Science.gov

Sample records for energy systems-the case

  1. Distributed energy store railgun; The limiting case

    SciTech Connect

    Marshall, R.A. )

    1991-01-01

    This paper reports that when the limiting case of a distributed energy store railgun is analyzed, i.e., the case where the space between adjacent energy stores become indefinitely small, three important results are obtained. First, the shape of the current pulse delivered by each store is sinusoidal and an exponential tail. Second, the rail-to-rail voltage behind the rear-most active store approaches zero. Third, it is not possible to choose parameters in such a way that capacitor crowbars can be eliminated.

  2. Building Energy Information Systems: User Case Studies

    SciTech Connect

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  3. Examining the Contemporary Status of an Education System: The Case of the Republic of South Sudan

    ERIC Educational Resources Information Center

    Banraba, Boboya James Edimond

    2015-01-01

    This paper attempts to examine the contemporary status of an education system. The paper takes the case of the Republic of South Sudan. The key issues the paper will examine are the education enrollment and completion rates while paying particular attention to inequalities in both access and quality among racial or ethnic groups, males and…

  4. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  5. Energy Savings Performance Contract Case Studies.

    ERIC Educational Resources Information Center

    Lefevre, Jessica S.

    Building owners and managers can use performance-contracting Energy Service Companies (ESCOs) to partially or fully fund building renovations that include energy efficiency upgrades. This report provides building owners and managers with an introduction to the energy efficiency and building upgrade services provided by ESCOs. It uses 20 case…

  6. Evaluating the environmental impacts of the energy system: The ENPEP (ENergy and Power Evaluation Program) approach

    SciTech Connect

    Hamilton, B.P.; Sapinski, P.F.; Cirillo, R.R.; Buehring, W.A.

    1990-01-01

    Argonne National Laboratory (ANL) has developed the ENergy and Power Evaluation Program (ENPEP), a PC-based energy planning package intended for energy/environmental analysis in developing countries. The IMPACTS module of ENPEP examines environmental implications of overall energy and electricity supply strategies that can be developed with other ENPEP modules, including ELECTRIC, the International Atomic Energy Agency's Wien Automatic System Planning Package (WASP-III). The paper presents the status and characteristics of a new IMPACTS module that is now under development at ANL. 3 figs.

  7. Energy-Efficient Schools: Three Case Studies from Oregon.

    ERIC Educational Resources Information Center

    2003

    This document presents case studies of three schools or districts in Oregon that have implemented steps to promote energy efficiency. Steps taken by the schools include daylighting, energy audits, special energy loans, new ventilation design, and sustainable building practices. The facilities described are Ash Creek Intermediate School in…

  8. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  9. Building an internet-based workflow system - the case of Lawrence Livermore National Laboratories` Zephyr project

    SciTech Connect

    Jordan, C. W., LLNL

    1998-04-01

    Lawrence Livermore National Laboratories` Zephyr System provides a showcase for the ways in which emerging technologies can help streamline procurement processes and improve the coordination between participants in engineering projects by allowing collaboration in ways that have not been possible before. The project also shows the success of a highly pragmatic approach that was initiated by the end user community, and that intentionally covered standard situations, rather than aiming at also automating the exceptions. By helping push purchasing responsibilities down to the end user, thereby greatly reducing the involvement of the purchasing department in operational activities, it was possible to streamline the process significantly resulting in time savings of up to 90%, major cost reductions, and improved quality. Left with less day-to- day purchasing operations, the purchasing department has more time for strategic tasks such as selecting and pre-qualifying new suppliers, negotiating blanket orders, or implementing new procurement systems. The case shows once more that the use of information technologies can result in major benefits when aligned with organizational adjustments.

  10. Thermal transport in low-dimensional systems: the case of Graphene and single layer Boron Nitride

    NASA Astrophysics Data System (ADS)

    Pereira, Luiz Felipe; Donadio, Davide

    2013-03-01

    Low-dimensional systems present unusual transport properties in comparison to bulk materials. In contrast with the three-dimensional case, in one- and two-dimensions heat transport models predict a divergence of the thermal conductivity with system size. In reality, in a low-dimensional system the mean-free-path of heat carriers (phonons) becomes comparable to the micrometer size of experimental samples. Recent developments in nanostructure fabrication allow a direct comparison between theory and experiments for such low-dimensional systems. We perform extensive molecular dynamics simulations of heat transport in graphene and single layer BN, in order to clarify the behavior of the thermal conductivity in realistic low-dimensional systems. In particular, we address the influence of system size on the simulation results. Equilibrium molecular dynamics predicts a convergence of the thermal conductivity with system size, even for systems with less than one hundred nanometers and thousands of atoms. Meanwhile, large scale non-equilibrium molecular dynamics shows a divergence of the thermal conductivity with system size up to the micrometer scale. We analyse the discrepancy between methods in terms of perturbations in phonon populations induced by the non-equilibrium regime.

  11. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  12. Investigation of Energy-Efficient Supermarket Display Cases

    SciTech Connect

    Walker, D.H.

    2005-01-21

    Supermarkets represent one of the largest energy-intensive building groups in the commercial sector, consuming 2 to 3 million kWh/yr per store (ES-1). Over half of this energy use is for the refrigeration of food display cases and storage coolers. Display cases are used throughout a supermarket for the merchandising of perishable food products. The cases are maintained at air temperatures ranging from -10 to 35 F, depending upon the type of product stored. The operating characteristics and energy requirements of the refrigeration system are directly related to the refrigeration load. The sources of the display case refrigeration load consist of: (1) Moist and warm air infiltration through the open front of the case--air curtains are employed to inhibit this infiltration, but some ambient air is entrained, which adds a substantial portion to the refrigeration load. (2) Heat conduction through case panels and walls. (3) Thermal radiation from the ambient to the product and display case interior. (4) Internal thermal loads--the use of lights, evaporator fans, periodic defrosts, and antisweat heaters adds to the refrigeration load of the display case as well as directly consuming electric energy. The impact of each of these elements on the refrigeration load is very dependent upon case type (Figure ES-1). For example, air infiltration is the most significant portion of the refrigeration load for open, multi-deck cases, while radiation is the largest part of the load for tub-type cases. The door anti-sweat heaters represent a major share of the refrigeration load for frozen food door reach-in cases. Figure ES-2 shows the distribution of display cases in a typical supermarket (ES-2). Open, multi-deck, medium temperature display cases typically comprise about half of the refrigerated fixtures in a store (ES-3). In addition, medium temperature fixtures and storage coolers account for roughly 70 to 75 percent of the total store refrigeration load with open, multi-deck cases

  13. Energy conservation in the textile industry: 10 case histories

    SciTech Connect

    1982-01-01

    Presented are ten case studies of energy conserving technologies that have been implemented by the textile industry. For each case is given: the name and location of the plant and an employee contact, description of products, energy consumption and costs in years before and after the energy conserving technology was implemented, energy savings since the energy conserving technology was implemented, description of investment decision-making process, and description of any institutional and environmental considerations. Measures included are: tandem preparation line, dyebath reuse, bump-and-run (dyebath temperature drifts for the last 85% of the hold time), foam finishing, wastewater heat recovery, wastewater chlorination and reuse, oven exhaust air counterflow, boiler economizer, wood-fired boiler, and solar industrial process heat. Several other energy conserving technologies that were not studied are briefly summarized. (LEW)

  14. Annual Energy Outlook 2016 Early Release: Summary of Two Cases

    EIA Publications

    2016-01-01

    The U.S. Energy Information Administration provides a long-term outlook for energy supply, demand, and prices in its Annual Energy Outlook (AEO). This outlook is centered on the Reference case, which is not a prediction of what will happen, but rather a modeled projection of what might happen given certain assumptions and methodologies. Today, EIA released an annotated summary of the AEO2016 Reference Case—which includes the Clean Power Plan—and a side case without the Clean Power Plan.

  15. ACMV Energy Analysis for Academic Building: A Case Study

    NASA Astrophysics Data System (ADS)

    Hywel, R.; Tee, B. T.; Arifin, M. Y.; Tan, C. F.; Gan, C. K.; Chong, CT

    2015-09-01

    Building energy audit examines the ways actual energy consumption is currently used in the facility, in the case of a completed and occupied building and identifies some alternatives to reduce current energy usage. Implementation of energy audit are practically used to analyze energy consumption pattern, monitoring on how the energy used varies with time in the building, how the system element interrelate, and study the effect of external environment towards building. In this case study, a preliminary energy audit is focusing on Air-Conditioning & Mechanical Ventilation (ACMV) system which reportedly consumed 40% of the total energy consumption in typical building. It is also the main system that provides comfortable and healthy environment for the occupants. The main purpose of this study is to evaluate the current ACMV system performance, energy optimization and identifying the energy waste on UTeM's academic building. To attain this, the preliminary data is collected and then analyzed. Based on the data, economic analysis will be determined before cost-saving methods are being proposed.

  16. Energy management study: A proposed case of government building

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  17. Energy management study: A proposed case of government building

    SciTech Connect

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  18. Educational Decision Making in a Centralised System: The Case of Greece

    ERIC Educational Resources Information Center

    Saiti, Anna; Eliophotou-Menon, Maria

    2009-01-01

    Purpose: The purpose of this study is to examine the decision-making process in the Greek education system, as an indicator of the design and implementation of educational policy. Design/methodology/approach: The paper uses a case study approach to identify limitations in educational decision making in Greece. Specifically, it examines the case of…

  19. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  20. [Excessive energy drink consumption caused marked QT prolongation. Case report].

    PubMed

    Tomcsányi, János; Jávor, Kinga

    2015-10-25

    The authors report a case of a 22-year-old man with atypical chest pain after consumption of six energy drinks (1.5 liter containing 470 mg coffein) with vodka. On admission ECG showed marked QT/QTc prolongation (QT/QTc, 520/580 msec). Next day the QT/QTc returned to fully normal (QT/QTc, 360/430 msec). It was assumed that the patient had a silent long QT syndrome and that high dose of highly caffeinated energy drink triggered the (paradoxical) prolonged QT/QTc. The authors conclude that excessive energy drink intake with alcohol or during physical exercise should be avoided. PMID:26477618

  1. Theory of second-harmonic generation of molecular systems: The steady-state case

    SciTech Connect

    Lin, S.H.; Alden, R.G. ); Villaeys, A.A.; Pflumio, V. )

    1993-10-01

    In this paper, a general formalism for treating both steady-state and time-resolved second-harmonic generation for molecular systems is presented. Here, only the steady-state case will be reported. The adiabatic approximation is introduced. Four important cases, resonance-resonance, resonance--off-resonance, off-resonance--resonance, and off-resonance--off-resonance transitions, have been considered. Finally, numerical calculations of rhodamine 6G are performed to demonstrate the applications of theoretical results.

  2. LANDFILL GAS ENERGY UTILIZATION: TECHNOLOGY OPTIONS AND CASE STUDIES

    EPA Science Inventory

    The report discusses technical, environmental, and other issues associated with using landfill gas as fuel, and presents case studies of projects in the U.S. illustrating some common energy uses. he full report begins by covering basic issues such as gas origin, composition, and ...

  3. Issues in Designing a Hypermedia Document System: The Intermedia Case Study.

    ERIC Educational Resources Information Center

    Yankelovich, Nicole; And Others

    1986-01-01

    Intermedia, a hypermedia system developed at Brown University's Institute for Research (Rhode Island) in Information and Scholarship, is first described, and then used as a case study to explore a number of key issues that software designers must consider in the development of hypermedia document systems. A hypermedia document system is defined as…

  4. Socioeconomic School Segregation in a Market-Oriented Educational System. The Case of Chile

    ERIC Educational Resources Information Center

    Valenzuela, Juan Pablo; Bellei, Cristian; de los Ríos, Danae

    2014-01-01

    This paper presents an empirical analysis of the socioeconomic status (SES) school segregation in Chile, whose educational system is regarded as an extreme case of a market-oriented education. The study estimated the magnitude and evolution of the SES segregation of schools at both national and local levels, and it studied the relationship between…

  5. Agents Control in Intelligent Learning Systems: The Case of Reactive Characteristics

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael

    2006-01-01

    Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…

  6. Democracy in the Israeli Education System: The Case of the English Matriculation Exam

    ERIC Educational Resources Information Center

    Zaher, Rana

    2012-01-01

    This research investigates the extent to which indices of social justice and democratic rights are expressed in Israel in the crucial national English matriculation exam, as perceived by Palestinian Arab high school pupils studying for these exams and their English teachers. The research employed Critical Theory as a paradigm, case study as a…

  7. Surpassing the current limitations of biohydrogen production systems: The case for a novel hybrid approach.

    PubMed

    Boboescu, Iulian Zoltan; Gherman, Vasile Daniel; Lakatos, Gergely; Pap, Bernadett; Bíró, Tibor; Maróti, Gergely

    2016-03-01

    The steadily increase of global energy requirements has brought about a general agreement on the need for novel renewable and environmentally friendly energy sources and carriers. Among the alternatives to a fossil fuel-based economy, hydrogen gas is considered a game-changer. Certain methods of hydrogen production can utilize various low-priced industrial and agricultural wastes as substrate, thus coupling organic waste treatment with renewable energy generation. Among these approaches, different biological strategies have been investigated and successfully implemented in laboratory-scale systems. Although promising, several key aspects need further investigation in order to push these technologies towards large-scale industrial implementation. Some of the major scientific and technical bottlenecks will be discussed, along with possible solutions, including a thorough exploration of novel research combining microbial dark fermentation and algal photoheterotrophic degradation systems, integrated with wastewater treatment and metabolic by-products usage. PMID:26790867

  8. Toward a sustainable regional electricity system: The case of Kangwaon Province in Korea

    NASA Astrophysics Data System (ADS)

    Jung, Inwhan

    Korea's exceptional economic growth for the last three decades has been accompanied by a rapid growth in commercial energy use. While the world increased its total primary energy consumption by 1.7 percent annually during the period between 1971 and 1994, Korea expanded its consumption level by 8.5 percent during the same period. The first quarter of the twenty-first century will be a period when energy consumption in Korea escalates even further, particularly in electricity consumption. This projection raises potential conflicts between Korea's economic growth and Korea's participation in international efforts to reduce greenhouse gas (GHG) emissions (Noh, 1991). A sustainable energy system is likely to promote sustainable development. However, Korea's current electricity system mainly comprised of fossil fuels and nuclear power is unsustainable in the context of energy, environment, and economy (E3). As a means of addressing the problem, this study introduces the country's electricity system shaped by the actions of local regions. How a local region, such as Kangwon Province in Korea, might take steps to mitigate the problems associated with Korea's current electricity system? Reducing regional electricity requirements through end-use efficiency improvements in electric appliances, buildings, and industrial processes is fundamentally important. Decentralized and renewable-oriented electricity supply options are also important to the success of region-based sustainable electricity systems. This dissertation compares environmental and economic benefits between the conventional and sustainable electricity systems to meet electricity requirements in Kangwon Province in the year 2010. The results clearly indicate that the region-based sustainable electricity system gives significant benefits to the Province in terms of energy, economy, and environment. In the final chapter, policy guidelines are developed to implement region-based sustainable electricity plans.

  9. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  10. Policy Strategies and Paths to promote Sustainable Energy Systems- The dynamic Invert Simulation Tool

    SciTech Connect

    Stadler, Michael; Kranzl, Lukas; Huber, Claus; Haas, Reinhard; Tsioliaridou, Elena

    2006-05-01

    The European Union has established a number of targetsregarding energy efficiency, Renewable Energy Sources (RES) and CO2reductions as the 'GREEN PAPER on Energy Efficiency', the Directive for'promotion of the use of bio-fuels or other renewable fuels fortransport' or 'Directive of the European Parliament of the Council on thepromotion of cogeneration based on a useful heat demand in the internalenergy market'. A lot of the according RES and RUE measures are notattractive for investors from an economic point of view. Thereforegovernmentsall over the world have to spend public money to promotethese technologies/measures to bring them into market. These expenditureshave to be adjusted to budget concerns and should be spent mostefficiently. Therefore, the spent money has to be dedicated totechnologies and efficiency measures with the best yield in CO2 reductionwithout wasting money. The core question: "How can public money - forpromoting sustainable energy systems - be spent most efficiently toreduce GHG-emissions?" has been well investigated by the European projectInvert. In course of this project a simulation tool has been designed toanswer this core question. This paper describes the modelling with theInvert simulation tool and shows the key features necessary forsimulating the energy system. A definition of 'Promotion SchemeEfficiency' is given which allows estimating the most cost effectivetechnologies and/or efficiency measures to reduce CO2 emissions.Investigations performed with the Invert simulation tool deliver anoptimum portfolio mix of technologies and efficiency measures for eachselected region. Within Invert seven European regions were simulated andfor the Austrian case study the detailed portfolio mix is shown andpolitical conclusions are derived.

  11. Energy portfolio of Iran: A case study of solar desalination

    NASA Astrophysics Data System (ADS)

    Besharati, Adib

    Energy plays a very important role in the economic development of a country such as Iran where industrial progress and higher living standards increase demand for energy. Iran is one of the countries in the world that simultaneously produces and consumes large amounts of energy. Because of its geographic latitude and weather conditions, Iran has the potential to develop and use of both fossil and renewable energy sources. In South Iran, there are huge oil and gas resources, and at the same time high potential of solar radiation. However, at the present large-scale utilization, solar energy is prohibitively expensive for Iran. Therefore, this study investigates an economical way to utilize solar energy in a meaningful way for Iran. One of the possible uses of solar energy that is both economical and technically feasible is desalination of water using solar energy. People in South Iran live in different areas with relatively low population density. One of the critical problems in those areas is a lack of clean drinking water. As a result, there is an urgent need to investigate ways to produce clean water from the saltwater. Therefore, the present study conducts a case study of solar desalination in south Iran using solar. Different desalination methods, such as humidification dehumidification by using a solar collector, and reverse osmosis, are discussed. In the case study, a prototype desalination plant was considered and both technical and economic aspects of the plant were investigated in details. The results showed higher productivity of drinking water in reverse osmosis method for south Iran.

  12. Investigation of the molecular similarity in closely related protein systems: The PrP case study.

    PubMed

    Storchi, Loriano; Paciotti, Roberto; Re, Nazzareno; Marrone, Alessandro

    2015-10-01

    The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid-based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrP(C)) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl(2), both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in-house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure. PMID:26018750

  13. Operationalizing Sustainable Development Suncor Energy Inc: A critical case

    NASA Astrophysics Data System (ADS)

    Fergus, Andrew

    The concept of Sustainable Development is often understood as a framework within which organizations are able to move forward in a successful and beneficial manner. However, it is also seen as an ambiguous notion with little substance beyond a hopeful dialogue. If we are to base organizational action upon the concepts of Sustainable Development, it is vital that we comprehend the implications of how the concept is understood at a behavioral level. Industry leaders, competitors, shareholders, and stakeholders recognize Suncor Energy Inc as a leading organization within the Oil and Gas energy field. In particular it has a reputation for proactive thinking and action within the areas of environmental and social responsibility. Through attempting to integrate the ideas of Sustainable Development at a foundational level into the strategic plan, the management of Suncor Energy Inc has committed the organization to be a sustainable energy company. To achieve this vision the organization faces the challenge of converting strategic goals into operational behaviors, a process critical for a successful future. This research focuses on understanding the issues found with this conversion process. Through exploring a critical case, this research illuminates the reality of a best-case scenario. The findings thus have implications for both Suncor Energy Inc and more importantly all other organizations attempting to move in a Sustainable Development direction.

  14. Report of NASA Lunar Energy Enterprise Case Study Task Force

    NASA Technical Reports Server (NTRS)

    Kearney, John J.

    1989-01-01

    The Lunar Energy Enterprise Case Study Task Force was asked to determine the economic viability and commercial potential of mining and extracting He-3 from the lunar soil, and transporting the material to Earth for use in a power-generating fusion reactor. Two other space energy projects, the Space Power Station (SPS) and the Lunar Power Station (LPS), were also reviewed because of several interrelated aspects of these projects. The specific findings of the Task Force are presented. Appendices contain related papers generated by individual Task Force Members.

  15. Integrated municipal solid waste management: Six case studies of system cost and energy use. A summary report

    SciTech Connect

    1995-11-01

    Report documents an evaluation of the environmental, economic, and energy impacts of integrated municipal solid waste management systems in six cities: Minneapolis, NW; Springfield, MA; Seattle, WA; Scottsdale, AZ; Palm Beach County, CA; and Sevierville, TN. The primary objective of these case studies was to develop and present consistent cost, resource use (especially energy), and environmental regulator information on each operating IMSWM system. The process is defined as using two or more alternative waste management techniques. Detailed reports on each system are available.

  16. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  17. Deep Energy Retrofit Performance Metric Comparison: Eight California Case Studies

    SciTech Connect

    Walker, Iain; Fisher, Jeremy; Less, Brennan

    2014-06-01

    In this paper we will present the results of monitored annual energy use data from eight residential Deep Energy Retrofit (DER) case studies using a variety of performance metrics. For each home, the details of the retrofits were analyzed, diagnostic tests to characterize the home were performed and the homes were monitored for total and individual end-use energy consumption for approximately one year. Annual performance in site and source energy, as well as carbon dioxide equivalent (CO2e) emissions were determined on a per house, per person and per square foot basis to examine the sensitivity to these different metrics. All eight DERs showed consistent success in achieving substantial site energy and CO2e reductions, but some projects achieved very little, if any source energy reduction. This problem emerged in those homes that switched from natural gas to electricity for heating and hot water, resulting in energy consumption dominated by electricity use. This demonstrates the crucial importance of selecting an appropriate metric to be used in guiding retrofit decisions. Also, due to the dynamic nature of DERs, with changes in occupancy, size, layout, and comfort, several performance metrics might be necessary to understand a project’s success.

  18. Time- and ensemble-averages in evolving systems: the case of Brownian particles in random potentials.

    PubMed

    Bewerunge, Jörg; Ladadwa, Imad; Platten, Florian; Zunke, Christoph; Heuer, Andreas; Egelhaaf, Stefan U

    2016-07-28

    Anomalous diffusion is a ubiquitous phenomenon in complex systems. It is often quantified using time- and ensemble-averages to improve statistics, although time averages represent a non-local measure in time and hence can be difficult to interpret. We present a detailed analysis of the influence of time- and ensemble-averages on dynamical quantities by investigating Brownian particles in a rough potential energy landscape (PEL). Initially, the particle ensemble is randomly distributed, but the occupancy of energy values evolves towards the equilibrium distribution. This relaxation manifests itself in the time evolution of time- and ensemble-averaged dynamical measures. We use Monte Carlo simulations to study particle dynamics in a potential with a Gaussian distribution of energy values, where the long-time limit of the diffusion coefficient is known from theory. In our experiments, individual colloidal particles are exposed to a laser speckle pattern inducing a non-Gaussian roughness and are followed by optical microscopy. The relaxation depends on the kind and degree of roughness of the PEL. It can be followed and quantified by the time- and ensemble-averaged mean squared displacement. Moreover, the heterogeneity of the dynamics is characterized using single-trajectory analysis. The results of this work are relevant for the correct interpretation of single-particle tracking experiments in general. PMID:27353405

  19. Autism, Emotion Recognition and the Mirror Neuron System: The Case of Music

    PubMed Central

    Molnar-Szakacs, Istvan; Wang, Martha J.; Laugeson, Elizabeth A.; Overy, Katie; Wu, Wai-Ling; Piggot, Judith

    2009-01-01

    Understanding emotions is fundamental to our ability to navigate and thrive in a complex world of human social interaction. Individuals with Autism Spectrum Disorders (ASD) are known to experience difficulties with the communication and understanding of emotion, such as the nonverbal expression of emotion and the interpretation of emotions of others from facial expressions and body language. These deficits often lead to loneliness and isolation from peers, and social withdrawal from the environment in general. In the case of music however, there is evidence to suggest that individuals with ASD do not have difficulties recognizing simple emotions. In addition, individuals with ASD have been found to show normal and even superior abilities with specific aspects of music processing, and often show strong preferences towards music. It is possible these varying abilities with different types of expressive communication may be related to a neural system referred to as the mirror neuron system (MNS), which has been proposed as deficient in individuals with autism. Music’s power to stimulate emotions and intensify our social experiences might activate the MNS in individuals with ASD, and thus provide a neural foundation for music as an effective therapeutic tool. In this review, we present literature on the ontogeny of emotion processing in typical development and in individuals with ASD, with a focus on the case of music. PMID:21264050

  20. Using New Instruments of Clustering Policy in the Health Care System. The Case of Poland.

    PubMed

    Romaniuk, Piotr; Holecki, Tomasz; Woźniak-Holecka, Joanna

    2016-01-01

    The issue of clusters as a form of organization of market entities has recently attracted an increasing attention of health care management theoreticians and practitioners. In our opinion the existing theoretical basis gives a foundation for considering clusters as a source of potential for increasing the effectiveness of health policy and health care organizations. It can be assumed that in case of health care clusters there is a possibility of interregional diffusion of innovation, based on ventures undertaken on the health care market, increasing not only the potential of the entities in the cluster, but also of its surroundings and subcontractors. It is possible to realize the idea of a flexible health care implemented regionally with the use of modern techniques of communication, knowledge transfer and high specialization. Nonetheless, in case of Poland the potential of clustrification remains untapped, being characterized by a limited actions of public and private bodies, marginal role of non-profit sector organizations and limited engagement of R&D sector. This is because a general distrust in the cluster formula, and the lack of relevant knowledge among local officials and health business leaders. For this reason the process of clustrification among health care entities requires external support through the increased efforts to create a system of legal and tax preferences for cluster initiatives and provision of organizational support in terms of know-how, targeted particularly at bodies and individuals, who may act as cluster leaders. PMID:27445815

  1. Using New Instruments of Clustering Policy in the Health Care System. The Case of Poland

    PubMed Central

    Romaniuk, Piotr; Holecki, Tomasz; Woźniak-Holecka, Joanna

    2016-01-01

    The issue of clusters as a form of organization of market entities has recently attracted an increasing attention of health care management theoreticians and practitioners. In our opinion the existing theoretical basis gives a foundation for considering clusters as a source of potential for increasing the effectiveness of health policy and health care organizations. It can be assumed that in case of health care clusters there is a possibility of interregional diffusion of innovation, based on ventures undertaken on the health care market, increasing not only the potential of the entities in the cluster, but also of its surroundings and subcontractors. It is possible to realize the idea of a flexible health care implemented regionally with the use of modern techniques of communication, knowledge transfer and high specialization. Nonetheless, in case of Poland the potential of clustrification remains untapped, being characterized by a limited actions of public and private bodies, marginal role of non-profit sector organizations and limited engagement of R&D sector. This is because a general distrust in the cluster formula, and the lack of relevant knowledge among local officials and health business leaders. For this reason the process of clustrification among health care entities requires external support through the increased efforts to create a system of legal and tax preferences for cluster initiatives and provision of organizational support in terms of know-how, targeted particularly at bodies and individuals, who may act as cluster leaders. PMID:27445815

  2. Disaster preparedness in a complex urban system: the case of Kathmandu Valley, Nepal.

    PubMed

    Carpenter, Samuel; Grünewald, François

    2016-07-01

    The city is a growing centre of humanitarian concern. Yet, aid agencies, governments and donors are only beginning to comprehend the scale and, importantly, the complexity of the humanitarian challenge in urban areas. Using the case study of the Kathmandu Valley, Nepal, this paper examines the analytical utility of recent research on complex urban systems in strengthening scholarly understanding of urban disaster risk management, and outlines its operational relevance to disaster preparedness. Drawing on a literature review and 26 interviews with actors from across the Government of Nepal, the International Red Cross and Red Crescent Movement, non-governmental organisations, United Nations agencies, and at-risk communities, the study argues that complexity can be seen as a defining feature of urban systems and the risks that confront them. To manage risk in these systems effectively, preparedness efforts must be based on adaptive and agile approaches, incorporating the use of network analysis, partnerships, and new technologies. PMID:26578230

  3. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    NASA Astrophysics Data System (ADS)

    Bahrami, M.; Donadi, S.; Ferialdi, L.; Bassi, A.; Curceanu, C.; di Domenico, A.; Hiesmayr, B. C.

    2013-06-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.

  4. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules.

    PubMed

    Bahrami, M; Donadi, S; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C

    2013-01-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models. PMID:23739609

  5. Suicides in commuting railway systems: The case of Stockholm county, Sweden.

    PubMed

    Ceccato, Vania; Uittenbogaard, Adriaan

    2016-07-01

    The objective of this study is to understand the spatial and temporal dynamics of suicides in commuting railway environments. Data on suicides in Stockholm commuting railway from 2006 to 2013 was analysed. The study sets out to identify significant clusters in suicides then evaluate whether commuting railway environments affect variations in suicide rates. Fieldwork inspection, spatial cluster techniques (NNHC and Getis-Ord statistics) and regression models underlie the methodology of study. Findings show no seasonality was observed in suicide cases, but winter months concentrate a larger share of events. Suicides do not occur evenly throughout the day but tend to take place more often in weekdays. Modelling findings shows that suicide rates increase with speed trains and decrease where barriers along tracks are installed. Although high speed trains are still a motive of concern for suicide prevention, findings call for a whole railway-approach to safety - one that extends maintenance beyond the platforms and stations' vicinities. PMID:27018939

  6. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  7. DOE Zero Energy Ready Home Case Study: Nexus EnergyHomes, Frederick, Maryland

    SciTech Connect

    none,

    2013-09-01

    This urban infill community with 24 duplexes, 19 townhomes, and 7 single-family homes features SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. The builder won a 2013 Housing Innovation Award in the production builder category.

  8. High-energy gas fracturing in cased and perforated wellbores

    SciTech Connect

    Cuderman, J.F.

    1986-06-01

    A propellant-based technology, High-Energy Gas Fracturing (HEGF), has been applied to fracturing through perforations in cased boreholes. HEGF is a tailored-pulse fracturing technique originally developed by Sandia National Laboratories for application in uncased, liquid-free gas wells in Appalachian Devonian shales. Because most oil and gas wells are liquid filled as well as cased and perforated, the potential impact of present research is significantly broader. A number of commercial tailored-pulse fracturing services, using a variety of explosives or propellants, are currently available. Present research provides valuable insight into phenomena that occur in those stimulations. The use of propellants that deflagrate or burn rather than detonate, as do high-order explosives, permits controlled buildup of pressure in the wellbore. The key to successful stimulation in cased and perforated wellbores is to control the pressure buildup of the combustion gases to maximize fracturing without destroying the casing. Eight experiments using cased and perforated wellbore were conducted in a tunnel complex at the Department of Energy's Nevada Test Site, which provides a realistic in situ stress environment (4 to 10 MPa (600 to 1500 psi)) and provides access for mineback to directly observe fracturing obtained. Primary variables in the experiments include propellant burn rate and amount of propellant used, presence or absence of liquid in the wellbore, in situ stress orientation, and perforation diameter, density, and phasing. In general, the presence of liquid in the borehole results in a much faster pressure risetime and a lower peak pressure for the same propellant charge. Fracture surfaces proceed outward along lines of perforations as determined by phasing, then gradually turn toward the hydraulic fracture direction. 8 refs., 23 figs., 3 tabs.

  9. Microbial ecology and quality assurance in food fermentation systems. The case of kefir grains application.

    PubMed

    Plessas, S; Alexopoulos, A; Voidarou, C; Stavropoulou, E; Bezirtzoglou, E

    2011-12-01

    Fermentation technology has become a modern method for food production the last decades as a process for enhancing product stability, safety and sensory standards. The main reason for this development is the increasing consumers' demand for safe and high quality food products. The above has led the scientific community to the thorough study for the appropriate selection of specific microorganisms with desirable properties such as bacteriocin production, and probiotic properties. The main food products produced through fermentation activity are bread, wine, beer cheese and other dairy products. The microorganisms conducting the above processes are mainly yeasts and lactic acid bacteria. The end products of carbohydrate catabolism by these microorganisms contribute not only to preservation as it was believed years ago, but also to the flavour, aroma and texture and to the increase of the nutritional quality by thereby helping determine unique product characteristics. Thus, controlling the function of specific microorganisms or the succession of microorganisms that dominate the microflora is therefore advantageous, because it can increase product quality, functionality and value. Throughout the process of the discovery of microbiological diversity in various fermented food systems, the development of starter culture technology has gained more scientific attention, and it could be used for the control of the manufacturing operation, and management of product quality. In the frame of this review the presentation of the quality enhancement of most consumed fermented food products around the world is attempted and the new trends in production of fermented food products, such as bread is discussed. The review is focused in kefir grains application in bread production. PMID:21497663

  10. Bit and Power Allocation in Constrained Multicarrier Systems: The Single-User Case

    NASA Astrophysics Data System (ADS)

    Papandreou, Nikolaos; Antonakopoulos, Theodore

    2007-12-01

    Multicarrier modulation is a powerful transmission technique that provides improved performance in various communication fields. A fundamental topic of multicarrier communication systems is the bit and power loading, which is addressed in this article as a constrained multivariable nonlinear optimization problem. In particular, we present the main classes of loading problems, namely, rate maximization and margin maximization, and we discuss their optimal solutions for the single-user case. Initially, the classical water-filling solution subject to a total power constraint is presented using the Lagrange multipliers optimization approach. Next, the peak-power constraint is included and the concept of cup-limited waterfilling is introduced. The loading problem is also addressed subject to the integer-bit restriction and the optimal discrete solution is examined using combinatorial optimization methods. Furthermore, we investigate the duality conditions of the rate maximization and margin maximization problems and we highlight various ideas for low-complexity loading algorithms. This article surveys and reviews existing results on resource allocation in constrained multicarrier systems and presents new trends in this area.

  11. AGILE/GRID Science Alert Monitoring System: The Workflow and the Crab Flare Case

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Conforti, V.; Parmiggiani, N.

    2013-10-01

    During the first five years of the AGILE mission we have observed many gamma-ray transients of Galactic and extragalactic origin. A fast reaction to unexpected transient events is a crucial part of the AGILE monitoring program, because the follow-up of astrophysical transients is a key point for this space mission. We present the workflow and the software developed by the AGILE Team to perform the automatic analysis for the detection of gamma-ray transients. In addition, an App for iPhone will be released enabling the Team to access the monitoring system through mobile phones. In 2010 September the science alert monitoring system presented in this paper recorded a transient phenomena from the Crab Nebula, generating an automated alert sent via email and SMS two hours after the end of an AGILE satellite orbit, i.e. two hours after the Crab flare itself: for this discovery AGILE won the 2012 Bruno Rossi prize. The design of this alert system is maximized to reach the maximum speed, and in this, as in many other cases, AGILE has demonstrated that the reaction speed of the monitoring system is crucial for the scientific return of the mission.

  12. Photophysical characterization of a photochromic system: The case of merocyanine 540

    SciTech Connect

    Aramendia, P.F. ); Duchowicz, R.; Scaffardi, L.; Tocho, J.O. )

    1990-02-22

    The fluorescence emission of merocyanine 540 (MC540) in 95% ethanol was studied under continuous irradiation. Fluorescence spectra from excited states of both normal (N) and photoisomeric (P) species are identical. The laser fluence dependence of the fluorescence intensity is interpreted on the basis of a photochromic system involving N and P ground states and first excited singlet states. Common flash photolysis equations are generalized in order to include a photoequilibrium between isomers. The emission data are used together with previous flash photolysis and optoacoustic results to obtain P fluorescence and photoisomerization quantum yields as 0.07 {plus minus} 0.02 and 0.20 {plus minus} 0.04, respectively, P absorption cross section at the maximum (560 nm) as 4.74 {times} 10{sup {minus}16} cm{sup 2} (125 {times} 10{sup 3} M{sup {minus}1}{center dot}cm{sup {minus}1}), and the energy difference between the ground states as 165 kJ{center dot}mol{sup {minus}1}.

  13. Challenges of becoming a regional referral system: the University of Kentucky as a case study.

    PubMed

    Edwards, Robert L; Lofgren, Richard P; Birdwhistell, Mark D; Zembrodt, James W; Karpf, Michael

    2014-02-01

    The U.S. health care system must change because of unsustainable costs and limited access to care. Health care legislation and the recognition that health care costs must be curbed have accelerated the change process. How should academic medical centers (AMCs) respond? Teaching hospitals are a heterogeneous group, and the leaders of each must understand their institution's goals and the necessary resources to achieve them. Clinical leaders and staff at one AMC, the University of Kentucky (UK), committed to transforming the AMC into a regional referral center. To achieve this goal, UK leaders integrated the clinical enterprise, focused recruitment on advanced subspecialists, and initiated productive relationships with other providers. Attracting adequate numbers of destination patients with complex illnesses required UK to have a "market space" of five to seven million people. The resources required to effect such progress have been daunting. Relationships with providers and payers have been necessary to forge a network. These relationships have been challenging to establish and manage and have evolved over time. Most AMCs are not-for-profit public good entities that nevertheless exist in an industry driven by competition in quality and cost, and therefore scale and access to capital are paramount. AMC leaders must understand their institutions as both part of an industry and as a public good in order to adapt to the changing health care system. Although the experience of any particular AMC is inherently unique, UK's journey provides a useful case study in establishing institutional goals, outlining a strategy, and identifying required resources. PMID:24362394

  14. Impact of global health governance on country health systems: the case of HIV initiatives in Nigeria

    PubMed Central

    Chima, Charles Chikodili; Homedes, Nuria

    2015-01-01

    Background Three global health initiatives (GHIs) – the US President’s Emergency Plan for AIDS Relief, the Global Fund to Fight AIDS, Tuberculosis and Malaria, and the World Bank Multi–Country HIV/AIDS Program – finance most HIV services in Nigeria. Critics assert that GHIs burden fragile health systems in resource–poor countries and that health system limitations in these countries constrain the achievement of the objectives of GHIs. This study analyzed interactions between HIV GHIs and the Nigerian Health System and explored how the impact of the GHIs could be optimized. Methods A country case study was conducted using qualitative methods, including: semi–structured interviews, direct observation, and archival review. Semi–structured interviews were held with key informants selected to reach a broad range of stakeholders including policymakers, program managers, service providers, representatives of donor agencies and their implementing partners; the WHO country office in Nigeria; independent consultants; and civil society organizations involved in HIV work. The fieldwork was conducted between June and August 2013. Findings HIV GHIs have had a mixed impact on the health system. They have enhanced availability of and access to HIV services, improved quality of services, and strengthened health information systems and the role of non–state actors in health care. On the negative end, HIV donor funding has increased dependency on foreign aid, widened disparities in access to HIV services, done little to address the sustainability of the services, crowded out non–HIV health services, and led to the development of a parallel supply management system. They have also not invested significantly in the production of new health workers and have not addressed maldistribution problems, but have rather contributed to internal brain drain by luring health workers from the public sector to non–governmental organizations and have increased workload for

  15. Family burden of schizophrenic patients and the welfare system; the case of Cyprus

    PubMed Central

    2013-01-01

    Background The shift from asylum to community care for mental health patients has burdened the providers of primary health care and, more than all, families. As a result, numerous studies [Soc Psychiatry Psychiatr Epidemiol 31:345–348, 1995, J Health Socisl Behav 36:138–150, 1995] have focused on the burden of care experienced by family members living with individuals with severe mental disorders. This kind of provision, also extols a significant cost to the society at large in terms of significant direct and indirect costs. A cost that may be even higher in times of severe socio-economic crisis. Methodology This study, firstly, aims to examine the burden that the family members experience by caring for individuals with schizophrenia and the identification of the parameters, in a micro and macro level, that affect family burden. Secondly, this study aims to investigate whether the welfare state will be fit to help vulnerable groups as the one studied, especially during economic crisis periods when austerity measures are being implemented into welfare systems. For data collection purposes this study employed the Involvement Evaluation Questionnaire [Schizophr Bull 1998, 24(4):609–618]. The sample consisted of caregivers either living in rural or urban areas of the district of Nicosia, the capital of the Republic of Cyprus. These people were attending regular meetings with their allocated Community Psychiatric Nurses (CPN) in Community Mental Health Centres (CMHC). Results Analysis of covariance (ANCOVA) was applied with the tension, the supervision, the worry, and the encouragement entering as dependent factors. In each case, participant’s age, gender, marital status, income, number of people living in the same house with the participant, degree of relationship between the caregiver and the person suffering from severe mental disorder, the age of the relative, and the gender of the relative, were entered as independent factors. Four ANCOVAs were performed

  16. A Case for Application Oblivious Energy-Efficient MPI Runtime

    SciTech Connect

    Venkatesh, Akshay; Vishnu, Abhinav; Hamidouche, Khaled; Tallent, Nathan R.; Panda, Dhabaleswar; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-10-19

    Power has become the major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the {\\em de facto} communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call --- provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without perturbing application's execution time. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasing use of adaptive, data-dependent workloads combined with system factors (OS noise, congestion) makes this assumption invalid. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models of common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack for maximizing energy efficiency. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used {\\em as soon as possible} --- to maximize energy efficiency. When mis-prediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5--41\\% in comparison to the default approach, with negligible (less than 4\\% in all cases) performance loss.

  17. Energy Drinks and Myocardial Ischemia: A Review of Case Reports.

    PubMed

    Lippi, Giuseppe; Cervellin, Gianfranco; Sanchis-Gomar, Fabian

    2016-07-01

    The use and abuse of energy drinks (EDs) is constantly increasing worldwide. We performed a systematic search in Medline, Scopus and Web of Science to identify evidence about the potential link between these beverages and myocardial ischemia. Overall, 8 case reports could be detected, all of which described a realistic association between large intake of EDs and episodes of myocardial ischemia. Interestingly, no additional triggers of myocardial ischemia other than energy drinks could be identified in the vast majority of cases. Some plausible explanations can be brought in support of this association. Most of the biological effects of EDs are seemingly mediated by a positive inotropic effect on cardiac function, which entails increase in heart rate, cardiac output and contractility, stroke volume and arterial blood pressure. Additional biological abnormalities reported after EDs intake include increased platelet aggregation, endothelial dysfunction, hyperglycemia as well as an increase in total cholesterol, triglycerides and low-density lipoprotein cholesterol. Although a causal relationship between large consumption of EDs and myocardial ischemia cannot be definitely established so far, concerns about the cardiovascular risk of excessive consumption of these beverages are seemingly justified. PMID:26320007

  18. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals. PMID:21105699

  19. Sustainability assessment and comparison of waste management systems: The Cities of Sofia and Niš case studies.

    PubMed

    Milutinović, Biljana; Stefanović, Gordana; Kyoseva, Vanya; Yordanova, Dilyana; Dombalov, Ivan

    2016-09-01

    Sustainability assessment of a waste management system is a very complex problem for numerous reasons. Firstly, it is a problem of environmental assessment, economic viability and social acceptability, and also a choice of the most practical waste treatment technique, taking into account all the specific areas in which a waste management system is implemented. For these reasons, among others, it is very important to benchmark, cooperate and exchange experiences in areas with similar characteristics. In this study, a comparison of waste management scenarios in the Cities of Niš and Sofia was performed. Based on the amount and composition of municipal solid waste, and taking into account local specifics (economic conditions, social acceptance, etc.), different scenarios were developed: landfilling without energy recovery, landfilling with energy recovery, mechanical-biological treatment, anaerobic digestion with biogas utilization and incineration with energy recovery. Scenario ranking was done using multi-criteria analysis and 12 indicators were chosen as the criteria. The obtained results show that the most sustainable scenario in both case studies is the mechanical-biological treatment (recycling, composting and Refuse Derived Fuel production). Having in mind that this scenario is the current waste management system in Sofia, these results can help decision-makers in the City of Niš in choosing a successful and sustainable waste management system. PMID:27357562

  20. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    SciTech Connect

    Uranga-Piña, L.; Tremblay, J. C.

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  1. Power/energy use cases for high performance computing.

    SciTech Connect

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  2. Alternative Energy Science and Policy: Biofuels as a Case Study

    NASA Astrophysics Data System (ADS)

    Ammous, Saifedean H.

    This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to alleviate the impacts of climate change and their relative efficacy. Three case studies of policy-making on biofuels in the European Union, United States of America and Brazil are presented and discussed. It is found that these policies have had large unintended negative consequences and that they relied on Lifecycle Analysis studies that had concluded that increased biofuels production can help meet economic, energy and environmental goals. A close examination of these Lifecycle Analysis studies reveals that their results are not conclusive. Instead of continuing to attempt to find answers from Lifecycle Analyses, this study suggests an alternative approach: formulating policy based on recognition of the ignorance of real fuel costs and pollution. Policies to combat climate change are classified into two distinct approaches: policies that place controls on the fuels responsible for emissions and policies that target the pollutants themselves. A mathematical model is constructed to compare these two approaches and address the central question of this study: In light of an ignorance of the cost and pollution impacts of different fuels, are policies targeting the pollutants themselves preferable to policies targeting the fuels? It is concluded that in situations where the cost and pollution functions of a fuel are unknown, subsidies, mandates and caps on the fuel might result in increased or decreased greenhouse gas emissions; on the other hand, a tax or cap on carbon dioxide results in the largest decrease possible of greenhouse gas emissions. Further, controls on greenhouse gases are shown to provide incentives for the development and advancement of cleaner alternative energy options, whereas controls on the fuels are shown to provide equal incentives to the development of cleaner and dirtier

  3. Productivity of "Collisions Generate Heat" for Reconciling an Energy Model with Mechanistic Reasoning: A Case Study

    ERIC Educational Resources Information Center

    Scherr, Rachel E.; Robertson, Amy D.

    2015-01-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a…

  4. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  5. DOE Zero Energy Ready Home Case Study: Durable Energy Builders - Houston, Texas

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Houston, Texas, that scored HERS 39 without PV and HERS 29 with PV. This 5,947 ft2 custom home has 11.5-inch ICF walls. The attic is insulated along the roof line with 5 to 7 inches of open-cell spray foam. Most of the home's drinking water is supplied by a 11,500-gallon rainwater cistern. Hurricane strapping connects the roof to the walls. The triple-pane windows are impact resistant. The foundation is a raised slab.

  6. CO/sub 2/ and the world energy system: The role of nuclear power

    SciTech Connect

    Fulkerson, W.; Jones, J.E. Jr.

    1989-01-01

    The greenhouse effect, and other transnational and global environment, health and safety issues, require energy system planning on an international scale. Consideration of equity between nations and regions, particularly between the industrialized and developing countries, is an essential ingredient. For the immediate future, the next several decades at least, fossil fuels will remain the predominant energy sources. More efficient use of energy seems to be the only feasible strategy for the near to mid-term to provide growing energy services for the world economy while moderating the increasing demand for fossil fuels. In the longer term, nonfossil sources are essential for a sustainable world energy system, and nuclear power can play an important, if not dominant, role. The challenge is to design and implement a safe and economic nuclear power world enterprise which is socially acceptable and is complimentary to other nonfossil sources. The elements of such an enterprise seem clear and include: much safer reactors, preferably passively safe, which can be developed at various scales; development of economic resource extension technologies; effective and permanent waste management strategies; and strengthened safeguards against diversion of nuclear materials to weapons. All of these elements can best be developed as cooperative international efforts. In the process, institutional improvements are equally as important as technological improvements; the two must proceed hand-in-hand. 14 refs., 4 figs., 1 tab.

  7. Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model

    NASA Astrophysics Data System (ADS)

    Ochoa, Maicol A.; Bruch, Anton; Nitzan, Abraham

    2016-07-01

    We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations [Phys. Rev. B 89, 161306 (2014), 10.1103/PhysRevB.89.161306; Phys. Rev. B 93, 115318 (2016), 10.1103/PhysRevB.93.115318] have found, for a resonant electronic level interacting with a thermal free-electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem and the bath. However, the general implications of this approach were questioned [Phys. Rev. B 92, 235440 (2015), 10.1103/PhysRevB.92.235440]. Here, we show that, already at equilibrium, such splitting fails to describe the energy fluctuations, as measured here by the second and third central moments (namely, width and skewness) of the energy distribution. Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by such splitting.

  8. Evaluating the economic costs, benefits and tradeoffs of dedicated biomass energy systems: The importance of scale

    SciTech Connect

    Graham, R.L.; Walsh, M.E.

    1995-12-31

    The economic and environmental costs, benefits and tradeoffs of bioenergy from dedicated biomass energy systems must be addressed in the context of the scale of interest. At different scales there are different economic and environmental features and processes to consider. The depth of our understanding of the processes and features that influence the potential of energy crops also varies with scale as do the quality and kinds of data that are needed and available. Finally, the appropriate models to use for predicting economic and environmental impacts change with the scale of the questions. This paper explores these issues at three scales - the individual firm, the community, and the nation.

  9. The Case for the Large Scale Development of Solar Energy

    ERIC Educational Resources Information Center

    O'Reilly, S. A.

    1977-01-01

    Traces the history of solar energy development. Discusses global effects (temperature, particle and other pollution) of burning fossil fuels. Provides energy balance equations for solar energy distribution and discusses flat plate collectors, solar cells, photochemical and photobiological conversion of solar energy, heat pumps. (CS)

  10. Dynamic transition in Landau-Zener-Stückelberg interferometry of dissipative systems: The case of the flux qubit

    NASA Astrophysics Data System (ADS)

    Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José

    2016-02-01

    We study Landau-Zener-Stückelberg (LZS) interferometry in multilevel systems coupled to an Ohmic quantum bath. We consider the case of superconducting flux qubits driven by a dc+ac magnetic fields, but our results can apply to other similar systems. We find a dynamic transition manifested by a symmetry change in the structure of the LZS interference pattern, plotted as a function of ac amplitude and dc detuning. The dynamic transition is from an LZS pattern with nearly symmetric multiphoton resonances to antisymmetric multiphoton resonances at long times (above the relaxation time). We also show that the presence of a resonant mode in the quantum bath can impede the dynamic transition when the resonant frequency is of the order of the qubit gap. Our results are obtained by a numerical calculation of the finite time and the asymptotic stationary population of the qubit states, using the Floquet-Markov approach to solve a realistic model of the flux qubit considering up to ten energy levels.

  11. Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective.

    PubMed

    Abraham, Alyson; Housel, Lisa M; Lininger, Christianna N; Bock, David C; Jou, Jeffrey; Wang, Feng; West, Alan C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2016-06-22

    Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work (w) and minimize the generation of waste heat (q). Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale but rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4. PMID:27413781

  12. Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective

    PubMed Central

    2016-01-01

    Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work (w) and minimize the generation of waste heat (q). Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale but rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4. PMID:27413781

  13. A Case Study of What Experiences Contribute to the Ideas of Energy Held by Primary School Students in Trinidad and Tobago

    ERIC Educational Resources Information Center

    Maharaj-Sharma, Rawatee; Sharma, Amrit

    2014-01-01

    This case study explored what experiences contribute to the ideas of energy held by 30 purposively selected primary school students from one primary school in Trinidad and Tobago. The 30 students were selected from across all levels of the primary system. The study used the Interview About Events (IAE) approach to explore students' ideas about…

  14. Energy in municipal-wastewater treatment: an energy-audit procedure and supporting data base. Case examples. Appendix B

    SciTech Connect

    Not Available

    1986-07-01

    This case example illustrates the application of the energy-estimation procedures to a 0.5 MGD wastewater treatment facility utilizing a trickling-filter system with anaerobic in the intermountain area of the United States.

  15. NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

  16. The Energy Crisis and the Media: Some Case Histories.

    ERIC Educational Resources Information Center

    Schmertz, Herbert

    The five case histories presented in this paper discuss the relations of the Mobil Oil Corporation with various news media since 1973, particularly the difficulties that the oil industry has faced in communicating with and through the news media. The case histories deal with the following topics; news stories about tankers allegedly waiting…

  17. Regional aspects of the energy crisis: East European case study

    SciTech Connect

    Merkin, V.O.

    1985-01-01

    The energy crisis occurring in Eastern Europe owes much to the Stalinist model of energy-intensive industrialization applied to a basically energy short region still partially isolated from the world energy market. Systemic factors are thus much more important than in the West. Due to this, solutions to the energy crisis in the East of Europe, be it through supply augmentation or conservation, belong as much in the sphere of politics and ideology as they do in the sphere of economics. The dissertation examines in a systematic manner the evolution and prospects of the energy economy in the region (Chapter 1), the present sectoral pattern of energy consumption (Chapter 2), and conversion (thermo-electric conversion in Chapter 3 and oil refining in Chapter 4). Four subsequent chapters are devoted to individual energy-consuming sectors such as industry, transportation, agriculture, and households. Finally, the potential and problems of energy conservation in Eastern Europe are analyzed in the context of broader economic policies and concerns of the states of the region. In the conclusion, topics in the energy economy of Eastern Europe requiring further study are outlined.

  18. Energy dissipation in heavy systems: the transition from quasi-elastic to deep-inelastic scattering

    SciTech Connect

    Rehm, K.E.; van den Berg, A.; Kolata, J.J.; Kovar, D.G.; Kutschera, W.; Rosner, G.; Stephans, G.S.F.; Yntema, J.L.; Lee, L.L.

    1984-01-01

    The interaction of medium mass projectiles (A = 28 - 64) with /sup 208/Pb has been studied using a split-pole spectrograph which allows single mass and charge identification. The reaction process in all systems studied so far is dominated by quasi-elastic neutron transfer reactions, especially at incident energies in the vicinity of the Coulomb barrier. In addition to the quasi-elastic component deep inelastic contributions are present in all reaction channels. The good mass and charge separation allows to generate Wilczynski plots for individual channels; for the system /sup 48/Ti + /sup 208/Pb we observe that the transition between the quasi-elastic and deep-inelastic reactions occurs around Q = -(30 to 35) MeV.

  19. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St.Paul, Minnesota; DOE Zero Energy Ready Home Case Study, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-06-01

    For this project Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to approach zero energy in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout rambler with all the creature comforts.

  20. Softdesk energy: A case study in early design tool integration

    SciTech Connect

    Gowri, K.; Chassin, D.P.; Friedrich, M.

    1998-04-01

    Softdesk Energy is a design tool that integrates building energy analysis capability into a highly automated production drafting environment (AutoCAD and Softdesk AutoArchitect). This tool provides users of computer aided software the opportunity to evaluate the aided design/drafting (CAD) energy impact of design decisions much earlier in the design process than previously possible with energy analysis software. The authors review the technical challenges of integrating analytic methods into design tools, the opportunities such integrated tools create for building designers, and a usage scenario from the perspective of a current user of Softdesk Energy. A comparison between the simplified calculations in Softdesk Energy and detailed simulations using DOE-2 energy analysis is made to evaluate the applicability of the Softdesk Energy approach. As a unique example of integrating decision and drafting, Softdesk Energy provides an opportunity to study the strengths and weaknesses of integrated design tools and gives some insight into the future direction of the CAD software towards meeting the needs of diverse design disciplines.

  1. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect

    Not Available

    1980-03-01

    The Woodlands is a HUD Title VII New Town located near Houston, including 22,000 acres; the plan for the new town consists of 6 residential villages, a town center (Metro), and a Trade Center for larger-scale industrial use. Included within the program for each village are schools and commercial activities, as well as employment activities. The Woodlands is planned to be developed over a 26-year period (commenced in 1972) with an ultimate population of 150,000. Following a summary chapter, Chapter II presents background material on The Woodlands and results of the study are summarized. Chapter III describes the project team and its organizational structure. Chapter IV outlines and documents the methodology that was employed in developing, analyzing, and evaluating the case study. The next chapter describes and analyzes the conventional plan, documents the process by which energy-conserving methods were selected, and evaluates the application of these methods to the Metro Center Study area. Chapter VI discusses constraints to implementation and is followed by a final chapter that presents the general conclusions from the case study and suggests directions for further investigation.

  2. Practicing Sustainability in an Urban University: A Case Study of a Behavior Based Energy Conservation Project

    ERIC Educational Resources Information Center

    Chan, Stuart; Dolderman, Dan; Savan, Beth; Wakefield, Sarah

    2012-01-01

    This case study of the University of Toronto Sustainability Office's energy conservation project, Rewire, explores the implementation of a social marketing campaign that encourages energy efficient behavior. Energy conservation activities have reached approximately 3,000 students and staff members annually, and have saved electricity, thermal…

  3. Enabling Business Processes through Information Management and IT Systems: The FastFit and Winter Gear Distributors Case Studies

    ERIC Educational Resources Information Center

    Kesner, Richard M.; Russell, Bruce

    2009-01-01

    The "FastFit Case Study" and its companion, the "Winter Gear Distributors Case Study" provide undergraduate business students with a suitable and even familiar business context within which to initially consider the role of information management (IM) and to a lesser extent the role of information technology (IT) systems in enabling a business.…

  4. The Canadian Legal System, the Robert Latimer Case, and the Rhetorical Construction of (Dis)ability: "Bodies that Matter?"

    ERIC Educational Resources Information Center

    Hayward, Sally

    2009-01-01

    This paper considers Judge Ted Noble's 1997 ruling of the Latimer case in terms of how it rhetorically constructs and privileges the normal, able-bodied status quo, while, at the same time, deconstructs and positions as inferior the "abnormal," dis-abled minority. In this case, Noble not only took the unprecedented step of granting Robert…

  5. The case for energy harvesting on wildlife in flight

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; MacCurdy, Robert; Shipley, J. Ryan; Winkler, David; Guglielmo, Christopher G.; Garcia, Ephrahim

    2015-02-01

    The confluence of advancements in microelectronic components and vibrational energy harvesting has opened the possibility of remote sensor units powered solely from the motion of their hosts. There are numerous applications of such systems, including the development of modern wildlife tracking/data-logging devices. These ‘bio-logging’ devices are typically mass-constrained because they must be carried by an animal. Thus, they have historically traded scientific capability for operational longevity due to restrictions on battery size. Recently, the precipitous decrease in the power requirements of microelectronics has been accompanied by advancements in the area of piezoelectric vibrational energy harvesting. These energy harvesting devices are now capable of powering the type of microelectronic circuits used in bio-logging devices. In this paper we consider the feasibility of employing these vibrational energy harvesters on flying vertebrates for the purpose of powering a bio-logging device. We show that the excess energy available from birds and bats could be harvested without adversely affecting their overall energy budget. We then present acceleration measurements taken on flying birds in a flight tunnel to understand modulation of flapping frequency during steady flight. Finally, we use a recently developed method of estimating the maximum power output from a piezoelectric energy harvester to determine the amount of power that could be practically harvested from a flying bird. The results of this analysis show that the average power output of a piezoelectric energy harvester mounted to a bird or bat could produce more than enough power to run a bio-logging device. We compare the power harvesting capabilities to the energy requirements of an example system and conclude that vibrational energy harvesting on flying birds and bats is viable and warrants further study, including testing.

  6. Battery energy storage systems life cycle costs case studies

    SciTech Connect

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  7. Building America Case Study: New Town Builders' Power of Zero Energy Center, Denver, Colorado (Brochure)

    SciTech Connect

    Not Available

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a 'Power of Zero Energy Center' linked to its model home in the Stapleton community of Denver. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. The case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  8. Higher Education Pushes for Energy Education: GVSU Case Study

    SciTech Connect

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP).

  9. The energy cost of water independence: the case of Singapore.

    PubMed

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency. PMID:25225924

  10. Thoracic compression fractures as a result of shock from a conducted energy weapon: a case report.

    PubMed

    Winslow, James E; Bozeman, William P; Fortner, Michael C; Alson, Roy L

    2007-11-01

    The Taser is an electrical conducted energy weapon used by law enforcement officers throughout the United States and the world. Though generally regarded as safe, conducted energy weapons can produce injuries. In this case report we describe for the first time thoracic spine compression fractures resulting from a conducted energy weapon discharge. Physicians who may care for patients who have been exposed to a conducted energy weapon discharge should be aware of this as a possible complication. PMID:17826867

  11. Energy planning in developing countries - the Turkish case

    SciTech Connect

    Gunduz, D.H.

    1985-01-01

    Since energy shortcomings promise to have serious economic, political, and social consequences, energy planning should constitute the most important aspect of overall development planning in developing countries. Turkey, an energy-important developing country, presently depends heavily on imported petroleum. The increases in international petroleum prices have affected the Turkish economy adversely, and promises to be the same in the future unless dependence on imported petroleum is reduced by substituting other resources for petroleum. Taking into account the degree of the present Turkish economic development and the level of industrialization attained, and the direction Turkish economy is heading in general, electricity from nuclear power plants, along with the development and use of other energy resources is found to be the most suitable substitute in this study. This is in contradiction with the present official policy of utilizing domestic lignite and hydro resources. Energy self-sufficiency at any cost does not seem to be a possibility for in the near future in Turkey, neither is it as vitally important as has been strived for the past. Nuclear fuels, supplied in part from domestic sources and also from Western nations, of which Turkey is a partner, will reduce Turkey's economic and political vulnerability.

  12. A mixed bag: The economic case for renewable energy

    SciTech Connect

    Brower, M.C.; Tennis, M.W.; Denzler, E.W.

    1994-05-01

    Large amounts of renewable energy, including solar, wind, and biomass (wood and plant matter), are available for generating electricity throughout the United States. In some states - especially those in the West and Midwest - the wind and biomass potential alone far exceeds current and foreseeable electricity demand. Moreover, since the 1970s, renewable energy technologies have come down dramatically in cost and have established an impressive record of reliability in grid- and nongrid-connected applications. Despite their promise, however, renewable energy sources are for the most part ignored in utility resource plans. One obstacle is a lack of reliable information about renewable resources and technologies, a problem that is slowly being overcome. Just as important, however, most utility planners fail to recognize the substantial economic benefits of adding renewable energy to their resource mix. In a time of uncertainty about customer load growth, fuel prices, and environmental regulation, renewable energy sources can represent a sound insurance policy against financial losses for utilities and customers alike.

  13. Steel: Reducing BOF Hood Scrubber Energy Costs at a Steel Mill (Technical Case Study)

    SciTech Connect

    Ericksen, E.

    1999-01-27

    This OIT Technical Case Study reveals how Bethlehem Steel Corporation, by installing a variable-frequency drive and making associated equipment modifications, was able to save energy, reduce operational costs, and decrease system maintenance.

  14. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect

    Not Available

    1980-03-01

    Appendix II of The Woodlands Metro Center Energy Study near Houston consists of the following: Metro Center Program, Conventional Plan Building Prototypes and Detail Parcel Analysis, Energy Plan Building Prototypes, and Energy Plan Detail Parcel Analysis.

  15. Innovation in energy systems: a case study of gasoline rationing

    SciTech Connect

    Sullivan, M.C.

    1981-01-01

    The purpose of the study is to develop a theoretical understanding of the implementation of new programs (innovations) by organizations, verify concepts with a case study of gasoline rationing, and apply knowledge gained to an analysis of the Standby Gasoline Rationing Plan. Major hypotheses of the study are: (1) Role specialization is required during the initial stage of implementation. (2) Decentralization is required during the initial stage of implementation. (3) Role specialization hinders implementation during the later stage. (4) Centralization is required during the later stage of implementation. The concept of technology delivery system is employed to demonstrate how organizational structure (degree of specialization centralization, etc.) is related to technological requirements and social need. The four major hypotheses were verified with the innovation theory as well as the case study of rationing. Application to the Standby Gasoline Rationing Plan leads to the conclusion that major problems would occur with plan implementation.

  16. New Technologies for Energy Improvements: Two Case Studies

    ERIC Educational Resources Information Center

    Christensen, John; Posey, Mike

    2011-01-01

    This article describes how two institutions in the U.S. Southwest--Albuquerque Academy in New Mexico and Pima Community College (PCC) in Arizona--have implemented new energy projects on their campuses. Albuquerque Academy's one-megawatt DC photovoltaic solar array is one of the largest secondary schools projects to date in the United States. The…

  17. Before it's too late: a scientist's case for nuclear energy

    SciTech Connect

    Cohen, B.L.

    1983-01-01

    Up to now the truth about nuclear energy has been consistently distorted to the public. Here a scientist--unaffiliated with the nuclear industry or the government, and the 1981 recipient of the American Physical Society Bonner Prize for basic research in nuclear physics--explains to the layman how dangerous radiation from a nuclear reactor really is; what actually happened at Three Mile Island; how risks of different sources of energy compare with risks of everyday life; why nuclear waste is very much less hazardous than the waste from coal burning or solar energy; what scientists truly think about radiation hazards, as revealed by a new poll published for the first time; and how time is running out for an inexpensive nuclear program. What originated as a scientific question has turned into a political controversy steeped in propaganda. If nothing is done soon to promote a nuclear energy program, electricity in the United States will cost twice as much as it does in Europe.

  18. Energy Efficiency of Higher Education Buildings: A Case Study

    ERIC Educational Resources Information Center

    Soares, Nelson; Pereira, Luísa Dias; Ferreira, João; Conceição, Pedro; da Silva, Patrícia Pereira

    2015-01-01

    Purpose: This paper aims to propose an energy efficiency plan (with technical and behavioural improvement measures) for a Portuguese higher education building--the Teaching Building of the Faculty of Economics of the University of Coimbra (FEUC). Design/methodology/approach: The study was developed in the context of both the "Green…

  19. Energy from sawmill waste in Honduras: Teupasenti case study

    SciTech Connect

    Wimberly, J.; Holloman, B.

    1993-01-01

    A 1991 A.I.D.-funded study (PN-ABH-607) documented the economic and environmental potential of using wastes from Honduras's sawmills as an energy source. The follow-up study assesses the economic viability of six alternative wastewood energy system configurations for a representative small sawmill, Maderas de Oriente, located in Teupasenti, El Paraiso Department. Of the six systems, three are designed for electricity production only during peak demand hours and three are designed for continuous electricity generation with output maximized during peak hours. Four of the configurations include steam-heated lumber drying techniques, with two different kiln designs considered. All of the systems utilize all of the wastewood produced by the sawmill.

  20. Energy-conserving site design: case study, The Woodlands, Texas

    SciTech Connect

    Swanson, M

    1980-03-01

    The Woodlands is a HUD Title VII New Town located north of Houston. It includes 22,000 acres and the plan for the new town consists of 6 residential villages, a town center called the Metro Center and several additional tracts, such as the Trade Center for larger-scale industrial use. Each village is to be structured around one large and several supporting neighborhood centers. Ultimate population is planned to be 150,000. Included in this report are sections on background, team structure and organization, methodological considerations, the conventional and energy-conserving plan, constraints to implementation, and general conclusions and next phases.

  1. Existing Whole-House Solutions Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon

    SciTech Connect

    none,

    2011-12-01

    This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 100-year-old home in Portland, Oregon, audited by Pacific Northwest National Laboratory for a deep energy retrofit. New HVAC and extensive insulation upgrades including rigid XPS and new siding over the old lead painted siding, and EPS on the basement walls and in cathedral ceiling helped bring HERS down to 68.

  2. Case Studies on the Effectiveness of State Financial Incentives for Renewable Energy

    SciTech Connect

    2002-09-01

    September 2002 · NREL/SR-620-32819 Case Studies on the Effectiveness of State Financial Incentives for Renewable Energy S. Gouchoe, V. Everette, and R. Haynes North Carolina State University Raleigh, North Carolina National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute · Battelle · Bechtel Contract No. DE-AC36-99-GO10337 September 2002 · NREL/SR-620-32819Case Studies on the Effecti

  3. Case history studies of energy conservation improvements in the dairy industry

    SciTech Connect

    Not Available

    1982-06-01

    Presented are ten case histories about energy-efficient technologies implemented by the dairy industry. For each case is presented: the name and location of the company, and its product line; energy consumption and costs at the plant before and after implementation of energy-conserving technology; the factors that prompted the investment; and product quality as a result of the new equipment. The measures presented are: refrigeration compressor replacement, turbulators in boiler tubes, stack exchange on boilers, reverse osmosis, six-effect evaporator, multi-effect evaporator with thermal vapor recompressor, spray dryer heat recovery, efficient compressor operations, mechanical vapor recompression evaporator, preheated spray dryer air with recoverable waste heat. (LEW)

  4. Case studies of energy efficiency financing in the original five pilot states, 1993-1996

    SciTech Connect

    Farhar, B C; Collins, N E; Walsh, R W

    1997-05-01

    The purpose of this report is to document progress in state-level programs in energy efficiency financing programs that are linked with home energy rating systems. Case studies are presented of programs in five states using a federal pilot program to amortize the costs of home energy improvements. The case studies present background information, describe the states` program, list preliminary evaluation data and findings, and discuss problems and solution encountered in the programs. A comparison of experiences in pilot states will be used to provide guidelines for program implementers, federal agencies, and Congress. 5 refs.

  5. Energy for rural development: a case study in Bihar, India

    SciTech Connect

    Hurst, C.

    1983-01-01

    This thesis analyses the feasibility of various sources of energy for the development of agriculture on the Indian subcontinent. There is a large potential for futher use of groundwater for irrigation in the northeast Indian plains and this study examines the trade-off between the benefits to agriculture of irrigation and the costs of the energy and equipment required for pumping. A linear programming model has been developed to predict the general equilibrium state of the economy of Pulkahi, a typical poor village in the Indian State of Bihar. This model has been used to predict the effects on agricultural production of various technological endowments. Four different methods of pumping water were considered in detail. These were: diesel engines fueled with diesel oil, diesel engines with biogas plants fueled with dung, diesel engines with gasifiers fueled with residues or wood, and animal powered pumps. Gasifiers convert wood or residues to a combustible gas (primarily hydrogen and carbon monoxide) through a process of partial combustion. Biogas plants use anaerobic decomposition to produce methane. Only small size pumps suitable for use by individual farmers, or small cooperatives were considered. As most biomass is already used for some purpose (e.g. fertilizer, fuel) special attention was given to the balance of nitrogen within the village system.

  6. Ten case history studies of energy efficiency improvements in pulp and paper mills. Final report

    SciTech Connect

    Not Available

    1981-01-01

    The ten technologies chosen for case history development are: sonic sootblowing in boilers, boiler operation on oil-water emulsified fuel, energy efficient motors, computerized control of excess air for boilers, boiler control and load allocation, driving of waste-activated sludge by multiple effect evaporation, pre-drying of hog fuel, lime kiln computerization, heat wheel for process heat recovery, and organic Rankine bottoming cycle for thermomechanical pulping heat recovery. For each case study, there is given: the company name, employee contact, plant summary, a description of the energy consuming process and of the energy-saving action, an assessment of energy savings, and the decision process leading to the adoption of the measure. A data summary for discounted cash flow analysis is tabulated for each case. (LEW)

  7. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  8. Restoring a flow regime through the coordinated operation of a multireservoir system: The case of the Zambezi River basin

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Beevers, L.; Muyunda, B.

    2010-07-01

    Large storage facilities in hydropower-dominated river basins have traditionally been designed and managed to maximize revenues from energy generation. In an attempt to mitigate the externalities downstream due to a reduction in flow fluctuation, minimum flow requirements have been imposed to reservoir operators. However, it is now recognized that a varying flow regime including flow pulses provides the best conditions for many aquatic ecosystems. This paper presents a methodology to derive a trade-off relationship between hydropower generation and ecological preservation in a system with multiple reservoirs and stochastic inflows. Instead of imposing minimum flow requirements, the method brings more flexibility to the allocation process by building upon environmental valuation studies to derive simple demand curves for environmental goods and services, which are then used in a reservoir optimization model together with the demand for energy. The objective here is not to put precise monetary values on environmental flows but to see the marginal changes in release policies should those values be considered. After selecting appropriate risk indicators for hydropower generation and ecological preservation, the trade-off curve provides a concise way of exploring the extent to which one of the objectives must be sacrificed in order to achieve more of the other. The methodology is illustrated with the Zambezi River basin where large man-made reservoirs have disrupted the hydrological regime.

  9. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    SciTech Connect

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  10. Energy education on the move: A national energy education survey and case studies of outstanding programs

    SciTech Connect

    Harrigan, M.

    1992-03-01

    Energy education, defined as communication that is designed to influence people's energy usage, has been conducted in one form or another by a wide range of organizations since long before the energy crisis of 1973. Energy education is undertaken by a broad range of public, private, non-profit and utility organizations for a variety of purposes. Each program has a unique message, audience and objectives. Although many energy education programs are still in the early stages of development, some of the programs have been evaluated and show promising results. In an effort to consolidate, describe, and communicate information about the broad range of energy education efforts in this country, a survey was conducted. The surveys were developed to determine who provides energy education, what methods they use, and whether they evaluate the results. The results of the surveys are described and analyzed in the second section of this three-tiered report.

  11. Energy education on the move: A national energy education survey and case studies of outstanding programs

    SciTech Connect

    Harrigan, M.

    1992-03-01

    Energy education, defined as communication that is designed to influence people`s energy usage, has been conducted in one form or another by a wide range of organizations since long before the energy crisis of 1973. Energy education is undertaken by a broad range of public, private, non-profit and utility organizations for a variety of purposes. Each program has a unique message, audience and objectives. Although many energy education programs are still in the early stages of development, some of the programs have been evaluated and show promising results. In an effort to consolidate, describe, and communicate information about the broad range of energy education efforts in this country, a survey was conducted. The surveys were developed to determine who provides energy education, what methods they use, and whether they evaluate the results. The results of the surveys are described and analyzed in the second section of this three-tiered report.

  12. Solar energy system case study: Telex Communications, Blue Earth, Minnesota

    SciTech Connect

    Raymond, M.G.

    1984-09-01

    A study is made of a solar energy system for space heating a 97,000-square-foot office, factory, and warehouse building owned by Telex Communications, Inc. in Blue Earth, Minnesota. The solar system has 11,520 square feet of ground-oriented flat-plate collectors and a 20,000-gallon storage tank inside the building. Freeze protection is by drainback. Solar heated water from the storage tank circulates around the clock throughout the heating season to heating coils in the ducts. The system achieves its design solar fraction, is efficient, and generally reliable, but not cost-effective. Performance data for the solar system was collected by the National Solar Data Network for three heating seasons from 1978 to 1981. Because of a freeze-up of the collector array in December 1978, the solar system was only partially operational in the 1978 to 1979 heating season. The data in this report were collected in the 1979 to 1980 and 1980 to 1981 heating seasons.

  13. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    NASA Astrophysics Data System (ADS)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  14. The role of social networks in the governance of health systems: the case of eye care systems in Ghana.

    PubMed

    Blanchet, Karl; James, Philip

    2013-03-01

    Efforts have been increasingly invested to improve local health systems' capacities in developing countries. We describe the application of innovative methods based on a social network analysis approach. The findings presented refer to a study carried out between July 2008 and January 2010 in the Brong Ahafo region of Ghana. Social network analysis methods were applied in five different districts using the software package Ucinet to calculate the various properties of the social network of eye care providers. The study focused on the managerial decisions made by Ghanaian district hospital managers about the governance of the health system. The study showed that the health system in the Brong Ahafo region experienced significant changes specifically after a key shock, the departure of an international organization. Several other actors at different levels of the network disappeared, the positions of nurses and hospital managers changed, creating new relationships and power balances that resulted in a change in the general structure of the network. The system shifted from a centralized and dense hierarchical network towards an enclaved network composed of five sub-networks. The new structure was less able to respond to shocks, circulate information and knowledge across scales and implement multi-scale solutions than that which it replaced. Although the network became less resilient, it responded better to the management needs of the hospital managers who now had better access to information, even if this information was partial. The change of the network over time also showed the influence of the international organization on generating links and creating connections between actors from different levels. The findings of the study reveal the importance of creating international health connections between actors working in different spatial scales of the health system. PMID:22411882

  15. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    PubMed

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion. PMID:22053478

  16. Measuring savings in energy savings performance contracts using in-place energy management systems -- A case study

    SciTech Connect

    Heinemeier, K.E.; Akbari, H.; Kromer, S.

    1996-08-01

    Energy Management Control Systems (EMCSs) have been used in many projects as a monitoring device to provide information necessary for estimating savings from efficiency measures. This paper discusses a case study that looked in great depth at that use for evaluating savings in Energy Savings Performance Contracting (ESPC). ESPC is one of the increasingly important mechanisms for profiting from energy efficiency in commercial buildings. With ESPC, a contractor finances and installs energy-conversion measures, and the resulting savings in energy bills are shared between the contractor and the building owner. Hence, the method used for determining savings is key to the success of this financing scheme. As a part of their effort to establish measurement and verification methods, the Federal Energy Management Program (FEMP) carried out a pilot study of ESPC, and the EMCS was used in the savings verification for this ESPC contract. This case study also serves as a detailed and quantitative comparison of EMCS and conventional monitoring techniques, according to the guidelines developed in earlier work. This paper discusses the concept of different levels of monitoring savings for ESPC and presents an assessment of the use of EMCS for these levels of monitoring.

  17. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-09-01

    Over the last several years, many U.S. states have established clean energy funds to help support the growth of renewable energy markets. Most often funded by system-benefits charges (SBC), the 15 states that have established such funds are slated to collect nearly $3.5 billion from 1998 to 2012 for renewable energy investments. These clean energy funds are expected to have a sizable impact on the energy future of the states in which the funds are being collected and used. For many of the organizations tapped to administer these funds, however, this is a relatively new role that presents the challenge of using public funds in the most effective and innovative fashion possible. Fortunately, each state is not alone in its efforts; many other U.S. states and a number of countries are undertaking similar efforts. Early lessons are beginning to be learned by clean energy funds about how to effectively target public funds towards creating and building renewable energy markets. A number of innovative programs have already been developed that show significant leadership by U.S. states in supporting renewable energy. It is important that clean energy fund administrators learn from this emerging experience.

  18. Secular dynamics of hierarchical quadruple systems: the case of a triple system orbited by a fourth body

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.; Perets, Hagai B.; Antonini, Fabio; Portegies Zwart, Simon F.

    2015-06-01

    We study the secular gravitational dynamics of quadruple systems consisting of a hierarchical triple system orbited by a fourth body. These systems can be decomposed into three binary systems with increasing semimajor axes, binaries A, B and C. The Hamiltonian of the system is expanded in ratios of the three binary separations, and orbit averaged. Subsequently, we numerically solve the equations of motion. We study highly hierarchical systems that are well described by the lowest order terms in the Hamiltonian. We find that the qualitative behaviour is determined by the ratio {R}_0 of the initial Kozai-Lidov (KL) time-scales of the binary pairs AB and BC. If {R}_0≪ 1, binaries AB remain coplanar if this is initially the case, and KL eccentricity oscillations in binary B are efficiently quenched. If {R}_0≫ 1, binaries AB become inclined, even if initially coplanar. However, there are no induced KL eccentricity oscillations in binary A. Lastly, if {R}_0˜ 1, complex KL eccentricity oscillations can occur in binary A that are coupled with the KL eccentricity oscillations in B. Even if binaries A and B are initially coplanar, the induced inclination can result in very high eccentricity oscillations in binary A. These extreme eccentricities could have significant implications for strong interactions such as tidal interactions, gravitational wave dissipation, and collisions and mergers of stars and compact objects. As an example, we apply our results to a planet+moon system orbiting a central star, which in turn is orbited by a distant and inclined stellar companion or planet, and to observed stellar quadruples.

  19. Department of Energy's Pantex Plant Saves $10 Million in Energy Costs. Federal Energy Management Program (FEMP) ESPC Case Study Fact Sheet

    SciTech Connect

    Ward, C.

    2001-11-20

    This two-page case study describes how the U.S. Department of Energy's Pantex Plant in Amarillo, Texas, will save approximately $10 million in energy costs over the next 18 years, thanks to a DOE Super Energy Savings Performance Contract (Super ESPC) delivery order for energy efficiency improvements. The delivery order is the largest to date for a DOE facility. Primarily, the delivery order calls for a new, state-of-the-art energy management control system and a new water/steam piping system, which will be purchased and installed by the contracting energy services company (ESCO). The ESCO will then be repaid over the life of the contract out of the plant's resulting energy cost savings.

  20. Involvement of stakeholders in the water quality monitoring and surveillance system: The case of Mzingwane Catchment, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nare, Lerato; Love, David; Hoko, Zvikomborero

    of water is polluted, such as boiling water for human consumption, laundry and bathing, or abandoning a water source in extreme cases. Stakeholder participation and ownership of resources needs to be encouraged through participatory planning, and integration between the three government departments (water, environment and health). Local knowledge systems could be integrated into the formal water quality monitoring systems, in order to complement the conventional monitoring networks.

  1. De-anthropomorphizing energy and energy conservation: The case of Max Planck and Ernst Mach

    NASA Astrophysics Data System (ADS)

    Wegener, Daan

    Discussions on the relation between Mach and Planck usually focus on their famous controversy, a conflict between 'instrumentalist' and realist philosophies of science that revolved around the specific issue of the existence of atoms. This article approaches their relation from a different perspective, comparing their analyses of energy and energy conservation. It is argued that this reveals a number of striking similarities and differences. Both Mach and Planck agreed that the law was valid, and they sought to purge energy of its anthropomorphic elements. They did so in radically different ways, however, illustrating the differences between Mach's 'historical' and Planck's 'rationalistic' accounts of knowledge. Planck's attempt to de-anthropomorphize energy was part of his attempt to demarcate theoretical physics from other disciplines. Mach's attempt to de-anthropomorphize energy is placed in the context of fin-de-siècle Vienna. By doing so, this article also proposes a new interpretation of Mach as a philosopher, historian and sociologist of science.

  2. Calibrating convective-core overshooting with eclipsing binary systems. The case of low-mass main-sequence stars

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2016-03-01

    recovered β value, reaching 0.2 at the 60% of the MS evolution. Taking into account both the helium abundance indetermination and 1σ statistical uncertainty, we found that in the terminal part of the MS evolution the error on the estimated β values ranges from -0.05 to + 0.10, while β is basically unconstrained throughout the explored range at earlier evolutionary stages. We quantified the impact of a uniform variation of ±0.24 in the mixing-length parameter αml around the solar-calibrated value. The largest bias occurs in the last 5% of the evolution with an error on the estimated median β from -0.03 to + 0.07. In this last part, the 1σ uncertainty that addresses statistical and systematic error sources ranges from -0.09 to + 0.15. Finally, we quantified the impact of a complete neglect of diffusion in the stellar evolution computations. In this case, the 1σ uncertainty that addresses statistical and systematic error sources ranges from -0.08 to + 0.08 in the terminal 5% of the MS, while β is practically unconstrained in the first 80% of the MS. Conclusions: The calibration of the convective core overshooting with double-lined eclipsing binaries - in the explored mass range and with both components still in their MS phase - appears to be poorly reliable, at least until further stellar observables, such as asteroseismic ones, and more accurate models are available.

  3. Sri Lankan Case Study on Public/Private Participation in the Promotion of Wind Energy

    NASA Astrophysics Data System (ADS)

    Robinson, Rod; Thanthilage, Rohitha

    2007-10-01

    Micro wind power systems are one of the most appropriate and comparatively economical renewable energy sources to meet the off-grid energy needs of Sri Lanka. To penetrate the target markets and intended beneficiaries of Sri Lanka, it requires sound demonstrations to prove its technical, financial and or economic viability. This paper, presents a case study of a successful wind powered rural electrification project and the establishment of a revolving fund with public/private participation.

  4. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal

    PubMed Central

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-01-01

    Abstract During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions. PMID:26064039

  5. Productivity of "collisions generate heat" for reconciling an energy model with mechanistic reasoning: A case study

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Robertson, Amy D.

    2015-06-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a byproduct of individual particle collisions, which is represented in science education research literature as an obstacle to learning. We demonstrate that in this instructional context, the idea that individual particle collisions generate thermal energy is not an obstacle to learning, but instead is productive: it initiates intellectual progress. Specifically, this idea initiates the reconciliation of the teachers' energy model with mechanistic reasoning about adiabatic compression, and leads to a canonically correct model of the transformation of kinetic energy into thermal energy. We claim that the idea's productivity is influenced by features of our particular instructional context, including the instructional goals of the course, the culture of collaborative sense making, and the use of certain representations of energy.

  6. DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build - Boulder, Colorado

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Boulder, Colorado, that scored HERS 38 without PV and 0 with PV. This 2,504 ft2 custom home has advanced framed walls, superior insulation a ground-source heat pump, ERV, and triple-pane windows.

  7. Assessment of renewable energy technology and a case of sustainable energy in mobile telecommunication sector.

    PubMed

    Okundamiya, Michael S; Emagbetere, Joy O; Ogujor, Emmanuel A

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  8. Assessment of Renewable Energy Technology and a Case of Sustainable Energy in Mobile Telecommunication Sector

    PubMed Central

    Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  9. Case for solar energy investments. Energy series. World Bank technical paper

    SciTech Connect

    Anderson, D.; Ahmed, K.

    1995-12-31

    After summarizing the technical and economic prospects for solar energy technologies, the paper outlines a two-part program that would help to commercialize solar energy use in developing countries. The first part of the program is to establish a pipeline of investments drawing on financial resources that are already available for well-prepared investments--the multinational development banks, commercial banks, the Global Environment Facility, and direct investment by electric utilities, private investors, and others. The second part concerns the need to expand public research and development at the national and international levels in support of private initiative.

  10. Comparison of Energy Deposition in the Auroral Oval and Cap Regions for Cases Where Transpolar Structures Exist

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Germany, G. A.; Parks, G. K.; Brittnacher, M. J.

    1998-01-01

    For several cases where the full auroral zone is imaged and transpolar structures exist, we compare the total energy input to the auroral oval with the total energy input in the polar cap. This comparison is made for cases where auroral intensification near local midnight is and is not observed. Temporal evolution of the energy balance between the energy deposited in the oval and polar cap can be used to understand the mechanism that triggers substorms.

  11. Case history studies of energy conservation improvements in the meat industry

    SciTech Connect

    Not Available

    1982-06-01

    Presented are case histories for ten energy-efficient technologies implemented by the meat industry. For each case is presented: the name and location of the plant, name of plant employee contact with address and telephone number, energy consumption and costs at the plant before and after implementation of energy-conserving technology, description of the investment decision process, and changes in production or product quality as a result of the new equipment. The measures presented are: continuous rendering, high-pressure return on the boiler, heat recovery from condensate return and flash steam, continuous whole blood processing, preheating of process water with recovered refrigeration waste heat, continuous rendering of poultry scraps, electrical stimulation of beef, preheating and storing process water with recovered refrigeration waste heat, microcomputer control system, and housekeeping improvements. (LEW)

  12. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  13. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals. The Case of the Lieberman-Warner Climate Security Act of 2007 (S. 2191)

    SciTech Connect

    Showalter, Sharon

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  14. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)

    SciTech Connect

    Showalter, S.; Wood, F.; Vimmerstedt, L.

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  15. Case studies of energy information systems and related technology: Operational practices, costs, and benefits

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

    2003-09-02

    Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

  16. Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study

    SciTech Connect

    Masanet, Eric; Kramer, Klaas Jan; Homan, Gregory; Brown, Richard; Worrell, Ernst

    2009-01-01

    This paper summarizes a modeling framework that characterizes the key underlying technologies and processes that contribute to the supply chain energy use and greenhouse gas (GHG) emissions of a variety of goods and services purchased by U.S. consumers. The framework couples an input-output supply chain modeling approach with"bottom-up" fuel end use models for individual IO sectors. This fuel end use modeling detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the supply chain energy and GHG"footprints" of goods and services. To illustrate the policy-relevance of this approach, a case study was conducted to estimate achievable household GHG footprint reductions associated with the adoption of best practice energy-efficient supply chain technologies.

  17. Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study

    SciTech Connect

    Masanet, Eric; Kramer, Klaas Jan; Homan, Gregory; Brown, Richard; Worrell, Ernst

    2009-01-01

    This paper summarizes a modeling framework that characterizes the key underlying technologies and processes that contribute to the supply chain energy use and greenhouse gas (GHG) emissions of a variety of goods and services purchased by U.S. consumers. The framework couples an input-output supply chain modeling approach with"bottom-up" fuel end use models for individual IO sectors. This fuel end use modeling detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the supply chain energy and GHG"footprints" of goods and services. To illustrate the policy-relevance of thisapproach, a case study was conducted to estimate achievable household GHG footprint reductions associated with the adoption of best practice energy-efficient supply chain technologies.

  18. Cold-Climate Case Study for Affordable Zero Energy Homes: Preprint

    SciTech Connect

    Norton, P.; Christensen, C.

    2006-07-01

    This project, supported by the U.S. Department of Energy's Building America Program, is a case study in reaching zero energy within the affordable housing sector in cold climates. The design of the 1200 square foot, 3-bedroom Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed using an early version of the BEOpt building optimization software with additional analysis using DOE2. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design towards simple, easily maintained mechanical systems and volunteer-friendly construction techniques.

  19. Analysis of energy use in building services of the industrial sector in California: Two case studies

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1991-09-01

    Energy-use patterns in many of California's fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

  20. Energy conservation case studies for model commercial buildings covered by the CACS program

    SciTech Connect

    Kedl, R.J.; Bircher, T.L.

    1985-03-01

    Case studies of four small commercial buildings are presented that show the potential conservation of electrical and gas enegy and the potential reduction in peak electrical demand that result from the retrofit of most Commercial and Apartment Conservation Service (CACS) Program Measures and Procedures. Four prototypical buildings are representative of the great majority of CACS-covered businesses were used. Energy consrvation calculations were conducted on the buildings in six cities representing six different climates in the contiguous United States. Calculations were performed using DOE-2.1, a computer program that computes energy flow in buildings on an hour-by-hour basis.

  1. Energy flows in a secondary city: a case study of Nakuru, Kenya

    SciTech Connect

    Milukas, M.V.

    1987-01-01

    Secondary cities are currently seen as an important focus for promoting a more spatially-equitable pattern of economic infrastructure in developing countries, but their energy needs have not been considered. To test the thesis of this work - that the present pattern of energy demand in secondary cities differs, in important ways, from that of primary cities - a case study was conducted in the East African city of Nakuru, Kenya. Energy supplies used in Nakuru fall into two categories: industrial sources (electricity and petroleum) and traditional sources (wood, charcoal, and agricultural residues). This analysis of Nakuru's use of industrial sources is introduced by a historical discussion of nationwide patterns of distribution, use, and pricing of electricity and petroleum products, and is followed by data gathered from Nakuru's suppliers of these energy sources. The portrait of energy use in Nakuru is completed with an analysis of the demand for traditional energy sources. Surveys were conducted to estimate the total quantities of charcoal, wood, and agricultural resides used in Nakuru. The cornerstone of this effort was a residential energy survey stratified according to income. Nakuru is shown to rely on biomass fuels (charcoal) to a much greater degree than Nairobi, thereby proving the thesis.

  2. Energy End-Use Patterns in Full-Service Hotels: A Case Study

    SciTech Connect

    Placet, Marylynn; Katipamula, Srinivas; Liu, Bing; Dirks, James A.; Xie, YuLong; Sullivan, Greg; Walent, Jim; Williamson, Rebecca

    2010-06-30

    The U.S. Department of Energy (DOE) recently initiated a program -- Commercial Building Partnerships (CBP) -- to work with private-sector companies in the design of highly-efficient retrofit and new construction projects. Pacific Northwest National Laboratory (PNNL) is conducting a project with a major hotel company to retrofit a full-service, large hotel with the goal of reducing energy consumption by at least 30%. The first step of the project was an intensive metering and monitoring effort aimed at understanding energy end use patterns in the hotel. About 10% of the guest rooms (32), as well as circuits for most of the end uses in public spaces (lighting, elevators, air handlers and other HVAC system components, and various equipment), were equipped with meters. Data are being collected at 1- or 5-minute intervals and downloaded on a monthly basis for analysis. This paper presents results from the first four months of the monitoring effort, which revealed energy end-use consumption patterns, variability of guest room energy use, daily load curves, monthly variations, and other aspects of hotel energy use. Metered end-use data for hotels at this level of detail are not available from any currently-available public sources. This study presents unique information and insight into energy end-use patterns in the lodging sector of commercial buildings and can also serve as a case study of a complex sub-metering project.

  3. Hypercobalaminemia Induced by an Energy Drink after Total Gastrectomy: A Case Report

    PubMed Central

    Takahashi, Kazuhiro; Tsukamoto, Shigeki; Kakizaki, Yuta; Saito, Ken; Ohkohchi, Nobuhiro; Hirayama, Katsu

    2013-01-01

    We encountered a case of hypercobalaminemia induced by oral intake of an energy drink after total gastrectomy. The patient was referred to our hospital due to findings suspicious for gastric cancer on screening. A 20 mm type 0-IIc lesion was detected in the gastric subcardia on esophagogastroduodenoscopy. Total gastrectomy followed by Roux-en-Y reconstruction was performed. He was discharged without complications. His basal serum vitamin B12 level was initially maintained with monthly intramuscular injections of vitamin B12. After 9 months, his serum vitamin B12 level suddenly increased up to 36-fold higher than the normal range and persisted there for one year without vitamin B12 injections. The patient ultimately reported consuming half a bottle of an energy drink each day during this time period. This case demonstrates the risk of unexpected hypervitaminemia resulting from self-administration of nutritional supplements. PMID:25649897

  4. DOE Zero Energy Ready Home Case Study: Leganza Residence - Greenbank, Washington

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  5. DOE Zero Energy Ready Home Case Study: Southern Energy Homes — First DOE Zero Energy Ready Manufactured Home, Russellville, AL

    SciTech Connect

    none,

    2014-09-01

    This home is the first manufactured home built to the DOE Zero Energy Ready Home standard and won an Affordable Builder award in the 2014 Housing Innovations Awards. This manufactured home achieved a HERS score of 57 without photovoltaics and includes superior insulation and air sealing.

  6. Urban sustainable energy development: A case study of the city of Philadelphia

    NASA Astrophysics Data System (ADS)

    Argyriou, Iraklis

    This study explores the role of cities in sustainable energy development through a governance-informed analysis. Despite the leading position of municipalities in energy sustainability, cities have been mostly conceptualized as sites where energy development is shaped by external policy scales, i.e. the national level. A growing body of research, however, critiques this analytical perspective, and seeks to better understand the type of factors and dynamics that influence energy sustainability within a multi-level policy context for urban energy. Given that particular circumstances are applicable across cities, a context-specific analysis can provide insight regarding how sustainable energy development takes place in urban areas. In applying such an analytical perspective on urban energy sustainability, this study undertakes a qualitative case study analysis for the city of Philadelphia, Pennsylvania, by looking at four key local policy initiatives relevant to building energy efficiency and solar electricity development at the municipal government and city-wide level. The evaluation of the initiatives suggests that renewable electricity use has increased substantially in the city over the last years but the installed capacity of local renewable electricity systems, including solar photovoltaics, is low. On the other hand, although the city has made little progress in meeting its building energy efficiency targets, more comprehensive action is taken in this area. The study finds that the above outcomes have been shaped mainly by four factors. The first is the city government's incremental policy approach aiming to develop a facilitative context for local action. The second is the role that a diverse set of stakeholders have in local sustainable energy development. The third is the constraints that systemic policy barriers create for solar power development. The fourth is the ways through which the relevant multi-level policy environment structures the city

  7. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  8. Reducing Energy Consumption and Creating a Conservation Culture in Organizations: A Case Study of One Public School District

    ERIC Educational Resources Information Center

    Schelly, Chelsea; Cross, Jennifer E.; Franzen, William S.; Hall, Pete; Reeve, Stu

    2011-01-01

    How can existing schools significantly reduce their energy use? With energy costs rising and school budgets shrinking, energy use is a substantial cost that can be reduced through conservation efforts. Using a case study methodology, the authors compare two public high schools from the same school district, one that has achieved moderate energy…

  9. Energy-water analysis of the 10-year WECC transmission planning study cases.

    SciTech Connect

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports modules for

  10. Alternative planning methodologies: the case of rural energy in the Third World

    SciTech Connect

    Ganapathy, R.S.

    1982-01-01

    Alternative planning methodologies are based on different ideologies and theories. Methodological choice in planning implies a prior theory and ideology and is linked to the planning outcome. The relationship is one of structural causality. A typology of planning methodologies is developed and, through a critique and reconstruction, the methodology of dialectical planning is outlined. It is designed to integrate theory and practice in a framework of praxis. The substantive area of rural-energy planning in the Third World is chosen to illustrate this general approach in a concrete manner. Rural energy planning from alternative perspectives is reviewed, and specific case studies described and critiqued. A dialectical planning analysis of rural energy is undertaken. Dialectical planning in a deep sense, us a meta-methodology, as it transcends conventional planning. The possibilities of this methodology for creating a critical awareness and hence overcoming the limitations of conventional planning are explored.

  11. Photovoltaics as a worldwide energy option: A case study in development strategy

    SciTech Connect

    Jones, G.; Pate, R.; Hill, R.

    1991-12-31

    Renewable energy technologies, such as solar thermal electric, photovoltaics (PV), and wind energy have made significant gains in cost and performance in the past decades. As a result, there have been high expectations on the part of the public for these sources to play a major role in future energy supply, especially as environmental concerns about conventional sources increase. Despite these past gains and high expectations, the global potential of renewable energy technologies still remains largely untapped, principally because of issues of industrialization and user acceptance. There is increasing recognition that government energy programs must incorporate a broader strategy than the traditional basic research role if they are to address these issues. Essential elements of this strategy are affordable technology, a healthy industry, sustained market growth, user acceptance, and equitable policy and financial environments. The US Department of Energy (DOE) programs in solar electric conversion have already started the development of the required broader-based effort. This paper presents the status of that work, utilizing the US National Photovoltaic Program as a case study.

  12. Nuclear rainbow in the 16O + 27AL system: The role of couplings at energies far above the barrier

    NASA Astrophysics Data System (ADS)

    Pereira, D.; Linares, R.; Oliveira, J. R. B.; Lubian, J.; Chamon, L. C.; Gomes, P. R. S.; Cunsolo, A.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Foti, A.

    2012-04-01

    High precision elastic and inelastic angular distributions have been measured for the 16O + 27Al system at a beam energy of 100 MeV. The data analysis confirms a rainbow formation as already predicted by parameter-free Coupled Channel calculations. It also helps to reveal the crucial role of inelastic couplings in the rainbow formation for heavier systems even at energies far above the Coulomb barrier. This feature, well known in atomic/molecular scattering, is experimentally studied for the first time in Nuclear Physics.

  13. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with conventional'' HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  14. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Final report

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with ``conventional`` HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  15. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    SciTech Connect

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  16. New Whole-House Solutions Case Study: New Town Builders' Power of Zero Energy Center - Denver, Colorado

    SciTech Connect

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. This case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  17. Spine injury following a low-energy trauma in ankylosing spondylitis: a study of two cases.

    PubMed

    Savall, Frederic; Mokrane, Fatima-Zohra; Dedouit, Fabrice; Capuani, Caroline; Guilbeau-Frugier, Céline; Rougé, Daniel; Telmon, Norbert

    2014-08-01

    We report two cases of spine injury following a low-energy trauma in persons with ankylosing spondylitis (AS) and discuss the forensic considerations. A 60-year-old man presented with a wide anterior fracture of the superior endplate of T8 after an accidental fall down three wooden steps. A 93-year-old man presented with disjunction between C6 and C7 and 90-degree spinal angulation after a fall from a standing height or a fall from a bed. Post-mortem multislice computed tomography (MSCT) was performed before autopsy in both the cases. MSCT and autopsy findings were in agreement with a past medical history of AS. A spine injury occurring after a low-energy trauma is unusual and could be suspicious. In the forensic literature we found only a single case, which concerned multiple spinal fractures after a fall from a bicycle at low speed. Such specific mechanisms must be studied and known to the forensic expert. In this context, MSCT is a useful tool to investigate the spine and knowledge of the victim's entire past medical history is essential. PMID:24911528

  18. Overview of energy-conserving development planning and design techniques based on five case studies

    SciTech Connect

    Not Available

    1980-06-01

    Findings and recommendations are presented of a review of five case studies of ways to conserve energy through development planning and site design in communities. Two approaches were used. In the first approach, a conventional, pre-existing plan was analyzed to determine potential energy use. Once energy-conservation options were identified and evaluated, the conventional plan was modified by employing those options. This approach was used in The Woodlands, Burke Center, and Radisson studies. In the second approach, energy-conservation options are independently identified and evaluated. Those options that passed specific criteria screening were then utilized in developing one or more totally new plans based on energy objectives. This approach was used in Greenbrier and Shenandoah. Radisson is a new town on the outskirts of Syracuse, New York. Greenbrier is a 3000 acre planned community adjacent to Norfolk and Virginia Beach. Shenandoah is a proposed new town in the Atlanta urbanized area. The Woodlands is a new community under development north of Houston. Burke Center is a residential planned unit development in Fairfax County, Virgnia. (MCW)

  19. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  20. Methods for Analysis of Urban Energy Systems: A New York City Case Study

    NASA Astrophysics Data System (ADS)

    Howard, Bianca

    This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO2e/kWh in the next 10 years.

  1. The Added-Value of Using Participatory Approaches to Assess the Acceptability of Surveillance Systems: The Case of Bovine Tuberculosis in Belgium

    PubMed Central

    Calba, Clémentine; Goutard, Flavie Luce; Vanholme, Luc; Antoine-Moussiaux, Nicolas; Hendrikx, Pascal; Saegerman, Claude

    2016-01-01

    Context and Objective Bovine tuberculosis (bTB) surveillance in Belgium is essential to maintain the officially free status and to preserve animal and public health. An evaluation of the system is thus needed to ascertain the surveillance provides a precise description of the current situation in the country. The evaluation should assess stakeholders’ perceptions and expectations about the system due to the fact that the acceptability has an influence on the levels of sensitivity and timeliness of the surveillance system. The objective of the study was to assess the acceptability of the bTB surveillance in Belgium, using participatory tools and the OASIS flash tool (‘analysis tool for surveillance systems’). Methods For the participatory process, focus group discussions and individual interviews were implemented with representatives involved with the system, both from cattle and wildlife part of the surveillance. Three main tools were used: (i) relational diagrams associated with smileys, (ii) flow diagrams associated with proportional piling, and (iii) impact diagrams associated with proportional piling. A total of six criteria were assessed, among which five were scored on a scale from -1 to +1. For the OASIS flash tool, one full day meeting with representatives from stakeholders involved with the surveillance was organised. A total of 19 criteria linked to acceptability were scored on a scale from 0 to 3. Results and Conclusion Both methods highlighted a medium acceptability of the bTB surveillance. The main elements having a negative influence were the consequences of official notification of a bTB suspect case in a farm, the low remuneration paid to private veterinarians for execution of intradermal tuberculin tests and the practical difficulties about the containment of the animals. Based on the two evaluation processes, relevant recommendations to improve the surveillance were made. Based on the comparison between the two evaluation processes, the

  2. Final Report: Technical Support for Innovative Energy Systems the U.S. Chemical Industry -- Innovative Energy Systems Pilot Project - Chemicals Project Integrator

    SciTech Connect

    John Cuttica - Principal Investigator; Dr Steffen Mueller - Lead Engineer

    2008-10-30

    The University of Illinois at Chicago Energy Resources Center (UIC/ERC) was originally selected to carry out the role of project integrator for a planned solicitation calling for proposals for innovative concepts for energy efficient systems in the chemical industry. The selection was made as a result of a DOE Announcement of Funding Opportunity issued by the DOE Golden Field Office. The U.S. DOE, due to funding constraints, decided to change the role of project integrator into one of technical support to DOE and the Vision 2020 Steering Committee in carrying out the oversight and management of the projects selected from the planned innovative concepts solicitation. This project, initiated in April, 2005, was established to provide that technical support to the U.S. DOE Innovative Energy Systems Pilot Project for the US Chemical Industry. In the late summer of 2006, and as a continuation of the baseline technology analysis conducted by UIC/ERC under this project, DOE requested that UIC/ERC assist in the development of “technology briefs” in support of the DOE Save Energy Now program. The 100 technology briefs developed under this contract were utilized by the Energy Experts as part of their Energy Saving Assessments (ESA).

  3. DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  4. DOE Zero Energy Ready Home Case Study: Montlake Modern - Seattle, Washington

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 42 without PV and a -1 with PV. This 3,192 ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, 9.7 kWh PV for electric car charging station.

  5. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich, Connecticut

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Old Greenwich, CT, that scored HERS 40 without PV and HERS 27 with PV. This 4,100 ft2 custom home has 13-inch ICF basement walls and 11-inch ICF above-grade walls with a closed-cell spray foam-insulated roof deck, and a continuously running ERV. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles.

  6. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  7. Optimal Model of Distributed Energy System by Using GAMS and CaseStudy

    SciTech Connect

    Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Xuan, Ji; Zhou, Nan; Marnay, Chris

    2005-11-30

    This paper adopts optimal model which used GAMS to developmethods and tools for conducting an integrated assessment of DER system.Three cases were studied. Energy-saving, environmental and economicefficiency were evaluated. The results of the simulation can besummarized as follows: 1) For the current system, optimal operating timeis about 4,132 hours per year, and from 8 am to 22 pm everyday. 2) It iseconomical when electricity price increases or gas price decreases. 3)According to the load function of system, energy-saving, environmentaland economic efficiency will have amaximum value at optimal operatingtime. 4) Compared with exhaust heat efficiency, power generationefficiency has more influence to the economic efficiency and CO2reduction when the total efficiency is fixed.

  8. Hydrogen transport in solids with traps in the case of continuum distribution of detrapping energies

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Marenkov, E. D.; Smirnov, R. D.; Pisarev, A. A.

    2014-04-01

    Tritium retention in the first wall material is one of the key issues in the performance of future fusion reactors. Transport of hydrogenic species in these materials is most commonly treated as diffusion affected by trapping/detrapping processes. Usually only several trap types differing in their activation energies of hydrogen release are considered (up to three types in the TMAP7 code). We suggest that in some cases (e.g. highly damaged or disordered media) the hydrogen trapping/detrapping process is better characterized by a continuum distribution of traps over their detrapping energies. Within a random walk model we show that this assumption leads to qualitative changes in hydrogen transport in solids. Using this model we explain experimental findings on temporal dependence of deuterium outgassing from tokamaks, first wall.

  9. Changing energy prices and economic rents: the case of Western coal

    SciTech Connect

    Mutti, J.H.; Morgan, W.E.

    1983-05-01

    This paper examines various types of economic rents that are generated by changing energy prices and, in the case of Wyoming coal, analyzes how these rents have changed over time. In particular, quasi-rents did accrue to firms producing coal and coal miners, but were dissipated. Monopoly revenues appear to have been received by railroads and state governments. Price discrimination by railroads against coal consumers represents a source of present and future monopoly revenues, while a state severance tax rate that is not linked to likely declines over time in social-impact costs represents another. The analysis highlights some questions that ought to be raised in public policy debates over energy policy. 11 references, 2 figures.

  10. International Development Partnerships and Diffusion of Renewable Energy Technologies in Developing Countries: Cases in Latin America

    NASA Astrophysics Data System (ADS)

    Platonova, Inna

    Access to energy is vital for sustainable development and poverty alleviation, yet billions of people in developing countries continue to suffer from constant exposure to open fires and dangerous fuels, such as kerosene. Renewable energy technologies are being acknowledged as suitable solutions for remote rural communities in much of the developing world and international development non-governmental organizations (NGOs) increasingly play important roles in the diffusion of these technologies via development partnerships. While these partnerships are widely promoted, many questions related to their functioning and effectiveness remain open. To advance the theory and practice, this interdisciplinary exploratory research provides in-depth insights into the nature of international NGO-driven development partnerships in rural renewable energy and their effectiveness based on the case studies in Talamanca, Costa Rica and Cajamarca, Peru. The analysis of the nature of development partnerships shows that partnerships in the case studies differ in structure, size and diversity of actors due to differentiation in the implementation strategies, technological complexities, institutional and contextual factors. A multi-theoretical approach is presented to explain the multiple drivers of the studied development partnerships. The research highlights partnership constraints related to the provision of rural renewable energy, the organizational type and institutional environments. Based on the case studies this research puts forward theoretical propositions regarding the factors that affect the effectiveness of the partnerships. In terms of the partnership dynamics dimension, several key factors of success are confirmed from the existing literature, namely shared values and goals, complementary expertise and capacities, confidence and trust, clear roles and responsibilities, effective communication. Additional factors identified are personality match and continuity of staff. In

  11. Evolution of Energy Efficiency Programs Over Time: The Case of Standby Power

    SciTech Connect

    Payne, Christopher; Chung, Iris; Fisher, Emily

    2014-08-17

    Issued in 2001, Presidential Executive Order 13221 directed federal agencies to purchase products with low standby power, with the goal of 1) reducing energy consumption in federal facilities, and 2) drawing attention to the problem of high standby power consumption, with guidance provided by the Federal Energy Management Program (FEMP). At that time, standby power was newly recognized as an increasing building energy load. Since then, procurement of products with low standby power have been set in place in acquisition processes, and the purchasing power of the federal government continues to influence manufacturers design decisions related to standby power. In recent years, FEMP has shifted effort from direct manufacturer outreach for data collection, to integrating low standby requirement into broader acquisition programs including Energy Star and Electronic Product Environmental Assessment Tool (EPEAT). Another milestone has been the labeling of low standby products on the GSA Advantage website to simplify and enhance compliance. Looking forward into the program?s future, this question arises How do we design programs over time to reflect market and technology changes, by adjusting programmatic requirements while maintaining effectiveness? This paper discusses that question for the case of standby power, which transitioned from covering a single to multiple environmental attributes, both in the context of the program's past and future.

  12. (Case studies examining energy policies and strategies for water resources development): Foreign trip report, May 7--13, 1989

    SciTech Connect

    Hildebrand, S.G.

    1989-05-24

    The traveler met with colleagues involved with Project 12.2 of the IHP of UNESCO to discuss and finalize case studies that are being prepared for a report entitled ''Case Studies Examining Energy Policies and Strategies for Water Resources Development.'' Draft case studies from the United States, Brazil, Norway, and Czechoslovakia were reviewed and discussed. The traveler was appointed editor of the final report. The traveler met with staff of the National Department of Water and Electrical Energy of the Ministry of Mines and Energy, the Secretary General of the Ministry of Mines and Energy, the Executive Secretary to the National Energy Commission of Brazil, and the newly created Brazilian Institute of the Environment. The traveler was briefed on the functions of these departments, and he briefed them on water resource activities conducted at ORNL. The traveler presented a seminar at Eletrobras (national electric utility) in Brazil on environmental research at ORNL.

  13. Evaluation of Energy Policy Instruments for the Adoption of Renewable Energy: Case of Wind Energy in the Pacific Northwest U.S

    NASA Astrophysics Data System (ADS)

    Abotah, Remal

    The wide use of renewable energy technologies for generating electricity can be seen as one way of meeting environmental and climate change challenges along with a progression to a low-carbon economy. A large number of policy instruments have been formed and employed to support the adoption of renewable energy technologies in the power generation sector. However, the success of these policies in achieving their goals relies on how effective they are in satisfying their targets and thus increasing renewable energy adoption. One measurement for effectiveness of policy instruments can be their contribution to the input of the process of renewable energy adoption and their effect on satisfying regional goal. The objective of this research is evaluate the effectiveness of energy policy instruments on increasing the adoption of renewable energy by developing a comprehensive evaluation model. Criteria used in this assessment depend on five perspectives that are perceived by decision makers as important for adoption process. The decision model linked the perspectives to policy targets and various energy policy instruments. These perspectives are: economic, social, political, environmental and technical. The research implemented the hierarchical decision model (HDM) to construct a generalized policy assessment framework. Data for wind energy adoption in the Pacific Northwest region were collected as a case study and application for the model. Experts' qualitative judgments were collected and quantified using the pair-wise comparison method and the final rankings and effectiveness of policy alternatives with respect to the mission were identified. Results of this research identified economic feasibility improvement of renewable energy projects as the most influential perspective and that renewable portfolio standards and tax credits are the two most effective criteria to accomplish that. The research also applied sensitivity analysis and scenario analysis to identify the

  14. Identification and Prioritization of Analysis Cases for Marine and Hydrokinetic Energy Risk Screening

    SciTech Connect

    Anderson, Richard M.; Unwin, Stephen D.; Van Cleve, Frances B.

    2010-06-16

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of marine and hydrokinetic energy generation projects. The development process consists of two main phases of analysis. In the first phase, preliminary risk analyses will take the form of screening studies in which key environmental impacts and the uncertainties that create risk are identified, leading to a better-focused characterization of the relevant environmental effects. Existence of critical data gaps will suggest areas in which specific modeling and/or data collection activities should take place. In the second phase, more detailed quantitative risk analyses will be conducted, with residual uncertainties providing the basis for recommending risk mitigation and monitoring activities. We also describe the process used for selecting three cases for fiscal year 2010 risk screening analysis using the ERES. A case is defined as a specific technology deployed in a particular location involving certain environmental receptors specific to that location. The three cases selected satisfy a number of desirable criteria: 1) they correspond to real projects whose deployment is likely to take place in the foreseeable future; 2) the technology developers are willing to share technology and project-related data; 3) the projects represent a diversity of technology-site-receptor characteristics; 4) the projects are of national interest, and 5) environmental effects data may be available for the projects.

  15. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    NASA Astrophysics Data System (ADS)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  16. Treatment of Bell's Palsy Using Monochromatic Infrared Energy: A Report of 2 Cases

    PubMed Central

    Ng, Shu Yan; Chu, Ming Him E.

    2014-01-01

    Objective The purpose of the study is to describe the use of monochromatic infrared energy (MIRE) therapy in the management of 2 patients with Bell's palsy. Clinical features Two patients presented to a chiropractic clinic with Bell's palsy that was diagnosed by a medical physician. Both patients were treated using MIRE. The acute patient was a 32-year-old male. He presented with left facial palsy 1 day before the consultation. He was unable to puff the left cheek and close the left eyelid. He had difficulty raising the left eyebrow. The chronic case was a 46-year-old lady. Prior to the first consultation, she was treated with corticosteroid and electro-acupuncture for one and a half years, with incomplete recovery. When first seen, the left corner of mouth drooped and she had difficulty raising her left eyebrow. Intervention and outcome Monochromatic infrared energy therapy, emitting 890 nm infrared light, was placed on the post-auricular area, pre-auricular area, the temple and mandibular area of the affected side. Each treatment lasted 30 minutes. Photographs were taken every week to document changes. The acute case received 19 treatments in 6 weeks. He reported an improvement of 95%. The chronic case received a total of 45 treatments in 9 months. She rated an improvement of 50%. At the conclusion of treatment, she was able to close her left eyelid and puff her left cheek but still could not raise her left eyebrow. Conclusion These 2 patients seemed to respond to a different degree to the MIRE therapy. As 71% of patients with Bell's palsy recover uneventfully without any treatment, the present study describes the course of care but cannot confirm the effectiveness of MIRE therapy in the management of Bell's palsy. PMID:25685117

  17. Energy conserving site design: Greenbrier case study, Chesapeake, Virginia. Final report

    SciTech Connect

    Not Available

    1980-04-01

    A specific case study of project planning for energy conservation for a major planned unit development at the 3000-acre Greenbrier development site in Chesapeake, Virginia, is summarized. The research suggests that very considerable reductions in energy conservation can be achieved within the confines of private-sector land development and residential construction with increased incremental costs of $200.00 to $3150.00 per dwelling unit. It is hypothesized that energy consumption at Greenbrier can be reduced by one-half with an average annual savings of 21,275 kWh per residential unit, using state-of-the-art technology with careful planning and control. This represents an annual savings $750.00 per unit at the current utility rate of 3.5 cents per kWh. These savings can be achieved through reduction in heating and cooling loads and application of more-efficient heating and cooling of the remaining loads. The reduction in loads are achieved by redesign of the land plan to include a higher percentage of south-facing lots, use of vegetation to modify microclimate, decreases in air infiltration, the use of 2 x 6 framing, better insulation, and the use of an insulated slab-on-grade foundation. Further energy savings can be expected by increased efficiencies in mechanical systems used for space heating and cooling and domestic hot water. When applied to the single-family portion of Greenbrier, containing 541 dwelling units, these options reduce the total end-use energy consumption 54.7%. This reduction represents an annual savings of $432,800.00 for an initial capital investment of $1.7 million.

  18. Use of renewable sources of energy in Mexico case: San Antonio Agua Bendita

    SciTech Connect

    Gutierrez-Vera, J. )

    1994-09-01

    This paper presents a project undertaken in Mexico to electrify the remote village of San Antonio Agua Bendita (SAAB) using a custom designed hybrid power system. The hybrid power system will provide grid quality electricity to this community which would otherwise not have been electrified via traditional distribution lines. The hybrid power system was designed to electrify the entire community, incorporate multiple sources of renewable power with on-demand power, operate autonomously, and be cost effective in dollars per watt of electricity generated over the system's usable life. A major factor in the success of this project is the use of renewable energy for economic development and community partnership. Many rural electrification projects have provided power for domestic use but few have successfully provided power to improve the economic condition of the people served by the system. The SAAB hybrid avoids this pitfall by providing 120 VAC power at 60 Hz to anticipated industrial loads in the village, as well as providing grid quality power for domestic use.

  19. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado

    SciTech Connect

    Not Available

    2007-03-01

    This publication is one in series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for those who plan to design and construct public and private-sector laboratory buildings. This case study describes the Science and Technology Facility, a new laboratory at NREL that incorporated energy-efficient and sustainable design features including underfloor air distribution in offices, daylighting, and process cooling.

  20. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect

    Baxter, Van D

    2007-05-01

    . Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it

  1. Case-control study of prostatic cancer in employees of the United Kingdom Atomic Energy Authority.

    PubMed Central

    Rooney, C; Beral, V; Maconochie, N; Fraser, P; Davies, G

    1993-01-01

    OBJECTIVE--To investigate the relation between risk of prostatic cancer and occupational exposures, especially to radionuclides, in employees of the United Kingdom Atomic Energy Authority. DESIGN--Case-control study of men with prostatic cancer and matched controls. Information about sociodemographic factors and exposures to radionuclides and other substances was abstracted and classified for each subject from United Kingdom Atomic Energy Authority records without knowledge of who had cancer. SUBJECTS--136 men with prostatic cancer diagnosed between 1946 and 1986 and 404 matched controls, all employees of United Kingdom Atomic Energy Authority. MAIN OUTCOME MEASURES--Documented or possible contamination with specific radionuclides. RESULTS--Risk of prostatic cancer was significantly increased in men who were internally contaminated with or who worked in environments potentially contaminated by tritium, chromium-51, iron-59, cobalt-60, or zinc-65. Internal contamination with at least one of the five radionuclides was detected in 14 men with prostatic cancer (10%) and 12 controls (3%) (relative risk 5.32 (95% confidence interval 1.87 to 17.24). Altogether 28 men with prostatic cancer (21%) and 46 controls (11%) worked in environments potentially contaminated by at least one of the five radionuclides (relative risk 2.36 (1.26 to 4.43)); about two thirds worked at heavy water reactors (19 men with prostatic cancer and 32 controls (relative risk 2.13 (1.00 to 4.52)). Relative risk of prostatic cancer increased with increasing duration of work in places potentially contaminated by these radionuclides and with increasing level of probable contamination. Prostatic cancer was not associated with exposure to plutonium, uranium, cadmium, boron, beryllium, or organic or inorganic chemicals. CONCLUSIONS--Risk of prostatic cancer risk was increased in United Kingdom Atomic Energy Authority workers who were occupationally exposed to tritium, 51Cr, 59Fe, 60Co, or 65Zn. Exposure to

  2. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    SciTech Connect

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C.

    2015-05-15

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.

  3. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    SciTech Connect

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  4. Sub-federal ecological modernization: A case study of Colorado's new energy economy

    NASA Astrophysics Data System (ADS)

    Giannakouros, Stratis

    European nations have often employed policies of explicit government intervention as a preferred means of addressing environmental and economic challenges. These policies have ranged from grey industrial policies focused solely on industrial growth, competitiveness and innovation to policies of stronger ecological modernization, which seek to align industrial interests with environmental protection. In recent years these policies have been mobilized to address the threat of climate change and promote environmental innovation. While some US Administrations have similarly recognized the need to address these challenges, the particular historical and political institutional dynamics of the US have meant that explicit government intervention has been eschewed in favor of more indirect strategies when dealing with economic and environmental challenges. This is evident in the rise of sub-federal policies at the level of US states. Supported by federal laboratories and public research, US states have adopted policies that look very much like sub-federal versions of industrial or ecological modernization policy. This thesis uses the Colorado case to highlight the importance of sub-federal institutions in addressing environmental and economic challenges in the US and explore its similarities to, and differences from, European approaches. To achieve this goal it first develops an analytical scheme within which to place policy initiatives on a continuum from grey industrial policy to strong ecological modernization policy by identifying key institutions that are influential in each policy type. This analytical scheme is then applied to the transitional renewable energy policy period from 2004-2012 in the state of Colorado. This period starts with the adoption of a renewable energy portfolio in 2004 and includes the `new energy economy' period from 2007-2010 as well as the years since. Looking at three key turning points this paper interprets the `new energy economy' strategy

  5. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    SciTech Connect

    Eichman, Joshua; Melaina, Marc

    2015-10-27

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential to provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that

  6. A case study in preserving a high energy physics application with Parrot

    NASA Astrophysics Data System (ADS)

    Meng, H.; Wolf, M.; Ivie, P.; Woodard, A.; Hildreth, M.; Thain, D.

    2015-12-01

    The reproducibility of scientific results increasingly depends upon the preservation of computational artifacts. Although preserving a computation to be used later sounds easy, it is surprisingly difficult due to the complexity of existing software and systems. Implicit dependencies, networked resources, and shifting compatibility all conspire to break applications that appear to work well. To investigate these issues, we present a case study of a complex high energy physics application. We analyze the application and attempt several methods at extracting its dependencies for the purposes of preservation. We propose one fine-grained dependency management toolkit to preserve the application and demonstrate its correctness in three different environments - the original machine, one virtual machine from the Notre Dame Cloud Platform and one virtual machine from the Amazon EC2 Platform. We report on the completeness, performance, and efficiency of each technique, and offer some guidance for future work in application preservation.

  7. The political economy of noncompliance in China: The case of industrial energy policy

    SciTech Connect

    Van Aken, Tucker; Lewis, Orion A.

    2015-03-18

    One of the greatest challenges facing China today is the central government's ability to ensure that policies are implemented effectively at the local level, particularly policies that seek to make China's economic growth model more sustainable. These policies face resistance from local authorities and enterprises that benefit from the status quo. This raises a key research question: why do some provinces more fully implement these central policies? We argue the extent of local implementation is best conceptualized as a rational balance between economic and political incentives: localities with regulatory autonomy, low regulatory capacity and alternative interests will not fully implement policies that are at odds with local economic imperatives. By examining a critical case of central policy implementation—industrial energy intensity reduction in the eleventh five-year plan—this article demonstrates that, regardless of industrial makeup or economic development, provinces that have greater regulatory autonomy for noncompliance coupled with alternative economic interests do not, on average, perform as well. As a result, using a nested analysis approach this study illustrates this argument with both quantitative analysis and original case study evidence from fieldwork interviews.

  8. The political economy of noncompliance in China: The case of industrial energy policy

    DOE PAGESBeta

    Van Aken, Tucker; Lewis, Orion A.

    2015-03-18

    One of the greatest challenges facing China today is the central government's ability to ensure that policies are implemented effectively at the local level, particularly policies that seek to make China's economic growth model more sustainable. These policies face resistance from local authorities and enterprises that benefit from the status quo. This raises a key research question: why do some provinces more fully implement these central policies? We argue the extent of local implementation is best conceptualized as a rational balance between economic and political incentives: localities with regulatory autonomy, low regulatory capacity and alternative interests will not fully implementmore » policies that are at odds with local economic imperatives. By examining a critical case of central policy implementation—industrial energy intensity reduction in the eleventh five-year plan—this article demonstrates that, regardless of industrial makeup or economic development, provinces that have greater regulatory autonomy for noncompliance coupled with alternative economic interests do not, on average, perform as well. As a result, using a nested analysis approach this study illustrates this argument with both quantitative analysis and original case study evidence from fieldwork interviews.« less

  9. Synergies of solar energy use in the desalination of seawater: A case study in northern Chile

    NASA Astrophysics Data System (ADS)

    Servert, Jorge F.; Cerrajero, Eduardo; Fuentealba, Edward L.

    2016-05-01

    The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the "conventional" option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.

  10. High-energy monitoring of Seyfert galaxies: the case of NGC 5548 and NGC 4593

    NASA Astrophysics Data System (ADS)

    Ursini, F.

    2015-07-01

    We discuss results of broad-band monitoring programs on the active galactic nuclei (AGNs) NGC 5548 and NGC 4593, focusing on the high-energy view with XMM, NuSTAR and INTEGRAL. NGC 5548 was the object of a successful multi-satellite campaign conducted from May 2013 to February 2014, during which the source appeared unusually obscured by a clumpy stream of ionized gas, causing strong absorption in the X-ray band and simultaneous deep, broad UV absorption troughs (Kaastra et al. 2014). A talk giving an overview of the campaign on NGC 5548 is also proposed at this conference (Cappi et al.). Concerning NGC 4593, it was the object of a monitoring program of 5 × 20 ks joint XMM/NuSTAR observations in January 2015, spaced by two days. In both cases, the availability of multiple, broad-band observations with a high signal-to-noise ratio allows us to disentangle the different spectral components present in the high-energy spectrum and properly study their variability. The use of realistic Comptonization models provides good constraints on the physical parameters of the hot corona responsible for the hard X-ray emission.

  11. Business Solutions Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida

    SciTech Connect

    2015-06-01

    Building America research has shown that high-performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign and sometimes a little flair. This case study highlights LifeStyle Homes’ successful marketing approach for their SunSmart home package, which has helped to boost sales for the company. SunSmart marketing includes a modified logo, weekly blog, social media, traditional advertising, website, and sales staff training. Marketing focuses on quality, durability, healthy indoor air, and energy efficiency with an emphasis on the surety of third-party verification and the scientific approach to developing the SunSmart package. With the introduction of SunSmart, LifeStyle began an early recovery, nearly doubling sales in 2010; SunSmart sales now exceed 300 homes, including more than 20 zero energy homes. Completed homes in 2014 far outpaced the national (19%) and southern census region (27%) recovery rates for the same period. As technology improves and evolves, this builder will continue to collaborate with Building America.

  12. [Energy drinks as a cause of seizures--real or possible danger? Case report].

    PubMed

    Matuszkiewicz, Eryk; Łukasik-Głębocka, Magdalena; Sommerfeld, Karina; Tezyk, Artur; Zielińska-Psuja, Barbara; Zaba, Czesław

    2015-01-01

    The consumption of energy beverages is increasing, especially among young people. The increasing consumption of these drinks increases the data of side effects. Case report: A 26-year old male was admitted to Toxicology Department suspected of intoxication due to ethyl alcohol and unknown psychoactive substances. The patient lost consciousness during a party in which he drank an unknown amount of ethyl alcohol mixed with an energy beverage ("Red Bull"). The patient and his friends strongly denied the use of psychoactive substances. On admission, the patient was stable, but unconscious (GCS 8 points), pupils wide, symmetric with weak reaction to light, respiratory rate 15/min. Neurological examination did not reveal any abnormalities. During the hospitalization, somnolence slowly disappeared and the patient became restless, with recurrent episodes of seizures not reacting to diazepam, clonazepam and midazolam infusion. The seizures finally abated after administration of barbiturates (Thiopental). This, in turn, caused respiratory insufficiency, requiring patient intubation and mechanical ventilation. The patients mental status and respiratory status slowly improved. After regaining consciousness, the patient strongly denied the use of psychoactive substances or of chronic alcohol use. He confirmed the single use of high, but not clearly defined, caffeine dosage (in the form of "Red Bull") mixed with alcohol. He mentioned that eight months earlier in similar circumstances he was admitted to the neurology department due to an episode of seizures. Ultimately the origin was not established, despite broad diagnostic testing. Thus the origin of the seizures was suggested to be of a toxicological origin. The patient was released home in good condition, without any side effects of the poisoning. The psychological examination doe not reveal any symptoms of alcohol or psychoactive substances addiction. In our case, due to the unclear nature of the history, we preformed broad

  13. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect

    Schucan, T.

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  14. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  15. Joint implementation initiatives in South Africa: A case study of two energy-efficiency projects

    SciTech Connect

    Van Horen, C.; Simmonds, G.; Parker, G.

    1998-11-01

    This paper explores the issues pertinent to Joint Implementation (JI) in South Africa by examining two prototype potential projects on energy efficiency with the potential for reducing greenhouse gas (GHG) emissions. The first is an energy-efficient lighting project based on the public electricity utility, Eskom's plan for a compact fluorescent lighting program in the residential sector. The analysis indicates that the CFL program could avoid emissions of up to 243 thousand tons of carbon over the first five years, at negative cost (that is, with a positive economic return). The second project involves the delivery of passive solar, energy-efficient housing to a low-income township in the Western Cape Province, at an incremental capital cost of approximately $2.5m for the 6000 houses. In this case, the avoided GHG emissions over the first five years amount to between 14 and 20 tons of carbon, and over the 50 year life-span of the project it will result to 140 to 200 thousand tons of avoided emissions at a cost of $13 to $17 per ton. The housing project has significant non-GHG benefits such as savings on energy bills and health, which accrue to the low-income dwellers. A number of important JI-specific issues and concerns emerge with respect to the two projects, which can also be applied to other potential JI opportunities in the country generally. These include the issues of carbon credit sharing, for which a number of scenarios are suggested, as well as estimating unknown macroeconomic impacts, such as the effects of CFLs on the country's incandescent lighting industry. Findings from an examination of both potential projects conclude that capacity-building within the country is critical to ensure that the technology being transferred balances efficiency, cost and quality appropriate to the South African context. Finally, assessment and evaluation, monitoring and verification criteria and institutions are called for to guarantee measurable long-term environmental

  16. Installation of Reverse Osmosis Unit Reduces Refinery Energy Consumption: Office of Industrial Technologies (OIT) BestPractices Petroleum Technical Case Study

    SciTech Connect

    U.S. Department of Energy

    2001-08-06

    This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

  17. Feasibility of Energy Medicine in a Community Teaching Hospital: An Exploratory Case Series

    PubMed Central

    Dufresne, Francois; Simmons, Bonnie; Vlachostergios, Panagiotis J.; Fleischner, Zachary; Joudeh, Ramsey; Blakeway, Jill

    2015-01-01

    Abstract Background: Energy medicine (EM) derives from the theory that a subtle biologic energy can be influenced for therapeutic effect. EM practitioners may be trained within a specific tradition or work solo. Few studies have investigated the feasibility of solo-practitioner EM in hospitals. Objective: This study investigated the feasibility of EM as provided by a solo practitioner in inpatient and emergent settings. Design: Feasibility study, including a prospective case series. Settings: Inpatient units and emergency department. Outcome measures: To investigate the feasibility of EM, acceptability, demand, implementation, and practicality were assessed. Short-term clinical changes were documented by treating physicians. Participants: Patients, employees, and family members were enrolled in the study only if study physicians expected no or slow improvement in specific symptoms. Those with secondary gains or who could not communicate perception of symptom change were excluded. Results: EM was found to have acceptability and demand, and implementation was smooth because study procedures dovetailed with conventional clinical practice. Practicality was acceptable within the study but was low upon further application of EM because of cost of program administration. Twenty-four of 32 patients requested relief from pain. Of 50 reports of pain, 5 (10%) showed no improvement; 4 (8%), slight improvement; 3 (6%), moderate improvement; and 38 (76%), marked improvement. Twenty-one patients had issues other than pain. Of 29 non–pain-related problems, 3 (10%) showed no, 2 (7%) showed slight, 1 (4%) showed moderate, and 23 (79%) showed marked improvement. Changes during EM sessions were usually immediate. Conclusions: This study successfully implemented EM provided by a solo practitioner in inpatient and emergent hospital settings and found that acceptability and demand justified its presence. Most patients experienced marked, immediate improvement of symptoms associated

  18. Case studies of sewage treatment with recovery of energy from methane

    SciTech Connect

    Phillips, C.A.; Webster, N.; Wander, J.

    1993-06-30

    In the Southeast, there are about 3,000 wastewater plants with a capacity of over one million gallons per day. Under this study, operating data and available financial information on a variety of technologies for large and small plans was documented for ten facilities. Studies were done on wastewater treatment plants (WWTPs) with design capacities ranging from 9.5--120 million gallons per day. All of these WWTPs recover the gas produced in their anaerobic digesters and use at least part of it as fuel for boilers and/or internal combustion engines. The engines power generators, blowers, or pumps, and most are equipped with heat recovery systems. Based on the historical data provided by the participants in this study and from the authors` own technical analysis, methane recovery and utilization systems appear to be cost effective, although the degree of cost effectiveness varies widely. The types of energy recovery systems are not uniform among all the participants so that the cases in this limited survey are not precisely comparable to each other. Also, reliance on historical data and cost information generated from portions of total plant operations and estimates makes it difficult to complete analysis of specific variables. The fact remains, however, that regardless of the individual type(s) of digester gas energy recovery system in use, data from seven of the ten participants reflected annual savings ranging from $67,200 to more than $700,000. Further, Wander Associates current analysis reflects that nine of the ten realized annual savings ranging from $5,000 to more than $600,000.

  19. Changing strategies in utility regulation: the case of energy conservation in California

    SciTech Connect

    Barkovich, B.R.

    1987-01-01

    This paper considers changes in the strategy of utility regulators. It finds that prior to the early 1970s regulators pursued largely unintrusive regulatory strategies, deferring to utility managers or ratifying the latters' decisions after minimal review. Since the early 1970s regulators have become more interventionist, undertaking widespread oversight of utility management decisions and assuming some responsibility for such decisions. The intent of interventionist regulation during the 1970s and early 1980s is found to be (1) minimizing utility cost increases and (2) reducing the impact of related rate increases on customers. The paper explores reasons for this strategy change. It finds theories of regulation differentially see 3 factors as influencing regulator decision-making: interest groups, the regulatory commission as organization, and regular ideology. Its analysis suggests that all 3 help explain interventionism and proposes some consolidation and extension of existing theory to join these factors. This analysis is applied to a case study of interventionism: the decision of the California Public Utilities Commission (CPUC) to implement energy conservation through utilities during 1975-1984.

  20. Energy effects associated with e-commerce: a case-study concerning online sales of personal computers in The Netherlands.

    PubMed

    Reijnders, L; Hoogeveen, M J

    2001-07-01

    The introduction of e-commerce is changing purchase and distribution patterns dramatically. One of the observed effects is that logistics become more efficient as products are directly shipped from a manufacturer or wholesaler to an end-user. Another effect is that market transparency increases, which has a downward pressure on prices of many products sold via the Internet. This article addresses the energy implications of e-commerce at the micro level. This is done by quantifying the transport related energy savings in the case of a Dutch online computer reseller and by assessing the extra energy expenditure associated with increased buying power of online buyers. It is found that energy use per article sold by the online computer reseller is lower. However, taking into account indirect effects such as increased consumer buying power, there are scenarios that lead to an overall increase in energy use. PMID:11475088

  1. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    SciTech Connect

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  2. Existing Whole-House Solutions Case Study: Group Home Energy Efficiency Retrofit for 30% Energy Savings, Washington, D.C.

    SciTech Connect

    2013-11-01

    Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes – such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study’s results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

  3. Evolution of the Utah energy research triangle: A contemporary case study in the nexus of applied research and public policy

    NASA Astrophysics Data System (ADS)

    Walker, Alan John

    The evolution of the Utah Energy Research Triangle began August 2009 with Governor Gary Herbert's inauguration. On January 26, 2010 Governor Herbert delivered his first State of the State Address and announced the "most impactful economic initiative ever taken in our state...the Utah Energy Initiative." Even before this speech, actions were underway as the Governor assembled 16 energy professionals who forged Utah's 10-Year Strategic Energy Plan (Plan) released March 2011. The priorities in the Plan included: (1) establishing the Office of Energy Development in 2011; (2) launching the annual Governor's Energy Development Summits beginning in 2012; and (3) executing the first cycle of the Utah Energy Research Triangle in 2013 through 2015. Other objectives would be achieved as the Plan unfolded but those lower priorities are beyond the scope of this case study. This study will review the three priorities noted and focus on the execution of the Energy Research Triangle as a nexus of applied research and public policy. The Plan's vision was to "align the State's main research universities...into a powerful energy research and development triangle...through increased collaboration." In March 2014, execution of the first cycle of the Energy Research Triangle resulted in seven new research efforts across three research university campuses in Utah - Brigham Young University (BYU), Utah State University (USU), and the University of Utah (UofU). These research programs included eighteen researchers tackling principle energy issues: air quality, hydrocarbon transportation, and safety. Seven other researchers were awarded Governor's Energy Leadership Scholarships with requirements to address topics including efficient solar power, cold-weather battery performance, and molten salt energy storage. Final results will be known in June 2015, but collaboration on energy issues is active and ongoing. Together the three research teams are successfully reaching out to industry and

  4. Continuous high-energy low-flow-rate enteral support: a panoramic review of 1000 cases.

    PubMed

    Levy, E; Huguet, C; Parc, R; Ollivier, J M; Goldberg, J; Loygue, J

    1985-01-01

    One thousand intensive care digestive surgical cases are reviewed concerning continuous low-flow-rate enteral support (CLFRES), using Nutripompe: 607 males and 393 females, average age 51 years. The average duration of CLFRES is 21.5 days +/- 13, range 4 to 180 days. CLFRES was used postoperatively in 76 per cent, preoperatively in 10 per cent, and pre- and postoperatively in 14 per cent of cases, respectively. The enteral support route was 63 per cent nasogastric, 20 per cent gastrostomy and 17 per cent jejunostomy. Five hundred and ten patients required extensive digestive surgery with temporary exclusions. More than 100 patients with either temporary enterostomies or enterocutaneous fistulas have had continuous reinstillation of digestive chyme (CRDC) associated with their intensive care unit treatment management. CRDC in the lower end of an enterostomy has shown a specific retrograde inhibitory effect on the upper digestive secretions, particularly on the intestinal secretions during pathologies associated with one or several interruptions of the continuity of the gastrointestinal tract. This technique and its physiological implications were discussed. The principal pathologies in this important study group are: severe digestive fistulas, 24 per cent; acute diffuse peritonitis, 18 per cent; acute enterocolitis, 14 per cent; digestive tumours, 35 per cent; and acute necrotizing haemorrhagic pancreatitis, 9 per cent. A comparative analysis of nutritional energy nitrogen requirement was presented in view of the cancer, the septic, and the non-cancer non-septic patient groups. Enteral support nutritional solutions were primarily mixed non-degraded food, 70 per cent, and semi-elemental diets, 30 per cent. Certain pathology groups required variations in protein and lipid percentage. An up-to-date evaluation of nutritive formulas based on small peptides in normal and small bowel postoperative patients was discussed. Four CLFRES administration programmes were discussed

  5. Application of time-series analyses to the hydrological functioning of an Alpine karstic system: the case of Bange-L'Eau-Morte

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Lepiller, M. L.; Mangin, A.

    This paper analyses the hydrological functioning of the Bange-L’Eau-Morte karstic system using classical and original techniques, recession curves, correlation and spectral analyses, noise analysis and wavelet analyses. The main characteristics that can be deduced are the recession coefficients, the dynamic volume of storage, the response time of the system, the quickflow and baseflow components and the snowmelt characteristics. The non-stationary and timescale-dependent behaviour of the system is studied and particular features of the runoff are shown. The step-by-step use of these different techniques provides a general methodology applicable to different karstic systems to provide quantifiable and objective criteria for differentiation and comparison of karstic systems.

  6. A case study of energy savings and environmental impact reduction for a textile facility

    SciTech Connect

    Mowery, D.K.; Risi, J.D.

    1996-05-01

    The Industrial Energy Center (IEC) is a university-based energy management group dedicated to improving energy efficiency in industrial facilities throughout Virginia, North Carolina and Tennessee. The goal of the IEC is to assist area industries by increasing their cost effectiveness and product quality in terms of energy use in manufacturing. The IEC aspires to become the responsive resource for industries who are seeking a manufacturing advantage, or experiencing problems, related to the usage and management of energy. Fulfilling these goals is accomplished through a combination of energy training and education, on-site surveys of various energy-intensive processes, technical assistance, and applied research. The underlying purpose of all the energy-awareness efforts is to motivate the implementation of a formal, permanent, energy management program as an integral part of the client`s operation. The initial survey report is only a partial list of energy-related cost savings opportunities. The IEC will continue to make its services available if more in-depth training or advising is desired to implement an energy management program or the energy conservation measures (ECM) identified in the report, or if, after the facility has acted on the initial recommendations, additional assistance is desired to identify further ECMs. The IEC was invited to performed an energy survey at a textile finishing facility in southwestern Virginia. The remainder of this paper is dedicated to an overview of this energy survey and a discussion of the conservation measures identified.

  7. Critical-point symmetries in boson-fermion systems: the case of shape transitions in odd nuclei in a multiorbit model.

    PubMed

    Alonso, C E; Arias, J M; Vitturi, A

    2007-02-01

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to gamma-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation. PMID:17358851

  8. Critical-Point Symmetries in Boson-Fermion Systems: The Case of Shape Transitions in Odd Nuclei in a Multiorbit Model

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Vitturi, A.

    2007-02-02

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to {gamma}-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation.

  9. Genetic Variability in Energy Balance and Pancreatic Cancer Risk in a Population-Based Case-Control Study in Minnesota

    PubMed Central

    Zhang, Jianjun; Dhakal, Ishwori B.; Zhang, Xuemei; Prizment, Anna E.; Anderson, Kristin E.

    2013-01-01

    Objectives Accumulating evidence suggests that energy imbalance plays a role in pancreatic carcinogenesis. However, it remains unclear whether single nucleotide polymorphisms (SNPs) in genes regulating energy homeostasis influence pancreatic cancer risk. We investigated this question in a case-control study conducted from 1994 to 1998. Methods Cases (n=173) were ascertained from hospitals in the Twin Cities and Mayo Clinic, Minnesota. Controls (n=476) were identified from the general population and frequency matched to cases by age and sex. Seven SNPs were evaluated in relation to pancreatic cancer using unconditional logistic regression. Results After adjustment for confounders, the leucine/proline or proline/proline genotype of the neuropeptide Y (NPY) gene rs16139 was associated with a lower risk than the leucine/leucine genotype [odds ratio (OR) (95% confidence interval) (95% CI): 0.40 (0.15, 0.91)]. Conversely, an increased risk was observed for the glycine/arginine or arginine/arginine genotype of the adrenoceptor beta 2, surface (ADRB2) gene rs1042713 as compared with the glycine/glycine genotype [OR (95% CI): 1.52 (1.01, 2.31)]. Conclusions This study first reveals that SNPs in genes modulating energy intake (NPY) and energy expenditure (ADRB2) altered pancreatic cancer risk. If confirmed by other studies, our findings may shed new light on the etiology and prevention of pancreatic cancer. PMID:24201779

  10. Assessing the process of designing and implementing electronic health records in a statewide public health system: the case of Colima, Mexico

    PubMed Central

    Hernández-Ávila, Juan Eugenio; Palacio-Mejía, Lina Sofia; Lara-Esqueda, Agustín; Silvestre, Eva; Agudelo-Botero, Marcela; Diana, Mark L; Hotchkiss, David R; Plaza, Beatriz; Sanchez Parbul, Alicia

    2013-01-01

    The findings of a case study assessing the design and implementation of an electronic health record (EHR) in the public health system of Colima, Mexico, its perceived benefits and limitations, and recommendations for improving the implementation process are presented. In-depth interviews and focus group discussions were used to examine the experience of the actors and stakeholders participating in the design and implementation of EHRs. Results indicate that the main driving force behind the use of EHRs was to improve reporting to the two of the main government health and social development programs. Significant challenges to the success of the EHR include resistance by physicians to use the ICD-10 to code diagnoses, insufficient attention to recurrent resources needed to maintain the system, and pressure from federal programs to establish parallel information systems. Operating funds and more importantly political commitment are required to ensure sustainability of the EHRs in Colimaima. PMID:23019239

  11. Celiac trunk and branches dissection due to energy drink consumption and heavy resistance exercise: case report and review of literature.

    PubMed

    González, Wilma; Altieri, Pablo I; Alvarado, Enrique; Banchs, Héctor L; Colón, Edgar; Escobales, Nelson; Crespo, María

    2015-01-01

    Higher doses and consumption of energy drinks leads to cardiovascular effects and potential consequences. Principal components found in energy drinks such as caffeine, guarana and taurine has been related to dilatation, aneurysm formation, dissection and ruptures. There is no evidence showing an integration of these components and its effects in endothelium and aortic walls due to higher levels of pressure during exercises. We report a case of a 44 years male with celiac trunk and branches dissection due to long-term consumption of energy drinks and intense exercise routine. Our proposition relates cell and vessel walls alterations including elasticity in endothelial wall due to higher blood pressure, resistance by intense exercise routine and long-term consumption of energy drinks. PMID:26035983

  12. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  13. Analysis of energy use in building services of the industrial sector in California: Two case studies. Final report

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1991-09-01

    Energy-use patterns in many of California`s fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

  14. A Case Study of Complete Energy Management at the Herricks Union Free School District.

    ERIC Educational Resources Information Center

    Schreiber, Melvin; Paige, Haskell E., Sr.

    A school district energy management program reduced oil consumption 34 percent and electrical consumption 20 percent. Low cost modifications to the heating and ventilating equipment in the schools resulted in energy savings that "paid back" the labor plus material costs in less than a year. Each building was placed into an energy conservation…

  15. Stanford University: The Building Energy Retrofit Programs. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Flynn, Emily

    2011-01-01

    Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…

  16. The Business Case for Renewable Energy: A Guide for Colleges and Universities

    ERIC Educational Resources Information Center

    Putman, Andrea; Philips, Michael

    2006-01-01

    Growing numbers of colleges and universities are making the leap to renewable energy. Some are not only saving money--they're making money on their renewable energy purchases. This guide, written by two energy consultants, walks readers through the process of evaluating the various technologies, ownership options, relationships with utilities, and…

  17. The Case for CASES

    ERIC Educational Resources Information Center

    Powell, W. R.

    1978-01-01

    In this article the Community Annual Energy Storage System ( CASES), a "thermal utility" plan for heating and cooling communities by storing summer heat and winter cold for use in the opposite season, is described. (MDR)

  18. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.

    PubMed

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption. PMID:18230413

  19. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    SciTech Connect

    Cherubini, Francesco Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  20. Case histories of recently implemented technologies for citrus-processing energy-efficiency improvement. Volume II. Final report

    SciTech Connect

    Not Available

    1982-12-01

    For each of six citrus industry sites where energy efficiency improvement technologies have been implemented, a case history is presented which describes the implemented technology, its investment cost, and the energy and cost savings. The technologies are: double pressing in feed mill operation; evaporator microprocessor controller; feed mill vent stack controller; addition of a waste heat evaporator to a feed mill; enhanced lime reaction for improved pressing and dewatering in a feed mill, and added effect to a temperature-accelerated short-time evaporator. (LEW)

  1. Thermodynamics of ghost dark energy in case of various nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-05-01

    In this paper we discuss thermodynamics of interacting ghost dark energy models in a flat FRW universe. During the discussion our attention will be concentrated on nonlinear interactions of particular form. In the considered models dark matter is assumed to be a pressureless matter and allows to complete the darkness of the low-redshift universe. Ghost dark energy it is one of the models of dark energy among others with an explicitly given energy density as a function of the Hubble parameter of the universe. Our study aims to have a contribution towards recently suggested interacting ghost dark energy models.

  2. Asia`s energy future: The case of coal -- opportunities and constraints

    SciTech Connect

    Johnson, C.J.

    1997-12-31

    In this paper the author presents his views about the changing energy mix in Asia to the year 2020, and why the importance of coal will continue. The topics of the paper include Asia`s energy mix compared with the rest of the world including nuclear power, hydropower, solar and wind energy, oil, coal, and natural gas; the economics of coal and natural gas; coal production and consumption; new energy sources; Asia`s energy mix in the year 2020; resource depletion and conclusions. 4 figs., 1 tab.

  3. Participatory definition of breeding objectives for sheep breeds under pastoral systems--the case of Red Maasai and Dorper sheep in Kenya.

    PubMed

    König, Emelie Zonabend; Mirkena, Tadele; Strandberg, Erling; Audho, James; Ojango, Julie; Malmfors, Birgitta; Okeyo, Ally Mwai; Philipsson, Jan

    2016-01-01

    Crossing local breeds with exotic breeds may be an option for increased livestock productivity. However, there is a risk for endangerment of the local breeds. One such case is in Kenya where the imported Dorper breed is used for crossbreeding with Red Maasai sheep. The aim of this study was to investigate farmers' trait preferences as a basis for determination of breeding objectives for Red Maasai and Dorper sheep at two sites, Amboseli and Isinya, in Kenya. Within their own flock, each farmer identified three ewes representing the best, average and poorest within each breed group: Red Maasai, Dorper and Crosses. Farmers gave reasons for their ranking. Body measurements and weights were also taken. At the harshest site, Amboseli, differences between breed groups in body weight were small and breeds were equally preferred. In Isinya, where environmental conditions are better and farmers are more market oriented, Dorper and Crosses had significantly higher body weights and market prices and were thus preferred by the farmers. Red Maasai were preferred for their maternal and adaptive traits. Breeding objectives should emphasize growth traits and milk production in both breeds at both sites. Body condition needs to be specifically considered in the breeding objectives for sheep in Amboseli, whereas adaptive traits need to be generally emphasized in Dorper. PMID:26374208

  4. Building America Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake, Woodland, California

    SciTech Connect

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. Through Building America research and other innovative programs throughout the country, many of the technical challenges to building to the ZERH standard have been addressed. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. The case study discusses challenges encountered, lessons learned, and how obstacles were overcome. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  5. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and

  6. Exploration Case Studies on OpenEI; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Young, K. R.

    2015-05-11

    This poster details the goal of developing a database of geothermal case studies for future exploration efforts in new areas. The goal of this effort is to develop a template for geothermal case studies in a crowd-sourced platform to allow contributions from the entire geothermal community, and this should be broken down into queriable properties in order to be more helpful.

  7. Improving spinach quality and reducing energy costs by retrofitting retail open refrigerated cases with doors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of open-refrigerated display cases is ubiquitous in retail supermarkets, even in the face of the non-uniform temperature conditions present in these cases that may affect the quality and safety of the stored products. In this paper, the temperature variations ('T) of packaged ready-t...

  8. The Human Dimension of Energy Conservation and Sustainability: A Case Study of the University of Michigan's Energy Conservation Program

    ERIC Educational Resources Information Center

    Marans, Robert W.; Edelstein, Jack Y.

    2010-01-01

    Purpose: The purpose of this paper is to determine the behaviors, attitudes, and levels of understanding among faculty, staff, and students in efforts to design programs aimed at reducing energy use in University of Michigan (UM) buildings. Design/methodology/approach: A multi-method approach is used in five diverse pilot buildings including focus…

  9. Integrated Risk Framework for Gigawatt-Scale Deployments of Renewable Energy: The U.S. Wind Energy Case; October 2009

    SciTech Connect

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable energy on private and public lands, along our coasts, on the Outer Continental Shelf (OCS), and in the Great Lakes requires a new way of evaluating potential environmental and human impacts. The author argues that deployment of renewables requires a framework risk paradigm that underpins effective future siting decisions and public policies.

  10. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  11. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  12. The "Boom" and "Bust" Patterns of Communities within the Energy Rich Region of West Virginia: A Case Study of Moundsville

    NASA Astrophysics Data System (ADS)

    Kiger, Brandon S.

    The increasing worldwide demand for energy will provide Energy Rich Regions (ERRs) the opportunity to increase their wealth and quality of living. However, a reoccurring pattern of boom and bust cycles in ERRs suggests the need for more sustainable development strategies. A mixed methods approach (case study) is employed to explore the "wicked human problems" occurring in one community, Moundsville, WV and to discover development patterns that might inform sustainable development strategies for the future. This study explores briefly the distant past development patterns, and in greater detail the pre-boom and most current boom in natural gas. First, data will be derived from a conceptual "Energy Rich Region Template" that explores the sustainability of development from the inclusive wealth forms of natural, human, and physical capital. The qualitative data analysis software (MAXQDA) is used to systematically collect and organize data and information into a community-wide knowledge base (specifically the seven years of city council minutes). This framework can assist future research dedicated to similar cases. Furthermore, this case may support communities and or policymakers in the development of a programming guide for converting the natural capital into other reproducible capital forms, thus avoiding the development cycle of boom and bust.

  13. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in India

    SciTech Connect

    McNeil, Michael A.; Ke, Jing; Can, Stephane de la Rue du; Letschert, Virginie E.; McMahon, James E.

    2011-12-02

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as “economic savings potential”. So far, the Indian market has responded favorably to government efficiency initiatives, with Indian manufacturers producing a higher fraction of high-efficiency equipment than before program implementation. This study highlights both the financial benefit and the scope of potential impact for adopting this equipment, all of which is already readily available on the market. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short-term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The Business Case concentrates on technologies for which cost-effectiveness can be clearly demonstrated.

  14. The social control of energy: A case for the promise of decentralized solar technologies

    NASA Astrophysics Data System (ADS)

    Gilmer, R. W.

    1980-05-01

    Decentralized solar technology and centralized electric utilities were contrasted in the ways they assign property rights in capital and energy output; in the assignment of operational control; and in the means of monitoring, policing, and enforcing property rights. An analogy was drawn between the decision of an energy consumer to use decentralized solar and the decision of a firm to vertically integrate, that is, to extend the boundary of a the firm to vertically integrate, that is, to extend the boundary of the firm by making inputs or further processing output. Decentralized solar energy production offers the small energy consumer the chance to cut ties to outside suppliers--to vertically integrate energy production into the home or business. The development of this analogy provides insight into important noneconomic aspects of solar energy, and it points clearly to the lighter burdens of social management offered by decentralized solar technology.

  15. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism

    PubMed Central

    Maltby, Tomas

    2013-01-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. From the mid-2000s, the Commission contributed to a shift in political norms, successfully framing import dependency as a problem requiring an EU-level solution, based on the institution’s pre-existing preferences for a diversified energy supply and internal energy market. Whilst Member States retain significant sovereignty, the Commission has achieved since 2006 creeping competencies in the internal, and to a lesser extent external, dimensions of EU energy policy. PMID:24926115

  16. Existing Whole-House Solutions Case Study: Cascade Apartments - Deep Energy Multifamily Retrofit

    SciTech Connect

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units. This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary Building America research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio of the retrofit package after considering utility window incentives and KCHA capital improvement funding.

  17. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism.

    PubMed

    Maltby, Tomas

    2013-04-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. From the mid-2000s, the Commission contributed to a shift in political norms, successfully framing import dependency as a problem requiring an EU-level solution, based on the institution's pre-existing preferences for a diversified energy supply and internal energy market. Whilst Member States retain significant sovereignty, the Commission has achieved since 2006 creeping competencies in the internal, and to a lesser extent external, dimensions of EU energy policy. PMID:24926115

  18. Impacts of energy cane expansion on ecosystem services: A Florida case study

    NASA Astrophysics Data System (ADS)

    Bagley, J. E.; VanLoocke, A.; Jaiswal, D.; Bernacchi, C. J.; Long, S.

    2012-12-01

    There is a rising demand for sustainable and secure sources of energy. This demand is driving the development of second-generation biofuel crops across the United States. However, in a changing climate the capability of these crops to meet energy demands are uncertain. Additionally, the impacts of energy crop adoption on biophysical and biochemical ecosystem services need to be refined. Central Florida has been identified as a test bed for energy cane in anticipation of increased investment for energy crop production in the southeastern United States. Currently, the land cover in this region is characterized by pasturelands with relatively low rates of productivity and evapotranspiration. By replacing these lands with highly productive and irrigated energy cane significant perturbations to the local and regional budgets of water, energy, and carbon are anticipated. In this study, we extend the Agro-IBIS LSM with a mechanistic multilayer canopy model of biofuel crops to simulate inter-canopy fluxes of energy, moisture, and carbon. We validate the model using published leaf area, surface flux, and yield observations taken from studies that encompassed variable soil types, climatic conditions, and management decisions. This extended Agro-IBIS model is used to simulate the growth of energy cane in central Florida. Using this model we assess the potential impacts of large-scale changes in land cover on future ecosystem services for the region. In particular, we focus on how changes in atmospheric CO2 and temperature influence energy cane's regulation of surface fluxes and storage. Using a series of simulations that represent a range of climatic regimes we test how increased atmospheric carbon concentrations may enhance or diminish stresses associated with changes in regional climate, and how the physiological plant responses feedback on fluxes between the land surface and the atmosphere. This allows us to quantitatively evaluate how large-scale energy cane production

  19. Case study of total energy system, Sher-Den Mall, Sherman, Texas

    SciTech Connect

    Myrtetus, G.B.; Levey, M.D.

    1980-12-01

    The Sher-Den Mall shopping center receives all of its electricity and heating and cooling energy from a total energy plant located within the shopping center proper. Four engine-generator units are fueled primarily by natural gas, with some fuel oil use. The following are presented: initial corporate planning, investigation, and feasibility studies; a description of the total energy system; capital costs; plant operations, and revenue structure. Tables, figures, exhibits, and equipment specification lists are presented. (MHR)

  20. Estimating the impacts of federal efforts to improve energy efficiency: The case of buildings

    SciTech Connect

    LaMontagne, J; Jones, R; Nicholls, A; Shankle, S

    1994-09-01

    The US Department of Energy`s Office of Energy Efficiency and Renewable Energy (EE) has for more than a decade focused its efforts on research to develop new technologies for improving the efficiency of energy use and increasing the role of renewable energy; success has usually been measured in term of energy saved or displaced. Estimates of future energy savings remain an important factor in program planning and prioritization. A variety of internal and external factors are now radically changing the planning process, and in turn the composition and thrust of the EE program. The Energy Policy Act of 1992, the Framework Convention on Climate Change (and the Administration`s Climate Change Action Plan), and concerns for the future of the economy (especially employment and international competitiveness) are increasing emphasis on technology deployment and near-term results. The Reinventing Government Initiative, the Government Performance and Results Act, and the Executive Order on Environmental Justice are all forcing Federal programs to demonstrate that they are producing desired results in a cost-effective manner. The application of Total Quality management principles has increased the scope and importance of producing quantified measures of benefit. EE has established a process for estimating the benefits of DOE`s energy efficiency and renewable energy programs called ``Quality Metrics`` (QM). The ``metrics`` are: energy, employment, equity, environment, risk, economics. This paper describes the approach taken by EE`s Office of Building Technologies to prepare estimates of program benefits in terms of these metrics, presents the estimates, discusses their implications, and explores possible improvements to the QM process as it is currently configured.

  1. Estimating the impacts of federal efforts to improve energy efficiency: The case of building

    SciTech Connect

    Nicolls, A.K.; Shankle, S.A.; LaMontagne, J.; Jones, R.E.

    1994-11-01

    The US Department of Energy`s Office of Energy Efficiency and Renewable Energy [EE] has for more than a decade focused its efforts on research to develop new technologies for improving the efficiency of energy use and increasing the role of renewable energy; success has usually been measured in terms of energy saved or displaced. Estimates of future energy savings remain an important factor in program planning and prioritization. A variety of internal and external factors are now radically changing the planning process, and in turn the composition and thrust of the EE program. The Energy Policy Act of 1992, the Framework Convention on Climate Change (and the Administration`s Climate Change Action Plan), and concerns for the future of the economy (especially employment and international competitiveness) are increasing emphasis on technology deployment and near-term results. The Reinventing Government Initiative, the Government Performance and Results Act, and the Executive Order on Environmental Justice are all forcing Federal programs to demonstrate that they are producing desired results in a cost-effective manner. The application of Total Quality Management principles has increased the scope and importance of producing quantified measures of benefit. EE has established a process for estimating the benefits of DOE`s energy efficiency and renewable energy programs called `Quality Metrics` (QM). The ``metrics`` are: Energy; Environment; Employment; Risk; Equity; Economics. This paper describes the approach taken by EE`s Office of Building Technologies to prepare estimates of program benefits in terms of these metrics, presents the estimates, discusses their implications, and explores possible improvements to the QM process as it is currently configured.

  2. Performance Results from a Cold Climate Case Study for Affordable Zero Energy Homes: Preprint

    SciTech Connect

    Norton, P.; Christensen, C.

    2007-11-01

    The design of this 1280 square foot, 3-bedroom Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, a photovoltaic system, and passive and active solar thermal features to exceed the net zero energy goal. In January 2006, a data acquisition system was installed in the home to monitor its performance over the course of a year. This paper presents full year of energy performance data on the home.

  3. McFadden, Wyoming: A case study in narrating our changing energy landscapes

    NASA Astrophysics Data System (ADS)

    Anderson, Carly-Ann Marie

    This thesis uses McFadden, Wyoming, and the Rock Creek Valley to discuss Wyoming's changing energy landscapes and argues that a cultural landscape approach to documenting our historic and cultural resources can contribute to properly siting energy developments. Though Wyoming stands to gain from the construction of wind farms, they should be carefully sited in order to balance environmental and cultural resource preservation with energy needs. Wyoming has a long history as an energy hinterland and provides a significant portion of energy to the U.S. However, the nation's demand for energy should not take precedence over preserving the cultural resources and vast open landscapes that represent Wyoming's heritage. A history of the Rock Creek Valley as a home to Native Americans, a transportation corridor, oil field, and wind farm site is presented along with a discussion of energy consumption and Wyoming's role in the energy market. The thesis also considers the importance of education, public discourse, and narrative as tools for planning a sustainable future with regard to energy, the environment, and cultural resources.

  4. Existing Whole-House Solutions Case Study: Community-Scale Energy Modeling - Southeastern United States

    SciTech Connect

    2014-12-01

    Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all-electric, production-built homes was modeled. The homes were in two communities: one built in the 1970s and the other in the mid-2000s.

  5. New energy geographies: a case study of yoga, meditation and healthfulness.

    PubMed

    Philo, Chris; Cadman, Louisa; Lea, Jennifer

    2015-03-01

    Beginning with a routine day in the life of a practitioner of yoga and meditation and emphasising the importance of nurturing, maintaining and preventing the dissipation of diverse 'energies', this paper explores the possibilities for geographical health studies which take seriously 'new energy geographies'. It is explained how this account is derived from in-depth fieldwork tracing how practitioners of yoga and meditation find times and spaces for these practices, often in the face of busy urban lifestyles. Attention is paid to the 'energy talk' featuring heavily in how practitioners describe the benefits that they perceive themselves to derive from these practices, and to claims made about 'energies' generated during the time-spaces of these practices which seemingly flow, usually with positive effects, into other domains of their lives. The paper then discusses the implications of this energy talk in the context of: (a) critically reviewing conventional approaches to studying 'energy geographies'; (b) identifying an alertness to the likes of 'affective energies' surfacing in recent theoretically-attuned works of human geography (and cognate disciplines); and (c) exploring differing understandings of energy/energies extant in geographical studies of health and in step with the empirical research materials presented about yoga, meditation and healthfulness. While orientated towards explicitly geographical inquiries, the paper is intended as a statement of interest to the wider medical humanities. PMID:25503269

  6. NREL/Habitat for Humanity Zero Energy Home: A Cold-Climate Case Study for Affordable Zero Energy Homes

    SciTech Connect

    Norton, P.; Christensen, C.; Hancock, E.; Barker, G.; Reeves, P.

    2008-06-01

    The design of this 1,280-square-foot, three-bedroom Habitat for Humanity of Metro Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed with an early version (July 22, 2004) of the BEOpt building optimization software; DOE2 and TRNSYS were used to perform additional analysis. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design toward simple, easily maintained mechanical systems and volunteer-friendly construction techniques. A data acquisition system was installed in the completed home to monitor its performance.

  7. A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study

    NASA Astrophysics Data System (ADS)

    Breen, M.; O’Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.

    2016-03-01

    The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.

  8. Pairwise additivity of energy components in protein-ligand binding: the HIV II protease-Indinavir case.

    PubMed

    Ucisik, Melek N; Dashti, Danial S; Faver, John C; Merz, Kenneth M

    2011-08-28

    An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ∼82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n=3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions. PMID:21895219

  9. First-principles calculation of defect free energies: General aspects illustrated in the case of bcc Fe

    NASA Astrophysics Data System (ADS)

    Murali, D.; Posselt, M.; Schiwarth, M.

    2015-08-01

    Modeling of nanostructure evolution in solids requires comprehensive data on the properties of defects such as the vacancy and foreign atoms. Since most processes occur at elevated temperatures, not only the energetics of defects in the ground state, but also their temperature-dependent free energies must be known. The first-principles calculation of contributions of phonon and electron excitations to free formation, binding, and migration energies of defects is illustrated in the case of bcc Fe. First of all, the ground-state properties of the vacancy, the foreign atoms Cu, Y, Ti, Cr, Mn, Ni, V, Mo, Si, Al, Co, O, and the O-vacancy pair are determined under constant volume (CV) as well as zero-pressure (ZP) conditions, and relations between the results of both kinds of calculations are discussed. Second, the phonon contribution to defect free energies is calculated within the harmonic approximation using the equilibrium atomic positions determined in the ground state under CV and ZP conditions. In most cases, the ZP-based free formation energy decreases monotonously with temperature, whereas for CV-based data both an increase and a decrease were found. The application of a quasiharmonic correction to the ZP-based data does not modify this picture significantly. However, the corrected data are valid under zero-pressure conditions at higher temperatures than in the framework of the purely harmonic approach. The difference between CV- and ZP-based data is mainly due to the volume change of the supercell since the relative arrangement of atoms in the environment of the defects is nearly identical in the two cases. A simple transformation similar to the quasiharmonic approach is found between the CV- and ZP-based frequencies. Therefore, it is not necessary to calculate these quantities and the corresponding defect free energies separately. In contrast to ground-state energetics, the CV- and ZP-based defect free energies do not become equal with increasing supercell

  10. New Whole-House Solutions Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes - Pacific Northwest

    SciTech Connect

    2015-05-01

    This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). In this project, the Northwest Energy Efficient Manufactured Housing Program worked with Building America Partnership for Improved Residential Construction and Bonneville Power Administration to help four factory homebuilders build prototype zero energy ready manufactured homes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This case study describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability. Monitoring is expected to continue into 2016.