Sample records for energy systems ates

  1. Planning ATES systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, Marc; Kwakkel, Jan; Bloemendal, Martin

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) can contribute to significant reductions in energy use within the built environment, by providing seasonal energy storage in aquifers for the heating and cooling of buildings. ATES systems have experienced a rapid uptake over the last two decades; however, despite successful experiments at the individual level, the overall performance of ATES systems remains below expectations - largely due to suboptimal practices for the planning and operation of systems in urban areas. The interaction between ATES systems and underground aquifers can be interpreted as a common-pool resource problem, in which thermal imbalances or interference could eventually degrade the storage potential of the subsurface. Current planning approaches for ATES systems thus typically follow the precautionary principle. For instance, the permitting process in the Netherlands is intended to minimize thermal interference between ATES systems. However, as shown in recent studies (Sommer et al., 2015; Bakr et al., 2013), a controlled amount of interference may benefit the collective performance of ATES systems. An overly restrictive approach to permitting is instead likely to create an artificial scarcity of available space, limiting the potential of the technology in urban areas. In response, master plans - which take into account the collective arrangement of multiple systems - have emerged as an increasingly popular alternative. However, permits and master plans both take a static, ex ante view of ATES governance, making it difficult to predict the effect of evolving ATES use or climactic conditions on overall performance. In particular, the adoption of new systems by building operators is likely to be driven by the available subsurface space and by the performance of existing systems; these outcomes are themselves a function of planning parameters. From this perspective, the interactions between planning authorities, ATES operators, and subsurface conditions

  2. Integrating Geohydrological Models In ATES-Systems Control

    NASA Astrophysics Data System (ADS)

    Bloemendal, Martin

    2015-04-01

    1) Purpose. Accomplish optimal and sustainable use of subsurface for Aquifer Thermal Energy Storage (ATES). 2) Scope. A heat pump in combination with an ATES system can efficiently and sustainably provide heating and cooling for user comfort within buildings. ATES systems are popular in moderate climate in which ATES systems are exploited as they are able to save primary energy. While storing warm and cold groundwater, ATES systems occupy a significant amount of the subsurface space, making that the space in the aquifers below cities is becoming scarce [1]. With the rapid growth of the number of ATES systems, the use of the subsurface intensifies, which raises additional questions regarding its sustainability and the long term profitability of the individual systems. In practice considerable difficulties regarding A) the performance of these installations and B) optimal and sustainable use of the subsurface are met. 3) Approach. Recently it was confirmed [2] that ATES systems can be placed closer to each other with limited effect on their energy efficiency. By placing them closer together we introduce the risk of a tragedy of the commons [3]. Therefore it is of importance to know where the warm and cold zones are over time and enable ATES-controllers to use the subsurface optimal and sustainably. From the field of multi agent systems and complex adaptive systems we use approaches and techniques to make an operation and control system that enables to adapt their control not only based on current demand, but also on current aquifer status and expected future demand. We are developing a numerical groundwater model structure which is fed with operational data of different ATES-systems. While doing this we run into challenges and opportunities like; spatial and temporal scale issues, sustaining the storage with balancing thermal storage and extraction at area level, dynamics and relation between hydrological and thermal influence and consequences for spreading of

  3. Using cooperative control to manage uncertainties for Aquifer Thermal Energy Storage (ATES)

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, Marc; Rostampour, Vahab; Kwakkel, Jan; Bloemendal, Martin

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) technology can lead to major reductions in energy demand for heating and cooling in buildings. ATES systems rely on shallow aquifers to seasonally store thermal energy and have become popular in the Netherlands, where a combination of easily accessible aquifers and strict energy regulations makes the technology especially relevant. However, this rapid adoption has made their management in dense urban areas more challenging. For instance, thermal interferences between neighboring systems can degrade storage efficiency. Policies for the permitting and spatial layout of ATES thus tend to be conservative to ensure the performance of individual systems, but this limits the space available for new systems - leading to a trade-off between individual system performance, and the overall energy savings obtained from ATES in a given area. Furthermore, recent studies show that operational uncertainties contribute to poor outcomes under current planning practices; systems in the Netherlands typically use less than half of their permitted water volume. This further reduces energy savings compared to expectations and also leads to an over-allocation of subsurface space. In this context, this work investigates the potential of a more flexible approach for ATES planning and operation, under which neighboring systems coordinate their operation. This is illustrated with a three-building idealized case, using a model predictive control approach for two control schemes: a decoupled formulation, and a centralized scheme that aims to avoid interferences between neighboring systems (assuming perfect information exchange). These control schemes are compared across a range of scenarios for spatial layout, building energy demand, and climate, using a coupled agent-based/geohydrological simulation. The simulation indicates that centralized operation could significantly improve the spatial layout efficiency of ATES systems, by allowing systems to be placed

  4. Review of simulation techniques for Aquifer Thermal Energy Storage (ATES)

    NASA Astrophysics Data System (ADS)

    Mercer, J. W.; Faust, C. R.; Miller, W. J.; Pearson, F. J., Jr.

    1981-03-01

    The analysis of aquifer thermal energy storage (ATES) systems rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES were reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities.

  5. Smart Grids for Aquifer Thermal Energy Storage (ATES): a case study for the Amsterdam Zuidas district

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, Marc; Bloemendal, Martin; Rostampour, Vahab

    2017-04-01

    In the context of increasingly strict requirements for building energy efficiency, Aquifer Thermal Energy Storage (ATES) systems have emerged as an effective means to reduce energy demand for space heating and cooling in larger buildings. In the Netherlands, over 2000 systems are currently active, which has already raised issues with spatial planning in some areas; current planning schemes may lack the flexibility to properly address variations in ATES operation, which are driven by uncertainties across a broad range of time scales - from daily changes in building energy demand, to decadal trends for climate or groundwater conditions. This work is therefore part of a broader research effort on ATES Smart Grids (ATES-SG), which has focused on more adaptive methods for ATES management and control. In particular, improved control schemes which allow for coordination between neighboring ATES systems may offer more robust performance under uncertainty (Rostampour & Keviczky, 2016). The case studies for the ATES-SG project have so far focused on idealized cases, and on a historical simulation of ATES development in the city center of Utrecht. This poster will present an additional case study for the city center of Amsterdam, which poses several geohydrological challenges for ATES: for instance, variable density flow due to salinity gradients in the local aquifer, and varying depths for ATES systems due to the thickness of the aquifer. To study the effect of these conditions, this case uses an existing 15-layer geohydrological model of the Amsterdam region, cropped to an area of 4500m x 2500m around the Amsterdam Zuidas district. This rapidly developing business district is one of the densest areas of ATES use in Amsterdam, with 32 well doublets and 53 monowells currently registered. The geohydrological model is integrated with GIS data to accurately represent ATES spatial planning; simulated well flows are provided by a model predictive control component. This model is

  6. Influence of Aquifer Thermal Energy Storage (ATES) on groundwater chemistry: an overview of several cases in Belgium

    NASA Astrophysics Data System (ADS)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2013-04-01

    Environmental concerns and an increasing pressure on fossil fuels cause a rapidly growing interest in renewable energy. An interesting provider of such renewable energy is Aquifer Thermal Energy Storage (ATES), where groundwater in the aquifer is used as storage medium for summer heat and winter cold. The number of ATES systems has been continually increasing over the last years and will continue to increase in the future. Because ATES is often applied in aquifers also used for the production of drinking water, drinking water companies and environmental agencies are concerned about the impact of all these ATES systems on the groundwater quality in the long term. Because most ATES systems operate at relatively small temperature differences, ranging to several °C above and below the natural groundwater temperature, several studies show that the temperature influence on the groundwater quality is negligible. Mixing of the water column, on the other hand, possibly affects groundwater quality. The water is often extracted over a large portion of the aquifer in order to come to the desired flow rates. The composition of the groundwater on this interval may, however, differ from the top to the bottom by interaction with the surrounding aquifer material. The aim of this study is to evaluate the influence that Aquifer Thermal Energy Storage may have on the groundwater quality. Therefore the groundwater chemistry around seven ATES installations in the north of Belgium (Flanders) is evaluated. The selected ATES systems are located in several aquifers, which have major groundwater resources. The warm and cold wells of the different ATES installations were sampled and analyzed for the main chemical constituents during 4 to 7 years. The time series of the different chemical compounds are investigated per ATES well and compared with time series of several monitoring wells in the exploited aquifer. Results confirm that the temperatures occurring in the ATES systems do not affect

  7. An Aquifer Thermal Energy Storage (ATES) System for Continuous and Sustainable Cold Supply in Oman

    NASA Astrophysics Data System (ADS)

    Winterleitner, G.; Schütz, F.; Huenges, E.

    2016-12-01

    The aim of the GeoSolCool research programme between the German Research Centre for Geoscience (GFZ) and The Research Council of Oman (TRC) is the development of an innovative and sustainable cooling system in combination with an aquifer thermal energy storage system in northern Oman. An integral part of this project is the design of a subsurface aquifer reservoir system for storage of thermal energy through hot water injection. An accurate characterisation of potential storage horizons is thus essential to ensure optimal efficiency of the cooling system. The study area, 40 km west of Muscat is characterised by a thick Cenozoic mixed carbonate-siliciclastic sedimentary succession, containing at least 3 aquifer horizons. We used a multidisciplinary approach for the initial ATES development phase, including geological fieldwork dovetailed with remote sensing analyses, thin-section analyses, geological modelling and reservoir fluid flow forecasting. First results indicate two potential storage horizons: (1) a Miocene-aged clastic-dominated alluvial fan system and (2) an Eocene carbonate sequence. The alluvial fan system is a more than 300 m thick, coarse clastic (mainly gravels and sandstones) succession of coalesced individual fans. Thin-section analyses showed that hydraulic parameters are favourable for the gravel and sandstone intervals but reservoir architecture is complex due to multiple generations of interconnecting fans with highly heterogeneous facies distributions. The Eocene carbonates were deposited in a carbonate ramp setting, strongly influenced by currents and storm events. Individual facies belts extend over kilometres and thus horizontal reservoir connectivity is expected to be good with minor facies variability. Thin-section analyses showed that especially the fossil-rich sections show good storage qualities. Fluid flow forecasting indicate that both potential horizons have good to very good storage characteristics. However, intense diagenetic

  8. The effect of soil heterogeneity on ATES performance

    NASA Astrophysics Data System (ADS)

    Sommer, W.; Rijnaarts, H.; Grotenhuis, T.; van Gaans, P.

    2012-04-01

    Due to an increasing demand for sustainable energy, application of Aquifer Thermal Energy Storage (ATES) is growing rapidly. Large-scale application of ATES is limited by the space that is available in the subsurface. Especially in urban areas, suboptimal performance is expected due to thermal interference between individual wells of a single system, or interference with other ATES systems or groundwater abstractions. To avoid thermal interference there are guidelines on well spacing. However, these guidelines, and also design calculations, are based on the assumption of a homogeneous subsurface, while studies report a standard deviation in logpermeability of 1 to 2 for unconsolidated aquifers (Gelhar, 1993). Such heterogeneity may create preferential pathways, reducing ATES performance due to increased advective heat loss or interference between ATES wells. The role of hydraulic heterogeneity of the subsurface related to ATES performance has received little attention in literature. Previous research shows that even small amounts of heterogeneity can result in considerable uncertainty in the distribution of thermal energy in the subsurface and an increased radius of influence (Ferguson, 2007). This is supported by subsurface temperature measurements around ATES wells, which suggest heterogeneity gives rise to preferential pathways and short-circuiting between ATES wells (Bridger and Allen, 2010). Using 3-dimensional stochastic heat transport modeling, we quantified the influence of heterogeneity on the performance of a doublet well energy storage system. The following key parameters are varied to study their influence on thermal recovery and thermal balance: 1) regional flow velocity, 2) distance between wells and 3) characteristics of the heterogeneity. Results show that heterogeneity at the scale of a doublet ATES system introduces an uncertainty up to 18% in expected thermal recovery. The uncertainty increases with decreasing distance between ATES wells. The

  9. Geological exploration for a high-temperature aquifer thermal energy storage (HT-ATES) system: a case study from Oman

    NASA Astrophysics Data System (ADS)

    Winterleitner, Gerd; Schütz, Felina; Huenges, Ernst

    2017-04-01

    A collaborative research programme between the German Research Centre for Geoscience, Potsdam (GFZ) and The Research Council of Oman (TRC) is underway, which aims to develop and implement an innovative concept of a sustainable thermally driven cooling system in combination with a HT-ATES in northern Oman. The system will use an absorption chiller for cold supply, which nominally requires water of around 100°C as energy source. Solar collectors will provide this thermal energy and energy surpluses during daytimes will be stored to ensure a continuous operation of the cooling system. An integral part of this project is, therefore, the development of an efficient HT-ATES (100°C), which is based on temporary storage and recovery of thermal energy through hot water injection in subsurface aquifer horizons. Thus, an accurate thermal and fluid flow characterisation of potential reservoir horizons is essential to ensure optimal efficiency of the cooling system. The study area is located in the Al Khwad area, approximately 40 km to the west of Muscat. The area is characterised by a thick Cenozoic mixed carbonate-siliciclastic sedimentary succession, containing at least 3 aquifer horizons. We use a multidisciplinary approach for the initial ATES exploration and development phase, including traditional geological fieldwork dovetailed with virtual outcrop geology, thin-section analyses, geological modelling and reservoir fluid flow forecasting analyses. Our first results indicate two potential storage horizons: (1) a Miocene-aged clastic-dominated alluvial fan system and (2) an Eocene carbonate-dominated sequence. The alluvial fan system is characterised by a more than 300 m thick, coarse-clastic succession of coalesced individual fans. Thermal and hydraulic parameters are favourable for gravel and sandstone intervals but reservoir architecture is complex due to multiple generations of interconnecting fans with highly heterogeneous facies distributions. The Eocene carbonates

  10. Application of multiple-point geostatistics to simulate the effect of small scale aquifer heterogeneity on the efficiency of Aquifer Thermal Energy Storage (ATES)

    NASA Astrophysics Data System (ADS)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for Aquifer Thermal Energy Storage (ATES) systems and wells. Recent model studies indicate that meter scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In this paper, the influence of centimeter scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3 - 3.6%) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6 - 10.2%) on the energy output of the ATES system. It is concluded that it is important to incorporate small scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  11. ATES/heat pump simulations performed with ATESSS code

    NASA Astrophysics Data System (ADS)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  12. Design ATE systems for complex assemblies

    NASA Astrophysics Data System (ADS)

    Napier, R. S.; Flammer, G. H.; Moser, S. A.

    1983-06-01

    The use of ATE systems in radio specification testing can reduce the test time by approximately 90 to 95 percent. What is more, the test station does not require a highly trained operator. Since the system controller has full power over all the measurements, human errors are not introduced into the readings. The controller is immune to any need to increase output by allowing marginal units to pass through the system. In addition, the software compensates for predictable, repeatable system errors, for example, cabling losses, which are an inherent part of the test setup. With no variation in test procedures from unit to unit, there is a constant repeatability factor. Preparing the software, however, usually entails considerable expense. It is pointed out that many of the problems associated with ATE system software can be avoided with the use of a software-intensive, or computer-intensive, system organization. Its goal is to minimize the user's need for software development, thereby saving time and money.

  13. Hybrid modelling for ATES planning and operation in the Utrecht city centre

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, Marc; Bloemendal, Martin; Kwakkel, Jan; Rostampour, Vahab

    2016-04-01

    Aquifer Thermal Energy Storage (ATES) systems can significantly reduce the energy use and greenhouse gas emissions of buildings in temperate climates. However, the rapid adoption of these systems has evidenced a number of emergent issues with the operation and management of urban ATES systems, which require careful spatial planning to avoid thermal interferences or conflicts with other subsurface functions. These issues have become particularly relevant in the Netherlands, which are currently the leading market for ATES (Bloemendal et al., 2015). In some urban areas of the country, the adoption of ATES technology is thus becoming limited by the available subsurface space. This scarcity is partly caused by current approaches to ATES planning; as such, static permits tend to overestimate pumping rates and yield excessive safety margins, which in turn hamper the energy savings which could be realized by new systems. These aspects are strongly influenced by time-dependent dynamics for the adoption of ATES systems by building owners and operators, and by the variation of ATES well flows under uncertain conditions for building energy demand. In order to take these dynamics into account, previous research (Jaxa-Rozen et al., 2015) introduced a hybrid simulation architecture combining an agent-based model of ATES adoption, a Matlab control design, and a MODFLOW/SEAWAT aquifer model. This architecture was first used to study an idealized case of urban ATES development. This case evidenced a trade-off between the thermal efficiency of individual systems and the collective energy savings realized by ATES systems within a given area, which had already been suggested by other research (e.g. Sommer et al., 2015). These results also indicated that current layout guidelines may be overly conservative, and limit the adoption of new systems. The present study extends this approach to a case study of ATES planning in the city centre of Utrecht, in the Netherlands. This case is

  14. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  15. ATES Smart Grids research project overview and first results

    NASA Astrophysics Data System (ADS)

    Bloemendal, Martin; Jaxa-Rozen, Marc; Rostampour, Vahab

    2016-04-01

    Background: ATES is application is growing Application of seasonal Aquifer Thermal Energy Storage (ATES) contributes to energy saving and Greenhouse Gas (GHG)-reduction goals (CBS, 2015; EU, 2010, 2014). Recently it was shown that ATES is applicable in several parts of the world (Bloemendal et al., 2015). While in most parts of the world adoption is just beginning, in the Netherlands progressive building energy efficiency regulation already caused the adoption of ATES to take off (Heekeren and Bakema, 2015; Sommer et al., 2015). As a result of the large number of ATES systems in the Netherlands, the subsurface plays a crucial role in the energy saving objectives of The Netherlands (Kamp, 2015; SER, 2013). Problem: suboptimal use of the subsurface for energy storage ATES systems accumulate in urban areas, as can be expected with a large growth of ATES systems; at many locations in Dutch cities demand for ATES transcends the available space in the subsurface (Li, 2014; Sommer et al., 2015). Within in the Dutch legal framework and state of technology optimal use of the subsurface is not secured; i.e. minimizing the total GHG emissions in a certain area. (Bloemendal et al., 2014; Li, 2014). The most important aspects in this problem are A) the permanent and often unused claim resulting from static permits and B) excessive safety zones around wells to prevent interaction. Both aspects result in an artificial reduction of subsurface space for potential new ATES systems. Recent research has shown that ground energy storage systems could be placed much closer to each other (Bakr et al., 2013; Sommer et al., 2015), and a controlled/limited degree of interaction between them can actually benefit the overall energy savings of an entire area. Solution: the approach and first results of our research project on ATES Smart Grids The heating and cooling demand of buildings is a dynamic and hard to predict process, due to effects such as weather, climate change, changing function

  16. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  17. ...And Kronos Ate His Sons

    NASA Astrophysics Data System (ADS)

    Vitiello, Giuseppe

    In closed systems, energy is conserved. The origin of the time axis is completely arbitrary due to the invariance under continuous time-translations. The flowing of time swallows those fictitious origins one might assign on its axis, as Kronos ate his sons. Dissipation breaks such a scenario. It implies a non-forgettable origin of time. Open systems need their complement (their "double") in order to become, together, a closed system. Time emerges as an observable measured by the evolution of the open system complement, which acts as a clock. The conservation of the energy-momentum tensor in electrodynamics is considered and its relation with dissipative systems and self-similar fractal structures is discussed. The isomorphism with coherent states in quantum field theory (QFT) is established and the generator of transitions among unitarily inequivalent representations of the canonical commutation relations (CCR) is shown to provide sequences in time of phases, which defines the arrow of time. Merging properties of electrodynamics, fractal self-similarity, dissipation and coherent states point to an integrated vision of Nature.

  18. Study to Analyze the Acquisition of Automatic Test Equipment (ATE) Systems. Data Sequence Number A003

    DTIC Science & Technology

    1973-12-27

    Systems Test Equipment Comparator, ASTEC ) at NAEC can provide a very accurate Ion a pin by pin basis) match between the UUT and ATE in their data bank...In addition, abbreviated summary data on the ATE is also available to users. ASTEC will also file the UUT data as part of its data bank so that

  19. ATE accomplishes receiver specification testing with increased speed and throughput

    NASA Astrophysics Data System (ADS)

    Moser, S. A.

    1982-12-01

    The use of automatic test equipment (ATE) for receiver specifications testing can result in a 90-95% reduction of test time, with a corresponding reduction of labor costs due both to the reduction of personnel numbers and a simplification of tasks that permits less skilled personnel to be employed. These benefits free high-level technicians for more challenging system management assignments. Accuracy and repeatability also improve with the adoption of ATE, since no possibility of human error can be introduced into the readings that are taken by the system. A massive and expensive software design and development effort is identified as the most difficult aspect of ATE implementation, since programming is both time-consuming and labor intensive. An attempt is therefore made by system manufacturers to conduct an integrated development program for both ATE system hardware and software.

  20. Analysis of reinjection problems at the Stony Brook ATES field test site

    NASA Astrophysics Data System (ADS)

    Supkow, D. J.; Shultz, J. A.

    1982-12-01

    Aquifer Thermal Energy Storage (ATES) is one of several energy storage technologies being investigated by the DOE to determine the feasibility of reducing energy consumption by means of energy management systems. The State University of New York, (SUNY) Stony Brook, Long Island, New York site was selected by Battelle PNL for a Phase 1 investigation to determine the feasibility of an ATES demonstration to seasonally store chill energy by injecting chilled water in the winter and recovering it at a maximum rate of 100 MBTU/hr (30 MW) in the summer. The Phase 1 study was performed during 1981 by Dames & Moore under subcontract to Batelle PLN. The pumping and injection tests were performed using two wells in a doublet configuration. Well PI-1 is a previously existing well and PI-2 was installed specifically for this investigation. Both wells are screened in the Upper Magothy aquifer from approximately 300 to 350 feet below ground surface. Nine observation wells were also installed as a portion of the investigation to monitor water level and aquifer temperature changes during the test.

  1. Results from a workshop on research needs for modeling aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Drost, M. K.

    1990-08-01

    A workshop an aquifer thermal energy storage (ATES) system modeling was conducted by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; the need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development.

  2. The Impact of ATE Centers

    ERIC Educational Resources Information Center

    Patton, Madeline

    2016-01-01

    The National Science Foundation's Advanced Technological Education (ATE) program gives two year college educators leadership roles in developing model technician education programs for advanced technology fields. Since the first ATE grants were awarded in 1993, community college educators across the nation have partnered with industry and other…

  3. Computer code for analyzing the performance of aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.

    1985-05-01

    A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.

  4. Aquifer thermal-energy-storage costs with a seasonal-chill source

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) ystem from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthly pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  5. Assessing the Impact and Effectiveness of the Advanced Technological Education (ATE) Program. 2004 Survey Results. Volume I: Evaluation of the ATE Program Design

    ERIC Educational Resources Information Center

    Hanssen, Carl E.; Gullickson, Arlen R.

    2004-01-01

    This report presents results from the fifth annual survey of Advanced Technological Education (ATE) projects, centers, and articulation partnerships. ATE has approximately 220 active awards. Of these, 163 ATE-funded projects, centers, and articulation partnerships were asked to participate in the 2004 survey. During the survey administration…

  6. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  7. A dimensionless parameter approach to the thermal behavior of an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.

    1982-09-01

    The purpose of aquifer thermal energy storage (ATES) site-characterization studies is to develop a general procedure whereby the energy recovery factor for a given site may be predicted readily for a wide range of operating conditions without doing detailed numerical simulations. The thermal behavior of a ATES system with steady radial fluid flow around a single injection/production well is discussed. Buoyancy flow is neglected, and the aquifer is confined above and below by impermeable confining layers.

  8. Anionic Palladium(0) and Palladium(II) Ate Complexes.

    PubMed

    Kolter, Marlene; Böck, Katharina; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2017-10-16

    Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L 3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br - ions to afford the anionic, zero-valent ate complex [L 3 PdBr] - . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L 3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the Pd II ate complex [L 2 Pd(Ar)I 2 ] - . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    NASA Astrophysics Data System (ADS)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  10. Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development.

    PubMed

    Wang, Junling; Pavlyk, Iuliia; Vedula, Pavan; Sterling, Stephanie; Leu, N Adrian; Dong, Dawei W; Kashina, Anna

    2017-10-01

    Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to regulate embryogenesis and actin cytoskeleton, however its functions in different physiological systems are not well understood. Here we analyzed the role of ATE1 in brain development and neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects in neuronal migration. Cultured Ate1 knockout neurons showed a reduction in the neurite outgrowth and the levels of doublecortin and F-actin in the growth cones. In wild type, ATE1 prominently localized to the growth cones, in addition to the cell bodies. Examination of the Ate1 mRNA sequence reveals the existence of putative zipcode-binding sequences involved in mRNA targeting to the cell periphery and local translation at the growth cones. Fluorescence in situ hybridization showed that Ate1 mRNA localized to the tips of the growth cones, likely due to zipcode-mediated targeting, and this localization coincided with spots of localization of arginylated β-actin, which disappeared in the presence of protein synthesis inhibitors. We propose that zipcode-mediated co-targeting of Ate1 and β-actin mRNA leads to localized co-translational arginylation of β-actin that drives the growth cone migration and neurite outgrowth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. An Analysis of the Effect of Surface Heat Exchange on the Thermal Behavior of an Idealized Aquifer Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Güven, O.; Melville, J. G.; Molz, F. J.

    1983-06-01

    Analytical expressions are derived for the temperature distribution and the mean temperature of an idealized aquifer thermal energy storage (ATES) system, taking into account the heat exchange at the ground surface and the finite thickness of the overlying layer above the storage aquifer. The analytical expressions for the mean temperature may be used to obtain rough estimates of first-cycle recovery factors for preliminary evaluations of shallow confined or unconfined ATES systems. The results, which are presented in nondimensional plots, indicate that surface heat exchange may have a significant influence on the thermal behavior of shallow ATES systems. Thus it is suggested that the effects of surface heat exchange should be considered carefully and included in the detailed analyses of such ATES systems.

  12. Thermal performance and heat transport in aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  13. Materials Requirements for Advanced Energy Systems - New Fuels. Volume 3: Materials Research Needs in Advanced Energy Systems Using New Fuels

    DTIC Science & Technology

    1974-07-01

    elec- Materials se: trode materials and associ- operational ated conductors. 2.5.1 General. H" (02) Materials resources Technoeconomic analysis - None...Advanced Energy Systems Using New Fnels VIII Correlation and Analysis of Materials Requirements IX Research Recommendations and Priorities The authois...of government and industrial organizal ions who gave us the benefit of their knowledge and experience. iv VIII CORRELATION ANU ANALYSIS OF MATERIALS

  14. Assessing the Impact and Effectiveness of the Advanced Technological Education (ATE) Program. Survey Results 2004. Volume III: Status of ATE Projects and Articulation Partnerships

    ERIC Educational Resources Information Center

    Coryn, Chris L.; Gullickson, Arlen R.; Hanssen, Carl E.

    2004-01-01

    The Advanced Technological Education (ATE) program is a federally funded program designed to educate technicians for the high-technology disciplines that drive the United State's economy. As stated in the ATE program guidelines, this program promotes improvement in technological education at the undergraduate and secondary school levels by…

  15. Methods for Aquifer Thermal Energy Storage planning; The hidden side of cities.

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, M.; Bloemendal, M.; Theo, O.

    2017-12-01

    Aquifer Thermal Energy Storage (ATES) systems reduce energy use and greenhouse gas emissions in urban areas, by supplying heating and cooling to buildings with a heat pump combined with seasonal heat storage in aquifers. The climactic and geohydrological conditions required for this technology can be found in many temperate regions around the world; In The Netherlands there are currently approximately 2,200 active systems. Despite this modest adoption level, many urban areas in the Netherlands already struggle to accommodate the subsurface claims needed to further develop ATES under current planning regulations. To identify best practices for ATES planning and maximize the technology's future potential, this work first reviews a set of 24 ATES-plans which were used for the spatial layout of ATES in various urban areas in The Netherlands and the method used to make those plans. This analysis revealed that three crucial elements are found to be missing in current ATES planning: i) a consistent assessment framework which can be used to compare the performance of different planning strategies; ii) a systematic adjustment of ATES design parameters to suit local conditions; iii) the identification and use of aquifer allocation thresholds to guide the choice of a planning strategy. All three steps are elaborated and added to the method. For the latter, these thresholds are identified by exploratory numerical modelling, using a coupled agent-based/geohydrological (MODFLOW) simulation to explore a broad range of scenarios for ATES design and layout parameters. The results give insight in how technical ATES-well design choices affect optimal use of subsurface space and in the trade-of between individual efficiency and overall emission reductions. The improved ATES-planning method now fosters planning and design rules ensuring optimal and sustainable use of subsurface space, i.e. maximizing energy saving by accommodating as much ATES systems as possible while maintaining

  16. Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.J.; Stewart, D.L.

    1988-03-01

    The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology maymore » have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.« less

  17. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response

    PubMed Central

    Kumar, Akhilesh; Birnbaum, Michael D; Patel, Devang M; Morgan, William M; Singh, Jayanti; Barrientos, Antoni; Zhang, Fangliang

    2016-01-01

    Arginyltransferase 1 (Ate1) mediates protein arginylation, a poorly understood protein posttranslational modification (PTM) in eukaryotic cells. Previous evidence suggest a potential involvement of arginylation in stress response and this PTM was traditionally considered anti-apoptotic based on the studies of individual substrates. However, here we found that arginylation promotes cell death and/or growth arrest, depending on the nature and intensity of the stressing factor. Specifically, in yeast, mouse and human cells, deletion or downregulation of the ATE1 gene disrupts typical stress responses by bypassing growth arrest and suppressing cell death events in the presence of disease-related stressing factors, including oxidative, heat, and osmotic stresses, as well as the exposure to heavy metals or radiation. Conversely, in wild-type cells responding to stress, there is an increase of cellular Ate1 protein level and arginylation activity. Furthermore, the increase of Ate1 protein directly promotes cell death in a manner dependent on its arginylation activity. Finally, we found Ate1 to be required to suppress mutation frequency in yeast and mammalian cells during DNA-damaging conditions such as ultraviolet irradiation. Our study clarifies the role of Ate1/arginylation in stress response and provides a new mechanism to explain the link between Ate1 and a variety of diseases including cancer. This is also the first example that the modulation of the global level of a PTM is capable of affecting DNA mutagenesis. PMID:27685622

  18. Application of multiple-point geostatistics to simulate the effect of small-scale aquifer heterogeneity on the efficiency of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke

    2015-08-01

    Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for aquifer thermal energy storage (ATES) systems and wells. Recent model studies indicate that meter-scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In a study site in Bierbeek, Belgium, the influence of centimeter-scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3-3.6 %) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6-10.2 %) on the energy output of the ATES system. It is concluded that it is important to incorporate small-scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.

  19. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  20. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Meyer, C. F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of aquifer thermal energy storage (ATES) technology. The guidelines assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES are discussed. Storage and transport subsystems and their expected performance and cost are described. A methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution.

  1. Field testing of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.; Allen, R. D.

    1984-03-01

    Results of field and laboratory studies of aquifer thermal energy storage (ATES) indicate both the problems and promise of the concept. Geohydrothermal modeling and field testing demonstrated the ability to recover substantial quantities of aquifer stored energy. However, the local hydrologic conditions play an important role in determining the recovery temperature and storage efficiency. Geochemistry is also an important factor, particularly for higher temperature ATES systems.

  2. Integration of Vocational and Academic Curricula through the NSF Advanced Technological Education Program (ATE).

    ERIC Educational Resources Information Center

    Bailey, Thomas R.; Matsuzuka, Yukari

    A study examined the impact of the Advanced Technological Education (ATE) program on efforts in academic and vocational integration. A case study of 10 community colleges housing ATE-funded projects collected data through interviews with administrators, faculty, ATE program practitioners, and faculty and administrators at collaborating high…

  3. Using Large-Scale Cooperative Control to Manage Operational Uncertainties for Aquifer Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, M.; Rostampour, V.; Kwakkel, J. H.; Bloemendal, M.

    2017-12-01

    Seasonal Aquifer Thermal Energy Storage (ATES) technology can help reduce the demand of energy for heating and cooling in buildings, and has become a popular option for larger buildings in northern Europe. However, the larger-scale deployment of this technology has evidenced some issues of concern for policymakers; in particular, recent research shows that operational uncertainties contribute to inefficient outcomes under current planning methods for ATES. For instance, systems in the Netherlands typically use less than half of their permitted pumping volume on an annual basis. This overcapacity gives users more flexibility to operate their systems in response to the uncertainties which drive building energy demand; these include short-term operational factors such as weather and occupancy, and longer-term, deeply uncertain factors such as changes in climate and aquifer conditions over the lifespan of the buildings. However, as allocated subsurface volume remains unused, this situation limits the adoption of the technology in dense areas. Previous work using coupled agent-based/geohydrological simulation has shown that the cooperative operation of neighbouring ATES systems can support more efficient spatial planning, by dynamically managing thermal interactions in response to uncertain operating conditions. An idealized case study with centralized ATES control thus showed significant improvements in the energy savings which could obtained per unit of allocated subsurface volume, without degrading the recovery performance of systems. This work will extend this cooperative approach for a realistic case study of ATES planning in the city of Utrecht, in the Netherlands. This case was previously simulated under different scenarios for individual ATES operation. The poster will compare these results with a cooperative case under which neighbouring systems can coordinate their operation to manage interactions. Furthermore, a cooperative game-theoretical framework will be

  4. Aquifer Thermal Energy Storage in the US

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1985-06-01

    DOE has funded investigation of Aquifer Thermal Energy Storage (ATES) since 1975. The scope of the ATES investigation has encompassed numerical modeling, field testing, economic analyses, and evaluation of institutional issues. ATES has received the bulk of the attention because of its widespread potential in the US. US efforts are now concentrated on a high temperature (up to 150C) ATES field test on the St. Paul campus of the University of Minnesota. Four short-term test cycles and the first of two long-term test cycles have been completed at this site. Utilization of chill ATES to meet summer air conditioning demands has been monitored at two operating sites in Tuscaloosa, Alabama. The systems utilize a cooling tower to directly chill groundwater pumped from a water table aquifer for storage in the same aquifer. The first of the two systems has exhibited relatively poor performance. More comprehensive monitoring has recently been undertaken at another site.

  5. Thermal energy storage with geothermal triplet for space heating and cooling

    NASA Astrophysics Data System (ADS)

    Bloemendal, Martin; Hartog, Niels

    2017-04-01

    Many governmental organizations and private companies have set high targets in avoiding CO2 emissions and reducing energy (Kamp, 2015; Ministry-of-Economic-affairs, 2016). ATES systems use groundwater wells to overcome the discrepancy in time between the availability of heat (during summer) and the demand for heat (during winter). Aquifer Thermal Energy Storage is an increasingly popular technique; currently over 2000 ATES systems are operational in the Netherlands (Graaf et al., 2016). High temperature ATES may help to improve performance of these conventional ATES systems. ATES systems use heat pumps to get the stored heat to the required temperature for heating of around 40-50°C and to produce the cold water for cooling in summer. These heat pumps need quite a lot of power to run; on average an ATES system produces 3-4 times less CO2 emission compared to conventional. Over 60% of those emission are accounted for by the heat pump (Dekker, 2016). This heat pump power consumption can be reduced by utilizing other sources of sustainable heat and cooling capacity for storage in the subsurface. At such operating temperatures the required storage temperatures do no longer match the return temperatures in the building systems. Therefore additional components and an additional well are required to increase the groundwater temperature in summer (e.g. solar collectors) and decrease it in winter (e.g. dry coolers). To prevent "pollution" of the warm and cold well return water from the building can be stored in a third well until weather conditions are suitable for producing the required storage temperature. Simulations and an economical evaluation show great potential for this type of aquifer thermal energy storage; economic performance is better than normal ATES while the emissions are reduce by a factor ten. At larger temperature differences, also the volume of groundwater required to pump around is much less, which causes an additional energy saving. Research now

  6. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    NASA Astrophysics Data System (ADS)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  7. Creating Robust Evaluation of ATE Projects

    ERIC Educational Resources Information Center

    Eddy, Pamela L.

    2017-01-01

    Funded grant projects all involve some form of evaluation, and Advanced Technological Education (ATE) grants are no exception. Program evaluation serves as a critical component not only for evaluating if a project has met its intended and desired outcomes, but the evaluation process is also a central feature of the grant application itself.…

  8. Temperature distribution by the effect of groundwater flow in an aquifer thermal energy storage system model

    NASA Astrophysics Data System (ADS)

    Shim, B.

    2005-12-01

    Aquifer thermal energy storage (ATES) can be a cost-effective and renewable energy source, depending on site-specific thermohydraulic conditions. To design an effective ATES system, the understanding of thermohydraulic processes is necessary. The heat transfer phenomena of an aquifer heat storage system are simulated with the scenario of heat pump operation of pumping and waste water reinjection in a two layered confined aquifer model having the effect of groundwater movement. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at both wells during simulation days. The average groundwater velocities are determined with two assumed hydraulic gradients set by boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions at three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.001 are shaped circular, and the center is moved less than 5 m to the east in 365 days. However at the hydraulic gradient of 0.01, the contour centers of the east well at each depth slice are moved near the east boundary and the movement of temperature distribution is increased at the lower aquifer. By the analysis of thermal interference data between two wells the efficiency of a heat pump operation model is validated, and the variation of heads is monitored at injection, pumping and stabilized state. The thermal efficiency of the ATES system model is represented as highly depended on groundwater flow velocity and direction. Therefore the hydrogeologic condition for the system site should be carefully surveyed.

  9. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  10. An analytical solution for modeling thermal energy transfer in a confined aquifer system

    NASA Astrophysics Data System (ADS)

    Shaw-Yang, Yang; Hund-der, Yeh

    2008-12-01

    A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.

  11. Model-based assessment of the potential of seasonal aquifer thermal energy storage and recovery as a groundwater ecosystem service for the Brussels-Capital Region

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Huysmans, Marijke

    2015-04-01

    Urban areas are characterized by their concentrated demand of energy, applying a high pressure on urban ecosystems including atmosphere, soils and groundwater. In the light of global warming, urbanization and an evolving energy system, it is important to know how urbanized areas can contribute to their own energy demands. One option is to use the possibilities aquifers offer as an ecosystem service (BONTE et al., 2011). If used effectively an improvement in air and groundwater quality is achieved. Additionally, the more efficient distribution of the used energy may also lead to a decrease in primary energy consumption (ZUURBIER, 2013). Therefore, investigations of the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is being conducted. The potential of ATES systems are of special interest for energy demands in high density urban areas because of such infrastructure as office buildings, schools, hospitals and shopping malls. In an open water circuit ATES systems consist of two or more groundwater wells, where in seasonal cycles one subtracts and the other recharges water to the aquifer. Heat pumps use the heat capacity of water for heating or cooling a building. An important limitation of the methodology is the quality of the groundwater used (i.e. precipitation of Fe- or Mn-oxides can decrease the yield). However, ATES systems on the other hand can also improve groundwater quality and groundwater ecosystems. The current knowledge of the potential for ATES systems in the Brussels-Capital Region is based on geological assessments from VITO (2007). The Brussels-Capital Region is divided into a western and eastern section with respect to geology. While the western part has less favorable conditions for ATES, the eastern is composed of the Brussels Sand formation, which is a 20-40 m thick aquifer layer that has the highest potential for ATES systems in the region. By applying groundwater flow and heat

  12. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  13. HydroClimATe: hydrologic and climatic analysis toolkit

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  14. Field experience with aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1987-11-01

    Aquifer thermal energy storage (ATES) has the potential to provide storage for large-scale building heating and cooling at many sites in the US. However, implementation requires careful attention to site geohydraulic and geochemical characteristics. Field tests in the US have shown the over 60% of the heat injected at temperatures over 100 C can be recovered on a seasonal cycle. Similarly, aquifer storage of shilled ground water can provide building cooling with annual cooling electrical energy reductions of over 50% and a reduction in summer peak cooling electrical usage by as much as a factor of 20. A number of projects have been built and operated around the world. China has installed numerous ATES systems in many major cities. Installations in Europe and Scandinavia are almost exclusively low-temperature heat storage systems that use heat pumps. Two high-temperature systems (over 100 C) are in operation or undergoing preliminary testing: one in Denmark, the other in France. Heat ATES often requires water treatment to prevent precipitation of calcium and magnesium carbonates. At some sites, consideration of other geochemical and microbiological issues (such as iron bacteria) must be resolved.

  15. Site-specific investigations on aquifer thermal energy storage for space and process cooling

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1991-08-01

    The Pacific Northwest Laboratory (PNL) has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low.

  16. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    NASA Astrophysics Data System (ADS)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  17. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    PubMed

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  18. Identifying the Local Impacts of National ATE Centers on Their Host Institutions: An Exploratory Study

    ERIC Educational Resources Information Center

    Henderson, Charles; Fynewever, Herb; Petcovic, Heather; Bierema, Andrea

    2012-01-01

    The purpose of this study is to identify the local impacts of national advanced technological education (ATE) centers on their host institutions. A sample of three mature, national ATE centers are chosen, with each center serving as a case for a mixed-methods, collective case study research design. Results, drawn from interviews and surveys,…

  19. Aquifer thermal energy (heat and chill) storage

    NASA Astrophysics Data System (ADS)

    Jenne, E. A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference (IECEC), held in San Diego, California, 3 - 7 Aug. 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  20. Female Participation in ATE-Funded Programs: A Ten-Year Trend

    ERIC Educational Resources Information Center

    Westine, Carl D.; Gullickson, Arlen R.; Wingate, Lori A.

    2010-01-01

    It is widely known that women are generally underrepresented in STEM disciplines (science, technology, engineering, and mathematics). The National Science Foundation (NSF) Advanced Technological Education (ATE) program has persistently worked to reduce this disparity. For example, the 2000 solicitation specified "increasing the participation of…

  1. Combination of aquifer thermal energy storage and enhanced bioremediation: Biological and chemical clogging.

    PubMed

    Ni, Zhuobiao; van Gaans, Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-02-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not yet clear. Of main concern is the potential for biological clogging which might be enhanced and hamper the proper functioning of ATES. On the other hand, more reduced conditions in the subsurface by enhanced bioremediation might lower the chance of chemical clogging, which is normally caused by Fe(III) precipitate. To investigate the possible effects of enhanced bioremediation on clogging with ATES, we conducted two recirculating column experiments with differing flow rates (10 and 50mL/min), where enhanced biological activity and chemically promoted Fe(III) precipitation were studied by addition of lactate and nitrate respectively. The pressure drop between the influent and effluent side of the column was used as a measure of the (change in) hydraulic conductivity, as indication of clogging in these model ATES systems. The results showed no increase in upstream pressure during the period of enhanced biological activity (after lactate addition) under both flow rates, while the addition of nitrate lead to significant buildup of the pressure drop. However, at the flow rate of 10mL/min, high pressure buildup caused by nitrate addition could be alleviated by lactate addition. This indicates that the risk of biological clogging is relatively small in the investigated areas of the mimicked ATES system that combines enhanced bioremediation with lactate as substrate, and furthermore that lactate may counter chemical clogging. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  3. The BAARA (Biological AutomAted RAdiotracking) System: A New Approach in Ecological Field Studies

    PubMed Central

    Řeřucha, Šimon; Bartonička, Tomáš; Jedlička, Petr; Čížek, Martin; Hlouša, Ondřej; Lučan, Radek; Horáček, Ivan

    2015-01-01

    Radiotracking is an important and often the only possible method to explore specific habits and the behaviour of animals, but it has proven to be very demanding and time-consuming, especially when frequent positioning of a large group is required. Our aim was to address this issue by making the process partially automated, to mitigate the demands and related costs. This paper presents a novel automated tracking system that consists of a network of automated tracking stations deployed within the target area. Each station reads the signals from telemetry transmitters, estimates the bearing and distance of the tagged animals and records their position. The station is capable of tracking a theoretically unlimited number of transmitters on different frequency channels with the period of 5–15 seconds per single channel. An ordinary transmitter that fits within the supported frequency band might be used with BAARA (Biological AutomAted RAdiotracking); an extra option is the use of a custom-programmable transmitter with configurable operational parameters, such as the precise frequency channel or the transmission parameters. This new approach to a tracking system was tested for its applicability in a series of field and laboratory tests. BAARA has been tested within fieldwork explorations of Rousettus aegyptiacus during field trips to Dakhla oasis in Egypt. The results illustrate the novel perspective which automated radiotracking opens for the study of spatial behaviour, particularly in addressing topics in the domain of population ecology. PMID:25714910

  4. Crystal structure of 3-amino-pyridinium 1'-carb-oxy-ferrocene-1-carboxyl-ate.

    PubMed

    Medved'ko, Aleksei V; Churakov, Andrei V; Yu, Haojie; Li, Wang; Vatsadze, Sergey Z

    2017-06-01

    The structure of the title salt, (C 5 H 7 N 2 )[Fe(C 6 H 4 O 2 )(C 6 H 5 O 2 )], consists of 3-amino-pyridinium cations and 1'-carb-oxy-ferrocene-1-carboxyl-ate monoanions. The ferrocenyl moiety of the anion adopts a typical sandwich structure, with Fe-C distances in the range 2.0270 (15)-2.0568 (17) Å. The anion possesses an eclipsed conformation, with the torsion angle φ (C subst -Cp cent -Cp cent - C subst ) equal to 66.0°. The conformations of other 1'-carb-oxy-ferrocene-1-carboxyl-ate monoanions are compared and analyzed on the basis of literature data.

  5. Aquifer thermal energy storage. International symposium: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less

  6. Regioselective 1,4- and 1,6-Conjugate Additions of Grignard Reagent-Derived Organozinc(II)ates to Polyconjugated Esters.

    PubMed

    Hatano, Manabu; Mizuno, Mai; Ishihara, Kazuaki

    2016-09-16

    Regioselective synthetic methods were developed for 1,4- and 1,6-conjugate additions of Grignard reagent-derived organozinc(II)ates to malonate-derived polyconjugated esters. By taking advantage of the tight ion-pair control of organozinc(II)ates, it was possible to switch between 1,4- and 1,6-conjugate additions by introducing a terminal ethoxy moiety in the conjugation.

  7. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    PubMed

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Seasonal thermal energy storage

    NASA Astrophysics Data System (ADS)

    Minor, J. E.

    1980-03-01

    The Seasonal Thermal Energy Storage (STES) Program demonstrates the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The STES Program utilizes ground water systems (aquifers) for thermal energy storage. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities.

  9. Development of Hybrid Courses Utilizing Modules as an Objective in ATE Projects

    ERIC Educational Resources Information Center

    Payne, James E.; Murphy, Richard M.; Payne, Linda L.

    2017-01-01

    Orangeburg-Calhoun Technical College (OCtech) has been awarded two National Science Foundation Advanced Technological Education (NSF-ATE) grants since 2011 that have the development of module-based hybrid courses in Engineering Technology and Mechatronics as objectives. In this article, the advantages and challenges associated with module-based…

  10. Power Budget Analysis for High Altitude Airships

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.

    2006-01-01

    The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.

  11. High altitude airship configuration and power technology and method for operation of same

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Elliott, Jr., James R. (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Chu, Sang-Hyon (Inventor)

    2011-01-01

    A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.

  12. Cost of heat from a seasonal source

    NASA Astrophysics Data System (ADS)

    Reilly, R. W.; Brown, D. R.; Huber, H. D.

    Results are reported of an investigation to estimate the cost of aquifer thermal energy storage (ATES) from a seasonal heat source. The cost of supplying energy (hot water) from an ATES system is estimated. Three types of loads are investigated: point demands, residential developments, and a multidistrict city. Several technical and economic factors are found to control the economic performance of an ATES system. Costs are found to be prohibitive for systems of small size, long transmission distances, and employing expensive purchased thermal energy. ATES is found to be cost-competitive with oil-fired and electric hot water delivery systems under a broad range of potential situations.

  13. Impacts of convection on high-temperature aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, Christof; Hintze, Meike; Bauer, Sebastian

    2016-04-01

    Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when

  14. Regional assessment of aquifers for thermal-energy storage. Volume 2: Regions 7 through 12

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the unglaciated central region, glaciated Appalachians, unglaciated Appalachians, coastal plain, Hawaii, and Alaska are discussed.

  15. Synthesis and crystallographic characterization of a mononuclear cobalt(III) complex possessing both thiol­ate and thio­ether donors: reactivity of an thiol­ate-bridged penta­nuclear Co2Ag3 complex with iodo­methane

    PubMed Central

    Fukuda, Yosuke; Yoshinari, Nobuto; Konno, Takumi

    2017-01-01

    Treatment of an S-bridged penta­nuclear AgI 3CoIII 2 complex, [Ag3{Co(L)}2]3+ [L 3– = N(CH2NHCH2CH2S−)3], in which two tris­(thiol­ate)-type mononuclear CoIII units ([Co(L)]) are bridged by three AgI ions through S atoms, with iodo­methane (CH3I) gave a new CoIII mononuclear complex, [Co(LMe2)]2+ [LMe2 − = N(CH2NHCH2CH2S−)(CH2NHCH2CH2SCH3)2], systematic name: {2-[(bis{[2-(methylsulfanyl)ethyl]aminomethyl}aminomethyl)amino]ethanethiolato}cobalt(III) bis(hexafluoridophosphate). This cationic complex was crystallized with PF6 − anions to form the title compound, [Co(LMe2)](PF6)2. In the [Co(LMe2)]2+ cation, two of three thiol­ate groups in [Co(L)] are methyl­ated while one thiol­ate group remains unreacted. Although a total of eight stereoisomers are possible for [Co(LMe2)]2+, only a pair of enanti­omers {ΛRR- and ΔSS-[Co(LMe2)]2+} are selectively formed. In the crystal, the complex cations and the PF­6 − anions are connected through weak N—H⋯F, C—H⋯F and C—H⋯S hydrogen bonds into a three-dimensional structure. Two F atoms in one PF6 anion are disordered over two sets of sites with refined occupancies of 0.61 (4) and 0.39 (4) and two F atoms in the other PF6 − anion are disordered over two sets of sites with occupancies of 0.5. PMID:28529774

  16. Advanced Technological Education (ATE) Program: Building a Pipeline of Skilled Workers. Policy Brief

    ERIC Educational Resources Information Center

    American Youth Policy Forum, 2010

    2010-01-01

    In the Fall of 2008, the American Youth Policy Forum hosted a series of three Capitol Hill forums showcasing the Advanced Technological Education (ATE) program supported by the National Science Foundation (NSF). The goal of these forums was to educate national policymakers about the importance of: (1) improving the science and math competencies of…

  17. Regional assessment of aquifers for thermal energy storage. Volume 1: Regions 1 through 6

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the western mountains, alluvial basins, Columbia LAVA plateau, Colorado plateau, high plains, and glaciated central region are discussed.

  18. Screening for suitable areas for Aquifer Thermal Energy Storage within the Brussels Capital Region, Belgium using coupled groundwater flow and heat transport modelling tools

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Kukral, Janik; Touhidul Mustafa, Syed Md; Huysmans, Marijke

    2017-04-01

    Urban areas have a great potential for shallow geothermal systems. Their energy demand is high, but currently they have only a limited potential to cover their own energy demand. The transition towards a low-carbon energy regime offers alternative sources of energy an increasing potential. Urban areas however pose special challenges for the successful exploitation of shallow geothermal energy. High building densities limit the available space for drillings and underground investigations. Urban heat island effects and underground structures influence the thermal field, groundwater pollution and competing water uses limit the available subsurface. To tackle these challenges in the Brussels Capital Region, Belgium two projects 'BruGeo' and the recently finished 'Prospective Research of Brussels project 2015-PRFB-228' address the investigation in urban geothermal systems. They aim to identify the key factors of the underground with respect to Aquifer Thermal Energy Storage (ATES) installations like thermal properties, aquifer thicknesses, groundwater flow velocities and their heterogeneity. Combined numerical groundwater and heat transport models are applied for the assessment of both open and closed loop shallow geothermal systems. The Brussels Capital Region comprises of the Belgian Capital, the City of Brussels and 18 other municipalities covering 161 km2 with almost 1.2 million inhabitants. Beside the high population density the Brussels Capital Region has a pronounced topography and a relative complex geology. This is both a challenge and an opportunity for the exploitation of shallow geothermal energy. The most important shallow hydrogeological formation in the Brussels-Capital Region are the Brussels Sands with the Brussels Sands Aquifer. Scenarios where developed using criteria for the hydrogeological feasibility of ATES installations such as saturated aquifer thickness, groundwater flow velocity and the groundwater head below surface. The Brussels Sands

  19. Growing the Profession: What the Association of Teacher Educators (ATE) Offers to Emerging Scholars

    ERIC Educational Resources Information Center

    Embry-Jenlink, Karen; Peace, Terrell M.

    2012-01-01

    Developing a scholarly, professional identity is one of the most difficult aspects of entering the field of higher education and teacher preparation. In this article, the authors describe the birth and success of Association of Teacher Educators' (ATE) Emerging Scholars program, a new program designed to help graduate students and those new to…

  20. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Zhang, Ai-Xia; Li, Hui-Chao

    2017-11-01

    Lots of two-dimensional (2D) materials have been predicted theoretically and further confirmed in experiments, and have wide applications in nanoscale electronic, optoelectronic and thermoelectric devices. In this work, the thermoelectric properties of ATeI (A = Sb and Bi) monolayers are systematically investigated according to semiclassical Boltzmann transport theory. It is found that spin-orbit coupling (SOC) has an important effect on the electronic transport coefficients of p-type doping, but a negative influence on n-type doping. The room-temperature sheet thermal conductance is 14.2 {{W}} {{{K}}}-1 for SbTeI and 12.6 {{W}} {{{K}}}-1 for BiTeI, which is lower than that of most well-known 2D materials, such as the transition-metal dichalcogenide, group IV-VI, group VA and group IV monolayers. The very low sheet thermal conductance of ATeI (A = Sb and Bi) monolayers is mainly due to their small group velocities and short phonon lifetimes. The strongly polarized covalent bonds between A and Te or I atoms induce strong phonon anharmonicity, which gives rise to low lattice thermal conductivity. It is found that the high-frequency optical branches contribute significantly to the total thermal conductivity, which is obviously different from the usual picture, where there is little contribution from the optical branches. According to cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP), it is difficult to further reduce the lattice thermal conductivity using nanostructures. Finally, the possible thermoelectric figure of merit ZT values of the ATeI (A = Sb and Bi) monolayers are calculated. It is found that p-type doping has much better thermoelectric properties than n-type doping. At room temperature, the peak ZT can reach 1.11 for SbTeI and 0.87 for BiTeI, respectively. These results make us believe that ATeI (A = Sb and Bi) monolayers may be potential 2D thermoelectric materials, which could stimulate further experimental work

  1. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study.

    PubMed

    Guo, San-Dong; Zhang, Ai-Xia; Li, Hui-Chao

    2017-11-03

    Lots of two-dimensional (2D) materials have been predicted theoretically and further confirmed in experiments, and have wide applications in nanoscale electronic, optoelectronic and thermoelectric devices. In this work, the thermoelectric properties of ATeI (A = Sb and Bi) monolayers are systematically investigated according to semiclassical Boltzmann transport theory. It is found that spin-orbit coupling (SOC) has an important effect on the electronic transport coefficients of p-type doping, but a negative influence on n-type doping. The room-temperature sheet thermal conductance is 14.2 [Formula: see text] for SbTeI and 12.6 [Formula: see text] for BiTeI, which is lower than that of most well-known 2D materials, such as the transition-metal dichalcogenide, group IV-VI, group VA and group IV monolayers. The very low sheet thermal conductance of ATeI (A = Sb and Bi) monolayers is mainly due to their small group velocities and short phonon lifetimes. The strongly polarized covalent bonds between A and Te or I atoms induce strong phonon anharmonicity, which gives rise to low lattice thermal conductivity. It is found that the high-frequency optical branches contribute significantly to the total thermal conductivity, which is obviously different from the usual picture, where there is little contribution from the optical branches. According to cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP), it is difficult to further reduce the lattice thermal conductivity using nanostructures. Finally, the possible thermoelectric figure of merit ZT values of the ATeI (A = Sb and Bi) monolayers are calculated. It is found that p-type doping has much better thermoelectric properties than n-type doping. At room temperature, the peak ZT can reach 1.11 for SbTeI and 0.87 for BiTeI, respectively. These results make us believe that ATeI (A = Sb and Bi) monolayers may be potential 2D thermoelectric materials, which could stimulate further experimental

  2. Raising the Profile of Innovative Teaching in Higher Education? Reflections on the EquATE Project

    ERIC Educational Resources Information Center

    Robson, Sue; Wall, Kate; Lofthouse, Rachel

    2013-01-01

    This paper presents a methodology developed by members of the Research Centre for Learning and Teaching (RCfLAT) to collaborate with university teaching colleagues to produce theoretically- and pedagogically-based case studies of innovations in teaching and learning. The Equal Acclaim for Teaching Excellence (EquATE) project investigates…

  3. Study of Aquifer Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Okuyama, Masaaki; Umemiya, Hiromichi; Shibuya, Ikuko; Haga, Eiji

    Yamagata University 'Aquifer Thermal Energy Storage (ATES)' is the experimental system which has been running since 1982. From the results for along terms of experiments, we obtain many important knowledge. This paper presents the accomplishments for 16 years and the characteristics of thermal energy storage in thermal energy storage well. The conclusions show as follows. 1)In recent years, the thermal recovery factor of warm energy storage well becomes almost constant at about 60%. 2) The thermal recovery factor of cool energy storage well increases gradually and becomes at about 15%. 3) Since the ferric colloidal dam is formed in aquifer, thermal recovery factor increase year after year. 4) Back wash can remove clogging for ferric colloidal dam. 5) The apparent thermal diffusivity decrease gradually due to ferric colloidal dam.

  4. Suburban heat island effect in groundwater energy utilisation in Nordic climate - case study

    NASA Astrophysics Data System (ADS)

    Arola, Teppo

    2017-04-01

    We present the preliminary results from the initial thermogeological characterization of Finland's first-ever planned large-scale aquifer thermal energy storage (ATES) facility. The site is located in the Asko area (Lahti), at a latitude of 60°59'N. In particular, emphasis is put on the results from an aquifer's pumping test performed in July / August 2016 to investigate the potential implication of suburban heat island (SUHI) effect to ATES system on the naturally cold groundwater area. The site has been under geological investigation since July 2015. At a regional scale, the groundwater's natural temperature is about 5.8- 6°C. However, preliminary measurements during the investigations revealed that local groundwater temperature ranged between 7.5 to 8.7 °C in Asko area. The highest temperature was observed underneath buildings, suggesting that higher-than-average temperature is most likely influenced due to anthropogenic heat flux into the ground. The pumping test was performed for 39 days, of which 28 days with groundwater withdrawal and 11 days of heads recovery. The pumped volumes range from 350 to 540 m3/d leading the total volume of 10400 m3 of groundwater. Groundwater temperatures were continuously measured from pumping test well and two observation piezometers during the entire test. The results indicated that aquifer's temperature remained nearly constant being between 7.4 to 7.9 °C during the test period. Heat pulses with temperature variation of 0.1 to 0.3 °C were observed in the pumping well and nearest monitoring well (19 meters from pumping well) during the pumping test and recovery phase. We estimate that the pulses were due to rapidly changed groundwater flowing conditions and pulse indicate "new groundwater" flow to the well. Overall, the preliminary test suggests that groundwater temperature are expected to remain elevated during the ATES system operation. Elevated temperature due the SUHI effect increases groundwater heating potential

  5. MotivATE: A Pretreatment Web-Based Program to Improve Attendance at UK Outpatient Services Among Adults With Eating Disorders.

    PubMed

    Muir, Sarah; Newell, Ciarán; Griffiths, Jess; Walker, Kathy; Hooper, Holly; Thomas, Sarah; Thomas, Peter W; Arcelus, Jon; Day, James; Appleton, Katherine M

    2017-07-26

    In the UK, eating disorders affect upward of 725,000 people per year, and early assessment and treatment are important for patient outcomes. Around a third of adult outpatients in the UK who are referred to specialist eating disorder services do not attend, which could be related to patient factors related to ambivalence, fear, and a lack of confidence about change. This lack of engagement has a negative impact on the quality of life of patients and has implications for service costs. To describe the development of a Web-based program ("MotivATE") designed for delivery at the point of referral to an eating disorder service, with the aim of increasing service attendance. We used intervention mapping and a person-based approach to design the MotivATE program and conducted a needs assessment to determine the current impact of service nonattendance on patients (via a review of the qualitative evidence) and services (through a service provision survey to understand current issues in UK services). Following the needs assessment, we followed the five steps of program development outlined by Bartholomew et al (1998): (1) creating a matrix of proximal program objectives; (2) selecting theory-based intervention methods and strategies; (3) designing and organizing the program; (4) specifying adoption and implementation plans; and (5) generating program evaluation plans. The needs assessment identified current nonattendance rates of 10%-32%. We defined the objective of MotivATE as increasing attendance rates at an eating disorder service and considered four key determinants of poor attendance: patient ambivalence about change, low patient self-efficacy, recognition of the need to change, and expectations about assessment. We chose aspects of motivational interviewing, self-determination theory, and the use of patient stories as the most appropriate ways to enable change. Think-aloud piloting with people with lived experience of an eating disorder resulted in positive feedback

  6. University of Minnesota Aquifer Thermal Energy Storage Field Test Facility

    NASA Astrophysics Data System (ADS)

    Walton, M.; Hoyer, M. C.

    1982-12-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) Field Test Facility became operational. Experiments demonstrated that the Franconia-Ironton-Galesville aquifer will accept injection of 300 gpm (18.9 1 sec (-1)) at reasonable pressures with a heat buildup in the injection well of about 44 psi (31.6 m) over 8 days. Heating of the ground water caused precipitation of carbonate in the piping and injection well, but with proper water conditioning, the system will work satisfactorily at elevated temperatures.

  7. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov Websites

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  8. Energy Systems Integration Facility Control Room | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy Systems Integration Facility Control Room Energy Systems Integration Facility Control Room The Energy Systems Integration Facility control room allows system engineers as the monitoring point for the facility's integrated safety and control systems. Photo of employees

  9. Exploration of NSF-ATE Projects Approaches in the Integration of Technology and Engineering Education at the K-12 Levels

    ERIC Educational Resources Information Center

    Strobel, Johannes; Mendoza Díaz, Noemi V.

    2012-01-01

    Access to post-secondary education, specifically in the technical, two-year institution area, is a topic of growing interest in the country. Funding agencies, such as NSF, via the Advanced Technological Education Program (ATE), are supporting initiatives and research aimed at increasing the number of technicians and engineers and improving…

  10. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    NREL News Energy Systems Integration News A monthly recap of the latest happenings at the Energy Systems Integration Facility and developments in energy systems integration (ESI) research at NREL ; said Vahan Gevorgian, chief engineer with NREL's Power Systems Engineering Center. "Results of

  11. Subscribe to the Energy Systems Integration Newsletter | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Subscribe to the Energy Systems Integration Newsletter Subscribe to the Energy Systems Integration Newsletter Subscribe to receive regular updates on what's happening at the Energy Systems Integration Facility and in energy systems integration research at NREL and around

  12. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  13. Aquifer Thermal Energy Storage : A Well Doublet Experiment at Increased Temperatures

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Melville, J. G.; Parr, A. D.; King, D. A.; Hopf, M. T.

    1983-02-01

    The two main objectives of this communication are to present a study of potential advantages and disadvantages of the doublet supply-injection well configuration in an aquifer thermal energy storage (ATES) system and to report on aquifer storage problems with injection temperatures in the 80°C range. A 3-month injection-storage-recovery cycle followed by a 7.3-month cycle constituted the main experiment. The injection volumes were 25,402 m3 and 58,063 m3 at average temperatures of 58.5°C and 81°C respectively. Unlikely previous experiments at the Mobile site, no clogging of the injection well due to clay particle swelling, dispersion, and migration was observed. This is attributed to the fact that the supply water used for injection contained a cation concentration equal to or slightly greater than that in the native groundwater. For cycles I and II, the fraction of injected energy recovered in a volume of water equal to the injection volume was 0.56 and 0.45 respectively. Both groundwater temperature and tracer data support the conclusion that this relatively low recovery was due to the detrimental effects of free thermal convection, possibly augmented by longitudinal zones of high permeability. Construction of a partially penetrating recovery well improved recovery efficiency but is not thought to be an adequate solution to thermal stratification. A maximum increase of 1.24 cm in relative land surface elevation was recorded near the end of second cycle injection. The engineering implications of such an elevation change would have to be considered, especially if an ATES system were being designed in an urban environment. A third cycle was started at the Mobile site on April 7, 1982. This final experiment contains a partially penetrating, dual-recovery well system which is expected to maximize energy recovery from a thermally stratified storage aquifer.

  14. Diagnosis - Using automatic test equipment and artificial intelligence expert systems

    NASA Astrophysics Data System (ADS)

    Ramsey, J. E., Jr.

    Three expert systems (ATEOPS, ATEFEXPERS, and ATEFATLAS), which were created to direct automatic test equipment (ATE), are reviewed. The purpose of the project was to develop an expert system to troubleshoot the converter-programmer power supply card for the F-15 aircraft and have that expert system direct the automatic test equipment. Each expert system uses a different knowledge base or inference engine, basing the testing on the circuit schematic, test requirements document, or ATLAS code. Implementing generalized modules allows the expert systems to be used for any different unit under test. Using converted ATLAS to LISP code allows the expert system to direct any ATE using ATLAS. The constraint propagated frame system allows for the expansion of control by creating the ATLAS code, checking the code for good software engineering techniques, directing the ATE, and changing the test sequence as needed (planning).

  15. MotivATE: A Pretreatment Web-Based Program to Improve Attendance at UK Outpatient Services Among Adults With Eating Disorders

    PubMed Central

    Newell, Ciarán; Griffiths, Jess; Walker, Kathy; Hooper, Holly; Thomas, Sarah; Thomas, Peter W; Arcelus, Jon; Day, James; Appleton, Katherine M

    2017-01-01

    Background In the UK, eating disorders affect upward of 725,000 people per year, and early assessment and treatment are important for patient outcomes. Around a third of adult outpatients in the UK who are referred to specialist eating disorder services do not attend, which could be related to patient factors related to ambivalence, fear, and a lack of confidence about change. This lack of engagement has a negative impact on the quality of life of patients and has implications for service costs. Objective To describe the development of a Web-based program (“MotivATE”) designed for delivery at the point of referral to an eating disorder service, with the aim of increasing service attendance. Methods We used intervention mapping and a person-based approach to design the MotivATE program and conducted a needs assessment to determine the current impact of service nonattendance on patients (via a review of the qualitative evidence) and services (through a service provision survey to understand current issues in UK services). Following the needs assessment, we followed the five steps of program development outlined by Bartholomew et al (1998): (1) creating a matrix of proximal program objectives; (2) selecting theory-based intervention methods and strategies; (3) designing and organizing the program; (4) specifying adoption and implementation plans; and (5) generating program evaluation plans. Results The needs assessment identified current nonattendance rates of 10%-32%. We defined the objective of MotivATE as increasing attendance rates at an eating disorder service and considered four key determinants of poor attendance: patient ambivalence about change, low patient self-efficacy, recognition of the need to change, and expectations about assessment. We chose aspects of motivational interviewing, self-determination theory, and the use of patient stories as the most appropriate ways to enable change. Think-aloud piloting with people with lived experience of an

  16. Energy System Integration Facility Secure Data Center | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Energy System Integration Facility Secure Data Center Energy System Integration Facility Secure Data Center The Energy Systems Integration Facility's Secure Data Center provides

  17. What Is Energy Systems Integration? (Text Version) | Energy Systems

    Science.gov Websites

    Integration Facility | NREL What Is Energy Systems Integration? (Text Version) What Is Energy Systems Integration? (Text Version) This is a text version of the video "What Is Energy Systems

  18. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  19. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  20. Breakfast habits among adolescents and their association with daily energy and fish, vegetable, and fruit intake: a community-based cross-sectional study.

    PubMed

    Sugiyama, Shinichi; Okuda, Masayuki; Sasaki, Satoshi; Kunitsugu, Ichiro; Hobara, Tatsuya

    2012-09-01

    To investigate breakfast eating habits on daily energy and fish, vegetable, and fruit intake in Japanese adolescents. This study was completed as part of the Shunan Child Health Cohort Study. Two types of questionnaires, one on lifestyle habits and the other a brief-type, self-administered questionnaire on diet history, were administered to second-year junior high school students (1,876 boys and 1,759 girls) in Shunan City, Yamaguchi, Japan. The different breakfast habits were compared using the general linear model and the estimated means and P value for trend were calculated, with energy-adjusted food intake as the dependent variable and body mass index, gender, age, residential areas, and living status as covariates. In both males and females, the proportion of those who ate breakfast irregularly was about 10%. The daily intake of fish, vegetables, and fruit was significantly higher in those who ate breakfast with their guardians than in those who ate breakfast alone (P for trend <0.01). The daily intake of fish, seafood, and vegetables was significantly higher in those who less frequently ate cooked foods for breakfast (P for trend <0.01). Those who ate rice more frequently than bread at breakfast had a higher daily intake of fish, seafood, and vegetables (P for trend <0.01). Eating breakfast with the family, reducing the intake of cooked foods at breakfast, and eating breakfast with rice as a main staple food are suggested to contribute to an improved quality of diet in adolescents.

  1. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    -matter experts to develop cyber-physical systems security testing methodologies and resilience best the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly

  3. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  4. Mathematical Modelling-Based Energy System Operation Strategy Considering Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-Hyung; Hodge, Bri-Mathias

    2016-06-25

    Renewable energy resources are widely recognized as an alternative to environmentally harmful fossil fuels. More renewable energy technologies will need to penetrate into fossil fuel dominated energy systems to mitigate the globally witnessed climate changes and environmental pollutions. It is necessary to prepare for the potential problems with increased proportions of renewable energy in the energy system, to prevent higher costs and decreased reliability. Motivated by this need, this paper addresses the operation of an energy system with an energy storage system in the context of developing a decision-supporting framework.

  5. Crystal structure of (7-methyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbo­di­thio­ate

    PubMed Central

    Roopashree, K. R.; Meenakshi, T. G.; Kumar, K. Mahesh; Kotresh, O.; Devarajegowda, H. C.

    2015-01-01

    In the title compound, C17H19NO2S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.0383 (28) Å, and the piperidine ring adopts a chair conformation. The 2H-chromene ring makes dihedral angles of 32.89 (16) and 67.33 (8)°, respectively, with the mean planes of the piperidine ring and the carbodi­thio­ate group. In the crystal, C—H⋯O and weak C—H⋯S hydrogen bonds link the mol­ecules into chains along [001]. The crystal structure also features C—H⋯π and π–π inter­actions, with a centroid–centroid distance of 3.7097 (17) Å. PMID:26396821

  6. Relationship between mean daily energy intake and frequency of consumption of out-of-home meals in the UK National Diet and Nutrition Survey.

    PubMed

    Goffe, Louis; Rushton, Stephen; White, Martin; Adamson, Ashley; Adams, Jean

    2017-09-22

    Out-of-home meals have been characterised as delivering excessively large portions that can lead to high energy intake. Regular consumption is linked to weight gain and diet related diseases. Consumption of out-of-home meals is associated with socio-demographic and anthropometric factors, but the relationship between habitual consumption of such meals and mean daily energy intake has not been studied in both adults and children in the UK. We analysed adult and child data from waves 1-4 of the UK National Diet and Nutrition Survey using generalized linear modelling. We investigated whether individuals who report a higher habitual consumption of meals out in a restaurant or café, or takeaway meals at home had a higher mean daily energy intake, as estimated by a four-day food diary, whilst adjusting for key socio-demographic and anthropometric variables. Adults who ate meals out at least weekly had a higher mean daily energy intake consuming 75-104 kcal more per day than those who ate these meals rarely. The equivalent figures for takeaway meals at home were 63-87 kcal. There was no association between energy intake and frequency of consumption of meals out in children. Children who ate takeaway meals at home at least weekly consumed 55-168 kcal more per day than those who ate these meals rarely. Additionally, in children, there was an interaction with socio-economic position, where greater frequency of consumption of takeaway meals was associated with higher mean daily energy intake in those from less affluent households than those from more affluent households. Higher habitual consumption of out-of-home meals is associated with greater mean daily energy intake in the UK. More frequent takeaway meal consumption in adults and children is associated with greater daily energy intake and this effect is greater in children from less affluent households. Interventions seeking to reduce energy content through reformulation or reduction of portion sizes in restaurants

  7. Study of ATES thermal behavior using a steady flow model

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Hellstroem, G.; Tsang, C. F.; Claesson, J.

    1981-01-01

    The thermal behavior of a single well aquifer thermal energy storage system in which buoyancy flow is neglected is studied. A dimensionless formulation of the energy transport equations for the aquifer system is presented, and the key dimensionless parameters are discussed. A simple numerical model is used to generate graphs showing the thermal behavior of the system as a function of these parameters. Some comparisons with field experiments are given to illustrate the use of the dimensionless groups and graphs.

  8. Energy Systems Integration Facility Insight Center | Energy Systems

    Science.gov Websites

    simulation data. Photo of researchers studying data on a 3-D power system profile depicting the interaction of renewable energy resources on the grid. Capabilities The Insight Center offers the following Integration Facility Insight Center Located adjacent to the Energy System Integration Facility's High

  9. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    the electric grid. These control systems will enable real-time coordination between distributed energy with real-time voltage and frequency control at the level of the home or distributed energy resource least for electricity. A real-time connection to weather forecasts and energy prices would allow the

  10. Energy-Systems Economic Analysis

    NASA Technical Reports Server (NTRS)

    Doane, J.; Slonski, M. L.; Borden, C. S.

    1982-01-01

    Energy Systems Economic Analysis (ESEA) program is flexible analytical tool for rank ordering of alternative energy systems. Basic ESEA approach derives an estimate of those costs incurred as result of purchasing, installing and operating an energy system. These costs, suitably aggregated into yearly costs over lifetime of system, are divided by expected yearly energy output to determine busbar energy costs. ESEA, developed in 1979, is written in FORTRAN IV for batch execution.

  11. Initial study of thermal energy storage in unconfined aquifers. [UCATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haitjema, H.M.; Strack, O.D.L.

    1986-04-01

    Convective heat transport in unconfined aquifers is modeled in a semi-analytic way. The transient groundwater flow is modeled by superposition of analytic functions, whereby changes in the aquifer storage are represented by a network of triangles, each with a linearly varying sink distribution. This analytic formulation incorporates the nonlinearity of the differential equation for unconfined flow and eliminates numerical dispersion in modeling heat convection. The thermal losses through the aquifer base and vadose zone are modeled rather crudely. Only vertical heat conduction is considered in these boundaries, whereby a linearly varying temperature is assumed at all times. The latter assumptionmore » appears reasonable for thin aquifer boundaries. However, assuming such thin aquifer boundaries may lead to an overestimation of the thermal losses when the aquifer base is regarded as infinitely thick in reality. The approach is implemented in the computer program UCATES, which serves as a first step toward the development of a comprehensive screening tool for ATES systems in unconfined aquifers. In its present form, the program is capable of predicting the relative effects of regional flow on the efficiency of ATES systems. However, only after a more realistic heatloss mechanism is incorporated in UCATES will reliable predictions of absolute ATES efficiencies be possible.« less

  12. Energy-Water Nexus and Energy Systems Integration | Energy Systems

    Science.gov Websites

    on a new area of research geared at finding ways to balance our water use for power systems. Photo of a body of water NREL's research explores the relationship between how much water is evaporated to spectrum. Learn more about NREL's energy-water nexus research. Team with us on water-energy nexus research

  13. Nematomorph parasites drive energy flow through a riparian ecosystem

    USGS Publications Warehouse

    Sato, Takuya; Wtanabe, Katsutoshi; Kanaiwa, Minoru; Niizuma, Yasuaki; Harada, Yasushi; Lafferty, Kevin D.

    2011-01-01

    Parasites are ubiquitous in natural systems and ecosystem-level effects should be proportional to the amount of biomass or energy flow altered by the parasites. Here we quantified the extent to which a manipulative parasite altered the flow of energy through a forest-stream ecosystem. In a Japanese headwater stream, camel crickets and grasshoppers (Orthoptera) were 20 times more likely to enter a stream if infected by a nematomorph parasite (Gordionus spp.), corroborating evidence that nematomorphs manipulate their hosts to seek water where the parasites emerge as free-living adults. Endangered Japanese trout (Salvelinus leucomaenis japonicus) readily ate these infected orthopterans, which due to their abundance, accounted for 60% of the annual energy intake of the trout population. Trout grew fastest in the fall, when nematomorphs were driving energy-rich orthopterans into the stream. When infected orthopterans were available, trout did not eat benthic invertebrates in proportion to their abundance, leading to the potential for cascading, indirect effects through the forest-stream ecosystem. These results provide the first quantitative evidence that a manipulative parasite can dramatically alter the flow of energy through and across ecosystems.

  14. Energy balance in man measured by direct and indirect calorimetry.

    PubMed

    Webb, P; Annis, J F; Troutman, S J

    1980-06-01

    In six 24-hr measurements of energy balance, direct and indirect calorimetry agreed within +/-3%, which is probably the range of experimental error. But in seven other 24-hr periods there was disagreement in the range of 8 to 23%, and these were usually days when the subjects ate much less than they spent metabolically. Our direct calorimeter is an insulated, water cooled suit. Continous measurements of O2 consumption and CO2 production provided data on metabolic expenditure (M) by indirect calorimetry. The 24-hr values for M matched the energy losses within +/-60 kcal (+/-3% of M) in four men who rested all day and lay down to sleep at night. Similar agreement was seen in one of the four who worked on a treadmill for 4 hr and stayed busy all day. but in another energy losses were 342 kcal greater than M (10% of M). When the experiments gave values for M minus the losses greater than +/-60 kcal, this is called "unmeasured energy". In further experiments, two subjects stayed awake for 24 hr, and their unmeasured energies were 279 and 393 kcal. The same two men, eating sparingly, also worked for 24 hr so as to double their resting metabolic expenditures; the unmeasured energies were even larger, 380 and 958 kcal. When they repeated the 24 hr of mild work, but ate nearly as much as they spent metabolically, one man was near energy balance, while the other showed an unmeasured energy of -363 kcal. Little heat storage was evident in these experiments; therefore, heat balance was present and energy balance should have been present. In the group of 13 experiments, it appeared that the greater the food deficit, the larger was the unmeasured energy (excess of metabolic expenditure over loss of energy).

  15. Steady flow model user's guide

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.

    1984-07-01

    Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.

  16. Multisource energy system project

    NASA Astrophysics Data System (ADS)

    Dawson, R. W.; Cowan, R. A.

    1987-03-01

    The mission of this project is to investigate methods of providing uninterruptible power to Army communications and navigational facilities, many of which have limited access or are located in rugged terrain. Two alternatives are currently available for deploying terrestrial stand-alone power systems: (1) conventional electric systems powered by diesel fuel, propane, or natural gas, and (2) alternative power systems using renewable energy sources such as solar photovoltaics (PV) or wind turbines (WT). The increased cost of fuels for conventional systems and the high cost of energy storage for single-source renewable energy systems have created interest in the hybrid or multisource energy system. This report will provide a summary of the first and second interim reports, final test results, and a user's guide for software that will assist in applying and designing multi-source energy systems.

  17. Effect of skipping breakfast on subsequent energy intake.

    PubMed

    Levitsky, David A; Pacanowski, Carly R

    2013-07-02

    The objective was to examine the effect of consuming breakfast on subsequent energy intake. Participants who habitually ate breakfast and those who skipped breakfast were recruited for two studies. Using a randomized crossover design, the first study examined the effect of having participants consume either (a) no breakfast, (b) a high carbohydrate breakfast (335 kcals), or (c) a high fiber breakfast (360 kcals) on three occasions and measured ad libitum intake at lunch. The second study again used a randomized crossover design but with a larger, normal carbohydrate breakfast consumed ad libtum. Intake averaged 624 kcals and subsequent food intake was measured throughout the day. Participants ate only foods served from the Cornell Human Metabolic Research Unit where all foods were weighed before and after consumption. In the first study, neither eating breakfast nor the kind of breakfast consumed had an effect on the amount consumed at lunch despite a reduction in hunger ratings. In the second study, intake at lunch as well as hunger ratings were significantly increased after skipping breakfast (by 144 kcal), leaving a net caloric deficit of 408 kcal by the end of the day. These data are consistent with published literature demonstrating that skipping a meal does not result in accurate energy compensation at subsequent meals and suggests that skipping breakfast may be an effective means to reduce daily energy intake in some adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. [Intakes of energy and macronutrients in pregnant women in the northeast of Mexico].

    PubMed

    Tijerina Sáenz, Alexandra; Ramírez López, Erik; Meneses Valderrama, Víctor Manuel; Martínez Garza, Nancy Edith

    2014-09-01

    Descriptive and transversal study, first to report the dietary intake of energy and macronutrients in pregnant women in the northeast of Mexico. Convenience sample of 125 pregnant women (15-45 years of age) in the third trimester, who were prenatal patients in the Hospital Regional Materno Infantil, Nuevo León, Mexico. It was reported the level of studies, marital and professional status, weight, height and body mass index (BMI). Diet was evaluated by 24-hour food recalls, in 3 non-consecutive days. There were analyzed the intake of energy and the percentage contribution of calories from macronutrients according to the recommendations of intake of pregnant women. Intake of energy was 1683,8 Cal/day. The caloric contribution of saturated fat was higher than the recommendation in 53.6% of women. 76.8% of participants ate more than 55% of energy from carbohydrates, while 86.4% ate more sugars than the amount suggested. The median intake of protein was 12.0% of total energy intake. 75% of participants consumed less than 22,5 g of total dietary fiber. The relevance of knowing the intakes of energy and macronutrients in pregnant women may be due to the possible influence of diet over the child's appetite and maternal complications. Results of this study suggest the need to provide women with adequate nutritional recommendations since the first trimester of gestation, according to their nutritional status and social environment.

  19. What is Energy Systems Integration?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Ben; Lundstrom, Blake; Hannegan, Bryan

    2016-10-14

    To achieve the most efficient, flexible, and reliable energy system, NREL’s Energy Systems Integration researchers work with manufacturers, utilities, and other research organizations to find solutions to big energy challenges. This video describes the concept of energy systems integration, an approach that explores ways for energy systems to work more efficiently on their own and with each other.

  20. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    by Google and the IEEE Power Electronics Society brought their inverters to NREL's Energy Systems , and others in the power electronics industry. NREL researchers have collaborated with Google and IEEE Power Electronics On October 8, the U.S. Department of Energy (DOE) announced the two universities

  1. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    NASA Astrophysics Data System (ADS)

    Walton, M.

    1991-10-01

    The technical feasibility of high-temperature (greater than 100 C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62 percent of the 9.47 GWh of energy added to the 9.21 x 10(exp 4) cu m of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108 C during the injection phase of LT1. Following heat recovery, temperatures were less than 30 C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site.

  2. Industrial energy systems and assessment opportunities

    NASA Astrophysics Data System (ADS)

    Barringer, Frank Leonard, III

    Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in

  3. What is Energy Systems Integration?

    ScienceCinema

    Kroposki, Ben; Lundstrom, Blake; Hannegan, Bryan; Symko-Davies, Martha

    2018-06-12

    To achieve the most efficient, flexible, and reliable energy system, NREL’s Energy Systems Integration researchers work with manufacturers, utilities, and other research organizations to find solutions to big energy challenges. This video describes the concept of energy systems integration, an approach that explores ways for energy systems to work more efficiently on their own and with each other.

  4. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  5. Biogeochemical impacts of aquifer thermal energy storage at 5, 12, 25 and 60°C investigated with anoxic column experiments

    NASA Astrophysics Data System (ADS)

    Bonte, M.; van Breukelen, B. M.; Van Der Wielen, P. W. J. J.; Stuyfzand, P. J.

    2012-04-01

    Aquifer thermal energy storage (ATES) uses groundwater to store energy for heating or cooling purposes in the built environment. ATES systems are often located in the same aquifers used for public drinking water supply, leading to urgent questions on its environmental impacts. This contribution presents the results of research on the biogeochemical impacts of ATES in anoxic column experiments at 5, 12, 25, and 60° C. In- and effluents are analyzed for major ions, trace elements, heavy metals, dissolved organic carbon (DOC) and UV extinction. Terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes and analysis of adenosine triphosphate (ATP) were used to detect changes in the microbiological population and activity. Results from the column experiments at 5, 25, and 60° C compared to the reference column at 12° C showed a number of changes in biogeochemical conditions: At 5° C, only changes were observed in alkalinity and calcium concentrations, resulting from calcite dissolution. The 25° C and 60° C column effluents from a sediment containing Fe-(hydr)oxides showed an increase in arsenic concentrations, well above the drinking water limit. This is due to either (reductive) dissolution of, or desorption from, iron(hydro)xides containing arsenic. In addition, at these two temperatures sulfate reduction occurred while this was undetectable at 5 and 12° C within the given timeframe (25 days) and analytical accuracy. The carbon source for sulfate reduction is inferred to be sedimentary organic carbon. Increasing DOC with residence time in the 60° C effluent suggests that at 60° C the terminal sulfate reduction step is rate limiting, while at 25° C the enzymatic hydrolization step in sulfate reducing bacteria is overall rate limiting. Specific ultraviolet absorption (SUVA, the ratio of UV extinction and DOC) however shows a clear decrease in reactivity of the humic acid fraction in DOC. This means that the DOC accumulation at 60° C could

  6. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2018-05-11

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  7. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  8. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  9. Smart energy management system

    NASA Astrophysics Data System (ADS)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  10. About Regional Energy Deployment System Model-ReEDS | Regional Energy

    Science.gov Websites

    Deployment System Model | Energy Analysis | NREL About Regional Energy Deployment System Model -ReEDS About Regional Energy Deployment System Model-ReEDS The Regional Energy Deployment System (ReEDS ) is a long-term, capacity-expansion model for the deployment of electric power generation technologies

  11. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  12. Aquifer thermal energy storage - A feasibility study for large scale demonstration

    NASA Astrophysics Data System (ADS)

    Skinner, W. V.; Supkow, D. J.

    Engineering procedures necessary for aquifer thermal energy storage (ATES), based on studies of the Magothy Aquifer on Long Island, NY, are presented, with chilled winter water pumped into the aquifer and reclaimed in summer months for air conditioning. The choice of aquifer involves necessary volume, flow rate, efficiency of thermal recovery, and avoidance of conflict with other users; utilization depends on choice of appropriate piping, heat exchangers, and well construction to prevent degradation of the aquifer. The methods employed to probe the Magothy for suitability are described, including drilling an asymmetric well cluster for observation, and 48 hr pumping and 8 hr recovery. Transmissivity was found to vary from 8,000 to 29,000 sq ft/day. A doublet well was then drilled and water withdrawn, chilled, and returned. Later withdrawal indicated a 46% thermal recovery, with computer models projecting 80% with additional cycling. The study verified the feasibility of ATES, which can be expanded with additional demand.

  13. Acceleration Tolerance After Ingestion of a Commercial Energy Drink

    DTIC Science & Technology

    2010-12-01

    with all of the ’energy’ingredients re- moved (i.e., no high - fructose corn syrup , B-vitamins, ginseng, guarana, L-carnitine, or taurine). In this paper...lerance durat ion. Keywords: caffeine, C tolerance, centrifuge. A DVANCED FIGHTER aircraft are capable of oper- -f1.ating in high -G environments and are...during a high -G aircraft ma- neuver to prevent G-induced loss of consciousness (GLOC). The inability to maintain and repeatedly per- form an AGSM can

  14. Design, performance, and analysis of an aquifer thermal-energy-storage experiment using the doublet-well configuration

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Melville, J. G.; Gueven, O.; Parr, A. D.

    1983-09-01

    In March 1980 Auburn University began a series of aquifer thermal energy storage (ATES) experiments using the doublet well configuration. The test site was in Mobile, Alabama. The objectives of the three experimental cycles were to demonstrate the technical feasibility of the ATES concept, to identify and resolve operational problems, and to acquire a data base for developing and testing mathematical models. Pre-injection tests were performed and analyses of hydraulic, geochemical, and thermodynamic data were completed. Three injection-storage-recovery cycles had injection volumes of 25,402 m(3), 58,010 m(3), and 58,680 m(3) and average injection temperatures of 58.50C, 81.00C. and 79.00C, respectively. The first cycle injection began in February 1981 and the third cycle recovery was completed in November 1982. Attributable to the doublet well configuration no clogging of injection wells occurred. Energy recovery percentages based on recovery volumes equal to the injection volumes were 56, 45, and 42%. Thermal convection effects were observed. Aquifer nonhomogeneity, not detectable using standard aquifer testing procedures, was shown to reduce recovery efficiency.

  15. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2018-01-16

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  16. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdahl, Sonja E

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  17. Supervisory Control and Data Acquisition System | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Supervisory Control and Data Acquisition System Supervisory Control supervisory control and data acquisition (SCADA) system monitors and controls safety systems and gathers real Energy Systems Integration Facility control room. The Energy Systems Integration Facility's SCADA system

  18. Living Systems Energy Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyagemore » from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.« less

  19. Energy systems transformation.

    PubMed

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  20. Fuel Distribution Systems | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Fuel Distribution Systems Fuel Distribution Systems The Energy Systems Integration Facility's integrated fuel distribution systems provide natural gas, hydrogen, and diesel throughout its laboratories in two laboratories: the Power Systems Integration Laboratory and the Energy Storage Laboratory. Each

  1. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    NASA Astrophysics Data System (ADS)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  2. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's integrated thermal distribution system consists of a thermal water loop connected to a research boiler and . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows

  3. A System of Systems Approach to the EU Energy System

    NASA Astrophysics Data System (ADS)

    Jess, Tom; Madani, Kaveh; Mahlooji, Maral; Ristic, Bora

    2016-04-01

    Around the world, measures to prevent dangerous climate change are being adopted and may change energy systems fundamentally. The European Union (EU) is committed to reducing greenhouse gas emission by 20% by 2020 and by 80-95% by 2050. In order to achieve this, EU member states aim to increase the share of renewables in the energy mix to 20% by 2020. This commitment comes as part of a series of other aims, principles, and policies to reform the EU's energy system. Cost-efficiency in the emissions reductions measures as well as strategic goals under the Resource Efficient Europe flagship initiative which would include a more prudent approach to other natural resources such as water and land. Using the "System of Systems Approach", as from Hadian and Madani (2015), energy sources' Relative Aggregate Footprints (RAF) in the EU are evaluated. RAF aggregates across four criteria: carbon footprint, water footprint, land footprint, and economic cost. The four criteria are weighted by resource availability across the EU and for each Member State. This provides an evaluation of the overall resource use efficiency of the EU's energy portfolio and gives insight into the differences in the desirability of energy sources across Member States. Broadly, nuclear, onshore wind, and geothermal are most desirable under equal criteria weights and EU average weighting introduces only small changes in the relative performance of only few technologies. The member state specific weightings show that most countries have similar energy technology preferences. However, the UK deviates most strongly from the average, with an even stronger preference for nuclear and coal. Sweden, Malta and Finland also deviate from the typical preferences indicating the complexity in play in reforming the EU energy system. Reference Hadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.

  4. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  5. Contribution of wind energy to the energy balance of a combined solar and wind energy system. Part 1: System description, data acquisition and system performance

    NASA Astrophysics Data System (ADS)

    Ferger, R.; Machens, U.

    1985-05-01

    A one-family house was equipped with a combined solar and wind energy system plus a night storage heater to measure the seasonal complementary contribution of wind and solar energy to energy demand. Project implementation, problems encountered and modifications to the initial system are described. Meteorological and operational data and house consumption data were recorded on computer-based measuring system. Data on the combined effects of and interdependence between solar collector and wind energy converter are discussed.

  6. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  7. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  8. Energy Systems Analysis Tools | Energy Analysis | NREL

    Science.gov Websites

    energy resources. REFlex NREL uses this dispatch model to evaluate renewable generation as a function of information. Regional Energy Deployment System (ReEDS) NREL uses this multi-regional, multi-time period, GIS

  9. Energy Storage Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    technologies. Key Infrastructure Energy storage system inverter, energy storage system simulators, research Plug-In Vehicles/Mobile Storage The plug-in vehicles/mobile storage hub includes connections for small integration. Key Infrastructure Ample house power, REDB access, charging stations, easy vehicle parking access

  10. Electromagnetic-gravitational energy systems

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1981-01-01

    Two methods are considered to 'tap' the earth's rotational energy. This ancient 'collapsed gravitational energy' exceeds the earth-lunar binding energy. One involves an orbiting 'electromagnetic-gravitational' coupling system whereby the earth's rotation, with its nonuniform mass distribution, first uses gravity to add orbital energy to a satellite, similar to a planetary 'flyby'. The second stage involves enhanced satellite 'drag' as current-carrying coils withdraw the added orbital energy as they pass through the earth's nonuniform magnetic field. A second more direct method couples the earth's rotational motion using conducting wires moving through the noncorotating part (ionospheric current systems) of the geomagnetic field. These methods, although not immediately feasible, are considerably more efficient than using pure gravitational coupling to earth-moon tides.

  11. Solar Energy Systems

    NASA Astrophysics Data System (ADS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  12. Crystal structure of [NaZn(BTC)(H2O)4]·1.5H2O (BTC = benzene-1,3,5-tri-carb-oxy-l-ate): a heterometallic coordination compound.

    PubMed

    Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing

    2015-07-01

    The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.

  13. State Energy Data System

    EIA Publications

    2017-01-01

    The State Energy Data System (SEDS) is the U.S. Energy Information Administration's (EIA) source for comprehensive state energy statistics. Included are estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Production and consumption estimates begin with the year 1960 while price and expenditure estimates begin with 1970. The multidimensional completeness of SEDS allows users to make comparisons across states, energy sources, sectors, and over time.

  14. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    NASA Astrophysics Data System (ADS)

    Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.

    1980-07-01

    The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.

  15. Energy systems transformation

    PubMed Central

    Dangerman, A. T. C. Jérôme; Schellnhuber, Hans Joachim

    2013-01-01

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO2 emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the “Success to the Successful” mode. The present way of generating, distributing, and consuming energy—the largest business on Earth—expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders. PMID:23297208

  16. Future energy system in environment, economy, and energy problems (2) various nuclear energy system evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Kazuaki; Ujita, Hiroshi; Tashimo, Masanori

    2006-07-01

    Role and potentials of nuclear energy system in the energy options are discussed from the viewpoint of sustainable development with protecting from global warming by using the energy module structure of GRAPE model. They change and are affected dramatically by different sets of energy characteristics, nuclear behavior and energy policy even under the moderate set of presumptions. Introduction of thousands of reactors in the end of the century seems inevitable for better life and cleaner earth, but it will not come without efforts and cost. The analysis suggests the need of long term planning and R and D efforts undermore » the wisdom. (authors)« less

  17. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  18. Energy efficiency system development

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  19. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  20. Career Directions--Renewable Energy Systems Integrator

    ERIC Educational Resources Information Center

    Fleeman, Stephen R.

    2012-01-01

    Renewable energy systems are beginning to appear everywhere. Solar modules are creating "blue roofs" that convert the energy from the sun into household electricity. Solar thermal systems on roofs can generate hot water. Wind turbines catch breezes to provide even more electricity. Recommendations for saving energy, specifying systems for…

  1. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  2. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    NASA Astrophysics Data System (ADS)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  3. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    for its novel approach to energy reduction. The ultra-efficient ESIF data center features a chiller "chips to bricks" approach to sustainability integrates the data center into the facility systems, rather than trying to optimize each in isolation. Key to the approach was collaboration with

  4. Energy Management of Smart Distribution Systems

    NASA Astrophysics Data System (ADS)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  5. Outpatient Hysteroscopic Polypectomy: Bipolar Energy System (Versapoint®) versus Mechanical Energy System (TRUCLEAR System®) - Preliminary Results.

    PubMed

    Rovira Pampalona, Jennifer; Degollada Bastos, Maria; Mancebo Moreno, Gemma; Ratia Garcia, Esther; Buron Pust, Andrea; Mateu Pruñonosa, Joan Carles; Guerra Garcia, Angel; Carreras Collado, Ramon; Bresco Torras, Pere

    2015-01-01

    The new hysteroscopic system with mechanical energy is an effective outpatient technique for diagnosis and treatment that has certain advantages over conventional hysteroscopy in the management of endometrial polyps. Our primary objective was to assess the total duration of hysteroscopy and polypectomy performed in an outpatient setting comparing the new mechanical energy hysteroscopy to the bipolar energy system. Our secondary objective was to compare the level of safety of both hysteroscopic techniques using the procedure success rate, the need for subsequent referral to surgery, existing complications, and comfort experienced by the patient during the procedure. This randomized controlled trial included the first 90 patients with an ultrasound diagnosis of endometrial polyp (>1 cm) who underwent an outpatient diagnostic and operative hysteroscopy at the Igualada Hospital (Barcelona) and agreed to be included in the study by signing an informed consent. We obtained a 91% success rate with the TRUCLEAR System® compared to a 69% success rate with the Versapoint® system. Total operating time was 6.36 min in the TRUCLEAR System group versus 10.82 min in the Versapoint system group (p < 0.05), with a polypectomy time of 3.06 and 7.91 min, respectively (p < 0.05). There were no significant differences between the two techniques when analyzing pain using the visual analogue scale. No complications were recorded for either technique. The mechanical energy system presents a significant decrease in the total duration of polypectomy and hysteroscopy when performed both by experienced staff and by staff in training, resulting in higher success rates without complications with respect to conventional hysteroscopy with bipolar energy. © 2015 S. Karger AG, Basel.

  6. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1989-02-01

    The objectives of the program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30 percent, HHV), low maintenance, high reliability and long life (20 years).

  7. Energy intake of rats fed a cafeteria diet.

    PubMed

    Prats, E; Monfar, M; Castellà, J; Iglesias, R; Alemany, M

    1989-02-01

    The proportion of lipid, carbohydrate and protein energy self-selected by male and female rats from a cafeteria diet has been studied for a 48-day period (36-day in female rats). The diet consisted in 12 different items and was offered daily, in excess and under otherwise standard conditions, to rats--caged in groups of three--from weaning to adulthood. Groups of control animals were studied in parallel and compared with the cafeteria groups. Cafeteria diet fed groups of rats ingested more energy and lowered their metabolic efficiency with age. Male rats ate more than females and increased their body weight even after female practically stopped growing. There was a wide variation in the aliments consumed each day by the cafeteria-fed rats. However, the proportion of lipid, protein and carbohydrate the rats ate remained constant. Male rats ingested more lipid than females. Carbohydrate consumption was constant in control and cafeteria fed groups of rats independently of sex. Protein consumption was higher in cafeteria rats than in controls, but the differences were not so important as with liquid. Fiber content of the cafeteria diet was lower than that of the control diet. The cafeteria diet selected by the rats was, thus, hypercaloric and hyperlipidic, with practically the same amount of carbohydrate than the control diet, slightly hyperproteic and, nevertheless, remarkably constant in its composition with respect to time. Cafeteria rats had a higher water intake than controls. All these trends were maintained despite the observed changes in the animals' tastes and their differential consumption of the ailments of the diet.

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    Renewable Generation Integration Study (ERGIS), looks ahead to the year 2026 and examines how the Eastern accurately modeling the entire system at five-minute intervals for an entire year has never even been Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project, up to

  9. Solar-hydrogen energy system for Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutfi, N.

    1990-01-01

    A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parametersmore » have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.« less

  10. Programming models for energy-aware systems

    NASA Astrophysics Data System (ADS)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  11. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  12. Fixed Equipment in the Energy Systems Integration Facility | Energy Systems

    Science.gov Websites

    dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications

  13. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    share and use information. NREL received the award for work it conducted with EPRI to demonstrate the data for residents, appraisers, and investors. Recognizing this, Denver developer iUnit is working with the use of distributed energy resources such as PV rooftop systems. Such advancements in

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    , consider the tangible benefits it can bring to utilities and the developer community, and discuss the Energy Systems Integration Facility on July 13 and 14, 2016, to discuss current and future R&D to researching this topic from a technology, business process, and policy perspective. This workshop is an

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    simulation and testing platforms from each organization. Power-hardware-in-the-loop technology at the power-hardware-in-the-loop and modeling capabilities together with real data from Duke Energy and GE's , communities, and microgrids. Hardware-in-the-loop testing for power systems will be used to verify the

  16. NREL and Cogent Energy Systems | Energy Systems Integration Facility | NREL

    Science.gov Websites

    to one of ESIF's 250-kVA resistive/inductive/capacitive load banks in order to simulate the WTE combined load of a standalone microgrid. Once the team demonstrates the system's ability to operate in a response to load demands that exceed solar energy output. By operating this way, the system can be used to

  17. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  18. Regional Energy Deployment System (ReEDS) | Energy Analysis | NREL

    Science.gov Websites

    System Model The Regional Energy Deployment System (ReEDS) model helps the U.S. Department of model. Visualize Future Capacity Expansion of Renewable Energy Watch this video of the ReEDS model audio. Model Documentation ReEDS Model Documentation: Version 2016 ReEDS Map with Numbered Regions

  19. Aquifer Thermal Energy Storage: An Attempt to Counter Free Thermal Convection

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Melville, J. G.; Güven, O.; Parr, A. D.

    1983-08-01

    In previous Aquifer Thermal Energy Storage (ATES) experiments, appreciable free thermal convection was observed. In an attempt to counter the detrimental effects of convection, a dual recovery well system was constructed at the Mobile site and a third injection-storage-recovery cycle performed. Using a partially penetrating well, cycle 3-3 injection began on April 7, 1982. A total of 56,680 m3 of 79°C water were injected. After 57 days of storage, production began with a dual recovery well system. Due to the dominating effect of nonhomogeneities, the dual well system did not work particularly well, and a recovery factor of 0.42 was achieved. The degree of aquifer heterogeneity at the location of the present experiments was not apparent during previous experiments at a location only 109 m away, although pumping tests indicated similar values of transmissivity. Therefore aquifers with the same transmissivity can behave quite differently in a thermal sense. Heat conduction to the upper aquitard was a major energy loss mechanism. Water sample analyses indicated that there were no important changes in the chemical constituents during the third set of experiments. There was a 19% increase in total dissolved solids. At the end of injection, the land surface near the injection well had risen 1.39 cm with respect to bench marks located 70 m away.

  20. Energy accounting and optimization for mobile systems

    NASA Astrophysics Data System (ADS)

    Dong, Mian

    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets. In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms. We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can

  1. Renewable energy delivery systems and methods

    DOEpatents

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  2. Evaluation of two typical distributed energy systems

    NASA Astrophysics Data System (ADS)

    Han, Miaomiao; Tan, Xiu

    2018-03-01

    According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.

  3. Cold air systems: Sleeping giant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, C.D.

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that providedmore » inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.« less

  4. Renewable Energy Tracking Systems

    EPA Pesticide Factsheets

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  5. Energy systems research and development for petroleum refineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.L.

    1982-08-01

    For the past several years, Exxon Reasearch and Engineering has carried out a specific RandD program aimed at improving refinery energy efficiency through optimization of energy systems. Energy systems include: steam/power systems, heat exchange systems including hot oil and hot water belts and fuel systems, as well as some of the processes. This paper will describe the three major thrusts of this program which are: development of methods to support Site Energy Survey activities; development of energy management methods; and energy system optimization, which includes development of consistent, realistic, economic incentives for energy system improvements. Project selection criteria will alsomore » be discussed. The technique of a site energy survey will also be described briefly.« less

  6. Beam energy tracking system on Optima XEx high energy ion implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Satoh, Shu; Wu Xiangyang

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, andmore » each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.« less

  7. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  8. Federal Tax Incentives for Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Katherine H; Elgqvist, Emma M; Settle, Donald E

    Investments in renewable energy are more attractive due to the contribution of two key federal tax incentives. The investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction may apply to energy storage systems such as batteries depending on who owns the battery and how the battery is used. The guidelines in this fact sheet apply to energy storage systems installed at the same time as the renewable energy system.

  9. Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki

    Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.

  10. Energy conversion system

    DOEpatents

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  11. Energy conversion system

    DOEpatents

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  12. Comparison of three methods to reduce energy density. Effects on daily energy intake.

    PubMed

    Williams, Rachel A; Roe, Liane S; Rolls, Barbara J

    2013-07-01

    Reductions in food energy density can decrease energy intake, but it is not known if the effects depend on the way that energy density is reduced. We investigated whether three methods of reducing energy density (decreasing fat, increasing fruit and vegetables, and adding water) differed in their effects on energy intake across the day. In a crossover design, 59 adults ate breakfast, lunch, and dinner in the laboratory once a week for 4 weeks. Across conditions, the entrées were either standard in energy density or were reduced in energy density by 20% using one of the three methods. Each meal included a manipulated entrée along with unmanipulated side dishes, and all foods were consumed ad libitum. Reducing the energy density of entrées significantly decreased daily energy intake compared to standard entrées (mean intake 2667 ± 77 kcal/day; 11,166 ± 322 kJ/day). The mean decrease was 396 ± 44 kcal/day (1658 ± 184 kJ/day) when fat was reduced, 308 ± 41 kcal/day (1290 ± 172 kJ/day) when fruit and vegetables were increased, and 230 ± 35 kcal/day (963 ± 147 kJ/day) when water was added. Daily energy intake was lower when fat was decreased compared to the other methods. These findings indicate that a variety of diet compositions can be recommended to reduce overall dietary energy density in order to moderate energy intake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. EMMA: The expert system for munition maintenance

    NASA Technical Reports Server (NTRS)

    Mullins, Barry E.

    1988-01-01

    Expert Missile Maintenance Aid (EMMA) is a first attempt to enhance maintenance of the tactical munition at the field and depot level by using artificial intelligence (AI) techniques. The ultimate goal of EMMA is to help a novice maintenance technician isolate and diagnose electronic, electromechanical, and mechanical equipment faults to the board/chassis level more quickly and consistently than the best human expert using the best currently available automatic test equipment (ATE). To this end, EMMA augments existing ATE with an expert system that captures the knowledge of design and maintenance experts. The EMMA program is described, including the evaluation of field-level expert system prototypes, the description of several study tasks performed during EMMA, and future plans for a follow-on program. This paper will briefly address several study tasks performed during EMMA. The paper concludes with a discussion of future plans for a follow-on program and other areas of concern.

  14. Master of Engineering Energy Systems Engineering Program: Smart Campus Energy Systems Demonstration DE-SC0005523

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, Martha; Coulter, John

    2014-09-25

    Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education formore » graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.« less

  15. Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms

    DTIC Science & Technology

    2017-05-21

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY IDEAL DIRECTED- ENERGY SYSTEM TO DEFEAT SMALL UNMANNED AIRCRAFT SYSTEM SWARMS by David F. Pina...directed energy (DE) developmental systems indicate this class of weapons is the best solution. A review of several continuous wave laser, pulsed high...powered microwave, and electronic warfare/jamming systems indicate the following attributes as ideal for a future directed energy weapon (DEW) system

  16. Does a new steam meal catering system meet patient requirements in hospital?

    PubMed

    Hickson, M; Fearnley, L; Thomas, J; Evans, S

    2007-10-01

    It has been consistently observed that a significant proportion of hospital inpatients are malnourished and many actually develop malnutrition in hospital. The NHS provides over 300 million meals each year at a cost of pound 500 million, yet there is relatively little research evaluating how well different catering systems provide for the needs of hospital inpatients. The aim of the study was to: (i) evaluate whether a new steam meal catering system (Steamplicity) enables patients in theory to meet their energy requirements in hospital and (ii) compare energy and protein intake using Steamplicity with a traditional bulk cook-chill system. Patients not at nutritional risk had their food intake at one lunchtime assessed. Energy intake was compared with the patients' energy requirements and energy and protein intake were compared with previous data from a bulk system. Fifty-seven patients had a median daily energy requirement of 7648 kJ (1821 kcal) [inter-quartile range (IQR): 6854-9164 kJ]. Assuming 30% [2293 kJ (546 kcal)] should be supplied by the lunch meal the average intake of 1369 kJ (326 kcal) fell short by 40%. Patients served meals from Steamplicity ate less energy [1369 kJ versus 1562 kJ (326 kcal versus 372 kcal) P = 0.04] but similar protein (18 g versus 19 g P = 0.34) to the bulk system. The largest difference was the energy provided by the dessert since the bulk system served more hot high-calorie desserts. Patient intakes did not meet their estimated requirements. The patients in this study were eating well and not at nutritional risk, thus patients with a poor appetite will be even less likely to meet their nutritional requirements. Steamplicity meals result in a lower energy intake than meals from a bulk cook-chill system, but similar protein intakes.

  17. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is beingmore » developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.« less

  18. Energy Management Control Systems: Tools for Energy Savings and Environmental Protection

    NASA Technical Reports Server (NTRS)

    Zsebik, Albin; Zala, Laszlo F.

    2002-01-01

    The change in the price of energy has encouraged the increase of energy efficiency. This report will discuss a tool to promote energy efficiency in intelligent buildings, energy management control systems (EMCS). In addition to the online control of energy production, supply, and consumption, the function of the EMCS is to support short- and long-term planning of the system operation as well as to collect, store, and regularly evaluate operation data. The strategies behind planning and implementing the EMCS as well as the manipulating the resulting data are discussed in this report.

  19. Entropy, pumped-storage and energy system finance

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  20. Flywheel energy storage for electromechanical actuation systems

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    1991-01-01

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  1. Flywheel energy storage for electromechanical actuation systems

    NASA Astrophysics Data System (ADS)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  2. Energy requirements in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.

    2012-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.

  3. NEMS - National Energy Modeling System: An Overview

    EIA Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  4. Contingency Base Energy Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-06-09

    CB-EMS is the latest implementation of DSOM (Decision Support for Operations and Maintenance), which was previously patented by PNNL. CB-EMS WAS specifically designed for contingency bases for the US Army. It is a software package that is designed to monitor energy consumption at an Army contingency base to alert the camp manager when the systems are wasting energy. It's main feature that separates it from DSOM is it's ability to add systems using a plug and play menu system.

  5. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  6. Energy Management and Optimization Methods for Grid Energy Storage Systems

    DOE PAGES

    Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.; ...

    2017-08-24

    Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less

  7. Energy Management and Optimization Methods for Grid Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Raymond H.; Nguyen, Tu A.; Copp, David A.

    Today, the stability of the electric power grid is maintained through real time balancing of generation and demand. Grid scale energy storage systems are increasingly being deployed to provide grid operators the flexibility needed to maintain this balance. Energy storage also imparts resiliency and robustness to the grid infrastructure. Over the last few years, there has been a significant increase in the deployment of large scale energy storage systems. This growth has been driven by improvements in the cost and performance of energy storage technologies and the need to accommodate distributed generation, as well as incentives and government mandates. Energymore » management systems (EMSs) and optimization methods are required to effectively and safely utilize energy storage as a flexible grid asset that can provide multiple grid services. The EMS needs to be able to accommodate a variety of use cases and regulatory environments. In this paper, we provide a brief history of grid-scale energy storage, an overview of EMS architectures, and a summary of the leading applications for storage. These serve as a foundation for a discussion of EMS optimization methods and design.« less

  8. Design and Realization of Online Monitoring System of Distributed New Energy and Renewable Energy

    NASA Astrophysics Data System (ADS)

    Tang, Yanfen; Zhou, Tao; Li, Mengwen; Zheng, Guotai; Li, Hao

    2018-01-01

    Aimed at difficult centralized monitoring and management of current distributed new energy and renewable energy generation projects due to great varieties, different communication protocols and large-scale difference, this paper designs a online monitoring system of new energy and renewable energy characterized by distributed deployment, tailorable functions, extendible applications and fault self-healing performance. This system is designed based on international general standard for grid information data model, formulates unified data acquisition and transmission standard for different types of new energy and renewable energy generation projects, and can realize unified data acquisition and real-time monitoring of new energy and renewable energy generation projects, such as solar energy, wind power, biomass energy, etc. within its jurisdiction. This system has applied in Beijing. At present, 576 projects are connected to the system. Good effect is achieved and stability and reliability of the system have been validated.

  9. Global renewable energy-based electricity generation and smart grid system for energy security.

    PubMed

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  10. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    PubMed Central

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  11. Heat-pump-centered integrated community energy systems: System development summary

    NASA Astrophysics Data System (ADS)

    Calm, J. M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.

  12. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  13. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  14. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  15. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  16. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  17. Solar Energy Systems for Ohioan Residential Homeowners

    NASA Astrophysics Data System (ADS)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  18. Intelligent Energy Systems As a Modern Basis For Improving Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.

    2017-01-01

    This work presents data on the share of energy costs in the cost structure for different countries. The information is provided on reducing the use of energy resources by means of introducing the intelligent control systems in the industrial enterprises. The structure and the use of such intelligent systems in the energy industry are under our consideration. It is shown that the constructing an intelligent system should be the strategic direction for the development of the distribution grid complex implying the four main areas for improvement: intellectualization of the equipment, management, communication and automation.

  19. Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  20. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1987-06-01

    The ogjectives are to design, develop, and demonstrate a natural-gas-fueled, highly recuperated, 50 kw Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Recent marketing studies have shown that the Advanced Energy System (AES), with its many cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantates of the system that result in low cost ownership are high electrical efficiency (34 percent, LHV), low maintenance, high reliability and long life (20 years). Significant technical features include: an integral turbogenerator with shaft-speed permanent magnet generator; a rotating assembly supported by compliant foil air bearings; a formed-tubesheet plate/fin recuperator with 91 percent effectiveness; and a bi-directional power conditioner to ultilize the generator for system startup. The planned introduction of catalytic combustion will further enhance the economic and ecological attractiveness.

  1. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  2. Comparing Waste-to-Energy technologies by applying energy system analysis.

    PubMed

    Münster, Marie; Lund, Henrik

    2010-07-01

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO(2) reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Unlocking Flexibility: Energy Systems Integration [Guest Editorial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Mark; Kroposki, Benjamin

    2017-01-01

    The articles in this special section focus on energy systems integration (ESI). Electric power systems around the world are experiencing great changes, including the retirement of coal and nuclear plants along with a rapid increase in the use of natural gas turbines and variable renewable technologies such as wind and solar. There is also much more use of information and communications technologies to enhance the visibility and controllability of the grid. Flexibility of operation, the ability of a power system to respond to change in demand and supply, is critical to enable higher levels of variable generation. One way tomore » unlock this potential flexibility is to tap into other energy domains. This concept of interconnecting energy domains is called ESI. ESI is the process of coordinating the operation and planning of energy systems across multiple pathways and/or geographical scales to deliver reliable, cost-effective energy services with minimal impact on the environment. Integrating energy domains adds flexibility to the electrical power system. ESI includes interactions among energy vectors and with other large-scale infrastructures including water, transport, and data and communications networks, which are an enabling technology for ESI.« less

  4. Surface Energy Balance System (SEBS) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  5. Proceedings of the Alternate Energy Systems Seminar

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Alternative Energy Systems Seminar was held on March 30, 1978, and was sponsored jointly be the Southwest District Office of the U.S. Department of Energy and JPL. The seminar was an experiment in information exchange with the aim of presenting, in a single day, status and prospects for a number of advanced energy systems to a diverse, largely nontechnical audience, and to solicit post-seminar responses from that audience as to the seminar's usefulness. The major systems presented are: (1) Solar Photovoltaic; (2) Geothermal; (3) Cogeneration Power; (4) Solar Thermal; (5) Solar Heating and Cooling; (6) Wind Energy; and (7) Systems Considerations.

  6. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; mckellar, Michael George; Yoon, Su-Jong

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energymore » storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the

  7. Integrated energy system for a high performance building

    NASA Astrophysics Data System (ADS)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  8. Stationary flywheel energy storage systems

    NASA Astrophysics Data System (ADS)

    Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.

    1982-07-01

    A study intended to discover industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid were investigated. A possibility for energy storage by flywheels exists where energy otherwise lost can be used effectively as in brake energy storage in vehicles. The future use of flywheels in wind power plants also seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed, for instance, in telecommunication systems.

  9. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  10. Energy System Basics and Distribution Integration Video Series | Energy

    Science.gov Websites

    renewablesparticularly solar photovoltaic (PV) technologiesonto the distribution grid. Solar Energy Technologies PV Integration Case Studies Integrating Photovoltaic Systems onto Secondary Network Distribution Systems Standards and Codes for U.S. Photovoltaic System Installation Network-Optimal Control of Photovoltaics on

  11. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  12. 2,4,6-Tri-amino-1,3,5-triazin-1-ium 3-(prop-2-eno-yloxy)propano-ate acrylic acid monosolvate monohydrate.

    PubMed

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-05-01

    The asymmetric unit of the title salt, C3H7N6 (+)·C6H7O4 (-)·C3H4O2·H2O, contains a 2,4,6-tri-amino-1,3,5-triazin-1-ium cation, a 3-(prop-2-eno-yloxy)propano-ate anion and acrylic acid and water solvent mol-ecules in a 1:1:1:1 ratio and with each species in a general position. In the crystal, the components are linked into a supra-molecular layer in the bc plane via a combination of O-H⋯O, N-H⋯N and N-H⋯O hydrogen bonding. The crystal studied was a non-merohedral twin, the minor component contribution being approximately 26%.

  13. Renewable energy systems in Mexico: Installation of a hybrid system

    NASA Astrophysics Data System (ADS)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  14. Biomass energy inventory and mapping system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasile, J.D.

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was usedmore » as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.« less

  15. World Energy Projection System Plus: An Overview

    EIA Publications

    2016-01-01

    This report contains a summary description of the methodology and scope of WEPS and each of its component models. WEPS is a computer-based, energy modeling system of long-term international energy markets for the period through 2035. The system was used to produce the International Energy Outlook 2011.

  16. System solution to improve energy efficiency of HVAC systems

    NASA Astrophysics Data System (ADS)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  17. Army Energy and Water Reporting System Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. Inmore » this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on

  18. Energy Storage System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  19. Energy Management Policies in Distributed Residential Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Sisi; Sun, Jingtao

    2016-01-01

    In this paper, we study energy management problems in communities with several neighborhood-level Residential Energy Systems (RESs). We consider control problems from both community level and residential level to handle external changes such as restriction on peak demand and restriction on the total demand from the electricity grid. We propose three policies to handle the problems at community level. Based on the collected data from RESs such as predicted energy load, the community controller analyzes the policies, distribute the results to the RES, and each RES can then control and schedule its own energy load based on different coordination functions.more » We utilize a framework to integrate both policy analysis and coordination of functions. With the use of our approach, we show that the policies are useful to resolve the challenges of energy management under external changes.« less

  20. A new wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1975-01-01

    It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.

  1. A System of Systems (SoS) Approach to Sustainable Energy Planning

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Hadian, Saeed

    2015-04-01

    The general policy of mandating fossil fuel replacement with "green" energies may not be as effective and environmental-friendly as perceived, due to the secondary impacts of renewable energies on different natural resources. An integrated systems analysis framework is essential to developing sustainable energy supply systems with minimal unintended impacts on valuable natural resources such as water, climate, and ecosystem. This presentation discusses how a system of systems (SoS) framework can be developed to quantitatively evaluate the desirability of different energy supply alternatives with respect to different sustainability criteria under uncertainty. Relative Aggregate Footprint (RAF) scores of a range of renewable and nonrenewable energy alternatives are determined using their performance values under four sustainability criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production. Our results suggest that despite their lower emissions, some renewable energy sources are less promising than non-renewable energy sources from a SoS perspective that considers the trade-offs between carbon footprint of energies and their effects on water, ecosystem, and economic resources. A new framework based on the Modern Portfolio Theory (MPT) is also proposed for analyzing the overall sustainability of different energy mixes for different risk of return levels with respect to the trade-offs involved. It is discussed how the proposed finance-based sustainability evaluation method can help policy makers maximize the energy portfolio's expected sustainability for a given amount of portfolio risk, or equivalently minimize risk for a given level of expected sustainability level, by revising the energy mix.

  2. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits ofmore » CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.« less

  3. Life-Cycle Evaluation of Domestic Energy Systems

    NASA Astrophysics Data System (ADS)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  4. Enhanced distributed energy resource system

    DOEpatents

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  5. Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Nguyen, Frédéric; Klepikova, Maria; Dassargues, Alain; Caers, Jef

    2018-04-01

    In theory, aquifer thermal energy storage (ATES) systems can recover in winter the heat stored in the aquifer during summer to increase the energy efficiency of the system. In practice, the energy efficiency is often lower than expected from simulations due to spatial heterogeneity of hydraulic properties or non-favorable hydrogeological conditions. A proper design of ATES systems should therefore consider the uncertainty of the prediction related to those parameters. We use a novel framework called Bayesian Evidential Learning (BEL) to estimate the heat storage capacity of an alluvial aquifer using a heat tracing experiment. BEL is based on two main stages: pre- and postfield data acquisition. Before data acquisition, Monte Carlo simulations and global sensitivity analysis are used to assess the information content of the data to reduce the uncertainty of the prediction. After data acquisition, prior falsification and machine learning based on the same Monte Carlo are used to directly assess uncertainty on key prediction variables from observations. The result is a full quantification of the posterior distribution of the prediction conditioned to observed data, without any explicit full model inversion. We demonstrate the methodology in field conditions and validate the framework using independent measurements.

  6. Solar-hydrogen energy system model for Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eljrushi, G.S.

    1987-01-01

    A solar-hydrogen energy-system model for Libya was developed, obtaining relationships for and between the main energy and energy related parameters of Libya and the world. The parameters included are: population, energy demand, fossil-fuel production, fossil-fuel resources, hydrogen production, hydrogen introduction rates, energy prices, gross domestic product, pollution and quality of life. The trends of these parameters with and without hydrogen introduction were investigated over a period of time - through the year 2100. The results indicate that the fossil-fuel resources in Libya could be exhausted, due to production for local and export demands, within three to four decades unless seriousmore » measures for reducing production are taken. The results indicate that adopting solar-hydrogen energy system would extend the availability of fossil-fuel resources for a longer time period, reduce pollution, improve quality of life and establish a permanent energy system for Libya. It also shows that eventually Libya could export hydrogen in lieu of oil and natural gas.« less

  7. Energy Systems Integration Facility (ESIF): Golden, CO - Energy Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, Michael; VanGeet, Otto; Pless, Shanti

    2015-03-01

    At NREL's Energy Systems Integration Facility (ESIF) in Golden, Colo., scientists and engineers work to overcome challenges related to how the nation generates, delivers and uses energy by modernizing the interplay between energy sources, infrastructure, and data. Test facilities include a megawatt-scale ac electric grid, photovoltaic simulators and a load bank. Additionally, a high performance computing data center (HPCDC) is dedicated to advancing renewable energy and energy efficient technologies. A key design strategy is to use waste heat from the HPCDC to heat parts of the building. The ESIF boasts an annual EUI of 168.3 kBtu/ft2. This article describes themore » building's procurement, design and first year of performance.« less

  8. Solar energy system economic evaluation: IBM System 2, Togus, Maine

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system, is developed for Torgus and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs taken on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  9. Energy Efficient Operation of Ammonia Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less

  10. Economic Evaluation of Townhouse Solar Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar-energy site in Columbia, South Carolina, is comprised of four townhouse apartments. Report summarizes economic evaluation of solar--energy system and projected performance of similar systems in four other selected cities. System is designed to supply 65 percent of heating and 75 percent of hot water.

  11. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Yang, Rui; Hodge, Brian S

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to powermore » system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.« less

  12. Dehumidification System with Steam Permeability Films

    NASA Astrophysics Data System (ADS)

    Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo

    In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.

  13. Visual prosthesis wireless energy transfer system optimal modeling.

    PubMed

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  14. Newly Branded Energy Systems Integration Group Joins International

    Science.gov Websites

    research fellow at NREL. Likewise, UVIG sees opportunity in partnering with iiESI. The international Group Joins International Institute for Energy Systems Integration Newly Branded Energy Systems Integration Group Joins International Institute for Energy Systems Integration March 22, 2018 The world of

  15. The effectiveness of energy management system on energy efficiency in the building

    NASA Astrophysics Data System (ADS)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  16. Pluri-energy analysis of livestock systems--a comparison of dairy systems in different territories.

    PubMed

    Vigne, Mathieu; Vayssières, Jonathan; Lecomte, Philippe; Peyraud, Jean-Louis

    2013-09-15

    This paper introduces a generic assessment method called pluri-energy analysis. It aims to assess the types of energy used in agricultural systems and their conversion efficiencies. Four types of energy are considered: fossil energy, gross energy contained in the biomass, energy from human and animal labor and solar energy. The method was applied to compare smallholder low-input dairy-production systems, which are common in developing countries, to the high-input systems encountered in OECD countries. The pluri-energy method is useful for analyzing the functioning of agricultural systems by highlighting their modes of energy management. Since most dairy systems in South Mali (SM) are low-input systems, they are primarily based on solar and labor energy types and do not require substantial fossil-energy inputs to produce milk. Farms in Poitou-Charentes (PC) and Bretagne (BR) show intermediate values of fossil-energy use for milk production, similar to that found in the literature for typical European systems. However, fossil-energy use for milk production is higher on PC than BR farms because of a higher proportion of maize silage in the forage area; grazing pastures are more common on BR farms. Farms on Reunion Island (RI) require a relatively large amount of fossil energy to produce milk, mainly because the island context limits the amount of arable land. Consequently, milk production is based on large imports of concentrated feed with a high fossil-energy cost. The method also enables assessment of fossil-energy-use efficiency in order to increase the performance of biological processes in agricultural systems. Comparing the low-input systems represented by SM to the high-input systems represented by RI, PC and BR, an increase in solar-energy conversion, and thus land productivity, was observed due to intensification via increased fossil-energy use. Conversely, though fossil-energy use at the herd level increased milk productivity, its effect on gross-energy

  17. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov Websites

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL building assets and energy management systems can provide value to the grid. Photo of a pair of NREL researchers who received a record of invention for a home energy management system in a smart home laboratory

  18. Energy, environment and climate assessment using the MARKAL energy system model

    EPA Science Inventory

    As part of EPA ORD’s efforts to develop an understanding of the potential environmental impacts of future changes in energy use, the Energy and Climate Assessment Team has developed a database representation of the U.S. energy system for use with the MARKet ALlocation (MARK...

  19. Dark energy in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  20. Energy security impacts of a severe drought on the future Finnish energy system.

    PubMed

    Jääskeläinen, Jaakko; Veijalainen, Noora; Syri, Sanna; Marttunen, Mika; Zakeri, Behnam

    2018-07-01

    Finland updated its Energy and Climate Strategy in late 2016 with the aim of increasing the share of renewable energy sources, increasing energy self-sufficiency and reducing greenhouse gas emissions. Concurrently, the issue of generation adequacy has grown more topical, especially since the record-high demand peak in Finland in January 2016. This paper analyses the Finnish energy system in years 2020 and 2030 by using the EnergyPLAN simulation tool to model whether different energy policy scenarios result in a plausible generation inadequacy. Moreover, as the Nordic energy system is so heavily dependent on hydropower production, we model and analyse the impacts of a severe drought on the Finnish energy system. We simulate hydropower availability according to the weather of the worst drought of the last century (in 1939-1942) with Finnish Environment Institute's Watershed Simulation and Forecasting System and we analyse the indirect impacts via reduced availability of electricity imports based on recent realised dry periods. Moreover, we analyse the environmental impacts of hydropower production during the drought and peak demand period and the impacts of climate change on generation adequacy in Finland. The results show that the scenarios of the new Energy and Climate Strategy result in an improved generation adequacy comparing to the current situation. However, a severe drought similar to that experienced in 1940s could cause a serious energy security threat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Designing and visualizing the water-energy-food nexus system

    NASA Astrophysics Data System (ADS)

    Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.

    2017-12-01

    The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.

  2. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  3. Energy Storage Systems Program Report for FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  4. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  5. Optical Energy Transfer and Conversion System

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  6. A novel energy recovery system for parallel hybrid hydraulic excavator.

    PubMed

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  7. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    PubMed Central

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215

  8. Solar total energy project at Shenandoah, Georgia system design

    NASA Technical Reports Server (NTRS)

    Poche, A. J.

    1980-01-01

    The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.

  9. Tunisia Renewable Energy Project systems description report

    NASA Technical Reports Server (NTRS)

    Scudder, L. R.; Martz, J. E.; Ratajczak, A. F.

    1986-01-01

    In 1979, the Agency for International Development (AID) initiated a renewable energy project with the Government of Tunisia to develop an institutional capability to plan and institute renewable energy technologies in a rural area. The specific objective of the district energy applications subproject was to demonstrate solar and wind energy systems in a rural village setting. The NASA Lewis Research Center was asked by the AID Near East Bureau to manage and implement this subproject. This report describes the project and gives detailed desciptions of the various systems.

  10. Smart Manufacturing Technologies and Data Analytics for Improving Energy Efficiency in Industrial Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.

    Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less

  11. Performance of deep geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  12. Economic dispatch optimization for system integrating renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  13. Health risks of energy systems.

    PubMed

    Krewitt, W; Hurley, F; Trukenmüller, A; Friedrich, R

    1998-08-01

    Health risks from fossil, renewable and nuclear reference energy systems are estimated following a detailed impact pathway approach. Using a set of appropriate air quality models and exposure-effect functions derived from the recent epidemiological literature, a methodological framework for risk assessment has been established and consistently applied across the different energy systems, including the analysis of consequences from a major nuclear accident. A wide range of health impacts resulting from increased air pollution and ionizing radiation is quantified, and the transferability of results derived from specific power plants to a more general context is discussed.

  14. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  15. Test report : Raytheon / KTech RK30 Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flowmore » batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.« less

  16. Visual prosthesis wireless energy transfer system optimal modeling

    PubMed Central

    2014-01-01

    Background Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. Methods On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling’s more accuracy for the actual application. Results The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. Conclusions The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system’s further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application. PMID:24428906

  17. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  18. Dormitory Solar-Energy-System Economics

    NASA Technical Reports Server (NTRS)

    1982-01-01

    102-page report analyzes long-term economic performance of a prepackaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

  19. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  20. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  1. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  2. Wind Energy Systems.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  3. System Modeling for Ammonia Synthesis Energy Recovery System

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team

    2015-11-01

    An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.

  4. A hydrogen energy carrier. Volume 2: Systems analysis

    NASA Technical Reports Server (NTRS)

    Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)

    1973-01-01

    A systems analysis of hydrogen as an energy carrier in the United States indicated that it is feasible to use hydrogen in all energy use areas, except some types of transportation. These use areas are industrial, residential and commercial, and electric power generation. Saturation concept and conservation concept forecasts of future total energy demands were made. Projected costs of producing hydrogen from coal or from nuclear heat combined with thermochemical decomposition of water are in the range $1.00 to $1.50 per million Btu of hydrogen produced. Other methods are estimated to be more costly. The use of hydrogen as a fuel will require the development of large-scale transmission and storage systems. A pipeline system similar to the existing natural gas pipeline system appears practical, if design factors are included to avoid hydrogen environment embrittlement of pipeline metals. Conclusions from the examination of the safety, legal, environmental, economic, political and societal aspects of hydrogen fuel are that a hydrogen energy carrier system would be compatible with American values and the existing energy system.

  5. SIMWEST - A simulation model for wind energy storage systems

    NASA Technical Reports Server (NTRS)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  6. Analysis and assessment of STES technologies

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Blahnik, D. E.; Huber, H. D.

    1982-12-01

    Technical and economic assessments completed in FY 1982 in support of the Seasonal Thermal Energy Storage (STES) segment of the Underground Energy Storage Program included: (1) a detailed economic investigation of the cost of heat storage in aquifers, (2) documentation for AQUASTOR, a computer model for analyzing aquifer thermal energy storage (ATES) coupled with district heating or cooling, and (3) a technical and economic evaluation of several ice storage concepts. This paper summarizes the research efforts and main results of each of these three activities. In addition, a detailed economic investigation of the cost of chill storage in aquifers is currently in progress. The work parallels that done for ATES heat storage with technical and economic assumptions being varied in a parametric analysis of the cost of ATES delivered chill. The computer model AQUASTOR is the principal analytical tool being employed.

  7. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  8. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  9. Dynamics of System of Systems and Applications to Net Zero Energy Facilities

    DTIC Science & Technology

    2017-10-05

    collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10

  10. Systems and methods for controlling energy use in a building management system using energy budgets

    DOEpatents

    Wenzel, Michael J; Drees, Kirk H

    2014-09-23

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  11. Dynamic management of integrated residential energy systems

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  12. Energy conservation in housing design using solar energy, mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, N.M.W.

    1985-01-01

    This paper presents the first experimental full-scale house built by the Solar Energy Research Center of Baghdad to be heated and cooled by solar energy. The various architectural and environmental considerations which entered into the design process are discussed, as well as the range of passive techniques examined for their compatibility with the local climate and their ability to optimize the energy efficiency of the house. The mechanical systems which were ultimately implemented are described.

  13. Energy harvesting concepts for small electric unmanned systems

    NASA Astrophysics Data System (ADS)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  14. FY2017 Energy Efficient Mobility Systems Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) created the Energy Efficient Mobility Systems (EEMS) Program to understand the range of mobility futures that could result from these disruptive technologies and services, and to create solutions that improve mobility energy productivity, or the value derived from the transportation system per unit of energy consumed. Increases in mobility energy productivity result from improvements in the quality or output of the transportation system, and/or reductions in the energy used for transportation.

  15. Integrated Food-Energy Systems: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Gerst, M.; Cox, M. E.; Locke, K. A.; Laser, M.; Raker, M.; Gooch, C.; Kapuscinski, A. R.

    2015-12-01

    Predominant forms of food and energy systems pose multiple challenges to the environment as current configurations tend to be structured around centralized one-way through-put of materials and energy. One proposed form of system transformation involves locally integrating "unclosed" material and energy loops from food and energy systems. Such systems, which have been termed integrated food-energy systems (IFES), have existed in diverse niche forms but have not been systematically studied with respect to technological, governance, and environmental differences. This is likely because IFES can have widely different configurations, from co-located renewable energy production on cropland to agroforestry. As a first step in creating a synthesis of IFES, our research team constructed a taxonomy using exploratory data analysis of diverse IFES cases (Gerst et al., 2015, ES&T 49:734-741). It was found that IFES may be categorized by type of primary product produced (plant- or animal-based food or energy) and the degree and direction of vertical supply chain coordination. To further explore these implications, we have begun a study of a highly-coordinated, animal-driven IFES: dairy farms with biogas production from anaerobic digestion of manure. The objectives of the research are to understand the barriers to adoption and the potential benefits to the farms financial resilience and to the environment. To address these objectives, we are interviewing 50 farms across New York and Vermont, collecting information on farmer decision-making and farm operation. These results will be used to calibrate biophysical and economic models of the farm in order understand the future conditions under which adoption of an IFES is beneficial.

  16. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  17. The Design of Distributed Micro Grid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  18. Energy and the food system.

    PubMed

    Woods, Jeremy; Williams, Adrian; Hughes, John K; Black, Mairi; Murphy, Richard

    2010-09-27

    Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources.

  19. Energy and the food system

    PubMed Central

    Woods, Jeremy; Williams, Adrian; Hughes, John K.; Black, Mairi; Murphy, Richard

    2010-01-01

    Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources. PMID:20713398

  20. Advanced Energy Efficient Roof System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implementmore » more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic

  1. 77 FR 43592 - System Energy Resources, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-52-001] System Energy Resources, Inc.; Notice of Filing Take notice that on July 18, 2012, System Energy Resources, Inc. (System Energy Resources), submitted a supplement to its petition filed on March 28, 2012 (March 28 petition...

  2. Multiple energy synchrotron biomedical imaging system

    NASA Astrophysics Data System (ADS)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  3. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  4. Optical Energy Transfer and Conversion System

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2015-01-01

    An optical power transfer system comprising a fiber spooler, a fiber optic rotary joint mechanically connected to the fiber spooler, and an electrical power extraction subsystem connected to the fiber optic rotary joint with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, through the rotary joint, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy.

  5. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  6. 'I ate too much so I must have been sad': Emotions as a confabulated reason for overeating.

    PubMed

    Adriaanse, Marieke A; Prinsen, Sosja; de Witt Huberts, Jessie C; de Ridder, Denise T D; Evers, Catharine

    2016-08-01

    Emotional eating (i.e., overeating in response to negative affect) is a commonly accepted explanation for eating behaviors that are not in line with personal eating-norms. However, the empirical evidence for a causal link between self-reported emotional eating and overeating is mixed. The present study tested an alternative hypothesis stating that high emotional eating scores are indicative of a susceptibility to use negative affect as a confabulated, post-hoc reason to explain overeating. Female students (N = 46) participated in a 'taste-test' and came back to the lab a day later to receive feedback that they either ate too much (norm-violation condition) or an acceptable amount of food (control condition), whereafter emotional eating was assessed. Negative affect was measured several times throughout the study. In the norm-violation condition, participants with high emotional eating scores retrospectively rated their affect prior to eating as more negative than participants with low emotional eating scores. In the control condition, no effect of emotional score on affect ratings was found. For some individuals emotional eating scores may represent a tendency to retrospectively attribute overeating to negative affect. This could explain the lack of consistent findings for a link between self-reported emotional eating and overeating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Assessment of Energy Storage Alternatives in the Puget Sound Energy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balducci, Patrick J.; Jin, Chunlian; Wu, Di

    2013-12-01

    As part of an ongoing study co-funded by the Bonneville Power Administration, under its Technology Innovation Grant Program, and the U.S. Department of Energy, the Pacific Northwest National Laboratory (PNNL) has developed an approach and modeling tool for assessing the net benefits of using energy storage located close to the customer in the distribution grid to manage demand. PNNL in collaboration with PSE and Primus Power has evaluated the net benefits of placing a zinc bromide battery system at two locations in the PSE system (Baker River / Rockport and Bainbridge Island). Energy storage can provide a number of benefitsmore » to the utility through the increased flexibility it provides to the grid system. Applications evaluated in the assessment include capacity value, balancing services, arbitrage, distribution deferral and outage mitigation. This report outlines the methodology developed for this study and Phase I results.« less

  8. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE PAGES

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  9. The assessment of global thermo-energy performances of existing district heating systems optimized by harnessing renewable energy sources

    NASA Astrophysics Data System (ADS)

    Şoimoşan, Teodora M.; Danku, Gelu; Felseghi, Raluca A.

    2017-12-01

    Within the thermo-energy optimization process of an existing heating system, the increase of the system's energy efficiency and speeding-up the transition to green energy use are pursued. The concept of multi-energy district heating system, with high harnessing levels of the renewable energy sources (RES) in order to produce heat, is expected to be the key-element in the future urban energy infrastructure, due to the important role it can have in the strategies of optimizing and decarbonizing the existing district heating systems. The issues that arise are related to the efficient integration of different technologies of harnessing renewable energy sources in the energy mix and to the increase of the participation levels of RES, respectively. For the holistic modeling of the district heating system, the concept of the energy hub was used, where the synergy of different primary forms of entered energy provides the system a high degree energy security and flexibility in operation. The optimization of energy flows within the energy hub allows the optimization of the thermo-energy district system in order to approach the dual concept of smart city & smart energy.

  10. NREL Testing Erigo's and EaglePicher's Microgrid Energy Storage System |

    Science.gov Websites

    EaglePicher's Microgrid Energy Storage System NREL researchers are testing an energy storage system for a contains three independently controllable energy storage technologies. Photo of energy storage system hardware in a laboratory Photo by Dennis Schroeder Microgrids-and effective storage systems supporting them

  11. Simulation and energy analysis of distributed electric heating system

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  12. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  13. Kinetic energy recovery systems in motor vehicles

    NASA Astrophysics Data System (ADS)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  14. The National energy modeling system

    NASA Astrophysics Data System (ADS)

    The DOE uses a variety of energy and economic models to forecast energy supply and demand. It also uses a variety of more narrowly focussed analytical tools to examine energy policy options. For the purpose of the scope of this work, this set of models and analytical tools is called the National Energy Modeling System (NEMS). The NEMS is the result of many years of development of energy modeling and analysis tools, many of which were developed for different applications and under different assumptions. As such, NEMS is believed to be less than satisfactory in certain areas. For example, NEMS is difficult to keep updated and expensive to use. Various outputs are often difficult to reconcile. Products were not required to interface, but were designed to stand alone. Because different developers were involved, the inner workings of the NEMS are often not easily or fully understood. Even with these difficulties, however, NEMS comprises the best tools currently identified to deal with our global, national and regional energy modeling, and energy analysis needs.

  15. The brain endocannabinoid system in the regulation of energy balance.

    PubMed

    Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena

    2009-02-01

    The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.

  16. Design and optimization of zero-energy-consumption based solar energy residential building systems

    NASA Astrophysics Data System (ADS)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  17. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  18. Hydrogen Storage Technologies for Future Energy Systems.

    PubMed

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  19. Energy: Systems for Control, Maintenance, and Storage. A Bibliography.

    ERIC Educational Resources Information Center

    Thomas, Gerald, Comp.; McKane, Irving, Comp.

    This publication is a bibliography of available periodical literature on specific aspects of energy and today's technology. The Applied Science and Technology Indexes were searched for articles that related to these specific areas: (1) Energy control systems; (2) Maintenance of Energy Systems; and (3) Energy storage. The articles and papers…

  20. Renewable Energy System Feasibility Study

    DTIC Science & Technology

    1982-08-01

    SOLAR KINETICS, INC. TECHNICAL DATA 1.. SHORT FOCAL LENGTH The true test of parabolic trough collector efficiency is not the instantaneous efficiency...capabilities of concentrating solar collectors . Also, use of a solar thermal energy system to regenerate the desiccant beds of the IAD would satisfy...air flow rate is approximately 2?0 scfm or 16.2 lbm/min through the desiccant bed undergoing regeneration. Solar thermal energy collectors are

  1. Energy Systems Integration: Demonstrating Distributed Resource Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  2. Energy Transfer in the Earth-Sun System

    NASA Astrophysics Data System (ADS)

    Lui, A. T. Y.; Kamide, Y.

    2007-02-01

    Conference on Earth-Sun System Exploration: Energy Transfer; Kailua-Kona, Hawaii, USA, 16-20 January 2006; The goal of this conference, which was supported by several agencies and organizations, was to provide a forum for physicists engaged in the Earth-Sun system as well as in laboratory experiments to discuss and exchange knowledge and ideas on physical processes involving energy transfer. The motivation of the conference stemmed from the following realization: Space assets form an important fabric of our society, performing functions such as television broadcasting, cell- phone communication, navigation, and remote monitoring of tropospheric weather. There is increasing awareness of how much our daily activities can be adversely affected by space disturbances stretching all the way back to the Sun. In some of these energetic phenomena, energy in various forms can propagate long distances from the solar surface to the interplanetary medium and eventually to the Earth's immediate space environment, namely, its magnetosphere, ionosphere, and thermosphere. In addition, transformation of energy can take place in these space disturbances, allowing charged-particle energy to be transformed to electromagnetic energy or vice versa. In- depth understanding of energy transformation and transmission in the Earth-Sun system will foster the identification of physical processes responsible for space disturbances and the prediction of their occurrences and effects. Participants came from 15 countries.

  3. World energy projection system: Model documentation

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  4. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    NASA Astrophysics Data System (ADS)

    Rowse, Tarah

    While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms

  5. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  6. Energy-efficient fault tolerance in multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is

  7. NREL: News - New Energy Systems Enhance National Security

    Science.gov Websites

    resources, bioenergy and bio-based products, zero energy buildings, wind energy, geothermal energy, solar Energy Systems Enhance National Security Washington D.C., March 14, 2002 Experts from the U.S . Department of Energy's National Renewable Energy Laboratory (NREL) have identified key renewable energy

  8. Energy and nutrient cycling in pig production systems

    NASA Astrophysics Data System (ADS)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  9. Energies and radial distributions of Bs mesons - the effect of hypercubic blocking

    NASA Astrophysics Data System (ADS)

    Koponen, Jonna

    2006-12-01

    This is a follow-up to our earlier work for the energies and the charge (vector) and matter (scalar) distributions for S-wave states in a heavy-light meson, where the heavy quark is static and the light quark has a mass about that of the strange quark. We study the radial distributions of higher angular momentum states, namely P- and D-wave states, using a "fuzzy" static quark. A new improvement is the use of hypercubic blocking in the time direction, which effectively constrains the heavy quark to move within a 2a hypercube (a is the lattice spacing). The calculation is carried out with dynamical fermions on a 163 × 32 lattice with a ≈ 0.10 fm generated using the non-perturbatively improved clover action. The configurations were gener- ated by the UKQCD Collaboration using lattice action parameters β = 5.2, c SW = 2.0171 and κ = 0.1350. In nature the closest equivalent of this heavy-light system is the Bs meson. Attempts are now being made to understand these results in terms of the Dirac equation.

  10. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  11. Control of solar energy systems

    NASA Astrophysics Data System (ADS)

    Sizov, Iu. M.; Zakhidov, R. A.; Baranov, V. G.

    Two approaches to the control of large solar energy systems, i.e., programmed control and control systems relying on the use of orientation transducers and feedback, are briefly reviewed, with particular attention given to problems associated with these control systems. A new control system for large solar power plants is then proposed which is based on a combination of these approaches. The general design of the control system is shown and its principle of operation described. The efficiency and cost effectiveness of the approach proposed here are demonstrated.

  12. Energy Signal Tool for Decision Support in Building Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use.more » As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.« less

  13. Guide to the economic analysis of community energy systems

    NASA Astrophysics Data System (ADS)

    Pferdehirt, W. P.; Croke, K. G.; Hurter, A. P.; Kennedy, A. S.; Lee, C.

    1981-08-01

    This guidebook provides a framework for the economic analysis of community energy systems. The analysis facilitates a comparison of competing configurations in community energy systems, as well as a comparison with conventional energy systems. Various components of costs and revenues to be considered are discussed in detail. Computational procedures and accompanying worksheets are provided for calculating the net present value, straight and discounted payback periods, the rate of return, and the savings to investment ratio for the proposed energy system alternatives. These computations are based on a projection of the system's costs and revenues over its economic lifetimes. The guidebook also discusses the sensitivity of the results of this economic analysis to changes in various parameters and assumptions.

  14. Context-specific energy strategies: coupling energy system visions with feasible implementation scenarios.

    PubMed

    Trutnevyte, Evelina; Stauffacher, Michael; Schlegel, Matthias; Scholz, Roland W

    2012-09-04

    Conventional energy strategy defines an energy system vision (the goal), energy scenarios with technical choices and an implementation mechanism (such as economic incentives). Due to the lead of a generic vision, when applied in a specific regional context, such a strategy can deviate from the optimal one with, for instance, the lowest environmental impacts. This paper proposes an approach for developing energy strategies by simultaneously, rather than sequentially, combining multiple energy system visions and technically feasible, cost-effective energy scenarios that meet environmental constraints at a given place. The approach is illustrated by developing a residential heat supply strategy for a Swiss region. In the analyzed case, urban municipalities should focus on reducing heat demand, and rural municipalities should focus on harvesting local energy sources, primarily wood. Solar thermal units are cost-competitive in all municipalities, and their deployment should be fostered by information campaigns. Heat pumps and building refurbishment are not competitive; thus, economic incentives are essential, especially for urban municipalities. In rural municipalities, wood is cost-competitive, and community-based initiatives are likely to be most successful. Thus, the paper shows that energy strategies should be spatially differentiated. The suggested approach can be transferred to other regions and spatial scales.

  15. A compact human-powered energy harvesting system

    NASA Astrophysics Data System (ADS)

    Rao, Yuan; McEachern, Kelly M.; Arnold, David P.

    2013-12-01

    This paper presents a fully functional, self-sufficient body-worn energy harvesting system for passively capturing energy from human motion, with the long-term vision of supplying power to portable, wearable, or even implanted electronic devices. The system requires no external power supplies and can bootstrap from zero-state-of-charge to generate electrical energy from walking, jogging and cycling; convert the induced ac voltage to a dc voltage; and then boost and regulate the dc voltage to charge a Li-ion-polymer battery. Tested under normal human activities (walking, jogging, cycling) when worn on different parts of the body, the 70 cm3 system is shown to charge a 3.7 V rechargeable battery at charge rates ranging from 33 μW to 234 μW.

  16. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  17. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project. The project was designed to improve the efficiency of the circulating water pumping system serving the utility's 405-MW steam turbine. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial assessment of the system.

  18. Guidelines for Datacenter Energy Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Reshma; Mahdavi, Rod; Mathew, Paul

    2013-12-01

    The purpose of this document is to provide structured guidance to data center owners, operators, and designers, to empower them with information on how to specify and procure data center energy information systems (EIS) for managing the energy utilization of their data centers. Data centers are typically energy-intensive facilities that can consume up to 100 times more energy per unit area than a standard office building (FEMP 2013). This guidance facilitates “data-driven decision making,” which will be enabled by following the approach outlined in the guide. This will bring speed, clarity, and objectivity to any energy or asset management decisionsmore » because of the ability to monitor and track an energy management project’s performance.« less

  19. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  20. Energy Systems Training Programs and Certifications Survey White Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Daryl; Nimbalkar, Sachin U.; Wenning, Thomas J.

    2017-02-01

    Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.

  1. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  2. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  3. Energy efficiency of task allocation for embedded JPEG systems.

    PubMed

    Fan, Yang-Hsin; Wu, Jan-Ou; Wang, San-Fu

    2014-01-01

    Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin.

  4. Energy Efficiency of Task Allocation for Embedded JPEG Systems

    PubMed Central

    2014-01-01

    Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin. PMID:24982983

  5. Energy Management of An Extended Hybrid Renewable Energy System For Isolated Sites Using A Fuzzy Logic Controller

    NASA Astrophysics Data System (ADS)

    Faquir, Sanaa; Yahyaouy, Ali; Tairi, Hamid; Sabor, Jalal

    2018-05-01

    This paper presents the implementation of a fuzzy logic controller to manage the flow of energy in an extended hybrid renewable energy system employed to satisfy the load for a wide isolated site at the city of Essaouira in Morocco. To achieve Efficient energy management, the system is combining two important renewable energies: solar and wind. Lithium Ion batteries were also used as storage devices to store the excess of energy provided by the renewable sources or to supply the system with the required energy when the energy delivered by the input sources is not enough to satisfy the load demand. To manage the energy in the system, a controller based on fuzzy logic was implemented. Real data taken from previous research and meteorological sites was used to test the controller.

  6. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  7. MATE standardization

    NASA Astrophysics Data System (ADS)

    Farmer, R. E.

    1982-11-01

    The MATE (Modular Automatic Test Equipment) program was developed to combat the proliferation of unique, expensive ATE within the Air Force. MATE incorporates a standard management approach and a standard architecture designed to implement a cradle-to-grave approach to the acquisition of ATE and to significantly reduce the life cycle cost of weapons systems support. These standards are detailed in the MATE Guides. The MATE Guides assist both the Air Force and Industry in implementing the MATE concept, and provide the necessary tools and guidance required for successful acquisition of ATE. The guides also provide the necessary specifications for industry to build MATE-qualifiable equipment. The MATE architecture provides standards for all key interfaces of an ATE system. The MATE approach to the acquisition and management of ATE has been jointly endorsed by the commanders of Air Force Systems Command and Air Force Logistics Command as the way of doing business in the future.

  8. Offshore Wind Energy Systems Engineering Curriculum Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This coursemore » was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.« less

  9. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    NASA Astrophysics Data System (ADS)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  10. Phase change energy storage for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  11. Phase change energy storage for solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Chiaramonte, F. P.; Taylor, J. D.

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  12. Information-theoretic characterization of dynamic energy systems

    NASA Astrophysics Data System (ADS)

    Bevis, Troy Lawson

    The latter half of the 20th century saw tremendous growth in nearly every aspect of civilization. From the internet to transportation, the various infrastructures relied upon by society has become exponentially more complex. Energy systems are no exception, and today the power grid is one of the largest infrastructures in the history of the world. The growing infrastructure has led to an increase in not only the amount of energy produced, but also an increase in the expectations of the energy systems themselves. The need for a power grid that is reliable, secure, and efficient is apparent, and there have been several initiatives to provide such a system. These increases in expectations have led to a growth in the renewable energy sources that are being integrated into the grid, a change that increases efficiency and disperses the generation throughout the system. Although this change in the grid infrastructure is beneficial, it leads to grand challenges in system level control and operation. As the number of sources increases and becomes geographically distributed, the control systems are no longer local to the system. This means that communication networks must be enhanced to support multiple devices that must communicate reliably. A common solution to these new systems is to use wide area networks for the communication network, as opposed to point-to-point communication. Although the wide area network will support a large number of devices, it generally comes with a compromise in the form of latency in the communication system. Now the device controller has latency injected into the feedback loop of the system. Also, renewable energy sources are largely non-dispatchable generation. That is, they are never guaranteed to be online and supplying the demanded energy. As renewable generation is typically modeled as stochastic process, it would useful to include this behavior in the control system algorithms. The combination of communication latency and stochastic

  13. NREL Leads Energy Systems Integration - Continuum Magazine | NREL

    Science.gov Websites

    performance data to manage and optimize campus energy use. Integrated Solutions for a Complex Energy World 03 Integrated Solutions for a Complex Energy World Energy systems integration optimizes the design and efficient data centers in the world. Sustainability through Dynamic Energy Management Sustainability through

  14. Functionally-fitted energy-preserving integrators for Poisson systems

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Xinyuan

    2018-07-01

    In this paper, a new class of energy-preserving integrators is proposed and analysed for Poisson systems by using functionally-fitted technology. The integrators exactly preserve energy and have arbitrarily high order. It is shown that the proposed approach allows us to obtain the energy-preserving methods derived in [12] by Cohen and Hairer (2011) and in [1] by Brugnano et al. (2012) for Poisson systems. Furthermore, we study the sufficient conditions that ensure the existence of a unique solution and discuss the order of the new energy-preserving integrators.

  15. Institutionalization and Sustainability of the National Science Foundation's Advanced Technological Education Program.

    ERIC Educational Resources Information Center

    Bailey, Thomas R.; Matsuzuka, Yukari; Jacobs, James; Morest, Vanessa Smith; Hughes, Katherine L.

    This document reports on a study conducted by the National Science Foundation (NSF) that examines the Advanced Technological Education (ATE) program. ATE aims to promote systemic reform of the nation's science, technology, engineering, and mathematics (STEM) education. The study analyzed the influence of the ATE program on the nature of STEM…

  16. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  17. An Expertise Based Energy Information System.

    ERIC Educational Resources Information Center

    Rosenberg, S.

    This paper describes an intelligent decision support system for information on petroleum resources and use currently being designed by the Information Methodology Research Project as the first step in the development of a comprehensive intelligent information system for dealing with energy resources in the United States. The system draws on…

  18. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  19. The Earth System's Missing Energy and Land Warming

    NASA Astrophysics Data System (ADS)

    Huang, S.; Wang, H.; Duan, W.

    2013-05-01

    The energy content of the Earth system is determined by the balance or imbalance between the incoming energy from solar radiation and the outgoing energy of terrestrial long wavelength radiation. Change in the Earth system energy budget is the ultimate cause of global climate change. Satellite data show that there is a small yet persistent radiation imbalance at the top-of-atmosphere such that Earth has been steadily accumulating energy, consistent with the theory of greenhouse effect. It is commonly believed [IPCC, 2001; 2007] that up to 94% of the energy trapped by anthropogenic greenhouse gases is absorbed by the upper several hundred meter thick layer of global oceans, with the remaining to accomplish ice melting, atmosphere heating, and land warming, etc. However, the recent measurements from ocean monitoring system indicated that the rate of oceanic heat uptake has not kept pace with the greenhouse heat trapping rate over the past years [Trenberth and Fasullo, Science, 328: 316-317, 2010]. An increasing amount of energy added to the earth system has become unaccounted for, or is missing. A recent study [Loeb et al., Nature Geoscience, 5:110-113, 2012] suggests that the missing energy may be located in the deep ocean down to 1,800 m. Here we show that at least part of the missing energy can be alternatively explained by the land mass warming. We argue that the global continents alone should have a share greater than 10% of the global warming energy. Although the global lands reflect solar energy at a higher rate, they use less energy for evaporation than do the oceans. Taken into accounts the terrestrial/oceanic differences in albedo (34% vs. 28%) and latent heat (27% vs. 58% of net solar radiation at the surface), the radiative energy available per unit surface area for storage or other internal processes is more abundant on land than on ocean. Despite that the lands cover only about 29% of the globe, the portion of global warming energy stored in the lands

  20. Microelectromechanical high-density energy storage/rapid release system

    NASA Astrophysics Data System (ADS)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  1. Fluid Power Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  2. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOEpatents

    Tamor, Michael Alan; Gale, Allan Roy

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  3. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  4. NREL Tests Energy Storage System to Fill Renewable Gaps | News | NREL

    Science.gov Websites

    Tests Energy Storage System to Fill Renewable Gaps NREL Tests Energy Storage System to Fill -megawatt energy storage system from Renewable Energy Systems (RES) Americas will assist research that aims to optimize the grid for wind and solar plants. The system arrived at NREL's National Wind Technology

  5. Energy Systems and Population Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leadingmore » to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of

  6. Economic Evaluation of Single-Family-Residence Solar-Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Report concludes that where solar-energy system investment costs are presently high, future promise of savings due to increased conventional energy costs is not optimistic. This is because cost of system tends to increase at a rate not significantly less than the cost of conventional energy.

  7. Dynamic Energy Management System for a Smart Microgrid.

    PubMed

    Venayagamoorthy, Ganesh Kumar; Sharma, Ratnesh K; Gautam, Prajwal K; Ahmadi, Afshin

    2016-08-01

    This paper presents the development of an intelligent dynamic energy management system (I-DEMS) for a smart microgrid. An evolutionary adaptive dynamic programming and reinforcement learning framework is introduced for evolving the I-DEMS online. The I-DEMS is an optimal or near-optimal DEMS capable of performing grid-connected and islanded microgrid operations. The primary sources of energy are sustainable, green, and environmentally friendly renewable energy systems (RESs), e.g., wind and solar; however, these forms of energy are uncertain and nondispatchable. Backup battery energy storage and thermal generation were used to overcome these challenges. Using the I-DEMS to schedule dispatches allowed the RESs and energy storage devices to be utilized to their maximum in order to supply the critical load at all times. Based on the microgrid's system states, the I-DEMS generates energy dispatch control signals, while a forward-looking network evaluates the dispatched control signals over time. Typical results are presented for varying generation and load profiles, and the performance of I-DEMS is compared with that of a decision tree approach-based DEMS (D-DEMS). The robust performance of the I-DEMS was illustrated by examining microgrid operations under different battery energy storage conditions.

  8. High energy density propulsion systems and small engine dynamometer

    NASA Astrophysics Data System (ADS)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  9. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  10. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  11. Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.

  12. Adaptability of solar energy conversion systems on ships

    NASA Astrophysics Data System (ADS)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  13. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  14. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...-1279; Notice No. 11-07] Notification for Airborne Wind Energy Systems (AWES) AGENCY: Federal Aviation... CFR) part 77, ``Safe, Efficient Use and Preservation of the Navigable Airspace,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system...

  15. 7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable Energy...

  16. 7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable Energy...

  17. 7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable Energy...

  18. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    DOE PAGES

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; ...

    2013-12-20

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are definedmore » as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.« less

  19. Air-Mobile Ground Security and Surveillance System (AMGSSS) Project Summary Report.

    DTIC Science & Technology

    1996-09-01

    significantly to the cost and 5 lb or more to the weight . 15 5.3.3 Laser Ranging A Contraves laser rangefinder is recommended if the high cost is not...8 3.2 .4 B atteries ....................................................... 8 3.2.5 Payload Weight and Power...concept payload weight and power estimate ........................... 9 3. System battery estim ate

  20. Collaboration Mechanism for Equipment Instruction of Multiple Energy Systems

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Tuo; Wang, Qi; Zhang, Zhao; Zhao, Mingyu; Wang, Yinghui

    2018-01-01

    When multiple energy systems execute optimization instructions simultaneously, and the same equipment is Shared, the instruction conflict may occur. Aiming at the above problems, taking into account the control objectives of each system, the characteristics of different systems, such as comprehensive clean energy, energy efficiency, and peak filling, etc., designed the instruction coordination mechanism for the daemon. This mechanism mainly acts on the main station of the system, and form a final optimization instruction. For some specific scenarios, the collaboration mechanism of unlocking the terminal is supplemented. The mechanism determines the specific execution instructions based on the arrival time of the instruction. Finally, the experiment in Tianjin eco-city shows that this algorithm can meet the instruction and collaboration requirements of multi-energy systems, and ensure the safe operation of the equipment.

  1. A System of Systems (SoS) Approach to Sustainable Energy Planning in MENA

    NASA Astrophysics Data System (ADS)

    Mahlooji, Maral; Ristic, Bora; Price, Katherine; Madani, Kaveh

    2016-04-01

    The global issue of climate change has put pressure on governments to de-carbonise their energy portfolios by transitioning from the dominant use of fossil fuels energy to extensive use of renewable energies. The lack of renewable energy laws and credible targets and valid roadmaps for energy policies within the MENA region has let to ambitious and unrealistic renewable targets, where countries such as Djibouti and Morocco are aiming for 100% and 42% renewables respectively, by 2020, while Kuwait and Qatar are only aiming for 5% and 6% respectively. Nevertheless, this demonstrates the commitment and desirability of the members of the MENA region on increasing their share of renewables in their energy mix to reduce the greenhouse gas emissions of the region and minimise the unintended impacts of energy technologies on major natural resources through use of cost efficient technologies. The Relative Aggregate Footprint (RAF) of energy sources among the member states of the MENA region is assessed by applying the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015). RAF demonstrates the efficiency of the overall resource-use of energy resources through creating a trade-off between carbon footprint, land footprint, water footprint, and economic cost. Using the resource availability of each member states, weights are assigned to the four criteria. This allows the evaluation of the desirability of energy sources with respect to regional resource availability and therefore, the efficiency of the overall resource-use of the energy portfolio of the MENA region is determined. This study has recognised the need for reform and radical changes within the MENA region's energy profile to make a significant contribution to the reduction of carbon emissions in order to use the resources in a sustainable way and increase the regional energy security of the member states across MENA. Reference: Hadian S, Madani K (2015) A System of Systems

  2. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  3. Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at

    Science.gov Websites

    NREL | Energy Systems Integration Facility | NREL Asetek Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at NREL Asetek's RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) ultra-energy-efficient high-performance

  4. Metal hydride-based thermal energy storage systems

    DOEpatents

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  5. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  6. A hybrid reconfigurable solar and wind energy system

    NASA Astrophysics Data System (ADS)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  7. Electronic energy density in chemical reaction systems

    NASA Astrophysics Data System (ADS)

    Tachibana, Akitomo

    2001-08-01

    The energy of chemical reaction is visualized in real space using the electronic energy density nE(r⃗) associated with the electron density n(r⃗). The electronic energy density nE(r⃗) is decomposed into the kinetic energy density nT(r⃗), the external potential energy density nV(r⃗), and the interelectron potential energy density nW(r⃗). Using the electronic energy density nE(r⃗) we can pick up any point in a chemical reaction system and find how the electronic energy E is assigned to the selected point. We can then integrate the electronic energy density nE(r⃗) in any region R surrounding the point and find out the regional electronic energy ER to the global E. The kinetic energy density nT(r⃗) is used to identify the intrinsic shape of the reactants, the electronic transition state, and the reaction products along the course of the chemical reaction coordinate. The intrinsic shape is identified with the electronic interface S that discriminates the region RD of the electronic drop from the region RA of the electronic atmosphere in the density distribution of the electron gas. If the R spans the whole space, then the integral gives the total E. The regional electronic energy ER in thermodynamic ensemble is realized in electrochemistry as the intrinsic Volta electric potential φR and the intrinsic Herring-Nichols work function ΦR. We have picked up first a hydrogen-like atom for which we have analytical exact expressions of the relativistic kinetic energy density nTM(r⃗) and its nonrelativistic version nT(r⃗). These expressions are valid for any excited bound states as well as the ground state. Second, we have selected the following five reaction systems and show the figures of the nT(r⃗) as well as the other energy densities along the intrinsic reaction coordinates: a protonation reaction to He, addition reactions of HF to C2H4 and C2H2, hydrogen abstraction reactions of NH3+ from HF and NH3. Valence electrons possess their unique

  8. Integrated modelling of ecosystem services and energy systems research

    NASA Astrophysics Data System (ADS)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  9. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  10. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-watermore » temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.« less

  11. World Energy Projection System Plus Model Documentation: Commercial Module

    EIA Publications

    2016-01-01

    The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.

  12. Analysis and Development of Management Information Systems for Private Messes Afloat

    DTIC Science & Technology

    1988-03-01

    the development phase emphasis was placed on a three step approach starting with an analysis of the requirements as established by... oper - ating the mess divided by number of mess members Total Mess Bill Due Total of old bills, current bill, mess share owed, and special assessment 46...TRANSPARENCY THE SYSTEM BEHAVIOR IS TRANSPARENT TO THE USER. THAT MEANS THAT THE USER CAN DEVELOP A CONSISTENT MODEL OF THE SYSTEM WHEN WORKING

  13. Optimizing the Energy and Throughput of a Water-Quality Monitoring System.

    PubMed

    Olatinwo, Segun O; Joubert, Trudi-H

    2018-04-13

    This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near-far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.

  14. Energy Engineering Analysis Program, limited energy study of steam distribution systems, Hawthorne Army Ammunition Depot, Hawthorne, Nevada. Energy report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    This report summarizes all work of the Limited Energy Study of Steam Distribution Systems, Energy Engineering Analysis Program, Hawthorne Army Ammunition Depot (HWAAD), Nevada. The purpose of this limited energy study is to evaluate steam distribution and condensate collection systems in both the Industrial Area and Ordnance Area of HWAAD to develop a set of replacement actions that will reduce energy consumption and operating costs. These efforts consist of corrections and revisions to previously submitted funding requests. A number of facilities covering over 140,000 acres constitute HWAAD; however, this study was limited to the Industrial and Ordnance Areas.

  15. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  16. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    NASA Astrophysics Data System (ADS)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  17. Towards A Taxonomy Of Attacks Against Energy Control Systems

    NASA Astrophysics Data System (ADS)

    Fleury, Terry; Khurana, Himanshu; Welch, Von

    Control systems in the energy sector (e.g., supervisory control and data acquisition (SCADA) systems) involve a hierarchy of sensing, monitoring and control devices connected to centralized control stations or centers. The incorporation of commercial off-the-shelf technologies in energy control systems makes them vulnerable to cyber attacks. A taxonomy of cyber attacks against control systems can assist the energy sector in managing the cyber threat. This paper takes the first step towards a taxonomy by presenting a comprehensive model of attacks, vulnerabilities and damage related to control systems. The model is populated based on a survey of the technical literature from industry, academia and national laboratories.

  18. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan

    2015-05-01

    This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.

  19. 2,4,6-Tri­amino-1,3,5-triazin-1-ium 3-(prop-2-eno­yloxy)propano­ate acrylic acid monosolvate monohydrate

    PubMed Central

    Sangeetha, V.; Kanagathara, N.; Chakkaravarthi, G.; Marchewka, M. K.; Anbalagan, G.

    2013-01-01

    The asymmetric unit of the title salt, C3H7N6 +·C6H7O4 −·C3H4O2·H2O, contains a 2,4,6-tri­amino-1,3,5-triazin-1-ium cation, a 3-(prop-2-eno­yloxy)propano­ate anion and acrylic acid and water solvent mol­ecules in a 1:1:1:1 ratio and with each species in a general position. In the crystal, the components are linked into a supra­molecular layer in the bc plane via a combination of O—H⋯O, N—H⋯N and N—H⋯O hydrogen bonding. The crystal studied was a non-merohedral twin, the minor component contribution being approximately 26%. PMID:23723892

  20. Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  1. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  2. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “allmore » of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system

  3. Landing gear energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Christopher P. (Inventor)

    1994-01-01

    A landing pad system is described for absorbing horizontal and vertical impact forces upon engagement with a landing surface where circumferentially arranged landing struts respectively have a clevis which receives a slidable rod member and where the upper portion of a slidable rod member is coupled to the clevis by friction washers which are force fit onto the rod member to provide for controlled constant force energy absorption when the rod member moves relative to the clevis. The lower end of the friction rod is pivotally attached by a ball and socket to a support plate where the support plate is arranged to slide in a transverse direction relative to a housing which contains an energy absorption material for absorbing energy in a transverse direction.

  4. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  5. Small and Shaping the Future Energy Eco-house System

    NASA Astrophysics Data System (ADS)

    Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki

    2010-11-01

    The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.

  6. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  7. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  8. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  9. The Intersection of Robust Intelligence and Trust: Hybrid Teams, Firms, and Systems

    DTIC Science & Technology

    2014-01-01

    bites dogma: Apple’s iOS ate up Android, Blackberry U.S. market share losses this summer”; http://appleinsider.com/articles/13/10/05/data-bites-dogma...ios-ate-up-android- blackberry -us-market-share-losses-this- summer 9 Compare night satellite photos of the USA with Cuba; or South Korea with North

  10. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, D W; Trammel, B C; Dixit, B S

    1979-02-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. The concept of an HP-WHR system is developed, the potential performance and economics of such a system is evaluated and the potential for application is examined. A thermodynamic performance analysis of a hypothetical system projects an overall system coefficient of performance (C.O.P.) of from 2.181 to 2.264 formore » wastewater temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the implementation of this system is projected to be 5.014 QUADS, or the energy equivalent of 687 millions tons of coal, from 1980 to the year 2000. Economic analysis shows the HP-WHR scheme to be cost-competitive, on the basis of a net present value life cycle cost comparison, with conventional residential and light commercial HVAC systems.« less

  11. Development of a PMAD System for Flywheel Based Energy Storage System

    NASA Technical Reports Server (NTRS)

    Wolff, Fred

    2001-01-01

    We will discuss the following: (1) the Flywheel Energy Storage System (FESS) program objective; (2) benefits of flywheels for the International Space Station; (3) the FESS development team; (4) FESS electrical requirements; (5) FESS electrical architecture; and (6) electrical subsystem functionality. The objective of the FESS program is to demonstrate flywheel technologies operating together as a system and having improved performance characteristics over batteries in a low earth orbit energy storage application (such as the ISS).

  12. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  13. Energy as an entanglement witness for quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Dowling, Mark R.; Doherty, Andrew C.; Bartlett, Stephen D.

    2004-12-01

    We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin- 1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.

  14. Center for Efficiency in Sustainable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Martin

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) usemore » these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated

  15. Industrial Control Systems/SCADA systems risk assessment in the energy sector

    NASA Astrophysics Data System (ADS)

    Falodun, Babatunde

    The energy sector is one of the most critical components of our national infrastructure. It not only provides the electrical power and petroleum required to run day-to-day operations and mechanisms in society, it's also an important element that directly impacts the economy with regard to growth and stability. Industrial Control Systems (ICS) /Supervisory Control and Data Acquisition Systems (SCADA) are computerized mechanisms, they are both software and hardware that are used to control real time processes and operations in power plants and oil production facilities. A significant attack on these control systems that leads to widespread disruption of energy could result in catastrophic consequences for any major city and even the nation. This research paper explores cyber threats and vulnerabilities faced by ICS/SCADA systems in the energy sector and also highlights possible outcomes of a successful breach. Furthermore, the research underscores mitigation strategies that could be used to prevent and respond to an attack. Keywords: Cybersecurity, SCADA, Cyber Attacks, Threats, Vulnerabilities, Risk Assessment, Dr. Albert Orbinati.

  16. Evaluating terrain based criteria for snow avalanche exposure ratings using GIS

    NASA Astrophysics Data System (ADS)

    Delparte, Donna; Jamieson, Bruce; Waters, Nigel

    2010-05-01

    Snow avalanche terrain in backcountry regions of Canada is increasingly being assessed based upon the Avalanche Terrain Exposure Scale (ATES). ATES is a terrain based classification introduced in 2004 by Parks Canada to identify "simple", "challenging" and "complex" backcountry areas. The ATES rating system has been applied to well over 200 backcountry routes, has been used in guidebooks, trailhead signs and maps and is part of the trip planning component of the AVALUATOR™, a simple decision-support tool for backcountry users. Geographic Information Systems (GIS) offers a means to model and visualize terrain based criteria through the use of digital elevation model (DEM) and land cover data. Primary topographic variables such as slope, aspect and curvature are easily derived from a DEM and are compatible with the equivalent evaluation criteria in ATES. Other components of the ATES classification are difficult to extract from a DEM as they are not strictly terrain based. An overview is provided of the terrain variables that can be generated from DEM and land cover data; criteria from ATES which are not clearly terrain based are identified for further study or revision. The second component of this investigation was the development of an algorithm for inputting suitable ATES criteria into a GIS, thereby mimicking the process avalanche experts use when applying the ATES classification to snow avalanche terrain. GIS based classifications were compared to existing expert assessments for validity. The advantage of automating the ATES classification process through GIS is to assist avalanche experts with categorizing and mapping remote backcountry terrain.

  17. Energy Storage Systems as a Compliment to Wind Power

    NASA Astrophysics Data System (ADS)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  18. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  19. Optimizing the Energy and Throughput of a Water-Quality Monitoring System

    PubMed Central

    Olatinwo, Segun O.

    2018-01-01

    This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near–far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity. PMID:29652866

  20. Recipes for free energy calculations in biomolecular systems.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2013-01-01

    During the last decade, several methods for sampling phase space and calculating various free energies in biomolecular systems have been devised or refined for molecular dynamics (MD) simulations. Thus, state-of-the-art methodology and the ever increasing computer power allow calculations that were forbidden a decade ago. These calculations, however, are not trivial as they require knowledge of the methods, insight into the system under study, and, quite often, an artful combination of different methodologies in order to avoid the various traps inherent in an unknown free energy landscape. In this chapter, we illustrate some of these concepts with two relatively simple systems, a sugar ring and proline oligopeptides, whose free energy landscapes still offer considerable challenges. In order to explore the configurational space of these systems, and to surmount the various free energy barriers, we combine three complementary methods: a nonequilibrium umbrella sampling method (adaptively biased MD, or ABMD), replica-exchange molecular dynamics (REMD), and steered molecular dynamics (SMD). In particular, ABMD is used to compute the free energy surface of a set of collective variables; REMD is used to improve the performance of ABMD, to carry out sampling in space complementary to the collective variables, and to sample equilibrium configurations directly; and SMD is used to study different transition mechanisms.

  1. Publications | Energy Systems Integration Facility | NREL

    Science.gov Websites

    100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable timeline. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Integrating High Levels of Variable Renewable Energy into Electric Power Systems, Journal of Modern Power

  2. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  3. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    PubMed

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  4. Electrical Energy Storage for Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, C. R.; Cho, K. J.; Ferraris, John

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing thismore » work with other sources of funding from both industry and government.« less

  5. Accomplishing the genotype-specific serodiagnosis of single and dual Trypanosoma cruzi infections by flow cytometry Chagas-Flow ATE-IgG2a.

    PubMed

    Alessio, Glaucia Diniz; de Araújo, Fernanda Fortes; Sales Júnior, Policarpo Ademar; Gomes, Matheus de Souza; Amaral, Laurence Rodrigues do; Pascoal Xavier, Marcelo Antônio; Teixeira-Carvalho, Andréa; de Lana, Marta; Martins-Filho, Olindo Assis

    2018-02-01

    The methods currently available for genotype-specific diagnosis of T. cruzi infection still present relevant limitations, especially to identify mixed infection. In the present investigation, we have evaluated the performance of Chagas-Flow ATE-IgG2a test for early and late differential diagnosis of single and dual genotype-specific T. cruzi infections. Serum samples from Swiss mice at early and late stages of T. cruzi infection were assayed in parallel batches for genotype-specific diagnosis of single (TcI, TcVI or TcII) and dual (TcI+TcVI, TcVI+TcII or TcII+TcI) infections. The intrinsic reactivity to TcI, TcVI and TcII target antigens, including amastigote (AI/AVI/AII), trypomastigote-(TI/TVI/TII) and epimastigote (EI/EVI/EII), at specific reverse of serum dilutions (500 to 64,000), was employed to provide reliable decision-trees for "early" vs "late", "single vs "dual" and "genotype-specific" serology. The results demonstrated that selective set of attributes "EII 500/EI 2,000/AII 500" were able to provide high-quality accuracy (81%) to segregate early and late stages of T. cruzi infection. The sets "TI 2,000/AI 1,000/EII 1,000" and "TI 8,000/AII 32,000" presented expressive scores to discriminate single from dual T. cruzi infections at early (85%) and late stages (84%), respectively. Moreover, the attributes "TI 4,000/TVI 500/TII 1,000", "TI 16,000/EI 2,000/EII 2,000/AI 500/TVI 500" showed good performance for genotype-specific diagnosis at early stage of single (72%) and dual (80%) T. cruzi infections, respectively. In addition, the attributes "TI 4,000/AII 1,000/EVI 1,000", "TI 64,000/AVI 500/AI 2,000/AII 1,000/EII 4,000" showed moderate performance for genotype-specific diagnosis at late stage of single (69%) and dual (76%) T. cruzi infections, respectively. The sets of decision-trees were assembled to construct a sequential algorithm with expressive accuracy (81%) for serological diagnosis of T. cruzi infection. These findings engender new perspectives for

  6. Accomplishing the genotype-specific serodiagnosis of single and dual Trypanosoma cruzi infections by flow cytometry Chagas-Flow ATE-IgG2a

    PubMed Central

    Alessio, Glaucia Diniz; de Araújo, Fernanda Fortes; Sales Júnior, Policarpo Ademar; Gomes, Matheus de Souza; do Amaral, Laurence Rodrigues; Pascoal Xavier, Marcelo Antônio; Teixeira-Carvalho, Andréa; de Lana, Marta

    2018-01-01

    The methods currently available for genotype-specific diagnosis of T. cruzi infection still present relevant limitations, especially to identify mixed infection. In the present investigation, we have evaluated the performance of Chagas-Flow ATE-IgG2a test for early and late differential diagnosis of single and dual genotype-specific T. cruzi infections. Serum samples from Swiss mice at early and late stages of T. cruzi infection were assayed in parallel batches for genotype-specific diagnosis of single (TcI, TcVI or TcII) and dual (TcI+TcVI, TcVI+TcII or TcII+TcI) infections. The intrinsic reactivity to TcI, TcVI and TcII target antigens, including amastigote (AI/AVI/AII), trypomastigote-(TI/TVI/TII) and epimastigote (EI/EVI/EII), at specific reverse of serum dilutions (500 to 64,000), was employed to provide reliable decision-trees for “early” vs “late”, “single vs “dual” and “genotype-specific” serology. The results demonstrated that selective set of attributes “EII 500/EI 2,000/AII 500” were able to provide high-quality accuracy (81%) to segregate early and late stages of T. cruzi infection. The sets “TI 2,000/AI 1,000/EII 1,000” and “TI 8,000/AII 32,000” presented expressive scores to discriminate single from dual T. cruzi infections at early (85%) and late stages (84%), respectively. Moreover, the attributes “TI 4,000/TVI 500/TII 1,000”, “TI 16,000/EI 2,000/EII 2,000/AI 500/TVI 500” showed good performance for genotype-specific diagnosis at early stage of single (72%) and dual (80%) T. cruzi infections, respectively. In addition, the attributes “TI 4,000/AII 1,000/EVI 1,000”, “TI 64,000/AVI 500/AI 2,000/AII 1,000/EII 4,000” showed moderate performance for genotype-specific diagnosis at late stage of single (69%) and dual (76%) T. cruzi infections, respectively. The sets of decision-trees were assembled to construct a sequential algorithm with expressive accuracy (81%) for serological diagnosis of T. cruzi infection

  7. Research on Battery Energy Storage System Based on User Side

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  8. Modular, Reconfigurable, High-Energy Systems Stepping Stones

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Mankins, John C.

    2005-01-01

    Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.

  9. Sensitivity of the appetite control system in obese subjects to nutritional and serotoninergic challenges.

    PubMed

    Hill, A J; Blundell, J E

    1990-03-01

    The sensitivity of the appetite system of a group of obese individuals was assessed in response to two challenges known to reduce hunger and enhance satiety in lean people. The challenges were the presentation of a caloric (high protein) load and the activation of serotonin systems. Eight obese female adults (BMI = 38) received 2 X 15 mg d-fenfluramine or placebo daily for 3 days, the study conforming to a 2 X 2 factor (drug X lunch type), double blind, repeated measures design. Three hours after dosing on day 3 they ate either a high carbohydrate (63 percent of total energy) or high protein (54 percent) lunchtime meal (the caloric load). These fixed meal challenges were equal in energy (475 kcal), weight and fat content. Ratings of hunger motivation and food preferences were tracked over the course of lunch and for a further 3 hours, at which point subjects returned for a self-selection test meal. Intakes from this second open meal revealed significant main effects of both caloric load and drug on energy intake, with the high protein d-fenfluramine combination being the most potent anorectic pairing. These findings were supported by the profiles of hunger motivation. This study has confirmed that the appetite system of these subjects was responsive to these biologically relevant challenges. The results suggest that the combination of an appetite modulating drug with specific dietary intervention may represent an effective strategy for the management of hunger arising from caloric restriction.

  10. Hybrid Geo-Energy Systems for Energy Storage and Dispatchable Renewable and Low-Carbon Electricity

    NASA Astrophysics Data System (ADS)

    Buscheck, Thomas; Bielicki, Jeffrey; Ogland-Hand, Jonathan; Hao, Yue; Sun, Yunwei; Randolph, Jimmy; Saar, Martin

    2015-04-01

    Three primary challenges for energy systems are to (1) reduce the amount of carbon dioxide (CO2) being emitted to the atmosphere, (2) increase the penetration of renewable energy technologies, and (3) reduce the water intensity of energy production. Integrating variable renewable energy sources (wind, sunlight) into electric grids requires advances in energy storage approaches, which are currently expensive, and tend to have limited capacity and/or geographic deployment potential. Our approach uses CO2, that would otherwise be emitted to the atmosphere, to generate electricity from geothermal resources, to store excess energy from variable (wind, solar photovoltaic) and thermal (nuclear, fossil, concentrated solar power) sources, and to thus enable increased penetration of renewable energy technologies. We take advantage of the enormous fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy. Our approach uses permeable geologic formations that are vertically bounded by impermeable layers to constrain pressure and the migration of buoyant CO2 and heated brine. Supercritical CO2 captured from fossil power plants is injected into these formations as a cushion gas to store pressure (bulk energy), provide an heat efficient extraction fluid for efficient power conversion in Brayton Cycle turbines, and generate artesian flow of brine -- which can be used to cool power plants and/or pre-heated (thermal storage) prior to re-injection. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, and thermal energy. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Time-shifting the parasitic loads from pressurizing and injecting brine and CO2 provides bulk energy storage over days to months, whereas time-shifting thermal-energy supply provides dispatchable power and addresses seasonal mismatches between supply and demand. These

  11. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  12. Numerical and experimental design of coaxial shallow geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial

  13. Evaluation of Supercapacitors Effects on Hybrid Energy Systems for Automotive

    NASA Astrophysics Data System (ADS)

    Lungoci, Carmen; Helerea, Elena

    This work aims at evaluating the effects of the supercapacitors presence in hybrid energy systems used in automotive. The design and the electrical schema of a hybrid energy system that contains batteries and supercapacitors and propel a synchronous motor are purposed. The motor operating regime is described, detailing the drive evolution of the cycle speed imposed. In these conditions, to model the systems behavior, simulations developed in Matlab/Simulink environment are carried out. Two energies management strategies for the ensemble energy system-motor are implemented. Simulations are done and the energy management is discussed, making the comparative analyses. Applying a current control strategy on the supercapacitors, under two working conditions, functional diagrams are showed and compared. The results obtained highlight the advantages of the supercapacitors.

  14. View southeast of computer controlled energy monitoring system. System replaced ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southeast of computer controlled energy monitoring system. System replaced strip chart recorders and other instruments under the direct observation of the load dispatcher. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  15. Energy efficiency of a solar domestic hot water system

    NASA Astrophysics Data System (ADS)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  16. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative

  17. Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications.

    PubMed

    Cao, Yucheng; Pawłowski, Artur

    2013-01-01

    A "cradle-to-grave" life cycle assessment was conducted to examine the energy and greenhouse gas (GHG) emission footprints of two emerging sludge-to-energy systems. One system employs a combination of anaerobic digestion (AD) and fast pyrolysis for bioenergy conversion, while the other excludes AD. Each system was divided into five process phases: plant construction, sludge pretreatment, sludge-to-bioenergy conversion, bioenergy utilizations and biochar management. Both systems achieved energy and GHG emission benefits, and the AD-involving system performed better than the AD-excluding system (5.30 vs. 0.63 GJ/t sludge in net energy gain and 0.63 vs. 0.47 t CO(2)eq/t sludge in emission credit for base case). Detailed contribution and sensitivity analyses were conducted to identify how and to what degree the different life-cycle phases are responsible for the energy and emission impacts. The energy and emission performances were significantly affected by variations in bioenergy production, energy requirement for sludge drying and end use of bioenergy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov Websites

    , 2018 News Release: NREL Taps Young to Oversee Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of geothermal energy as a renewable power source

  19. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    NASA Astrophysics Data System (ADS)

    Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.

    2016-05-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  20. A Framework for Supporting Organizational Transition Processes Towards Sustainable Energy Systems

    NASA Astrophysics Data System (ADS)

    Buch, Rajesh

    Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for the inefficient and impacting use of energy resources. The global transition towards sustainable development will require the collective efforts of national, regional, and local governments, institutions, the private sector, and a well-informed public. The leadership role in this transition could be provided by private and public sector organizations, by way of sustainability-oriented organizations, cultures, and infrastructure. The diversity in literature exemplifies the developing nature of sustainability science, with most sustainability assessment approaches and frameworks lacking transformational characteristics, tending to focus on analytical methods. In general, some shortfalls in sustainability assessment processes include lack of: · thorough stakeholder participation in systems and stakeholder mapping, · participatory envisioning of future sustainable states, · normative aggregation of results to provide an overall measure of sustainability, and · influence within strategic decision-making processes. Specific to energy sustainability assessments, while some authors aggregate results to provide overall sustainability scores, assessments have focused solely on energy supply scenarios, while including the deficits discussed above. This paper presents a framework for supporting

  1. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  2. Computer-Controlled System for Plasma Ion Energy Auto-Analyzer

    NASA Astrophysics Data System (ADS)

    Wu, Xian-qiu; Chen, Jun-fang; Jiang, Zhen-mei; Zhong, Qing-hua; Xiong, Yu-ying; Wu, Kai-hua

    2003-02-01

    A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by Lab VIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provides important parameters of plasma process techniques based on semiconductor devices and microelectronics.

  3. Systems and methods for energy cost optimization in a building system

    DOEpatents

    Turney, Robert D.; Wenzel, Michael J.

    2016-09-06

    Methods and systems to minimize energy cost in response to time-varying energy prices are presented for a variety of different pricing scenarios. A cascaded model predictive control system is disclosed comprising an inner controller and an outer controller. The inner controller controls power use using a derivative of a temperature setpoint and the outer controller controls temperature via a power setpoint or power deferral. An optimization procedure is used to minimize a cost function within a time horizon subject to temperature constraints, equality constraints, and demand charge constraints. Equality constraints are formulated using system model information and system state information whereas demand charge constraints are formulated using system state information and pricing information. A masking procedure is used to invalidate demand charge constraints for inactive pricing periods including peak, partial-peak, off-peak, critical-peak, and real-time.

  4. A system for spacecraft attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Shaughnessy, J. D.

    1974-01-01

    A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.

  5. Energy use in pig production: an examination of current Iowa systems.

    PubMed

    Lammers, P J; Kenealy, M D; Kliebenstein, J B; Harmon, J D; Helmers, M J; Honeyman, M S

    2012-03-01

    This paper compares energy use for different pig production systems in Iowa, a leader in US swine production. Pig production systems include not only the growth and performance of the pigs, but also the supporting infrastructure of pig production. This supporting infrastructure includes swine housing, facility management, feedstuff provision, swine diets, and manure management. Six different facility type × diet formulation × cropping sequence scenarios were modeled and compared. The baseline system examined produces 15,600 pigs annually using confinement facilities and a corn-soybean cropping sequence. Diet formulations for the baseline system were corn-soybean meal diets that included the synthetic AA l-lysine and exogenous phytase. The baseline system represents the majority of current US pork production in the Upper Midwest, where most US swine are produced. This system was found to require 744.6 MJ per 136-kg market pig. An alternative system that uses bedded hoop barns for grow-finish pigs and gestating sows would require 3% less (720.8 MJ) energy per 136-kg market pig. When swine production systems were assessed, diet type and feed ingredient processing were the major influences on energy use, accounting for 61 and 79% of total energy in conventional and hoop barn-based systems, respectively. Improving feed efficiency and better matching the diet formulation with the thermal environment and genetic potential are thus key aspects of reducing energy use by pig production, particularly in a hoop barn-based system. The most energy-intensive aspect of provisioning pig feed is the production of synthetic N for crop production; thus, effectively recycling manure nutrients to cropland is another important avenue for future research. Almost 25% of energy use by a conventional farrow-to-finish pig production system is attributable to operation of the swine buildings. Developing strategies to minimize energy use for heating and ventilation of swine buildings while

  6. Manufacturing Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs

  7. New York State energy-analytic information system: first-stage implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allentuck, J.; Carroll, O.; Fiore, L.

    1979-09-01

    So that energy policy by state government may be formulated within the constraints imposed by policy determined at the national level - yet reflect the diverse interests of its citizens - large quantities of data and sophisticated analytic capabilities are required. This report presents the design of an energy-information/analytic system for New York State, the data for a base year, 1976, and projections of these data. At the county level, 1976 energy-supply demand data and electric generating plant data are provided as well. Data-base management is based on System 2000. Three computerized models provide the system's basic analytic capacity. Themore » Brookhaven Energy System Network Simulator provides an integrating framework while a price-response model and a weather sensitive energy demand model furnished a short-term energy response estimation capability. The operation of these computerized models is described. 62 references, 25 figures, 39 tables.« less

  8. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  9. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  10. Low energy physical activity recognition system on smartphones.

    PubMed

    Soria Morillo, Luis Miguel; Gonzalez-Abril, Luis; Ortega Ramirez, Juan Antonio; de la Concepcion, Miguel Angel Alvarez

    2015-03-03

    An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy.

  11. Solar-Energy System for a Commercial Building--Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  12. Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System

    NASA Astrophysics Data System (ADS)

    Abaalkhail, Rana

    Energy is consumed every day at home as we perform simple tasks, such as watching television, washing dishes and heating/cooling home spaces during season of extreme weather conditions, using appliances, or turning on lights. Most often, the energy resources used in residential systems are obtained from natural gas, coal and oil. Moreover, climate change has increased awareness of a need for expendable, energy resources. As a result, carbon dioxide emissions are increasing and creating a negative effect on our environment and on our health. In fact, growing energy demands and limited natural resource might have negative impacts on our future. Therefore, saving energy is becoming an important issue in our society and it is receiving more attention from the research community. This thesis introduces a intelligent energy controller algorithm based on software agent approach that reduce the energy consumption at home for both heating and cooling spaces by considering the user's occupancy, outdoor temperature and user's preferences as input to the system. Thus the proposed approach takes into consideration the occupant's preferred temperature, the occupied and unoccupied spaces, as well as the time spent in each area of the home. A Java based simulator has been implemented to simulate the algorithm for saving energy in heating and cooling systems. The results from the simulator are compared to the results of using HOT2000, which is Canada's leading residential energy analysis and rating software developed by CanmetENERGY's Housing, Buildings, Communities and Simulation (HBCS) group. We have calculated how much energy a home modelled will use under emulated conditions. The results showed that the implementation of the proposed energy controller algorithm can save up to 50% in energy consumption in homes dedicated to heating and cooling systems compared to the results obtained by using HOT2000.

  13. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  14. The Wide-area Energy Management System Phase 2 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resultingmore » system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.« less

  15. Consistency of Eating Rate, Oral Processing Behaviours and Energy Intake across Meals

    PubMed Central

    McCrickerd, Keri; Forde, Ciaran G.

    2017-01-01

    Faster eating has been identified as a risk factor for obesity and the current study tested whether eating rate is consistent within an individual and linked to energy intake across multiple meals. Measures of ad libitum intake, eating rate, and oral processing at the same or similar test meal were recorded on four non-consecutive days for 146 participants (117 male, 29 female) recruited across four separate studies. All the meals were video recorded, and oral processing behaviours were derived through behavioural coding. Eating behaviours showed good to excellent consistency across the meals (intra-class correlation coefficients > 0.76, p < 0.001) and participants who ate faster took larger bites (β ≥ 0.39, p < 0.001) and consistently consumed more energy, independent of meal palatability, sex, body composition and reported appetite (β ≥ 0.17, p ≤ 0.025). Importantly, eating faster at one meal predicted faster eating and increased energy intake at subsequent meals (β > 0.20, p < 0.05). Faster eating is relatively consistent within individuals and is predictive of faster eating and increased energy intake at subsequent similar meals consumed in a laboratory context, independent of individual differences in body composition. PMID:28817066

  16. The effect of covert changes in energy density of preloads on subsequent ad libitum energy intake in lean and obese human subjects.

    PubMed

    Durrant, M L; Royston, J P; Wloch, R T; Garrow, J S

    1982-01-01

    1. Covert changes in energy intake were made by giving preloads of disguised energy density three times daily to 14 obese and 6 lean subjects. 2. The preloads contained 2.51 MJ (600 kcal)/d on days 2 and 3 and either 3.77 MJ (900 kcal)/d or 1.26 MJ (300 kcal/d) on days 4 and 5 and 1.26 MJ (300 kcal)/d or 3.77 MJ (900 kcal)/d on days 6 and 7. The order of testing was alternated for each subject. 3. Subsequent energy intake at each meal (lunch, dinner and breakfast) was measured with an automated food-dispensing machine. 4. Overall the obese subjects ate significantly less from the machine, 3.28 +/- 1.89 MJ (785 +/- 452 kcal)/d, than the lean subjects, 6.03 +/- 1.26 MJ (1442 +/- 300 kcal)/d. 5. Both groups of subjects adjusted their energy intake in the right direction to counterbalance the effect of the preloads but the lean subjects changed their intake by an average of 0.74 MJ (176 kcal)/d compared with the obese subjects who changed their intake by an average of 0.29 MJ (70 kcal)/d. 6. Although the lean subjects were better at adjusting their energy intake than the obese subjects, regulation was still imprecise relative to the 2.51 MJ (600 kcal)/d difference in energy intake that was imposed. 7. There were no significant differences in hunger or appetite between subjects or test situations.

  17. Food consumption and retention time in captive whooping cranes (Grus americana)

    USGS Publications Warehouse

    Nelson, J.T.; Gee, G.F.; Slack, R.D.

    1997-01-01

    Food consumption, digesta retention time, and food preference were measured for captive whooping cranes fed pelleted diets. The basal commercial diet was compared to four mixtures containing 70% basal and 30% of one of four important winter foods for the whooping crane: blue crab (Callinectes sapidus), wolfberry fruit (Lycium carolinianurn), live oak acorn (Quercus virginiana), or common Rangia clam (Rangia cuneata). Because captive birds would not eat whole foods, we were prevented from direct food preference tests. Food passed through the gut rapidly, with almost complete elimination within 7 hr. There was some indication that retention time was shorter for the low fiber and high ash and calcium clam diet. Cranes ate less wolfberry feed (g/day) than the other feeds, and all birds ate less wolfberry feed on the day it was first fed, compared to basal diet the previous day. Birds ate more low energy feed than high energy feed. Due to combined effects of low energy content, lower metabolizable energy coefficients, and reduced feed consumption, less energy was assimilated for study diets than basal diet. Apparent shorter retention times for some diets con-taming whooping crane foods may partly explain lower digestibilities and metabolizable energy of winter whooping crane foods compared to commercial crane diet.

  18. Carbon nanotube nanostructured hybrid materials systems for renewable energy applications

    NASA Astrophysics Data System (ADS)

    Marquis, Fernand D. S.

    2011-01-01

    Global energy demand is growing at an alarming and unsustainable rate, drawing mainly on the use of fossil fuels. These reserves are decreasing rapidly and becoming increasingly expensive. The associated emissions of greenhouse gases and other toxic pollutants are becoming environmentally unacceptable. Energy security has become a major issue as fossil fuels are confined to few areas in the world and their availability is controlled by political, economic, and ecological factors. A global coherent energy strategy that encompasses the entire energy life cycle is required in order to address all the forms of energy harvesting, storage, conversion, transmission, and distribution. Hybrid nanomaterial systems hold the key to fundamental advances in direct renewable energy and energy storage and conversion which are needed to enable renewable energy and meet the general energy challenges and associated environmental effects. This paper presents new approaches and methodologies used to design and develop carbon nanotube nanostructured hybrid nanomaterial systems incorporating structural and light-absorbing electron donor polymers, inorganic semiconductors, metallic and ceramic nanoparticles as energy harvesting and storage systems.

  19. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  20. A Petri Net model for distributed energy system

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.

  1. Energy-Discriminative Performance of a Spectral Micro-CT System

    PubMed Central

    He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge

    2013-01-01

    Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864

  2. A feasibility study on solar utility total energy system /SUTES/

    NASA Astrophysics Data System (ADS)

    Bilgen, E.

    1980-11-01

    A fully dedicated central receiver solar utility (CRSU) designed to meet domestic energy requirements for space heating and hot water has been synthesized and assessed at the conceptual level. The solar utility total energy system (SUTES) integrates (1) a central receiver solar utility (CRSU), (2) an electrical power generating system (EPGS), (3) a hydrogen production plant (HPP), (4) a water chilling system for cooling, heat pump system (HPS), (5) necessary thermal energy storage systems (TES), (6) a district heating and cooling system (DH&CS). All subsystems are close-coupled. Using consistent costing bases, it has been found that the SUTES concept provides energy costs which are lower than those provided by a CRSU. Representative costs are $3.14/GJ versus $8.56/GJ for 10 percent recovery factor and $12.55/GJ versus $13.47/GJ for 17.5 percent recovery factor.

  3. Energy Savings by Treating Buildings as Systems

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  4. Redox Bulk Energy Storage System Study, Volume 1

    NASA Technical Reports Server (NTRS)

    Ciprios, G.; Erskine, W., Jr.; Grimes, P. G.

    1977-01-01

    Opportunities were found for electrochemical energy storage devices in the U.S. electric utility industry. Application requirements for these devices were defined, including techno-economic factors. A new device, the Redox storage battery was analyzed. The Redox battery features a decoupling of energy storage and power conversion functions. General computer methods were developed to simulate Redox system operations. These studies showed that the Redox system is potentially attractive if certain performance goals can be achieved. Pathways for reducing the cost of the Redox system were identified.

  5. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  6. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    NASA Astrophysics Data System (ADS)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  7. Transportation and operations aspects of space energy systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1989-01-01

    A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.

  8. Energy Storage Systems Are Coming: Are You Ready

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.

    2015-12-05

    Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.

  9. Study on energy saving effect of IHX on vehicle air conditioning system

    NASA Astrophysics Data System (ADS)

    Li, Huguang; Tong, Lin; Xu, Ming; Wei, Wangrui; Zhao, Meng; Wang, Long

    2018-02-01

    In this paper, the performance of Internal Heat Exchanger (IHX) air conditioning system for R134a is investigated in bench test and vehicle test. Comparison for cooling capacity and energy consumption between IHX air conditioning system and traditional tube air conditioning system are conducted. The suction temperature and discharge temperature of compressor is also recorded. The results show that IHX air conditioning system has higher cooling capacity, the vent temperature decrease 2.3 °C in idle condition. But the suction temperature and discharge temperature of compressor increase 10°C. IHX air conditioning system has lower energy consumption than traditional tube air conditioning system. Under the experimental conditions in this paper, the application of IHX can significantly reduce the energy consumption of air conditioning system. At 25°C of environment temperature, AC system energy consumption decrease 14%, compressor energy consumption decrease 16%. At 37°C of environment temperature, AC system energy consumption decrease 16%, compressor energy consumption decrease 13%.

  10. The North American Energy System: Chapter 3 of SOCCR-2

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Marcotullio, P. J.; McGlynn, E.; Bruhwiler, L.; Davis, K. J.; Davis, S. J.; Engel-Cox, J.; Field, J.; Gately, C.; Kammen, D. M.; McMahon, J.; Morrow, W.; Torrie, R.

    2017-12-01

    North America (Canada, Mexico and the United States), has a large and complex energy system, which in this case includes the extraction and conversion of primary energy sources and their storage, transmission, distribution and ultimate end use in the building, transportation and industrial sectors. The presentation assesses the contribution of this energy system to the carbon cycle. The assessment includes the identification of CO2 emissions from fossil fuel use in the different end use, changes over the past 10 years (since the last SOCCR) and the drivers of change. The assessment focuses on our understanding of the energy trends and system feedback dynamics, key drivers of change as a basis for carbon management. The energy systems' carbon emissions from the North American system are placed in global context and a review of scenarios into the future emissions levels, which demonstrate the requirements for de-carbonization in the medium and longer term.

  11. Electronic Devices and Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Technical Education Research Centre-Southwest, Waco, TX.

    This course in electronic devices and systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  12. Recent Progress on Integrated Energy Conversion and Storage Systems.

    PubMed

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  13. Recent Progress on Integrated Energy Conversion and Storage Systems

    PubMed Central

    Luo, Bin; Ye, Delai

    2017-01-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673

  14. Evaluating architecture impact on system energy efficiency

    PubMed Central

    Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution

  15. Evaluating architecture impact on system energy efficiency.

    PubMed

    Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution

  16. Quantum energy teleportation in a quantum Hall system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusa, Go; Izumida, Wataru; Hotta, Masahiro

    2011-09-15

    We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.

  17. Lessons Learned from the Puerto Rico Battery Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility ismore » at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.« less

  18. Performance calculation and simulation system of high energy laser weapon

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke

    2014-12-01

    High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.

  19. Analysis of GaAs and Si solar energy hybrid systems

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Roberts, A. S., Jr.

    1977-01-01

    Various silicon hybrid systems are modeled and compared with a gallium arsenide hybrid system. The hybrid systems modeled produce electric power and also thermal power which can be used for heating or air conditioning. Various performance indices are defined and used to compare the system performance: capital cost per electric power out; capital cost per total power out; capital cost per electric power plus mechanical power; annual cost per annual electric energy; and annual cost per annual electric energy plus annual mechanical work. These performance indices indicate that concentrator hybrid systems can be cost effective when compared with present day energy costs.

  20. Scheduling for energy and reliability management on multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  1. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  2. A Framework to Survey the Energy Efficiency of Installed Motor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Hasanbeigi, Ali; McKane, Aimee

    2013-08-01

    While motors are ubiquitous throughout the globe, there is insufficient data to properly assess their level of energy efficiency across regional boundaries. Furthermore, many of the existing data sets focus on motor efficiency and neglect the connected drive and system. Without a comprehensive survey of the installed motor system base, a baseline energy efficiency of a country or region’s motor systems cannot be developed. The lack of data impedes government agencies, utilities, manufacturers, distributers, and energy managers when identifying where to invest resources to capture potential energy savings, creating programs aimed at reducing electrical energy consumption, or quantifying the impactsmore » of such programs. This paper will outline a data collection framework for use when conducting a survey under a variety of execution models to characterize motor system energy efficiency within a country or region. The framework is intended to standardize the data collected ensuring consistency across independently conducted surveys. Consistency allows for the surveys to be leveraged against each other enabling comparisons to motor system energy efficiencies from other regions. In creating the framework, an analysis of various motor driven systems, including compressed air, pumping, and fan systems, was conducted and relevant parameters characterizing the efficiency of these systems were identified. A database using the framework will enable policymakers and industry to better assess the improvement potential of their installed motor system base particularly with respect to other regions, assisting in efforts to promote improvements to the energy efficiency of motor driven systems.« less

  3. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    run the Sustainable Systems Analysis Algorithm (SSAA) and the multi-criteria decision analysis (MCDA) decision models. The following alternative energy sources for electricity (kilo- and megawatt output) will be assessed in this paper: solar, biomass and biofuels, hydro, geothermal, onshore wind, offshore wind, tidal, and natural gas. The SSAA methodology, in conjunction with the MCDA model techniques, will be used to obtain sustainable, alternative energy source system options; the system will attempt to balance its three linked aspects (environmental, economic, and technical). The results, based on the Sustainability Directive three-dimensional vector calculations from each alternative energy source option, are presented in this paper. Moving towards sustainability is a dynamically changing process, and the SSAA methodology is a synergist for system modifications that strives for continuous improvement toward the Ideal Sustainability Directive.

  4. Unleashing elastic energy: dynamics of energy release in rubber bands and impulsive biological systems

    NASA Astrophysics Data System (ADS)

    Ilton, Mark; Cox, Suzanne; Egelmeers, Thijs; Patek, S. N.; Crosby, Alfred J.

    Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps - can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.

  5. Research Staff | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Research Staff Research Staff NREL's Energy Systems Integration directorate includes the Power investments in advanced energy research, and the security and resilience team under the DOE's multi-lab effort to modernize the nation's electrical grid. juan.torres@nrel.gov | 303-275-3094 ESI Research

  6. Advanced Range Safety System for High Energy Vehicles

    NASA Technical Reports Server (NTRS)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  7. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian

    The United States is in the midst of an energy revolution, spurred by advancement of technology to produce unprecedented supplies of oil and natural gas. Simultaneously, there is an increasing concern for climate change attributed to greenhouse gas (GHG) emissions that, in large part, result from burning fossil fuels. An international consensus has concluded that the U.S. and other developed nations have an imperative to reduce GHG emissions to address these climate change concerns. The global desire to reduce GHG emissions has led to the development and deployment of clean energy resources and technologies, particularly renewable energy technologies, at amore » rapid rate. At the same time, each of the major energy sectors—the electric grid, industrial manufacturing, transportation, and the residential/commercial consumers— is increasingly becoming linked through information and communications technologies, advanced modeling and simulation, and controls. Coordination of clean energy generation technologies through integrated hybrid energy systems, as defined below, has the potential to further revolutionize energy services at the system level by coordinating the exchange of energy currency among the energy sectors in a manner that optimizes financial efficiency (including capital investments), maximizes thermodynamic efficiency (through best use of exergy, which is the potential to use the available energy in producing energy services), reduces environmental impacts when clean energy inputs are maximized, and provides resources for grid management. Rapid buildout of renewable technologies has been largely driven by local, state, and federal policies, such as renewable portfolio standards and production tax credits that incentivize investment in these generation sources. A foundational assumption within this program plan is that renewable technologies will continue to be major contributors to the future U.S. energy infrastructure. While increased use of clean

  8. [Study on a wireless energy transmission system for the noninvasive examination micro system inside alimentary tracts].

    PubMed

    He, Xiu; Yan, Guo-Zheng; Wang, Fu-Min

    2008-01-01

    A wireless energy transmission system for the MEMS system inside alimentary tracts is reported here in the paper. It consists of an automatic frequency tracking circuit of phase lock loop and phase shift PWM control circuit. Experimental results show that the energy transmission system is capable of automatic frequency-tracking and transmission power-adjusting and has stable received energy.

  9. A Microelectromechanical High-Density Energy Storage/Rapid Release System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.

    1999-07-21

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed,more » fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.« less

  10. Energy, environmental and climate assessment with the EPA MARKAL energy system modeling framework

    EPA Science Inventory

    The energy system is comprised of the technologies and fuels that extend from the import or extraction of energy resources (e.g., mines and wells), through the conversion of these resources into useful forms (e.g., electricity and gasoline), to the technologies (e.g., cars, light...

  11. Solar energy system economic evaluation for Colt Pueblo, Pueblo, Colorado

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at Pueblo, Colorado; Yosemite, California; Albuquerque, New Mexico; Fort Worth, Texas; and Washington, D.C. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  12. Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.

  13. A Petri Net model for distributed energy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopko, Joanna

    2015-12-31

    Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of themore » model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.« less

  14. Economic Evaluation of Observatory Solar-Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Long-term economic performance of a commercial solar-energy system was analyzed and used to predict economic performance at four additional sites. Analysis described in report was done to demonstrate viability of design over a broad range of environmental/economic conditions. Topics covered are system description, study approach, economic analysis and system optimization.

  15. Smart EV Energy Management System to Support Grid Services

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do

  16. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  17. Scalable Deployment of Advanced Building Energy Management Systems

    DTIC Science & Technology

    2013-06-01

    Building Automation and Control Network BDAS Building Data Acquisition System BEM building energy model BIM building information modeling BMS...A prototype toolkit to seamlessly and automatically transfer a Building Information Model ( BIM ) to a Building Energy Model (BEM) has been...circumvent the need to manually construct and maintain a detailed building energy simulation model . This detailed

  18. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from themore » operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.« less

  19. An urban energy performance evaluation system and its computer implementation.

    PubMed

    Wang, Lei; Yuan, Guan; Long, Ruyin; Chen, Hong

    2017-12-15

    To improve the urban environment and effectively reflect and promote urban energy performance, an urban energy performance evaluation system was constructed, thereby strengthening urban environmental management capabilities. From the perspectives of internalization and externalization, a framework of evaluation indicators and key factors that determine urban energy performance and explore the reasons for differences in performance was proposed according to established theory and previous studies. Using the improved stochastic frontier analysis method, an urban energy performance evaluation and factor analysis model was built that brings performance evaluation and factor analysis into the same stage for study. According to data obtained for the Chinese provincial capitals from 2004 to 2013, the coefficients of the evaluation indicators and key factors were calculated by the urban energy performance evaluation and factor analysis model. These coefficients were then used to compile the program file. The urban energy performance evaluation system developed in this study was designed in three parts: a database, a distributed component server, and a human-machine interface. Its functions were designed as login, addition, edit, input, calculation, analysis, comparison, inquiry, and export. On the basis of these contents, an urban energy performance evaluation system was developed using Microsoft Visual Studio .NET 2015. The system can effectively reflect the status of and any changes in urban energy performance. Beijing was considered as an example to conduct an empirical study, which further verified the applicability and convenience of this evaluation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Solar energy system economic evaluation for Solaron Akron, Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.