-nonenamide) is the active component in chili peppers, which is currently used in the treatment of osteoarthritis, psoriasis and cancer. Fourier transform infrared (FT-IR) spectrum of Capsaicin in the solid phase were recorded in the region 4000-400 cm-1 and analyzed. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set and were compared with Fourier transform infrared spectrum. Complete vibrational assignment analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization and intra molecular hydrogen bond-like weak interaction has been analyzed using Natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalization energies E (2) confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the molecule has been computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.

  5. Rural to Urban Adjustment

    ERIC Educational Resources Information Center

    Abramson, Jane A.

    Personal interviews with 100 former farm operators living in Saskatoon, Saskatchewan, were conducted in an attempt to understand the nature of the adjustment process caused by migration from rural to urban surroundings. Requirements for inclusion in the study were that respondents had owned or operated a farm for at least 3 years, had left their…

  6. Self adjusting inclinometer

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    An inclinometer utilizing synchronous demodulation for high resolution and electronic offset adjustment provides a wide dynamic range without any moving components. A device encompassing a tiltmeter and accompanying electronic circuitry provides quasi-leveled tilt sensors that detect highly resolved tilt change without signal saturation.

  7. Self Adjusting Sunglasses

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Corning Glass Works' Serengeti Driver sunglasses are unique in that their lenses self-adjust and filter light while suppressing glare. They eliminate more than 99% of the ultraviolet rays in sunlight. The frames are based on the NASA Anthropometric Source Book.

  8. Sensitivity of the ARGO-YBJ Strip Size Spectrum to Different Models of the Primary Cosmic Ray Composition in the Energy Range 10-500 TeV

    NASA Astrophysics Data System (ADS)

    Saggese, L.; Di Sciascio, G.; Iacovacci, M.; Mastroianni, S.; Vernetto, S.; ARGO-YBJ Collaboration

    2003-07-01

    The ARGO-YBJ experiment is currently under construction at the Yangba jing Cosmic Ray Lab oratory (4300 m a.s.l.). The detector will cover 74 × 78 m2 with a single layer of Resistive Plate Counters (RPCs), surrounded by a partially instrumented guard ring. Signals from each RPC are picked-up with 80 read out strips 6 cm wide and 62 cm long. These strips allow one to count the particle number of small size air showers. In this paper we discuss the digital response of the detector for showers with core located in a small fiducial area inside the carp et. The results enable us to assess the sensitivity of the strip size spectrum measurement to discriminate between different models of the Primary Cosmic Ray composition in the energy range 10 ÷ 500 T eV .

  9. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data. PMID:21280724

  10. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+

    NASA Astrophysics Data System (ADS)

    Antonov, Ivan O.; Barker, Beau J.; Heaven, Michael C.

    2011-01-01

    The ground electronic state of BeOBe+ was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is 2Σg+. Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm-1] was refined over previous measurements. Results from recent theoretical calculations for BeOBe+ (multireference configuration interaction) were found to be in good agreement with the experimental data.

  11. The nonresonant two-photon zero kinetic energy photoelectron spectrum from the electronic ground state of H2S

    NASA Astrophysics Data System (ADS)

    Fischer, Ingo; Lochschmidt, Andreas; Strobel, Andreas; Niedner-Schatteburg, Gereon; Mueller-Dethlefs, Klaus; Bondybey, Vladimir E.

    1993-03-01

    Zero kinetic energy photoelectron spectra from the electronic ground state of hydrogen sulfide are obtained via nonresonant two-photon ionization with complete rotational resolution in the ion. The two-photon spectra are compared with those recently obtained via one-photon VUV photoionization. The spectra show a close similarity, but type a transitions in the two-photon spectra are twice as intense.

  12. Rotational spectrum of SO3 and theoretical evidence for the formation of sixfold rotational energy-level clusters in its vibrational ground state

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Jensen, Per

    2014-06-01

    The structure of the purely rotational spectrum of sulphur trioxide 32S16O3 is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an ab initio dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called 6-fold rotational energy clusters at high rotational excitation are investigated. The SO3 molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S-O bonds. This behaviour is characterized theoretically in the J range from 100-250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.

  13. Rotational Spectrum of SO_3 and Theoretical Evidence for the Formation of Rotational Energy Level Clusters in its Vibrational Ground State

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Jensen, Per

    2014-06-01

    The structure of the purely rotational spectrum of sulphur trioxide SO_3 is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an ab initio dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called rotational energy clusters at high rotational excitation are investigated. The SO_3 molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S--O bonds. This behaviour is characterized theoretically in the J range from 100 through 250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.

  14. Energetics of geostrophic adjustment in rotating flow

    NASA Astrophysics Data System (ADS)

    Juan, Fang; Rongsheng, Wu

    2002-09-01

    Energetics of geostrophic adjustment in rotating flow is examined in detail with a linear shallow water model. The initial unbalanced flow considered first falls tinder two classes. The first is similar to that adopted by Gill and is here referred to as a mass imbalance model, for the flow is initially motionless but with a sea surface displacement. The other is the same as that considered by Rossby and is referred to as a momentum imbalance model since there is only a velocity perturbation in the initial field. The significant feature of the energetics of geostrophic adjustment for the above two extreme models is that although the energy conversion ratio has a large case-to-case variability for different initial conditions, its value is bounded below by 0 and above by 1 / 2. Based on the discussion of the above extreme models, the energetics of adjustment for an arbitrary initial condition is investigated. It is found that the characteristics of the energetics of geostrophic adjustment mentioned above are also applicable to adjustment of the general unbalanced flow under the condition that the energy conversion ratio is redefined as the conversion ratio between the change of kinetic energy and potential energy of the deviational fields.

  15. Determination of the gamma-ray spectrum in a strong neutron/gamma-ray mixed field

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Lin, Yi-Chun; Nievaart, Sander; Chou, Wen-Tsae; Liu, Hong-Ming; Jiang, Shiang-Huei

    2011-10-01

    The knowledge of gamma-ray spectrum highly affects the accuracy of the correspondingly derived gamma-ray dose and the correctness of calculated neutron dose in the neutron/gamma-ray mixed field dosimetry when using the paired ionization chambers technique. It is of our interest to develop a method to determine the gamma-ray spectrum in a strong neutron/gamma-ray mixed field. The current type detector, Mg(Ar) ionization chamber with 6 different thick caps incorporated with the unfolding technique, was used to determine the gamma-ray spectrum in the THOR epithermal neutron beam, which contains intense neutrons and gamma rays. The applied caps had nominal thicknesses from 1 to 6 mm. Detector response functions of the applied Mg(Ar) chamber with different caps were calculated using MCNP5 with a validated chamber model. The spectrum unfolding process was performed using the well-known SAND-II algorithm. The unfolded result was found much softer than the originally calculated spectrum at the design stage. A large portion of low energy continuum was shown in the adjusted spectrum. This work gave us a much deeper insight into the THOR epithermal neutron beam and also showed a way to determine the gamma-ray spectrum.

  16. Precision adjustable stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved mounting stage of the type used for the detection of laser beams is disclosed. A stage center block is mounted on each of two opposite sides by a pair of spaced ball bearing tracks which provide stability as well as simplicity. The use of the spaced ball bearing pairs in conjunction with an adjustment screw which also provides support eliminates extraneous stabilization components and permits maximization of the area of the center block laser transmission hole.

  17. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  18. Self-consistent Calculation of the Quasi-particle Energy Spectrum of Sodium using the Correlated Hartree Fock Method

    NASA Astrophysics Data System (ADS)

    Ishihara, Takamitsu; Yamagami, Hiroshi; Yasuhara, Hiroshi

    2001-12-01

    Self-consistent band calculation of sodium is performed in the correlated Hartree Fock scheme proposed by Yasuhara and Takada [Phys. Rev. B 43 (1991) 7200], which contains information on the effective mass of the electron liquid in the form of a nonlocal spin-parallel potential, and the remaining information of the self-energy operator in the form of a local potential. The bandwidth of occupied states is somewhat increased under the influence of the non-local spin-parallel potential, compared with the free electron value. No significant difference can be found in the distortion of the Fermi surface between the present theory and the LDA.

  19. The MIRTE Experimental Program: An Opportunity to Test Structural Materials in Various Configurations in Thermal Energy Spectrum

    SciTech Connect

    Leclaire, Nicolas; Le Dauphin, Francois-Xavier; Duhamel, Isabelle; Briggs, Blair; Piot, Jerome; Rennesson, Malvina; Laville, Arnaud

    2014-11-04

    The MIRTE (Materials in Interacting and Reflecting configurations, all Thicknesses) program was established to answer the needs of criticality safety practitioners in terms of experimental validation of structural materials and to possibly contribute to nuclear data improvement, which ultimately supports reactor safety analysis as well. MIRTE took the shape of a collaboration between the AREVA and ANDRA French industrialists and a noncommercial international funding partner such as the U.S. Department of Energy. The aim of this paper is to present the configurations of the MIRTE 1 and MIRTE 2 programs and to highlight the results of the titanium experiments recently published in the International Handbook of Evaluated Criticality Safety Benchmark Experiments.

  20. Preliminary On-Orbit Neutron Dose Equivalent and Energy Spectrum Results from the ISS-RAD Fast Neutron Detector (FND)

    NASA Technical Reports Server (NTRS)

    Semones, Edward; Leitgab, Martin

    2016-01-01

    The ISS-RAD instrument was activated on ISS on February 1st, 2016. Integrated in ISS-RAD, the Fast Neutron Detector (FND) performs, for the first time on ISS, routine and precise direct neutron measurements between 0.5 and 8 MeV. Preliminary results for neutron dose equivalent and neutron flux energy distributions from online/on-board algorithms and offline ground analyses will be shown, along with comparisons to simulated data and previously measured neutron spectral data. On-orbit data quality and pre-launch analysis validation results will be discussed as well.

  1. High-energy damping by particle-hole excitations in the spin-wave spectrum of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Leong, Zhidong; Lee, Wei-Cheng; Lv, Weicheng; Phillips, Philip

    2014-09-01

    Using a degenerate double-exchange model, we investigate the spin excitation spectra of iron pnictides. The model consists of local spin moments on each Fe site, as well as itinerant electrons from the degenerate dxz and dyz orbitals. The local moments interact with each other through antiferromagnetic J1-J2 Heisenberg interactions, and they couple to the itinerant electrons through a ferromagnetic Hund coupling. We employ the fermionic spinon representation for the local moments and perform a generalized random-phase approximation calculation on both spinons and itinerant electrons. We find that in the (π ,0) magnetically ordered state, the spin-wave excitation at (π,π) is pushed to a higher energy due to the presence of itinerant electrons, which is consistent with a previous study using the Holstein-Primakoff transformation. In the paramagnetic state, the particle-hole continuum keeps the collective spin excitation near (π,π) at a higher energy even without any C4 symmetry breaking. The implications for recent high-temperature neutron scattering measurements will be discussed.

  2. A reexamination of the cosmic-ray helium spectrum and the He-3/He-4 ratio at high energies

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Golden, R. L.; Mewaldt, R. A.

    1987-01-01

    Cosmic ray He spectral data collected by satellites in earth orbit were used to examine a recent measurement of He-3 of about 6 GeV/nucleon, an overabundance compared to predictions made with a leaky box approach. The spectral rigidity index at the time of the measurement was no more than 2.55, indicating a near-earth He-3/He-4 ratio of 0.17, although an index in the range 10-20 GV and a ratio of close to 0.24 is the usual value. New magnetic spectrometer data, however, show that a single spectral rigidity value for the near-earth He-3/He-4 ratio cannot be correct. The Fokker-Planck equation is used to demonstrate that solar modulation of the He flux yields an energy/abundance distribution close to observational data.

  3. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES.

    SciTech Connect

    DILMANIAN,F.A.; WEINMANN,H.J.; ZHONG,Z.; BACARIAN,T.; RIGON,L.; BUTTON,T.M.; REN,B.; WU,X.Y.; ZHONG,N.; ATKINS,H.L.

    2001-02-17

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with {approximately} twice higher output become available.

  4. Photon energy spectrum emitted by a novel polymer-encapsulated {sup 103}Pd source and its effect on the dose rate constant

    SciTech Connect

    Khan, Sabrina; Chen, Zhe Jay; Nath, Ravinder

    2008-04-15

    Two independent groups have published intrinsic dosimetry parameters for the recently introduced OptiSeed{sup 103} interstitial brachytherapy source which contains {sup 103}Pd encapsulated by a novel polymer shell. The dose rate constant ({lambda}) reported by the two groups, however, differed by more than 6% and there is currently no AAPM recommended consensus value for this source in clinical dosimetry. The aim of this work was to perform an independent determination of {lambda} for the OptiSeed{sup 103} source using a recently developed photon spectrometry technique. Three OptiSeed{sup 103} sources (model 1032P) with known air-kerma strength were used in this study. The photon energy spectrum emitted along the radial direction on the source's bisector was measured in air using a high-resolution intrinsic germanium spectrometer designed and established for low-energy brachytherapy source spectrometry. The dose rate constant of each source was determined from its emitted energy spectrum and the spatial distribution of radioactivity in the source. Unlike other sources made with traditional titanium encapsulation, the photons emitted by the OptiSeed{sup 103} sources exhibited only slight spectral hardening, yielding a relative energy spectrum closer to that emitted by bare {sup 103}Pd. The dose rate constant determined by the photon spectrometry technique for water was 0.664{+-}0.025 cGy h{sup -1} U{sup -1}. This value agreed, within experimental uncertainties, with the Monte Carlo-calculated value ({sub MC}{lambda}) of 0.665{+-}0.014 cGy h{sup -1} U{sup -1} and the TLD-measured value (with a Monte Carlo-calculated solid-phantom-to-water conversion factor) of 0.675{+-}0.051 cGy h{sup -1} U{sup -1} reported by Wang and Hertel [Appl. Radiat. Isot. 63, 311-321 (2005)]. However, it differed by -6.7% from the {sub MC}{lambda} of 0.712{+-}0.043 cGy h{sup -1} U{sup -1} reported by Bernard and Vynckier [Phys. Med. Biol. 50, 1493-1504 (2005)]. The results obtained in this

  5. Magneto-optical spectrum and the effective excitonic Zeeman splitting energies of Mn and Co-doped CdSe nanowires

    SciTech Connect

    Xiong, Wen; Chen, Wensuo

    2013-12-21

    The electronic structure of Mn and Co-doped CdSe nanowires are calculated based on the six-band k·p effective-mass theory. Through the calculation, it is found that the splitting energies of the degenerate hole states in Mn-doped CdSe nanowires are larger than that in Co-doped CdSe nanowires when the concentration of these two kinds of magnetic ions is the same. In order to analysis the magneto-optical spectrum of Mn and Co-doped CdSe nanowires, the four lowest electron states and the four highest hole states are sorted when the magnetic field is applied, and the 10 lowest optical transitions between the conduction subbands and the valence subbands at the Γ point in Mn and Co-doped CdSe nanowires are shown in the paper, it is found that the order of the optical transitions at the Γ point almost do not change although two different kinds of magnetic ions are doped in CdSe nanowires. Finally, the effective excitonic Zeeman splitting energies at the Γ point are found to increase almost linearly with the increase of the concentration of the magnetic ions and the magnetic field; meanwhile, the giant positive effective excitonic g factors in Mn and Co-doped CdSe nanowires are predicted based on our theoretical calculation.

  6. A spectral-timing analysis of the kHz QPOs in 4U 1636-53: the frequency-energy resolved RMS spectrum

    NASA Astrophysics Data System (ADS)

    Ribeiro, Evandro M.; Mendez, Mariano; Zhang, Guo-Bao; De Avellar, Márcio G. B.

    2016-07-01

    Our understanding of quasi-periodic oscillations (QPO) has been further advanced in the last few years by the use of combined spectral and timing techniques, and it is now clear that QPO properties are closely related to the spectral state of the source in which they appear. In this work we used all the available RXTE observations of the neutron-star low-mass X-ray binary 4U~1636-53 to study the properties of the kilohertz QPO as a function of energy and frequency. By following the frequency evolution of the kHz QPOs we created frequency-resolved fractional RMS spectra. We also studied the connection between the frequency of the kHz QPOs and the parameters of the model that fits the X-ray energy spectrum. We show the dependence of the QPO properties in a multi-parameter space, and we discuss the implication of our results to the mechanism that produces the QPOs. Our results provide input to the next generation of spectral-timing models, which will help us understand the variability and the environment around the neutron star in these systems.

  7. Spectroscopic investigation (FTIR spectrum), NBO, HOMO-LUMO energies, NLO and thermodynamic properties of 8-Methyl-N-vanillyl-6-nonenamideby DFT methods.

    PubMed

    Leela, J Sherin Percy Prema; Hemamalini, R; Muthu, S; Al-Saadi, Abdulaziz A

    2015-07-01

    Capsicum a hill grown vegetable is also known as red pepper or chili pepper. Capsaicin(8-Methyl-N-vanillyl-6-nonenamide) is the active component in chili peppers, which is currently used in the treatment of osteoarthritis, psoriasis and cancer. Fourier transform infrared (FT-IR) spectrum of Capsaicin in the solid phase were recorded in the region 4000-400 cm(-1) and analyzed. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set and were compared with Fourier transform infrared spectrum. Complete vibrational assignment analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization and intra molecular hydrogen bond-like weak interaction has been analyzed using Natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalization energies E (2) confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the molecule has been computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated. PMID:25813174

  8. 10 CFR 436.22 - Adjusted internal rate of return.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Methodology and Procedures for Life Cycle Cost Analyses § 436.22 Adjusted internal rate of return. The adjusted internal rate of return is the overall rate of return on an energy or water conservation measure... yearly net savings in energy or water and non-fuel or non-water operation and maintenance...

  9. 10 CFR 436.22 - Adjusted internal rate of return.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Methodology and Procedures for Life Cycle Cost Analyses § 436.22 Adjusted internal rate of return. The adjusted internal rate of return is the overall rate of return on an energy or water conservation measure... yearly net savings in energy or water and non-fuel or non-water operation and maintenance...

  10. 10 CFR 436.22 - Adjusted internal rate of return.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Methodology and Procedures for Life Cycle Cost Analyses § 436.22 Adjusted internal rate of return. The adjusted internal rate of return is the overall rate of return on an energy or water conservation measure... yearly net savings in energy or water and non-fuel or non-water operation and maintenance...

  11. Spinor Structure and Matter Spectrum

    NASA Astrophysics Data System (ADS)

    Varlamov, V. V.

    2016-08-01

    Classification of relativistic wave equations is given on the ground of interlocking representations of the Lorentz group. A system of interlocking representations is associated with a system of eigenvector subspaces of the energy operator. Such a correspondence allows one to define matter spectrum, where the each level of this spectrum presents a some state of elementary particle. An elementary particle is understood as a superposition of state vectors in nonseparable Hilbert space. Classification of indecomposable systems of relativistic wave equations is produced for bosonic and fermionic fields on an equal footing (including Dirac and Maxwell equations). All these fields are equivalent levels of matter spectrum, which differ from each other by the value of mass and spin. It is shown that a spectrum of the energy operator, corresponding to a given matter level, is non-degenerate for the fields of type (l, 0) ⊕ (0, l), where l is a spin value, whereas for arbitrary spin chains we have degenerate spectrum. Energy spectra of the stability levels (electron and proton states) of the matter spectrum are studied in detail. It is shown that these stability levels have a nature of threshold scales of the fractal structure associated with the system of interlocking representations of the Lorentz group.

  12. Influence of the Nonlinearity Parameter on the Solar Wind Sub-ion Magnetic Energy Spectrum: FLR-Landau Fluid Simulations

    NASA Astrophysics Data System (ADS)

    Sulem, P. L.; Passot, T.; Laveder, D.; Borgogno, D.

    2016-02-01

    The cascade of kinetic Alfvén waves (KAWs) at sub-ion scales in the solar wind is simulated numerically using a fluid approach that retains ion and electron Landau damping, together with ion finite Larmor radius (FLR) corrections. Assuming initially equal and isotropic ion and electron temperatures, and an ion beta equal to unity, different simulations are performed by varying the propagation direction and the amplitude of KAWs that are randomly driven at a transverse wavenumber k0 such that {k}0{d}i=0.18 (where di is the proton inertial length), in order to maintain a prescribed level of turbulent fluctuations. The resulting turbulent regimes are characterized by the nonlinearity parameter, defined as the ratio of the characteristic times of Alfvén wave propagation and of the transverse nonlinear dynamics. The corresponding transverse magnetic energy spectra display power laws with exponents spanning a range of values consistent with spacecraft observations. The meandering of the magnetic field lines and the homogenization of ion temperature along these lines are shown to be related to the strength of the turbulence, measured by the nonlinearity parameter. The results are interpreted in terms of a recently proposed phenomenological model where the homogenization process along field lines induced by Landau damping plays a central role.

  13. Effect of local coordination of Mn on Mn-L2,3 edge electron energy loss spectrum

    NASA Astrophysics Data System (ADS)

    Nishida, Shuji; Kobayashi, Shunsuke; Kumamoto, Akihito; Ikeno, Hidekazu; Mizoguchi, Teruyasu; Tanaka, Isao; Ikuhara, Yuichi; Yamamoto, Takahisa

    2013-08-01

    The effects of the local coordination environment of Mn ions in perovskite manganese oxides on the Mn-L2,3 edge electron energy loss (EEL) spectra was experimentally and theoretically investigated. The Mn-L2,3 edge EEL spectra were observed for various perovskite manganese oxides, including YMnO3, LaMnO3, BaMnO3, SrMnO3, and CaMnO3, in which the Mn ions have different valence states and local coordination. The experiment revealed that the Mn L3/L2 ratio is influenced not only by the valence state but also by the local environment of the Mn ions. Furthermore, compared to the Mn L3/L2 ratios of Mn3+ compounds, the Mn L3/L2 ratios of the Mn4+ compounds are found to be much more sensitive to local distortions. The ab-initio multiplet calculation of the Mn-L2,3 edge EEL spectra revealed that the effects of local coordination on the spectral features are dependent on the local electronic structures of the Mn ions. These findings indicate that the valence state as well as the local environments of the Mn ions can be unraveled by combining experimental and theoretical investigations of Mn-L2,3 edge EEL spectra.

  14. Spectrum-splitting hybrid CSP-CPV solar energy system with standalone and parabolic trough plant retrofit applications

    NASA Astrophysics Data System (ADS)

    Orosz, Matthew; Zweibaum, Nicolas; Lance, Tamir; Ruiz, Maritza; Morad, Ratson

    2016-05-01

    Sunlight to electricity efficiencies of Parabolic Trough Collector (PTC) plants are typically on the order of 15%, while commercial solar Photovoltaic (PV) technologies routinely achieve efficiencies of greater than 20%, albeit with much higher conversion efficiencies of photons at the band gap. Hybridizing concentrating solar power and photovoltaic technologies can lead to higher aggregate efficiencies due to the matching of photons to the appropriate converter based on wavelength. This can be accomplished through spectral filtering whereby photons unusable or poorly utilitized by PV (IR and UV) are passed through to a heat collection element, while useful photons (VIS) are reflected onto a concentrating PV (CPV) receiver. The mechanical design and experimental validation of spectral splitting optics is described in conjunction with system level modeling and economic analysis. The implications of this architecture include higher efficiency, lower cost hybrid CSP-PV power systems, as well as the potential to retrofit existing PTC plants to boost their output by ~ 10% at a projected investment cost of less than 1 per additional net Watt and an IRR of 18%, while preserving the dispatchability of the CSP plant's thermal energy storage.

  15. Mapping the energy spectrum of the spin states of mixed-valent [Fe8]n- via pulsed field magnetization

    SciTech Connect

    Mcdonald, Ross D; Singleton, John; Raptis, Raphel G

    2011-01-14

    The electronic structure of a family of octanuclear Fe{sup III}-complexes of the general formula [Fe{sub 8}({mu}{sub 4}-O)4({mu}-{sub r}-R-pz){sub 12}X{sub 4}] ([Fe{sub 8}]{sup 0}) and its redox-modified, mixed-valence [Fe{sub 8}]{sup n-} derivatives, where R = H, Me, Et, F, CI, Sr, I, etc. and X = F, CI, Sr, NCS, NCO, N{sub 3}, has recently been modeled by a an effective Hamiltonian consisting of two dominant exchange interactions [1]. The ground state properties (from S{sub tot} = 0 to 7) and magnetic energy level spacing of the Hamiltonian, and hence predicted magnetic properties, are widely tunable via choice of J's. The corresponding [Fe{sub 8}]{sup n-} anionic complexes with n = 1 - 4 are accessible electrochemically, allowing their in situ spectroelectrochemical characterization. The singly-reduced anions [Fe{sub 8}]{sup 1-} of the R = H, Cl and X = Cl species have also been prepared chemically via reduction with a stoichiometric amount of [BH{sub 4}]-, and characterized crystallographically; the structure of the Fe{sub 8}-cluster remains unaffected by the reduction, with most bond lengths differences within experimental error. Their Moessbauer spectroscopic analysis has pointed to the reduction taking place primarily within the Fe{sub 4}O{sub 4}-cubane, with charges delocalized over the four Fe{sub c} sites in the Moessbauer timescale. In contrast, the [Fe{sub 8}]{sup 1-} and [Fe{sub 8}]{sup 2-} species with R = Cl and X = NCS show a reduction at the outer, Fe{sub o}-sites, generating one or two localized Fe{sub o}-centers.

  16. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses.

    PubMed

    Matsumoto, Shinnosuke; Koba, Yusuke; Kohno, Ryosuke; Lee, Choonsik; Bolch, Wesley E; Kai, Michiaki

    2016-04-01

    Proton therapy has the physical advantage of a Bragg peak that can provide a better dose distribution than conventional x-ray therapy. However, radiation exposure of normal tissues cannot be ignored because it is likely to increase the risk of secondary cancer. Evaluating secondary neutrons generated by the interaction of the proton beam with the treatment beam-line structure is necessary; thus, performing the optimization of radiation protection in proton therapy is required. In this research, the organ dose and energy spectrum were calculated from secondary neutrons using Monte Carlo simulations. The Monte Carlo code known as the Particle and Heavy Ion Transport code System (PHITS) was used to simulate the transport proton and its interaction with the treatment beam-line structure that modeled the double scattering body of the treatment nozzle at the National Cancer Center Hospital East. The doses of the organs in a hybrid computational phantom simulating a 5-y-old boy were calculated. In general, secondary neutron doses were found to decrease with increasing distance to the treatment field. Secondary neutron energy spectra were characterized by incident neutrons with three energy peaks: 1×10, 1, and 100 MeV. A block collimator and a patient collimator contributed significantly to organ doses. In particular, the secondary neutrons from the patient collimator were 30 times higher than those from the first scatter. These results suggested that proactive protection will be required in the design of the treatment beam-line structures and that organ doses from secondary neutrons may be able to be reduced. PMID:26910030

  17. Continuously adjustable Pulfrich spectacles

    NASA Astrophysics Data System (ADS)

    Jacobs, Ken; Karpf, Ron

    2011-03-01

    A number of Pulfrich 3-D movies and TV shows have been produced, but the standard implementation has inherent drawbacks. The movie and TV industries have correctly concluded that the standard Pulfrich 3-D implementation is not a useful 3-D technique. Continuously Adjustable Pulfrich Spectacles (CAPS) is a new implementation of the Pulfrich effect that allows any scene containing movement in a standard 2-D movie, which are most scenes, to be optionally viewed in 3-D using inexpensive viewing specs. Recent scientific results in the fields of human perception, optoelectronics, video compression and video format conversion are translated into a new implementation of Pulfrich 3- D. CAPS uses these results to continuously adjust to the movie so that the viewing spectacles always conform to the optical density that optimizes the Pulfrich stereoscopic illusion. CAPS instantly provides 3-D immersion to any moving scene in any 2-D movie. Without the glasses, the movie will appear as a normal 2-D image. CAPS work on any viewing device, and with any distribution medium. CAPS is appropriate for viewing Internet streamed movies in 3-D.

  18. Subsea adjustable choke valves

    SciTech Connect

    Cyvas, M.K. )

    1989-08-01

    With emphasis on deepwater wells and marginal offshore fields growing, the search for reliable subsea production systems has become a high priority. A reliable subsea adjustable choke is essential to the realization of such a system, and recent advances are producing the degree of reliability required. Technological developments have been primarily in (1) trim material (including polycrystalline diamond), (2) trim configuration, (3) computer programs for trim sizing, (4) component materials, and (5) diver/remote-operated-vehicle (ROV) interfaces. These five facets are overviewed and progress to date is reported. A 15- to 20-year service life for adjustable subsea chokes is now a reality. Another factor vital to efficient use of these technological developments is to involve the choke manufacturer and ROV/diver personnel in initial system conceptualization. In this manner, maximum benefit can be derived from the latest technology. Major areas of development still required and under way are listed, and the paper closes with a tabulation of successful subsea choke installations in recent years.

  19. Autism Spectrum Disorder

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Autism Spectrum Disorder Information Page Condensed from Autism Spectrum ... en Español Additional resources from MedlinePlus What is Autism Spectrum Disorder? Autistic disorder (sometimes called autism or ...

  20. Measurement of the total spectrum of electrons and positrons in the energy range of 300–1500 GeV in the PAMELA experiment with the aid of a sampling calorimeter and a neutron detector

    SciTech Connect

    Karelin, A. V. Voronov, S. A.; Galper, A. M.; Koldobskiy, S. A.; Collaboration: on behalf of the PAMELA Collaboration

    2015-03-15

    A method based on the use of a sampling calorimeter was developed for measuring the total energy spectrum of electrons and positrons from high-energy cosmic rays in the PAMELA satellite-borne experiment. This made it possible to extend the range of energies accessible to measurements by the magnetic system of the PAMELA spectrometer. Themethod involves a procedure for selecting electrons on the basis of features of a secondary-particle shower in the calorimeter. The results obtained by measuring the total spectrum of cosmic-ray electrons and positrons in the energy range of 300–1500 GeV by the method in question are presented on the basis of data accumulated over a period spanning 2006 and 2013.