Science.gov

Sample records for energy supernova experiments

  1. Reducing Zero-point Systematics in Dark Energy Supernova Experiments

    SciTech Connect

    Faccioli, Lorenzo; Kim, Alex G; Miquel, Ramon; Bernstein, Gary; Bonissent, Alain; Brown, Matthew; Carithers, William; Christiansen, Jodi; Connolly, Natalia; Deustua, Susana; Gerdes, David; Gladney, Larry; Kushner, Gary; Linder, Eric; McKee, Shawn; Mostek, Nick; Shukla, Hemant; Stebbins, Albert; Stoughton, Chris; Tucker, David

    2011-04-01

    We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission cali- bration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.

  2. Supernova / Acceleration Probe: a Satellite Experiment to Study the Nature of the Dark Energy

    SciTech Connect

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; /LBL, Berkeley /SLAC /Stockholm U. /Fermilab /Paris U., VI-VII /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Marseille, CPPM /Indiana U. /American Astron. Society /Caltech /Case Western Reserve U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-15

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy

  3. Supernova/Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    SciTech Connect

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, E.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, C.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; Craig, W.; Day, C.; DeJongh, F.; Deustua, S.; Diehl, T.; Dodelson, S.; Ealet, A.; Ellis, R.; Emmet, W.; Fouchez, D.; Frieman, J.; Fruchter, A.; Gerdes, D.; Gladney, L.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Hoff, M.; Holland, S.; Huffer, M.; Hui, L.; Huterer, D.; Jain, B.; Jelinsky, P.; Karcher, A.; Kent, S.; Kahn, S.; Kim, A.; Kolbe, W.; Krieger, B.; Kushner, G.; Kuznetsova, N.; Lafever, R.; Lamoureux, J.; Lampton, M.; Le Fevre, O.; Levi, M.; Limon, P.; Lin, H.; Linder, E.; Loken, S.; Lorenzon, W.; Malina, R.; Marriner, J.; Marshall, P.; Massey, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Peoples, J.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Roe, N.; Rusin, D.; Scarpine, V.; Schubnell, M.; Sholl, M.; Samdja, G.; Smith, R.M.; Smoot, G.; Snyder, J.; Spadafora, A.; Stebbine, A.; Stoughton, C.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Tucker, D.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.; Wester, W.

    2004-05-12

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universes expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy

  4. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  5. Rayleigh-Taylor mixing in supernova experiments

    NASA Astrophysics Data System (ADS)

    Swisher, N. C.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.; Abarzhi, S. I.

    2015-10-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  6. Rayleigh-Taylor mixing in supernova experiments

    NASA Astrophysics Data System (ADS)

    Swisher, Nora; Kuranz, Carolyn; Arnett, David; Hurricane, Omar; Remington, Bruce; Robey, Harry; Abarzhi, Snezhana

    2015-11-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor (RT) mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of RT flow in supernova experiments, and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By proper accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are identified to describe asymptotic dynamics of RT flow with time-dependent acceleration by applying theoretical analysis. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments, the RT flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; the mixing flow may keep order. Support of the National Science Foundation is warmly appreciated.

  7. Rayleigh-Taylor mixing in supernova experiments

    SciTech Connect

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-10-15

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  8. Type IIn supernovae as sources of high energy astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Zirakashvili, V. N.; Ptuskin, V. S.

    2016-05-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration. We calculate the neutrino spectrum produced by an individual Type IIn supernova and the spectrum of neutrino background produced by IIn supernovae in the expanding Universe. We also found that the arrival direction of one Icecube neutrino candidate (track event 47) is at 1.35° from Type IIn supernova 2005bx.

  9. Supernova hydrodynamicas experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.

    1997-07-01

    We are developing experiments using the Nova laser to investigate (1) compressible nonlinear hydrodynamic mixing relevant to the first few hours of the supernova (SN) explosion and (2) ejecta-ambient plasma interactions relevant to the early SN remnant phase. The experiments and astrophysical implications are discussed.

  10. Symmetry energy impact in simulations of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias; Hempel, Matthias; Sagert, Irina; Suwa, Yudai; Schaffner-Bielich, Jürgen

    2014-02-01

    We present a review of a broad selection of nuclear matter equations of state (EOSs) applicable in core-collapse supernova studies. The large variety of nuclear matter properties, such as the symmetry energy, which are covered by these EOSs leads to distinct outcomes in supernova simulations. Many of the currently used EOS models can be ruled out by nuclear experiments, nuclear many-body calculations, and observations of neutron stars. In particular the two classical supernova EOS describe neutron matter poorly. Nevertheless, we explore their impact in supernova simulations since they are commonly used in astrophysics. They serve as extremely soft and stiff representative nuclear models. The corresponding supernova simulations represent two extreme cases, e.g., with respect to the protoneutron star (PNS) compactness and shock evolution. Moreover, in multi-dimensional supernova simulations EOS differences have a strong effect on the explosion dynamics. Because of the extreme behaviors of the classical supernova EOSs we also include DD2, a relativistic mean field EOS with density-dependent couplings, which is in satisfactory agreement with many current nuclear and observational constraints. This is the first time that DD2 is applied to supernova simulations and compared with the classical supernova EOS. We find that the overall behaviour of the latter EOS in supernova simulations lies in between the two extreme classical EOSs. As pointed out in previous studies, we confirm the impact of the symmetry energy on the electron fraction. Furthermore, we find that the symmetry energy becomes less important during the post-bounce evolution, where conversely the symmetric part of the EOS becomes increasingly dominating, which is related to the high temperatures obtained. Moreover, we study the possible impact of quark matter at high densities and light nuclear clusters at low and intermediate densities.

  11. Supernova hydrodynamics experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A.; Kane, J.; Arnett, D.; Drake, R.P.; McCray, R.

    1997-04-01

    We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.

  12. Blast-Wave-Driven Instability Experiments Relevant To Supernova Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Budde, A.; Remington, B.; Robey, H.; Arnett, D.; Meakin, C.; Plewa, T.

    2011-05-01

    This presentation discusses experiments scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface with a drop in density and a precision-machined interface with multiple modes. The specific modal structure is based on simulation results of the evolution of the progenitor star. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-FG52-09NA29034.

  13. Hydrodynamics `experiments' on supernovae and on Nova - the laser*

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.

    1996-11-01

    To make progress in understanding the complex phenomena of supernovae (SN), one does not have the luxury of setting up clean, well controlled experiments in the universe to test the physics of our models and theories. Consequently, creating a surrogate environment to serve as an experimental astrophysics testbed would be highly beneficial. The existence of highly sophisticated, modern research lasers in the 1-50 kJ class, developed largely as a result of the world-wide effort in inertial confinement fusion, opens a new potential for creating just such an experimental testbed utilizing well-controlled, well-diagnosed laser plasmas. The next generation MJ-class ``superlasers" planned for the U.S. and France offer incentive to invest effort now on gaining experience using current laser facilities to develop genuinely useful laser-plasma astrophysics experiments. I will discuss two areas of physics critical to an understanding of supernovae that are amenable to supporting research on large lasers: nonlinear hydrodynamic instability evolution in 2D and 3D and (2) the radiative shock hydrodynamics of colliding plasmas such as SN ejecta-circumstellar matter interactions. The astrophysical relevance of these areas to supernovae will be developed in a companion talk.^2 *Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. ^1In collaboration with S. G. Glendinning, J. Kane, J. Castor, A. Rubenchik, J. Colvin, R. P. Drake, R. London, E. Liang, and R. McCray. ^2Roger Chevalier, "The radiative hydrodynamics of supernova shock waves", these proceedings.

  14. Constraining dark energy fluctuations with supernova correlations

    SciTech Connect

    Blomqvist, Michael; Enander, Jonas; Mörtsell, Edvard E-mail: enander@fysik.su.se

    2010-10-01

    We investigate constraints on dark energy fluctuations using type Ia supernovae. If dark energy is not in the form of a cosmological constant, that is if the equation of state w≠−1, we expect not only temporal, but also spatial variations in the energy density. Such fluctuations would cause local variations in the universal expansion rate and directional dependences in the redshift-distance relation. We present a scheme for relating a power spectrum of dark energy fluctuations to an angular covariance function of standard candle magnitude fluctuations. The predictions for a phenomenological model of dark energy fluctuations are compared to observational data in the form of the measured angular covariance of Hubble diagram magnitude residuals for type Ia supernovae in the Union2 compilation. The observational result is consistent with zero dark energy fluctuations. However, due to the limitations in statistics, current data still allow for quite general dark energy fluctuations as long as they are in the linear regime.

  15. Simulation of fabrication variations in supernova hydrodynamics experiments

    NASA Astrophysics Data System (ADS)

    Budde, A.; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Plewa, T.; Hearn, N. C.

    2010-06-01

    Recent experiments at the Omega laser facility have used ˜4.5 kJ of energy to create a blast wave similar to the one that occurs in a core-collapse supernova. In the experiment, the blast wave crosses an interface with a drop in density similar to the He-H interface in a supernova, which induces the growth of a machined perturbation on the interface surface due to the Rayleigh-Taylor instability. These experiments have exhibited different morphology than our simulations predict. It has been hypothesized that such differences may be the result of unintended structures created in the target fabrication process. We have used 2D Cartesian simulations to model such fabrication variations using a branch of the hydrodynamic code FLASH. We have studied the convergence of these numerical models and developed analysis techniques to gauge and compare the impact each variation has on numerical results. In addition to this, we have implemented and verified a new viscosity package for our code. These accomplishments have allowed us to perform a thorough analysis of the effects that such fabrication variations have on our results through the use of numerical simulations.

  16. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  17. Supernovae from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi

    2016-03-01

    The nature of dark energy is one of the greatest unsolved problems in physics today. Its existence was inferred from observations of exploding stars known as Type Ia supernovae (SNe Ia). These SNe Ia are standardizable candles that are excellent cosmological tools for probing dark energy through the distance-redshift relation. The Dark Energy Survey (DES) Supernova Program is repeatedly observing 30 square degrees within the full 5000-square-degree DES footprint and has discovered thousands of SNe Ia, in addition to many other types of SNe. DES has recently completed Year 3 of observations, with at least two more years still to go. In this talk, I will highlight the papers that have been published by the DES SN Program as well the ongoing analyses and projects within the group. I will introduce frameworks being developed for cosmological inference using Bayesian hierarchical regression models and discuss the steps needed for this. These include the transient detection pipeline, photometric calibration, host galaxy identification, follow-up spectroscopy of SNe and host galaxies, and SN photometric classification. I will also discuss DES discoveries of several superluminous SNe. On behalf of the Dark Energy Survey collaboration.

  18. Supernova-relevant hydrodynamic instability experiment on the Nova laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Castor, J.; Rubenchik, A.; Berning, M.

    1996-02-12

    Supernova 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. On quite a separate front, the detrimental effect of hydrodynamic instabilities in inertial confinement fusion (ICF) has long been known. Tools from both areas are being tested on a common project. At Lawrence Livermore National Laboratory (LLNL), the Nova Laser is being used in scaled laboratory experiments of hydrodynamic mixing under supernova-relevant conditions. Numerical simulations of the experiments are being done, using hydrodynamics codes at the Laboratory, and astrophysical codes successfully used to model the hydrodynamics of supernovae. A two-layer package composed of Cu and CH{sub 2} with a single mode sinusoidal 1D perturbation at the interface, shocked by indirect laser drive from the Cu side of the package, produced significant Rayleigh-Taylor (RT) growth in the nonlinear regime. The scale and gross structure of the growth was successfully modeled, by mapping an early-time simulation done with 1D HYADES, a radiation transport code, into 2D CALE, a LLNL hydrodynamics code. The HYADES result was also mapped in 2D into the supernova code PROMETHEUS, which was also able to reproduce the scale and gross structure of the growth.

  19. Nonparametric dark energy reconstruction from supernova data.

    PubMed

    Holsclaw, Tracy; Alam, Ujjaini; Sansó, Bruno; Lee, Herbert; Heitmann, Katrin; Habib, Salman; Higdon, David

    2010-12-10

    Understanding the origin of the accelerated expansion of the Universe poses one of the greatest challenges in physics today. Lacking a compelling fundamental theory to test, observational efforts are targeted at a better characterization of the underlying cause. If a new form of mass-energy, dark energy, is driving the acceleration, the redshift evolution of the equation of state parameter w(z) will hold essential clues as to its origin. To best exploit data from observations it is necessary to develop a robust and accurate reconstruction approach, with controlled errors, for w(z). We introduce a new, nonparametric method for solving the associated statistical inverse problem based on Gaussian process modeling and Markov chain Monte Carlo sampling. Applying this method to recent supernova measurements, we reconstruct the continuous history of w out to redshift z=1.5. PMID:21231517

  20. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  1. Design study for a diverging supernova explosion experiment on NIF

    NASA Astrophysics Data System (ADS)

    Flaig, Markus; Plewa, Tomasz; Keiter, Paul; Grosskopf, Michael; Kuranz, Carolyn; Drake, Paul; Park, Hye-Sook

    2013-10-01

    We report on design simulations of a spherically-diverging, multi-interface, supernova-relevant Rayleigh-Taylor experiment (DivSNRT) to be carried out at the National Ignition Facility (NIF). The simulations are performed in two and three dimensions using the block-adaptive, multi-group radiative diffusion hydrodynamics code CRASH and the FLASH-based MHD code Proteus. In the present study, we concentrate mainly on a planar variant of the experiment. We assess the sensitivity of the Rayleigh-Taylor instability growth on numerical discretization, variations in the laser drive energy and the manufacturing noise at the material interfaces. We find that a simple buoyancy-drag model accurately predicts the mixed-layer width obtained in the simulations. We use synthetic radiographs to optimize the diagnostic system and the experimental setup. Finally, we perform a series of exploratory MHD simulations and investigate the self-generation of magnetic fields and their role in the system evolution. Supported by the DOE grant DE-SC0008823.

  2. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

    SciTech Connect

    Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T.; Kessler, R.; Frieman, J. A.; Aldering, G.; Kim, A. G.; Nugent, P.; D'Andrea, C. B.; Nichol, R. C.; Finley, D. A.; Marriner, J.; Reis, R. R. R.; Jarvis, M. J.; Mukherjee, P.; Parkinson, D.; Sako, M.; and others

    2012-07-10

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg{sup 2} search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

  3. Very Low Energy Supernovae From Neutrino Mass Loss

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth; Woosley, S. E.

    2013-01-01

    The continuing difficulty of achieving a reliable core-collapse supernova in simulation has led many to speculate about what transients might be visible if a core-collapse supernova fails. If some percentage of such supernovae fail, there may be many more types of transients occurring than are currently being detected and catalogued as supernovae. Even if the original outgoing shock in a collapsing presupernova star fails, one must still consider the hydrodynamic response of the star to the abrupt loss of a small amount of mass via neutrinos as the core forms a protoneutron star. Following a suggestion by Nadezhin (1980), we use the Kepler and CASTRO codes to model the hydrodynamical responses of typical supernova progenitor stars to the loss of approximately 0.2 - 0.5 solar masses of gravitational mass from their centers. In a red supergiant star, a very weak supernova with total kinetic energy ~1047 ergs results. The binding energy of the hydrogen envelope before the explosion is of the same order and, depending upon assumptions regarding the neutrino loss rates, most of it is ejected. Ejection speeds are ~50 km/s and luminosities ~1039 ergs/s are maintained for about a year. A significant part of the energy comes from the recombination of hydrogen. The color of the explosion is extremely red and the events bear some similarity to the detected transients catalogued as "luminous red novae."

  4. Low energy antiprotons from supernova exploding in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Mauger, B. G.

    1984-01-01

    The antiproton spectrum resulting from a supernova, which exploded inside a dense cloud, is calculated by taking into account all energy loss processes including adiabatic deceleration during the expansion phase. The influence of various energy loss processes on the evolution of the spectrum as the supernova expands is investigated. It is shown that if about 25 percent of the cosmic ray nucleons are from such sources, the observed low energy antiprotons can be explained, provided the effect of solar modulation is not very large. The possibility of obtaining enhanced low energy spectrum by this process is also examined.

  5. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  6. Very Low Energy Supernovae from Neutrino Mass Loss

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth; Woosley, S. E.

    2013-06-01

    It now seems likely that some percentage of more massive supernova progenitors do not explode by any of the currently discussed explosion mechanisms. This has led to speculation concerning the observable transients that might be produced if such a supernova fails. Even if a prompt outgoing shock fails to form in a collapsing presupernova star, one must still consider the hydrodynamic response of the star to the abrupt loss of mass via neutrinos as the core forms a protoneutron star. Following a suggestion by Nadezhin, we calculate the hydrodynamical responses of typical supernova progenitor stars to the rapid loss of approximately 0.2-0.5 M ⊙ of gravitational mass from their centers. In a red supergiant star, a very weak supernova with total kinetic energy ~1047 erg results. The binding energy of a large fraction of the hydrogen envelope before the explosion is of the same order and, depending upon assumptions regarding the maximum mass of a neutron star, most of it is ejected. Ejection speeds are ~100 km s-1 and luminosities ~1039 erg s-1 are maintained for about a year. A significant part of the energy comes from the recombination of hydrogen. The color of the explosion is extremely red and the events bear some similarity to "luminous red novae," but have much lower speeds.

  7. Shock Velocity Variations in Supernova Remnant Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Drake, R. P.; Carroll, J. J., III; Smith, T. B.; Reisig, H. N.; Glendinning, S. G.; Estabrook, K.; Remington, B. A.; Wallace, R.; McCray, R.

    1998-11-01

    We are studying the hydrodynamic behavior of a laboratory system that is a good scaled model of young supernova remnants. The hydrodynamic effects are driven by a supersonic flow, produced by the Nova laser. It does this by driving a strong shock, produced by x-ray ablation, out the back of a plastic slab. The ejecta expand, accelerate, cool, and then impact a low-density foam. There the ejecta stagnate and form a reverse shock while driving a strong shock forward through the foam. We observe this hydrodynamic assembly by x-ray radiography. The shock velocities in one case agree with those found by a computer simulation, while in another case they do not. We will report our investigation of this discrepancy. (Work supported by the US Department of Energy under LLNL LDRD-ER Grant No. 97-ERD-022 and by the University of Michigan.)

  8. Energy of Tycho's Supernova Remnant is increasing with time

    PubMed Central

    Barenblatt, Grigory Isaakovich

    2008-01-01

    It is shown, using the Zeldovich integral relations, that the energy of Tycho's Supernova Remnant is strongly growing with time, approximately as t1/3. This growth can be attributed to the exothermic reactions going inside the remnant. The use of the assumption of the adiabaticity of the motion inside of the shock front, and no losses or gain of energy at the front, seems therefore unjustified. PMID:18202174

  9. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; Hoshina, I.; Kurahashi, N.; Landsman, H.; Maruyama, R.; Montaruli, T.

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  10. High-energy antiprotons from old supernova remnants.

    PubMed

    Blasi, Pasquale; Serpico, Pasquale D

    2009-08-21

    A recently proposed model explains the rise in energy of the positron fraction measured by the PAMELA satellite in terms of hadronic production of positrons in aged supernova remnants, and acceleration therein. Here we present a preliminary calculation of the antiproton flux produced by the same mechanism. While the model is consistent with present data, a rise of the antiproton to proton ratio is predicted at high energy, which strikingly distinguishes this scenario from other astrophysical explanations of the positron fraction (such as pulsars). We briefly discuss important implications for dark matter searches via antimatter. PMID:19792708

  11. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Oertel, Micaela; Margueron, Jérôme; Faure, Julien; Martin, Noël; Blottiau, Patrick; Peres, Bruno; Durand, Gilles

    2015-03-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the centre of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as standing accretion shock instability and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. The potential of this complementary research tool for supernova theory is analysed. We also review its potential for public outreach in science museums.

  12. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    SciTech Connect

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Faure, Julien; Martin, Noël; Blottiau, Patrick; Peres, Bruno; Durand, Gilles

    2015-03-17

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.

  13. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGESBeta

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Oertel, Micaela; Margueron, Jérôme; Faure, Julien; et al

    2015-03-17

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  14. What We Know About Dark Energy From Supernovae

    ScienceCinema

    Filippenko, Alex [University of California, Berkeley, California, United States

    2010-01-08

    The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.

  15. Probing Dark Energy via Neutrino and Supernova Observatories

    SciTech Connect

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  16. Systematic search for molecular clouds near supernova remnants as sources of very-high-energy γ-ray emission

    NASA Astrophysics Data System (ADS)

    Häffner, Stephanie; Stegmann, Christian; Jung-Richardt, Ira

    2015-12-01

    Supernova remnants accelerate particles up to energies of at least 100 TeV as established by observations in very-high-energy γ-ray astronomy. Molecular clouds in their vicinity provide an increased amount of target material for proton-proton interaction and subsequent neutral pion decay into γ-rays of accelerated hadrons escaping the remnant. Therefore, these molecular clouds are potential γ-ray sources. The γ-ray emission from these clouds provides a unique environment to derive information on the propagation of very-high-energy particles through the interstellar medium as well as on the acceleration of hadrons in supernova remnants. Current Imaging Atmospheric Cherenkov Telescope systems are suitable to explore a large parameter space of the propagation properties depending on the age of the supernova remnant and the distance between the remnant and the nearby molecular cloud. In this paper we present our strategy and results of a systematic search for γ-ray emitting molecular clouds near supernova remnants which are potentially detectable with current experiments in the TeV energy range and explore the prospects of future experiments.

  17. The Nature of Dark Energy from Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hook, Isobel

    2007-02-01

    Type Ia supernovae (SNe Ia) currently provide the most direct evidence for an accelerating Universe and for the existence of an unknown "dark energy". The 5-year Supernova Legacy Survey (SNLS) is generating a definitive dataset with well-sampled g'r'i'z' light curves and spectroscopic confirmation, which together allow precise measurement of the cosmological parameters. We are now entering the final 18 months of this highly successful survey. With the full, final sample we expect to determine the cosmological equation of state parameter "w" to a statistical precision of +/-0.05 or better, testing theories for the origin of the universal acceleration. The amount of spectroscopic follow-up performed is central to the success of the survey. Approximately 500 SNe Ia will be spectroscopically confirmed in a coherent program involving Gemini, VLT and Keck. Nod-and-shuffle observations at Gemini play a pivotal role. The goal for Gemini this semester is to obtain types and redshifts for 30 SN Ia candidates with redshifts 0.6-0.9, contributing to a dataset superior to any existing - or planned - sample. This is a continuing QR (quick response) proposal for GMOS-N.

  18. Supernova neutrino energy spectra and the MSW effect.

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Esposito, S.; Gualdi, C.; Miele, G.

    1997-03-01

    The distortions in the thermal energy spectra for neutrinos produced in a supernova when a resonant oscillation, MSW effect, occurs are determined. In order to show this effect for some relevant and representative examples of unified gauge models, the authors have chosen SO(10), and SU(5)SUSY, SO(10)SUSY with a particular scheme for fermion masses (DHR model). The analysis has been performed for two choices of neutrinos parameters, predicted by the above models, and capable to explain the solar neutrino problem. In both cases one observes a strong distortion in the electron neutrino energy spectrum. This effect, computed for a wide range of SO(10)SUSY models has produced the same results of the previous supersymmetric ones.

  19. Spike morphology in supernova-relevant hydrodynamics experiments

    NASA Astrophysics Data System (ADS)

    di Stefano, C.; Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Krauland, C. M.; Marion, D. C.; Klein, S. R.; Fryxell, B.; Budde, A.; Plewa, T.; Nilson, P.

    2011-11-01

    This presentation describes experiments performed on the Omega and Omega EP lasers exploring the 3D Rayleigh-Taylor instability at a blast- wave-driven interface. These experiments are well-scaled to the He-H interface during the explosion phase of SN1987A. Laser energy is used to create a planar blast wave in a plastic disk, which then crosses the interface between the disk and a lower-density foam, inducing the RT instability. The plastic disk has an intentional pattern machined at this interface. This seed perturbation is three-dimensional with a basic structure of two orthogonal sine waves with a wavelength of 71 μm and amplitude of 2.5 μm. Interface structure has been detected under these conditions using dual, orthogonal radiography, and some of the resulting data will be shown. Current experiments are further examining the features of the unstable interface using proton radiography.

  20. Supernova constraints on multi-coupled dark energy

    SciTech Connect

    Piloyan, Arpine; Marra, Valerio; Amendola, Luca; Baldi, Marco E-mail: valerio.marra@me.com E-mail: l.amendola@thphys.uni-heidelberg.de

    2013-07-01

    The persisting consistency of ever more accurate observational data with the predictions of the standard ΛCDM cosmological model puts severe constraints on possible alternative scenarios, but still does not shed any light on the fundamental nature of the cosmic dark sector. As large deviations from a ΛCDM cosmology are ruled out by data, the path to detect possible features of alternative models goes necessarily through the definition of cosmological scenarios that leave almost unaffected the background and — to a lesser extent — the linear perturbations evolution of the universe. In this context, the Multi-coupled DE (McDE) model was proposed by Baldi [9] as a particular realization of an interacting Dark Energy field characterized by an effective screening mechanism capable of suppressing the effects of the coupling at the background and linear perturbation level. In the present paper, for the first time, we challenge the McDE scenario through a direct comparison with real data, in particular with the luminosity distance of Type Ia supernovae. By studying the existence and stability conditions of the critical points of the associated background dynamical system, we select only the cosmologically consistent solutions, and confront their background expansion history with data. Confirming previous qualitative results, the McDE scenario appears to be fully consistent with the adopted sample of Type Ia supernovae, even for coupling values corresponding to an associated scalar fifth-force about four orders of magnitude stronger than standard gravity. Our analysis demonstrates the effectiveness of the McDE background screening, and shows some new non-trivial asymptotic solutions for the future evolution of the universe. Clearly, linear perturbation data and, even more, nonlinear structure formation properties are expected to put much tighter constraints on the allowed coupling range. Nonetheless, our results show how the background expansion history might be

  1. Supernovae in the First Two Years of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    D'Andrea, Christopher; Dark Energy Survey

    2016-01-01

    The Dark Energy Survey Supernova Program (DES-SN) is a five year, 30 square degree cadenced search for type Ia supernovae (SNe Ia) using the Dark Energy Camera on the 4m Blanco Telescope. The goal of DES-SN is to accurately measure more than 3000 SNe Ia over a redshift range of 0.1 < z < 1.2 to derive the most precise constraints for cosmological parameters of any supernova survey. I will present an overview of the data from the full first two seasons of DES-SN and a preliminary analysis using both spectroscopically- and photometrically-classified SNe Ia.

  2. Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy

    SciTech Connect

    Fogli, G. L.; Marrone, A.; Tamborra, I.; Lisi, E.; Mirizzi, A.

    2008-11-01

    In the dense supernova core, self-interactions may align the flavor polarization vectors of {nu} and {nu} and induce collective flavor transformations. Different alignment Ansaetze are known to describe approximately the phenomena of synchronized or bipolar oscillations and the split of {nu} energy spectra. We discuss another phenomenon observed in some numerical experiments in inverted hierarchy, showing features akin to a low-energy split of {nu} spectra. The phenomenon appears to be approximately described by another alignment Ansatz which, in the considered scenario, reduces the (nonadiabatic) dynamics of all energy modes to only two {nu} plus two {nu} modes. The associated spectral features, however, appear to be fragile when passing from single to multiangle simulations.

  3. A study of low-energy type II supernovae

    NASA Astrophysics Data System (ADS)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2015-08-01

    All stars with an initial mass greater than 8Msun, but not massive enough to encounter the pair-production instability, eventually form a degenerate core and collapse to form a compact object, either a neutron star or a black hole.At the lower mass end, these massive stars die as red-supergiant stars and give rise to Type II supernovae (SNe). The diversity of observed properties of SNe II suggests a range of progenitor mass, radii, but also explosion energy.We have performed a large grid simulations designed to cover this range of progenitor and explosion properties. Using MESA STAR, we compute a set of massive star models (12-30Msun) from the main sequence until core collapse. We then generate explosions with V1D to produce ejecta with a range of explosion energies and yields. Finally, all ejecta are evolved with CMFGEN to generate multi-band light curves and spectra.In this poster, we focus our attention on the properties of low-energy explosions that give rise to low-luminosity Type II Plateau (II-P) SNe. In particular, we present a detailed study of SN 2008bk, but also include other notorious low-energy SNe II-P like 2005cs, emphasising their non-standard properties by comparing to models that match well events like SN 1999em. Such low-energy explosions, characterised by low ejecta expansion rates, are more suitable for reliable spectral line identifications.Based on our models, we discuss the distinct signatures of low-energy explosions in lower and higher mass models. One important goal is to identify whether there is a progenitor-mass bias leading to such events.

  4. Spike morphology in supernova-relevant hydrodynamics experiments

    NASA Astrophysics Data System (ADS)

    di Stefano, Carlos; Kuranz, C. C.; Drake, R. P.; Grosskopf, M.; Krauland, C.; Marion, D.; Fryxell, B.; Budde, A.; Hansen, J. F.; Plewa, T.

    2011-06-01

    This presentation describes experiments performed on the Omega and Omega EP lasers exploring the 3D Rayleigh-Taylor instability at a blast-wave-driven interface. Laser energy is used to create a planar blast wave in a plastic disk, which then crosses the interface between the disk and a lower-density foam, inducing the RT instability. The plastic disk has an intentional pattern machined at this interface. This seed perturbation is three-dimensional with a basic structure of two orthogonal sine waves with a wavelength of 71 μm and amplitude of 2.5 μm. Interface structure has been detected under these conditions using dual, orthogonal radiography, and some of the resulting data will be shown. Current experiments are further examining the features of the unstable interface using proton radiography. This work is funded by the NNSA-DS and SC-OFES Joint Program in HEDLP, by the NLUF in NNSA-DS and by the PSAAP in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.

  5. A low-energy core-collapse supernova without a hydrogen envelope.

    PubMed

    Valenti, S; Pastorello, A; Cappellaro, E; Benetti, S; Mazzali, P A; Manteca, J; Taubenberger, S; Elias-Rosa, N; Ferrando, R; Harutyunyan, A; Hentunen, V P; Nissinen, M; Pian, E; Turatto, M; Zampieri, L; Smartt, S J

    2009-06-01

    The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae. PMID:19494909

  6. Distance measurements from supernovae and dark energy constraints

    SciTech Connect

    Wang Yun

    2009-12-15

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  7. The secondary supernova machine: Gravitational compression, stored Coulomb energy, and SNII displays

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Meyer, Bradley S.

    2016-04-01

    Radioactive power for several delayed optical displays of core-collapse supernovae is commonly described as having been provided by decays of 56Ni nuclei. This review analyses the provenance of that energy more deeply: the form in which that energy is stored; what mechanical work causes its storage; what conservation laws demand that it be stored; and why its release is fortuitously delayed for about 106 s into a greatly expanded supernova envelope. We call the unifying picture of those energy transfers the secondary supernova machine owing to its machine-like properties; namely, mechanical work forces storage of large increases of nuclear Coulomb energy, a positive energy component within new nuclei synthesized by the secondary machine. That positive-energy increase occurs despite the fusion decreasing negative total energy within nuclei. The excess of the Coulomb energy can later be radiated, accounting for the intense radioactivity in supernovae. Detailed familiarity with this machine is the focus of this review. The stored positive-energy component created by the machine will not be reduced until roughly 106 s later by radioactive emissions (EC and β +) owing to the slowness of weak decays. The delayed energy provided by the secondary supernova machine is a few × 1049 erg, much smaller than the one percent of the 1053 erg collapse that causes the prompt ejection of matter; however, that relatively small stored energy is vital for activation of the late displays. The conceptual basis of the secondary supernova machine provides a new framework for understanding the energy source for late SNII displays. We demonstrate the nuclear dynamics with nuclear network abundance calculations, with a model of sudden compression and reexpansion of the nuclear gas, and with nuclear energy decompositions of a nuclear-mass law. These tools identify excess Coulomb energy, a positive-energy component of the total negative nuclear energy, as the late activation energy. If the

  8. Supernova Discoveries from the Nearby Supernova Factory (SNfactory)

    DOE Data Explorer

    SNfactory International Collaboration,

    The Nearby Supernova Factory is an experiment designed to collect data on more Type Ia supernovae than have ever been studied in a single project before, and in so doing, to answer some fundamental questions about the nature of the universe. Type Ia supernovae are extraordinarily bright, remarkably uniform objects which make excellent "standard candles" for measuring the expansion rate of the universe. However, such stellar explosions are very rare, occurring only a couple of times per millenium in a typical galaxy, and remaining bright enough to detect only for a few weeks. Previous studies of Type Ia supernovae led to the discovery of the mysterious "dark energy" that is causing the universe to expand at an accelerating rate. To reduce the statistical uncertainties in previous experimental data, extensive spectral and photometric monitoring of more Type Ia supernovae is required. The SNfactory collaboration has built an automated system consisting of specialized software and custom-built hardware that systematically searches the sky for new supernovae, screens potential candidates, then performs multiple spectral and photometric observations on each supernova. These observations are stored in a database to be made available to supernova researchers world-wide for further study and analysis [copied from http://snfactory.lbl.gov/snf/snf-about.html]. Users must register and agree to the open access honor system. Finding charts are in FITS format and may not be accessible through normal browser settings.

  9. Spike morphology in supernova-relevant hydrodynamics experiments

    NASA Astrophysics Data System (ADS)

    di Stefano, C.; Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Krauland, C. M.; Marion, D. C.; Fryxell, B.; Budde, A.; Hansen, J. F.; Knauer, J.; Arnett, D.; Plewa, T.

    2010-11-01

    This presentation describes experiments performed on the Omega and Omega EP lasers exploring the 3D Rayleigh-Taylor instability at a blast-wave-driven interface. The laser irradiates a plastic disk and creates a planar blast wave, which then crosses the interface between the disk and a lower-density foam, inducing the Rayleigh-Taylor instability. The plastic disk has an intentional pattern machined at the plastic/foam interface. This seed perturbation is three-dimensional with a basic structure of two orthogonal sine waves with a wavelength of 71 μm and amplitude of 2.5 μm. Interface structure has been detected under these conditions using x-ray radiography, and some of the resulting data will be shown. Current experiments are further examining the features of the unstable interface using proton radiography.

  10. Effects of Initial Conditions on Compressible Mixing in Supernova-Relevant Laboratory Experiments

    SciTech Connect

    Miles, A R; Edwards, M; Greenough, J

    2004-04-30

    In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this paper, we summarize recent results from our computational study of unstable systems driven by high Mach number shock and blast waves. For planar multimode systems, compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. Initial conditions predicted by some recent stellar calculations are incompatible with self-similarity.

  11. Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova

    SciTech Connect

    James Glimm

    2009-06-04

    The three year plan for this project was to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (Direct Numerical Simulation (DNS), Large Eddy Simulations (LES), full two fluid simulations and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We model 2D and 3D perturbations of planar or circular interfaces. We compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. Multiple layers and reshock are considered here.

  12. Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova

    SciTech Connect

    Glimm, James

    2008-06-24

    The three year plan for this project is to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (both Direct Numerical Simulation and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We will model 2D and 3D perturbations of planar interfaces. We will compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we will develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. We will conduct analytic studies of mix, in support of these objectives. Advanced issues, including multiple layers and reshock, will be considered.

  13. A Search for Ultra--High-Energy Gamma-Ray Emission from Five Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Allen, G. E.; Berley, D.; Biller, S.; Burman, R. L.; Cavalli-Sforza, M.; Chang, C. Y.; Chen, M. L.; Chumney, P.; Coyne, D.; Dion, C. L.; Dorfan, D.; Ellsworth, R. W.; Goodman, J. A.; Haines, T. J.; Hoffman, C. M.; Kelley, L.; Klein, S.; Schmidt, D. M.; Schnee, R.; Shoup, A.; Sinnis, C.; Stark, M. J.; Williams, D. A.; Wu, J.-P.; Yang, T.; Yodh, G. B.

    1995-07-01

    The majority of the cosmic rays in our Galaxy with energies in the range of ~1010--1014 eV are thought to be accelerated in supernova remnants (SNRs). Measurements of SNR gamma-ray spectra in this energy region could support or contradict this concept. The Energetic Gamma-Ray Experiment Telescope (EGRET) collaboration has reported six sources of gamma rays above 108 eV whose coordinates are coincident with SNRs. Five of these sources are within the field of view of the CYGNUS extensive air shower detector. A search of the CYGNUS data set reveals no evidence of gamma-ray emission at energies ~1014 eV for these five SNRs. The flux upper limits from the CYGNUS data are compared to the lower energy fluxes measured with the EGRET detector using Drury, Aharonian, & Volk's recent model of gamma-ray production in the shocks of SNRs. The results suggest one or more of the following: (1) the gamma-ray spectra for these five SNRs soften by about 1014 eV, (2) the integral gamma-ray spectra of the SNRs are steeper than about E-1.3, or (3) most of the gamma rays detected with the EGRET instrument for each SNR are not produced in the SNR's shock but are produced at some other site (such as a pulsar).

  14. Supernova dynamics in the laboratory: Radiative shocks produced by ultra-high pressure implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pak, Arthur

    2012-10-01

    Thermonuclear fuel experiments on the National Ignition Facility implode 2-mm diameter capsules with a cryogenic deuterium-tritium ice layer to 1000x liquid density and pressures exceeding 100 Gbar (10^11 atm). About 200 ps after peak compression, a spherical supernova-like radiative shock wave is observed that expands with shock velocities of uS = 300 km/s, temperatures of order 1 keV at densities of 1 g/cc resulting in a radiation strength parameter of Q ˜uS^5 = 10^4. Radiation-hydrodynamic simulations indicate that the shock launched at stagnation first goes down a strong density gradient while propagating outward from the highly compressed DT fuel (˜ 1000g/cc) to the ablation front (˜ 1 g/cc). Similar to what happens inside a star, the shock pressure drops as it accelerates and heats. The radiative shock emission is first observed when it breaks out of the dense compressed fuel shell into the low-density inflowing plasma at the ablation front mimicking the supernova situation where the shock breaks out through the star surface into surrounding in-falling matter [1,2]; the shock is subsequently approaching the supercritical state with a strong pre-cursor followed by rapid cooling. These observations are consistent with the rapid vanishing of the radiation ring 400 ps after peak compression due to strong radiation losses and spherical expansion. The evolution and brightness of the radiative shock provides insight into the performance of these implosions that have the goal to produce burning fusion plasmas in the laboratory. By modifying the capsule ablator composition and thickness, the stagnation pressure, density gradients, shock velocity and radiative properties could be tailored to study various regimes related to supernovae radiative remnants.[4pt] [1] W. David Arnett, Supernovae as phenomena of high-energy astrophysics, Ann NY Aca. Science 302, 90 (1977).[0pt] [2] L. Ensman and A. Burrows, Shock breakout in SN1987A, ApJ 393, 742.

  15. Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae

    SciTech Connect

    Saurabh W. Jha

    2012-10-03

    The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.

  16. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    ScienceCinema

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department?s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics ?for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.? DOE?s Office of Science has supported Dr. Perlmutter?s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  17. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    SciTech Connect

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  18. Enhancement of high-energy cosmic-ray spectrum by type-II supernovae

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Miyaji, S.; Parnell, T. A.; Weisskopf, M. C.; Hayashi, T.

    1986-01-01

    The cosmic-ray spectrum has an intensity enhancement in the energy range 10 to the 14th to 10 to the 16th eV per nucleus. Recent observations of heavy cosmic rays in this energy range indicate that the Ca/Fe ratio may be as large as 10 times the solar value. It is suggested that pulsars in type-II supernova remnants are the origin of this component of the cosmic-ray spectrum.

  19. Numerical simulatin of supernova-relevant laser-driven hydro experiments on OMEGA

    SciTech Connect

    Leibrandt, D; Robey, H F; Edwards, M J; Braun, D G; Miles, A R; Drake, R P

    2004-02-10

    In ongoing experiments performed on the OMEGA laser [J. M. Soures et al., Phys. Plasmas 5, 2108 (1996)] at the University of Rochester Laboratory for Laser Energetics (LLE), nanosecond laser pulses are used to drive strong blast waves into two-layer targets. Perturbations on the interface between the two materials are unstable to the Richtmyer-Meshkov instability as a result of shock transit and the Rayleigh-Taylor instability during the deceleration-phase behind the shock front. These experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. The authors are, at present, particularly interested in the development of the Rayleigh-Taylor instability through the late nonlinear stage, the transition to turbulence, and the subsequent transport of material within the turbulent region. In this paper, the results of numerical simulations of 2D single and multimode experiments are presented. These simulations are run using the 2D Arbitrary Lagrangian Eulerian (ALE) radiation hydrodynamics code CALE [R. T. Barton, Numerical Astrophysics (Jones and Bartlett, Boston, 1985)]. The simulation results are shown to compare well with experimental radiography. A buoyancy-drag model captures the behavior of the single-mode interface, but gives only partial agreement in the multi-mode cases. The Richtmyer-Meshkov and target decompression contributions to the perturbation growth are both estimated and shown to be significant. Significant dependence of the simulation results on the material equation of state (EOS) is demonstrated, and the prospect of continuing the experiments to conclusively demonstrate the transition to turbulence is discussed.

  20. Supernova remnants

    NASA Astrophysics Data System (ADS)

    Decourchelle, A.

    2016-06-01

    Supernova remnants result from the explosion of a star and keep trace, in their young ejecta-dominated phase, both of the explosion mechanism and to a lesser extent of the nature of the progenitor. They inject a large amount of energy into their surroundings, which impacts significantly the interstellar medium and to a larger extent the working of the galaxy by distributing heavy elements, heating to tens of million degrees large fractions of gas, accelerating high-energy particles, generating turbulence and amplification of the magnetic field. I will review the observational results on supernova remnants and their related scientific issues before suggesting directions for future ambitious XMM-Newton observations.

  1. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  2. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Lemoine-Goumard, Marianne

    2015-08-01

    In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray production. xml:lang="fr"

  3. Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae

    SciTech Connect

    Wang Yun; Tegmark, Max

    2005-05-15

    We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter {omega}{sub m} can be accurately measured from other data, then the dark-energy density history X(z)={rho}{sub X}(z)/{rho}{sub X}(0) can trivially be derived from this expansion history H(z). In contrast to customary 'black box' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z){sup -1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30%-40% accuracy.

  4. Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Tegmark, Max

    2005-05-01

    We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter Ωm can be accurately measured from other data, then the dark-energy density history X(z)=ρX(z)/ρX(0) can trivially be derived from this expansion history H(z). In contrast to customary “black box” parameter fitting, our method is transparent and easy to interpret: the measurement of H(z)-1 in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30% 40% accuracy.

  5. Investigating the Nature of Dark Energy using Type Ia Supernovae with WFIRST-AFTA Space Mission

    NASA Astrophysics Data System (ADS)

    Perlmutter, Saul

    Scientifically, the WFIRST supernova program is unique: it makes possible a dark energy measurement that no other space mission or ground-based project is addressing, a measurement that will set the standard in determining the expansion history of the universe continuously from low to high redshifts (0.1 < z < 1.7). In the context of the WFIRST Science Definition Team several participants in this proposal have developed a first version of a supernova program, described in the WFIRST SDT Report. While this program was judged to be a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitations of time the analysis was clearly limited in depth on a number of issues. The objective of this proposal is to further develop this program. Technically this is the WFIRST measurement that arguably requires the most advanced project development, since it requires near-real-time analysis and follow-up with WFIRST, and since it is using the IFU spectrograph in the WFI package, the IFU being the WFIRST instrument that does not yet have a completely consistent set of specifications in the design iteration of the SDT report. In this proposal for the WFIRST Scientific Investigation Team, focused primarily on the supernova dark energy measurements, we address these crucial technical needs by bringing the larger supernova community's expertise on the science elements together with a smaller focused team that can produce the specific deliverables. Thus the objectives of this 5 year proposal are the following: 1. Development of scientific performance requirements for the study of Dark Energy using Type Ia supernovae 2. Design an observing strategy using the Wide Field Instrument (WFI) and the Integral Field Spectrometer Unit (IFU) 3. Development of science data analysis techniques and data analysis software 4. Development of ground and space calibration requirements and estimating realistic correlated errors, both statistical

  6. A Triple-energy-source Model for Superluminous Supernova iPTF13ehe

    NASA Astrophysics Data System (ADS)

    Wang, S. Q.; Liu, L. D.; Dai, Z. G.; Wang, L. J.; Wu, X. F.

    2016-09-01

    Almost all superluminous supernovae (SLSNe) whose peak magnitudes are ≲ -21 mag can be explained by the 56Ni-powered model, the magnetar-powered (highly magnetized pulsar) model, or the ejecta-circumstellar medium (CSM) interaction model. Recently, iPTF13ehe challenged these energy-source models, because the spectral analysis shows that ∼ 2.5{M}ȯ of 56Ni have been synthesized, but are inadequate to power the peak bolometric emission of iPTF13ehe, while the rebrightening of the late-time light curve (LC) and the Hα emission lines indicate that the ejecta-CSM interaction must play a key role in powering the late-time LC. Here we propose a triple-energy-source model, in which a magnetar together with some amount (≲ 2.5{M}ȯ ) of 56Ni may power the early LC of iPTF13ehe, while the late-time rebrightening can be quantitatively explained by an ejecta-CSM interaction. Furthermore, we suggest that iPTF13ehe is a genuine core-collapse supernova rather than a pulsational pair-instability supernova candidate. Further studies on similar SLSNe in the future would eventually shed light on their explosion and energy-source mechanisms.

  7. The p-PROCESS in Core Collapse Supernovae:. Influence of Different Explosion Energies and Metallicities

    NASA Astrophysics Data System (ADS)

    Iwamoto, N.; Umeda, H.; Nomoto, K.

    2005-12-01

    We present results of p-process nucleosynthesis in core collapse supernovae (SNe). We focus on the influence of different explosion energies and metallicities on p-process yields. We find that overproduction factors have a strong sensitivity on peak temperatures and that the distribution of normalized mean overproduction factors is robust to changing the explosion energy and metallicity. Our results indicate that (1) the contribution to the galactic evolution of p-nuclei from stars with Z ≲ Z⊙/20 reduces significantly, and (2) more massive (M ≳ 25M⊙) and energetic SNe may be a dominant production site of the p-nuclei.

  8. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-08-16

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  9. Rates and progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wood-Vasey, William Michael

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. >From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  10. H I ZEEMAN EXPERIMENTS OF SHOCKED ATOMIC GAS IN TWO SUPERNOVA REMNANTS INTERACTING WITH MOLECULAR CLOUDS

    SciTech Connect

    Koo, Bon-Chul; Heiles, Carl; Stanimirovic, Snezana; Troland, Tom

    2010-07-15

    We have carried out observations of Zeeman splitting of the H I 21 cm emission line from shocked atomic gas in the supernova remnants (SNRs) IC 443 and W51C using the Arecibo telescope. The observed shocked atomic gas is expanding at {approx}100 km s{sup -1} and this is the first Zeeman experiment of such fast-moving, shocked atomic gas. The emission lines, however, are very broad and the systematic error due to baseline curvature hampers an accurate measurement of field strengths. We derive an upper limit of 100-150 {mu}G on the strength of the line-of-sight field component. These two SNRs are interacting with molecular clouds, but the derived upper limits are considerably smaller than the field strengths expected from a strongly shocked dense cloud. We discuss the implications and conclude that either the magnetic field within the telescope beam is mostly randomly oriented or the high-velocity H I emission is from a shocked interclump medium of relatively low density.

  11. Offshore wave energy experiment

    SciTech Connect

    Nielsen, K.; Scholten, N.C.; Soerensen, K.A. |

    1995-12-31

    This article describes the second phase of the off-shore wave energy experiment, taking place in the Danish part of the North Sea near Hanstholm. The wave power converter is a scale model consisting of a float 2.5 meter in diameter connected by rope to a seabed mounted piston pump installed on 25 meter deep water 2,5 km offshore. The structure, installation procedure results and experience gained during the test period will be presented and compared to calculations based on a computer model.

  12. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE

    SciTech Connect

    Suzuki, N.; Rubin, D.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K.; Lidman, C.; Amanullah, R.; Botyanszki, J.; Barrientos, L. F.; Brodwin, M.; Connolly, N.; Dawson, K. S.; Dey, A.; Doi, M.; Donahue, M.; Deustua, S.; Eisenhardt, P.; Ellingson, E.; Fadeyev, V. E-mail: rubind@berkeley.edu; Collaboration: Supernova Cosmology Project; and others

    2012-02-10

    We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, {rho}{sub DE}(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat {Lambda}CDM universe, we find {Omega}{sub {Lambda}} = 0.729 {+-} 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013{sup +0.068}{sub -0.073} (68% CL). Curvature is constrained to {approx}0.7% in the owCDM model and to {approx}2% in a model in which dark energy is allowed to vary with parameters w{sub 0} and w{sub a} . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

  13. The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample

    NASA Astrophysics Data System (ADS)

    Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L. F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; Dawson, K. S.; Dey, A.; Doi, M.; Donahue, M.; Deustua, S.; Eisenhardt, P.; Ellingson, E.; Faccioli, L.; Fadeyev, V.; Fakhouri, H. K.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Goldhaber, G.; Gonzalez, A. H.; Goobar, A.; Gude, A.; Hattori, T.; Hoekstra, H.; Hsiao, E.; Huang, X.; Ihara, Y.; Jee, M. J.; Johnston, D.; Kashikawa, N.; Koester, B.; Konishi, K.; Kowalski, M.; Linder, E. V.; Lubin, L.; Melbourne, J.; Meyers, J.; Morokuma, T.; Munshi, F.; Mullis, C.; Oda, T.; Panagia, N.; Perlmutter, S.; Postman, M.; Pritchard, T.; Rhodes, J.; Ripoche, P.; Rosati, P.; Schlegel, D. J.; Spadafora, A.; Stanford, S. A.; Stanishev, V.; Stern, D.; Strovink, M.; Takanashi, N.; Tokita, K.; Wagner, M.; Wang, L.; Yasuda, N.; Yee, H. K. C.; Supernova Cosmology Project, The

    2012-02-01

    We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, ρDE(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat ΛCDM universe, we find ΩΛ = 0.729 ± 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013+0.068 -0.073 (68% CL). Curvature is constrained to ~0.7% in the owCDM model and to ~2% in a model in which dark energy is allowed to vary with parameters w 0 and wa . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555. The

  14. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey

    SciTech Connect

    Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Conley, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Hicken, M.; Krisciunas, K.; /Harvard-Smithsonian Ctr. Astrophys. /Fermilab /Harvard U. /UC, Berkeley, Astron. Dept. /KIPAC, Menlo Park /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Notre Dame U. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Res. Sch. Astron. Astrophys., Weston Creek /Chile U., Catolica /Toronto U., Astron. Dept. /Bohr Inst. /Stockholm U. /Texas A-M /European Southern Observ. /NOAO, Tucson /Ohio State U., Dept. Astron. /Inst. Astron., Honolulu

    2007-01-05

    We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Survey in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.

  15. Improving dark energy constraints with high-redshift Type Ia supernovae from CANDELS and CLASH

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo; Rodney, Steven A.; Sendra, Irene; Lazkoz, Ruth; Riess, Adam G.; Postman, Marc; Broadhurst, Tom; Coe, Dan

    2013-09-01

    Aims: We investigated the degree of improvement in dark energy constraints that can be achieved by extending Type Ia supernova (SN Ia) samples to redshifts z > 1.5 with the Hubble Space Telescope (HST), particularly in the ongoing Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and the Cluster Lensing and Supernova survey with Hubble (CLASH) multi-cycle treasury programs. Methods: Using the popular Chevalier-Polarski-Linder (CPL) parametrization of the dark energy w = w0 + wa(1 - a) we generated mock SN Ia samples that can be projected out to higher redshifts. The synthetic datasets thus generated were fitted to the CPL model, and we evaluated the improvements that a high-z sample can add to improve the statistical and systematic uncertainties on cosmological parameters. Results: In an optimistic but still very achievable scenario, we find that extending the HST sample beyond CANDELS+CLASH to reach a total of 28 SN Ia at z > 1.0 could improve the uncertainty in the wa parameter σwaby up to 21%. The corresponding improvement in the figure of merit (FoM) would be as high as 28%. Finally, we consider the use of high-redshift SN Ia samples to detect non-cosmological evolution in SN Ia luminosities with redshift, finding that these tests could be undertaken by future space-based infrared surveys using the James Webb Space Telescope (JWST).

  16. Mapping supernova remnants and pulsar wind nebulae across decades of energy

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.

    2016-04-01

    Ground- and space-based gamma ray observatories of the past decade have given us a new understanding of particle accelerators in our galaxy. The improved spatial resolution and sensitivity of recent gamma-ray surveys of the Galactic plane have resolved confusion of sources identified numerous sources to study the physics of particle acceleration and the diffusion of energetic particles into the galaxy. Here I highlight some recent studies of Galactic accelerators from GeV to TeV energies, that allow us to disentangle hadronic from leptonic emission, constrain cosmic ray diffusion, and measure the conditions of particle acceleration. Supernova remnants and pulsar wind nebulae are found to be the two most common Galactic sources identified in very high energy gamma rays, and the future capabilities of CTA promise a dramatic increase in our knowledge of these classes which are currently limited to only a few of the most well-studied cases.

  17. The Fascinating High-Energy World of Neutron Stars and Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar

    2006-06-01

    The past few years have witnessed a fast growth in the high-energy astrophysics community in Canada, thanks to new opportunities including the University Faculty Award (UFA) program introduced by the Natural Sciences and Engineering Research Council of Canada (NSERC) to appoint promising female researchers to faculty positions in science and engineering. As a UFA fellow at the University of Manitoba, I have had the unique opportunity to contribute to the launch of a new astronomy program in the department of Physics (renamed to Physics and Astronomy). My research focuses on observational studies of neutron stars, pulsar wind nebulae, and supernova remnants. The study of these exotic objects helps address the physics of the extreme and probe some of the most energetic events in the Universe. I will highlight exciting discoveries in this field and some of the questions to be addressed with current and future high-energy missions.

  18. Unbiased Estimate of Dark Energy Density from Type Ia Supernova Data

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Lovelace, Geoffrey

    2001-12-01

    Type Ia supernovae (SNe Ia) are currently the best probes of the dark energy in the universe. To constrain the nature of dark energy, we assume a flat universe and that the weak energy condition is satisfied, and we allow the density of dark energy, ρX(z), to be an arbitrary function of redshift. Using simulated data from a space-based SN pencil-beam survey, we find that by optimizing the number of parameters used to parameterize the dimensionless dark energy density, f(z)=ρX(z)/ρX(z=0), we can obtain an unbiased estimate of both f(z) and the fractional matter density of the universe, Ωm. A plausible SN pencil-beam survey (with a square degree field of view and for an observational duration of 1 yr) can yield about 2000 SNe Ia with 0<=z<=2. Such a survey in space would yield SN peak luminosities with a combined intrinsic and observational dispersion of σ(mint)=0.16 mag. We find that for such an idealized survey, Ωm can be measured to 10% accuracy, and the dark energy density can be estimated to ~20% to z~1.5, and ~20%-40% to z~2, depending on the time dependence of the true dark energy density. Dark energy densities that vary more slowly can be more accurately measured. For the anticipated Supernova/Acceleration Probe (SNAP) mission, Ωm can be measured to 14% accuracy, and the dark energy density can be estimated to ~20% to z~1.2. Our results suggest that SNAP may gain much sensitivity to the time dependence of the dark energy density and Ωm by devoting more observational time to the central pencil-beam fields to obtain more SNe Ia at z>1.2. We use both a maximum likelihood analysis and a Monte Carlo analysis (when appropriate) to determine the errors of estimated parameters. We find that the Monte Carlo analysis gives a more accurate estimate of the dark energy density than the maximum likelihood analysis.

  19. PREFACE: 5th Symposium on Large TPCs for Low Energy Rare Event Detection and Workshop on Neutrinos from Supernovae

    NASA Astrophysics Data System (ADS)

    Irastorza, Igor G.; Scholberg, Kate; Colas, Paul; Giomataris, Ioannis

    2011-08-01

    The Fifth International Symposium on large TPCs for low-energy rare-event detection was held at the auditorium of the Astroparticle and Cosmology (APC) Laboratory in Paris, on 14-17 December 2010. As for all previous meetings, always held in Paris in 2008, 2006, 2004 and 2002, it brought together a significant community of physicists involved in rare event searches and/or development of time projection chambers (TPCs). As a novelty this year, the meeting was extended with two half-day sessions on Supernova physics. These proceedings also include the contributions corresponding to the supernova sessions. The purpose of the meeting was to present and discuss the status of current experiments or projects involving the use of TPCs to search for rare events, like low-energy neutrinos, double beta decay, dark matter or axion experiments, as well as to discuss new results and ideas in the framework of the last developments of Micro Pattern Gaseous Detectors (MPGD), and how these are being - or could be - applied to these searches. As in previous meetings in this series, the format included an informal program with some recent highlighted results, rather than exhaustive reviews, with time for discussion and interaction. The symposium, the fifth of the series, is becoming consolidated as a regular meeting place for the synergic interplay between the fields of rare events and TPC development. The meeting started with a moving tribute by Ioannis Giomataris to the memory of George Charpak, who recently passed away. We then moved on to the usual topics like the status of some low-energy neutrino physics and double beta decay experiments, dark matter experiments with directional detectors, axion searches, or development results. A relevant subject this time was the electroluminescence in Xe TPCs, covered by several speakers. Every time the conference program is enriched with original slightly off-topic contributions that trigger the curiosity and stimulate further thought. As

  20. Historical Supernovae

    NASA Astrophysics Data System (ADS)

    Green, D. A.; Stephenson, F. R.

    The available historical records of supernovae occurring in our own Galaxy over the past two thousand years are reviewed. These accounts include the well-recorded supernovae of AD1604 (Kepler's SN), AD1572 (Tycho's SN), AD1181 AD1054 (which produced the Crab Nebula) and AD1006, together with less certain events dating back to AD185. In the case of the supernovae of AD1604 and AD1572 it is European records that provide the most accurate information available, whereas for earlier supernovae records are principally from East Asian sources. Also discussed briefly are several spurious supernova candidates, and the future prospects for studies of historical supernovae.

  1. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3.

    PubMed

    Keller, S C; Bessell, M S; Frebel, A; Casey, A R; Asplund, M; Jacobson, H R; Lind, K; Norris, J E; Yong, D; Heger, A; Magic, Z; Da Costa, G S; Schmidt, B P; Tisserand, P

    2014-02-27

    The element abundance ratios of four low-mass stars with extremely low metallicities (abundances of elements heavier than helium) indicate that the gas out of which the stars formed was enriched in each case by at most a few--and potentially only one--low-energy supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae seems surprising, because it had been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star has been unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36-670839.3, which shows no evidence of iron (with an upper limit of 10(-7.1) times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass about 60 times that of the Sun (and that the supernova left behind a black hole). Taken together with the four previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yielded light-element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies. PMID:24509711

  2. DES13S2cmm: The first superluminous supernova from the Dark Energy Survey

    SciTech Connect

    Papadopoulos, A.; Plazas, A. A.; D"Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; Fischer, J. A.; Foley, R. J.; Goldstein, D.; Gupta, R. R.; Kessler, R.; Kovacs, E.; Kuhlmann, S. E.; Lidman, C.; March, M.; Nugent, P. E.; Sako, M.; Smith, R. C.; Spinka, H.; Wester, W.; Abbott, T. M. C.; Abdalla, F.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Carnero, A.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T.; Evrard, A. E.; Flaugher, B.; Frieman, J. A.; Gerdes, D.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Ogando, R.; Roe, N. A.; Romer, A. K.; Rykoff, E.; Sanchez, E.; Santiago, B. X.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Soares-Santos, M.; Suchyta, E.; Swanson, M.; Tarle, G.; Thaler, J.; Tucker, L. D.; Wechsler, R. H.; Zuntz, J.

    2015-03-23

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 ± 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find MpeakU = –21.05+0.10–0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (sub-solar), low stellar-mass host galaxy (log(M/M⊙) = 9.3 ± 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2–0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for ‘standardising’ such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I – the radioactive decay of ⁵⁶Ni, and a magnetar – and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.

  3. DES13S2cmm: The first superluminous supernova from the Dark Energy Survey

    DOE PAGESBeta

    Papadopoulos, A.; Plazas, A. A.; D"Andrea, C. B.; Sullivan, M.; Nichol, R. C.; Barbary, K.; Biswas, R.; Brown, P. J.; Covarrubias, R. A.; Finley, D. A.; et al

    2015-03-23

    We present DES13S2cmm, the first spectroscopically-confirmed superluminous supernova (SLSN) from the Dark Energy Survey (DES). We briefly discuss the data and search algorithm used to find this event in the first year of DES operations, and outline the spectroscopic data obtained from the European Southern Observatory (ESO) Very Large Telescope to confirm its redshift (z = 0.663 ± 0.001 based on the host-galaxy emission lines) and likely spectral type (type I). Using this redshift, we find MpeakU = –21.05+0.10–0.09 for the peak, rest-frame U-band absolute magnitude, and find DES13S2cmm to be located in a faint, low-metallicity (sub-solar), low stellar-mass hostmore » galaxy (log(M/M⊙) = 9.3 ± 0.3), consistent with what is seen for other SLSNe-I. We compare the bolometric light curve of DES13S2cmm to fourteen similarly well-observed SLSNe-I in the literature and find it possesses one of the slowest declining tails (beyond +30 days rest frame past peak), and is the faintest at peak. Moreover, we find the bolometric light curves of all SLSNe-I studied herein possess a dispersion of only 0.2–0.3 magnitudes between +25 and +30 days after peak (rest frame) depending on redshift range studied; this could be important for ‘standardising’ such supernovae, as is done with the more common type Ia. We fit the bolometric light curve of DES13S2cmm with two competing models for SLSNe-I – the radioactive decay of ⁵⁶Ni, and a magnetar – and find that while the magnetar is formally a better fit, neither model provides a compelling match to the data. Although we are unable to conclusively differentiate between these two physical models for this particular SLSN-I, further DES observations of more SLSNe-I should break this degeneracy, especially if the light curves of SLSNe-I can be observed beyond 100 days in the rest frame of the supernova.« less

  4. New Trans-Neptunian Objects in the Dark Energy Survey Supernova Fields

    NASA Astrophysics Data System (ADS)

    Gerdes, David W.

    2015-05-01

    The Dark Energy Survey (DES) observes ten separate 3 sq. deg. fields approximately weekly for six months each year. Although intended primarily to detect Type Ia supernovae, this data set provides a rich time series that is well suited for the detection of objects in the outer solar system, which move slowly enough that they can remain in the same field of view for weeks, months, or even across multiple DES observing seasons. Because the supernova fields have ecliptic latitudes ranging from -15 to -45 degrees, DES is particularly sensitive to the dynamically hot population of Kuiper Belt objects, as well as detached/inner Oort cloud objects. Here I report the results of a search for new trans-Neptunian objects in the first two seasons of DES data, to limiting magnitudes of r~23.8 in the eight shallow fields and ~24.5 in the two deep fields. The 22 objects discovered to date include two new Neptune trojans, a number of objects in mean motion resonances with Neptune, two objects with orbital inclinations above 45 degrees, a Uranian resonator, and several distant scattered disk objects including one with an orbital period of nearly 6000 years. This latter object is among the half-dozen longest-period trans-Neptunian objects known, and like the other such objects has an argument of perihelion near zero degrees. I will discuss the properties and orbital dynamics of objects discovered to date, and will also discuss prospects for extending the search to the full 5000 sq. deg. DES wide survey.

  5. Inspecting the supernova-gamma-ray-burst connection with high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Tamborra, Irene; Ando, Shin'ichiro

    2016-03-01

    Long-duration gamma-ray bursts (GRBs) have been often considered as the natural evolution of some core-collapse supernovae (SNe). While GRBs with relativistic jets emit an electromagnetic signal, GRBs with mildly relativistic jets are opaque to photons and therefore could be detectable through neutrinos only. We discuss the possibility that successful GRBs and mildly relativistic jets belong to the same class of astrophysical transients with different Lorentz factor Γb and study the production of high-energy neutrinos as a function of Γb, by including both proton-photon and proton-proton interactions. By assuming a SN-GRB connection, we find that the diffuse neutrino emission from optically thick jets with Lorentz factors lower than the ones of successful GRBs can be one of the main components of the observed IceCube high-energy neutrino flux. Moreover, under the assumption that all these jets belong to the same class of astrophysical transients, we show that the IceCube high-energy neutrino data provide indirect constraints on the rate of nonsuccessful jets, favoring a local rate lower than tens of percent of the local SN rate. These limits are currently comparable to dedicated searches on choked sources and are expected to become tighter with the accumulation of more high-energy neutrino data.

  6. A census of high-energy observations of Galactic supernova remnants

    NASA Astrophysics Data System (ADS)

    Ferrand, Gilles; Safi-Harb, Samar

    2012-05-01

    We present the first public database of high-energy observations of all known Galactic supernova remnants (SNRs). In Section 1 we introduce the rationale for this work motivated primarily by studying particle acceleration in SNRs, and which aims at bridging the already existing census of Galactic SNRs (primarily made at radio wavelengths) with the ever-growing but diverse observations of these objects at high-energies (in the X-ray and γ-ray regimes). In Section 2 we show how users can browse the database using a dedicated web front-end (http://www.physics.umanitoba.ca/snr/SNRcat). In Section 3 we give some basic statistics about the records we have collected so far, which provides a summary of our current view of Galactic SNRs. Finally, in Section 4, we discuss some possible extensions of this work. We believe that this catalogue will be useful to both observers and theorists, and timely with the synergy in radio/high-energy SNR studies as well as the upcoming new high-energy missions. A feedback form provided on the website will allow users to provide comments or input, thus helping us keep the database up-to-date with the latest observations.

  7. HIGH-ENERGY NEUTRINO AND GAMMA-RAY TRANSIENTS FROM TRANS-RELATIVISTIC SUPERNOVA SHOCK BREAKOUTS

    SciTech Connect

    Kashiyama, Kazumi; Gao, Shan; Meszaros, Peter; Murase, Kohta; Horiuchi, Shunsaku

    2013-05-20

    Trans-relativistic shocks that accompany some supernovae (SNe) produce X-ray burst emissions as they break out in the dense circumstellar medium around the progenitors. This phenomenon is sometimes associated with peculiar low-luminosity gamma-ray bursts (LL GRBs). Here, we investigate the high-energy neutrino and gamma-ray counterparts of such a class of SNe. Just beyond the shock breakout radius, particle acceleration in the collisionless shock starts to operate in the presence of breakout photons. We show that protons may be accelerated to sufficiently high energies and produce high-energy neutrinos and gamma rays via the photomeson interaction. These neutrinos and gamma rays may be detectable from {approx}< 10 Mpc away by IceCube/KM3Net as multi-TeV transients almost simultaneously with the X-ray breakout, and even from {approx}< 100 Mpc away with follow-up observations by the Cherenkov Telescope Array using a wide-field sky monitor like Swift as a trigger. A statistical technique using a stacking approach could also be possible for the detection, with the aid of the SN optical/infrared counterparts. Such multi-messenger observations offer the possibility to probe the transition of trans-relativistic shocks from radiation-mediated to collisionless ones, and would also constrain the mechanisms of particle acceleration and emission in LL GRBs.

  8. Very high energy gamma-ray emission from Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Saxon, Dana Boltuch

    Supernova remnant (SNR) G120.1+1.4 (also known as Tycho's SNR) is the remnant of one of only five confirmed historical supernovae. As such, it has been well studied across the electromagnetic spectrum. This thesis describes the first statistically significant detection of very high energy (VHE) (˜ 100 GeV to 100 TeV) gamma rays from Tycho's SNR, reported in 2011 by the VERITAS collaboration. The analysis that led to that detection was performed by this author, and this dissertation will discuss the process in detail. Subsequently, a statistically significant detection in high energy (HE) (˜ 30 MeV to 100 GeV) gamma rays was reported by other authors using data from the Fermi Gamma-Ray Space Telescope. Comparison of models to the spectral energy distribution of the photon flux from this remnant in HE and VHE gamma rays favors a hadronic origin for the emission, particularly when combined with current X-ray data, although a leptonic origin cannot be ruled out at this time. This is significant because a confirmed hadronic origin for the gamma-ray emission would identify this SNR as a site of cosmic ray acceleration, providing observational evidence for the idea that SNRs are the source of the Galactic cosmic ray population. Chapter 1 of this dissertation will provide historical background on Tycho's SNR, along with a summary of modern observations of the remnant across the electromagnetic spectrum. Chapter 2 is a discussion of the role played by SNRs in the process of cosmic ray acceleration, including both theoretical underpinnings and observational evidence. Chapter 3 provides an overview of the field of VHE gamma-ray astronomy, with discussions of gamma-ray production mechanisms and gamma-ray source classes. Chapter 4 describes the instruments used to observe HE and VHE gamma rays. Chapter 5 is a discussion of general analysis methods and techniques for data from Imaging Atmospheric Cherenkov Telescopes (IACTs). Chapter 6 provides details about the specific

  9. Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report

    SciTech Connect

    Filippenko, Alexei Vladimir

    2014-05-09

    Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the expansion of the Universe is accelerating, driven by the effects of dark energy. Understanding the nature of this mysterious, yet dominant, component of the Universe is at the forefront of research in cosmology and fundamental physics. SNe Ia will continue to play a leading role in this enterprise, providing precise cosmological distances that improve constraints on the nature of dark energy. However, for this effort to succeed, we need to more thoroughly understand relatively nearby SNe Ia, because our conclusions come only from comparisons between them and distant (high-redshift) SNe Ia. Thus, detailed studies of relatively nearby SNe Ia are the focus of this research program. Many interesting results were obtained during the course of this project; these were published in 32 refereed research papers that acknowledged the grant. A major accomplishment was the publication of supernova (SN) rates derived from about a decade of operation of the Lick Observatory Supernova Search (LOSS) with the 0.76-meter Katzman Automatic Imaging Telescope (KAIT). We have determined the most accurate rates for SNe of different types in large, nearby galaxies in the present-day Universe, and these can be compared with SN rates far away (and hence long ago in the past) to set constraints on the types of stars that explode. Another major accomplishment was the publication of the light curves (brightness vs. time) of 165 SNe Ia, along with optical spectroscopy of many of these SNe as well as other SNe Ia, providing an extensive, homogeneous database for detailed studies. We have conducted intensive investigations of a number of individual SNe Ia, including quite unusual examples that allow us to probe the entire range of SN explosions and provide unique insights into these objects and the stars before they explode. My team's studies have also led

  10. Image of the Vela Supernova Remnant Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Like the Crab Nebula, the Vela Supernova Remnant has a radio pulsar at its center. In this image taken by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory, the pulsar appears as a point source surrounded by weak and diffused emissions of x-rays. HEAO-2's computer processing system was able to record and display the total number of x-ray photons (a tiny bundle of radiant energy used as the fundamental unit of electromagnetic radiation) on a scale along the margin of the picture. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  11. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  12. An Experiment on Wind Energy

    ERIC Educational Resources Information Center

    Lombardo, Vincenzo; Fiordilino, Emilio; Gallitto, Aurelio Agliolo; Aglieco, Pasquale

    2012-01-01

    We discuss an experiment on wind energy performed with home-made apparatus. The experiment reproduces a laboratory windmill, which can pump water from a lower level to a higher one. By measuring the gain of the gravitational potential energy of the pumped water, one can determine the power extracted from the wind. The activity was carried out with…

  13. Supernova VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  14. Neutral Current {nu} Induced Reactions in Nuclei at Supernova Neutrino Energies

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2011-11-23

    We calculate cross sections for the neutral current induced neutrino/antineutrino reaction from {sup 208}Pb target and applied it to study Supernova neutrino event rates. The calculations are done in local density approximation taking into account Pauli blocking, Fermi motion effects and renormalization of weak transition strengths in the nuclear medium. The numerical results for the neutrino nucleus total cross sections have been averaged over the various Supernova neutrino/antineutrino fluxes available in literature.

  15. Energy Experiments for STEM Students

    NASA Astrophysics Data System (ADS)

    Fanchi, John

    2011-03-01

    Texas Christian University (TCU) is developing an undergraduate program that prepares students to become engineers with an emphasis in energy systems. One of the courses in the program is a technical overview of traditional energy (coal, oil and gas), nuclear energy, and renewable energy that requires as a pre-requisite two semesters of calculus-based physics. Energy experiments are being developed that will facilitate student involvement and provide hands-on learning opportunities. Students participating in the course will improve their understanding of energy systems; be introduced to outstanding scientific and engineering problems; learn about the role of energy in a global and societal context; and evaluate contemporary issues associated with energy. This talk will present the status of experiments being developed for the technical energy survey course.

  16. New trans-Neptunian Objects in the Dark Energy Survey Supernova Fields

    NASA Astrophysics Data System (ADS)

    Gerdes, David; Dark Energy Survey Collaboration

    2015-04-01

    The Dark Energy Survey (DES) observes ten separate 3 sq. deg. fields approximately weekly for six months each year. Although intended primarily to detect Type Ia supernovae, this data set provides a rich time series that is well suited for the detection of objects in the outer solar system, which move slowly enough that they can remain in the same field of view for weeks, months, or even across multiple DES observing seasons. With ecliptic latitudes ranging from -15 to -45 degrees, DES is particularly sensitive to the dynamically hot population of Kuiper Belt object, as well as detached/inner Oort cloud objects. Here I report the results of a search for new trans-Neptunian objects in the first two seasons of DES data. The objects discovered to date include a new Neptune trojan, a number of objects in mean motion resonances with Neptune, an object with an orbital inclination of 48 degrees, and several distant scattered disk objects including one with an orbital period of nearly 1200 years. I will also discuss prospects for extending the search to the full 5000 sq. deg. DES wide survey.

  17. Supernova 1972e in NGC 5253. [energy distribution and physical model

    NASA Technical Reports Server (NTRS)

    Kirshner, R. P.; Oke, J. B.

    1975-01-01

    Absolute energy distributions of the Type I supernova 1972e in NGC 5253 extending to about 700 days after maximum light have been obtained. A physical model of the expanding envelope, based on the identification of the feature at 6550 A with H-alpha is proposed. It consists of a differentially expanding atmosphere, with electron density ranging from 10 billion near maximum light to about 10 million 340 days later, illuminated by a photosphere with temperature in the range from 10,000 K to 7000 K. Under these conditions, the identifications of Ca II 8600-A, H, and K lines, the Na D lines, and the Mg I b lines forming P Cygni lines are quite plausible. More than 200 days after maximum, the spectrum is dominated by four features between 4200 and 5500 A. Three of these four features match the blended emissions from over 100 Fe II forbidden lines. If this identification is correct, the envelope requires about 0.01 solar mass of iron, which corresponds to an Fe/H ratio about 20 times higher than the cosmic abundance. Possible identifications of the fourth feature with the Mg I 4571-A line or permitted lines of Fe II are also discussed.

  18. Image of the Supernova Remnant Cassiopeia A Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This x-ray photograph of the Supernova remnant Cassiopeia A, taken with the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory, shows that the regions with fast moving knots of material in the expanding shell are bright and clear. A faint x-ray halo, just outside the bright shell, is interpreted as a shock wave moving ahead of the expanding debris. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  19. Image of the Supernova Cassiopeia Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This supernova in the constellation Cassiopeia was observed by Tycho Brahe in 1572. In this x-ray image from the High Energy Astronomy Observatory (HEAO-2/Einstein Observatory produced by nearly a day of exposure time, the center region appears filled with emissions that can be resolved into patches or knots of material. However, no central pulsar or other collapsed object can be seen. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  20. NON-EQUIPARTITION OF ENERGY, MASSES OF NOVA EJECTA, AND TYPE Ia SUPERNOVAE

    SciTech Connect

    Shara, Michael M.; Yaron, Ofer; Prialnik, Dina; Kovetz, Attay

    2010-04-01

    The total masses ejected during classical nova (CN) eruptions are needed to answer two questions with broad astrophysical implications: can accreting white dwarfs be 'pushed over' the Chandrasekhar mass limit to yield type Ia supernovae? Are ultra-luminous red variables a new kind of astrophysical phenomenon, or merely extreme classical novae? We review the methods used to determine nova ejecta masses. Except for the unique case of BT Mon (nova 1939), all nova ejecta mass determinations depend on untested assumptions and multi-parameter modeling. The remarkably simple assumption of equipartition between kinetic and radiated energy (E {sub kin} and E {sub rad}, respectively) in nova ejecta has been invoked as a way around this conundrum for the ultra-luminous red variable in M31. The deduced mass is far larger than that produced by any CN model. Our nova eruption simulations show that radiation and kinetic energy in nova ejecta are very far from being in energy equipartition, with variations of 4 orders of magnitude in the ratio E {sub kin}/E {sub rad} being commonplace. The assumption of equipartition must not be used to deduce nova ejecta masses; any such 'determinations' can be overestimates by a factor of up to 10,000. We data-mined our extensive series of nova simulations to search for correlations that could yield nova ejecta masses. Remarkably, the mass ejected during a nova eruption is dependent only on (and is directly proportional to) E {sub rad}. If we measure the distance to an erupting nova and its bolometric light curve, then E {sub rad} and hence the mass ejected can be directly measured.

  1. Aspherical supernovae

    SciTech Connect

    Kasen, Daniel Nathan

    2004-05-21

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  2. Aspherical supernovae

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel Nathan

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must be undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new breakthroughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi- dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  3. Stellar Evolution/Supernova Research Data Archives from the SciDAC Computational Astrophysics Consortium

    DOE Data Explorer

    Woosley, Stan [University of California, Santa Cruz

    Theoretical high-energy astrophysics studies the most violent explosions in the universe - supernovae (the massive explosions of dying stars) and gamma ray bursts (mysterious blasts of intense radiation). The evolution of massive stars and their explosion as supernovae and/or gamma ray bursts describes how the "heavy" elements needed for life, such as oxygen and iron, are forged (nucleosynthesis) and ejected to later form new stars and planets. The Computational Astrophysics Consortium's project includes a Science Application Partnership on Adaptive Algorithms that develops software involved. The principal science topics are - in order of priority - 1) models for Type Ia supernovae, 2) radiation transport, spectrum formation, and nucleosynthesis in model supernovae of all types; 3) the observational implications of these results for experiments in which DOE has an interest, especially the Joint Dark Energy Mission, Supernova/Acceleration Probe (SNAP) satellite observatory, the Large Synoptic Survey Telescope (LSST), and ground based supernova searches; 4) core collapse supernovae; 5) gamma-ray bursts; 6) hypernovae from Population III stars; and 7) x-ray bursts. Models of these phenomena share a common need for nuclear reactions and radiation transport coupled to multi-dimensional fluid flow. The team has developed and used supernovae simulation codes to study Type 1A and core-collapse supernovae. (Taken from http://www.scidac.gov/physics/grb.html) The Stellar Evolution Data Archives contains more than 225 Pre-SN models that can be freely accessed.

  4. A new semi-analytical treatment of the effect of supernovae on ULIRG spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Jenner, Clare Elizabeth

    This work presents a method for generating synthetic spectra of Ultra-Luminous Infrared Galaxies (ULIRGS) using AGN, HII region and supernovae source functions. The AGN element represents the far-infrared contribution to the ULIRG spectrum from an energetic central engine. It is modelled using a quasar source embedded in an axi-symmetric dusty torus. The radiative transfer of flux (RT) is then simulated and the AGN emergent spectral energy distributions (SEDs) generated. The HII region solution is then developed. A stellar evolutionary synthesis code is used to generate instantaneous burst (ISB) source functions which decay in time. The evolution of the gas and dust density in a spherically-symmetric, dense GMC, under the influence of a time-dependent ionizing source flux, is derived. Having irradiated the dust distribution with the source cluster SED, the RT is calculated and the HII region SEDs obtained. The impact of supernovae energy on a GMC already ionized by stellar flux is then considered. Using the standard pressure-driven expansion model of e.g., Weaver et al. (1977) the radial evolution of a superbubble expanding under the influence of a continuous super novae energy function is derived. The superbubble is modelled in both an adiabatic rapid expansion phase and in an isothermal momentum-conserving phase. As the superbubble expands, upstream gas is swept into a thin shell trapped on its surface and the gas density enhancement is modelled using simple shock physics. Having generated expressions for the evolution of the shell gas temperature, it is linked to the dust density via a temperature dependent condensation factor. Finally expressions are developed to quantify the evolution of the optical depth along a line of sight. It is found that the star formation efficiency (SFE) has a profound effect on the radial evolution of the optical depth distributions in GMCs generating marked differences in behaviour between and high and low SFEs. Low SFE models have

  5. Supernova-driven interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Joung, M. K. Ryan

    To study how supernova feedback structures the turbulent interstellar medium, we construct 3D models of vertically stratified gas stirred by discrete supernova explosions, including vertical gravitational field and parametrized heating and cooling. The models reproduce many observed characteristics of the Galaxy such as global circulation of gas (i.e., galactic fountain) and the existence of cold dense clouds in the galactic disk. Global quantities of the model such as warm and hot gas filling factors in the midplane, mass fraction of thermally unstable gas, and the averaged vertical density profile are compared directly with existing observations, and shown to be broadly consistent. We find that energy injection occurs over a broad range of scales. There is no single effective driving scale, unlike the usual assumption for idealized models of incompressible turbulence. However, >90% of the total kinetic energy is contained in wavelengths shortward of 200 pc. The shape of the kinetic energy spectrum differs substantially from that of the velocity power spectrum, which implies that the velocity structure varies with the gas density. Velocity structure functions demonstrate that the phenomenological theory proposed by Boldyrev is applicable to the medium. We show that it can be misleading to predict physical properties such as the stellar initial mass junction based on numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. Supernova-driven turbulence inhibits star formation globally rather than triggering it. Feedback from massive stars is perhaps the least understood aspect of the current scenario of large-scale structure formation. Many recent observations on both galactic and cosmological scales require

  6. CHANG-ES - VI. Probing Supernova energy deposition in spiral galaxies through multiwavelength relationships

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Beck, Rainer; Dettmar, Ralf-Jürgen; Heald, George; Irwin, Judith; Johnson, Megan; Kepley, Amanda A.; Krause, Marita; Murphy, E. J.; Orlando, Elena; Rand, Richard J.; Strong, A. W.; Vargas, Carlos J.; Walterbos, Rene; Wang, Q. Daniel; Wiegert, Theresa

    2016-02-01

    How a galaxy regulates its supernovae (SNe) energy into different interstellar/circumgalactic medium components strongly affects galaxy evolution. Based on the JVLA D-configuration C- (6 GHz) and L-band (1.6 GHz) continuum observations, we perform statistical analysis comparing multiwavelength properties of the Continuum Haloes in Nearby Galaxies - an EVLA Survey galaxies. The high-quality JVLA data and edge-on orientation enable us for the first time to include the halo into the energy budget for a complete radio-flux-limited sample. We find tight correlations of Lradio with the mid-IR-based star formation rate (SFR). The normalization of our I1.6 GHz/W Hz-1-SFR relation is ˜2-3times of those obtained for face-on galaxies, probably a result of enhanced IR extinction at high inclination. We also find tight correlations between Lradio and the SNe energy injection rate dot{E}_SN(Ia+CC), indicating the energy loss via synchrotron radio continuum accounts for ˜1 of dot{E}_SN, comparable to the energy contained in cosmic ray electrons. The integrated C-to-L-band spectral index is α ˜ 0.5-1.1 for non-active galactic nucleus galaxies, indicating a dominance by the diffuse synchrotron component. The low-scatter Lradio-SFR/L_radio-dot{E}_{SN (Ia+CC)} relationships have superlinear logarithmic slopes at ˜2σ in L band (1.132 ± 0.067/1.175 ± 0.102) while consistent with linear in C band (1.057 ± 0.075/1.100 ± 0.123). The superlinearity could be naturally reproduced with non-calorimeter models for galaxy discs. Using Chandra halo X-ray measurements, we find sublinear LX-Lradio relations. These results indicate that the observed radio halo of a starburst galaxy is close to electron calorimeter, and a galaxy with higher SFR tends to distribute an increased fraction of SNe energy into radio emission (than X-ray).

  7. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  8. The energy and momentum input of supernova explosions in structured and ionized molecular clouds

    NASA Astrophysics Data System (ADS)

    Walch, Stefanie; Naab, Thorsten

    2015-08-01

    We investigate the early impact of single and binary supernova (SN) explosions on dense gas clouds with three-dimensional, high-resolution, hydrodynamic simulations. The effect of cloud structure, radiative cooling and ionizing radiation from the progenitor stars on the net input of kinetic energy, fkin = Ekin/ESN, thermal energy, ftherm = Etherm/ESN, and gas momentum, fP = P/PSN, to the interstellar medium (ISM) is tested. For clouds with bar{n} = 100cm^{-3}, the momentum generating Sedov and pressure-driven snowplough phases are terminated early (∝0.01 Myr) and radiative cooling limits the coupling to ftherm ˜ 0.01, fkin ˜ 0.05, and fP ˜ 9, significantly lower than for the case without cooling. For pre-ionized clouds, these numbers are only increased by ˜50 per cent, independent of the cloud structure. This only suffices to accelerate ˜5 per cent of the cloud to radial velocities ≳30 km s-1. A second SN might enhance the coupling efficiencies if delayed past the Sedov phase of the first explosion. Such very low coupling efficiencies cast doubts on many subresolution models for SN feedback, which are, in general, validated a posteriori. Ionizing radiation appears not to significantly enhance the coupling of SNe to the surrounding gas as it drives the ISM into inert dense shells and cold clumps, a process which is unresolved in galaxy-scale simulations. Our results indicate that the momentum input of SNe in ionized, structured clouds is larger (more than a factor of 10) than the corresponding momentum yield of the progenitor's stellar winds.

  9. Supernova Flashback

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    The Cassiopeia A supernova's first flash of radiation makes six clumps of dust (circled in annotated version) unusually hot. The supernova remnant is the large white ball in the center. This infrared picture was taken by NASA's Spitzer Space Telescope.

  10. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  11. The Most Luminous Supernovae

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  12. Optimizing New Dark Energy Experiments

    SciTech Connect

    Tyson, J. Anthony

    2013-08-26

    Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.

  13. Highlight on Supernova Early Warning at Daya Bay

    NASA Astrophysics Data System (ADS)

    Wei, Hanyu

    Providing an early warning of supernova burst neutrinos is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay Reactor Neutrino Experiment, with a unique feature of multiple liquid scintillator detectors, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By utilizing 8 Antineutrino Detectors (ADs) in the three different experimental halls which are about 1 km's apart from each other, we obtain a powerful and prompt rejection of muon spallation background than single-detector experiments with the same target volume. A dedicated trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals of all ADs via an inverse beta-decay (IBD) within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way. An 8-AD associated supernova trigger table has been established theoretically to tabulate the 8-AD event counts' coincidence vs. the trigger rate. As a result, a golden trigger threshold, i.e. with a false alarm rate < 1/3-months, can be set as low as 6 candidates among the 8 detectors, leading to a 100% detection probability for all 1987A type supernova bursts at the distance to the Milky Way center and a 96% detection probability to those at the edge of the Milky Way.

  14. Neutrinos in supernovae

    SciTech Connect

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  15. SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Challis, Peter J.; Friedman, Andrew S.; Chornock, Ryan; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Cenko, S. Bradley; Modjaz, Maryam; Silverman, Jeffrey M.; Wood-Vasey, W. Michael

    2009-08-15

    We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN 2008ha had a very low peak luminosity, reaching only M{sub V} = -14.2 mag, and low line velocities of only {approx}2000 km s{sup -1} near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN 2008ha is a member of the SN 2002cx-like class of SNe, a peculiar subclass of SNe Ia; however, SN 2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already {approx}2 mag fainter and has line velocities {approx}5000 km s{sup -1} smaller (near maximum brightness) than a normal SN Ia. SN 2008ha had a remarkably short rise time of only {approx}10 days, significantly shorter than either SN 2002cx-like objects ({approx}15 days) or normal SNe Ia ({approx}19.5 days). The bolometric light curve of SN 2008ha indicates that SN 2008ha peaked at L {sub peak} = (9.5 {+-} 1.4) x 10{sup 40} erg s{sup -1}, making SN 2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN 2008ha generated (3.0 {+-} 0.9) x 10{sup -3} M {sub sun} of {sup 56}Ni, had a kinetic energy of {approx}2 x 10{sup 48} erg, and ejected 0.15 M {sub sun} of material. The host galaxy of SN 2008ha has a luminosity, star formation rate, and metallicity similar to those of the Large magellanic Cloud. We classify three new (and one potential) members of the SN 2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN 2008ha; however, if a single model is to describe all SN 2002cx-like objects, deflagration of carbon-oxygen white dwarfs, with SN 2008ha being a partial deflagration and not unbinding the progenitor star, is

  16. Study of TeV shell supernova remnants at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Acero, F.; Lemoine-Goumard, M.; Renaud, M.; Ballet, J.; Hewitt, J. W.; Rousseau, R.; Tanaka, T.

    2015-08-01

    Context. The breakthrough developments of Cherenkov telescopes in the past decade have led to angular resolution of 0.1° and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE; E > 100 GeV) γ-rays. A number of those VHE SNRs exhibit a shell-type morphology that is spatially coincident with the shock front of the SNR. Aims: The members of this VHE shell SNR club are RX J1713.7-3946, RX J0852.0-4622, RCW 86, SN 1006, and HESS J1731-347. The last two objects have been poorly studied in high-energy (HE; 0.1 < E < 100 GeV) γ-rays and need to be investigated in order to draw the overall picture of this class of SNRs and to constrain the characteristics of the underlying population of accelerated particles. Methods: Using 6 years of Fermi-LAT P7 reprocessed data, we studied the GeV counterpart of the SNRs HESS J1731-347 and SN 1006. The two SNRs are not detected in the data set, and given that there is no hint of detection, we do not expect any detection in coming years from the SNRs. However in both cases, we derived upper limits that significantly constrain the γ-ray emission mechanism and can rule out a standard hadronic scenario with a confidence level >5σ. Results: With this Fermi analysis, we now have a complete view of the HE to VHE γ-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (Γ < 1.8), which suggests a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE γ-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance, all SNRs show a surprisingly similar γ-ray luminosity supporting the idea of a common emission mechanism. While the γ-ray emission is likely to be leptonic-dominated at the scale of the whole SNR, this does not rule out efficient hadron acceleration

  17. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  18. Searching for High-energy Neutrinos from Supernovae with IceCube and an Optical Follow-up Program

    NASA Astrophysics Data System (ADS)

    Franckowiak, Anna

    2011-08-01

    In violent astrophysical processes high-energy neutrinos of TeV to PeV energies are expected to be produced along with the highest energy cosmic rays. The acceleration of nuclei to very high energies is assumed to takes place in astrophysical shocks and neutrinos are produced in the interaction of these cosmic rays with ambient baryons or photons. The neutrinos then escape the acceleration region and propagate through space without interaction, while the nuclei are deflected in magnetic fields and no longer carry information about their source position. Unlike gamma-rays, neutrinos are solely produced in hadronic processes and can therefore reveal the sources of charged cosmic rays. The IceCube neutrino detector, which is located at the geographical South Pole, has been build to detect these high-energy astrophysical neutrinos. The deep clear Antarctic ice is instrumented with light sensors on a grid, thus forming a Cherenkov particle detector, which is capable of detecting charged particles induced by neutrinos above 100 GeV. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of = 100 s. While GRB neutrinos would be produced in the high relativistic jets driven by the central engine, corecollapse SNe might host soft-relativistic jets which become stalled in the outer layers of the progenitor star and lead to an efficient production of high-energy neutrinos. This work aims for an increased sensitivity for these neutrinos and for a possible identification of their sources. Towards this goal, a low-threshold optical follow-up program for neutrino multiplets detected with IceCube has been implemented. If a neutrino multiplet - i.e. two or more neutrinos from the same direction within 100 s - is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment (ROTSE). The 4 ROTSE telescopes immediately start an observation program of the

  19. Energy: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains simple experiments through which students can learn about the properties of energy. These experiments include making a kitchen "volcano," a soda-pop "cannon," and a puffed-rice "scooter." Topics include: energy and work, fossil fuels, solar energy, kinetic energy, potential energy, mechanical energy, heat energy, sound energy,…

  20. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves

    SciTech Connect

    Hicken, Malcolm; Wood-Vasey, W.Michael; Blondin, Stephane; Challis, Peter; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-06

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sub -0.068}{sup +0.066} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {Delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  1. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin E-mail: kirshner@cfa.harvard.edu

    2009-08-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sup +0.066} {sub -0.068} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  2. Weak interaction processes in supernovae: New probes using charge exchange reaction at intermediate energies

    NASA Astrophysics Data System (ADS)

    Frekers, Dieter

    2005-04-01

    Spin-isospin-flip excitations in nuclei at vanishing momentum transfer are generally referred to as Gamov-Teller (GT) transitions. They are being studied because the simplicity of the excitation makes them an ideal probe for testing nuclear structure models. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. GT transitions in the β- direction (also referred to as isospin lowering T< transitions) have extensively been studied through (p,n) and (3He,t) charge-exchange reactions [B.D. Anderson et al., Phys. Rev. C 36 (1987) 2195, B.D. Anderson et al., Phys. Rev. C 43 (1991) 50, J. Rapaport et al., Phys. Rev. C 24 (1981) 335, H. Akimune et al., Nucl. Phys. A 569 (1994) 245c, Y. Fujita et al., Phys. Lett. B 365 (1996) 29]. The generally good resolution allows easy extraction of the GT distribution and the total B(GT-) strength in the final nucleus. On the other hand, determination of B(GT+) strength through a charge-exchange reaction in the T> direction were mostly done with secondary neutron beams, and as such, they come with significant experimental difficulties. TRIUMF has pioneered this field in the late 80's and early 90's with a rich and highly successful (n,p) program using a several hundred MeV neutron beam from a 7Li(p,n)7Be reaction [R. Helmer, Can. J. Phys. 65 (1987) 588]. In this paper we present the (d,2He) reaction at intermediate energies as another and potentially even more powerful tool for charge-exchange reactions in the T>, resp. β+ direction. The key issue here will be the high resolution of order 100 keV, which provides new and sometimes unexpected insight into nuclear structure phenomena. This program has been launched at the AGOR Superconducting Cyclotron Facility at the KVI Groningen. By now, it covers a wide field of physics questions ranging from few-body physics, the structure of halo-nuclei, to questions pertaining

  3. Exact and approximate expressions of energy generation rates and their impact on the explosion properties of pair instability supernovae

    NASA Astrophysics Data System (ADS)

    Takahashi, Koh; Yoshida, Takashi; Umeda, Hideyuki; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2016-02-01

    Energetics of nuclear reaction is fundamentally important to understand the mechanism of pair instability supernovae (PISNe). Based on the hydrodynamic equations and thermodynamic relations, we derive exact expressions for energy conservation suitable to be solved in simulation. We also show that some formulae commonly used in the literature are obtained as approximations of the exact expressions. We simulate the evolution of very massive stars of ˜100-320 M⊙ with zero- and 1/10 Z⊙, and calculate further explosions as PISNe, applying each of the exact and approximate formulae. The calculations demonstrate that the explosion properties of PISN, such as the mass range, the 56Ni yield, and the explosion energy, are significantly affected by applying the different energy generation rates. We discuss how these results affect the estimate of the PISN detection rate, which depends on the theoretical predictions of such explosion properties.

  4. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  5. Thermal energy storage flight experiments

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1989-01-01

    Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.

  6. Dynamical Evolution and High-Energy Radiation of Mixed-Morphology Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Shimizu, Takafumi

    2014-03-01

    Evolution of a supernova remnant (SNR) without an active neutron star is basically described by probation of shock waves. The shock waves accelerate charged particles. The particles accelerated to GeV radiate synchrotron radio emission, which appears to be shelllike morphology. The shock waves heat matter up to keV, and heated-electrons ionize ions. Compared with a time-scale of shock-heating of electrons by the shock, a time-scale of ionization of ions by electron collisions in the shock down stream region is longer. Hence an ionization state of SNR plasma is thought to be under-ionized state in which the ionization temperature is lower than the electron temperature, or collisional ionization equilibrium state at late time. In fact, X-ray spectra of many SNRs are explained by such plasma state model. SNRs that exhibit shell-like morphology in thermal X-ray as well as radio are categorized into shell-like SNRs. In contrast to shell-like SNRs, some SNRs exhibit shell-like radio but center-filled thermal X-ray morphology. Such SNRs are categorized into mixed-morphology SNRs (MM SNRs). Many MM SNRs interact with molecular clouds, suggested by OH maser and near infrared observations, and hence are thought to be remnants of core-collapse supernova of massive stars. Interestingly, recombination radiation X-rays, which are evidence that X-ray emitting plasmas are over-ionized states in which the ionization temperature is higher than the electron temperature, are detected from six MM SNRs. The center-filled X-rays with recombination radiation can not be explained by a picture of shock-wave propagation that explains the X-rays of shell-like SNRs. As well as X-rays, MM SNRs are characteristic in γ-ray emission. Several MM SNRs and shell-like SNRs are detected in the GeV γ-ray band by Fermi. The 1 - 100 GeV γ-ray luminosities of MM SNRs are ˜ 1034-1036 erg s-1, which are systematically higher than those of shell-like SNRs of ˜ 1033-1035 erg s-1. Such high luminosities

  7. The dark energy survey Y1 supernova search: Survey strategy compared to forecasts and the photometric type Is SN volumetric rate

    NASA Astrophysics Data System (ADS)

    Fischer, John Arthur

    For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no

  8. The past, present and future supernova threat to Earth's biosphere

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    2011-12-01

    A brief review of the threat posed to Earth's biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ˜10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (˜2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth's biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall

  9. High-energy Emission from the Composite Supernova Remnant MSH 15-56

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Castro, Daniel; Plucinsky, Paul; Gelfand, Joseph; Dickel, John R.

    2013-01-01

    MSH 1556 (G326.3-1.8) is a composite supernova remnant (SNR) that consists of an SNR shell and a displaced pulsar wind nebula (PWN) in the radio. We present XMM-Newton and Chandra X-ray observations of the remnant that reveal a compact source at the tip of the radio PWN and complex structures that provide evidence for mixing of the supernova (SN) ejecta with PWN material following a reverse shock interaction. The X-ray spectra are well fitted by a non-thermal power-law model whose photon index steepens with distance from the presumed pulsar, and a thermal component with an average temperature of 0.55 keV. The enhanced abundances of silicon and sulfur in some regions, and the similar temperature and ionization timescale, suggest that much of the X-ray emission can be attributed to SN ejecta that have either been heated by the reverse shock or swept up by the PWN. We find one region with a lower temperature of 0.3 keV that appears to be in ionization equilibrium.Assuming the Sedov model, we derive a number of SNR properties, including an age of 16,500 yr. Modeling of the gamma-ray emission detected by Fermi shows that the emission may originate from the reverse shock-crushed PWN.

  10. Thermal energy management process experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  11. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  12. Supernova Host Galaxy Identification: Applications for the Dark Energy Survey and Future Surveys

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi; Kuhlmann, Stephen; Kovacs, Eve; Spinka, Harold; Goldstein, Daniel; Liotine, Camille; Pomian, Katarzyna; Kessler, Richard; D'Andrea, Christopher; Sullivan, Mark; Sako, Masao; Nichol, Robert; Papadopoulos, Andreas; Dark Energy Survey

    2016-01-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys, which will discover SNe by the thousands. Spectroscopic resources are very limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain redshifts which are then used for photometric classification of SNe. In addition, SN luminosities are known to correlate with host galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. Using both real and simulated galaxy catalog data, including information about galaxy position, shape, orientation, and redshifts, we develop and test methods for matching SNe to their host galaxies. We use an automated algorithm that is run on catalog data and assigns host galaxies to simulated SN positions. We present the results of this algorithm and demonstrate how including a machine learning component, run after the initial matching algorithm, boosts the accuracy of the matching.

  13. Low Mach Number Modeling of Type Ia Supernovae. II. EnergyEvolution

    SciTech Connect

    Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale,Mike

    2006-03-28

    The convective period leading up to a Type Ia supernova (SNIa) explosion is characterized by very low Mach number flows, requiringhydrodynamical methods well-suited to long-time integration. We continuethe development of the low Mach number equation set for stellar scaleflows by incorporating the effects of heat release due to externalsources. Low Mach number hydrodynamics equations with a time-dependentbackground state are derived, and a numerical method based on theapproximate projection formalism is presented. We demonstrate throughvalidation with a fully compressible hydrodynamics code that this lowMach number model accurately captures the expansion of the stellaratmosphere as well as the local dynamics due to external heat sources.This algorithm provides the basis for an efficient simulation tool forstudying the ignition of SNe Ia.

  14. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  15. Supernova Forensics

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  16. ENERGY PARTITION BETWEEN ENERGETIC ELECTRONS AND TURBULENT MAGNETIC FIELD IN SUPERNOVA REMNANT RX J1713.7-3946

    SciTech Connect

    Yang Chuyuan; Liu Siming E-mail: chyy@ynao.ac.cn

    2013-08-20

    Current observations of supernova remnant (SNR) RX J1713.7-3946 favor the leptonic scenario for the TeV emission, where the radio to X-ray emission is produced via the synchrotron process and the {gamma}-ray emission is produced via the inverse Comptonization of soft background photons, and the electron distribution can be inferred from the observed {gamma}-ray spectrum with a spectral inversion method. It is shown that the observed correlation between the X-ray and {gamma}-ray brightness of SNR RX J1713.7-3946 can be readily explained with the assumption that the energy density of energetic electrons is proportional to that of the magnetic field in such a scenario. A two-dimensional magnetohydrodynamic simulation is then carried out to model the overall emission spectrum. It is found that the total energy of electrons above {approx}1 GeV is equal to that of the magnetic field. This is the first piece of observational evidence for energy equipartition between energetic electrons and magnetic field in the downstream of strong collisionless astrophysical shocks of SNRs.

  17. Quark-novae Occurring in Massive Binaries : A Universal Energy Source in Superluminous Supernovae with Double-peaked Light Curves

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico

    2016-02-01

    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq (http://www.quarknova.ca/LCGallery.html). In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 1052 erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (i.e., second) CE and the previously ejected H-rich (i.e., first) CE.

  18. Neutrino energy loss rates and positron capture rates on {sup 55}Co for presupernova and supernova physics

    SciTech Connect

    Nabi, Jameel-Un; Sajjad, Muhammad

    2008-05-15

    Proton-neutron quasiparticle random phase approximation (pn-QRPA) theory has recently been used for the calculation of stellar weak interaction rates of the fp-shell nuclide with success. Neutrino losses from protoneutron stars play a pivotal role in deciding if these stars would be crushed into black holes or explode as supernovas. The product of abundance and positron capture rates on {sup 55}Co is substantial and as such can play a role in the fine tuning of input parameters of simulation codes especially in the presupernova evolution. Recently we introduced our calculation of capture rates on {sup 55}Co, in a luxurious model space of 7({Dirac_h}/2{pi}) {omega}, employing the pn-QRPA theory with a separable interaction. Simulators, however, may require these rates on a fine scale. Here we present for the first time an expanded calculation of the neutrino energy loss rates and positron capture rates on {sup 55}Co on an extensive temperature-density scale. This type of scale is appropriate for interpolation purposes and of greater utility for simulation codes. The pn-QRPA calculated neutrino energy loss rates are enhanced roughly up to two orders of magnitude compared with the large-scale shell model calculations and favor a lower entropy for the core of massive stars.

  19. How Bright Can Supernovae Get?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  20. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  1. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  2. Galaxy Outflows Without Supernovae

    NASA Astrophysics Data System (ADS)

    Sur, Sharanya; Scannapieco, Evan; Ostriker, Eve C.

    2016-02-01

    High surface density, rapidly star-forming galaxies are observed to have ≈50-100 km s-1 line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s-1, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M⊙ yr-1 kpc-2. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  3. Finding Distances to Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  4. Experiences in mainstreaming alternative energy

    SciTech Connect

    Cabraal, A.

    1997-12-01

    The author discusses efforts by the Asia Alternative Energy Unit (ASTAE) of the World Bank in supporting alternative energy source projects in Asia. Energy growth rates have been as high as 18% per year, with power capacity doubling each decade in the 1960`s, 70`s and 80`s. Much of this has come from fossil fuel projects coupled with major hydroelectric projects. One consequence is developing air pollution loads originating in Asia. ASTAE has been supporting pilot programs in applying alternative energy sources. The goal has been to mainstream renewable energy sources in World Bank operations, by working with managers from different countries to: include renewable energy in country assistance strategies and sectorial development plans; provide assistance to renewable energy initiatives; expand initiatives to new countries, sectors and technologies.

  5. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    SciTech Connect

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo InterAmerican Obs. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /UC, Berkeley, Astron. Dept. /NOAO, Tucson /Inst. Astron., Honolulu /Res. Sch. Astron. Astrophys., Weston Creek /Washington U., Seattle, Astron. Dept. /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Stockholm U.

    2007-01-08

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  6. Thermal Energy Storage Flight Experiment in Microgravity

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  7. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fischer, V.; Chirac, T.; Lasserre, T.; Volpe, C.; Cribier, M.; Durero, M.; Gaffiot, J.; Houdy, T.; Letourneau, A.; Mention, G.; Pequignot, M.; Sibille, V.; Vivier, M.

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.

  8. GENERATION OF HIGH-ENERGY PHOTONS AT ULTRA-RELATIVISTIC SHOCK BREAKOUT IN SUPERNOVAE

    SciTech Connect

    Ohtani, Yukari; Suzuki, Akihiro; Shigeyama, Toshikazu

    2013-11-10

    We present theoretical expectations for non-thermal emission due to the bulk Comptonization at the ultra-relativistic shock breakout. We calculate the transfer of photons emitted from the shocked matter with a Monte Carlo code fully taking into account special relativity. As a hydrodynamical model, we use the self-similar solution of Nakayama and Shigeyama. Our calculations reveal that the spectral shape exhibits a double peak or a single peak depending on the shock temperature at breakout; if it is significantly smaller than the rest energy of an electron, the spectrum has a double peak. We also include a few sample light curves, and estimate the total radiation energy. In comparison with observations of γ-ray bursts, a part of the higher energy component in the spectra and the total energy can be reproduced by some parameter sets. Meanwhile, the lower energy counterpart in the Band function is not reproduced by our results and the duration seems too short to represent an entire γ-ray burst. Therefore the subsequent phase will constitute the lower energy part of the spectrum.

  9. Supernova explosions in the Universe.

    PubMed

    Burrows, A

    2000-02-17

    During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (approximately 10(51), or approximately 2.5 x 10(28) megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the gamma-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics. PMID:10693794

  10. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  11. Supernova Explosion Physics

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    Quite likely, all supernovae are core-collapse supernovae. When the progenitor star's burnt-out core contracts under its own gravity - on the time scale of seconds - angular-momentum conservation raises its spin energy as 1/r 2, towards some 1052.5erg, whilst neutron-degeneracy pressure halts the collapse at a neutron star's radius, some 106cm. Magnetic-flux winding will then tap the core's large spin energy - on the time scale of ≲ 30s - bringing the spin period P into the range of neutron-star birth periods - ms < P < 10 s - and transferring the excess angular momentum to the overlying mantle. Subsequent reconnection of the huge toroidal magnetic fields creates a magnetized relativistic cavity, both leptons and hadrons, with particle energies up to 1020eV, ready to launch the envelope (via adiabatic expansion, through some 107 in radius). Magnetic Rayleigh-Taylor instabilities tear and squeeze the ejected shell into a large number (> 104) of filamentary fragments, like a splinter bomb.

  12. Observation of two new L4 Neptune Trojans in the Dark Energy Survey supernova fields

    DOE PAGESBeta

    Gerdes, D. W.

    2016-01-28

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-termmore » dynamical stability and physical properties.« less

  13. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  14. Classification of 14 DES supernovae by Magellan

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Gonzalez-Gaitan, S.; Smith, M.; ForsterÂ, F.; Hamuy, M.; Prieto, Jose Luis; Sullivan, M.; NicholÂ, R.; Sako, M.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Wolf, R. C.

    2016-02-01

    We report optical spectroscopy of 14 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (425-1050nm) were obtained using LDSS3 on the 6.5m Clay telescope at the Las Campinas Observatory.

  15. Classification of 17 DES supernovae by SALT

    NASA Astrophysics Data System (ADS)

    Kasai, E.; Bassett, B.; Crawford, S.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.

    2016-02-01

    We report optical spectroscopy of 17 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (380-820nm) were obtained using the Robert Stobie Spectrograph (RSS) on the South African Large Telescope (SALT).

  16. Classification of 5 DES supernovae by Magellan

    NASA Astrophysics Data System (ADS)

    Lasker, J.; Kessler, R.; Scolnic, D.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.

    2016-03-01

    We report optical spectroscopy of 5 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (580-1050nm) were obtained using LDSS-3C on the 6.5m Clay telescope at the Las Campanas Observatory.

  17. SALT Classification of DES Supernova Candidates

    NASA Astrophysics Data System (ADS)

    Kasai, E.; Bassett, B.; Crawford, S.; Smith, M.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Scolnic, D.; Covarrubias, R. A.; Brout, D. J.; Fischer, J. A.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; D'Andrea, C.; Nichol, R.; Papadopoulos, A.; Sullivan, M.; Maartens, R.

    2015-02-01

    We report optical spectroscopy of a supernova candidates discovered by the Dark Energy Survey. The spectra (400-850 nm) were obtained using the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT).

  18. Systematic Effects in Type-1a Supernovae Surveys from Host Galaxy Spectra

    SciTech Connect

    Strauss, Michael A.

    2013-08-23

    The physical relation between the properties of Type Ia supernovae and their host galaxies is investigated. Such supernovae are used to constrain the properties of dark energy, making it crucial to understand their physical properties and to check for systematic effects relating to the stellar populations of the progenitor stars from which these supernovae arose. This grant found strong evidence for two distinct populations of supernovae, and correlations between the progenitor stellar populations and the nature of the supernova light curves.

  19. Probing Dark Energy via Weak Gravitational Lensing with the Supernova Acceleration Probe (SNAP)

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    SNAP is a candidate for the Joint Dark Energy Mission (JDEM) that seeks to place constraints on the dark energy using two distinct methods. The first, Type Ia SN, is discussed in a separate white paper. The second method is weak gravitational lensing, which relies on the coherent distortions in the shapes of background galaxies by foreground mass structures. The excellent spatial resolution and photometric accuracy afforded by a 2-meter space-based observatory are crucial for achieving the high surface density of resolved galaxies, the tight control of systematic errors in the telescope's Point Spread Function (PSF), and the exquisite redshift accuracy and depth required by this project. These are achieved by the elimination of atmospheric distortion and much of the thermal and gravity loads on the telescope. The SN and WL methods for probing dark energy are highly complementary and the error contours from the two methods are largely orthogonal. The nominal SNAP weak lensing survey covers 1000 square degrees per year of operation in six optical and three near infrared filters (NIR) spanning the range 350 nm to 1.7 {micro}m. This survey will reach a depth of 26.6 AB magnitude in each of the nine filters and allow for approximately 100 resolved galaxies per square arcminute, {approx} 3 times that available from the best ground-based surveys. Photometric redshifts will be measured with statistical accuracy that enables scientific applications for even the faint, high redshift end of the sample. Ongoing work aims to meet the requirements on systematics in galaxy shape measurement, photometric redshift biases, and theoretical predictions.

  20. Solar Energy Experiment for Beginning Chemistry.

    ERIC Educational Resources Information Center

    Davis, Clyde E.

    1983-01-01

    Describes an experiment illustrating how such chemical concepts as light absorption, thermodynamics, and solid-state photovoltaics can be incorporated into solar energy education. Completed in a three-hour period, the experiment requires about two hours for data collections with the remaining hour devoted to calculations and comparison of results.…

  1. Experiments in intermediate energy physics

    SciTech Connect

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  2. HST Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Suzuki, Nao; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.; Brodwin, M.; Connolly, N.; Dawson, K.; de Jong, R.; Dey, A.; Doi, M.; Donahue, M.; Eisenhardt, P.; Ellingson, E.; Faccioli, L.; Fadeyev, V.; Fakhouri, H.; Fruchter, A.; Gilbank, D.; Gladders, M.; Goldhaber, G.; Gonzalez, A.; Goobar, A.; Gude, A.; Hennawi, J.; Hoekstra, H.; Hsiao, E.; Huang, X.; Ihara, Y.; Jannuzi, B.; Jee, M. J.; Koester, B.; Kowalski, M.; Lidman, C.; Linder, E.; Lubin, L.; Morokuma, T.; Perlmutter, S.; Postman, M.; Rhodes, J.; Rosati, P.; Ripoche, P.; Rubin, D.; Schlegel, D.; Spadafora, A.; Stanford, A.; Stern, D.; Yasuda, N.; Yee, H.; Cosmology Project, Supernova

    2010-01-01

    We report results from the Hubble Space Telescope (HST) Cluster Supernova Survey with the Advanced Camera for Surveys (ACS) (PI: Perlmutter; see Dawson et al. AJ, 2009). We have introduced a novel approach to discover and follow Type Ia supernovae (SNeIa). With HST, we monitored 25 massive clusters (0.9 < z < 1.4) found by the RCS, XMM, IRAC, and RDCS surveys and conducted spectroscopic observations with the Keck, Subaru, and VLT telescopes. Sixteen SNe were discovered at 0.95 < z < 1.41, nine of which were in galaxy clusters (for a discussion of the rates, see K. Barbary, oral presentation at this meeting). The SNe in galaxy clusters are found primarily in early type galaxies in the cluster red-sequence that have been shown to be nearly dust-free and uniform populations (see poster presentation by Meyers et al.). The reduction and control of systematic error is an urgent task for the study of dark energy today (see Rubin et al. poster presentation), and we discuss how this unique SNe Ia data set reduces both statistical and more importantly systematic uncertainty at the highest redshifts. This work has been supported by the Office of Science, U.S. Department of Energy, through contract DE-AC02-05CH11231 and in part by NASA through grants associated with HST-GO-10496.

  3. Supernova real-time monitor system in Kamiokande

    NASA Astrophysics Data System (ADS)

    Oyama, Y.; Yamada, M.; Ishida, T.; Yamaguchi, T.; Yokoyama, H.

    1994-03-01

    A data-analysis program to discover possible supernova neutrino bursts has been installed in the online data-acquisition computer of the Kamiokande experiment. The program automatically analyzes data within 20 min and gives an alarm to collaborators if a possible supernova neutrino burst is found. The detection efficiency of the program is 96% for a typical supernova located 50 kpc from Earth. After a careful analysis by the Kamiokande collaborators, it will be possible to inform all optical observatories in the world about the occurrence of a supernova within 3 h from the time of first detecting the neutrino burst. Information concerning the celestial position of a supernova will also be available for supernovae having a distance less than ~ 10 kpc. This information will be helpful for observing the first optical emissions from the newly born supernova. Present address: Telecommunications Software Headquarters, Nippon Telegram and Telephone Corporation (NTT), Tokyo 160, Japan.

  4. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  5. Spectroscopic needs for imaging dark energy experiments

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Réza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco Kind, Matias; Cervantes-Cota, Jorge L.; Cheu, Elliott; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cunha, Carlos E.; de la Macorra, Axel; Dell'Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezić, Željko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Ménard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Myers, Adam D.; Papovich, Casey; Peacock, John A.; Park, Changbom; Rahman, Mubdi; Rhodes, Jason; Ricol, Jean-Stephane; Sadeh, Iftach; Slozar, Anže; Schmidt, Samuel J.; Stern, Daniel K.; Anthony Tyson, J.; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, Andrew R.

    2015-03-01

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments.

  6. Cosmology with superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.

    2016-02-01

    We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.

  7. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general. PMID:23630379

  8. Neutrino Physics in Supernovae

    NASA Astrophysics Data System (ADS)

    Dineva, Tamara Simeonova

    1997-11-01

    The models of exploding stars-supernovae-do not explode. This dissertation investigates the transfer of energy from the interior to the outer layers in such stars to try to understand what is missing in these models that would solve the supernova problem. Hydrodynamic instabilities and aspects in the microphysics of the neutrino transport in postcollapsed stellar matter are considered. In Chapter II we derive criteria for the presence of doubly diffusive instabilities believed to be essential for producing a supernova explosion. Contrary to the widely accepted view, we find that the core, if unstable, is unstable to semiconvection, rather than to neutron fingers. A critical value for the lepton fraction, Yl, is found for a given density and entropy, below which the stellar core is completely stable to instabilities. A considerable fraction of the stellar core is found to lie below the critical Yl. As the core evolves this fraction quickly encompasses the entire core. Thus doubly diffusive instabilities of any kind are unlikely to play a role in the supernova explosion mechanism. A strong magnetic field may modify the neutrino-nucleon absorption rates which are critical for shock reheating. In Chapter III we derive the cross section of neutrino absorption on neutrons in the presence of a strong magnetic field. We calculate values for the neutrino inverse mean free path and numerically compare them to the values in the non magnetic case. We find that they exhibit an oscillatory behavior, with huge peaks present due to discontinuities in the density of state. We conclude that the presence of a strong magnetic field does not yield a dramatic reduction in the inverse mean free paths which would be necessary to substantially increase the neutrino luminosity and revive the shock. Neutrino-neutrino scattering in the vicinity of the neutrino sphere may modify the neutrino luminosities and therefore affect shock reheating. In the last Chapter we calculate the neutrino

  9. Methodology of the joint search for Gravitational Wave and Low Energy Neutrino signals from Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Casentini, Claudio

    2016-05-01

    Core-Collapse Supernovae (CCSNe) have a neutrino (v) signature confirmed by SN 1987A and are potential sources of Gravitational Waves (GWs). vs and GWs coming from these sources will reach the observer almost simultaneously and without significant interaction with interstellar matter. The expected GW signals are in the range of the upcoming advanced detectors for galactic neighborhood events. However, there are still significant uncertainties on the theoretical model of the emission. A joint search of coincident vs and GWs from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent Supernovae. Recently, a project for a joint search involving GW interferometers and v detectors has started. In this paper we discuss about the principal GW theoretical models of emission, and we present a methodological study of the joint search project between GW and v.

  10. Gravitational wave triggered searches for failed supernovae

    NASA Astrophysics Data System (ADS)

    Annis, James; Dark Energy Survey Collaboration

    2016-03-01

    Stellar core collapses occur to all stars of sufficiently high mass and often result in supernovae. A small fraction of supergiant stars, however, are thought to collapse directly into black holes without producing supernovae. A survey of such ``failed'' supernovae would require monitoring millions of supergiants for several years. That is very challenging even for current surveys. With the start of the Advanced LIGO science run, we investigate the possibility of detecting failed supernovae by looking for missing supergiants associated with gravitational wave triggers. We use the Dark Energy Camera (DECam). Our project is a joint effort between the community and the Dark Energy Survey (DES) collaboration. In this talk we report on our ongoing efforts and discuss prospects for future searches.

  11. Multidimensional Simulations of Magnetar Powered Supernovae

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2016-03-01

    Magnetars are neutron stars with unusually strong magnetic fields, typically greater than 1E13 Gauss (G). Observational evidence suggests that magnetars form in a significant fraction of supernovae. Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies also shown the existence of an instability arising from the piling up of radiatively accelerated matter in a dense, thin shell deep inside the supernova. Here, we examine the problem in two dimensions and find that this shell fragments into a filamenary structure that facilitates mixing. The degree of the mixing depends on the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered. We acknowledge the support of EACOA Fellowship from the East Asian Core Observatories Association.

  12. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  13. TeraScale Supernova Initiative

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; TeraScale Supernova Initiative Collaboration

    2002-05-01

    The TeraScale Supernova Initiative is a national collaboration centered at the Oak Ridge National Laboratory and involves eight universities. TSI has as its central focus to ascertain the explosion mechanism(s) for core collapse supernovae and to understand and predict their associated phenomenology, including neutrino signatures, gravitational radiation emission, and nucleosynthesis. TSI is an interdisciplinary effort of astrophysicists, nuclear physicists, applied mathematicians, and computer scientists. Multidimensional hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics simulations that implement state of the art nuclear and weak interaction physics are planned in order to understand the roles of neutrino transport, stellar convection and rotation, and magnetic fields in the supernova mechanism. Scalable algorithms for the solution of the large sparse linear systems of equations that arise in radiation transport applications and a customized collaborative visualization environment will be developed also. TSI's latest results and future efforts will be discussed. The TeraScale Supernova Initiative is funded by grants from the DoE (1) High Energy and Nuclear Physics and (2) Mathematics, Information, and Computational Sciences SciDAC Programs.

  14. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  15. High explosive simulations of supernovae and the supernova shell fragmentation model of solar system formation

    SciTech Connect

    Brown, W.K.

    1987-09-01

    Comparison of photographs of explosive experiments to the Casseopeia A supernova remnant reveals a striking similarity. The similarity could indicate the presence of a relatively cool, underlying shell in the Casseopeia A remnant. As this shell expands and fragments, the observable features are produced by hot gases squirting through the cracks - as in explosive experiments. The existence of such underlying shells in supernova remnants supports the author's model of solar system formation.

  16. Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment

    SciTech Connect

    Fryer, Chris L. Even, Wesley; Grefenstette, Brian W.; Wong, Tsing-Wai

    2014-04-15

    Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10 MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

  17. Color transparency experiments at higher energies

    SciTech Connect

    Filippone, B.W.

    1994-04-01

    The phenomena of Color Transparency has recently attracted a significant amount of theoretical (and experimental) interest. With an increase in the CEBAF beam energy to 8 - 10 GeV, important new data on the process could become available. The present status of the experiments and future prospects at CEBAF are discussed.

  18. A Simple and Inexpensive Solar Energy Experiment.

    ERIC Educational Resources Information Center

    Evans, J. H.; Pedersen, L. G.

    1979-01-01

    An experiment is presented which utilizes the current solid state technology to demonstrate electrochemical generation of hydrogen gas, direct generation of electricity for pumping water, and energy conversion efficiency. The experimental module costs about $100 and can be used repeatedly. (BB)

  19. Observations of High Energy Cosmic Ray Electrons by the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Chang, J.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2009-01-01

    Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.

  20. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  1. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  2. The Union3 Supernova Ia Compilation

    NASA Astrophysics Data System (ADS)

    Rubin, David; Aldering, Greg Scott; Amanullah, Rahman; Barbary, Kyle H.; Bruce, Adam; Chappell, Greta; Currie, Miles; Dawson, Kyle S.; Deustua, Susana E.; Doi, Mamoru; Fakhouri, Hannah; Fruchter, Andrew S.; Gibbons, Rachel A.; Goobar, Ariel; Hsiao, Eric; Huang, Xiaosheng; Ihara, Yutaka; Kim, Alex G.; Knop, Robert A.; Kowalski, Marek; Krechmer, Evan; Lidman, Chris; Linder, Eric; Meyers, Joshua; Morokuma, Tomoki; Nordin, Jakob; Perlmutter, Saul; Ripoche, Pascal; Ruiz-Lapuente, Pilar; Rykoff, Eli S.; Saunders, Clare; Spadafora, Anthony L.; Suzuki, Nao; Takanashi, Naohiro; Yasuda, Naoki; Supernova Cosmology Project

    2016-01-01

    High-redshift supernovae observed with the Hubble Space Telescope (HST) are crucial for constraining any time variation in dark energy. In a forthcoming paper (Rubin+, in prep), we will present a cosmological analysis incorporating existing supernovae with improved calibrations, and new HST-observed supernovae (six above z=1). We combine these data with current literature data, and fit them using SALT2-4 to create the Union3 Supernova compilation. We build on the Unified Inference for Type Ia cosmologY (UNITY) framework (Rubin+ 2015b), incorporating non-linear light-curve width and color relations, a model for unexplained dispersion, an outlier model, and a redshift-dependent host-mass correction.

  3. SN 1054: A pulsar-powered supernova?

    NASA Astrophysics Data System (ADS)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  4. Diffuse supernova neutrinos at underground laboratories

    NASA Astrophysics Data System (ADS)

    Lunardini, Cecilia

    2016-06-01

    I review the physics of the Diffuse Supernova Neutrino flux (or Background, DSNB), in the context of future searches at the next generation of neutrino observatories. The theory of the DSNB is discussed in its fundamental elements, namely the cosmological rate of supernovae, neutrino production inside a core collapse supernova, redshift, and flavor oscillation effects. The current upper limits are also reviewed, and results are shown for the rates and energy distributions of the events expected at future liquid argon and liquid scintillator detectors of O(10) kt mass, and water Cherenkov detectors up to a 0.5 Mt mass. Perspectives are given on the significance of future observations of the DSNB, both at the discovery and precision phases, for the investigation of the physics of supernovae and of the properties of the neutrino.

  5. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  6. Atomic and molecular supernovae

    SciTech Connect

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  7. Overview of the nearby supernova factory

    SciTech Connect

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-07-29

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 {angstrom} for roughly 300 Type Ia supernovae at the low-redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and follow-up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based follow-up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of follow-up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager.

  8. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  9. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    SciTech Connect

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  10. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    SciTech Connect

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{sup 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average

  11. The search for gamma radiation from supernova 1987A in an experiment aboard the Salut-7/Cosmos-1686 complex

    NASA Astrophysics Data System (ADS)

    Bachilova, R. N.; Bloch, G. M.; Pankov, V. M.; Prohin, V. L.; Rutkovsky, A. I.; Rumin, S. P.

    1988-07-01

    Gamma-quanta flux measurements were carried out during February-October 1987 in a search for radiation from SN 1987A. The time dependence of the mean monthly gamma-quanta flux measured with the Nega telescope at an altitude of 500 km in the equatorial region is analyzed. The upper limit of the gamma-quanta flux is determined to be 1.5 x 10 to the -6th/sq cm s keV on the 3-sigma level for the 1.5-4.4 MeV energy interval.

  12. Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova; Reporting Period 5/1/06-4/30/07

    SciTech Connect

    Glimm, James

    2007-05-23

    The three year plan for this project is to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (both Direct Numerical Simulation and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We will model 2D and 3D perturbations of planar interfaces. We will compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we will develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. We will conduct analytic studies of mix, in support of these objectives. Advanced issues, including multiple layers and reshock, will be considered.

  13. Investigating dark energy experiments with principal components

    SciTech Connect

    Crittenden, Robert G.; Zhao, Gong-Bo; Pogosian, Levon E-mail: levon@sfu.ca

    2009-12-01

    We use a principal component approach to contrast different kinds of probes of dark energy, and to emphasize how an array of probes can work together to constrain an arbitrary equation of state history w(z). We pay particular attention to the role of the priors in assessing the information content of experiments and propose using an explicit prior on the degree of smoothness of w(z) that is independent of the binning scheme. We also show how a figure of merit based on the mean squared error probes the number of new modes constrained by a data set, and use it to examine how informative various experiments will be in constraining the evolution of dark energy.

  14. Historical Supernova Explosions in Our Galaxy and Their Remnants

    NASA Astrophysics Data System (ADS)

    Green, David A.

    Supernova explosions mark the end points of stellar evolution, releasing large amounts of material and energy into the interstellar medium. In our Galaxy the expected rate of supernovae is about 1 in every 50 years or so, although it is only the relatively nearby ones that are expected to be visible optically, due to obscuration. Over the last two thousand years or so there are historical records of nine Galactic supernovae. The majority of these records are from East Asia (i.e. China, Japan and Korea), although the most recent historical supernovae have European records, and there are a variety of Arabic records also available for some events. Here I review these records of the historical supernovae, and the modern observations of the supernova remnants that they have produced.

  15. Laser Experiments for High Energy Density Science

    SciTech Connect

    Kumar, G. Ravindra

    2010-11-23

    High energy density science probes some of the most basic scientific questions that cut across traditional disciplines. The advent of table top, terawatt, femtosecond lasers promises to revolutionize this area by the use of precise experimental techniques on the one hand and testing of models and computer simulations on the other. In this paper, we present some of our results on hot electron generation, giant magnetic fields and ultrafast plasma dynamics using such experiments and theoretical modeling.

  16. The spectacular evolution of Supernova 1996al over 15 yr: a low-energy explosion of a stripped massive star in a highly structured environment

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Chugai, N. N.; Utrobin, V. P.; Cappellaro, E.; Patat, F.; Pastorello, A.; Turatto, M.; Cupani, G.; Neuhäuser, R.; Caldwell, N.; Pignata, G.; Tomasella, L.

    2016-03-01

    Spectrophotometry of SN 1996al carried out throughout 15 yr is presented. The early photometry suggests that SN 1996al is a linear Type II supernova, with an absolute peak of MV ˜ -18.2 mag. Early spectra present broad asymmetric Balmer emissions, with superimposed narrow lines with P-Cygni profile, and He I features with asymmetric broad emission components. The analysis of the line profiles shows that the H and He broad components form in the same region of the ejecta. By day +142, the Hα profile dramatically changes: the narrow P-Cygni profile disappears, and the Hα is fitted by three emission components that will be detected over the remaining 15 yr of the supernova (SN) monitoring campaign. Instead, the He I emissions become progressively narrower and symmetric. A sudden increase in flux of all He I lines is observed between 300 and 600 d. Models show that the SN luminosity is sustained by the interaction of low-mass (˜1.15 M⊙) ejecta, expelled in a low kinetic energy (˜1.6 × 1050 erg) explosion, with highly asymmetric circumstellar medium. The detection of Hα emission in pre-explosion archive images suggests that the progenitor was most likely a massive star (˜25 M⊙ ZAMS) that had lost a large fraction of its hydrogen envelope before explosion, and was hence embedded in a H-rich cocoon. The low-mass ejecta and modest kinetic energy of the explosion are explained with massive fallback of material into the compact remnant, a 7-8-M⊙ black hole.

  17. Degeneracy effects of neutrino mass ejection in supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.

    1974-01-01

    A neutrino mechanism is discussed in order to explain supernovae in massive stars. An argument is presented for supernova mass ejection through leptonic neutrino transport characteristics suppressed by the arbitrary zero chemical potential condition. Results show that lepton conservation effects may be important in supernova neutrino transport. At low temperature and density the diffusion approximation becomes less precise because of the long mean free paths of low energy neutrinos. The amount of equilibrium neutrino spectrum affected here is small over most of the collapsing supernova structure.

  18. Low Energy Antiproton Experiments - A Review

    SciTech Connect

    Jungmann, Klaus P.

    2005-10-19

    Low energy antiprotons offer excellent opportunities to study properties of fundamental forces and symmetries in nature. Experiments with them can contribute substantially to deepen our fundamental knowledge in atomic, nuclear and particle physics. Searches for new interactions can be carried out by studying discrete symmetries. Known interactions can be tested precisely and fundamental constants can be extracted from accurate measurements on free antiprotons (p-bar's) and bound two- and three-body systems such as antihydrogen (H-bar = p-bare-), the antprotonic helium ion (He++p-bar)+ and the antiprotonic atomcule (He++p-bare-) . The trapping of a single p-bar in a Penning trap, the formation and precise studies of antiprotonic helium ions and atoms and recently the production of H-bar have been among the pioneering experiments. They have led already to precise values for p-bar parameters, accurate tests of bound two- and three-body Quantum Electrodynamics (QED), tests of the CPT theorem and a better understanding of atom formation from their constituents. Future experiments promise more precise tests of the standard theory and have a robust potential to discover new physics. Precision experiments with low energy p-bar's share the need for intense particle sources and the need for time to develop novel instrumentation with all other experiments, which aim for high precision in exotic fundamental systems. The experimental programs - carried out in the past mostly at the former LEAR facility and at present at the AD facility at CERN - would benefit from intense future sources of low energy p-bar's. The highest possible p-bar fluxes should be aimed for at new facilities such as the planned FLAIR facility at GSI in order to maximize the potential of delicate precision experiments to influence model building. Examples of key p-bar experiments are discussed here and compared with other experiments in the field. Among the central issues is their potential to obtain

  19. Can we explain AMS-02 antiproton and positron excesses simultaneously by nearby supernovae without pulsars or dark matter?

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Ioka, Kunihito; Fujita, Yutaka; Yamazaki, Ryo

    2016-02-01

    We explain the excess of the antiproton fraction recently reported by the AMS-02 experiment by considering collisions between cosmic-ray protons accelerated by a local supernova remnant and the surrounding dense cloud. The same "pp collisions" provide the right ratio of daughter particles to fit the observed positron excess simultaneously in the natural model parameters. The supernova happened in relatively lower metallicity than the major cosmic-ray sources. The cutoff energy of electrons marks the supernova age of {˜ }105 years, while the antiproton excess may extend to higher energy. Both antiproton and positron fluxes are completely consistent with our predictions in an earlier paper [Y. Fujita et al., Phys. Rev. D 80, 063003 (2009) [arXiv:0903.5298 [astro-ph.HE

  20. Supernovae and Their Diversity

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter M.

    2013-06-01

    The number of supernovae discovered annually has exploded and this has led to a growing diversity in observed supernova luminosities and properties. Stripped core-collapse supernovae show a range of expansion velocities with the broad-line events associated to gamma-ray bursts. Several types of extremely luminous supernovae have been identified in the past five years. Some may result from a pair-production instability in very massive stars while others appear to come from less massive progenitors and have an uncertain power source. Thermonuclear (type Ia) events are often thought of as uniform in their properties and that is what makes them good distance indicators. But type Ia supernovae are diverse in subtle and not so subtle ways that may reveal the nature of their explosion mechanism and progenitors. Wider, deeper time-domain sky surveys such as DES and LSST are likely to find even more variety in stellar explosions.

  1. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  2. Cosmic gamma-ray background from type Ia supernovae reexamined: Evidence for missing gamma rays at MeV energy

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin; Komatsu, Eiichiro; Höflich, Peter

    2005-06-01

    The observed cosmic γ-ray background at ˜MeV has often been attributed to Type Ia supernovae (SNIa). Since SNIa is close to a standard candle, one can calculate the γ-ray intensity of SNIa integrated over redshifts fairly accurately, once the evolution of the SNIa rate is known. The latest SNIa rate measured at z≲1.6 [Dahlen et al., Astrophys. J., ASJOAB, 0004-637X 613, 189 (2004), 10.1086/422899] indicates that the previous calculations of the γ-ray background consistently overestimated the SNIa rate. With the new rate, we find that the SNIa contribution is an order of magnitude smaller than observed, and thus new population(s) of sources should be invoked.

  3. Cosmic gamma-ray background from type Ia supernovae reexamined: Evidence for missing gamma rays at MeV energy

    SciTech Connect

    Ahn, Kyungjin; Komatsu, Eiichiro; Hoeflich, Peter

    2005-06-15

    The observed cosmic {gamma}-ray background at {approx}MeV has often been attributed to Type Ia supernovae (SNIa). Since SNIa is close to a standard candle, one can calculate the {gamma}-ray intensity of SNIa integrated over redshifts fairly accurately, once the evolution of the SNIa rate is known. The latest SNIa rate measured at z < or approx. 1.6 [Dahlen et al., Astrophys. J. 613, 189 (2004)] indicates that the previous calculations of the {gamma}-ray background consistently overestimated the SNIa rate. With the new rate, we find that the SNIa contribution is an order of magnitude smaller than observed, and thus new population(s) of sources should be invoked.

  4. Near-infrared spectroscopy of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hsiao, Eric; Phillips, Mark; Burns, Christopher R.; Contreras, Carlos; Gall, Christa; Hoeflich, Peter; Kirshner, Robert P.; Marion, Howie H.; Morrell, Nidia; Sand, David J.; Stritzinger, Maximillian; Carnegie Supernova Project

    2016-01-01

    Improving the cosmological experiments with Type Ia supernovae (SNe Ia) is now not simply a question of observing more supernovae, since any survey, no matter how large, will ultimately be limited by the systematic errors. It has been clearly demonstrated in a number of studies that SNe Ia are better distance indicators in the near-infrared compared to the optical. As exciting as these new results are, SNe Ia in the NIR are expected to be even better than these studies indicate. A key ingredient for improving SN Ia in the NIR as distance indicators is to obtain NIR spectroscopy to determine precise k-corrections, which account for the effect of cosmological expansion upon the measured magnitudes. Better knowledge of the NIR spectroscopic behaviors, akin to that in the optical, is necessary to reach the distance precision required to identify viable models for dark energy. Carnegie Supernova Project II has built a definitive data set, much improved from previous samples, both in size and quality. With this previously unavailable window, we are also beginning to gain new insight on the physics of these events.

  5. Dynamics of supernova driven superbubbles

    NASA Astrophysics Data System (ADS)

    Yadav, Naveen; Mukherjee, Dipanjan; Sharma, Prateek; Nath, Biman

    2015-08-01

    Energy injection by supernovae is believed to be one of the primary sources which powers the expansion of supershells. There is a qualitative difference between isolated supernovae (SNe) and overlapping SNe. For typical interstellar medium (ISM) conditions an isolated supernova loses most of the injected mechanical energy by 1 Myr. In contrast, for SNe going off in bubbles the radiative losses are much smaller. While the outer shock going off in the dense ISM (~1 cm-3) becomes radiative well before 1 Myr, there is a strong non-radiative termination shock that keeps the bubble over-pressured till the lifetime of the OB association (10s of Myr; Sharma et al. 2014). This has relevance for supernova feedback in galaxy formation simulations. In our previous 1-D treatment all the SNe were assumed to occur at the same location in space. It was found that a steady wind inside the bubble (Chevalier & Clegg 1985) can occur only if the number of SNe is large (>~104) and a supernova going off inside the bubble can thermalize within the termination shock. In the present work we study the effect of SNe separated in both space and time using 3-D hydrodynamic simulations with radiative cooling. If the separation between SNe is larger than the remnant’s radius at the time it becomes radiative, SNe are in the isolated regime. The explosion energy is deposited as thermal energy in a uniform, static interstellar medium (ISM) with temperature 104 K, corresponding to the warm neutral medium. The key parameters of our idealized setup are the ISM density (ngas), the number of SNe (N★) and the spatial separation between SNe (Rcl). The shock radius when it becomes radiative depends on the ISM density and number of SNe. We obtain the critical values of the key parameters (ngas, N★, Rcl) which lead to the formation of a superbubble. e.g., at least 103 SNe are required to maintain an over-pressured bubble at 20 Myr in an ISM with 1 cm-3 similarly 102 SNe going off within a region of 100

  6. Pair production of helicity-flipped neutrinos in supernovae

    NASA Technical Reports Server (NTRS)

    Perez, Armando; Gandhi, Raj

    1989-01-01

    The emissivity was calculated for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. Also presented are simple estimates which show that such process can act as an efficient energy-loss mechanism in the shocked supernova core, and this fact is used to extract neutrino mass limits from SN 1987A neutrino observations.

  7. The generation of gravitational radiation by escaping supernova neutrinos

    NASA Technical Reports Server (NTRS)

    Epstein, R.

    1978-01-01

    Formulae for the gravitational radiation due to the anisotropic axisymmetric emission of neutrinos from a small source are derived. We find that a burst of neutrinos released anisotropically from a supernova will generate a burst of gravitational radiation that may be comparable in amplitude and energy to the gravitational radiation generated by the fluid motion in the collapse of the supernova core.

  8. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  9. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  10. Calibration Monitor for Dark Energy Experiments

    SciTech Connect

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  11. Revisiting the Contributions of Supernova and Hypernova Remnants to the Diffuse High-Energy Backgrounds: Constraints on Very High Redshift Injection

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Mészáros, Peter; Murase, Kohta; Dai, Zi-Gao

    2016-08-01

    Star-forming and starburst galaxies are considered one of the viable candidate sources of the high-energy cosmic neutrino background detected in IceCube. We revisit contributions of supernova remnants (SNRs) and hypernova remnants (HNRs) in such galaxies to the diffuse high-energy neutrino and gamma-ray backgrounds, in light of the latest Fermi data above 50 GeV. We also take into account possible time-dependent effects of the cosmic-ray (CR) acceleration during the SNR evolution. CRs accelerated by the SNR shocks can produce high-energy neutrinos up to ˜100 TeV energies, but CRs from HNRs can extend the spectrum up to PeV energies. We show that, only if HNRs are dominant over SNRs, the diffuse neutrino background above 100 TeV can be explained without contradicting the gamma-ray data. However, the neutrino data around 30 TeV remain unexplained, which might suggest a different population of gamma-ray dark CR sources. We also consider possible contributions of Pop-III HNRs up to z ≲ 10 and show that they are not constrained by the gamma-ray data and thus could contribute to the diffuse high-energy backgrounds if their explosion energy reaches {{ E }}{POP - {III}}˜ \\text{a few}× {10}53 erg. More conservatively, our results suggest that the explosion energy of Pop-III HNRs is {{ E }}{POP - {III}}≲ 7× {10}53 erg.

  12. Revisiting the Contributions of Supernova and Hypernova Remnants to the Diffuse High-Energy Backgrounds: Constraints on Very High Redshift Injection

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Mészáros, Peter; Murase, Kohta; Dai, Zi-Gao

    2016-08-01

    Star-forming and starburst galaxies are considered one of the viable candidate sources of the high-energy cosmic neutrino background detected in IceCube. We revisit contributions of supernova remnants (SNRs) and hypernova remnants (HNRs) in such galaxies to the diffuse high-energy neutrino and gamma-ray backgrounds, in light of the latest Fermi data above 50 GeV. We also take into account possible time-dependent effects of the cosmic-ray (CR) acceleration during the SNR evolution. CRs accelerated by the SNR shocks can produce high-energy neutrinos up to ∼100 TeV energies, but CRs from HNRs can extend the spectrum up to PeV energies. We show that, only if HNRs are dominant over SNRs, the diffuse neutrino background above 100 TeV can be explained without contradicting the gamma-ray data. However, the neutrino data around 30 TeV remain unexplained, which might suggest a different population of gamma-ray dark CR sources. We also consider possible contributions of Pop-III HNRs up to z ≲ 10 and show that they are not constrained by the gamma-ray data and thus could contribute to the diffuse high-energy backgrounds if their explosion energy reaches {{ E }}{POP - {III}}∼ \\text{a few}× {10}53 erg. More conservatively, our results suggest that the explosion energy of Pop-III HNRs is {{ E }}{POP - {III}}≲ 7× {10}53 erg.

  13. Simulations of Charged-Current Supernova νe Events in a Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2016-03-01

    Although it is still in its infancy, the study of supernova neutrinos has proven to be a fertile topic for fundamental science. A mere two dozen events recorded from supernova 1987A, the only supernova neutrino source observed so far, have led to numerous publications on a wide variety of topics. This bountiful scientific harvest has prompted the neutrino physics community to prepare to make more detailed observations of the neutrinos that will be produced in the next nearby supernova. Because of their unique νe sensitivity, liquid argon time projection chamber (LArTPC) experiments such as DUNE (Deep Underground Neutrino Experiment) have the potential to make valuable contributions to this detection effort. To better understand the expected SN νe signal in a LArTPC, we have developed a Monte Carlo event generator called MARLEY (Model of Argon Reaction Low-Energy Yields) for charged-current νe reactions on argon. By combining MARLEY with LArSoft, a LArTPC simulation package, we have obtained the most detailed predictions currently available for the response of a LArTPC to supernova νe. We will discuss the implications of these results for the design and operation of LArTPCs sensitive to SN neutrinos.

  14. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  15. Nuclear Physics in Core-Collapse Supernovae

    SciTech Connect

    Liebendoerfer, Matthias; Fischer, T.; Froelich, C.; Hix, William Raphael; Langanke, Karlheinz; Martinez-Pinedo, Gabriel; Mezzacappa, Anthony; Scheidegger, Simon; Thielemann, Friedrich-Karl W.; Whitehouse, Stuart

    2008-01-01

    Core-collapse and the launch of a supernova explosion form a very short episode of few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 1053 erg is transformed into observable neutrino-, kinetic-, and electromagnetic radiation energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

  16. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE PAGESBeta

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; et al

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce

  17. Spectroscopic Needs for Imaging Dark Energy Experiments

    SciTech Connect

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cheu, Elliott; Cunha, Carlos E.; de la Macorra, Alex; Dell’Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean -Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Menard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Park, Changbom; Rhodes, Jason; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter

  18. Supernova Remnants And GLAST

    SciTech Connect

    Slane, Patrick; /Harvard-Smithsonian Ctr. Astrophys.

    2011-11-29

    It has long been speculated that supernova remnants represent a major source of cosmic rays in the Galaxy. Observations over the past decade have ceremoniously unveiled direct evidence of particle acceleration in SNRs to energies approaching the knee of the cosmic ray spectrum. Nonthermal X-ray emission from shell-type SNRs reveals multi-TeV electrons, and the dynamical properties of several SNRs point to efficient acceleration of ions. Observations of TeV gamma-ray emission have confirmed the presence of energetic particles in several remnants as well, but there remains considerable debate as to whether this emission originates with high energy electrons or ions. Equally uncertain are the exact conditions that lead to efficient particle acceleration. Based on the catalog of EGRET sources, we know that there is a large population of Galactic gamma-ray sources whose distribution is similar to that of SNRs.With the increased resolution and sensitivity of GLAST, the gamma-ray SNRs from this population will be identified. Their detailed emission structure, along with their spectra, will provide the link between their environments and their spectra in other wavebands to constrain emission models and to potentially identify direct evidence of ion acceleration in SNRs. Here I summarize recent observational and theoretical work in the area of cosmic ray acceleration by SNRs, and discuss the contributions GLAST will bring to our understanding of this problem.

  19. Requirements on the Redshift Accuracy for future Supernova andNumber Count Surveys

    SciTech Connect

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-08-09

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters.

  20. HUBBLE SPIES MOST DISTANT SUPERNOVA EVER SEEN

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Using NASA's Hubble Space Telescope, astronomers pinpointed a blaze of light from the farthest supernova ever seen, a dying star that exploded 10 billion years ago. The detection and analysis of this supernova, called 1997ff, is greatly bolstering the case for the existence of a mysterious form of dark energy pervading the cosmos, making galaxies hurl ever faster away from each other. The supernova also offers the first glimpse of the universe slowing down soon after the Big Bang, before it began speeding up. This panel of images, taken with the Wide Field and Planetary Camera 2, shows the supernova's cosmic neighborhood; its home galaxy; and the dying star itself. Astronomers found this supernova in 1997 during a second look at the northern Hubble Deep Field [top panel], a tiny region of sky first explored by the Hubble telescope in 1995. The image shows the myriad of galaxies Hubble spied when it peered across more than 10 billion years of time and space. The white box marks the area where the supernova dwells. The photo at bottom left is a close-up view of that region. The white arrow points to the exploding star's home galaxy, a faint elliptical. Its redness is due to the billions of old stars residing there. The picture at bottom right shows the supernova itself, distinguished by the white dot in the center. Although this stellar explosion is among the brightest beacons in the universe, it could not be seen directly in the Hubble images. The stellar blast is so distant from Earth that its light is buried in the glow of its host galaxy. To find the supernova, astronomers compared two pictures of the 'deep field' taken two years apart. One image was of the original Hubble Deep Field; the other, the follow-up deep-field picture taken in 1997. Using special computer software, astronomers then measured the light from the galaxies in both images. Noting any changes in light output between the two pictures, the computer identified a blob of light in the 1997 picture

  1. Summary talk: Experiments at low energies

    NASA Astrophysics Data System (ADS)

    Leifels, Yvonne

    2016-01-01

    In heavy-ion collisions at beam energies √sNN between 1 and 150A GeV highest baryonic densities are reached at rather moderate temperatures. By varying the beam energy and the system size a broad range of the QCD phase diagram is scanned where several interesting phenomena are predicted by theoretical models. Apart from possible phase transitions and existence of a critical point in this regime, the production of strangeness and the interaction of strange particles with the surrounding hot and dense nuclear medium constitutes a prominent probe not only to address the underlying reaction mechanisms and production processes but in particular to constrain densities and temperatures reached in the course of the collision. Recent results on heavy-ion collisions in this beam energy regime obtained by various experimental collaborations are summarized, with special emphasis on strangeness production, rare probes, and critical phenomena. The importance of data on elementary reactions (i.e., pp, p+nucleus, and π+nucleus) as a bench mark for theoretical models and their relevance for understanding the underlying mechanisms of heavy-ion collisions are being discussed. Several interesting observables have been presented in various contributions, which give further motivation for the construction of high-rate experiments at new accelerator facilities.

  2. Light Curves of Supernovae

    NASA Astrophysics Data System (ADS)

    Spencer, Michelle; Joner, Michael; Laney, David; Stoker, Emily

    2012-10-01

    Photometric Data were secured for the supernovae 2010hh, 2011dh, 2011fe and 2012aw before the dates which each individual maxima occur. The data for all supernovae were secured using the 0.9-meter telescope at the BYU West Mountain Observatory in Utah. 2010hh data were secured during the summer 2010 over the months of August to October. 2011dh and 2011fe data were secured during the summer of 2011. 2012aw data were secured during the summer of 2012. The data exposures from 2010 were secured using standard B,V and R filters. The frames for 2011 were secured using B,V, R and I filters. The 2012 supernova frames were secured in B,V and R filters. Using the data I will compare and contrast these four different supernovae and discuss their possible uses for distance determinations for the host galaxies.

  3. Berkeley automated supernova search

    SciTech Connect

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  4. The Historical Supernovae

    NASA Astrophysics Data System (ADS)

    Clark, D. H.; Stephenson, F. R.

    1982-11-01

    A survey was made of pretelescopic astronomical records from Europe, China, Korea, Japan, Babylon, and the Arab countries to search for historical evidence of supernovae. A Roman, Claudian, reported a new star in 393 AD, the same year that Chinese astronomers noted a new star, together with its location and duration. Most European records were made in monasteries after 1000 AD, and one supernova was sighted in 1006 AD. A similar sighting was made in the Arab world at the same time. A total of twenty candidate events were found in the nearly 2000 yr of Chinese records. An analysis of the recorded events characteristics indicates that in 185, 393, 1006, 1054, 1181, 1572, and 1604 AD supernovae were seen. The 1054 AD explosion was corroborated by Arab records, while all others (except for the 393 AD and 1006 AD supernovae) were confined to Oriental observations.

  5. Nucleosynthesis in Thermonuclear Supernovae

    SciTech Connect

    Claudia, Travaglio; Hix, William Raphael

    2013-01-01

    We review our understanding of the nucleosynthesis that occurs in thermonuclear supernovae and their contribution to Galactic Chemical evolution. We discuss the prospects to improve the modeling of the nucleosynthesis within simulations of these events.

  6. Automated search for supernovae

    SciTech Connect

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  7. Atomic Data Applications for Supernova Modeling

    NASA Astrophysics Data System (ADS)

    Fontes, Christopher J.

    2013-06-01

    The modeling of supernovae (SNe) incorporates a variety of disciplines, including hydrodynamics, radiation transport, nuclear physics and atomic physics. These efforts require numerical simulation of the final stages of a star's life, the supernova explosion phase, and the radiation that is subsequently emitted by the supernova remnant, which can occur over a time span of tens of thousands of years. While there are several different types of SNe, they all emit radiation in some form. The measurement and interpretation of these spectra provide important information about the structure of the exploding star and the supernova engine. In this talk, the role of atomic data is highlighted as iit pertains to the modeling of supernova spectra. Recent applications [1,2] involve the Los Alamos OPLIB opacity database, which has been used to provide atomic opacities for modeling supernova plasmas under local thermodynamic equilibrium (LTE) conditions. Ongoing work includes the application of atomic data generated by the Los Alamos suite of atomic physics codes under more complicated, non-LTE conditions [3]. As a specific, recent example, a portion of the x-ray spectrum produced by Tycho's supernova remnant (SN 1572) will be discussed [4]. [1] C.L. Fryer et al, Astrophys. J. 707, 193 (2009). [2] C.L. Fryer et al, Astrophys. J. 725, 296 (2009). [3] C.J. Fontes et al, Conference Proceedings for ICPEAC XXVII, J. of Phys: Conf. Series 388, 012022 (2012). [4] K.A. Eriksen et al, Presentation at the 2012 AAS Meeting (Austin, TX). (This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.)

  8. Physics of supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1985-12-13

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

  9. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  10. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.O.

    1999-06-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.

  11. Neutrino and gamma-ray signatures of supernova explosions

    NASA Astrophysics Data System (ADS)

    Lu, Yu

    2007-08-01

    A supernova occurs when the core of a massive star collapses into a compact neutron star. Nearly all the gravitational binding energy of the neutron star is emitted in neutrinos. This is approximately 100 times larger than the explosion energy as measured by the total energy of the ejecta. A prevalent paradigm is that a fraction of the neutrino energy is absorbed by the material above the neutron star, thereby delivering the explosion. We test this neutrino driven supernova mechanism by analyzing the signal induced by supernova electron antineutrinos in terrestrial detectors such as SuperKamiokande. We perform detailed Monte Carlo simulations of such signals and identify the potential signatures of this mechanism by comparing the event rates and energy spectra before and after explosion. Before the neutrinos reach terrestrial detectors, a fraction of them interact with protons and nuclei in the supernova envelope. Some of these interactions result in gamma-ray emission. The gamma-rays produced in the outmost layer escape and may be detected. We calculate the time evolution for the fluxes of gamma-rays produced by neutron capture on protons and positron annihilation following the absorption of electron antineutrinos on protons. Because these gamma-rays are produced before the supernova shock arrives at the envelope, their detection can help identify the supernova before it is seen optically. In addition, they may provide a useful probe of the conditions in the surface layer of the supernova progenitor.

  12. Positrons from supernovae

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Lingenfelter, Richard E.

    1993-01-01

    Positrons are produced in the ejecta of supernovae by the decay of nucleosynthetic Co-56, Ti-44, and Al-26. We calculate the probability that these positrons can survive without annihilating in the supernova ejecta, and we show that enough of these positrons should escape into the interstellar medium to account for the observed diffuse Galactic annihilation radiation. The surviving positrons are carried by the expanding ejecta into the interstellar medium where their annihilation lifetime of 10 exp 5 - 10 exp 6 yr is much longer than the average supernovae occurrence time of about 100 yr. Thus, annihilating positrons from thousands of supernovae throughout the Galaxy produce a steady diffuse flux of annihilation radiation. We further show that combining the calculated positron survival fractions and nucleosynthetic yields for current supernova models with the estimated supernova rates and the observed flux of diffuse Galactic annihilation radiation suggests that the present Galactic rate of Fe-56 nucleosynthesis is about 0.8 +/- 0.6 solar mass per 100 yr.

  13. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  14. A Supernova's Shockwaves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

    This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains.

    In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight.

    N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

    In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  15. ANTIPROTONS PRODUCED IN SUPERNOVA REMNANTS

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.

    2014-08-20

    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  16. Supernovae and high density nuclear matter

    SciTech Connect

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  17. Dynamics of a supernova envelope in a cloudy interstellar medium

    NASA Astrophysics Data System (ADS)

    Korolev, V. V.; Vasiliev, E. O.; Kovalenko, I. G.; Shchekinov, Yu. A.

    2015-07-01

    The evolution of a supernova remnant in a cloudy medium as a function of the volume filling factor of the clouds is studied in a three-dimensional axially symmetrical model. The model includes the mixing of heavy elements (metals) ejected by the supernova and their contribution to radiative losses. The interaction of the supernova envelope with the cloudy phase of the interstellar medium leads to nonsimultaneous, and on average earlier, onsets of the radiative phase in different parts of the supernova envelope. Growth in the volume filling factor f leads to a decrease in the time for the transition of the envelope to the radiative phase and a decrease in the envelope's mean radius, due to the increased energy losses by the envelope in the cloudy medium. When the development of hydrodynamical instabilities in the supernova envelope is efficient, the thermal energy falls as E t ~ t -2.3, for the propagation of the supernova remnant through either a homogeneous or a cloudy medium. When the volume filling factor is f ≳ 0.1, a layer with excess kinetic energy andmomentumforms far behind the global shock front from the supernova, which traps the hot gas of the cavity in the central part of the supernova remnant. Metals ejected by the supernova are also enclosed in the central region of the remnant, where the initial (high) metallicity is essentially preserved. Thus, the interaction of the supernova envelope with the cloudy interstellar medium appreciably changes the dynamics and structure of the distribution of the gas in the remnant. This affects the observational characteristics of the remnant, in particularly, leading to substantial fluctuations of the emissionmeasure of the gas with T > 105 K and the velocity dispersion of the ionized gas.

  18. Probing Exotic Physics With Supernova Neutrinos

    SciTech Connect

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  19. Superluminous supernovae: no threat from eta Carinae.

    PubMed

    Thomas, Brian C; Melott, Adrian L; Fields, Brian D; Anthony-Twarog, Barbara J

    2008-02-01

    Recently, Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of approximately 10(44) Joules. It was proposed that the progenitor may have been a massive evolved star similar to eta Carinae, which resides in our own Galaxy at a distance of about 2.3 kpc. eta Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given that its rotation axis is unlikely to produce a gamma-ray burst oriented toward Earth, eta Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We have found that, given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over approximately 10(4) y and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae-e-ndocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous" for other reasons. However, due to reddening and extinction by the interstellar medium, eta Carinae is unlikely to trigger such effects to any significant degree. PMID:18199005

  20. Superluminous Supernovae: No Threat from Eta Carinae

    NASA Astrophysics Data System (ADS)

    Thomas, Brian; Melott, A. L.; Fields, B. D.; Anthony-Twarog, B. J.

    2008-05-01

    Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of 1044 Joules. It was proposed that the progenitor may have been a massive evolved star similar to η Carinae, which resides in our own galaxy at a distance of about 2.3 kpc. η Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma-Ray Burst oriented toward the Earth, η Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over 104 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae, endocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous” for other reasons. However, due to reddening and extinction by the interstellar medium, η Carinae is unlikely to trigger such effects to any significant degree.

  1. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  2. Turbulence in Type Ia Supernovae Simulations

    NASA Astrophysics Data System (ADS)

    Fisher, Robert

    2012-03-01

    Type Ia supernovae are among the most energetic explosions in the known universe, releasing 10^51 ergs of kinetic energy in their ejecta, with 0.7 solar masses of radioactive Ni-56 synthesized during the explosion. The discovery of the Phillips relation enabled the use of Type Ia supernova (SN Ia) as standardizable cosmological candles, and has ushered in a new era of astronomy leading to the discovery of the acceleration of the universe, leading to the 2011 Nobel Prize in physics. The nature of the Type Ia progenitors, as well as their precise explosion mechanism, remains a subject of active investigation, both observationally as well as theoretically. It is known that the progenitors of Type Ia supernovae are near-Chandrasekhar mass white dwarfs in binary systems, though competing models suggest the companion is either a red giant or main sequence star (the so-called ``single-degenerate channel'') or another white dwarf (the ``double-degenerate channel''). In this talk, I will present recent results of three -dimensional models of the single-degenerate channel of Type Ia supernovae. I will also discuss prospects for modeling the double-degenerate channel of Type Ia supernovae, which have recently enjoyed increased favor from observers and theorists.

  3. Observing Supernovae and Supernova Remnants with JWST

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Temim, Tea; Williams, Brian J.; Blair, William P.

    2015-01-01

    The James Webb Space Telescope (JWST) will enable near- and mid-infrared studies of supernovae (SN) and supernova remnants (SNR) in the Milky Way and galaxies throughout the local universe and to high redshift. JWST's instrumentation provides imaging, coronography, and spectroscopy (R<3000) over the wavelength range 1-29 microns. The unprecedented sensitivity and angular resolution will enable spectroscopic study of new and recent supernovae, including molecule and dust formation, in galaxies at least out to 30 Mpc, and imaging to much greater distances. The Target of Opportunity response time can be as short as 48 hours, enabling quick follow-up observations of important SN events. JWST will be ideal for the study of Galactic and Magellanic Clouds supernova remnants, particularly young remnants with hot dust. Its high angular resolution (0.07" at 2 microns, 0.7" at 20 microns) will allow direct comparison between the IR, optical, and X-ray morphologies, identifying sites of dust emission in both the ejecta and the shocked ISM unresolved by previous IR telescopes. There is a rich spectrum of atomic lines (H, He I, [Si I], [Fe II], [Ni I-III], [Co II-III], [S III-IV], [Ar II-III], [Ne II, III, V], [O IV]) and molecules (CO, SiO, H2) of importance for SN and SNR studies. JWST is a large aperture (6.5m), cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018. The JWST observatory will be placed in an Earth-Sun L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with consumables for 10 years of science operations. The first call for proposals for JWST observations will be released in 2017.

  4. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae. PMID:15245271

  5. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  6. Collective neutrino flavor transformation in supernovae

    SciTech Connect

    Duan Huaiyu; Fuller, George M.; Qian Yongzhong

    2006-12-15

    We examine coherent active-active channel neutrino flavor evolution in environments where neutrino-neutrino forward scattering can engender large-scale collective flavor transformation. We introduce the concept of neutrino flavor isospin which treats neutrinos and antineutrinos on an equal footing, and which facilitates the analysis of neutrino systems in terms of the spin precession analogy. We point out a key quantity, the ''total effective energy,'' which is conserved in several important regimes. Using this concept, we analyze collective neutrino and antineutrino flavor oscillation in the synchronized mode and what we term the bi-polar mode. We thereby are able to explain why large collective flavor mixing can develop on short time scales even when vacuum mixing angles are small in, e.g., a dense gas of initially pure {nu}{sub e} and {nu}{sub e} with an inverted neutrino mass hierarchy (an example of bi-polar oscillation). In the context of the spin precession analogy, we find that the corotating frame provides insights into more general systems, where either the synchronized or bi-polar mode could arise. For example, we use the corotating frame to demonstrate how large flavor mixing in the bi-polar mode can occur in the presence of a large and dominant matter background. We use the adiabatic condition to derive a simple criterion for determining whether the synchronized or bi-polar mode will occur. Based on this criterion, we predict that neutrinos and antineutrinos emitted from a protoneutron star in a core-collapse supernova event can experience synchronized and bi-polar flavor transformations in sequence before conventional Mikhyev-Smirnov-Wolfenstein flavor evolution takes over. This certainly will affect the analyses of future supernova neutrino signals, and might affect the treatment of shock reheating rates and nucleosynthesis depending on the depth at which collective transformation arises.

  7. Supernovas y Cosmología

    NASA Astrophysics Data System (ADS)

    Folatelli, G.

    Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH

  8. Classification of 20 DES supernovae by Magellan

    NASA Astrophysics Data System (ADS)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.

    2016-04-01

    We report optical spectroscopy of 20 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra were obtained using IMACS (covering 460-820nm) on the 6.5m Baade telescope, and LDSS-3C (covering 420-950nm) on the 6.5m Clay telescope at the Las Campanas Observatory.

  9. COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION

    SciTech Connect

    Chevalier, Roger A.

    2012-06-10

    A variety of supernova events, including Type IIn supernovae and ultraluminous supernovae, appear to have lost up to solar masses of their envelopes in tens to hundreds of years leading up to the explosion. In order to explain the close timing of the mass loss and supernova events, we explore the possibility that the mass loss is driven by common envelope evolution of a compact object (neutron star or black hole) in the envelope of a massive star and the supernova is triggered by the inspiral of the compact object to the central core of the companion star. The expected rate of such events is smaller than the observed rate of Type IIn supernovae but the rates may agree within the uncertainties. The mass loss velocity is related to the escape velocity from the common envelope system and is comparable to the observed velocity of hundreds of kilometers per second in Type IIn events. The mass loss is expected to be denser near the equatorial plane of the binary system and there is good evidence that the circumstellar media in Type IIn supernovae are asymmetric. Some of these supernova types show evidence for energies in excess of the canonical 10{sup 51} erg, which might be the result of explosions from rapid accretion onto a compact object through a disk.

  10. An outburst from a massive star 40 days before a supernova explosion.

    PubMed

    Ofek, E O; Sullivan, M; Cenko, S B; Kasliwal, M M; Gal-Yam, A; Kulkarni, S R; Arcavi, I; Bildsten, L; Bloom, J S; Horesh, A; Howell, D A; Filippenko, A V; Laher, R; Murray, D; Nakar, E; Nugent, P E; Silverman, J M; Shaviv, N J; Surace, J; Yaron, O

    2013-02-01

    Some observations suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as supernovae, as do several models. Establishing a causal connection between these mass-loss episodes and the final explosion would provide a novel way to study pre-supernova massive-star evolution. Here we report observations of a mass-loss event detected 40 days before the explosion of the type IIn supernova SN 2010mc (also known as PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6 × 10(47) erg of energy and releasing about 10(-2) solar masses of material at typical velocities of 2,000 km s(-1). The temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model, and disfavour alternative suggestions. PMID:23389540