Science.gov

Sample records for energy systems-the case

  1. Distributed energy store railgun; The limiting case

    SciTech Connect

    Marshall, R.A. )

    1991-01-01

    This paper reports that when the limiting case of a distributed energy store railgun is analyzed, i.e., the case where the space between adjacent energy stores become indefinitely small, three important results are obtained. First, the shape of the current pulse delivered by each store is sinusoidal and an exponential tail. Second, the rail-to-rail voltage behind the rear-most active store approaches zero. Third, it is not possible to choose parameters in such a way that capacitor crowbars can be eliminated.

  2. Building Energy Information Systems: User Case Studies

    SciTech Connect

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  3. Examining the Contemporary Status of an Education System: The Case of the Republic of South Sudan

    ERIC Educational Resources Information Center

    Banraba, Boboya James Edimond

    2015-01-01

    This paper attempts to examine the contemporary status of an education system. The paper takes the case of the Republic of South Sudan. The key issues the paper will examine are the education enrollment and completion rates while paying particular attention to inequalities in both access and quality among racial or ethnic groups, males and…

  4. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  5. Energy Savings Performance Contract Case Studies.

    ERIC Educational Resources Information Center

    Lefevre, Jessica S.

    Building owners and managers can use performance-contracting Energy Service Companies (ESCOs) to partially or fully fund building renovations that include energy efficiency upgrades. This report provides building owners and managers with an introduction to the energy efficiency and building upgrade services provided by ESCOs. It uses 20 case…

  6. Evaluating the environmental impacts of the energy system: The ENPEP (ENergy and Power Evaluation Program) approach

    SciTech Connect

    Hamilton, B.P.; Sapinski, P.F.; Cirillo, R.R.; Buehring, W.A.

    1990-01-01

    Argonne National Laboratory (ANL) has developed the ENergy and Power Evaluation Program (ENPEP), a PC-based energy planning package intended for energy/environmental analysis in developing countries. The IMPACTS module of ENPEP examines environmental implications of overall energy and electricity supply strategies that can be developed with other ENPEP modules, including ELECTRIC, the International Atomic Energy Agency's Wien Automatic System Planning Package (WASP-III). The paper presents the status and characteristics of a new IMPACTS module that is now under development at ANL. 3 figs.

  7. Energy-Efficient Schools: Three Case Studies from Oregon.

    ERIC Educational Resources Information Center

    2003

    This document presents case studies of three schools or districts in Oregon that have implemented steps to promote energy efficiency. Steps taken by the schools include daylighting, energy audits, special energy loans, new ventilation design, and sustainable building practices. The facilities described are Ash Creek Intermediate School in…

  8. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  9. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  10. Energy conservation in the textile industry: 10 case histories

    SciTech Connect

    1982-01-01

    Presented are ten case studies of energy conserving technologies that have been implemented by the textile industry. For each case is given: the name and location of the plant and an employee contact, description of products, energy consumption and costs in years before and after the energy conserving technology was implemented, energy savings since the energy conserving technology was implemented, description of investment decision-making process, and description of any institutional and environmental considerations. Measures included are: tandem preparation line, dyebath reuse, bump-and-run (dyebath temperature drifts for the last 85% of the hold time), foam finishing, wastewater heat recovery, wastewater chlorination and reuse, oven exhaust air counterflow, boiler economizer, wood-fired boiler, and solar industrial process heat. Several other energy conserving technologies that were not studied are briefly summarized. (LEW)

  11. Investigation of Energy-Efficient Supermarket Display Cases

    SciTech Connect

    Walker, D.H.

    2005-01-21

    Supermarkets represent one of the largest energy-intensive building groups in the commercial sector, consuming 2 to 3 million kWh/yr per store (ES-1). Over half of this energy use is for the refrigeration of food display cases and storage coolers. Display cases are used throughout a supermarket for the merchandising of perishable food products. The cases are maintained at air temperatures ranging from -10 to 35 F, depending upon the type of product stored. The operating characteristics and energy requirements of the refrigeration system are directly related to the refrigeration load. The sources of the display case refrigeration load consist of: (1) Moist and warm air infiltration through the open front of the case--air curtains are employed to inhibit this infiltration, but some ambient air is entrained, which adds a substantial portion to the refrigeration load. (2) Heat conduction through case panels and walls. (3) Thermal radiation from the ambient to the product and display case interior. (4) Internal thermal loads--the use of lights, evaporator fans, periodic defrosts, and antisweat heaters adds to the refrigeration load of the display case as well as directly consuming electric energy. The impact of each of these elements on the refrigeration load is very dependent upon case type (Figure ES-1). For example, air infiltration is the most significant portion of the refrigeration load for open, multi-deck cases, while radiation is the largest part of the load for tub-type cases. The door anti-sweat heaters represent a major share of the refrigeration load for frozen food door reach-in cases. Figure ES-2 shows the distribution of display cases in a typical supermarket (ES-2). Open, multi-deck, medium temperature display cases typically comprise about half of the refrigerated fixtures in a store (ES-3). In addition, medium temperature fixtures and storage coolers account for roughly 70 to 75 percent of the total store refrigeration load with open, multi-deck cases

  12. Thermal transport in low-dimensional systems: the case of Graphene and single layer Boron Nitride

    NASA Astrophysics Data System (ADS)

    Pereira, Luiz Felipe; Donadio, Davide

    2013-03-01

    Low-dimensional systems present unusual transport properties in comparison to bulk materials. In contrast with the three-dimensional case, in one- and two-dimensions heat transport models predict a divergence of the thermal conductivity with system size. In reality, in a low-dimensional system the mean-free-path of heat carriers (phonons) becomes comparable to the micrometer size of experimental samples. Recent developments in nanostructure fabrication allow a direct comparison between theory and experiments for such low-dimensional systems. We perform extensive molecular dynamics simulations of heat transport in graphene and single layer BN, in order to clarify the behavior of the thermal conductivity in realistic low-dimensional systems. In particular, we address the influence of system size on the simulation results. Equilibrium molecular dynamics predicts a convergence of the thermal conductivity with system size, even for systems with less than one hundred nanometers and thousands of atoms. Meanwhile, large scale non-equilibrium molecular dynamics shows a divergence of the thermal conductivity with system size up to the micrometer scale. We analyse the discrepancy between methods in terms of perturbations in phonon populations induced by the non-equilibrium regime.

  13. Building an internet-based workflow system - the case of Lawrence Livermore National Laboratories` Zephyr project

    SciTech Connect

    Jordan, C. W., LLNL

    1998-04-01

    Lawrence Livermore National Laboratories` Zephyr System provides a showcase for the ways in which emerging technologies can help streamline procurement processes and improve the coordination between participants in engineering projects by allowing collaboration in ways that have not been possible before. The project also shows the success of a highly pragmatic approach that was initiated by the end user community, and that intentionally covered standard situations, rather than aiming at also automating the exceptions. By helping push purchasing responsibilities down to the end user, thereby greatly reducing the involvement of the purchasing department in operational activities, it was possible to streamline the process significantly resulting in time savings of up to 90%, major cost reductions, and improved quality. Left with less day-to- day purchasing operations, the purchasing department has more time for strategic tasks such as selecting and pre-qualifying new suppliers, negotiating blanket orders, or implementing new procurement systems. The case shows once more that the use of information technologies can result in major benefits when aligned with organizational adjustments.

  14. Annual Energy Outlook 2016 Early Release: Summary of Two Cases

    EIA Publications

    2016-01-01

    The U.S. Energy Information Administration provides a long-term outlook for energy supply, demand, and prices in its Annual Energy Outlook (AEO). This outlook is centered on the Reference case, which is not a prediction of what will happen, but rather a modeled projection of what might happen given certain assumptions and methodologies. Today, EIA released an annotated summary of the AEO2016 Reference Case—which includes the Clean Power Plan—and a side case without the Clean Power Plan.

  15. ACMV Energy Analysis for Academic Building: A Case Study

    NASA Astrophysics Data System (ADS)

    Hywel, R.; Tee, B. T.; Arifin, M. Y.; Tan, C. F.; Gan, C. K.; Chong, CT

    2015-09-01

    Building energy audit examines the ways actual energy consumption is currently used in the facility, in the case of a completed and occupied building and identifies some alternatives to reduce current energy usage. Implementation of energy audit are practically used to analyze energy consumption pattern, monitoring on how the energy used varies with time in the building, how the system element interrelate, and study the effect of external environment towards building. In this case study, a preliminary energy audit is focusing on Air-Conditioning & Mechanical Ventilation (ACMV) system which reportedly consumed 40% of the total energy consumption in typical building. It is also the main system that provides comfortable and healthy environment for the occupants. The main purpose of this study is to evaluate the current ACMV system performance, energy optimization and identifying the energy waste on UTeM's academic building. To attain this, the preliminary data is collected and then analyzed. Based on the data, economic analysis will be determined before cost-saving methods are being proposed.

  16. Energy management study: A proposed case of government building

    SciTech Connect

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  17. Energy management study: A proposed case of government building

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  18. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  19. [Excessive energy drink consumption caused marked QT prolongation. Case report].

    PubMed

    Tomcsányi, János; Jávor, Kinga

    2015-10-25

    The authors report a case of a 22-year-old man with atypical chest pain after consumption of six energy drinks (1.5 liter containing 470 mg coffein) with vodka. On admission ECG showed marked QT/QTc prolongation (QT/QTc, 520/580 msec). Next day the QT/QTc returned to fully normal (QT/QTc, 360/430 msec). It was assumed that the patient had a silent long QT syndrome and that high dose of highly caffeinated energy drink triggered the (paradoxical) prolonged QT/QTc. The authors conclude that excessive energy drink intake with alcohol or during physical exercise should be avoided. PMID:26477618

  20. LANDFILL GAS ENERGY UTILIZATION: TECHNOLOGY OPTIONS AND CASE STUDIES

    EPA Science Inventory

    The report discusses technical, environmental, and other issues associated with using landfill gas as fuel, and presents case studies of projects in the U.S. illustrating some common energy uses. he full report begins by covering basic issues such as gas origin, composition, and ...

  1. Educational Decision Making in a Centralised System: The Case of Greece

    ERIC Educational Resources Information Center

    Saiti, Anna; Eliophotou-Menon, Maria

    2009-01-01

    Purpose: The purpose of this study is to examine the decision-making process in the Greek education system, as an indicator of the design and implementation of educational policy. Design/methodology/approach: The paper uses a case study approach to identify limitations in educational decision making in Greece. Specifically, it examines the case of…

  2. Theory of second-harmonic generation of molecular systems: The steady-state case

    SciTech Connect

    Lin, S.H.; Alden, R.G. ); Villaeys, A.A.; Pflumio, V. )

    1993-10-01

    In this paper, a general formalism for treating both steady-state and time-resolved second-harmonic generation for molecular systems is presented. Here, only the steady-state case will be reported. The adiabatic approximation is introduced. Four important cases, resonance-resonance, resonance--off-resonance, off-resonance--resonance, and off-resonance--off-resonance transitions, have been considered. Finally, numerical calculations of rhodamine 6G are performed to demonstrate the applications of theoretical results.

  3. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  4. Energy portfolio of Iran: A case study of solar desalination

    NASA Astrophysics Data System (ADS)

    Besharati, Adib

    Energy plays a very important role in the economic development of a country such as Iran where industrial progress and higher living standards increase demand for energy. Iran is one of the countries in the world that simultaneously produces and consumes large amounts of energy. Because of its geographic latitude and weather conditions, Iran has the potential to develop and use of both fossil and renewable energy sources. In South Iran, there are huge oil and gas resources, and at the same time high potential of solar radiation. However, at the present large-scale utilization, solar energy is prohibitively expensive for Iran. Therefore, this study investigates an economical way to utilize solar energy in a meaningful way for Iran. One of the possible uses of solar energy that is both economical and technically feasible is desalination of water using solar energy. People in South Iran live in different areas with relatively low population density. One of the critical problems in those areas is a lack of clean drinking water. As a result, there is an urgent need to investigate ways to produce clean water from the saltwater. Therefore, the present study conducts a case study of solar desalination in south Iran using solar. Different desalination methods, such as humidification dehumidification by using a solar collector, and reverse osmosis, are discussed. In the case study, a prototype desalination plant was considered and both technical and economic aspects of the plant were investigated in details. The results showed higher productivity of drinking water in reverse osmosis method for south Iran.

  5. Operationalizing Sustainable Development Suncor Energy Inc: A critical case

    NASA Astrophysics Data System (ADS)

    Fergus, Andrew

    The concept of Sustainable Development is often understood as a framework within which organizations are able to move forward in a successful and beneficial manner. However, it is also seen as an ambiguous notion with little substance beyond a hopeful dialogue. If we are to base organizational action upon the concepts of Sustainable Development, it is vital that we comprehend the implications of how the concept is understood at a behavioral level. Industry leaders, competitors, shareholders, and stakeholders recognize Suncor Energy Inc as a leading organization within the Oil and Gas energy field. In particular it has a reputation for proactive thinking and action within the areas of environmental and social responsibility. Through attempting to integrate the ideas of Sustainable Development at a foundational level into the strategic plan, the management of Suncor Energy Inc has committed the organization to be a sustainable energy company. To achieve this vision the organization faces the challenge of converting strategic goals into operational behaviors, a process critical for a successful future. This research focuses on understanding the issues found with this conversion process. Through exploring a critical case, this research illuminates the reality of a best-case scenario. The findings thus have implications for both Suncor Energy Inc and more importantly all other organizations attempting to move in a Sustainable Development direction.

  6. Report of NASA Lunar Energy Enterprise Case Study Task Force

    NASA Technical Reports Server (NTRS)

    Kearney, John J.

    1989-01-01

    The Lunar Energy Enterprise Case Study Task Force was asked to determine the economic viability and commercial potential of mining and extracting He-3 from the lunar soil, and transporting the material to Earth for use in a power-generating fusion reactor. Two other space energy projects, the Space Power Station (SPS) and the Lunar Power Station (LPS), were also reviewed because of several interrelated aspects of these projects. The specific findings of the Task Force are presented. Appendices contain related papers generated by individual Task Force Members.

  7. Policy Strategies and Paths to promote Sustainable Energy Systems- The dynamic Invert Simulation Tool

    SciTech Connect

    Stadler, Michael; Kranzl, Lukas; Huber, Claus; Haas, Reinhard; Tsioliaridou, Elena

    2006-05-01

    The European Union has established a number of targetsregarding energy efficiency, Renewable Energy Sources (RES) and CO2reductions as the 'GREEN PAPER on Energy Efficiency', the Directive for'promotion of the use of bio-fuels or other renewable fuels fortransport' or 'Directive of the European Parliament of the Council on thepromotion of cogeneration based on a useful heat demand in the internalenergy market'. A lot of the according RES and RUE measures are notattractive for investors from an economic point of view. Thereforegovernmentsall over the world have to spend public money to promotethese technologies/measures to bring them into market. These expenditureshave to be adjusted to budget concerns and should be spent mostefficiently. Therefore, the spent money has to be dedicated totechnologies and efficiency measures with the best yield in CO2 reductionwithout wasting money. The core question: "How can public money - forpromoting sustainable energy systems - be spent most efficiently toreduce GHG-emissions?" has been well investigated by the European projectInvert. In course of this project a simulation tool has been designed toanswer this core question. This paper describes the modelling with theInvert simulation tool and shows the key features necessary forsimulating the energy system. A definition of 'Promotion SchemeEfficiency' is given which allows estimating the most cost effectivetechnologies and/or efficiency measures to reduce CO2 emissions.Investigations performed with the Invert simulation tool deliver anoptimum portfolio mix of technologies and efficiency measures for eachselected region. Within Invert seven European regions were simulated andfor the Austrian case study the detailed portfolio mix is shown andpolitical conclusions are derived.

  8. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  9. Deep Energy Retrofit Performance Metric Comparison: Eight California Case Studies

    SciTech Connect

    Walker, Iain; Fisher, Jeremy; Less, Brennan

    2014-06-01

    In this paper we will present the results of monitored annual energy use data from eight residential Deep Energy Retrofit (DER) case studies using a variety of performance metrics. For each home, the details of the retrofits were analyzed, diagnostic tests to characterize the home were performed and the homes were monitored for total and individual end-use energy consumption for approximately one year. Annual performance in site and source energy, as well as carbon dioxide equivalent (CO2e) emissions were determined on a per house, per person and per square foot basis to examine the sensitivity to these different metrics. All eight DERs showed consistent success in achieving substantial site energy and CO2e reductions, but some projects achieved very little, if any source energy reduction. This problem emerged in those homes that switched from natural gas to electricity for heating and hot water, resulting in energy consumption dominated by electricity use. This demonstrates the crucial importance of selecting an appropriate metric to be used in guiding retrofit decisions. Also, due to the dynamic nature of DERs, with changes in occupancy, size, layout, and comfort, several performance metrics might be necessary to understand a project’s success.

  10. Integrated municipal solid waste management: Six case studies of system cost and energy use. A summary report

    SciTech Connect

    1995-11-01

    Report documents an evaluation of the environmental, economic, and energy impacts of integrated municipal solid waste management systems in six cities: Minneapolis, NW; Springfield, MA; Seattle, WA; Scottsdale, AZ; Palm Beach County, CA; and Sevierville, TN. The primary objective of these case studies was to develop and present consistent cost, resource use (especially energy), and environmental regulator information on each operating IMSWM system. The process is defined as using two or more alternative waste management techniques. Detailed reports on each system are available.

  11. Issues in Designing a Hypermedia Document System: The Intermedia Case Study.

    ERIC Educational Resources Information Center

    Yankelovich, Nicole; And Others

    1986-01-01

    Intermedia, a hypermedia system developed at Brown University's Institute for Research (Rhode Island) in Information and Scholarship, is first described, and then used as a case study to explore a number of key issues that software designers must consider in the development of hypermedia document systems. A hypermedia document system is defined as…

  12. Socioeconomic School Segregation in a Market-Oriented Educational System. The Case of Chile

    ERIC Educational Resources Information Center

    Valenzuela, Juan Pablo; Bellei, Cristian; de los Ríos, Danae

    2014-01-01

    This paper presents an empirical analysis of the socioeconomic status (SES) school segregation in Chile, whose educational system is regarded as an extreme case of a market-oriented education. The study estimated the magnitude and evolution of the SES segregation of schools at both national and local levels, and it studied the relationship between…

  13. Democracy in the Israeli Education System: The Case of the English Matriculation Exam

    ERIC Educational Resources Information Center

    Zaher, Rana

    2012-01-01

    This research investigates the extent to which indices of social justice and democratic rights are expressed in Israel in the crucial national English matriculation exam, as perceived by Palestinian Arab high school pupils studying for these exams and their English teachers. The research employed Critical Theory as a paradigm, case study as a…

  14. Agents Control in Intelligent Learning Systems: The Case of Reactive Characteristics

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael

    2006-01-01

    Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…

  15. Surpassing the current limitations of biohydrogen production systems: The case for a novel hybrid approach.

    PubMed

    Boboescu, Iulian Zoltan; Gherman, Vasile Daniel; Lakatos, Gergely; Pap, Bernadett; Bíró, Tibor; Maróti, Gergely

    2016-03-01

    The steadily increase of global energy requirements has brought about a general agreement on the need for novel renewable and environmentally friendly energy sources and carriers. Among the alternatives to a fossil fuel-based economy, hydrogen gas is considered a game-changer. Certain methods of hydrogen production can utilize various low-priced industrial and agricultural wastes as substrate, thus coupling organic waste treatment with renewable energy generation. Among these approaches, different biological strategies have been investigated and successfully implemented in laboratory-scale systems. Although promising, several key aspects need further investigation in order to push these technologies towards large-scale industrial implementation. Some of the major scientific and technical bottlenecks will be discussed, along with possible solutions, including a thorough exploration of novel research combining microbial dark fermentation and algal photoheterotrophic degradation systems, integrated with wastewater treatment and metabolic by-products usage. PMID:26790867

  16. Toward a sustainable regional electricity system: The case of Kangwaon Province in Korea

    NASA Astrophysics Data System (ADS)

    Jung, Inwhan

    Korea's exceptional economic growth for the last three decades has been accompanied by a rapid growth in commercial energy use. While the world increased its total primary energy consumption by 1.7 percent annually during the period between 1971 and 1994, Korea expanded its consumption level by 8.5 percent during the same period. The first quarter of the twenty-first century will be a period when energy consumption in Korea escalates even further, particularly in electricity consumption. This projection raises potential conflicts between Korea's economic growth and Korea's participation in international efforts to reduce greenhouse gas (GHG) emissions (Noh, 1991). A sustainable energy system is likely to promote sustainable development. However, Korea's current electricity system mainly comprised of fossil fuels and nuclear power is unsustainable in the context of energy, environment, and economy (E3). As a means of addressing the problem, this study introduces the country's electricity system shaped by the actions of local regions. How a local region, such as Kangwon Province in Korea, might take steps to mitigate the problems associated with Korea's current electricity system? Reducing regional electricity requirements through end-use efficiency improvements in electric appliances, buildings, and industrial processes is fundamentally important. Decentralized and renewable-oriented electricity supply options are also important to the success of region-based sustainable electricity systems. This dissertation compares environmental and economic benefits between the conventional and sustainable electricity systems to meet electricity requirements in Kangwon Province in the year 2010. The results clearly indicate that the region-based sustainable electricity system gives significant benefits to the Province in terms of energy, economy, and environment. In the final chapter, policy guidelines are developed to implement region-based sustainable electricity plans.

  17. Investigation of the molecular similarity in closely related protein systems: The PrP case study.

    PubMed

    Storchi, Loriano; Paciotti, Roberto; Re, Nazzareno; Marrone, Alessandro

    2015-10-01

    The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid-based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrP(C)) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl(2), both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in-house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure. PMID:26018750

  18. DOE Zero Energy Ready Home Case Study: Nexus EnergyHomes, Frederick, Maryland

    SciTech Connect

    none,

    2013-09-01

    This urban infill community with 24 duplexes, 19 townhomes, and 7 single-family homes features SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. The builder won a 2013 Housing Innovation Award in the production builder category.

  19. Time- and ensemble-averages in evolving systems: the case of Brownian particles in random potentials.

    PubMed

    Bewerunge, Jörg; Ladadwa, Imad; Platten, Florian; Zunke, Christoph; Heuer, Andreas; Egelhaaf, Stefan U

    2016-07-28

    Anomalous diffusion is a ubiquitous phenomenon in complex systems. It is often quantified using time- and ensemble-averages to improve statistics, although time averages represent a non-local measure in time and hence can be difficult to interpret. We present a detailed analysis of the influence of time- and ensemble-averages on dynamical quantities by investigating Brownian particles in a rough potential energy landscape (PEL). Initially, the particle ensemble is randomly distributed, but the occupancy of energy values evolves towards the equilibrium distribution. This relaxation manifests itself in the time evolution of time- and ensemble-averaged dynamical measures. We use Monte Carlo simulations to study particle dynamics in a potential with a Gaussian distribution of energy values, where the long-time limit of the diffusion coefficient is known from theory. In our experiments, individual colloidal particles are exposed to a laser speckle pattern inducing a non-Gaussian roughness and are followed by optical microscopy. The relaxation depends on the kind and degree of roughness of the PEL. It can be followed and quantified by the time- and ensemble-averaged mean squared displacement. Moreover, the heterogeneity of the dynamics is characterized using single-trajectory analysis. The results of this work are relevant for the correct interpretation of single-particle tracking experiments in general. PMID:27353405

  20. High-energy gas fracturing in cased and perforated wellbores

    SciTech Connect

    Cuderman, J.F.

    1986-06-01

    A propellant-based technology, High-Energy Gas Fracturing (HEGF), has been applied to fracturing through perforations in cased boreholes. HEGF is a tailored-pulse fracturing technique originally developed by Sandia National Laboratories for application in uncased, liquid-free gas wells in Appalachian Devonian shales. Because most oil and gas wells are liquid filled as well as cased and perforated, the potential impact of present research is significantly broader. A number of commercial tailored-pulse fracturing services, using a variety of explosives or propellants, are currently available. Present research provides valuable insight into phenomena that occur in those stimulations. The use of propellants that deflagrate or burn rather than detonate, as do high-order explosives, permits controlled buildup of pressure in the wellbore. The key to successful stimulation in cased and perforated wellbores is to control the pressure buildup of the combustion gases to maximize fracturing without destroying the casing. Eight experiments using cased and perforated wellbore were conducted in a tunnel complex at the Department of Energy's Nevada Test Site, which provides a realistic in situ stress environment (4 to 10 MPa (600 to 1500 psi)) and provides access for mineback to directly observe fracturing obtained. Primary variables in the experiments include propellant burn rate and amount of propellant used, presence or absence of liquid in the wellbore, in situ stress orientation, and perforation diameter, density, and phasing. In general, the presence of liquid in the borehole results in a much faster pressure risetime and a lower peak pressure for the same propellant charge. Fracture surfaces proceed outward along lines of perforations as determined by phasing, then gradually turn toward the hydraulic fracture direction. 8 refs., 23 figs., 3 tabs.

  1. Autism, Emotion Recognition and the Mirror Neuron System: The Case of Music

    PubMed Central

    Molnar-Szakacs, Istvan; Wang, Martha J.; Laugeson, Elizabeth A.; Overy, Katie; Wu, Wai-Ling; Piggot, Judith

    2009-01-01

    Understanding emotions is fundamental to our ability to navigate and thrive in a complex world of human social interaction. Individuals with Autism Spectrum Disorders (ASD) are known to experience difficulties with the communication and understanding of emotion, such as the nonverbal expression of emotion and the interpretation of emotions of others from facial expressions and body language. These deficits often lead to loneliness and isolation from peers, and social withdrawal from the environment in general. In the case of music however, there is evidence to suggest that individuals with ASD do not have difficulties recognizing simple emotions. In addition, individuals with ASD have been found to show normal and even superior abilities with specific aspects of music processing, and often show strong preferences towards music. It is possible these varying abilities with different types of expressive communication may be related to a neural system referred to as the mirror neuron system (MNS), which has been proposed as deficient in individuals with autism. Music’s power to stimulate emotions and intensify our social experiences might activate the MNS in individuals with ASD, and thus provide a neural foundation for music as an effective therapeutic tool. In this review, we present literature on the ontogeny of emotion processing in typical development and in individuals with ASD, with a focus on the case of music. PMID:21264050

  2. Using New Instruments of Clustering Policy in the Health Care System. The Case of Poland.

    PubMed

    Romaniuk, Piotr; Holecki, Tomasz; Woźniak-Holecka, Joanna

    2016-01-01

    The issue of clusters as a form of organization of market entities has recently attracted an increasing attention of health care management theoreticians and practitioners. In our opinion the existing theoretical basis gives a foundation for considering clusters as a source of potential for increasing the effectiveness of health policy and health care organizations. It can be assumed that in case of health care clusters there is a possibility of interregional diffusion of innovation, based on ventures undertaken on the health care market, increasing not only the potential of the entities in the cluster, but also of its surroundings and subcontractors. It is possible to realize the idea of a flexible health care implemented regionally with the use of modern techniques of communication, knowledge transfer and high specialization. Nonetheless, in case of Poland the potential of clustrification remains untapped, being characterized by a limited actions of public and private bodies, marginal role of non-profit sector organizations and limited engagement of R&D sector. This is because a general distrust in the cluster formula, and the lack of relevant knowledge among local officials and health business leaders. For this reason the process of clustrification among health care entities requires external support through the increased efforts to create a system of legal and tax preferences for cluster initiatives and provision of organizational support in terms of know-how, targeted particularly at bodies and individuals, who may act as cluster leaders. PMID:27445815

  3. Using New Instruments of Clustering Policy in the Health Care System. The Case of Poland

    PubMed Central

    Romaniuk, Piotr; Holecki, Tomasz; Woźniak-Holecka, Joanna

    2016-01-01

    The issue of clusters as a form of organization of market entities has recently attracted an increasing attention of health care management theoreticians and practitioners. In our opinion the existing theoretical basis gives a foundation for considering clusters as a source of potential for increasing the effectiveness of health policy and health care organizations. It can be assumed that in case of health care clusters there is a possibility of interregional diffusion of innovation, based on ventures undertaken on the health care market, increasing not only the potential of the entities in the cluster, but also of its surroundings and subcontractors. It is possible to realize the idea of a flexible health care implemented regionally with the use of modern techniques of communication, knowledge transfer and high specialization. Nonetheless, in case of Poland the potential of clustrification remains untapped, being characterized by a limited actions of public and private bodies, marginal role of non-profit sector organizations and limited engagement of R&D sector. This is because a general distrust in the cluster formula, and the lack of relevant knowledge among local officials and health business leaders. For this reason the process of clustrification among health care entities requires external support through the increased efforts to create a system of legal and tax preferences for cluster initiatives and provision of organizational support in terms of know-how, targeted particularly at bodies and individuals, who may act as cluster leaders. PMID:27445815

  4. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    NASA Astrophysics Data System (ADS)

    Bahrami, M.; Donadi, S.; Ferialdi, L.; Bassi, A.; Curceanu, C.; di Domenico, A.; Hiesmayr, B. C.

    2013-06-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.

  5. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules.

    PubMed

    Bahrami, M; Donadi, S; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C

    2013-01-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models. PMID:23739609

  6. Disaster preparedness in a complex urban system: the case of Kathmandu Valley, Nepal.

    PubMed

    Carpenter, Samuel; Grünewald, François

    2016-07-01

    The city is a growing centre of humanitarian concern. Yet, aid agencies, governments and donors are only beginning to comprehend the scale and, importantly, the complexity of the humanitarian challenge in urban areas. Using the case study of the Kathmandu Valley, Nepal, this paper examines the analytical utility of recent research on complex urban systems in strengthening scholarly understanding of urban disaster risk management, and outlines its operational relevance to disaster preparedness. Drawing on a literature review and 26 interviews with actors from across the Government of Nepal, the International Red Cross and Red Crescent Movement, non-governmental organisations, United Nations agencies, and at-risk communities, the study argues that complexity can be seen as a defining feature of urban systems and the risks that confront them. To manage risk in these systems effectively, preparedness efforts must be based on adaptive and agile approaches, incorporating the use of network analysis, partnerships, and new technologies. PMID:26578230

  7. Suicides in commuting railway systems: The case of Stockholm county, Sweden.

    PubMed

    Ceccato, Vania; Uittenbogaard, Adriaan

    2016-07-01

    The objective of this study is to understand the spatial and temporal dynamics of suicides in commuting railway environments. Data on suicides in Stockholm commuting railway from 2006 to 2013 was analysed. The study sets out to identify significant clusters in suicides then evaluate whether commuting railway environments affect variations in suicide rates. Fieldwork inspection, spatial cluster techniques (NNHC and Getis-Ord statistics) and regression models underlie the methodology of study. Findings show no seasonality was observed in suicide cases, but winter months concentrate a larger share of events. Suicides do not occur evenly throughout the day but tend to take place more often in weekdays. Modelling findings shows that suicide rates increase with speed trains and decrease where barriers along tracks are installed. Although high speed trains are still a motive of concern for suicide prevention, findings call for a whole railway-approach to safety - one that extends maintenance beyond the platforms and stations' vicinities. PMID:27018939

  8. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  9. Microbial ecology and quality assurance in food fermentation systems. The case of kefir grains application.

    PubMed

    Plessas, S; Alexopoulos, A; Voidarou, C; Stavropoulou, E; Bezirtzoglou, E

    2011-12-01

    Fermentation technology has become a modern method for food production the last decades as a process for enhancing product stability, safety and sensory standards. The main reason for this development is the increasing consumers' demand for safe and high quality food products. The above has led the scientific community to the thorough study for the appropriate selection of specific microorganisms with desirable properties such as bacteriocin production, and probiotic properties. The main food products produced through fermentation activity are bread, wine, beer cheese and other dairy products. The microorganisms conducting the above processes are mainly yeasts and lactic acid bacteria. The end products of carbohydrate catabolism by these microorganisms contribute not only to preservation as it was believed years ago, but also to the flavour, aroma and texture and to the increase of the nutritional quality by thereby helping determine unique product characteristics. Thus, controlling the function of specific microorganisms or the succession of microorganisms that dominate the microflora is therefore advantageous, because it can increase product quality, functionality and value. Throughout the process of the discovery of microbiological diversity in various fermented food systems, the development of starter culture technology has gained more scientific attention, and it could be used for the control of the manufacturing operation, and management of product quality. In the frame of this review the presentation of the quality enhancement of most consumed fermented food products around the world is attempted and the new trends in production of fermented food products, such as bread is discussed. The review is focused in kefir grains application in bread production. PMID:21497663

  10. Bit and Power Allocation in Constrained Multicarrier Systems: The Single-User Case

    NASA Astrophysics Data System (ADS)

    Papandreou, Nikolaos; Antonakopoulos, Theodore

    2007-12-01

    Multicarrier modulation is a powerful transmission technique that provides improved performance in various communication fields. A fundamental topic of multicarrier communication systems is the bit and power loading, which is addressed in this article as a constrained multivariable nonlinear optimization problem. In particular, we present the main classes of loading problems, namely, rate maximization and margin maximization, and we discuss their optimal solutions for the single-user case. Initially, the classical water-filling solution subject to a total power constraint is presented using the Lagrange multipliers optimization approach. Next, the peak-power constraint is included and the concept of cup-limited waterfilling is introduced. The loading problem is also addressed subject to the integer-bit restriction and the optimal discrete solution is examined using combinatorial optimization methods. Furthermore, we investigate the duality conditions of the rate maximization and margin maximization problems and we highlight various ideas for low-complexity loading algorithms. This article surveys and reviews existing results on resource allocation in constrained multicarrier systems and presents new trends in this area.

  11. AGILE/GRID Science Alert Monitoring System: The Workflow and the Crab Flare Case

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Conforti, V.; Parmiggiani, N.

    2013-10-01

    During the first five years of the AGILE mission we have observed many gamma-ray transients of Galactic and extragalactic origin. A fast reaction to unexpected transient events is a crucial part of the AGILE monitoring program, because the follow-up of astrophysical transients is a key point for this space mission. We present the workflow and the software developed by the AGILE Team to perform the automatic analysis for the detection of gamma-ray transients. In addition, an App for iPhone will be released enabling the Team to access the monitoring system through mobile phones. In 2010 September the science alert monitoring system presented in this paper recorded a transient phenomena from the Crab Nebula, generating an automated alert sent via email and SMS two hours after the end of an AGILE satellite orbit, i.e. two hours after the Crab flare itself: for this discovery AGILE won the 2012 Bruno Rossi prize. The design of this alert system is maximized to reach the maximum speed, and in this, as in many other cases, AGILE has demonstrated that the reaction speed of the monitoring system is crucial for the scientific return of the mission.

  12. A Case for Application Oblivious Energy-Efficient MPI Runtime

    SciTech Connect

    Venkatesh, Akshay; Vishnu, Abhinav; Hamidouche, Khaled; Tallent, Nathan R.; Panda, Dhabaleswar; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-10-19

    Power has become the major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the {\\em de facto} communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call --- provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without perturbing application's execution time. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasing use of adaptive, data-dependent workloads combined with system factors (OS noise, congestion) makes this assumption invalid. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models of common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack for maximizing energy efficiency. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used {\\em as soon as possible} --- to maximize energy efficiency. When mis-prediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5--41\\% in comparison to the default approach, with negligible (less than 4\\% in all cases) performance loss.

  13. Photophysical characterization of a photochromic system: The case of merocyanine 540

    SciTech Connect

    Aramendia, P.F. ); Duchowicz, R.; Scaffardi, L.; Tocho, J.O. )

    1990-02-22

    The fluorescence emission of merocyanine 540 (MC540) in 95% ethanol was studied under continuous irradiation. Fluorescence spectra from excited states of both normal (N) and photoisomeric (P) species are identical. The laser fluence dependence of the fluorescence intensity is interpreted on the basis of a photochromic system involving N and P ground states and first excited singlet states. Common flash photolysis equations are generalized in order to include a photoequilibrium between isomers. The emission data are used together with previous flash photolysis and optoacoustic results to obtain P fluorescence and photoisomerization quantum yields as 0.07 {plus minus} 0.02 and 0.20 {plus minus} 0.04, respectively, P absorption cross section at the maximum (560 nm) as 4.74 {times} 10{sup {minus}16} cm{sup 2} (125 {times} 10{sup 3} M{sup {minus}1}{center dot}cm{sup {minus}1}), and the energy difference between the ground states as 165 kJ{center dot}mol{sup {minus}1}.

  14. Challenges of becoming a regional referral system: the University of Kentucky as a case study.

    PubMed

    Edwards, Robert L; Lofgren, Richard P; Birdwhistell, Mark D; Zembrodt, James W; Karpf, Michael

    2014-02-01

    The U.S. health care system must change because of unsustainable costs and limited access to care. Health care legislation and the recognition that health care costs must be curbed have accelerated the change process. How should academic medical centers (AMCs) respond? Teaching hospitals are a heterogeneous group, and the leaders of each must understand their institution's goals and the necessary resources to achieve them. Clinical leaders and staff at one AMC, the University of Kentucky (UK), committed to transforming the AMC into a regional referral center. To achieve this goal, UK leaders integrated the clinical enterprise, focused recruitment on advanced subspecialists, and initiated productive relationships with other providers. Attracting adequate numbers of destination patients with complex illnesses required UK to have a "market space" of five to seven million people. The resources required to effect such progress have been daunting. Relationships with providers and payers have been necessary to forge a network. These relationships have been challenging to establish and manage and have evolved over time. Most AMCs are not-for-profit public good entities that nevertheless exist in an industry driven by competition in quality and cost, and therefore scale and access to capital are paramount. AMC leaders must understand their institutions as both part of an industry and as a public good in order to adapt to the changing health care system. Although the experience of any particular AMC is inherently unique, UK's journey provides a useful case study in establishing institutional goals, outlining a strategy, and identifying required resources. PMID:24362394

  15. Energy Drinks and Myocardial Ischemia: A Review of Case Reports.

    PubMed

    Lippi, Giuseppe; Cervellin, Gianfranco; Sanchis-Gomar, Fabian

    2016-07-01

    The use and abuse of energy drinks (EDs) is constantly increasing worldwide. We performed a systematic search in Medline, Scopus and Web of Science to identify evidence about the potential link between these beverages and myocardial ischemia. Overall, 8 case reports could be detected, all of which described a realistic association between large intake of EDs and episodes of myocardial ischemia. Interestingly, no additional triggers of myocardial ischemia other than energy drinks could be identified in the vast majority of cases. Some plausible explanations can be brought in support of this association. Most of the biological effects of EDs are seemingly mediated by a positive inotropic effect on cardiac function, which entails increase in heart rate, cardiac output and contractility, stroke volume and arterial blood pressure. Additional biological abnormalities reported after EDs intake include increased platelet aggregation, endothelial dysfunction, hyperglycemia as well as an increase in total cholesterol, triglycerides and low-density lipoprotein cholesterol. Although a causal relationship between large consumption of EDs and myocardial ischemia cannot be definitely established so far, concerns about the cardiovascular risk of excessive consumption of these beverages are seemingly justified. PMID:26320007

  16. Impact of global health governance on country health systems: the case of HIV initiatives in Nigeria

    PubMed Central

    Chima, Charles Chikodili; Homedes, Nuria

    2015-01-01

    Background Three global health initiatives (GHIs) – the US President’s Emergency Plan for AIDS Relief, the Global Fund to Fight AIDS, Tuberculosis and Malaria, and the World Bank Multi–Country HIV/AIDS Program – finance most HIV services in Nigeria. Critics assert that GHIs burden fragile health systems in resource–poor countries and that health system limitations in these countries constrain the achievement of the objectives of GHIs. This study analyzed interactions between HIV GHIs and the Nigerian Health System and explored how the impact of the GHIs could be optimized. Methods A country case study was conducted using qualitative methods, including: semi–structured interviews, direct observation, and archival review. Semi–structured interviews were held with key informants selected to reach a broad range of stakeholders including policymakers, program managers, service providers, representatives of donor agencies and their implementing partners; the WHO country office in Nigeria; independent consultants; and civil society organizations involved in HIV work. The fieldwork was conducted between June and August 2013. Findings HIV GHIs have had a mixed impact on the health system. They have enhanced availability of and access to HIV services, improved quality of services, and strengthened health information systems and the role of non–state actors in health care. On the negative end, HIV donor funding has increased dependency on foreign aid, widened disparities in access to HIV services, done little to address the sustainability of the services, crowded out non–HIV health services, and led to the development of a parallel supply management system. They have also not invested significantly in the production of new health workers and have not addressed maldistribution problems, but have rather contributed to internal brain drain by luring health workers from the public sector to non–governmental organizations and have increased workload for

  17. Family burden of schizophrenic patients and the welfare system; the case of Cyprus

    PubMed Central

    2013-01-01

    Background The shift from asylum to community care for mental health patients has burdened the providers of primary health care and, more than all, families. As a result, numerous studies [Soc Psychiatry Psychiatr Epidemiol 31:345–348, 1995, J Health Socisl Behav 36:138–150, 1995] have focused on the burden of care experienced by family members living with individuals with severe mental disorders. This kind of provision, also extols a significant cost to the society at large in terms of significant direct and indirect costs. A cost that may be even higher in times of severe socio-economic crisis. Methodology This study, firstly, aims to examine the burden that the family members experience by caring for individuals with schizophrenia and the identification of the parameters, in a micro and macro level, that affect family burden. Secondly, this study aims to investigate whether the welfare state will be fit to help vulnerable groups as the one studied, especially during economic crisis periods when austerity measures are being implemented into welfare systems. For data collection purposes this study employed the Involvement Evaluation Questionnaire [Schizophr Bull 1998, 24(4):609–618]. The sample consisted of caregivers either living in rural or urban areas of the district of Nicosia, the capital of the Republic of Cyprus. These people were attending regular meetings with their allocated Community Psychiatric Nurses (CPN) in Community Mental Health Centres (CMHC). Results Analysis of covariance (ANCOVA) was applied with the tension, the supervision, the worry, and the encouragement entering as dependent factors. In each case, participant’s age, gender, marital status, income, number of people living in the same house with the participant, degree of relationship between the caregiver and the person suffering from severe mental disorder, the age of the relative, and the gender of the relative, were entered as independent factors. Four ANCOVAs were performed

  18. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals. PMID:21105699

  19. Power/energy use cases for high performance computing.

    SciTech Connect

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  20. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    SciTech Connect

    Uranga-Piña, L.; Tremblay, J. C.

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  1. Alternative Energy Science and Policy: Biofuels as a Case Study

    NASA Astrophysics Data System (ADS)

    Ammous, Saifedean H.

    This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to alleviate the impacts of climate change and their relative efficacy. Three case studies of policy-making on biofuels in the European Union, United States of America and Brazil are presented and discussed. It is found that these policies have had large unintended negative consequences and that they relied on Lifecycle Analysis studies that had concluded that increased biofuels production can help meet economic, energy and environmental goals. A close examination of these Lifecycle Analysis studies reveals that their results are not conclusive. Instead of continuing to attempt to find answers from Lifecycle Analyses, this study suggests an alternative approach: formulating policy based on recognition of the ignorance of real fuel costs and pollution. Policies to combat climate change are classified into two distinct approaches: policies that place controls on the fuels responsible for emissions and policies that target the pollutants themselves. A mathematical model is constructed to compare these two approaches and address the central question of this study: In light of an ignorance of the cost and pollution impacts of different fuels, are policies targeting the pollutants themselves preferable to policies targeting the fuels? It is concluded that in situations where the cost and pollution functions of a fuel are unknown, subsidies, mandates and caps on the fuel might result in increased or decreased greenhouse gas emissions; on the other hand, a tax or cap on carbon dioxide results in the largest decrease possible of greenhouse gas emissions. Further, controls on greenhouse gases are shown to provide incentives for the development and advancement of cleaner alternative energy options, whereas controls on the fuels are shown to provide equal incentives to the development of cleaner and dirtier

  2. Productivity of "Collisions Generate Heat" for Reconciling an Energy Model with Mechanistic Reasoning: A Case Study

    ERIC Educational Resources Information Center

    Scherr, Rachel E.; Robertson, Amy D.

    2015-01-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a…

  3. Sustainability assessment and comparison of waste management systems: The Cities of Sofia and Niš case studies.

    PubMed

    Milutinović, Biljana; Stefanović, Gordana; Kyoseva, Vanya; Yordanova, Dilyana; Dombalov, Ivan

    2016-09-01

    Sustainability assessment of a waste management system is a very complex problem for numerous reasons. Firstly, it is a problem of environmental assessment, economic viability and social acceptability, and also a choice of the most practical waste treatment technique, taking into account all the specific areas in which a waste management system is implemented. For these reasons, among others, it is very important to benchmark, cooperate and exchange experiences in areas with similar characteristics. In this study, a comparison of waste management scenarios in the Cities of Niš and Sofia was performed. Based on the amount and composition of municipal solid waste, and taking into account local specifics (economic conditions, social acceptance, etc.), different scenarios were developed: landfilling without energy recovery, landfilling with energy recovery, mechanical-biological treatment, anaerobic digestion with biogas utilization and incineration with energy recovery. Scenario ranking was done using multi-criteria analysis and 12 indicators were chosen as the criteria. The obtained results show that the most sustainable scenario in both case studies is the mechanical-biological treatment (recycling, composting and Refuse Derived Fuel production). Having in mind that this scenario is the current waste management system in Sofia, these results can help decision-makers in the City of Niš in choosing a successful and sustainable waste management system. PMID:27357562

  4. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  5. DOE Zero Energy Ready Home Case Study: Durable Energy Builders - Houston, Texas

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Houston, Texas, that scored HERS 39 without PV and HERS 29 with PV. This 5,947 ft2 custom home has 11.5-inch ICF walls. The attic is insulated along the roof line with 5 to 7 inches of open-cell spray foam. Most of the home's drinking water is supplied by a 11,500-gallon rainwater cistern. Hurricane strapping connects the roof to the walls. The triple-pane windows are impact resistant. The foundation is a raised slab.

  6. The Case for the Large Scale Development of Solar Energy

    ERIC Educational Resources Information Center

    O'Reilly, S. A.

    1977-01-01

    Traces the history of solar energy development. Discusses global effects (temperature, particle and other pollution) of burning fossil fuels. Provides energy balance equations for solar energy distribution and discusses flat plate collectors, solar cells, photochemical and photobiological conversion of solar energy, heat pumps. (CS)

  7. Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model

    NASA Astrophysics Data System (ADS)

    Ochoa, Maicol A.; Bruch, Anton; Nitzan, Abraham

    2016-07-01

    We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations [Phys. Rev. B 89, 161306 (2014), 10.1103/PhysRevB.89.161306; Phys. Rev. B 93, 115318 (2016), 10.1103/PhysRevB.93.115318] have found, for a resonant electronic level interacting with a thermal free-electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem and the bath. However, the general implications of this approach were questioned [Phys. Rev. B 92, 235440 (2015), 10.1103/PhysRevB.92.235440]. Here, we show that, already at equilibrium, such splitting fails to describe the energy fluctuations, as measured here by the second and third central moments (namely, width and skewness) of the energy distribution. Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by such splitting.

  8. CO/sub 2/ and the world energy system: The role of nuclear power

    SciTech Connect

    Fulkerson, W.; Jones, J.E. Jr.

    1989-01-01

    The greenhouse effect, and other transnational and global environment, health and safety issues, require energy system planning on an international scale. Consideration of equity between nations and regions, particularly between the industrialized and developing countries, is an essential ingredient. For the immediate future, the next several decades at least, fossil fuels will remain the predominant energy sources. More efficient use of energy seems to be the only feasible strategy for the near to mid-term to provide growing energy services for the world economy while moderating the increasing demand for fossil fuels. In the longer term, nonfossil sources are essential for a sustainable world energy system, and nuclear power can play an important, if not dominant, role. The challenge is to design and implement a safe and economic nuclear power world enterprise which is socially acceptable and is complimentary to other nonfossil sources. The elements of such an enterprise seem clear and include: much safer reactors, preferably passively safe, which can be developed at various scales; development of economic resource extension technologies; effective and permanent waste management strategies; and strengthened safeguards against diversion of nuclear materials to weapons. All of these elements can best be developed as cooperative international efforts. In the process, institutional improvements are equally as important as technological improvements; the two must proceed hand-in-hand. 14 refs., 4 figs., 1 tab.

  9. Evaluating the economic costs, benefits and tradeoffs of dedicated biomass energy systems: The importance of scale

    SciTech Connect

    Graham, R.L.; Walsh, M.E.

    1995-12-31

    The economic and environmental costs, benefits and tradeoffs of bioenergy from dedicated biomass energy systems must be addressed in the context of the scale of interest. At different scales there are different economic and environmental features and processes to consider. The depth of our understanding of the processes and features that influence the potential of energy crops also varies with scale as do the quality and kinds of data that are needed and available. Finally, the appropriate models to use for predicting economic and environmental impacts change with the scale of the questions. This paper explores these issues at three scales - the individual firm, the community, and the nation.

  10. Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective

    PubMed Central

    2016-01-01

    Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work (w) and minimize the generation of waste heat (q). Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale but rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4. PMID:27413781

  11. Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective.

    PubMed

    Abraham, Alyson; Housel, Lisa M; Lininger, Christianna N; Bock, David C; Jou, Jeffrey; Wang, Feng; West, Alan C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2016-06-22

    Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work (w) and minimize the generation of waste heat (q). Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale but rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4. PMID:27413781

  12. A Case Study of What Experiences Contribute to the Ideas of Energy Held by Primary School Students in Trinidad and Tobago

    ERIC Educational Resources Information Center

    Maharaj-Sharma, Rawatee; Sharma, Amrit

    2014-01-01

    This case study explored what experiences contribute to the ideas of energy held by 30 purposively selected primary school students from one primary school in Trinidad and Tobago. The 30 students were selected from across all levels of the primary system. The study used the Interview About Events (IAE) approach to explore students' ideas about…

  13. Dynamic transition in Landau-Zener-Stückelberg interferometry of dissipative systems: The case of the flux qubit

    NASA Astrophysics Data System (ADS)

    Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José

    2016-02-01

    We study Landau-Zener-Stückelberg (LZS) interferometry in multilevel systems coupled to an Ohmic quantum bath. We consider the case of superconducting flux qubits driven by a dc+ac magnetic fields, but our results can apply to other similar systems. We find a dynamic transition manifested by a symmetry change in the structure of the LZS interference pattern, plotted as a function of ac amplitude and dc detuning. The dynamic transition is from an LZS pattern with nearly symmetric multiphoton resonances to antisymmetric multiphoton resonances at long times (above the relaxation time). We also show that the presence of a resonant mode in the quantum bath can impede the dynamic transition when the resonant frequency is of the order of the qubit gap. Our results are obtained by a numerical calculation of the finite time and the asymptotic stationary population of the qubit states, using the Floquet-Markov approach to solve a realistic model of the flux qubit considering up to ten energy levels.

  14. Energy in municipal-wastewater treatment: an energy-audit procedure and supporting data base. Case examples. Appendix B

    SciTech Connect

    Not Available

    1986-07-01

    This case example illustrates the application of the energy-estimation procedures to a 0.5 MGD wastewater treatment facility utilizing a trickling-filter system with anaerobic in the intermountain area of the United States.

  15. NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

  16. The Energy Crisis and the Media: Some Case Histories.

    ERIC Educational Resources Information Center

    Schmertz, Herbert

    The five case histories presented in this paper discuss the relations of the Mobil Oil Corporation with various news media since 1973, particularly the difficulties that the oil industry has faced in communicating with and through the news media. The case histories deal with the following topics; news stories about tankers allegedly waiting…

  17. Regional aspects of the energy crisis: East European case study

    SciTech Connect

    Merkin, V.O.

    1985-01-01

    The energy crisis occurring in Eastern Europe owes much to the Stalinist model of energy-intensive industrialization applied to a basically energy short region still partially isolated from the world energy market. Systemic factors are thus much more important than in the West. Due to this, solutions to the energy crisis in the East of Europe, be it through supply augmentation or conservation, belong as much in the sphere of politics and ideology as they do in the sphere of economics. The dissertation examines in a systematic manner the evolution and prospects of the energy economy in the region (Chapter 1), the present sectoral pattern of energy consumption (Chapter 2), and conversion (thermo-electric conversion in Chapter 3 and oil refining in Chapter 4). Four subsequent chapters are devoted to individual energy-consuming sectors such as industry, transportation, agriculture, and households. Finally, the potential and problems of energy conservation in Eastern Europe are analyzed in the context of broader economic policies and concerns of the states of the region. In the conclusion, topics in the energy economy of Eastern Europe requiring further study are outlined.

  18. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St.Paul, Minnesota; DOE Zero Energy Ready Home Case Study, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-06-01

    For this project Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to approach zero energy in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout rambler with all the creature comforts.

  19. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect

    Not Available

    1980-03-01

    The Woodlands is a HUD Title VII New Town located near Houston, including 22,000 acres; the plan for the new town consists of 6 residential villages, a town center (Metro), and a Trade Center for larger-scale industrial use. Included within the program for each village are schools and commercial activities, as well as employment activities. The Woodlands is planned to be developed over a 26-year period (commenced in 1972) with an ultimate population of 150,000. Following a summary chapter, Chapter II presents background material on The Woodlands and results of the study are summarized. Chapter III describes the project team and its organizational structure. Chapter IV outlines and documents the methodology that was employed in developing, analyzing, and evaluating the case study. The next chapter describes and analyzes the conventional plan, documents the process by which energy-conserving methods were selected, and evaluates the application of these methods to the Metro Center Study area. Chapter VI discusses constraints to implementation and is followed by a final chapter that presents the general conclusions from the case study and suggests directions for further investigation.

  20. Softdesk energy: A case study in early design tool integration

    SciTech Connect

    Gowri, K.; Chassin, D.P.; Friedrich, M.

    1998-04-01

    Softdesk Energy is a design tool that integrates building energy analysis capability into a highly automated production drafting environment (AutoCAD and Softdesk AutoArchitect). This tool provides users of computer aided software the opportunity to evaluate the aided design/drafting (CAD) energy impact of design decisions much earlier in the design process than previously possible with energy analysis software. The authors review the technical challenges of integrating analytic methods into design tools, the opportunities such integrated tools create for building designers, and a usage scenario from the perspective of a current user of Softdesk Energy. A comparison between the simplified calculations in Softdesk Energy and detailed simulations using DOE-2 energy analysis is made to evaluate the applicability of the Softdesk Energy approach. As a unique example of integrating decision and drafting, Softdesk Energy provides an opportunity to study the strengths and weaknesses of integrated design tools and gives some insight into the future direction of the CAD software towards meeting the needs of diverse design disciplines.

  1. Energy dissipation in heavy systems: the transition from quasi-elastic to deep-inelastic scattering

    SciTech Connect

    Rehm, K.E.; van den Berg, A.; Kolata, J.J.; Kovar, D.G.; Kutschera, W.; Rosner, G.; Stephans, G.S.F.; Yntema, J.L.; Lee, L.L.

    1984-01-01

    The interaction of medium mass projectiles (A = 28 - 64) with /sup 208/Pb has been studied using a split-pole spectrograph which allows single mass and charge identification. The reaction process in all systems studied so far is dominated by quasi-elastic neutron transfer reactions, especially at incident energies in the vicinity of the Coulomb barrier. In addition to the quasi-elastic component deep inelastic contributions are present in all reaction channels. The good mass and charge separation allows to generate Wilczynski plots for individual channels; for the system /sup 48/Ti + /sup 208/Pb we observe that the transition between the quasi-elastic and deep-inelastic reactions occurs around Q = -(30 to 35) MeV.

  2. Practicing Sustainability in an Urban University: A Case Study of a Behavior Based Energy Conservation Project

    ERIC Educational Resources Information Center

    Chan, Stuart; Dolderman, Dan; Savan, Beth; Wakefield, Sarah

    2012-01-01

    This case study of the University of Toronto Sustainability Office's energy conservation project, Rewire, explores the implementation of a social marketing campaign that encourages energy efficient behavior. Energy conservation activities have reached approximately 3,000 students and staff members annually, and have saved electricity, thermal…

  3. The case for energy harvesting on wildlife in flight

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; MacCurdy, Robert; Shipley, J. Ryan; Winkler, David; Guglielmo, Christopher G.; Garcia, Ephrahim

    2015-02-01

    The confluence of advancements in microelectronic components and vibrational energy harvesting has opened the possibility of remote sensor units powered solely from the motion of their hosts. There are numerous applications of such systems, including the development of modern wildlife tracking/data-logging devices. These ‘bio-logging’ devices are typically mass-constrained because they must be carried by an animal. Thus, they have historically traded scientific capability for operational longevity due to restrictions on battery size. Recently, the precipitous decrease in the power requirements of microelectronics has been accompanied by advancements in the area of piezoelectric vibrational energy harvesting. These energy harvesting devices are now capable of powering the type of microelectronic circuits used in bio-logging devices. In this paper we consider the feasibility of employing these vibrational energy harvesters on flying vertebrates for the purpose of powering a bio-logging device. We show that the excess energy available from birds and bats could be harvested without adversely affecting their overall energy budget. We then present acceleration measurements taken on flying birds in a flight tunnel to understand modulation of flapping frequency during steady flight. Finally, we use a recently developed method of estimating the maximum power output from a piezoelectric energy harvester to determine the amount of power that could be practically harvested from a flying bird. The results of this analysis show that the average power output of a piezoelectric energy harvester mounted to a bird or bat could produce more than enough power to run a bio-logging device. We compare the power harvesting capabilities to the energy requirements of an example system and conclude that vibrational energy harvesting on flying birds and bats is viable and warrants further study, including testing.

  4. Battery energy storage systems life cycle costs case studies

    SciTech Connect

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  5. Building America Case Study: New Town Builders' Power of Zero Energy Center, Denver, Colorado (Brochure)

    SciTech Connect

    Not Available

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a 'Power of Zero Energy Center' linked to its model home in the Stapleton community of Denver. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. The case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  6. Higher Education Pushes for Energy Education: GVSU Case Study

    SciTech Connect

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP).

  7. The energy cost of water independence: the case of Singapore.

    PubMed

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency. PMID:25225924

  8. Thoracic compression fractures as a result of shock from a conducted energy weapon: a case report.

    PubMed

    Winslow, James E; Bozeman, William P; Fortner, Michael C; Alson, Roy L

    2007-11-01

    The Taser is an electrical conducted energy weapon used by law enforcement officers throughout the United States and the world. Though generally regarded as safe, conducted energy weapons can produce injuries. In this case report we describe for the first time thoracic spine compression fractures resulting from a conducted energy weapon discharge. Physicians who may care for patients who have been exposed to a conducted energy weapon discharge should be aware of this as a possible complication. PMID:17826867

  9. Enabling Business Processes through Information Management and IT Systems: The FastFit and Winter Gear Distributors Case Studies

    ERIC Educational Resources Information Center

    Kesner, Richard M.; Russell, Bruce

    2009-01-01

    The "FastFit Case Study" and its companion, the "Winter Gear Distributors Case Study" provide undergraduate business students with a suitable and even familiar business context within which to initially consider the role of information management (IM) and to a lesser extent the role of information technology (IT) systems in enabling a business.…

  10. The Canadian Legal System, the Robert Latimer Case, and the Rhetorical Construction of (Dis)ability: "Bodies that Matter?"

    ERIC Educational Resources Information Center

    Hayward, Sally

    2009-01-01

    This paper considers Judge Ted Noble's 1997 ruling of the Latimer case in terms of how it rhetorically constructs and privileges the normal, able-bodied status quo, while, at the same time, deconstructs and positions as inferior the "abnormal," dis-abled minority. In this case, Noble not only took the unprecedented step of granting Robert…

  11. Energy planning in developing countries - the Turkish case

    SciTech Connect

    Gunduz, D.H.

    1985-01-01

    Since energy shortcomings promise to have serious economic, political, and social consequences, energy planning should constitute the most important aspect of overall development planning in developing countries. Turkey, an energy-important developing country, presently depends heavily on imported petroleum. The increases in international petroleum prices have affected the Turkish economy adversely, and promises to be the same in the future unless dependence on imported petroleum is reduced by substituting other resources for petroleum. Taking into account the degree of the present Turkish economic development and the level of industrialization attained, and the direction Turkish economy is heading in general, electricity from nuclear power plants, along with the development and use of other energy resources is found to be the most suitable substitute in this study. This is in contradiction with the present official policy of utilizing domestic lignite and hydro resources. Energy self-sufficiency at any cost does not seem to be a possibility for in the near future in Turkey, neither is it as vitally important as has been strived for the past. Nuclear fuels, supplied in part from domestic sources and also from Western nations, of which Turkey is a partner, will reduce Turkey's economic and political vulnerability.

  12. A mixed bag: The economic case for renewable energy

    SciTech Connect

    Brower, M.C.; Tennis, M.W.; Denzler, E.W.

    1994-05-01

    Large amounts of renewable energy, including solar, wind, and biomass (wood and plant matter), are available for generating electricity throughout the United States. In some states - especially those in the West and Midwest - the wind and biomass potential alone far exceeds current and foreseeable electricity demand. Moreover, since the 1970s, renewable energy technologies have come down dramatically in cost and have established an impressive record of reliability in grid- and nongrid-connected applications. Despite their promise, however, renewable energy sources are for the most part ignored in utility resource plans. One obstacle is a lack of reliable information about renewable resources and technologies, a problem that is slowly being overcome. Just as important, however, most utility planners fail to recognize the substantial economic benefits of adding renewable energy to their resource mix. In a time of uncertainty about customer load growth, fuel prices, and environmental regulation, renewable energy sources can represent a sound insurance policy against financial losses for utilities and customers alike.

  13. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect

    Not Available

    1980-03-01

    Appendix II of The Woodlands Metro Center Energy Study near Houston consists of the following: Metro Center Program, Conventional Plan Building Prototypes and Detail Parcel Analysis, Energy Plan Building Prototypes, and Energy Plan Detail Parcel Analysis.

  14. Steel: Reducing BOF Hood Scrubber Energy Costs at a Steel Mill (Technical Case Study)

    SciTech Connect

    Ericksen, E.

    1999-01-27

    This OIT Technical Case Study reveals how Bethlehem Steel Corporation, by installing a variable-frequency drive and making associated equipment modifications, was able to save energy, reduce operational costs, and decrease system maintenance.

  15. Before it's too late: a scientist's case for nuclear energy

    SciTech Connect

    Cohen, B.L.

    1983-01-01

    Up to now the truth about nuclear energy has been consistently distorted to the public. Here a scientist--unaffiliated with the nuclear industry or the government, and the 1981 recipient of the American Physical Society Bonner Prize for basic research in nuclear physics--explains to the layman how dangerous radiation from a nuclear reactor really is; what actually happened at Three Mile Island; how risks of different sources of energy compare with risks of everyday life; why nuclear waste is very much less hazardous than the waste from coal burning or solar energy; what scientists truly think about radiation hazards, as revealed by a new poll published for the first time; and how time is running out for an inexpensive nuclear program. What originated as a scientific question has turned into a political controversy steeped in propaganda. If nothing is done soon to promote a nuclear energy program, electricity in the United States will cost twice as much as it does in Europe.

  16. New Technologies for Energy Improvements: Two Case Studies

    ERIC Educational Resources Information Center

    Christensen, John; Posey, Mike

    2011-01-01

    This article describes how two institutions in the U.S. Southwest--Albuquerque Academy in New Mexico and Pima Community College (PCC) in Arizona--have implemented new energy projects on their campuses. Albuquerque Academy's one-megawatt DC photovoltaic solar array is one of the largest secondary schools projects to date in the United States. The…

  17. Energy Efficiency of Higher Education Buildings: A Case Study

    ERIC Educational Resources Information Center

    Soares, Nelson; Pereira, Luísa Dias; Ferreira, João; Conceição, Pedro; da Silva, Patrícia Pereira

    2015-01-01

    Purpose: This paper aims to propose an energy efficiency plan (with technical and behavioural improvement measures) for a Portuguese higher education building--the Teaching Building of the Faculty of Economics of the University of Coimbra (FEUC). Design/methodology/approach: The study was developed in the context of both the "Green…

  18. Innovation in energy systems: a case study of gasoline rationing

    SciTech Connect

    Sullivan, M.C.

    1981-01-01

    The purpose of the study is to develop a theoretical understanding of the implementation of new programs (innovations) by organizations, verify concepts with a case study of gasoline rationing, and apply knowledge gained to an analysis of the Standby Gasoline Rationing Plan. Major hypotheses of the study are: (1) Role specialization is required during the initial stage of implementation. (2) Decentralization is required during the initial stage of implementation. (3) Role specialization hinders implementation during the later stage. (4) Centralization is required during the later stage of implementation. The concept of technology delivery system is employed to demonstrate how organizational structure (degree of specialization centralization, etc.) is related to technological requirements and social need. The four major hypotheses were verified with the innovation theory as well as the case study of rationing. Application to the Standby Gasoline Rationing Plan leads to the conclusion that major problems would occur with plan implementation.

  19. Energy from sawmill waste in Honduras: Teupasenti case study

    SciTech Connect

    Wimberly, J.; Holloman, B.

    1993-01-01

    A 1991 A.I.D.-funded study (PN-ABH-607) documented the economic and environmental potential of using wastes from Honduras's sawmills as an energy source. The follow-up study assesses the economic viability of six alternative wastewood energy system configurations for a representative small sawmill, Maderas de Oriente, located in Teupasenti, El Paraiso Department. Of the six systems, three are designed for electricity production only during peak demand hours and three are designed for continuous electricity generation with output maximized during peak hours. Four of the configurations include steam-heated lumber drying techniques, with two different kiln designs considered. All of the systems utilize all of the wastewood produced by the sawmill.

  20. Energy-conserving site design: case study, The Woodlands, Texas

    SciTech Connect

    Swanson, M

    1980-03-01

    The Woodlands is a HUD Title VII New Town located north of Houston. It includes 22,000 acres and the plan for the new town consists of 6 residential villages, a town center called the Metro Center and several additional tracts, such as the Trade Center for larger-scale industrial use. Each village is to be structured around one large and several supporting neighborhood centers. Ultimate population is planned to be 150,000. Included in this report are sections on background, team structure and organization, methodological considerations, the conventional and energy-conserving plan, constraints to implementation, and general conclusions and next phases.

  1. Existing Whole-House Solutions Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon

    SciTech Connect

    none,

    2011-12-01

    This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 100-year-old home in Portland, Oregon, audited by Pacific Northwest National Laboratory for a deep energy retrofit. New HVAC and extensive insulation upgrades including rigid XPS and new siding over the old lead painted siding, and EPS on the basement walls and in cathedral ceiling helped bring HERS down to 68.

  2. Case history studies of energy conservation improvements in the dairy industry

    SciTech Connect

    Not Available

    1982-06-01

    Presented are ten case histories about energy-efficient technologies implemented by the dairy industry. For each case is presented: the name and location of the company, and its product line; energy consumption and costs at the plant before and after implementation of energy-conserving technology; the factors that prompted the investment; and product quality as a result of the new equipment. The measures presented are: refrigeration compressor replacement, turbulators in boiler tubes, stack exchange on boilers, reverse osmosis, six-effect evaporator, multi-effect evaporator with thermal vapor recompressor, spray dryer heat recovery, efficient compressor operations, mechanical vapor recompression evaporator, preheated spray dryer air with recoverable waste heat. (LEW)

  3. Case Studies on the Effectiveness of State Financial Incentives for Renewable Energy

    SciTech Connect

    2002-09-01

    September 2002 · NREL/SR-620-32819 Case Studies on the Effectiveness of State Financial Incentives for Renewable Energy S. Gouchoe, V. Everette, and R. Haynes North Carolina State University Raleigh, North Carolina National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute · Battelle · Bechtel Contract No. DE-AC36-99-GO10337 September 2002 · NREL/SR-620-32819Case Studies on the Effecti

  4. Case studies of energy efficiency financing in the original five pilot states, 1993-1996

    SciTech Connect

    Farhar, B C; Collins, N E; Walsh, R W

    1997-05-01

    The purpose of this report is to document progress in state-level programs in energy efficiency financing programs that are linked with home energy rating systems. Case studies are presented of programs in five states using a federal pilot program to amortize the costs of home energy improvements. The case studies present background information, describe the states` program, list preliminary evaluation data and findings, and discuss problems and solution encountered in the programs. A comparison of experiences in pilot states will be used to provide guidelines for program implementers, federal agencies, and Congress. 5 refs.

  5. Energy for rural development: a case study in Bihar, India

    SciTech Connect

    Hurst, C.

    1983-01-01

    This thesis analyses the feasibility of various sources of energy for the development of agriculture on the Indian subcontinent. There is a large potential for futher use of groundwater for irrigation in the northeast Indian plains and this study examines the trade-off between the benefits to agriculture of irrigation and the costs of the energy and equipment required for pumping. A linear programming model has been developed to predict the general equilibrium state of the economy of Pulkahi, a typical poor village in the Indian State of Bihar. This model has been used to predict the effects on agricultural production of various technological endowments. Four different methods of pumping water were considered in detail. These were: diesel engines fueled with diesel oil, diesel engines with biogas plants fueled with dung, diesel engines with gasifiers fueled with residues or wood, and animal powered pumps. Gasifiers convert wood or residues to a combustible gas (primarily hydrogen and carbon monoxide) through a process of partial combustion. Biogas plants use anaerobic decomposition to produce methane. Only small size pumps suitable for use by individual farmers, or small cooperatives were considered. As most biomass is already used for some purpose (e.g. fertilizer, fuel) special attention was given to the balance of nitrogen within the village system.

  6. Ten case history studies of energy efficiency improvements in pulp and paper mills. Final report

    SciTech Connect

    Not Available

    1981-01-01

    The ten technologies chosen for case history development are: sonic sootblowing in boilers, boiler operation on oil-water emulsified fuel, energy efficient motors, computerized control of excess air for boilers, boiler control and load allocation, driving of waste-activated sludge by multiple effect evaporation, pre-drying of hog fuel, lime kiln computerization, heat wheel for process heat recovery, and organic Rankine bottoming cycle for thermomechanical pulping heat recovery. For each case study, there is given: the company name, employee contact, plant summary, a description of the energy consuming process and of the energy-saving action, an assessment of energy savings, and the decision process leading to the adoption of the measure. A data summary for discounted cash flow analysis is tabulated for each case. (LEW)

  7. Energy Conversion Chain Analysis of Sustainable Energy Systems: A Transportation Case Study

    ERIC Educational Resources Information Center

    Evans, Robert L.

    2008-01-01

    In general terms there are only three primary energy sources: fossil fuels, renewable energy, and nuclear fission. For fueling road transportation, there has been much speculation about the use of hydrogen as an energy carrier, which would usher in the "hydrogen economy." A parallel situation would use a simple battery to store electricity…

  8. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    SciTech Connect

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  9. Energy education on the move: A national energy education survey and case studies of outstanding programs

    SciTech Connect

    Harrigan, M.

    1992-03-01

    Energy education, defined as communication that is designed to influence people's energy usage, has been conducted in one form or another by a wide range of organizations since long before the energy crisis of 1973. Energy education is undertaken by a broad range of public, private, non-profit and utility organizations for a variety of purposes. Each program has a unique message, audience and objectives. Although many energy education programs are still in the early stages of development, some of the programs have been evaluated and show promising results. In an effort to consolidate, describe, and communicate information about the broad range of energy education efforts in this country, a survey was conducted. The surveys were developed to determine who provides energy education, what methods they use, and whether they evaluate the results. The results of the surveys are described and analyzed in the second section of this three-tiered report.

  10. Energy education on the move: A national energy education survey and case studies of outstanding programs

    SciTech Connect

    Harrigan, M.

    1992-03-01

    Energy education, defined as communication that is designed to influence people`s energy usage, has been conducted in one form or another by a wide range of organizations since long before the energy crisis of 1973. Energy education is undertaken by a broad range of public, private, non-profit and utility organizations for a variety of purposes. Each program has a unique message, audience and objectives. Although many energy education programs are still in the early stages of development, some of the programs have been evaluated and show promising results. In an effort to consolidate, describe, and communicate information about the broad range of energy education efforts in this country, a survey was conducted. The surveys were developed to determine who provides energy education, what methods they use, and whether they evaluate the results. The results of the surveys are described and analyzed in the second section of this three-tiered report.

  11. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    NASA Astrophysics Data System (ADS)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  12. Solar energy system case study: Telex Communications, Blue Earth, Minnesota

    SciTech Connect

    Raymond, M.G.

    1984-09-01

    A study is made of a solar energy system for space heating a 97,000-square-foot office, factory, and warehouse building owned by Telex Communications, Inc. in Blue Earth, Minnesota. The solar system has 11,520 square feet of ground-oriented flat-plate collectors and a 20,000-gallon storage tank inside the building. Freeze protection is by drainback. Solar heated water from the storage tank circulates around the clock throughout the heating season to heating coils in the ducts. The system achieves its design solar fraction, is efficient, and generally reliable, but not cost-effective. Performance data for the solar system was collected by the National Solar Data Network for three heating seasons from 1978 to 1981. Because of a freeze-up of the collector array in December 1978, the solar system was only partially operational in the 1978 to 1979 heating season. The data in this report were collected in the 1979 to 1980 and 1980 to 1981 heating seasons.

  13. Measuring savings in energy savings performance contracts using in-place energy management systems -- A case study

    SciTech Connect

    Heinemeier, K.E.; Akbari, H.; Kromer, S.

    1996-08-01

    Energy Management Control Systems (EMCSs) have been used in many projects as a monitoring device to provide information necessary for estimating savings from efficiency measures. This paper discusses a case study that looked in great depth at that use for evaluating savings in Energy Savings Performance Contracting (ESPC). ESPC is one of the increasingly important mechanisms for profiting from energy efficiency in commercial buildings. With ESPC, a contractor finances and installs energy-conversion measures, and the resulting savings in energy bills are shared between the contractor and the building owner. Hence, the method used for determining savings is key to the success of this financing scheme. As a part of their effort to establish measurement and verification methods, the Federal Energy Management Program (FEMP) carried out a pilot study of ESPC, and the EMCS was used in the savings verification for this ESPC contract. This case study also serves as a detailed and quantitative comparison of EMCS and conventional monitoring techniques, according to the guidelines developed in earlier work. This paper discusses the concept of different levels of monitoring savings for ESPC and presents an assessment of the use of EMCS for these levels of monitoring.

  14. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-09-01

    Over the last several years, many U.S. states have established clean energy funds to help support the growth of renewable energy markets. Most often funded by system-benefits charges (SBC), the 15 states that have established such funds are slated to collect nearly $3.5 billion from 1998 to 2012 for renewable energy investments. These clean energy funds are expected to have a sizable impact on the energy future of the states in which the funds are being collected and used. For many of the organizations tapped to administer these funds, however, this is a relatively new role that presents the challenge of using public funds in the most effective and innovative fashion possible. Fortunately, each state is not alone in its efforts; many other U.S. states and a number of countries are undertaking similar efforts. Early lessons are beginning to be learned by clean energy funds about how to effectively target public funds towards creating and building renewable energy markets. A number of innovative programs have already been developed that show significant leadership by U.S. states in supporting renewable energy. It is important that clean energy fund administrators learn from this emerging experience.

  15. Department of Energy's Pantex Plant Saves $10 Million in Energy Costs. Federal Energy Management Program (FEMP) ESPC Case Study Fact Sheet

    SciTech Connect

    Ward, C.

    2001-11-20

    This two-page case study describes how the U.S. Department of Energy's Pantex Plant in Amarillo, Texas, will save approximately $10 million in energy costs over the next 18 years, thanks to a DOE Super Energy Savings Performance Contract (Super ESPC) delivery order for energy efficiency improvements. The delivery order is the largest to date for a DOE facility. Primarily, the delivery order calls for a new, state-of-the-art energy management control system and a new water/steam piping system, which will be purchased and installed by the contracting energy services company (ESCO). The ESCO will then be repaid over the life of the contract out of the plant's resulting energy cost savings.

  16. De-anthropomorphizing energy and energy conservation: The case of Max Planck and Ernst Mach

    NASA Astrophysics Data System (ADS)

    Wegener, Daan

    Discussions on the relation between Mach and Planck usually focus on their famous controversy, a conflict between 'instrumentalist' and realist philosophies of science that revolved around the specific issue of the existence of atoms. This article approaches their relation from a different perspective, comparing their analyses of energy and energy conservation. It is argued that this reveals a number of striking similarities and differences. Both Mach and Planck agreed that the law was valid, and they sought to purge energy of its anthropomorphic elements. They did so in radically different ways, however, illustrating the differences between Mach's 'historical' and Planck's 'rationalistic' accounts of knowledge. Planck's attempt to de-anthropomorphize energy was part of his attempt to demarcate theoretical physics from other disciplines. Mach's attempt to de-anthropomorphize energy is placed in the context of fin-de-siècle Vienna. By doing so, this article also proposes a new interpretation of Mach as a philosopher, historian and sociologist of science.

  17. Restoring a flow regime through the coordinated operation of a multireservoir system: The case of the Zambezi River basin

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Beevers, L.; Muyunda, B.

    2010-07-01

    Large storage facilities in hydropower-dominated river basins have traditionally been designed and managed to maximize revenues from energy generation. In an attempt to mitigate the externalities downstream due to a reduction in flow fluctuation, minimum flow requirements have been imposed to reservoir operators. However, it is now recognized that a varying flow regime including flow pulses provides the best conditions for many aquatic ecosystems. This paper presents a methodology to derive a trade-off relationship between hydropower generation and ecological preservation in a system with multiple reservoirs and stochastic inflows. Instead of imposing minimum flow requirements, the method brings more flexibility to the allocation process by building upon environmental valuation studies to derive simple demand curves for environmental goods and services, which are then used in a reservoir optimization model together with the demand for energy. The objective here is not to put precise monetary values on environmental flows but to see the marginal changes in release policies should those values be considered. After selecting appropriate risk indicators for hydropower generation and ecological preservation, the trade-off curve provides a concise way of exploring the extent to which one of the objectives must be sacrificed in order to achieve more of the other. The methodology is illustrated with the Zambezi River basin where large man-made reservoirs have disrupted the hydrological regime.

  18. Sri Lankan Case Study on Public/Private Participation in the Promotion of Wind Energy

    NASA Astrophysics Data System (ADS)

    Robinson, Rod; Thanthilage, Rohitha

    2007-10-01

    Micro wind power systems are one of the most appropriate and comparatively economical renewable energy sources to meet the off-grid energy needs of Sri Lanka. To penetrate the target markets and intended beneficiaries of Sri Lanka, it requires sound demonstrations to prove its technical, financial and or economic viability. This paper, presents a case study of a successful wind powered rural electrification project and the establishment of a revolving fund with public/private participation.

  19. The role of social networks in the governance of health systems: the case of eye care systems in Ghana.

    PubMed

    Blanchet, Karl; James, Philip

    2013-03-01

    Efforts have been increasingly invested to improve local health systems' capacities in developing countries. We describe the application of innovative methods based on a social network analysis approach. The findings presented refer to a study carried out between July 2008 and January 2010 in the Brong Ahafo region of Ghana. Social network analysis methods were applied in five different districts using the software package Ucinet to calculate the various properties of the social network of eye care providers. The study focused on the managerial decisions made by Ghanaian district hospital managers about the governance of the health system. The study showed that the health system in the Brong Ahafo region experienced significant changes specifically after a key shock, the departure of an international organization. Several other actors at different levels of the network disappeared, the positions of nurses and hospital managers changed, creating new relationships and power balances that resulted in a change in the general structure of the network. The system shifted from a centralized and dense hierarchical network towards an enclaved network composed of five sub-networks. The new structure was less able to respond to shocks, circulate information and knowledge across scales and implement multi-scale solutions than that which it replaced. Although the network became less resilient, it responded better to the management needs of the hospital managers who now had better access to information, even if this information was partial. The change of the network over time also showed the influence of the international organization on generating links and creating connections between actors from different levels. The findings of the study reveal the importance of creating international health connections between actors working in different spatial scales of the health system. PMID:22411882

  20. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    PubMed

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion. PMID:22053478

  1. Secular dynamics of hierarchical quadruple systems: the case of a triple system orbited by a fourth body

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.; Perets, Hagai B.; Antonini, Fabio; Portegies Zwart, Simon F.

    2015-06-01

    We study the secular gravitational dynamics of quadruple systems consisting of a hierarchical triple system orbited by a fourth body. These systems can be decomposed into three binary systems with increasing semimajor axes, binaries A, B and C. The Hamiltonian of the system is expanded in ratios of the three binary separations, and orbit averaged. Subsequently, we numerically solve the equations of motion. We study highly hierarchical systems that are well described by the lowest order terms in the Hamiltonian. We find that the qualitative behaviour is determined by the ratio {R}_0 of the initial Kozai-Lidov (KL) time-scales of the binary pairs AB and BC. If {R}_0≪ 1, binaries AB remain coplanar if this is initially the case, and KL eccentricity oscillations in binary B are efficiently quenched. If {R}_0≫ 1, binaries AB become inclined, even if initially coplanar. However, there are no induced KL eccentricity oscillations in binary A. Lastly, if {R}_0˜ 1, complex KL eccentricity oscillations can occur in binary A that are coupled with the KL eccentricity oscillations in B. Even if binaries A and B are initially coplanar, the induced inclination can result in very high eccentricity oscillations in binary A. These extreme eccentricities could have significant implications for strong interactions such as tidal interactions, gravitational wave dissipation, and collisions and mergers of stars and compact objects. As an example, we apply our results to a planet+moon system orbiting a central star, which in turn is orbited by a distant and inclined stellar companion or planet, and to observed stellar quadruples.

  2. Assessment of Renewable Energy Technology and a Case of Sustainable Energy in Mobile Telecommunication Sector

    PubMed Central

    Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  3. Assessment of renewable energy technology and a case of sustainable energy in mobile telecommunication sector.

    PubMed

    Okundamiya, Michael S; Emagbetere, Joy O; Ogujor, Emmanuel A

    2014-01-01

    The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673

  4. Productivity of "collisions generate heat" for reconciling an energy model with mechanistic reasoning: A case study

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Robertson, Amy D.

    2015-06-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a byproduct of individual particle collisions, which is represented in science education research literature as an obstacle to learning. We demonstrate that in this instructional context, the idea that individual particle collisions generate thermal energy is not an obstacle to learning, but instead is productive: it initiates intellectual progress. Specifically, this idea initiates the reconciliation of the teachers' energy model with mechanistic reasoning about adiabatic compression, and leads to a canonically correct model of the transformation of kinetic energy into thermal energy. We claim that the idea's productivity is influenced by features of our particular instructional context, including the instructional goals of the course, the culture of collaborative sense making, and the use of certain representations of energy.

  5. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal

    PubMed Central

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-01-01

    Abstract During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions. PMID:26064039

  6. Involvement of stakeholders in the water quality monitoring and surveillance system: The case of Mzingwane Catchment, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nare, Lerato; Love, David; Hoko, Zvikomborero

    of water is polluted, such as boiling water for human consumption, laundry and bathing, or abandoning a water source in extreme cases. Stakeholder participation and ownership of resources needs to be encouraged through participatory planning, and integration between the three government departments (water, environment and health). Local knowledge systems could be integrated into the formal water quality monitoring systems, in order to complement the conventional monitoring networks.

  7. DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build - Boulder, Colorado

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Boulder, Colorado, that scored HERS 38 without PV and 0 with PV. This 2,504 ft2 custom home has advanced framed walls, superior insulation a ground-source heat pump, ERV, and triple-pane windows.

  8. Case for solar energy investments. Energy series. World Bank technical paper

    SciTech Connect

    Anderson, D.; Ahmed, K.

    1995-12-31

    After summarizing the technical and economic prospects for solar energy technologies, the paper outlines a two-part program that would help to commercialize solar energy use in developing countries. The first part of the program is to establish a pipeline of investments drawing on financial resources that are already available for well-prepared investments--the multinational development banks, commercial banks, the Global Environment Facility, and direct investment by electric utilities, private investors, and others. The second part concerns the need to expand public research and development at the national and international levels in support of private initiative.

  9. Calibrating convective-core overshooting with eclipsing binary systems. The case of low-mass main-sequence stars

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2016-03-01

    recovered β value, reaching 0.2 at the 60% of the MS evolution. Taking into account both the helium abundance indetermination and 1σ statistical uncertainty, we found that in the terminal part of the MS evolution the error on the estimated β values ranges from -0.05 to + 0.10, while β is basically unconstrained throughout the explored range at earlier evolutionary stages. We quantified the impact of a uniform variation of ±0.24 in the mixing-length parameter αml around the solar-calibrated value. The largest bias occurs in the last 5% of the evolution with an error on the estimated median β from -0.03 to + 0.07. In this last part, the 1σ uncertainty that addresses statistical and systematic error sources ranges from -0.09 to + 0.15. Finally, we quantified the impact of a complete neglect of diffusion in the stellar evolution computations. In this case, the 1σ uncertainty that addresses statistical and systematic error sources ranges from -0.08 to + 0.08 in the terminal 5% of the MS, while β is practically unconstrained in the first 80% of the MS. Conclusions: The calibration of the convective core overshooting with double-lined eclipsing binaries - in the explored mass range and with both components still in their MS phase - appears to be poorly reliable, at least until further stellar observables, such as asteroseismic ones, and more accurate models are available.

  10. Case history studies of energy conservation improvements in the meat industry

    SciTech Connect

    Not Available

    1982-06-01

    Presented are case histories for ten energy-efficient technologies implemented by the meat industry. For each case is presented: the name and location of the plant, name of plant employee contact with address and telephone number, energy consumption and costs at the plant before and after implementation of energy-conserving technology, description of the investment decision process, and changes in production or product quality as a result of the new equipment. The measures presented are: continuous rendering, high-pressure return on the boiler, heat recovery from condensate return and flash steam, continuous whole blood processing, preheating of process water with recovered refrigeration waste heat, continuous rendering of poultry scraps, electrical stimulation of beef, preheating and storing process water with recovered refrigeration waste heat, microcomputer control system, and housekeeping improvements. (LEW)

  11. Comparison of Energy Deposition in the Auroral Oval and Cap Regions for Cases Where Transpolar Structures Exist

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Germany, G. A.; Parks, G. K.; Brittnacher, M. J.

    1998-01-01

    For several cases where the full auroral zone is imaged and transpolar structures exist, we compare the total energy input to the auroral oval with the total energy input in the polar cap. This comparison is made for cases where auroral intensification near local midnight is and is not observed. Temporal evolution of the energy balance between the energy deposited in the oval and polar cap can be used to understand the mechanism that triggers substorms.

  12. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  13. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)

    SciTech Connect

    Showalter, S.; Wood, F.; Vimmerstedt, L.

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  14. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals. The Case of the Lieberman-Warner Climate Security Act of 2007 (S. 2191)

    SciTech Connect

    Showalter, Sharon

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  15. Case studies of energy information systems and related technology: Operational practices, costs, and benefits

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

    2003-09-02

    Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

  16. Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study

    SciTech Connect

    Masanet, Eric; Kramer, Klaas Jan; Homan, Gregory; Brown, Richard; Worrell, Ernst

    2009-01-01

    This paper summarizes a modeling framework that characterizes the key underlying technologies and processes that contribute to the supply chain energy use and greenhouse gas (GHG) emissions of a variety of goods and services purchased by U.S. consumers. The framework couples an input-output supply chain modeling approach with"bottom-up" fuel end use models for individual IO sectors. This fuel end use modeling detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the supply chain energy and GHG"footprints" of goods and services. To illustrate the policy-relevance of thisapproach, a case study was conducted to estimate achievable household GHG footprint reductions associated with the adoption of best practice energy-efficient supply chain technologies.

  17. Cold-Climate Case Study for Affordable Zero Energy Homes: Preprint

    SciTech Connect

    Norton, P.; Christensen, C.

    2006-07-01

    This project, supported by the U.S. Department of Energy's Building America Program, is a case study in reaching zero energy within the affordable housing sector in cold climates. The design of the 1200 square foot, 3-bedroom Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed using an early version of the BEOpt building optimization software with additional analysis using DOE2. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design towards simple, easily maintained mechanical systems and volunteer-friendly construction techniques.

  18. Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study

    SciTech Connect

    Masanet, Eric; Kramer, Klaas Jan; Homan, Gregory; Brown, Richard; Worrell, Ernst

    2009-01-01

    This paper summarizes a modeling framework that characterizes the key underlying technologies and processes that contribute to the supply chain energy use and greenhouse gas (GHG) emissions of a variety of goods and services purchased by U.S. consumers. The framework couples an input-output supply chain modeling approach with"bottom-up" fuel end use models for individual IO sectors. This fuel end use modeling detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the supply chain energy and GHG"footprints" of goods and services. To illustrate the policy-relevance of this approach, a case study was conducted to estimate achievable household GHG footprint reductions associated with the adoption of best practice energy-efficient supply chain technologies.

  19. Analysis of energy use in building services of the industrial sector in California: Two case studies

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1991-09-01

    Energy-use patterns in many of California's fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

  20. Energy conservation case studies for model commercial buildings covered by the CACS program

    SciTech Connect

    Kedl, R.J.; Bircher, T.L.

    1985-03-01

    Case studies of four small commercial buildings are presented that show the potential conservation of electrical and gas enegy and the potential reduction in peak electrical demand that result from the retrofit of most Commercial and Apartment Conservation Service (CACS) Program Measures and Procedures. Four prototypical buildings are representative of the great majority of CACS-covered businesses were used. Energy consrvation calculations were conducted on the buildings in six cities representing six different climates in the contiguous United States. Calculations were performed using DOE-2.1, a computer program that computes energy flow in buildings on an hour-by-hour basis.

  1. DOE Zero Energy Ready Home Case Study: Southern Energy Homes — First DOE Zero Energy Ready Manufactured Home, Russellville, AL

    SciTech Connect

    none,

    2014-09-01

    This home is the first manufactured home built to the DOE Zero Energy Ready Home standard and won an Affordable Builder award in the 2014 Housing Innovations Awards. This manufactured home achieved a HERS score of 57 without photovoltaics and includes superior insulation and air sealing.

  2. Energy flows in a secondary city: a case study of Nakuru, Kenya

    SciTech Connect

    Milukas, M.V.

    1987-01-01

    Secondary cities are currently seen as an important focus for promoting a more spatially-equitable pattern of economic infrastructure in developing countries, but their energy needs have not been considered. To test the thesis of this work - that the present pattern of energy demand in secondary cities differs, in important ways, from that of primary cities - a case study was conducted in the East African city of Nakuru, Kenya. Energy supplies used in Nakuru fall into two categories: industrial sources (electricity and petroleum) and traditional sources (wood, charcoal, and agricultural residues). This analysis of Nakuru's use of industrial sources is introduced by a historical discussion of nationwide patterns of distribution, use, and pricing of electricity and petroleum products, and is followed by data gathered from Nakuru's suppliers of these energy sources. The portrait of energy use in Nakuru is completed with an analysis of the demand for traditional energy sources. Surveys were conducted to estimate the total quantities of charcoal, wood, and agricultural resides used in Nakuru. The cornerstone of this effort was a residential energy survey stratified according to income. Nakuru is shown to rely on biomass fuels (charcoal) to a much greater degree than Nairobi, thereby proving the thesis.

  3. Energy End-Use Patterns in Full-Service Hotels: A Case Study

    SciTech Connect

    Placet, Marylynn; Katipamula, Srinivas; Liu, Bing; Dirks, James A.; Xie, YuLong; Sullivan, Greg; Walent, Jim; Williamson, Rebecca

    2010-06-30

    The U.S. Department of Energy (DOE) recently initiated a program -- Commercial Building Partnerships (CBP) -- to work with private-sector companies in the design of highly-efficient retrofit and new construction projects. Pacific Northwest National Laboratory (PNNL) is conducting a project with a major hotel company to retrofit a full-service, large hotel with the goal of reducing energy consumption by at least 30%. The first step of the project was an intensive metering and monitoring effort aimed at understanding energy end use patterns in the hotel. About 10% of the guest rooms (32), as well as circuits for most of the end uses in public spaces (lighting, elevators, air handlers and other HVAC system components, and various equipment), were equipped with meters. Data are being collected at 1- or 5-minute intervals and downloaded on a monthly basis for analysis. This paper presents results from the first four months of the monitoring effort, which revealed energy end-use consumption patterns, variability of guest room energy use, daily load curves, monthly variations, and other aspects of hotel energy use. Metered end-use data for hotels at this level of detail are not available from any currently-available public sources. This study presents unique information and insight into energy end-use patterns in the lodging sector of commercial buildings and can also serve as a case study of a complex sub-metering project.

  4. Hypercobalaminemia Induced by an Energy Drink after Total Gastrectomy: A Case Report

    PubMed Central

    Takahashi, Kazuhiro; Tsukamoto, Shigeki; Kakizaki, Yuta; Saito, Ken; Ohkohchi, Nobuhiro; Hirayama, Katsu

    2013-01-01

    We encountered a case of hypercobalaminemia induced by oral intake of an energy drink after total gastrectomy. The patient was referred to our hospital due to findings suspicious for gastric cancer on screening. A 20 mm type 0-IIc lesion was detected in the gastric subcardia on esophagogastroduodenoscopy. Total gastrectomy followed by Roux-en-Y reconstruction was performed. He was discharged without complications. His basal serum vitamin B12 level was initially maintained with monthly intramuscular injections of vitamin B12. After 9 months, his serum vitamin B12 level suddenly increased up to 36-fold higher than the normal range and persisted there for one year without vitamin B12 injections. The patient ultimately reported consuming half a bottle of an energy drink each day during this time period. This case demonstrates the risk of unexpected hypervitaminemia resulting from self-administration of nutritional supplements. PMID:25649897

  5. DOE Zero Energy Ready Home Case Study: Leganza Residence - Greenbank, Washington

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  6. Urban sustainable energy development: A case study of the city of Philadelphia

    NASA Astrophysics Data System (ADS)

    Argyriou, Iraklis

    This study explores the role of cities in sustainable energy development through a governance-informed analysis. Despite the leading position of municipalities in energy sustainability, cities have been mostly conceptualized as sites where energy development is shaped by external policy scales, i.e. the national level. A growing body of research, however, critiques this analytical perspective, and seeks to better understand the type of factors and dynamics that influence energy sustainability within a multi-level policy context for urban energy. Given that particular circumstances are applicable across cities, a context-specific analysis can provide insight regarding how sustainable energy development takes place in urban areas. In applying such an analytical perspective on urban energy sustainability, this study undertakes a qualitative case study analysis for the city of Philadelphia, Pennsylvania, by looking at four key local policy initiatives relevant to building energy efficiency and solar electricity development at the municipal government and city-wide level. The evaluation of the initiatives suggests that renewable electricity use has increased substantially in the city over the last years but the installed capacity of local renewable electricity systems, including solar photovoltaics, is low. On the other hand, although the city has made little progress in meeting its building energy efficiency targets, more comprehensive action is taken in this area. The study finds that the above outcomes have been shaped mainly by four factors. The first is the city government's incremental policy approach aiming to develop a facilitative context for local action. The second is the role that a diverse set of stakeholders have in local sustainable energy development. The third is the constraints that systemic policy barriers create for solar power development. The fourth is the ways through which the relevant multi-level policy environment structures the city

  7. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  8. Energy-water analysis of the 10-year WECC transmission planning study cases.

    SciTech Connect

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports modules for

  9. Reducing Energy Consumption and Creating a Conservation Culture in Organizations: A Case Study of One Public School District

    ERIC Educational Resources Information Center

    Schelly, Chelsea; Cross, Jennifer E.; Franzen, William S.; Hall, Pete; Reeve, Stu

    2011-01-01

    How can existing schools significantly reduce their energy use? With energy costs rising and school budgets shrinking, energy use is a substantial cost that can be reduced through conservation efforts. Using a case study methodology, the authors compare two public high schools from the same school district, one that has achieved moderate energy…

  10. Photovoltaics as a worldwide energy option: A case study in development strategy

    SciTech Connect

    Jones, G.; Pate, R.; Hill, R.

    1991-12-31

    Renewable energy technologies, such as solar thermal electric, photovoltaics (PV), and wind energy have made significant gains in cost and performance in the past decades. As a result, there have been high expectations on the part of the public for these sources to play a major role in future energy supply, especially as environmental concerns about conventional sources increase. Despite these past gains and high expectations, the global potential of renewable energy technologies still remains largely untapped, principally because of issues of industrialization and user acceptance. There is increasing recognition that government energy programs must incorporate a broader strategy than the traditional basic research role if they are to address these issues. Essential elements of this strategy are affordable technology, a healthy industry, sustained market growth, user acceptance, and equitable policy and financial environments. The US Department of Energy (DOE) programs in solar electric conversion have already started the development of the required broader-based effort. This paper presents the status of that work, utilizing the US National Photovoltaic Program as a case study.

  11. Alternative planning methodologies: the case of rural energy in the Third World

    SciTech Connect

    Ganapathy, R.S.

    1982-01-01

    Alternative planning methodologies are based on different ideologies and theories. Methodological choice in planning implies a prior theory and ideology and is linked to the planning outcome. The relationship is one of structural causality. A typology of planning methodologies is developed and, through a critique and reconstruction, the methodology of dialectical planning is outlined. It is designed to integrate theory and practice in a framework of praxis. The substantive area of rural-energy planning in the Third World is chosen to illustrate this general approach in a concrete manner. Rural energy planning from alternative perspectives is reviewed, and specific case studies described and critiqued. A dialectical planning analysis of rural energy is undertaken. Dialectical planning in a deep sense, us a meta-methodology, as it transcends conventional planning. The possibilities of this methodology for creating a critical awareness and hence overcoming the limitations of conventional planning are explored.

  12. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    SciTech Connect

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  13. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with conventional'' HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  14. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Final report

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with ``conventional`` HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  15. Nuclear rainbow in the 16O + 27AL system: The role of couplings at energies far above the barrier

    NASA Astrophysics Data System (ADS)

    Pereira, D.; Linares, R.; Oliveira, J. R. B.; Lubian, J.; Chamon, L. C.; Gomes, P. R. S.; Cunsolo, A.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Foti, A.

    2012-04-01

    High precision elastic and inelastic angular distributions have been measured for the 16O + 27Al system at a beam energy of 100 MeV. The data analysis confirms a rainbow formation as already predicted by parameter-free Coupled Channel calculations. It also helps to reveal the crucial role of inelastic couplings in the rainbow formation for heavier systems even at energies far above the Coulomb barrier. This feature, well known in atomic/molecular scattering, is experimentally studied for the first time in Nuclear Physics.

  16. New Whole-House Solutions Case Study: New Town Builders' Power of Zero Energy Center - Denver, Colorado

    SciTech Connect

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. This case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  17. Spine injury following a low-energy trauma in ankylosing spondylitis: a study of two cases.

    PubMed

    Savall, Frederic; Mokrane, Fatima-Zohra; Dedouit, Fabrice; Capuani, Caroline; Guilbeau-Frugier, Céline; Rougé, Daniel; Telmon, Norbert

    2014-08-01

    We report two cases of spine injury following a low-energy trauma in persons with ankylosing spondylitis (AS) and discuss the forensic considerations. A 60-year-old man presented with a wide anterior fracture of the superior endplate of T8 after an accidental fall down three wooden steps. A 93-year-old man presented with disjunction between C6 and C7 and 90-degree spinal angulation after a fall from a standing height or a fall from a bed. Post-mortem multislice computed tomography (MSCT) was performed before autopsy in both the cases. MSCT and autopsy findings were in agreement with a past medical history of AS. A spine injury occurring after a low-energy trauma is unusual and could be suspicious. In the forensic literature we found only a single case, which concerned multiple spinal fractures after a fall from a bicycle at low speed. Such specific mechanisms must be studied and known to the forensic expert. In this context, MSCT is a useful tool to investigate the spine and knowledge of the victim's entire past medical history is essential. PMID:24911528

  18. Overview of energy-conserving development planning and design techniques based on five case studies

    SciTech Connect

    Not Available

    1980-06-01

    Findings and recommendations are presented of a review of five case studies of ways to conserve energy through development planning and site design in communities. Two approaches were used. In the first approach, a conventional, pre-existing plan was analyzed to determine potential energy use. Once energy-conservation options were identified and evaluated, the conventional plan was modified by employing those options. This approach was used in The Woodlands, Burke Center, and Radisson studies. In the second approach, energy-conservation options are independently identified and evaluated. Those options that passed specific criteria screening were then utilized in developing one or more totally new plans based on energy objectives. This approach was used in Greenbrier and Shenandoah. Radisson is a new town on the outskirts of Syracuse, New York. Greenbrier is a 3000 acre planned community adjacent to Norfolk and Virginia Beach. Shenandoah is a proposed new town in the Atlanta urbanized area. The Woodlands is a new community under development north of Houston. Burke Center is a residential planned unit development in Fairfax County, Virgnia. (MCW)

  19. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  20. Methods for Analysis of Urban Energy Systems: A New York City Case Study

    NASA Astrophysics Data System (ADS)

    Howard, Bianca

    This dissertation describes methods developed for analysis of the New York City energy system. The analysis specifically aims to consider the built environment and its' impacts on greenhouse gas (GHG) emissions. Several contributions to the urban energy systems literature were made. First, estimates of annual energy intensities of the New York building stock were derived using a statistical analysis that leveraged energy consumption and tax assessor data collected by the Office of the Mayor. These estimates provided the basis for an assessment of the spatial distribution of building energy consumption. The energy consumption estimates were then leveraged to estimate the potential for combined heat and power (CHP) systems in New York City at both the building and microgrid scales. In aggregate, given the 2009 non-baseload GHG emissions factors for electricity production, these systems could reduce citywide GHG emissions by 10%. The operational characteristics of CHP systems were explored further considering different prime movers, climates, and GHG emissions factors. A combination of mixed integer linear programing and controlled random search algorithms were the methods used to determine the optimal capacity and operating strategies for the CHP systems under the various scenarios. Lastly a multi-regional unit commitment model of electricity and GHG emissions production for New York State was developed using data collected from several publicly available sources. The model was used to estimate average and marginal GHG emissions factors for New York State and New York City. The analysis found that marginal GHG emissions factors could reduce by 30% to 370 g CO2e/kWh in the next 10 years.

  1. Final Report: Technical Support for Innovative Energy Systems the U.S. Chemical Industry -- Innovative Energy Systems Pilot Project - Chemicals Project Integrator

    SciTech Connect

    John Cuttica - Principal Investigator; Dr Steffen Mueller - Lead Engineer

    2008-10-30

    The University of Illinois at Chicago Energy Resources Center (UIC/ERC) was originally selected to carry out the role of project integrator for a planned solicitation calling for proposals for innovative concepts for energy efficient systems in the chemical industry. The selection was made as a result of a DOE Announcement of Funding Opportunity issued by the DOE Golden Field Office. The U.S. DOE, due to funding constraints, decided to change the role of project integrator into one of technical support to DOE and the Vision 2020 Steering Committee in carrying out the oversight and management of the projects selected from the planned innovative concepts solicitation. This project, initiated in April, 2005, was established to provide that technical support to the U.S. DOE Innovative Energy Systems Pilot Project for the US Chemical Industry. In the late summer of 2006, and as a continuation of the baseline technology analysis conducted by UIC/ERC under this project, DOE requested that UIC/ERC assist in the development of “technology briefs” in support of the DOE Save Energy Now program. The 100 technology briefs developed under this contract were utilized by the Energy Experts as part of their Energy Saving Assessments (ESA).

  2. DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  3. DOE Zero Energy Ready Home Case Study: Montlake Modern - Seattle, Washington

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 42 without PV and a -1 with PV. This 3,192 ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, 9.7 kWh PV for electric car charging station.

  4. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich, Connecticut

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Old Greenwich, CT, that scored HERS 40 without PV and HERS 27 with PV. This 4,100 ft2 custom home has 13-inch ICF basement walls and 11-inch ICF above-grade walls with a closed-cell spray foam-insulated roof deck, and a continuously running ERV. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles.

  5. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  6. Optimal Model of Distributed Energy System by Using GAMS and CaseStudy

    SciTech Connect

    Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Xuan, Ji; Zhou, Nan; Marnay, Chris

    2005-11-30

    This paper adopts optimal model which used GAMS to developmethods and tools for conducting an integrated assessment of DER system.Three cases were studied. Energy-saving, environmental and economicefficiency were evaluated. The results of the simulation can besummarized as follows: 1) For the current system, optimal operating timeis about 4,132 hours per year, and from 8 am to 22 pm everyday. 2) It iseconomical when electricity price increases or gas price decreases. 3)According to the load function of system, energy-saving, environmentaland economic efficiency will have amaximum value at optimal operatingtime. 4) Compared with exhaust heat efficiency, power generationefficiency has more influence to the economic efficiency and CO2reduction when the total efficiency is fixed.

  7. Hydrogen transport in solids with traps in the case of continuum distribution of detrapping energies

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Marenkov, E. D.; Smirnov, R. D.; Pisarev, A. A.

    2014-04-01

    Tritium retention in the first wall material is one of the key issues in the performance of future fusion reactors. Transport of hydrogenic species in these materials is most commonly treated as diffusion affected by trapping/detrapping processes. Usually only several trap types differing in their activation energies of hydrogen release are considered (up to three types in the TMAP7 code). We suggest that in some cases (e.g. highly damaged or disordered media) the hydrogen trapping/detrapping process is better characterized by a continuum distribution of traps over their detrapping energies. Within a random walk model we show that this assumption leads to qualitative changes in hydrogen transport in solids. Using this model we explain experimental findings on temporal dependence of deuterium outgassing from tokamaks, first wall.

  8. Changing energy prices and economic rents: the case of Western coal

    SciTech Connect

    Mutti, J.H.; Morgan, W.E.

    1983-05-01

    This paper examines various types of economic rents that are generated by changing energy prices and, in the case of Wyoming coal, analyzes how these rents have changed over time. In particular, quasi-rents did accrue to firms producing coal and coal miners, but were dissipated. Monopoly revenues appear to have been received by railroads and state governments. Price discrimination by railroads against coal consumers represents a source of present and future monopoly revenues, while a state severance tax rate that is not linked to likely declines over time in social-impact costs represents another. The analysis highlights some questions that ought to be raised in public policy debates over energy policy. 11 references, 2 figures.

  9. Evaluation of Energy Policy Instruments for the Adoption of Renewable Energy: Case of Wind Energy in the Pacific Northwest U.S

    NASA Astrophysics Data System (ADS)

    Abotah, Remal

    The wide use of renewable energy technologies for generating electricity can be seen as one way of meeting environmental and climate change challenges along with a progression to a low-carbon economy. A large number of policy instruments have been formed and employed to support the adoption of renewable energy technologies in the power generation sector. However, the success of these policies in achieving their goals relies on how effective they are in satisfying their targets and thus increasing renewable energy adoption. One measurement for effectiveness of policy instruments can be their contribution to the input of the process of renewable energy adoption and their effect on satisfying regional goal. The objective of this research is evaluate the effectiveness of energy policy instruments on increasing the adoption of renewable energy by developing a comprehensive evaluation model. Criteria used in this assessment depend on five perspectives that are perceived by decision makers as important for adoption process. The decision model linked the perspectives to policy targets and various energy policy instruments. These perspectives are: economic, social, political, environmental and technical. The research implemented the hierarchical decision model (HDM) to construct a generalized policy assessment framework. Data for wind energy adoption in the Pacific Northwest region were collected as a case study and application for the model. Experts' qualitative judgments were collected and quantified using the pair-wise comparison method and the final rankings and effectiveness of policy alternatives with respect to the mission were identified. Results of this research identified economic feasibility improvement of renewable energy projects as the most influential perspective and that renewable portfolio standards and tax credits are the two most effective criteria to accomplish that. The research also applied sensitivity analysis and scenario analysis to identify the

  10. International Development Partnerships and Diffusion of Renewable Energy Technologies in Developing Countries: Cases in Latin America

    NASA Astrophysics Data System (ADS)

    Platonova, Inna

    Access to energy is vital for sustainable development and poverty alleviation, yet billions of people in developing countries continue to suffer from constant exposure to open fires and dangerous fuels, such as kerosene. Renewable energy technologies are being acknowledged as suitable solutions for remote rural communities in much of the developing world and international development non-governmental organizations (NGOs) increasingly play important roles in the diffusion of these technologies via development partnerships. While these partnerships are widely promoted, many questions related to their functioning and effectiveness remain open. To advance the theory and practice, this interdisciplinary exploratory research provides in-depth insights into the nature of international NGO-driven development partnerships in rural renewable energy and their effectiveness based on the case studies in Talamanca, Costa Rica and Cajamarca, Peru. The analysis of the nature of development partnerships shows that partnerships in the case studies differ in structure, size and diversity of actors due to differentiation in the implementation strategies, technological complexities, institutional and contextual factors. A multi-theoretical approach is presented to explain the multiple drivers of the studied development partnerships. The research highlights partnership constraints related to the provision of rural renewable energy, the organizational type and institutional environments. Based on the case studies this research puts forward theoretical propositions regarding the factors that affect the effectiveness of the partnerships. In terms of the partnership dynamics dimension, several key factors of success are confirmed from the existing literature, namely shared values and goals, complementary expertise and capacities, confidence and trust, clear roles and responsibilities, effective communication. Additional factors identified are personality match and continuity of staff. In

  11. Evolution of Energy Efficiency Programs Over Time: The Case of Standby Power

    SciTech Connect

    Payne, Christopher; Chung, Iris; Fisher, Emily

    2014-08-17

    Issued in 2001, Presidential Executive Order 13221 directed federal agencies to purchase products with low standby power, with the goal of 1) reducing energy consumption in federal facilities, and 2) drawing attention to the problem of high standby power consumption, with guidance provided by the Federal Energy Management Program (FEMP). At that time, standby power was newly recognized as an increasing building energy load. Since then, procurement of products with low standby power have been set in place in acquisition processes, and the purchasing power of the federal government continues to influence manufacturers design decisions related to standby power. In recent years, FEMP has shifted effort from direct manufacturer outreach for data collection, to integrating low standby requirement into broader acquisition programs including Energy Star and Electronic Product Environmental Assessment Tool (EPEAT). Another milestone has been the labeling of low standby products on the GSA Advantage website to simplify and enhance compliance. Looking forward into the program?s future, this question arises How do we design programs over time to reflect market and technology changes, by adjusting programmatic requirements while maintaining effectiveness? This paper discusses that question for the case of standby power, which transitioned from covering a single to multiple environmental attributes, both in the context of the program's past and future.

  12. (Case studies examining energy policies and strategies for water resources development): Foreign trip report, May 7--13, 1989

    SciTech Connect

    Hildebrand, S.G.

    1989-05-24

    The traveler met with colleagues involved with Project 12.2 of the IHP of UNESCO to discuss and finalize case studies that are being prepared for a report entitled ''Case Studies Examining Energy Policies and Strategies for Water Resources Development.'' Draft case studies from the United States, Brazil, Norway, and Czechoslovakia were reviewed and discussed. The traveler was appointed editor of the final report. The traveler met with staff of the National Department of Water and Electrical Energy of the Ministry of Mines and Energy, the Secretary General of the Ministry of Mines and Energy, the Executive Secretary to the National Energy Commission of Brazil, and the newly created Brazilian Institute of the Environment. The traveler was briefed on the functions of these departments, and he briefed them on water resource activities conducted at ORNL. The traveler presented a seminar at Eletrobras (national electric utility) in Brazil on environmental research at ORNL.

  13. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    NASA Astrophysics Data System (ADS)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  14. The Added-Value of Using Participatory Approaches to Assess the Acceptability of Surveillance Systems: The Case of Bovine Tuberculosis in Belgium

    PubMed Central

    Calba, Clémentine; Goutard, Flavie Luce; Vanholme, Luc; Antoine-Moussiaux, Nicolas; Hendrikx, Pascal; Saegerman, Claude

    2016-01-01

    Context and Objective Bovine tuberculosis (bTB) surveillance in Belgium is essential to maintain the officially free status and to preserve animal and public health. An evaluation of the system is thus needed to ascertain the surveillance provides a precise description of the current situation in the country. The evaluation should assess stakeholders’ perceptions and expectations about the system due to the fact that the acceptability has an influence on the levels of sensitivity and timeliness of the surveillance system. The objective of the study was to assess the acceptability of the bTB surveillance in Belgium, using participatory tools and the OASIS flash tool (‘analysis tool for surveillance systems’). Methods For the participatory process, focus group discussions and individual interviews were implemented with representatives involved with the system, both from cattle and wildlife part of the surveillance. Three main tools were used: (i) relational diagrams associated with smileys, (ii) flow diagrams associated with proportional piling, and (iii) impact diagrams associated with proportional piling. A total of six criteria were assessed, among which five were scored on a scale from -1 to +1. For the OASIS flash tool, one full day meeting with representatives from stakeholders involved with the surveillance was organised. A total of 19 criteria linked to acceptability were scored on a scale from 0 to 3. Results and Conclusion Both methods highlighted a medium acceptability of the bTB surveillance. The main elements having a negative influence were the consequences of official notification of a bTB suspect case in a farm, the low remuneration paid to private veterinarians for execution of intradermal tuberculin tests and the practical difficulties about the containment of the animals. Based on the two evaluation processes, relevant recommendations to improve the surveillance were made. Based on the comparison between the two evaluation processes, the

  15. Identification and Prioritization of Analysis Cases for Marine and Hydrokinetic Energy Risk Screening

    SciTech Connect

    Anderson, Richard M.; Unwin, Stephen D.; Van Cleve, Frances B.

    2010-06-16

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of marine and hydrokinetic energy generation projects. The development process consists of two main phases of analysis. In the first phase, preliminary risk analyses will take the form of screening studies in which key environmental impacts and the uncertainties that create risk are identified, leading to a better-focused characterization of the relevant environmental effects. Existence of critical data gaps will suggest areas in which specific modeling and/or data collection activities should take place. In the second phase, more detailed quantitative risk analyses will be conducted, with residual uncertainties providing the basis for recommending risk mitigation and monitoring activities. We also describe the process used for selecting three cases for fiscal year 2010 risk screening analysis using the ERES. A case is defined as a specific technology deployed in a particular location involving certain environmental receptors specific to that location. The three cases selected satisfy a number of desirable criteria: 1) they correspond to real projects whose deployment is likely to take place in the foreseeable future; 2) the technology developers are willing to share technology and project-related data; 3) the projects represent a diversity of technology-site-receptor characteristics; 4) the projects are of national interest, and 5) environmental effects data may be available for the projects.

  16. Treatment of Bell's Palsy Using Monochromatic Infrared Energy: A Report of 2 Cases

    PubMed Central

    Ng, Shu Yan; Chu, Ming Him E.

    2014-01-01

    Objective The purpose of the study is to describe the use of monochromatic infrared energy (MIRE) therapy in the management of 2 patients with Bell's palsy. Clinical features Two patients presented to a chiropractic clinic with Bell's palsy that was diagnosed by a medical physician. Both patients were treated using MIRE. The acute patient was a 32-year-old male. He presented with left facial palsy 1 day before the consultation. He was unable to puff the left cheek and close the left eyelid. He had difficulty raising the left eyebrow. The chronic case was a 46-year-old lady. Prior to the first consultation, she was treated with corticosteroid and electro-acupuncture for one and a half years, with incomplete recovery. When first seen, the left corner of mouth drooped and she had difficulty raising her left eyebrow. Intervention and outcome Monochromatic infrared energy therapy, emitting 890 nm infrared light, was placed on the post-auricular area, pre-auricular area, the temple and mandibular area of the affected side. Each treatment lasted 30 minutes. Photographs were taken every week to document changes. The acute case received 19 treatments in 6 weeks. He reported an improvement of 95%. The chronic case received a total of 45 treatments in 9 months. She rated an improvement of 50%. At the conclusion of treatment, she was able to close her left eyelid and puff her left cheek but still could not raise her left eyebrow. Conclusion These 2 patients seemed to respond to a different degree to the MIRE therapy. As 71% of patients with Bell's palsy recover uneventfully without any treatment, the present study describes the course of care but cannot confirm the effectiveness of MIRE therapy in the management of Bell's palsy. PMID:25685117

  17. Energy conserving site design: Greenbrier case study, Chesapeake, Virginia. Final report

    SciTech Connect

    Not Available

    1980-04-01

    A specific case study of project planning for energy conservation for a major planned unit development at the 3000-acre Greenbrier development site in Chesapeake, Virginia, is summarized. The research suggests that very considerable reductions in energy conservation can be achieved within the confines of private-sector land development and residential construction with increased incremental costs of $200.00 to $3150.00 per dwelling unit. It is hypothesized that energy consumption at Greenbrier can be reduced by one-half with an average annual savings of 21,275 kWh per residential unit, using state-of-the-art technology with careful planning and control. This represents an annual savings $750.00 per unit at the current utility rate of 3.5 cents per kWh. These savings can be achieved through reduction in heating and cooling loads and application of more-efficient heating and cooling of the remaining loads. The reduction in loads are achieved by redesign of the land plan to include a higher percentage of south-facing lots, use of vegetation to modify microclimate, decreases in air infiltration, the use of 2 x 6 framing, better insulation, and the use of an insulated slab-on-grade foundation. Further energy savings can be expected by increased efficiencies in mechanical systems used for space heating and cooling and domestic hot water. When applied to the single-family portion of Greenbrier, containing 541 dwelling units, these options reduce the total end-use energy consumption 54.7%. This reduction represents an annual savings of $432,800.00 for an initial capital investment of $1.7 million.

  18. Use of renewable sources of energy in Mexico case: San Antonio Agua Bendita

    SciTech Connect

    Gutierrez-Vera, J. )

    1994-09-01

    This paper presents a project undertaken in Mexico to electrify the remote village of San Antonio Agua Bendita (SAAB) using a custom designed hybrid power system. The hybrid power system will provide grid quality electricity to this community which would otherwise not have been electrified via traditional distribution lines. The hybrid power system was designed to electrify the entire community, incorporate multiple sources of renewable power with on-demand power, operate autonomously, and be cost effective in dollars per watt of electricity generated over the system's usable life. A major factor in the success of this project is the use of renewable energy for economic development and community partnership. Many rural electrification projects have provided power for domestic use but few have successfully provided power to improve the economic condition of the people served by the system. The SAAB hybrid avoids this pitfall by providing 120 VAC power at 60 Hz to anticipated industrial loads in the village, as well as providing grid quality power for domestic use.

  19. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado

    SciTech Connect

    Not Available

    2007-03-01

    This publication is one in series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for those who plan to design and construct public and private-sector laboratory buildings. This case study describes the Science and Technology Facility, a new laboratory at NREL that incorporated energy-efficient and sustainable design features including underfloor air distribution in offices, daylighting, and process cooling.

  20. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect

    Baxter, Van D

    2007-05-01

    . Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it

  1. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    SciTech Connect

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  2. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    SciTech Connect

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C.

    2015-05-15

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.

  3. Case-control study of prostatic cancer in employees of the United Kingdom Atomic Energy Authority.

    PubMed Central

    Rooney, C; Beral, V; Maconochie, N; Fraser, P; Davies, G

    1993-01-01

    OBJECTIVE--To investigate the relation between risk of prostatic cancer and occupational exposures, especially to radionuclides, in employees of the United Kingdom Atomic Energy Authority. DESIGN--Case-control study of men with prostatic cancer and matched controls. Information about sociodemographic factors and exposures to radionuclides and other substances was abstracted and classified for each subject from United Kingdom Atomic Energy Authority records without knowledge of who had cancer. SUBJECTS--136 men with prostatic cancer diagnosed between 1946 and 1986 and 404 matched controls, all employees of United Kingdom Atomic Energy Authority. MAIN OUTCOME MEASURES--Documented or possible contamination with specific radionuclides. RESULTS--Risk of prostatic cancer was significantly increased in men who were internally contaminated with or who worked in environments potentially contaminated by tritium, chromium-51, iron-59, cobalt-60, or zinc-65. Internal contamination with at least one of the five radionuclides was detected in 14 men with prostatic cancer (10%) and 12 controls (3%) (relative risk 5.32 (95% confidence interval 1.87 to 17.24). Altogether 28 men with prostatic cancer (21%) and 46 controls (11%) worked in environments potentially contaminated by at least one of the five radionuclides (relative risk 2.36 (1.26 to 4.43)); about two thirds worked at heavy water reactors (19 men with prostatic cancer and 32 controls (relative risk 2.13 (1.00 to 4.52)). Relative risk of prostatic cancer increased with increasing duration of work in places potentially contaminated by these radionuclides and with increasing level of probable contamination. Prostatic cancer was not associated with exposure to plutonium, uranium, cadmium, boron, beryllium, or organic or inorganic chemicals. CONCLUSIONS--Risk of prostatic cancer risk was increased in United Kingdom Atomic Energy Authority workers who were occupationally exposed to tritium, 51Cr, 59Fe, 60Co, or 65Zn. Exposure to

  4. Sub-federal ecological modernization: A case study of Colorado's new energy economy

    NASA Astrophysics Data System (ADS)

    Giannakouros, Stratis

    European nations have often employed policies of explicit government intervention as a preferred means of addressing environmental and economic challenges. These policies have ranged from grey industrial policies focused solely on industrial growth, competitiveness and innovation to policies of stronger ecological modernization, which seek to align industrial interests with environmental protection. In recent years these policies have been mobilized to address the threat of climate change and promote environmental innovation. While some US Administrations have similarly recognized the need to address these challenges, the particular historical and political institutional dynamics of the US have meant that explicit government intervention has been eschewed in favor of more indirect strategies when dealing with economic and environmental challenges. This is evident in the rise of sub-federal policies at the level of US states. Supported by federal laboratories and public research, US states have adopted policies that look very much like sub-federal versions of industrial or ecological modernization policy. This thesis uses the Colorado case to highlight the importance of sub-federal institutions in addressing environmental and economic challenges in the US and explore its similarities to, and differences from, European approaches. To achieve this goal it first develops an analytical scheme within which to place policy initiatives on a continuum from grey industrial policy to strong ecological modernization policy by identifying key institutions that are influential in each policy type. This analytical scheme is then applied to the transitional renewable energy policy period from 2004-2012 in the state of Colorado. This period starts with the adoption of a renewable energy portfolio in 2004 and includes the `new energy economy' period from 2007-2010 as well as the years since. Looking at three key turning points this paper interprets the `new energy economy' strategy

  5. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    SciTech Connect

    Eichman, Joshua; Melaina, Marc

    2015-10-27

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential to provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that

  6. A case study in preserving a high energy physics application with Parrot

    NASA Astrophysics Data System (ADS)

    Meng, H.; Wolf, M.; Ivie, P.; Woodard, A.; Hildreth, M.; Thain, D.

    2015-12-01

    The reproducibility of scientific results increasingly depends upon the preservation of computational artifacts. Although preserving a computation to be used later sounds easy, it is surprisingly difficult due to the complexity of existing software and systems. Implicit dependencies, networked resources, and shifting compatibility all conspire to break applications that appear to work well. To investigate these issues, we present a case study of a complex high energy physics application. We analyze the application and attempt several methods at extracting its dependencies for the purposes of preservation. We propose one fine-grained dependency management toolkit to preserve the application and demonstrate its correctness in three different environments - the original machine, one virtual machine from the Notre Dame Cloud Platform and one virtual machine from the Amazon EC2 Platform. We report on the completeness, performance, and efficiency of each technique, and offer some guidance for future work in application preservation.

  7. The political economy of noncompliance in China: The case of industrial energy policy

    DOE PAGESBeta

    Van Aken, Tucker; Lewis, Orion A.

    2015-03-18

    One of the greatest challenges facing China today is the central government's ability to ensure that policies are implemented effectively at the local level, particularly policies that seek to make China's economic growth model more sustainable. These policies face resistance from local authorities and enterprises that benefit from the status quo. This raises a key research question: why do some provinces more fully implement these central policies? We argue the extent of local implementation is best conceptualized as a rational balance between economic and political incentives: localities with regulatory autonomy, low regulatory capacity and alternative interests will not fully implementmore » policies that are at odds with local economic imperatives. By examining a critical case of central policy implementation—industrial energy intensity reduction in the eleventh five-year plan—this article demonstrates that, regardless of industrial makeup or economic development, provinces that have greater regulatory autonomy for noncompliance coupled with alternative economic interests do not, on average, perform as well. As a result, using a nested analysis approach this study illustrates this argument with both quantitative analysis and original case study evidence from fieldwork interviews.« less

  8. The political economy of noncompliance in China: The case of industrial energy policy

    SciTech Connect

    Van Aken, Tucker; Lewis, Orion A.

    2015-03-18

    One of the greatest challenges facing China today is the central government's ability to ensure that policies are implemented effectively at the local level, particularly policies that seek to make China's economic growth model more sustainable. These policies face resistance from local authorities and enterprises that benefit from the status quo. This raises a key research question: why do some provinces more fully implement these central policies? We argue the extent of local implementation is best conceptualized as a rational balance between economic and political incentives: localities with regulatory autonomy, low regulatory capacity and alternative interests will not fully implement policies that are at odds with local economic imperatives. By examining a critical case of central policy implementation—industrial energy intensity reduction in the eleventh five-year plan—this article demonstrates that, regardless of industrial makeup or economic development, provinces that have greater regulatory autonomy for noncompliance coupled with alternative economic interests do not, on average, perform as well. As a result, using a nested analysis approach this study illustrates this argument with both quantitative analysis and original case study evidence from fieldwork interviews.

  9. Business Solutions Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida

    SciTech Connect

    2015-06-01

    Building America research has shown that high-performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign and sometimes a little flair. This case study highlights LifeStyle Homes’ successful marketing approach for their SunSmart home package, which has helped to boost sales for the company. SunSmart marketing includes a modified logo, weekly blog, social media, traditional advertising, website, and sales staff training. Marketing focuses on quality, durability, healthy indoor air, and energy efficiency with an emphasis on the surety of third-party verification and the scientific approach to developing the SunSmart package. With the introduction of SunSmart, LifeStyle began an early recovery, nearly doubling sales in 2010; SunSmart sales now exceed 300 homes, including more than 20 zero energy homes. Completed homes in 2014 far outpaced the national (19%) and southern census region (27%) recovery rates for the same period. As technology improves and evolves, this builder will continue to collaborate with Building America.

  10. Synergies of solar energy use in the desalination of seawater: A case study in northern Chile

    NASA Astrophysics Data System (ADS)

    Servert, Jorge F.; Cerrajero, Eduardo; Fuentealba, Edward L.

    2016-05-01

    The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the "conventional" option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.

  11. High-energy monitoring of Seyfert galaxies: the case of NGC 5548 and NGC 4593

    NASA Astrophysics Data System (ADS)

    Ursini, F.

    2015-07-01

    We discuss results of broad-band monitoring programs on the active galactic nuclei (AGNs) NGC 5548 and NGC 4593, focusing on the high-energy view with XMM, NuSTAR and INTEGRAL. NGC 5548 was the object of a successful multi-satellite campaign conducted from May 2013 to February 2014, during which the source appeared unusually obscured by a clumpy stream of ionized gas, causing strong absorption in the X-ray band and simultaneous deep, broad UV absorption troughs (Kaastra et al. 2014). A talk giving an overview of the campaign on NGC 5548 is also proposed at this conference (Cappi et al.). Concerning NGC 4593, it was the object of a monitoring program of 5 × 20 ks joint XMM/NuSTAR observations in January 2015, spaced by two days. In both cases, the availability of multiple, broad-band observations with a high signal-to-noise ratio allows us to disentangle the different spectral components present in the high-energy spectrum and properly study their variability. The use of realistic Comptonization models provides good constraints on the physical parameters of the hot corona responsible for the hard X-ray emission.

  12. [Energy drinks as a cause of seizures--real or possible danger? Case report].

    PubMed

    Matuszkiewicz, Eryk; Łukasik-Głębocka, Magdalena; Sommerfeld, Karina; Tezyk, Artur; Zielińska-Psuja, Barbara; Zaba, Czesław

    2015-01-01

    The consumption of energy beverages is increasing, especially among young people. The increasing consumption of these drinks increases the data of side effects. Case report: A 26-year old male was admitted to Toxicology Department suspected of intoxication due to ethyl alcohol and unknown psychoactive substances. The patient lost consciousness during a party in which he drank an unknown amount of ethyl alcohol mixed with an energy beverage ("Red Bull"). The patient and his friends strongly denied the use of psychoactive substances. On admission, the patient was stable, but unconscious (GCS 8 points), pupils wide, symmetric with weak reaction to light, respiratory rate 15/min. Neurological examination did not reveal any abnormalities. During the hospitalization, somnolence slowly disappeared and the patient became restless, with recurrent episodes of seizures not reacting to diazepam, clonazepam and midazolam infusion. The seizures finally abated after administration of barbiturates (Thiopental). This, in turn, caused respiratory insufficiency, requiring patient intubation and mechanical ventilation. The patients mental status and respiratory status slowly improved. After regaining consciousness, the patient strongly denied the use of psychoactive substances or of chronic alcohol use. He confirmed the single use of high, but not clearly defined, caffeine dosage (in the form of "Red Bull") mixed with alcohol. He mentioned that eight months earlier in similar circumstances he was admitted to the neurology department due to an episode of seizures. Ultimately the origin was not established, despite broad diagnostic testing. Thus the origin of the seizures was suggested to be of a toxicological origin. The patient was released home in good condition, without any side effects of the poisoning. The psychological examination doe not reveal any symptoms of alcohol or psychoactive substances addiction. In our case, due to the unclear nature of the history, we preformed broad

  13. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  14. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect

    Schucan, T.

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  15. Joint implementation initiatives in South Africa: A case study of two energy-efficiency projects

    SciTech Connect

    Van Horen, C.; Simmonds, G.; Parker, G.

    1998-11-01

    This paper explores the issues pertinent to Joint Implementation (JI) in South Africa by examining two prototype potential projects on energy efficiency with the potential for reducing greenhouse gas (GHG) emissions. The first is an energy-efficient lighting project based on the public electricity utility, Eskom's plan for a compact fluorescent lighting program in the residential sector. The analysis indicates that the CFL program could avoid emissions of up to 243 thousand tons of carbon over the first five years, at negative cost (that is, with a positive economic return). The second project involves the delivery of passive solar, energy-efficient housing to a low-income township in the Western Cape Province, at an incremental capital cost of approximately $2.5m for the 6000 houses. In this case, the avoided GHG emissions over the first five years amount to between 14 and 20 tons of carbon, and over the 50 year life-span of the project it will result to 140 to 200 thousand tons of avoided emissions at a cost of $13 to $17 per ton. The housing project has significant non-GHG benefits such as savings on energy bills and health, which accrue to the low-income dwellers. A number of important JI-specific issues and concerns emerge with respect to the two projects, which can also be applied to other potential JI opportunities in the country generally. These include the issues of carbon credit sharing, for which a number of scenarios are suggested, as well as estimating unknown macroeconomic impacts, such as the effects of CFLs on the country's incandescent lighting industry. Findings from an examination of both potential projects conclude that capacity-building within the country is critical to ensure that the technology being transferred balances efficiency, cost and quality appropriate to the South African context. Finally, assessment and evaluation, monitoring and verification criteria and institutions are called for to guarantee measurable long-term environmental

  16. Case studies of sewage treatment with recovery of energy from methane

    SciTech Connect

    Phillips, C.A.; Webster, N.; Wander, J.

    1993-06-30

    In the Southeast, there are about 3,000 wastewater plants with a capacity of over one million gallons per day. Under this study, operating data and available financial information on a variety of technologies for large and small plans was documented for ten facilities. Studies were done on wastewater treatment plants (WWTPs) with design capacities ranging from 9.5--120 million gallons per day. All of these WWTPs recover the gas produced in their anaerobic digesters and use at least part of it as fuel for boilers and/or internal combustion engines. The engines power generators, blowers, or pumps, and most are equipped with heat recovery systems. Based on the historical data provided by the participants in this study and from the authors` own technical analysis, methane recovery and utilization systems appear to be cost effective, although the degree of cost effectiveness varies widely. The types of energy recovery systems are not uniform among all the participants so that the cases in this limited survey are not precisely comparable to each other. Also, reliance on historical data and cost information generated from portions of total plant operations and estimates makes it difficult to complete analysis of specific variables. The fact remains, however, that regardless of the individual type(s) of digester gas energy recovery system in use, data from seven of the ten participants reflected annual savings ranging from $67,200 to more than $700,000. Further, Wander Associates current analysis reflects that nine of the ten realized annual savings ranging from $5,000 to more than $600,000.

  17. Feasibility of Energy Medicine in a Community Teaching Hospital: An Exploratory Case Series

    PubMed Central

    Dufresne, Francois; Simmons, Bonnie; Vlachostergios, Panagiotis J.; Fleischner, Zachary; Joudeh, Ramsey; Blakeway, Jill

    2015-01-01

    Abstract Background: Energy medicine (EM) derives from the theory that a subtle biologic energy can be influenced for therapeutic effect. EM practitioners may be trained within a specific tradition or work solo. Few studies have investigated the feasibility of solo-practitioner EM in hospitals. Objective: This study investigated the feasibility of EM as provided by a solo practitioner in inpatient and emergent settings. Design: Feasibility study, including a prospective case series. Settings: Inpatient units and emergency department. Outcome measures: To investigate the feasibility of EM, acceptability, demand, implementation, and practicality were assessed. Short-term clinical changes were documented by treating physicians. Participants: Patients, employees, and family members were enrolled in the study only if study physicians expected no or slow improvement in specific symptoms. Those with secondary gains or who could not communicate perception of symptom change were excluded. Results: EM was found to have acceptability and demand, and implementation was smooth because study procedures dovetailed with conventional clinical practice. Practicality was acceptable within the study but was low upon further application of EM because of cost of program administration. Twenty-four of 32 patients requested relief from pain. Of 50 reports of pain, 5 (10%) showed no improvement; 4 (8%), slight improvement; 3 (6%), moderate improvement; and 38 (76%), marked improvement. Twenty-one patients had issues other than pain. Of 29 non–pain-related problems, 3 (10%) showed no, 2 (7%) showed slight, 1 (4%) showed moderate, and 23 (79%) showed marked improvement. Changes during EM sessions were usually immediate. Conclusions: This study successfully implemented EM provided by a solo practitioner in inpatient and emergent hospital settings and found that acceptability and demand justified its presence. Most patients experienced marked, immediate improvement of symptoms associated

  18. Installation of Reverse Osmosis Unit Reduces Refinery Energy Consumption: Office of Industrial Technologies (OIT) BestPractices Petroleum Technical Case Study

    SciTech Connect

    U.S. Department of Energy

    2001-08-06

    This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

  19. Changing strategies in utility regulation: the case of energy conservation in California

    SciTech Connect

    Barkovich, B.R.

    1987-01-01

    This paper considers changes in the strategy of utility regulators. It finds that prior to the early 1970s regulators pursued largely unintrusive regulatory strategies, deferring to utility managers or ratifying the latters' decisions after minimal review. Since the early 1970s regulators have become more interventionist, undertaking widespread oversight of utility management decisions and assuming some responsibility for such decisions. The intent of interventionist regulation during the 1970s and early 1980s is found to be (1) minimizing utility cost increases and (2) reducing the impact of related rate increases on customers. The paper explores reasons for this strategy change. It finds theories of regulation differentially see 3 factors as influencing regulator decision-making: interest groups, the regulatory commission as organization, and regular ideology. Its analysis suggests that all 3 help explain interventionism and proposes some consolidation and extension of existing theory to join these factors. This analysis is applied to a case study of interventionism: the decision of the California Public Utilities Commission (CPUC) to implement energy conservation through utilities during 1975-1984.

  20. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    SciTech Connect

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  1. Existing Whole-House Solutions Case Study: Group Home Energy Efficiency Retrofit for 30% Energy Savings, Washington, D.C.

    SciTech Connect

    2013-11-01

    Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes – such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study’s results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

  2. Energy effects associated with e-commerce: a case-study concerning online sales of personal computers in The Netherlands.

    PubMed

    Reijnders, L; Hoogeveen, M J

    2001-07-01

    The introduction of e-commerce is changing purchase and distribution patterns dramatically. One of the observed effects is that logistics become more efficient as products are directly shipped from a manufacturer or wholesaler to an end-user. Another effect is that market transparency increases, which has a downward pressure on prices of many products sold via the Internet. This article addresses the energy implications of e-commerce at the micro level. This is done by quantifying the transport related energy savings in the case of a Dutch online computer reseller and by assessing the extra energy expenditure associated with increased buying power of online buyers. It is found that energy use per article sold by the online computer reseller is lower. However, taking into account indirect effects such as increased consumer buying power, there are scenarios that lead to an overall increase in energy use. PMID:11475088

  3. Evolution of the Utah energy research triangle: A contemporary case study in the nexus of applied research and public policy

    NASA Astrophysics Data System (ADS)

    Walker, Alan John

    The evolution of the Utah Energy Research Triangle began August 2009 with Governor Gary Herbert's inauguration. On January 26, 2010 Governor Herbert delivered his first State of the State Address and announced the "most impactful economic initiative ever taken in our state...the Utah Energy Initiative." Even before this speech, actions were underway as the Governor assembled 16 energy professionals who forged Utah's 10-Year Strategic Energy Plan (Plan) released March 2011. The priorities in the Plan included: (1) establishing the Office of Energy Development in 2011; (2) launching the annual Governor's Energy Development Summits beginning in 2012; and (3) executing the first cycle of the Utah Energy Research Triangle in 2013 through 2015. Other objectives would be achieved as the Plan unfolded but those lower priorities are beyond the scope of this case study. This study will review the three priorities noted and focus on the execution of the Energy Research Triangle as a nexus of applied research and public policy. The Plan's vision was to "align the State's main research universities...into a powerful energy research and development triangle...through increased collaboration." In March 2014, execution of the first cycle of the Energy Research Triangle resulted in seven new research efforts across three research university campuses in Utah - Brigham Young University (BYU), Utah State University (USU), and the University of Utah (UofU). These research programs included eighteen researchers tackling principle energy issues: air quality, hydrocarbon transportation, and safety. Seven other researchers were awarded Governor's Energy Leadership Scholarships with requirements to address topics including efficient solar power, cold-weather battery performance, and molten salt energy storage. Final results will be known in June 2015, but collaboration on energy issues is active and ongoing. Together the three research teams are successfully reaching out to industry and

  4. Continuous high-energy low-flow-rate enteral support: a panoramic review of 1000 cases.

    PubMed

    Levy, E; Huguet, C; Parc, R; Ollivier, J M; Goldberg, J; Loygue, J

    1985-01-01

    One thousand intensive care digestive surgical cases are reviewed concerning continuous low-flow-rate enteral support (CLFRES), using Nutripompe: 607 males and 393 females, average age 51 years. The average duration of CLFRES is 21.5 days +/- 13, range 4 to 180 days. CLFRES was used postoperatively in 76 per cent, preoperatively in 10 per cent, and pre- and postoperatively in 14 per cent of cases, respectively. The enteral support route was 63 per cent nasogastric, 20 per cent gastrostomy and 17 per cent jejunostomy. Five hundred and ten patients required extensive digestive surgery with temporary exclusions. More than 100 patients with either temporary enterostomies or enterocutaneous fistulas have had continuous reinstillation of digestive chyme (CRDC) associated with their intensive care unit treatment management. CRDC in the lower end of an enterostomy has shown a specific retrograde inhibitory effect on the upper digestive secretions, particularly on the intestinal secretions during pathologies associated with one or several interruptions of the continuity of the gastrointestinal tract. This technique and its physiological implications were discussed. The principal pathologies in this important study group are: severe digestive fistulas, 24 per cent; acute diffuse peritonitis, 18 per cent; acute enterocolitis, 14 per cent; digestive tumours, 35 per cent; and acute necrotizing haemorrhagic pancreatitis, 9 per cent. A comparative analysis of nutritional energy nitrogen requirement was presented in view of the cancer, the septic, and the non-cancer non-septic patient groups. Enteral support nutritional solutions were primarily mixed non-degraded food, 70 per cent, and semi-elemental diets, 30 per cent. Certain pathology groups required variations in protein and lipid percentage. An up-to-date evaluation of nutritive formulas based on small peptides in normal and small bowel postoperative patients was discussed. Four CLFRES administration programmes were discussed

  5. A case study of energy savings and environmental impact reduction for a textile facility

    SciTech Connect

    Mowery, D.K.; Risi, J.D.

    1996-05-01

    The Industrial Energy Center (IEC) is a university-based energy management group dedicated to improving energy efficiency in industrial facilities throughout Virginia, North Carolina and Tennessee. The goal of the IEC is to assist area industries by increasing their cost effectiveness and product quality in terms of energy use in manufacturing. The IEC aspires to become the responsive resource for industries who are seeking a manufacturing advantage, or experiencing problems, related to the usage and management of energy. Fulfilling these goals is accomplished through a combination of energy training and education, on-site surveys of various energy-intensive processes, technical assistance, and applied research. The underlying purpose of all the energy-awareness efforts is to motivate the implementation of a formal, permanent, energy management program as an integral part of the client`s operation. The initial survey report is only a partial list of energy-related cost savings opportunities. The IEC will continue to make its services available if more in-depth training or advising is desired to implement an energy management program or the energy conservation measures (ECM) identified in the report, or if, after the facility has acted on the initial recommendations, additional assistance is desired to identify further ECMs. The IEC was invited to performed an energy survey at a textile finishing facility in southwestern Virginia. The remainder of this paper is dedicated to an overview of this energy survey and a discussion of the conservation measures identified.

  6. Genetic Variability in Energy Balance and Pancreatic Cancer Risk in a Population-Based Case-Control Study in Minnesota

    PubMed Central

    Zhang, Jianjun; Dhakal, Ishwori B.; Zhang, Xuemei; Prizment, Anna E.; Anderson, Kristin E.

    2013-01-01

    Objectives Accumulating evidence suggests that energy imbalance plays a role in pancreatic carcinogenesis. However, it remains unclear whether single nucleotide polymorphisms (SNPs) in genes regulating energy homeostasis influence pancreatic cancer risk. We investigated this question in a case-control study conducted from 1994 to 1998. Methods Cases (n=173) were ascertained from hospitals in the Twin Cities and Mayo Clinic, Minnesota. Controls (n=476) were identified from the general population and frequency matched to cases by age and sex. Seven SNPs were evaluated in relation to pancreatic cancer using unconditional logistic regression. Results After adjustment for confounders, the leucine/proline or proline/proline genotype of the neuropeptide Y (NPY) gene rs16139 was associated with a lower risk than the leucine/leucine genotype [odds ratio (OR) (95% confidence interval) (95% CI): 0.40 (0.15, 0.91)]. Conversely, an increased risk was observed for the glycine/arginine or arginine/arginine genotype of the adrenoceptor beta 2, surface (ADRB2) gene rs1042713 as compared with the glycine/glycine genotype [OR (95% CI): 1.52 (1.01, 2.31)]. Conclusions This study first reveals that SNPs in genes modulating energy intake (NPY) and energy expenditure (ADRB2) altered pancreatic cancer risk. If confirmed by other studies, our findings may shed new light on the etiology and prevention of pancreatic cancer. PMID:24201779

  7. Celiac trunk and branches dissection due to energy drink consumption and heavy resistance exercise: case report and review of literature.

    PubMed

    González, Wilma; Altieri, Pablo I; Alvarado, Enrique; Banchs, Héctor L; Colón, Edgar; Escobales, Nelson; Crespo, María

    2015-01-01

    Higher doses and consumption of energy drinks leads to cardiovascular effects and potential consequences. Principal components found in energy drinks such as caffeine, guarana and taurine has been related to dilatation, aneurysm formation, dissection and ruptures. There is no evidence showing an integration of these components and its effects in endothelium and aortic walls due to higher levels of pressure during exercises. We report a case of a 44 years male with celiac trunk and branches dissection due to long-term consumption of energy drinks and intense exercise routine. Our proposition relates cell and vessel walls alterations including elasticity in endothelial wall due to higher blood pressure, resistance by intense exercise routine and long-term consumption of energy drinks. PMID:26035983

  8. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  9. A Case Study of Complete Energy Management at the Herricks Union Free School District.

    ERIC Educational Resources Information Center

    Schreiber, Melvin; Paige, Haskell E., Sr.

    A school district energy management program reduced oil consumption 34 percent and electrical consumption 20 percent. Low cost modifications to the heating and ventilating equipment in the schools resulted in energy savings that "paid back" the labor plus material costs in less than a year. Each building was placed into an energy conservation…

  10. Stanford University: The Building Energy Retrofit Programs. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Flynn, Emily

    2011-01-01

    Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…

  11. The Business Case for Renewable Energy: A Guide for Colleges and Universities

    ERIC Educational Resources Information Center

    Putman, Andrea; Philips, Michael

    2006-01-01

    Growing numbers of colleges and universities are making the leap to renewable energy. Some are not only saving money--they're making money on their renewable energy purchases. This guide, written by two energy consultants, walks readers through the process of evaluating the various technologies, ownership options, relationships with utilities, and…

  12. Analysis of energy use in building services of the industrial sector in California: Two case studies. Final report

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1991-09-01

    Energy-use patterns in many of California`s fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

  13. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.

    PubMed

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption. PMID:18230413

  14. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    SciTech Connect

    Cherubini, Francesco Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  15. Application of time-series analyses to the hydrological functioning of an Alpine karstic system: the case of Bange-L'Eau-Morte

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Lepiller, M. L.; Mangin, A.

    This paper analyses the hydrological functioning of the Bange-L’Eau-Morte karstic system using classical and original techniques, recession curves, correlation and spectral analyses, noise analysis and wavelet analyses. The main characteristics that can be deduced are the recession coefficients, the dynamic volume of storage, the response time of the system, the quickflow and baseflow components and the snowmelt characteristics. The non-stationary and timescale-dependent behaviour of the system is studied and particular features of the runoff are shown. The step-by-step use of these different techniques provides a general methodology applicable to different karstic systems to provide quantifiable and objective criteria for differentiation and comparison of karstic systems.

  16. Asia`s energy future: The case of coal -- opportunities and constraints

    SciTech Connect

    Johnson, C.J.

    1997-12-31

    In this paper the author presents his views about the changing energy mix in Asia to the year 2020, and why the importance of coal will continue. The topics of the paper include Asia`s energy mix compared with the rest of the world including nuclear power, hydropower, solar and wind energy, oil, coal, and natural gas; the economics of coal and natural gas; coal production and consumption; new energy sources; Asia`s energy mix in the year 2020; resource depletion and conclusions. 4 figs., 1 tab.

  17. Thermodynamics of ghost dark energy in case of various nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-05-01

    In this paper we discuss thermodynamics of interacting ghost dark energy models in a flat FRW universe. During the discussion our attention will be concentrated on nonlinear interactions of particular form. In the considered models dark matter is assumed to be a pressureless matter and allows to complete the darkness of the low-redshift universe. Ghost dark energy it is one of the models of dark energy among others with an explicitly given energy density as a function of the Hubble parameter of the universe. Our study aims to have a contribution towards recently suggested interacting ghost dark energy models.

  18. Case histories of recently implemented technologies for citrus-processing energy-efficiency improvement. Volume II. Final report

    SciTech Connect

    Not Available

    1982-12-01

    For each of six citrus industry sites where energy efficiency improvement technologies have been implemented, a case history is presented which describes the implemented technology, its investment cost, and the energy and cost savings. The technologies are: double pressing in feed mill operation; evaporator microprocessor controller; feed mill vent stack controller; addition of a waste heat evaporator to a feed mill; enhanced lime reaction for improved pressing and dewatering in a feed mill, and added effect to a temperature-accelerated short-time evaporator. (LEW)

  19. The Human Dimension of Energy Conservation and Sustainability: A Case Study of the University of Michigan's Energy Conservation Program

    ERIC Educational Resources Information Center

    Marans, Robert W.; Edelstein, Jack Y.

    2010-01-01

    Purpose: The purpose of this paper is to determine the behaviors, attitudes, and levels of understanding among faculty, staff, and students in efforts to design programs aimed at reducing energy use in University of Michigan (UM) buildings. Design/methodology/approach: A multi-method approach is used in five diverse pilot buildings including focus…

  20. Integrated Risk Framework for Gigawatt-Scale Deployments of Renewable Energy: The U.S. Wind Energy Case; October 2009

    SciTech Connect

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable energy on private and public lands, along our coasts, on the Outer Continental Shelf (OCS), and in the Great Lakes requires a new way of evaluating potential environmental and human impacts. The author argues that deployment of renewables requires a framework risk paradigm that underpins effective future siting decisions and public policies.

  1. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  2. Building America Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake, Woodland, California

    SciTech Connect

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. Through Building America research and other innovative programs throughout the country, many of the technical challenges to building to the ZERH standard have been addressed. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. The case study discusses challenges encountered, lessons learned, and how obstacles were overcome. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  3. Critical-Point Symmetries in Boson-Fermion Systems: The Case of Shape Transitions in Odd Nuclei in a Multiorbit Model

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Vitturi, A.

    2007-02-02

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to {gamma}-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation.

  4. Critical-point symmetries in boson-fermion systems: the case of shape transitions in odd nuclei in a multiorbit model.

    PubMed

    Alonso, C E; Arias, J M; Vitturi, A

    2007-02-01

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to gamma-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation. PMID:17358851

  5. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and

  6. Improving spinach quality and reducing energy costs by retrofitting retail open refrigerated cases with doors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of open-refrigerated display cases is ubiquitous in retail supermarkets, even in the face of the non-uniform temperature conditions present in these cases that may affect the quality and safety of the stored products. In this paper, the temperature variations ('T) of packaged ready-t...

  7. Exploration Case Studies on OpenEI; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Young, K. R.

    2015-05-11

    This poster details the goal of developing a database of geothermal case studies for future exploration efforts in new areas. The goal of this effort is to develop a template for geothermal case studies in a crowd-sourced platform to allow contributions from the entire geothermal community, and this should be broken down into queriable properties in order to be more helpful.

  8. Assessing the process of designing and implementing electronic health records in a statewide public health system: the case of Colima, Mexico

    PubMed Central

    Hernández-Ávila, Juan Eugenio; Palacio-Mejía, Lina Sofia; Lara-Esqueda, Agustín; Silvestre, Eva; Agudelo-Botero, Marcela; Diana, Mark L; Hotchkiss, David R; Plaza, Beatriz; Sanchez Parbul, Alicia

    2013-01-01

    The findings of a case study assessing the design and implementation of an electronic health record (EHR) in the public health system of Colima, Mexico, its perceived benefits and limitations, and recommendations for improving the implementation process are presented. In-depth interviews and focus group discussions were used to examine the experience of the actors and stakeholders participating in the design and implementation of EHRs. Results indicate that the main driving force behind the use of EHRs was to improve reporting to the two of the main government health and social development programs. Significant challenges to the success of the EHR include resistance by physicians to use the ICD-10 to code diagnoses, insufficient attention to recurrent resources needed to maintain the system, and pressure from federal programs to establish parallel information systems. Operating funds and more importantly political commitment are required to ensure sustainability of the EHRs in Colimaima. PMID:23019239

  9. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  10. The "Boom" and "Bust" Patterns of Communities within the Energy Rich Region of West Virginia: A Case Study of Moundsville

    NASA Astrophysics Data System (ADS)

    Kiger, Brandon S.

    The increasing worldwide demand for energy will provide Energy Rich Regions (ERRs) the opportunity to increase their wealth and quality of living. However, a reoccurring pattern of boom and bust cycles in ERRs suggests the need for more sustainable development strategies. A mixed methods approach (case study) is employed to explore the "wicked human problems" occurring in one community, Moundsville, WV and to discover development patterns that might inform sustainable development strategies for the future. This study explores briefly the distant past development patterns, and in greater detail the pre-boom and most current boom in natural gas. First, data will be derived from a conceptual "Energy Rich Region Template" that explores the sustainability of development from the inclusive wealth forms of natural, human, and physical capital. The qualitative data analysis software (MAXQDA) is used to systematically collect and organize data and information into a community-wide knowledge base (specifically the seven years of city council minutes). This framework can assist future research dedicated to similar cases. Furthermore, this case may support communities and or policymakers in the development of a programming guide for converting the natural capital into other reproducible capital forms, thus avoiding the development cycle of boom and bust.

  11. NREL/Habitat for Humanity Zero Energy Home: A Cold-Climate Case Study for Affordable Zero Energy Homes

    SciTech Connect

    Norton, P.; Christensen, C.; Hancock, E.; Barker, G.; Reeves, P.

    2008-06-01

    The design of this 1,280-square-foot, three-bedroom Habitat for Humanity of Metro Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed with an early version (July 22, 2004) of the BEOpt building optimization software; DOE2 and TRNSYS were used to perform additional analysis. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design toward simple, easily maintained mechanical systems and volunteer-friendly construction techniques. A data acquisition system was installed in the completed home to monitor its performance.

  12. A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study

    NASA Astrophysics Data System (ADS)

    Breen, M.; O’Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.

    2016-03-01

    The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.

  13. The social control of energy: A case for the promise of decentralized solar technologies

    NASA Astrophysics Data System (ADS)

    Gilmer, R. W.

    1980-05-01

    Decentralized solar technology and centralized electric utilities were contrasted in the ways they assign property rights in capital and energy output; in the assignment of operational control; and in the means of monitoring, policing, and enforcing property rights. An analogy was drawn between the decision of an energy consumer to use decentralized solar and the decision of a firm to vertically integrate, that is, to extend the boundary of a the firm to vertically integrate, that is, to extend the boundary of the firm by making inputs or further processing output. Decentralized solar energy production offers the small energy consumer the chance to cut ties to outside suppliers--to vertically integrate energy production into the home or business. The development of this analogy provides insight into important noneconomic aspects of solar energy, and it points clearly to the lighter burdens of social management offered by decentralized solar technology.

  14. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism

    PubMed Central

    Maltby, Tomas

    2013-01-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. From the mid-2000s, the Commission contributed to a shift in political norms, successfully framing import dependency as a problem requiring an EU-level solution, based on the institution’s pre-existing preferences for a diversified energy supply and internal energy market. Whilst Member States retain significant sovereignty, the Commission has achieved since 2006 creeping competencies in the internal, and to a lesser extent external, dimensions of EU energy policy. PMID:24926115

  15. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism.

    PubMed

    Maltby, Tomas

    2013-04-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. From the mid-2000s, the Commission contributed to a shift in political norms, successfully framing import dependency as a problem requiring an EU-level solution, based on the institution's pre-existing preferences for a diversified energy supply and internal energy market. Whilst Member States retain significant sovereignty, the Commission has achieved since 2006 creeping competencies in the internal, and to a lesser extent external, dimensions of EU energy policy. PMID:24926115

  16. Existing Whole-House Solutions Case Study: Cascade Apartments - Deep Energy Multifamily Retrofit

    SciTech Connect

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units. This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary Building America research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio of the retrofit package after considering utility window incentives and KCHA capital improvement funding.

  17. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in India

    SciTech Connect

    McNeil, Michael A.; Ke, Jing; Can, Stephane de la Rue du; Letschert, Virginie E.; McMahon, James E.

    2011-12-02

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as “economic savings potential”. So far, the Indian market has responded favorably to government efficiency initiatives, with Indian manufacturers producing a higher fraction of high-efficiency equipment than before program implementation. This study highlights both the financial benefit and the scope of potential impact for adopting this equipment, all of which is already readily available on the market. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short-term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The Business Case concentrates on technologies for which cost-effectiveness can be clearly demonstrated.

  18. The Case for CASES

    ERIC Educational Resources Information Center

    Powell, W. R.

    1978-01-01

    In this article the Community Annual Energy Storage System ( CASES), a "thermal utility" plan for heating and cooling communities by storing summer heat and winter cold for use in the opposite season, is described. (MDR)

  19. Case study of total energy system, Sher-Den Mall, Sherman, Texas

    SciTech Connect

    Myrtetus, G.B.; Levey, M.D.

    1980-12-01

    The Sher-Den Mall shopping center receives all of its electricity and heating and cooling energy from a total energy plant located within the shopping center proper. Four engine-generator units are fueled primarily by natural gas, with some fuel oil use. The following are presented: initial corporate planning, investigation, and feasibility studies; a description of the total energy system; capital costs; plant operations, and revenue structure. Tables, figures, exhibits, and equipment specification lists are presented. (MHR)

  20. Performance Results from a Cold Climate Case Study for Affordable Zero Energy Homes: Preprint

    SciTech Connect

    Norton, P.; Christensen, C.

    2007-11-01

    The design of this 1280 square foot, 3-bedroom Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, a photovoltaic system, and passive and active solar thermal features to exceed the net zero energy goal. In January 2006, a data acquisition system was installed in the home to monitor its performance over the course of a year. This paper presents full year of energy performance data on the home.

  1. Estimating the impacts of federal efforts to improve energy efficiency: The case of buildings

    SciTech Connect

    LaMontagne, J; Jones, R; Nicholls, A; Shankle, S

    1994-09-01

    The US Department of Energy`s Office of Energy Efficiency and Renewable Energy (EE) has for more than a decade focused its efforts on research to develop new technologies for improving the efficiency of energy use and increasing the role of renewable energy; success has usually been measured in term of energy saved or displaced. Estimates of future energy savings remain an important factor in program planning and prioritization. A variety of internal and external factors are now radically changing the planning process, and in turn the composition and thrust of the EE program. The Energy Policy Act of 1992, the Framework Convention on Climate Change (and the Administration`s Climate Change Action Plan), and concerns for the future of the economy (especially employment and international competitiveness) are increasing emphasis on technology deployment and near-term results. The Reinventing Government Initiative, the Government Performance and Results Act, and the Executive Order on Environmental Justice are all forcing Federal programs to demonstrate that they are producing desired results in a cost-effective manner. The application of Total Quality management principles has increased the scope and importance of producing quantified measures of benefit. EE has established a process for estimating the benefits of DOE`s energy efficiency and renewable energy programs called ``Quality Metrics`` (QM). The ``metrics`` are: energy, employment, equity, environment, risk, economics. This paper describes the approach taken by EE`s Office of Building Technologies to prepare estimates of program benefits in terms of these metrics, presents the estimates, discusses their implications, and explores possible improvements to the QM process as it is currently configured.

  2. Estimating the impacts of federal efforts to improve energy efficiency: The case of building

    SciTech Connect

    Nicolls, A.K.; Shankle, S.A.; LaMontagne, J.; Jones, R.E.

    1994-11-01

    The US Department of Energy`s Office of Energy Efficiency and Renewable Energy [EE] has for more than a decade focused its efforts on research to develop new technologies for improving the efficiency of energy use and increasing the role of renewable energy; success has usually been measured in terms of energy saved or displaced. Estimates of future energy savings remain an important factor in program planning and prioritization. A variety of internal and external factors are now radically changing the planning process, and in turn the composition and thrust of the EE program. The Energy Policy Act of 1992, the Framework Convention on Climate Change (and the Administration`s Climate Change Action Plan), and concerns for the future of the economy (especially employment and international competitiveness) are increasing emphasis on technology deployment and near-term results. The Reinventing Government Initiative, the Government Performance and Results Act, and the Executive Order on Environmental Justice are all forcing Federal programs to demonstrate that they are producing desired results in a cost-effective manner. The application of Total Quality Management principles has increased the scope and importance of producing quantified measures of benefit. EE has established a process for estimating the benefits of DOE`s energy efficiency and renewable energy programs called `Quality Metrics` (QM). The ``metrics`` are: Energy; Environment; Employment; Risk; Equity; Economics. This paper describes the approach taken by EE`s Office of Building Technologies to prepare estimates of program benefits in terms of these metrics, presents the estimates, discusses their implications, and explores possible improvements to the QM process as it is currently configured.

  3. Impacts of energy cane expansion on ecosystem services: A Florida case study

    NASA Astrophysics Data System (ADS)

    Bagley, J. E.; VanLoocke, A.; Jaiswal, D.; Bernacchi, C. J.; Long, S.

    2012-12-01

    There is a rising demand for sustainable and secure sources of energy. This demand is driving the development of second-generation biofuel crops across the United States. However, in a changing climate the capability of these crops to meet energy demands are uncertain. Additionally, the impacts of energy crop adoption on biophysical and biochemical ecosystem services need to be refined. Central Florida has been identified as a test bed for energy cane in anticipation of increased investment for energy crop production in the southeastern United States. Currently, the land cover in this region is characterized by pasturelands with relatively low rates of productivity and evapotranspiration. By replacing these lands with highly productive and irrigated energy cane significant perturbations to the local and regional budgets of water, energy, and carbon are anticipated. In this study, we extend the Agro-IBIS LSM with a mechanistic multilayer canopy model of biofuel crops to simulate inter-canopy fluxes of energy, moisture, and carbon. We validate the model using published leaf area, surface flux, and yield observations taken from studies that encompassed variable soil types, climatic conditions, and management decisions. This extended Agro-IBIS model is used to simulate the growth of energy cane in central Florida. Using this model we assess the potential impacts of large-scale changes in land cover on future ecosystem services for the region. In particular, we focus on how changes in atmospheric CO2 and temperature influence energy cane's regulation of surface fluxes and storage. Using a series of simulations that represent a range of climatic regimes we test how increased atmospheric carbon concentrations may enhance or diminish stresses associated with changes in regional climate, and how the physiological plant responses feedback on fluxes between the land surface and the atmosphere. This allows us to quantitatively evaluate how large-scale energy cane production

  4. New energy geographies: a case study of yoga, meditation and healthfulness.

    PubMed

    Philo, Chris; Cadman, Louisa; Lea, Jennifer

    2015-03-01

    Beginning with a routine day in the life of a practitioner of yoga and meditation and emphasising the importance of nurturing, maintaining and preventing the dissipation of diverse 'energies', this paper explores the possibilities for geographical health studies which take seriously 'new energy geographies'. It is explained how this account is derived from in-depth fieldwork tracing how practitioners of yoga and meditation find times and spaces for these practices, often in the face of busy urban lifestyles. Attention is paid to the 'energy talk' featuring heavily in how practitioners describe the benefits that they perceive themselves to derive from these practices, and to claims made about 'energies' generated during the time-spaces of these practices which seemingly flow, usually with positive effects, into other domains of their lives. The paper then discusses the implications of this energy talk in the context of: (a) critically reviewing conventional approaches to studying 'energy geographies'; (b) identifying an alertness to the likes of 'affective energies' surfacing in recent theoretically-attuned works of human geography (and cognate disciplines); and (c) exploring differing understandings of energy/energies extant in geographical studies of health and in step with the empirical research materials presented about yoga, meditation and healthfulness. While orientated towards explicitly geographical inquiries, the paper is intended as a statement of interest to the wider medical humanities. PMID:25503269

  5. Existing Whole-House Solutions Case Study: Community-Scale Energy Modeling - Southeastern United States

    SciTech Connect

    2014-12-01

    Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all-electric, production-built homes was modeled. The homes were in two communities: one built in the 1970s and the other in the mid-2000s.

  6. McFadden, Wyoming: A case study in narrating our changing energy landscapes

    NASA Astrophysics Data System (ADS)

    Anderson, Carly-Ann Marie

    This thesis uses McFadden, Wyoming, and the Rock Creek Valley to discuss Wyoming's changing energy landscapes and argues that a cultural landscape approach to documenting our historic and cultural resources can contribute to properly siting energy developments. Though Wyoming stands to gain from the construction of wind farms, they should be carefully sited in order to balance environmental and cultural resource preservation with energy needs. Wyoming has a long history as an energy hinterland and provides a significant portion of energy to the U.S. However, the nation's demand for energy should not take precedence over preserving the cultural resources and vast open landscapes that represent Wyoming's heritage. A history of the Rock Creek Valley as a home to Native Americans, a transportation corridor, oil field, and wind farm site is presented along with a discussion of energy consumption and Wyoming's role in the energy market. The thesis also considers the importance of education, public discourse, and narrative as tools for planning a sustainable future with regard to energy, the environment, and cultural resources.

  7. Pairwise additivity of energy components in protein-ligand binding: the HIV II protease-Indinavir case.

    PubMed

    Ucisik, Melek N; Dashti, Danial S; Faver, John C; Merz, Kenneth M

    2011-08-28

    An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ∼82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n=3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions. PMID:21895219

  8. First-principles calculation of defect free energies: General aspects illustrated in the case of bcc Fe

    NASA Astrophysics Data System (ADS)

    Murali, D.; Posselt, M.; Schiwarth, M.

    2015-08-01

    Modeling of nanostructure evolution in solids requires comprehensive data on the properties of defects such as the vacancy and foreign atoms. Since most processes occur at elevated temperatures, not only the energetics of defects in the ground state, but also their temperature-dependent free energies must be known. The first-principles calculation of contributions of phonon and electron excitations to free formation, binding, and migration energies of defects is illustrated in the case of bcc Fe. First of all, the ground-state properties of the vacancy, the foreign atoms Cu, Y, Ti, Cr, Mn, Ni, V, Mo, Si, Al, Co, O, and the O-vacancy pair are determined under constant volume (CV) as well as zero-pressure (ZP) conditions, and relations between the results of both kinds of calculations are discussed. Second, the phonon contribution to defect free energies is calculated within the harmonic approximation using the equilibrium atomic positions determined in the ground state under CV and ZP conditions. In most cases, the ZP-based free formation energy decreases monotonously with temperature, whereas for CV-based data both an increase and a decrease were found. The application of a quasiharmonic correction to the ZP-based data does not modify this picture significantly. However, the corrected data are valid under zero-pressure conditions at higher temperatures than in the framework of the purely harmonic approach. The difference between CV- and ZP-based data is mainly due to the volume change of the supercell since the relative arrangement of atoms in the environment of the defects is nearly identical in the two cases. A simple transformation similar to the quasiharmonic approach is found between the CV- and ZP-based frequencies. Therefore, it is not necessary to calculate these quantities and the corresponding defect free energies separately. In contrast to ground-state energetics, the CV- and ZP-based defect free energies do not become equal with increasing supercell

  9. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas"super-utility"

    SciTech Connect

    Goldman, Charles A.; Cappers, Peter

    2009-12-01

    Local, state and federal policies that jointly promote the generation of electricity from renewable technologies and the pursuit of energy efficiency are expected to help mitigate the detrimental effects of global climate change and foster energy independence. We examine the financial impacts on various stakeholders from alternative compliance strategies with a Combined Efficiency and Renewable Electricity Standard (CERES) using a case study approach for utilities in Kansas. If only supply-side options are considered, our analysis suggests that a Kansas"super-utility" would prefer to build its own renewable energy resources, while ratepayers would favor a procurement strategy that relies on long-term renewable power purchase agreements. Introducing energy efficiency under varying levels as a CERES resource will, under our analysis, reduce ratepayer bills by ~;;$400M to ~;;$1.0B between 2009 and 2028, but commensurately erode shareholder returns by ~;;10 to ~;;100 basis points. If a business model for energy efficiency inclusive of both a lost fixed cost recovery mechanism and a shareholder incentive mechanism is implemented, our results illustrate how shareholder returns can be improved through the pursuit of energy efficiency, by at most ~;;20 basis points if certain conditions apply, while ratepayers continue to save between $10M and ~;;$840M over 20 years.

  10. New Whole-House Solutions Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes - Pacific Northwest

    SciTech Connect

    2015-05-01

    This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). In this project, the Northwest Energy Efficient Manufactured Housing Program worked with Building America Partnership for Improved Residential Construction and Bonneville Power Administration to help four factory homebuilders build prototype zero energy ready manufactured homes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This case study describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability. Monitoring is expected to continue into 2016.

  11. Participatory definition of breeding objectives for sheep breeds under pastoral systems--the case of Red Maasai and Dorper sheep in Kenya.

    PubMed

    König, Emelie Zonabend; Mirkena, Tadele; Strandberg, Erling; Audho, James; Ojango, Julie; Malmfors, Birgitta; Okeyo, Ally Mwai; Philipsson, Jan

    2016-01-01

    Crossing local breeds with exotic breeds may be an option for increased livestock productivity. However, there is a risk for endangerment of the local breeds. One such case is in Kenya where the imported Dorper breed is used for crossbreeding with Red Maasai sheep. The aim of this study was to investigate farmers' trait preferences as a basis for determination of breeding objectives for Red Maasai and Dorper sheep at two sites, Amboseli and Isinya, in Kenya. Within their own flock, each farmer identified three ewes representing the best, average and poorest within each breed group: Red Maasai, Dorper and Crosses. Farmers gave reasons for their ranking. Body measurements and weights were also taken. At the harshest site, Amboseli, differences between breed groups in body weight were small and breeds were equally preferred. In Isinya, where environmental conditions are better and farmers are more market oriented, Dorper and Crosses had significantly higher body weights and market prices and were thus preferred by the farmers. Red Maasai were preferred for their maternal and adaptive traits. Breeding objectives should emphasize growth traits and milk production in both breeds at both sites. Body condition needs to be specifically considered in the breeding objectives for sheep in Amboseli, whereas adaptive traits need to be generally emphasized in Dorper. PMID:26374208

  12. DOE Zero Energy Ready Home Case Study: Cobblestone Homes — 2014 Model Home, Midland, MI

    SciTech Connect

    none,

    2014-09-01

    This builder's first DOE Zero Energy Ready Home won a Custom Builder award in the 2014 Housing Innovation Awards, scored HERS 49 without PV or HERS 44 with 1.4 kW of PV, and served as a prototype and energy efficiency demonstration model while performance testing was conducted.

  13. Energy, Economics and the Environment: Case Studies and Teaching Activities for Elementary School.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    This curriculum guide for middle school environmental education focuses on energy, economics, and the environment (EEE), and the interrelatedness of these three areas of study. The booklet is designed to provide teachers and students with a conceptual framework for analyzing complicated issues that involve the economic implications of energy and…

  14. Case study: molasses as the primary energy source on an organic grazing dairy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairies face many challenges, one of which is the high cost of purchased organic grains. Molasses may be a less expensive energy alternative. However, anecdotal results have been mixed for farms that used molasses as the sole energy source. This research project quantified animal performance...

  15. DOE Zero Energy Ready Home Case Study: Palo Duro Homes — Palo Duro Homes, Albuquerque, NM

    SciTech Connect

    none,

    2014-09-01

    This builder was honored for Most DOE Zero Energy Ready Homes Built in the 2014 Housing Innovation Awards. By July 2014, Palo Duro had completed 152 homes since the program began in 2013 (under the original program title DOE Challenge Home), all of them certified to the stringent efficiency requirements of DOE’s Zero Energy Ready Home program.

  16. SITE-SPECIFIC SOCIOECONOMIC IMPACTS: SEVEN CASE STUDIES IN THE OHIO RIVER BASIN ENERGY STUDY REGION

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. The general project focus is on the regional impacts of various alternative energy development futures in the study region, which consists of all of Kentuck...

  17. DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, FL

    SciTech Connect

    none,

    2014-09-01

    This home garnered an award in the Affordable Builder category of the 2014 Housing Innovation Awards, and features 2x4 walls with fiberglass batt inside plus R-3 rigid foam on the exterior, ENERGY STAR lighting, appliances, and ceiling fans, a solar water heater, an energy recovery ventilation, and a high efficiency heat pump.

  18. Energy, Economics, and the Environment: Case Studies and Teaching Activities for Middle School.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    Educators are faced with the task of teaching students to be responsible stewards of the world's natural resources. This curriculum focuses on three interrelated topics in this area: energy, economics, and the environment. The goal of this book is to: (1) teach students basic knowledge and concepts about energy, the environment, and economics; (2)…

  19. Careful Measurements and Energy Balance Closure - The Case of Soil Heat Flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An area of persistent concern in micrometeorological measurements is the failure to close the energy balance at surface flux stations. While most attention has focused on corrections associated with the eddy fluxes, none of the energy balance terms are measured without error. The flux plate method i...

  20. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  1. Does energy flux determine ant diversity? A case study in an arid ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants are highly diverse, widespread, and abundant organisms playing important roles in ecosystem functioning. For these reasons, it is useful to know what structures their diversity. Biodiversity is ultimately constrained by energy availability and the relationship between energy and diversity has ...

  2. Energy recovery from organic fractions of municipal solid waste: A case study of Hyderabad city, Pakistan.

    PubMed

    Safar, Korai M; Bux, Mahar R; Aslam, Uqaili M; Ahmed, Memon S; Ahmed, Lashari I

    2016-04-01

    Non-renewable energy sources have remained the choice of the world for centuries. Rapid growth in population and industrialisation have caused their shortage and environmental degradation by using them. Thus, at the present rate of consumption, they will not last very long. In this prospective, this study has been conducted. The estimation of energy in terms of biogas and heat from various organic fractions of municipal solid waste is presented and discussed. The results show that organic fractions of municipal solid waste possess methane potential in the range of 3%-22% and their heat capacity ranges from 3007 to 20,099 kJ kg(-1) Also, theoretical biogas potential of different individual fruit as well as vegetable components and mixed food waste are analysed and estimated in the range of 608-1244 m(3) t(-1) Further, the share of bioenergy from municipal solid waste in the total primary energy supply in Pakistan has been estimated to be 1.82%. About 8.43% of present energy demand of the country could be met from municipal solid waste. The study leads us to the conclusion that the share of imported energy (i.e. 0.1% of total energy supply) and reduction in the amount of energy from fossil fuels can be achieved by adopting a waste-to-energy system in the country. PMID:26821599

  3. Report of the NASA lunar energy enterprise case study task force

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Lunar Energy Enterprise Cast Study Task Force was formed to determine the economic viability and commercial business potential of mining and extracting He-3 from the lunar soil for use in earth-based fusion reactors. In addition, the Solar Power Satellite (SPS) and the Lunar Power Station (LPS) were also evaluated because they involve the use of lunar materials and could provide energy for lunar-based activities. The Task Force considered: (1) the legal and liability aspects of the space energy projects; (2) the long-range terrestrial energy needs and options; (3) the technical maturity of the three space energy projects; and (4) their commercial potential. The use of electricity is expected to increase, but emerging environmental concerns and resource availability suggest changes for the national energy policy. All three options have the potential to provide a nearly inexhaustible, clean source of electricity for the U.S. and worldwide, without major adverse impacts on the Earth's environment. Assumption by industry of the total responsibility for these energy projects is not yet possible. Pursuit of these energy concepts requires the combined efforts of government and industry. The report identifies key steps necessary for the development of these concepts and an evolving industrial role.

  4. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  5. DOE Zero Energy Ready Home Case Study: Ferguson Design and Construction,Sagaponack, New York

    SciTech Connect

    none,

    2013-09-01

    The 6-bedroom home achieves a HERS score of 43 even before PV is installed and will cut utility bills dramatically for its owners. Water-savings faucets, LED lighting, and ENERGY STAR appliances add to energy savings. This home garnered a 2013 Housing Innovation Award in the custom builder category.

  6. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, Washington

    SciTech Connect

    none,

    2013-09-01

    Ted Clifton, founder of Clifton View Homes, achieved an impressive Home Energy Rating System (HERS) score of 34 (without solar panels) on a two-story home completed in July 2011 that also earned him his first Challenge Home certification from the U.S. Department of Energy (DOE). This home also garnered a 2013 Housing Innovation Award in the "systems builder" category.

  7. Evaluation of economic loss from energy-related environmental pollution: a case study of Beijing

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Su, Meirong; Liu, Gengyuan; Yang, Zhifeng

    2013-09-01

    With the growth of energy consumption, energy-related environmental pollution has become increasingly serious, which in turn causes enormous economic loss because of public health damage, corrosion of materials, crop yield reduction, and other factors. Evaluating economic loss caused by energy-related environmental pollution can contribute to decision making in energy management. A framework for evaluating economic loss from environmental pollution produced during energy production, transportation, and consumption is proposed in this paper. Regarding SO2, PM10, and solid waste as the main pollutants, economic losses from health damage, materials corrosion, crop yield reduction, and solid waste pollution are estimated based on multiple concentration-response relationships and dose-response functions. The proposed framework and evaluation methods are applied to Beijing, China. It is evident that total economic loss attributable to energy-related environmental pollution fluctuated during 2000-2011 but had a general growth trend, with the highest value reaching 2.3 × 108 CNY (China Yuan) in 2006. Economic loss caused by health damage contributes most to the total loss among the four measured damage types. The total economic loss strongly correlates with the amount of energy consumption, especially for oil and electricity. Our evaluation framework and methods can be used widely to measure the potential impact of environmental pollution in the energy lifecycle.

  8. Low-income Renewable Energy Programs: Case Studies of State Policy in California and Massachusetts

    NASA Astrophysics Data System (ADS)

    Kelly, Kaitlin

    Energy policies aimed at reducing the burden of monthly utility costs on low-income families have been established since the 1970s. Energy use impacts low-income families and organizations through housing specific costs, health and wellness, and opportunity costs. States have begun to run renewable energy installation programs aimed at reducing costs for low-income communities. This thesis examines two of these programs, the solar photovoltaic policies in California as part of the Single Family Affordable Solar Housing and Multi-family Affordable Solar Housing programs, and the Low-income Solar Housing program in Massachusetts. Lessons learned from reviewing these programs are that renewable energy programs are an effective strategy for reducing utility costs for low-income communities, but that the total effectiveness of the program is dependent on removing cost barriers, implementing energy efficiency improvements, and increasing consumer education through established community networks and relationships.

  9. Exploring the Potential Business Case for Synergies Between Natural Gas and Renewable Energy

    SciTech Connect

    Cochran, J.; Zinaman, O.; Logan, J.; Arent, D.

    2014-02-01

    Natural gas and renewable energy each contribute to economic growth, energy independence, and carbon mitigation, sometimes independently and sometimes collectively. Often, natural gas and renewables are considered competitors in markets, such as those for bulk electricity. This paper attempts to address the question, 'Given near- and long-term needs for abundant, cleaner energy sources and decarbonization, how can more compelling business models be created so that these two domestic forms of energy work in greater concert?' This paper explores revenue opportunities that emerge from systems-level perspectives in 'bulk energy' (large-scale electricity and natural gas production, transmission, and trade) and four 'distribution edge' subsectors: industrial, residential, commercial, and transportation end uses.

  10. Energy usage while maintaining thermal comfort: A case study of a UNT dormitory

    NASA Astrophysics Data System (ADS)

    Gambrell, Dusten

    Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.

  11. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire

    PubMed Central

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting. PMID:25294975

  12. Estimating Energy Expenditure from Heart Rate in Older Adults: A Case for Calibration

    PubMed Central

    Schrack, Jennifer A.; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M.; Ferrucci, Luigi

    2014-01-01

    Background Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. Objective To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Design Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Results Heart rate and energy expenditure were highly correlated (r = 0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. = 0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). Conclusion These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration. PMID:24787146

  13. Integrated water and renewable energy management: the Acheloos-Peneios region case study

    NASA Astrophysics Data System (ADS)

    Koukouvinos, Antonios; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Tegos, Aristotelis; Rozos, Evangelos; Papalexiou, Simon-Michael; Dimitriadis, Panayiotis; Markonis, Yiannis; Kossieris, Panayiotis; Tyralis, Christos; Karakatsanis, Georgios; Tzouka, Katerina; Christofides, Antonis; Karavokiros, George; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris

    2015-04-01

    Within the ongoing research project "Combined Renewable Systems for Sustainable Energy Development" (CRESSENDO), we have developed a novel stochastic simulation framework for optimal planning and management of large-scale hybrid renewable energy systems, in which hydropower plays the dominant role. The methodology and associated computer tools are tested in two major adjacent river basins in Greece (Acheloos, Peneios) extending over 15 500 km2 (12% of Greek territory). River Acheloos is characterized by very high runoff and holds ~40% of the installed hydropower capacity of Greece. On the other hand, the Thessaly plain drained by Peneios - a key agricultural region for the national economy - usually suffers from water scarcity and systematic environmental degradation. The two basins are interconnected through diversion projects, existing and planned, thus formulating a unique large-scale hydrosystem whose future has been the subject of a great controversy. The study area is viewed as a hypothetically closed, energy-autonomous, system, in order to evaluate the perspectives for sustainable development of its water and energy resources. In this context we seek an efficient configuration of the necessary hydraulic and renewable energy projects through integrated modelling of the water and energy balance. We investigate several scenarios of energy demand for domestic, industrial and agricultural use, assuming that part of the demand is fulfilled via wind and solar energy, while the excess or deficit of energy is regulated through large hydroelectric works that are equipped with pumping storage facilities. The overall goal is to examine under which conditions a fully renewable energy system can be technically and economically viable for such large spatial scale.

  14. Energy profiling of demersal fish: a case-study in wind farm artificial reefs.

    PubMed

    De Troch, Marleen; Reubens, Jan T; Heirman, Elke; Degraer, Steven; Vincx, Magda

    2013-12-01

    The construction of wind farms introduces artificial hard substrates in sandy sediments. As Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) tend to aggregate in order to feed around these reefs, energy profiling and trophic markers were applied to study their feeding ecology in a wind farm in the Belgian part of the North Sea. The proximate composition (carbohydrates, proteins and lipids) differed significantly between liver and muscle tissue but not between fish species or between their potential prey species. Atlantic cod showed to consume more energy than pouting. The latter had a higher overall energy reserve and can theoretically survive twice as long on the available energy than cod. In autumn, both fish species could survive longer on their energy than in spring. Polyunsaturated fatty acids were found in high concentrations in fish liver. The prey species Jassa and Pisidia were both rich in EPA while Jassa had a higher DHA content than Pisidia. Energy profiling supported the statement that wind farm artificial reefs are suitable feeding ground for both fish species. Sufficient energy levels were recorded and there is no indication of competition. PMID:24210053

  15. Ecosystem-based management and refining governance of wind energy in the Massachusetts coastal zone: A case study approach

    NASA Astrophysics Data System (ADS)

    Kumin, Enid C.

    While there are as yet no wind energy facilities in New England coastal waters, a number of wind turbine projects are now operating on land adjacent to the coast. In the Gulf of Maine region (from Maine to Massachusetts), at least two such projects, one in Falmouth, Massachusetts, and another on the island of Vinalhaven, Maine, began operation with public backing only to face subsequent opposition from some who were initially project supporters. I investigate the reasons for this dynamic using content analysis of documents related to wind energy facility development in three case study communities. For comparison and contrast with the Vinalhaven and Falmouth case studies, I examine materials from Hull, Massachusetts, where wind turbine construction and operation has received steady public support and acceptance. My research addresses the central question: What does case study analysis of the siting and initial operation of three wind energy projects in the Gulf of Maine region reveal that can inform future governance of wind energy in Massachusetts state coastal waters? I consider the question with specific attention to governance of wind energy in Massachusetts, then explore ways in which the research results may be broadly transferable in the U.S. coastal context. I determine that the change in local response noted in Vinalhaven and Falmouth may have arisen from a failure of consistent inclusion of stakeholders throughout the entire scoping-to-siting process, especially around the reporting of environmental impact studies. I find that, consistent with the principles of ecosystem-based and adaptive management, design of governance systems may require on-going cycles of review and adjustment before the implementation of such systems as intended is achieved in practice. I conclude that evolving collaborative processes must underlie science and policy in our approach to complex environmental and wind energy projects; indeed, collaborative process is fundamental to

  16. Modeling the water-energy nexus under changing energy market and climate conditions: a case study in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Anghileri, Daniela; Castelletti, Andrea; Fumagalli, Elena; Giuliani, Matteo

    2015-04-01

    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Many river basins, especially in the Mediterranean region, are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the environment, and the economy, thus emphasizing the need to rethink the way water resources are distributed, managed, and used at the regional and river basin scale. This paradigm shift will be essential to cope with the undergoing global change, characterized by growing water demands and by increasingly uncertain hydrologic regimes. Most of the literature traditionally focused on predicting the impacts of climate change on water resources, while our understanding of the human footprint on the hydrological cycle is limited. For example, changes in the operation of the Alpine hydropower reservoirs induced by socio-economic drivers (e.g., development of renewable energy) have been already observed over the last few years and have produced relevant impacts on multiple water uses due to the altered distribution of water volumes in time and space. Modeling human decisions as well as the links between society and environmental systems becomes key to develop reliable projections on the co-evolution of the coupled human-water systems and deliver robust adaptation strategies. This work contributes a preliminary model-based analysis of the behaviour of hydropower operators under changing energy market and climate conditions. The proposed approach is developed for the San Giacomo-Cancano reservoir system located in the Lake Como catchment. The identification of the current operating policy is supported by input variable selection methods to select the most relevant hydrological and market based drivers to explain the observed release time series. The identified model is then simulated under a set of future scenarios, accounting for both climate and socio-economic change (e

  17. Case Study Analysis of U.S. Policy Solutions to Enable China New Energy Cities

    SciTech Connect

    Simon, J.; Tian, T.; Liu, C.; Miller, M.

    2015-05-28

    This report summarizes various policies for encouraging investment and installation of renewable energy across the country. In particular, we attempt to explain the benefits of, and considerations behind, each policy type and provide examples of implementation across the United States While recognized as important, this report does not address policies or examples of successful energy efficiency or alternative-fuel vehicle strategies. In addition, we summarize the renewable energy policy strategies undertaken by three areas of the United States: New Jersey, Hawaii, and San Francisco.

  18. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from

  19. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, Washington

    SciTech Connect

    none,

    2013-09-01

    This Challenge Home is one of 42 homes in a micro-community of ultra-modern, energy-efficient homes built by Dwell Development on an urban gray-field site in South Seattle. Every home will achieve a 5-Star Built Green rating from the regional master builders association and meet the criteria of the Northwest ENERGY STAR program, which is more strict than the national ENERGY STAR criteria. Also, the home won a 2013 Housing Innovation Award in the "systems builder" category.

  20. Energy efficiency and the economists: The case for a policy based on economic principles

    SciTech Connect

    Anderson, D.

    1995-11-01

    People interested in energy policy, whether in business, finance, government, or the environmental movement, should welcome and support an approach based on economic principles for three reasons. By solving the financing problem and encouraging innovation and cost-efficiency, the economic-efficiency approach will enable all countries to meet energy demands. By giving proper weight to the development and use of low-polluting technologies this approach will enable reduction of local and, over the long-term global pollution as energy demands grow. And in developing countries especially, an economic approach will enable the industry to play its part in raising living standards for the population at large. Given good policies, there is no reason at all why developing countries, like the industrial countries before them, should not enjoy the benefits of much higher levels of energy consumption than they do today.

  1. Increasing Property Value with Energy Saving Practices: Hines Retrofit Case Study

    SciTech Connect

    none,

    2013-03-13

    Hines partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  2. Energy Saving Effects of Wireless Sensor Networks: A Case Study of Convenience Stores in Taiwan

    PubMed Central

    Chen, Chih-Sheng; Lee, Da-Sheng

    2011-01-01

    Wireless sensor network (WSN) technology has been successfully applied to energy saving applications in many places, and plays a significant role in achieving power conservation. However, previous studies do not discuss WSN costs and cost-recovery. The application of WSNs is currently limited to research and laboratory experiments, and not mass industrial production, largely because business owners are unfamiliar with the possible favorable return and cost-recovery on WSN investments. Therefore, this paper focuses on the cost-recovery of WSNs and how to reduce air conditioning energy consumption in convenience stores. The WSN used in this study provides feedback to the gateway and adopts the predicted mean vote (PMV) and computational fluid dynamics (CFD) methods to allow customers to shop in a comfortable yet energy-saving environment. Four convenience stores in Taipei have used the proposed WSN since 2008. In 2008, the experiment was initially designed to optimize air-conditioning for energy saving, but additions to the set-up continued beyond 2008, adding the thermal comfort and crowds peak, off-peak features in 2009 to achieve human-friendly energy savings. Comparison with 2007 data, under the same comfort conditions, shows that the power savings increased by 40% (2008) and 53% (2009), respectively. The cost of the WSN equipment was 500 US dollars. Experimental results, including three years of analysis and calculations, show that the marginal energy conservation benefit of the four convenience stores achieved energy savings of up to 53%, recovering all costs in approximately 5 months. The convenience store group participating in this study was satisfied with the efficiency of energy conservation because of the short cost-recovery period. PMID:22319396

  3. WWREX: A case study in the development of Internet E-Commerce in the energy industry

    SciTech Connect

    Yeich, K.; Horner, D.; Dunn, A.

    1998-12-31

    Even more so than the World Wide Web, the utility industry is undergoing a massive deregulation that is turning it into a Wild West environment that has fostered fierce competition, new technology and new services in the energy marketplace. It has become increasingly complex for consumers, suppliers and utilities to buy and sell energy at the best prices. With the help of the Internet, Per-Se Technologies and North American Power have developed the World Wide Retail Energy eXchange (WWREX): a real-time, Web-based electronic commerce application that matches suppliers of electricity and natural gas with potential customers online. This service is the first online application to facilitate the buying and selling of energy via the Internet. Designed to take advantage of the deregulated utilities marketplace, REX benefits multiple market players. With REX, business energy consumers can buy energy at the best price, from multiple suppliers and with significant time and cost reductions. Suppliers can instantly access new customer bases and close efficient, bulk transactions without the traditional sales and marketing costs associated with selling to a diverse set of consumers. The challenges and solutions of this project illustrate the technologies and techniques in creating a viable E-Commerce application. The resulting system provides effective electronic commerce and solves a critical business need at a relatively low cost.

  4. Keeping Energy Savings in the LOOP: Mesa Lane Partners Case Study

    SciTech Connect

    2013-03-01

    Mesa Lane Partners (MLP) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to a build a new, low-energy mixed-use building that consumes at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA), as part of DOE’s Commercial Building Partnerships (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. The privately developed 46,000-square-foot LOOP project, which is intended to provide affordable off-campus student housing in an underserved community next to University of California at Santa Barbara, will contain more than 7,000 square feet of retail space, a roof deck, an event space, a gym, and 48 apartments. The project developer, MLP, is aiming to exceed CBP requirement, targeting energy consumption that is at least 65% less than that required by the standard. If the LOOP meets this goal, it is expected to achieve Leadership in Energy and Environmental Design (LEED) Gold certification.

  5. Inversion of the broken ray transform in the case of energy-dependent attenuation.

    PubMed

    Krylov, R; Katsevich, A

    2015-06-01

    Broken Ray transform (BRT) arises when one considers a narrow x-ray beam propagating through medium under the assumption of single scattering. Previous algorithms for inverting the BRT assumed that the medium is characterized by a single attenuation coefficient μ. However x-rays lose their energy after Compton scattering and the energy loss depends on the scattering angle. Since the attenuation coefficient depends on energy, the μ's before and after scattering are different. When there are three or more detectors one should distinguish not only between μ's that are 'seen' by x-rays before and after scattering, but also between μ's that are 'seen' by x-rays traveling towards different detectors.The main thrust of this paper is inversion of the BRT with N ⩾ 3 detectors under the assumption that the attenuation coefficient can be accurately approximated by a linear function of energy within the window of relevant energies. When the number of detectors is four or greater, we derive a family of inversion formulas. If N > 4, we find the optimal formula, which provides the best stability with respect to noise in the data. If N = 4, the family collapses into a single formula and no optimization is possible. If μ is independent of energy, N = 3 is sufficient for inversion. We also develop iterative reconstruction algorithms that can use global and local data. The results of testing the algorithms are presented. PMID:25974246

  6. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    PubMed

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy. PMID:21649442

  7. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    PubMed Central

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S. B.

    2013-01-01

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations. PMID:23277576

  8. Incentives for Methane Mitigation and Energy-Efficiency Improvements in Case of Ukraine’s Natural Gas Transmission System

    SciTech Connect

    Roshchanka, Volha; Evans, Meredydd

    2014-06-01

    Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of methane emissions into the atmosphere. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine. The Ukrainian transmission company, Ukrtransgaz, reduced its own system’s natural gas consumption by 68 percent in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraine’s transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraine’s natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of steep increases in the price of imported natural gas, and comprehensive domestic environmental and energy policies, regional integration policy, and international environmental agreements has created conditions for successful methane emission and combustion reductions. Learning about such case studies can help us design better policies elsewhere.

  9. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    SciTech Connect

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, Shengbai

    2013-01-15

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab-initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD which predicts H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations.

  10. Free energy calculation of single molecular interaction using Jarzynski's identity method: the case of HIV-1 protease inhibitor system

    NASA Astrophysics Data System (ADS)

    Li, De-Chang; Ji, Bao-Hua

    2012-06-01

    Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and experiments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molecular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic complexity of the ligand-receptor system, the energy barrier predicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results suggested that the JI method is more appropriate for reconstructing free energy landscape using the data taken from experiments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distribution in SMD simulations.

  11. Incentives for methane mitigation and energy-efficiency improvements in the case of Ukraine's natural gas transmission system

    NASA Astrophysics Data System (ADS)

    Roshchanka, Volha; Evans, Meredydd

    2014-06-01

    Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of anthropogenic methane emissions into the atmosphere in Ukraine. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine's natural gas transmission company, Ukrtransgaz. The company's investments into system upgrades, along with a 34% fall in throughput, resulted in reduction of Ukrtransgaz system's own consumption of natural gas by 68% in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraine's transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraine's natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of the most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of several factors has created conditions for successful reductions in methane emissions and combustion. These factors include: an eightfold increase in the price of imported natural gas; comprehensive domestic environmental and energy policies, such as the Laws of Ukraine on Protecting the Natural Environment and on Air Protection; policies aimed at integration with European Union's energy market and accession to the Energy Community Treaty; and the country's participation in international cooperation on environment, such

  12. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    SciTech Connect

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  13. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. PMID:24112851

  14. A low-surface energy carbon allotrope: the case for bcc-C6.

    PubMed

    Yin, Wen-Jin; Chen, Yuan-Ping; Xie, Yue-E; Liu, Li-Min; Zhang, S B

    2015-06-01

    Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%. PMID:25959535

  15. Elucidation of Nonadditive Effects in Protein-Ligand Binding Energies: Thrombin as a Case Study.

    PubMed

    Calabrò, Gaetano; Woods, Christopher J; Powlesland, Francis; Mey, Antonia S J S; Mulholland, Adrian J; Michel, Julien

    2016-06-23

    Accurate predictions of free energies of binding of ligands to proteins are challenging partly because of the nonadditivity of protein-ligand interactions; i.e., the free energy of binding is the sum of numerous enthalpic and entropic contributions that cannot be separated into functional group contributions. In principle, molecular simulations methodologies that compute free energies of binding do capture nonadditivity of protein-ligand interactions, but efficient protocols are necessary to compute well-converged free energies of binding that clearly resolve nonadditive effects. To this end, an efficient GPU-accelerated implementation of alchemical free energy calculations has been developed and applied to two congeneric series of ligands of the enzyme thrombin. The results show that accurate binding affinities are computed across the two congeneric series and positive coupling between nonpolar R(1) substituents and a X = NH3(+) substituent is reproduced, albeit with a weaker trend than experimentally observed. By contrast, a docking methodology completely fails to capture nonadditive effects. Further analysis shows that the nonadditive effects are partly due to variations in the strength of a hydrogen-bond between the X = NH3(+) ligands family and thrombin residue Gly216. However, other partially compensating interactions occur across the entire binding site, and no single interaction dictates the magnitude of the nonadditive effects for all the analyzed protein-ligand complexes. PMID:27248478

  16. Energy demand and environmental implications in urban transport — Case of Delhi

    NASA Astrophysics Data System (ADS)

    Bose, Ranjan Kumar

    A simple model of passenger transport in the city of Delhi has been developed using a computer-based software called—Long Range Energy Alternatives Planning (LEAP) and the associated Environmental Database (EDB) model. The hierarchical structure of LEAP represents the traffic patterns in terms of passenger travel demand, mode (rail/road), type of vehicle and occupancy (persons per vehicle). Transport database in Delhi together with fuel consumption values for the vehicle types, formed the basis of the transport demand and energy consumption calculations. Emission factors corresponding to the actual vehicle types and driving conditions in Delhi is introduced into the EDB and linked to the energy consumption values for estimating total emission of CO, HC, NO x, SO 2 Pb and TSP. The LEAP model is used to estimate total energy demand and the vehicular emissions for the base year-1990/91 and extrapolate for the future—1994/95, 2000/01, 2004/05 and 2009/10, respectively. The model is run under five alternative scenarios to study the impact of different urban transport policy initiatives that would reduce total energy requirement in the transport sector of Delhi and also reduce emission. The prime objective is to arrive at an optimal transport policy which limits the future growth of fuel consumption as well as air pollution.

  17. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    PubMed

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. PMID:27423771

  18. Modeling fossil energy demands of primary nonferrous metal production: the case of copper.

    PubMed

    Swart, Pilar; Dewulf, Jo

    2013-12-17

    The methodologies for life cycle impact assessment (LCIA) of metal resources are rather diverse. Some LCIA methods are based on ore grade changes, but they typically do not consider the impact of changes in primary metal extraction technology. To characterize the impact of technology changes for copper, we modeled and analyzed energy demand, expressed in fossil energy equivalents (FEE) per kilogram of primary copper, taking into account the applied mining method and processing technology. The model was able to capture variations in reported energy demands of selected mining sites (FEE: 0.07 to 0.84 MJ-eq/kg ore) with deviations of 1 to 30%. Applying the model to a database containing global mine production data resulted in energy demand median values of around 50 MJ/kg Cu irrespective of the processing route, even though median values of ore demands varied between processing routes from ca. 35 (underground, conventional processing) to 200 kg ore/kg Cu (open pit, solvent-extraction, and electrowinning), as high specific ore demands are typically associated with less energy intensive extraction technologies and vice versa. Thus, only considering ore grade in LCIA methods without making any differentiation with regard to employed technology can produce misleading results. PMID:24266773

  19. Stabilization of peptide helices by length and vibrational free energies: Ab initio case study of polyalanine

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Blum, Volker; Scheffler, Matthias

    2012-02-01

    Helices are one of the most abundant secondary structure ``building blocks" of polypeptides and proteins. Here, we explore helix stabilization as a function of peptide length and temperature [harmonic approximation to the vibrational free energy (FE)], for the alanine-based peptide, Ac-Alan-LysH^+ n=4-15, in the gas phase. For n=4-8, we predict the lowest energy structures in density-functional theory, using the van der Waals (vdW) corrected[1] PBE exchange-correlation potential. α-helices become the lowest energy structures at n 7-8 on the potential energy surface, but only barely and if including vdW interactions. At finite temperatures, the helices are further stabilized over compact conformers. While the vibrational entropy is the leading stabilizing term at 300 K, also the zero-point-energies favor the helical structures. For n>=8, the α-helix should be the only accessible conformer in the FE surface at 300 K, in agreement with experiment[2] and with our own comparison[3] of calculated ab initio anharmonic IR spectra to experimental IR multiple photon dissociation data for n=5, 10, and 15. [1] Tkatchenko and Scheffler, PRL 102, 073055 (2009); [2] Kohtani and Jarrold, JACS 108, 8454 (2004); [3] Rossi et al., JPCL 1, 3465 (2010).

  20. Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Grubinskas, S.; Gečys, P.; Gedvilas, M.

    2013-07-01

    Selectiveness of the laser processing is the top-most important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.

  1. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, Minnesota

    SciTech Connect

    2015-06-01

    For this project, Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to develop the first Zero Energy Ready Home (ZERH) in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. Along with meeting ZERH standards, Amaris also achieved certifications for Leadership in Energy & Environmental Design for Homes v4, MN Green Path Emerald, and a Builders Association of the Twin Cities Reggie Award of Excellence. The home achieves a HERS score of 41 without photovoltaics; with PV, the home achieves a HERS score of 5.

  2. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    SciTech Connect

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  3. A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats

    SciTech Connect

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-08-12

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. Overall results show that pilot participants had energy savings of 20%, and the potential for an additional 14% to 20% load drop during a 100 F demand response event. In addition to the efficiency-related bill savings, participants on the dynamic rate saved an estimated 5% on their energy costs compared to the standard rate. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  4. Profiles in renewable energy: Case studies of successful utility-sector projects

    SciTech Connect

    Anson, S.; Sinclair, K.; Swezey, B.

    1993-10-01

    As considerations of fuel diversity, environmental concerns, and market uncertainties are increasingly factored into electric utility resource planning, renewable energy technologies are beginning to find their place in the utility resource portfolio. This document profiles 10 renewable energy projects, utilizing six different renewable resources, that were built in the US throughout the 1980s. The resources include: biomass, geothermal, hydropower, photovoltaics, solar thermal, and wind. For each project, the factors that were key to its success and the development issues that it faced are discussed, as are the project`s cost, performance, and environmental impacts and benefits.

  5. Valuation of clean energy investments: The case of the Zero Emission Coal (ZEC) technology

    NASA Astrophysics Data System (ADS)

    Yeboah, Frank Ernest

    Today, coal-fired power plants produce about 55% of the electrical energy output in the U.S. Demand for electricity is expected to grow in future. Coal can and will continue to play a substantial role in the future global energy supply, despite its high emission of greenhouse gases (e.g. CO2 etc.) and low thermal energy conversion efficiency of about 37%. This is due to the fact that, it is inexpensive and global reserves are abundant. Furthermore, cost competitive and environmentally acceptable energy alternatives are lacking. New technologies could also make coal-fired plants more efficient and environmentally benign. One such technology is the Zero Emission Carbon (ZEC) power plant, which is currently being proposed by the ZECA Corporation. How much will such a technology cost? How competitive will it be in the electric energy market when used as a technology for mitigating CO2 emission? If there were regulatory mechanisms, such as carbon tax to regulate CO2 emission, what would be the minimum carbon tax that should be imposed? How will changes in energy policy affect the implementation of the ZEC technology? How will the cost of the ZEC technology be affected, if a switch from coal (high emission-intensive fuel) to natural gas (low emission-intensive fuel) were to be made? This work introduces a model that can be used to analyze and assess the economic value of a ZEC investment using valuation techniques employed in the electric energy industry such as revenue requirement (e.g. cost-of-service). The study concludes that the cost of service for ZEC technology will be about 95/MWh at the current baseline scenario of using fuel cell as the power generation system and coal as the primary fuel, and hence will not be competitive in the energy markets. For the technology to be competitive, fuel cell capital cost should be as low as 500/kW with a lifetime of 20 years or more, the cost of capital should be around 10%, and a carbon tax of 30/t of CO2 should be in place

  6. Beam Energy Scan a Case for the Chiral Magnetic Effect in Au-Au Collisions

    SciTech Connect

    Longacre, R.

    2014-01-05

    The Chiral Magnetic Effect (CME) is predicted for Au-Au collisions at RHIC. However, many backgrounds can give signals that make the measurement hard to interpret. The STAR experiment has made measurements at different collisions energy ranging from √(sNN)=7.7 GeV to 62.4 GeV. In the analysis that is presented we show that the CME turns on with energy and is not present in central collisions where the induced magnetic is small.

  7. Existing Whole-House Solutions Case Study: Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland

    SciTech Connect

    2013-10-01

    Under this project, the BA-PIRC research team evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit at the Bay Ridge multifamily development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This case study summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete.

  8. Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study

    SciTech Connect

    Not Available

    2002-01-01

    This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

  9. Fluorescence energy transfer monitoring of protein-protein interaction in human cells: the Cyclin T1-HIV1 Tat case.

    NASA Astrophysics Data System (ADS)

    Ferrari, Aldo; Cinelli, Riccardo A. G.; Pellegrini, Vittorio; Beltram, Fabio; Marcello, Alessandro; Tyagi, Mudit; Giacca, Mauro

    2001-03-01

    The human immunodeficiency virus type 1 (HIV-1) Tat protein promotes transcriptional elongation of viral RNAs. Here we show that human Cyclin T1 directly binds Tat in cultured cells. By mapping fluorescence resonance energy transfer (FRET) in different cellular compartments we shall present a quantitative analysis of this interaction. The matched tagging pair consists of two optically matched variants of the green fluorescent protein: the enhanced GFP and the blue fluorescent protein. Strong energy transfer was observed between Cyclin T1 and Tat both in the cytoplasm and in specific subnuclear regions. We shall argue that such high-resolution optical studies can provide significant new insight in molecular processes and demonstrate that, for the specific case-study presented, they lead to a model by which Tat recruits Cyclin T1 out of the nuclear compartments where the protein resides to promote transcriptional activation.

  10. New Whole-House Solutions Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    SciTech Connect

    D. Springer and A. German

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  11. DOE Zero Energy Ready Home Case Study: Brookside Development — Singer Village, Derby, CT

    SciTech Connect

    none,

    2014-09-01

    This DOE Zero Energy Ready Home is one of a development of seven two-story homes that garnered a Production Builder award in the 2014 Housing Innovation Awards. Exceptional construction quality allowed the home to achieve a HERS score of 45 without photovoltaic, or HERS 26 with a 7-kW photovoltaic system included.

  12. DOE Zero Energy Ready Home Case Study: M Street Homes — Smartlux on Greenpark, Houston, TX

    SciTech Connect

    none,

    2014-09-01

    This builder certified its first DOE Zero Energy Ready Home and won a Production Builder honor in the 2014 Housing Innovation Awards. It is the first home in the world to use a tri-generation system to supply electricity, heating, and cooling on site.

  13. DOE Zero Energy Ready Home Case Study: Clifton View Homes — Kaltenbach Residence, Clinton, WA

    SciTech Connect

    none,

    2014-09-01

    This home on Whidbey Island won a Custom Builder award in the 2014 Housing Innovation Awards. The DOE Zero Energy Ready Home scores HERS 37 without PV or HERS -13 with 10 kW PV, enough to power the home and an electric car.

  14. Measured Field Performance and Energy Savings of Occupancy Sensors: Three Case Studies.

    ERIC Educational Resources Information Center

    Floyd, David B.; Parker, Danny S.; Sherwin, John R.

    A study determined the performance levels, energy savings, and occupant acceptance of occupancy sensors that were installed in a Florida small office building and two elementary schools. Performance data was collected in 15-minute intervals. Aggregate time-of-day lighting load profiles were compared before and after the installation and throughout…

  15. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    SciTech Connect

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  16. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    SciTech Connect

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  17. DOE Zero Energy Ready Home Case Study: KB Home — Double ZeroHouse, Lancaster, CA

    SciTech Connect

    none,

    2014-09-01

    The home that won a Production Builder award in the 2014 Housing Innovation Awards serves as a model for this builder, showcasing high-tech features including an electric car charging station; a compressed natural gas (CNG) car fueling station; a greywater recycling system that filters shower, sink, and clothes washer water for yard irrigation; smart appliances; and an electronic energy management system.

  18. Energy, Economics and the Environment: Case Studies and Teaching Activities for High School.

    ERIC Educational Resources Information Center

    Day, Harlan; And Others

    The purpose of this curriculum is to provide high school teachers and students with a conceptual framework for analyzing energy and environmental issues, especially in regards to economics. A second purpose of the curriculum is to provide teachers with a set of four motivating, interdisciplinary teaching units. The issues covered in the four…

  19. DOE Zero Energy Ready Home Case Study: BPC Green Builders, New Fairfield, Connecticut

    SciTech Connect

    none,

    2013-09-01

    This LEED Platinum home was built on the site of a 60-year-old bungalow that was demolished. It boasts views of Candlewood Lake, a great deal of daylight, and projected annual energy savings of almost $3,000. This home was awarded a 2013 Housing Innovation Award in the custom builder category.

  20. DOE Zero Energy Ready Home Case Study: New Town Builders, Denver, Colorado

    SciTech Connect

    none,

    2013-09-01

    All homes in the Stapleton community must be ENERGY STAR certified; New Town Builders has announced that it will build 250–300 new homes over the next 7–10 years, all of which will be Challenge Homes. New Town received a 2013 Housing Innovation Award in the production builder category.

  1. Energy in an Interdependent World: A Global Development Studies Case Study.

    ERIC Educational Resources Information Center

    Collier, Anne B.

    Part of the Global Development Studies Institute series of model curricula, the teacher guide presents strategies for teaching about energy as a global issue. The unit, intended for students in grades 11-14, is designed for one semester. The overall objective is to promote awareness of and responsibility toward the global community through an…

  2. Should We Use Wood for Energy? An Education for Sustainable Development Case Study

    ERIC Educational Resources Information Center

    Ireland, Jessica J. T.; Monroe, Martha C.

    2015-01-01

    Local issues that combine economic, environmental, and equity impacts make excellent contexts for interdisciplinary teaching. An instructional unit, "Should We Use Wood for Energy? A High School Education Program," was developed by the University of Florida's School of Forest Resources and Conservation to engage high school students in…

  3. Development Of Educational Programs In Renewable And Alternative Energy Processing: The Case Of Russia

    NASA Astrophysics Data System (ADS)

    Svirina, Anna; Shindor, Olga; Tatmyshevsky, Konstantin

    2014-12-01

    The paper deals with the main problems of Russian energy system development that proves necessary to provide educational programs in the field of renewable and alternative energy. In the paper the process of curricula development and defining teaching techniques on the basis of expert opinion evaluation is defined, and the competence model for renewable and alternative energy processing master students is suggested. On the basis of a distributed questionnaire and in-depth interviews, the data for statistical analysis was obtained. On the basis of this data, an optimization of curricula structure was performed, and three models of a structure for optimizing teaching techniques were developed. The suggested educational program structure which was adopted by employers is presented in the paper. The findings include quantitatively estimated importance of systemic thinking and professional skills and knowledge as basic competences of a masters' program graduate; statistically estimated necessity of practice-based learning approach; and optimization models for structuring curricula in renewable and alternative energy processing. These findings allow the establishment of a platform for the development of educational programs.

  4. DOE Zero Energy Ready Home Case Study: Promethean Homes — Gross-Shepard Residence, Charlottesville, VA

    SciTech Connect

    none,

    2014-09-01

    This is the first DOE Zero Energy Ready Home for this builder, who earned a Custom Builder honor in the 2014 Housing Innovation Awards. The home included rigid mineral wool board insulation over house wrap and plywood on the 2x6 advanced framed walls, achieving HERS 33 without PV.

  5. Building America Case Study: Community-Scale Energy Modeling (Fact Sheet)

    SciTech Connect

    Not Available

    2014-12-01

    IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes' was modeled. The homes were in two communities--one built in the 1970s and the other in the mid-2000s.

  6. Investigating the Conservation of Mechanical Energy Using Video Analysis: Four Cases

    ERIC Educational Resources Information Center

    Bryan, J. A.

    2010-01-01

    Inexpensive video analysis technology now enables students to make precise measurements of an object's position at incremental times during its motion. Such capability now allows users to "examine", rather than simply "assume", energy conservation in a variety of situations commonly discussed in introductory physics courses. This article describes…

  7. Using Research on Teachers' Transformations of Innovations to Inform Teacher Education: The Case of Energy Degradation

    ERIC Educational Resources Information Center

    Pinto, Roser; Couso, Digna; Gutierrez, Rufina

    2005-01-01

    This Spanish contribution to the STTIS (Science Teacher Training in an Information Society) investigations of transformations of curriculum innovations studies the implementation of a particular innovative teaching sequence on energy degradation in Spanish secondary schools. The paper describes the transformations found in teachers'…

  8. Is disaggregation the holy grail of energy efficiency? The case of electricity

    SciTech Connect

    Armel, KC; Gupta, A; Shrimali, G; Albert, A

    2013-01-01

    This paper aims to address two timely energy problems. First, significant low-cost energy reductions can be made in the residential and commercial sectors, but these savings have not been achievable to date. Second, billions of dollars are being spent to install smart meters, yet the energy saving and financial benefits of this infrastructure - without careful consideration of the human element - will not reach its full potential. We believe that we can address these problems by strategically marrying them, using disaggregation. Disaggregation refers to a set of statistical approaches for extracting end-use and/or appliance level data from an aggregate, or whole-building, energy signal. In this paper, we explain how appliance level data affords numerous benefits, and why using the algorithms in conjunction with smart meters is the most cost-effective and scalable solution for getting this data. We review disaggregation algorithms and their requirements, and evaluate the extent to which smart meters can meet those requirements. Research, technology, and policy recommendations are also outlined. (C) 2012 Elsevier Ltd. All rights reserved.

  9. Utilization of scientific knowledge: a case study of Energy From the West

    SciTech Connect

    Parker, L.B.

    1981-01-01

    This dissertation examines researchers' abilities and roles in promoting use of their research. It evaluates the participatory research strategy used by the Science and Public Policy Program (SandPP) in Energy From the West, a technology assessment of Western energy development. Three ''perspectives'' of the research process are assessed. The first, the engineering view of utilization as the direct use of research, is the basis of most utilization literature, but it is somewhat inappropriate for Energy From the West. The two other perspectives, enlightenment and intelligence use of research, which reflect the uncertainty and lack of consensus characteristic of social research, provide more insight into the potential utilization of Energy From the West and the factors influencing that potential. SandPP tried to foster awareness, interest, trust, and credibility among users of its research through four mechanisms: (1) advisory committee, (2) stakeholder review, (3) personal interaction, and, (4) presentation and packaging of research products. The stratgy fostered awareness and interest, trust and credibility, and new information; and influenced organizational interests and timing. The results suggest an active role for researchers in the utilization process. Four guidelines for a such role are synthesized: (1) early involvement, (2) continuing relationships, (3) responsiveness to user's needs, and, (4) facilitating communication wtih users. The ethical questions these roles raise are identified and recommendations for improving SandPP's utilization strategy are made.

  10. Energy cascade in the magnetosphere-ionosphere system: A case study

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Dahlgren, H.; Akbari, H.; Swoboda, J.; Hampton, D. L.; Anderson, B. J.; Dyrud, L. P.; Fentzke, J.

    2013-12-01

    Common to all geomagnetic storms and substorms is the phenomenon of energy cascade, wherein an impulsive change in magnetospheric free energy is dissipated in a hierarchy of spatial and temporal scales at the ionospheric footprint, extending down to the fundamental scales available in the system (electron gyro-radius, electron inertial length). This paper investigates energy cascade through a synthesis of multi-scale measurements of a particular substorm (onset at ~10 UT on 01 March 2011). Fortuitous space-based measurements from the AMPERE experiment document the regional intensification of field-aligned currents. Conjugate ground-optical measurements of the subsequent auroral breakup are found to represent the optical manifestation of time-energy dispersive field-aligned electron bursts (FABs) [Dahlgren et al., 2013]. The 449-MHz Poker Flat Incoherent Scatter Radar connects these features with ion-acoustic turbulence at the expanding edge of the substorm. The connection of large scale substorm currents with decameter-scale ionospheric turbulence fills an important observational gap in our understanding of magnetosphere-ionosphere coupling under disturbed conditions.

  11. Dyadic design interface between energy and agriculture: the case of Pinthali micro hydro system in Nepal.

    PubMed

    Regmi, A

    2003-01-01

    Technology, like society, is heterogeneous. It mirrors the context in which it operates. Micro hydro development in Nepal is a rural energy strategy, which relies on technology and innovation and takes place in a specific social context. In designing this energy strategy, both technology and its social context, therefore, need to be considered seriously. In technical design processes, the interplay between the content (technology) and the context (society) needs to be considered, as the outcome will affect the people. For example, the content--micro hydro system--in the domain of the context--agriculture--provides an arena for an integrated water control system. Thus, it is possible to control water for two purposes: to produce power and to provide irrigation. The end product will be "energy" as a "consumptive" output and improved food security as a "productive" output of water. Therefore, within a sociotechnical framework, energy and irrigation become constitutive outputs of the sacrosanct "water". Thus, the metaphor of power--the "sociotechnical code" of "content" and "context"--can be used with the term "agro-anergy" in the design process of micro hydro systems. Evidence suggests that this interaction can lead to a transformed water use system for both productive and consumptive output for the benefit of rural communities. PMID:12731792

  12. Adult education about atomic energy, 1945-1948, as a case study in science for society

    SciTech Connect

    Wakeley, L.D.

    1984-01-01

    The sudden existence of atomic energy presented five challenges to science education for the adult public: (1) inform adults that atomic energy existed; (2) teach them its scientific basis, and potential peacetime uses; (3) correct mistaken impressions from erroneous media coverage; (4) promote civic literacy and participation in decision making; and (5) inform voters about pending atomic energy legislation. Newspapers, magazines, radio, and newsreels were the major sources of informal adult education, together reaching 93% of adults. But these informational media lacked educational structure, and failed to meet the citizenship needs of adults. During that pre-television era, discussion groups were a common form of social gathering and nonformal education. Books and pamphlets for these groups were essential to a system of adult science education. They provided data for the open exchange of opinions that is essential to the process of adult education. The League of Women Voters of the United States established a network of discussion groups nationwide, providing printed materials for all five purposes. These programs enjoyed mixed success, providing at least local pockets of public enlightenment. By 1948, the Atomic Energy Commission was facilitating public education, especially in private industry and the business sector.

  13. Energy expenditure and growth failure after intestinal transplantation: A case report.

    PubMed

    Matthé, Stefanie; Pirenne, Jacques; Knops, Noël

    2016-02-01

    We present a 12-yr-old boy who received a combined liver-pancreas small bowel transplantation at the age of two. The post-operative period was complicated by wound closure problems resulting in a large asymptomatic abdominal wall defect. Further follow-up was uneventful, with the exception of new onset growth failure not explained by extensive routine investigations. An indirect calorimetry was performed. The resting energy expenditure (REE) was significantly increased (126% of predicted), demanding a daily caloric intake of 123 kcal/kg body weight (normal for age: 80 kcal/kg). In the absence of classic reasons for increased REE, a thermal camera revealed increased dermal heat loss at the abdominal wall defect (estimated surplus in energy loss of at least 29 kcal/day: 10.4% of the elevated REE). In addition, we found lower total lung capacity due to impaired abdominal breathing. In the exploration of growth failure in children after (ITx), increased REE must be taken into account. Indirect calorimetry can serve as a valuable diagnostic tool for evaluating individual energy requirements and nutritional support. In this child, exaggerated heat loss through an aberrant abdominal wall could be a potential important contributor to the patient's increased energy requirements. PMID:26667223

  14. DOE Zero Energy Ready Home Case Study: Mandalay Homes — Pronghorn Ranch, Prescott Valley, AZ

    SciTech Connect

    none,

    2014-09-01

    The builder has certified 20 homes to DOE Zero Energy Ready Home program and plans are underway for 50 more. Winner of a Production Builder prize in the 2014 Housing Innovation Awards, the homes achieved a HERS score of 48 without photovoltaics (PV) or HERS 25 with 3.5 kW PV included.

  15. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    water where it is a scarce resource. Linkage of water & Energy to the land has been established through irrigated agriculture which has seen an increasing trend in the case study area. A detail scenario planning for regional water-energy demand and supply in conjunction with different climate change and economic growth scenarios are considered. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, environmental etc.). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Result shows that such an integrated ("nexus") approach is likely to build resilience and reduces vulnerability to the combination of pressures acting upon the Mediterranean region's water systems, including climate-related shocks.

  16. Building America Energy Renovations. A Business Case for Home Performance Contracting

    SciTech Connect

    Baechler, Michael C.; Antonopoulos, C. A.; Sevigny, M.; Gilbride, T. L.; Hefty, M. G.

    2012-10-01

    This research report gives an overview of the needs and opportunities that exist in the U.S. home performance contracting industry. The report discusses industry trends, market drivers, different business models, and points of entry for existing and new businesses hoping to enter the home performance contracting industry. Case studies of eight companies who successfully entered the industry are provided, including business metrics, start-up costs, and marketing approaches.

  17. A new case for promoting wastewater reuse in Saudi Arabia: bringing energy into the water equation.

    PubMed

    Kajenthira, Arani; Siddiqi, Afreen; Anadon, Laura Diaz

    2012-07-15

    Saudi Arabia is the third-largest per capita water user worldwide and has addressed the disparity between its renewable water resources and domestic demand primarily through desalination and the abstraction of non-renewable groundwater. This study evaluates the potential costs of this approach in the industrial and municipal sectors, exploring economic, energy, and environmental costs (including CO2 emissions and possible coastal impacts). Although the energy intensity of desalination is a global concern, it is particularly urgent to rethink water supply options in Saudi Arabia because the entirety of its natural gas production is consumed domestically, primarily in petrochemical and desalination plants. This burgeoning demand is necessitating the development of more expensive high-sulfur gas resources that could make desalination even pricier. The evolving necessity to conserve non-renewable water and energy resources and mitigate GHG emissions in the region also requires policy makers to weigh in much more considerably the energy and environmental costs of desalination. This paper suggests that in Saudi Arabia, the implementation of increased water conservation and reuse across the oil and natural gas sectors could conserve up to 29% of total industrial water withdrawals at costs recovered over 0-30 years, depending on the specific improvement. This work also indicates that increasing wastewater treatment and reuse in six high-altitude inland cities could save a further $225 million (2009 dollars) and conserve 2% of Saudi Arabia's annual electricity consumption. By these estimates, some anticipated investments in desalination projects could be deferred by improving water efficiency in industry and prioritizing investment in sewage and water distribution networks that would ensure more effective water reclamation and reuse. Simultaneously, such initiatives would conserve non-renewable natural gas resources and could help prevent the lock-in of potentially

  18. Privatization, industry integration and international politics: The case of energy and the role of business leadership in South America

    NASA Astrophysics Data System (ADS)

    Mireur, Yannick

    2000-10-01

    argues that in such context political regime differences matter less than the convergence of models of political economy between two countries whose energy needs and energy resources complement each other. The methodology is qualitative. The thesis is based on first-hand information gathered through research work in Chile and Argentina and dozens of interviews of energy executives, political leaders, diplomats, economists and journalists. In conclusion, the thesis suggests that the Chile-Argentina case can have policy implications as it could help to explain and/or promote corporate-based cooperation with political spillovers in other regions of the world.

  19. Building America Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes; Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-05-01

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.
    home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  20. Experiences integrating productivity, pollution prevention, and energy conservation including case studies

    SciTech Connect

    Kasten, D.J.; Muller, M.R.; Barnish, T.J.

    1997-07-01

    Energy auditors have traditionally considered energy conservation opportunities as being independent of other industrial opportunities, such as waste reduction/pollution prevention, and other management issues relating to productivity. The authors experience has indicated that energy conservation decisions are not viewed as independent by management in industry, and that many otherwise attractive modifications are not undertaken due to their relation to other production issues. The energy audit team cannot afford to be naive to the bottom line corporate mentality of the industrial managers involved. If a recommendation cannot be shown to have a secondary or even tertiary benefit to the company, the project cannot be sold to management. In this paper the authors introduce an integrated system approach in which the authors consider such factors as risk, internal yields, and defect rates, and a procedure the authors call industrial triage, using experiences gathered from assessments at a styrofoam cup manufacturer, glass bottle manufacturer, and a tire manufacturer. These companies are similar in that the raw materials can be recycled back into the product in the event these materials are spilled, misused, are incorporated in internal defects, or otherwise wasted. Such firms consistently report that they have little or no defects, since they do not have a specific expense in disposing of the defective product. Energy-only recommendations can have little or no impact on the productivity of a manufacturing plant. Worse, these recommendations can have a negative effect, or be considered too risky. In many industries, energy costs are a small portion of the production costs. Competition for capital is strong, and equipment purchases that increase production, or profits, will generally be favored. Internal defects have costs that are difficult to measure or estimate, such as labor for rework, moving or relocating the materials, space to warehouse raw materials or products

  1. Analyzing and modeling CRE in a changing climate and energy system - a case study from Mid-Norway

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.; Sauterleute, Julian F.; Kolberg, Sjur A.; Warland, Geir

    2014-05-01

    Climate related energy (CRE) is influenced by both weather, the system for energy transport and market mechanisms. In the COMPLEX-project, Mid-Norway is a case study where we analyze co-fluctuations between wind and hydropower resources; how co-fluctuations may change in the long-term; which effects this has on the power generation; and how the hydropower system can be operated optimally in this context. In the region Mid-Norway, nearly all power demand is generated by hydro-electric facilities, and the region experiences a deficit of electricity. This is both due to energy deficiency and limitations in the power grid system. In periods of low inflow and situations with high electricity demand (i.e. winter), power must be imported from neighboring regions. In future, this situation might change with the development of renewable energy sources. The region is likely to experience considerable investments in wind power and small-scale hydropower. In relation to the deployment of wind power and small-scale hydropower and security of supply, the transmission grid within and out of the region is extended. With increasing production of intermittent energy sources as wind and small-scale hydro, dependencies and co-fluctuations between rain and wind are to be analyzed due to spatial and temporal scale, in the present and a future climate. Climate change scenarios agree on higher temperatures, more precipitation in total and a larger portion of the precipitation coming as rain in this region, and the average wind speed as well as the frequency of storms along the coast is expected to increase slightly during the winter. Changing temperatures will also change the electricity needs, as electricity is the main source for heating in Norway. It's important to study if and to which extent today's hydropower system and reservoirs are able to balance new intermittent energy sources in the region, in both today's and tomorrow's climate. The case study includes down-scaling of climate

  2. Case study of a magnetic system for low-energy machines

    NASA Astrophysics Data System (ADS)

    Schoerling, Daniel

    2016-08-01

    The extra low-energy antiproton ring (ELENA) is a CERN particle decelerator with the purpose to deliver antiprotons at lowest energies aiming to enhance the study of antimatter. The hexagonal shaped ring with a circumference of about 30 m will decelerate antiprotons from momenta of 100 to 13.7 MeV /c . In this paper, the design approach for a magnet system for such a machine is presented. Due to the extra-low beam rigidity, the design of the magnet system is especially challenging because even small fields, arising for example from residual magnetization and hysteresis, have a major impact on beam dynamics. In total, seven prototype magnets of three different magnet types have been built and tested. This paper outlines challenges, describes solutions for the design of the magnet system and discusses the results of the prototypes.

  3. Balancing energy and environmental concerns: the case of the Kayraktepe dam, Turkey

    NASA Astrophysics Data System (ADS)

    Sever, Ö.; Tiğrek, Ş.; Şarlak, N.

    2012-10-01

    In this study, an alternative solution for a large dam, namely the Kayraktepe Dam in Turkey, is investigated. The dam was planned for flood control, energy generation and flow regulation for a downstream irrigation project more than 30 yr ago, but until now the project has not begun due to it receiving severe criticism about environmental and social considerations. The project formulation was redeveloped several times in the past but the options were not found to be feasible. In this study, a detailed analysis of the available feasibility studies is provided and then a new formulation, consisting of the proposed one medium dam and five run-of-river type hydropower stations instead of a large scale dam, is evaluated. The new formulation is equivalent to the existing project in terms of energy production and flood control. On the other hand, there are some benefits relative to other configurations as solutions to some of the environmental and social problems being addressed.

  4. Some Working Parameters and Energy Use in a Pistachio Nut Processing Plant: A Case Study

    NASA Astrophysics Data System (ADS)

    Polat, Refik; Erol Ak, Bekir; Acar, Izzet

    This study was performed with the objective to investigate the work process, work capacity, work effectiveness, energy consumption and labor force requirements of basic units such as washing, dehulling, sorting, separating, roasting and packing in a pistachio processing plant which has been mechanized in the last years. As a result of this study, the work capacity in washing, sorting, breaking, drying, separating units was found to be 1.5, 1.5, 2, 1, 1.6 t h-1, respectively. The work effectiveness in sorting and breaking units was found to be 95% and that of separating unit was 99%. The total energy consumption of the units was found to be 20.42 kW h-1 and the total labor force requirement was found to be five workers.

  5. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    SciTech Connect

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  6. Decrease of energy expenditure causes weight increase in olanzapine treatment - a case study.

    PubMed

    Virkkunen, M; Wahlbeck, K; Rissanen, A; Naukkarinen, H; Franssila-Kallunki, A

    2002-05-01

    The aim of this study was to evaluate the mechanisms underlying weight gain induced by the atypical antipsychotic, olanzapine. We performed euglycemic, hyperinsulinemic clamp combined with indirect calorimetry on a 48-year-old male with antisocial personality disorder, alcohol dependence and paranoid ideation before and after one month of olanzapine (10 - 15 mg/day) therapy. The patient gave his informed, written consent for this study. The results were a weight gain of 6 kg and a decrease in both basal (from 1673 to 1613 kcal/24 h) and 3-hour (from 22.8 to 20.2 cal/kg fat free mass/min) energy expenditure. Serum thyroid hormone and high-density lipoprotein cholesterol levels decreased, and the triglyceride and low-density lipoprotein cholesterol levels increased. Insulin sensitivity did not change. We conclude that decreased basal energy expenditure may contribute to weight gain in olanzapine treatment. PMID:12107860

  7. Data-based robust multiobjective optimization of interconnected processes: energy efficiency case study in papermaking.

    PubMed

    Afshar, Puya; Brown, Martin; Maciejowski, Jan; Wang, Hong

    2011-12-01

    Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. PMID:22147299

  8. DOE Zero Energy Ready Home Case Study: KB Homes, San Marcos, California

    SciTech Connect

    none,

    2013-09-01

    Designed to produce as much energy as it uses, the ZeroHouse incorporates a PV system, R-15 fiberglass batts in walls, and slab-on-grade foundation. The builder ranked fifth in the nation on Builder Magazine’s 2012 Top 100 ranking of U.S. home builders based on number of housing starts, and won a 2013 Housing Innovation Award in the production builder category.

  9. Regionalized LCA-based optimization of building energy supply: method and case study for a Swiss municipality.

    PubMed

    Saner, Dominik; Vadenbo, Carl; Steubing, Bernhard; Hellweg, Stefanie

    2014-07-01

    This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. The results show that the environmental improvement potential is very large: in the optimal case, greenhouse gas emissions from energy supply could be reduced by more than 75% and particulate emissions by over 50% in the municipality. This scenario supposes a drastic shift of heat supply systems from a fossil fuel dominated portfolio to a portfolio consisting of mainly heat pump and woodchip incineration systems. In addition to a change in heat supply technologies, roofs, windows and walls would need to be refurbished in more than 65% of the municipality's buildings. The full potential of the environmental impact reductions will hardly be achieved in reality, particularly in the short term, for example, because of financial constraints and social acceptance, which were not taken into account in this study. Nevertheless, the results of the optimization model can help policy makers to identify the most effective measures for improvement at the decision making level, for example, at the building level for refurbishment and selection of heating systems or at the municipal level for designing district heating networks. Therefore, this work represents a starting point for designing effective incentives to reduce the environmental impact of buildings. While the results of the optimization model are specific to the municipality studied, the model could readily be adapted to other regions. PMID:24865977

  10. New Whole-House Case Study: Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts

    SciTech Connect

    2013-11-01

    In 2009, Transformations, Inc. partnered with Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE’s Challenge Home. The super-insulated houses provide data for several research topics in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners’ perceptions of equipment performance. BSC also examined the developer’s financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.

  11. Energy recovery from municipal waste: a case study for a middle-sized Italian district.

    PubMed

    Giugliano, M; Grosso, M; Rigamonti, L

    2008-01-01

    This paper reports the main outcome of research to compare and assess the merits of alternative strategies for energy recovery from municipal solid waste downstream of material recovery for an Italian province. Strategies analysed are based on well-established combustion technologies available at the commercial scale in the Italian market in comparison with an innovative but not yet proven option of refuse derived fuel gasification and subsequent co-combustion of syngas in a combined cycle power plant. The comparison is made using mass and energy balances, environmental assessment and economic analysis. From an energetic point of view, the best strategy is the one based on the refuse derived fuel gasification, which, on the contrary, does not show interesting environmental results. In this perspective, the best results are from strategies based on a dedicated plant, particularly when unsorted residual waste collected downstream of material recovery is used. Finally, from an economic point of view, the strategy with gasification allows the highest revenues from the sale of energy. PMID:17368012

  12. Very-High Energy Processes in Black Hole Magnetosphere: the Case of M87

    NASA Astrophysics Data System (ADS)

    Vincent, Stephane

    2014-03-01

    M87 is a nearby radio galaxy that is detected at energies ranging from radio to very high energy (VHE) γ-rays. Its proximity and its jet, misaligned from our line of sight, enable detailed morphological studies. The detection of rapidly variable TeV emissions on timescale of 1 day implies a source of a few Schwarzschild radii RSch. The γ-ray telescopes cannot provide images with a sufficient resolution to localize the sites of the γ-ray production. However, both X-ray and radio observations have shown evidence that charged particles are accelerated in the immediate vicinity of the black hole closer than 100 RSch. We propose that the non-thermal particle acceleration and the VHE emission processes may occur in a pair-starved region of the black hole (BH) magnetosphere. We produce a broadband spectral energy distribution (SED) of the resulting radiation and compare the model with the observed fluxes from the nucleus of M87 for the high γ-ray activities.

  13. Technology Solutions Case Study: Stand-Off Furring in Deep Energy Retrofits

    SciTech Connect

    2014-05-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing.

  14. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    SciTech Connect

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.

  15. Case studies of low-to-moderate temperature hydrothermal energy development

    SciTech Connect

    Not Available

    1981-10-01

    Six development projects are examined that use low- (less than 90/sup 0/C (194/sup 0/F)) to-moderate (90 to 150/sup 0/C (194 to 302/sup 0/F)) temperature geothermal resources. These projects were selected from 22 government cost-shared projects to illustrate the many facets of hydrothermal development. The case studies describe the history of this development, its exploratory methods, and its resource definition, as well as address legal, environmental, and institutional constraints. A critique of procedures used in the development is also provided and recommendations for similar future hydrothermal projects are suggested.

  16. Business Solutions Case Study: Marketing Zero Energy Homes: Tommy Williams Homes, Gainesville, Florida

    SciTech Connect

    2015-06-01

    Building America research has shown that high-performance homes can potentially give builders an edge in the marketplace and can boost sales, but it doesn't happen automatically. It requires a tailored, easy-to-understand marketing campaign, and sometimes a little flair. This case study highlights the successful marketing approach of Tommy Williams Homes, which devotes resources to advertising, targeted social media outlets and blogs, realtor education seminars, and groundbreaking and open house celebrations. As a result, in one community, 2013 property sales records show that TWH outsells the only other builder in the development at a higher price, with fewer days on the market.

  17. High Intake of Energy and Fat in Southwest Chinese Women with PCOS: A Population-Based Case-Control Study

    PubMed Central

    Zhang, Jing; Liu, Ying; Liu, Xiaofang; Xu, Liangzhi; Zhou, Lingling; Tang, Liulin; Zhuang, Jing; Guo, Wenqi; Hu, Rong

    2015-01-01

    Background Polycystic ovary syndrome (PCOS) is a common reproductive endocrinological disease with heterogeneous phenotype. Obesity contributes to the increased prevalence and severity of PCOS. Whether the intakes of major nutrients are higher in Chinese PCOS patients is still unknown. Objectives To study the intakes of total energy, protein, fat and carbohydrate in Southwest Chinese PCOS patients. Methods 1854 women were included in the cross-sectional study. A population-based case-control study was conducted. The dietary habits and nutrients intake status of 169 PCOS patients and 338 age-matched controls were investigated by the method of semi-quantitative food frequency questionnaire. Results The actual intake of total energy (P = 0.01) and fat (P = 0.01) were higher, but carbohydrate was lower (P = 0.01) in PCOS patients as compared with the controls. The energy percentage supplied by protein (12.33%±2.27% vs. 19.26%±5.91%, P<0.001) and carbohydrate (48.72%±6.41% vs. 68.31%±8.37%, P<0.001) were lower in Southwest Chinese PCOS patients than those of control, however, the energy percentage supplied by fat was higher (38.95%±5.71% vs. 12.42%±5.13%, P<0.001) in PCOS. Conclusions Limit the intake of total energy and fat shall be recommended to the Southwest Chinese PCOS patients. Women with PCOS in Southwest China shall consult with the nutritionist for improving the dietary structure. PMID:25993656

  18. Cellulosic ethanol from municipal solid waste: a case study of the economic, energy, and greenhouse gas impacts in California.

    PubMed

    Chester, Mikhail; Martin, Elliot

    2009-07-15

    As cellulosic ethanol technologies advance, states could use the organic content of municipal solid waste as a transportation fuel feedstock and simultaneously reduce externalities associated with waste disposal. We examine the major processes required to support a lignocellulosic (employing enzymatic hydrolysis) municipal solid waste-to-ethanol infrastructure computing cost, energy, and greenhouse gas effects for California. The infrastructure is compared against the Business As Usual case where the state continues to import most of its ethanol needs from the Midwest. Assuming between 60% and 90% practical yields for ethanol production, California could produce between 1.0 and 1.5 billion gallons per year of ethanol from 55% of the 40 million metric tonnes of waste currently sent to landfills annually. The classification of organic wastes and ethanol plant operation represent almost the entire system cost (between $3.5 and $4.5 billion annually) while distribution has negligible cost effects and savings from avoided landfilling is small. Fossil energy consumption from Business As Usual decreases between 82 and 130 PJ largely due to foregone gasoline consumption. The net greenhouse gas impacts are ultimately dependent on how well landfills control their emissions of decomposing organics. Based on the current landfill mix in the state, the cellulosic infrastructure would experience a slight gain in greenhouse gas emissions. However, net emissions can rise if organics diversion releases carbon that would otherwise be flared and sequestered. Emissions would be avoided if landfills are not capable of effectively controlling emissions during periods of active waste decay. There is currently considerable uncertainty surrounding the recovery efficiency of landfill emissions controls. In either case, burying lignin appears to be better than burning lignin because of its decay properties, energy and carbon content We estimate the breakeven price for lignocellulosic ethanol

  19. THE VERY HIGH ENERGY EMISSION FROM PULSARS: A CASE FOR INVERSE COMPTON SCATTERING

    SciTech Connect

    Lyutikov, Maxim; Otte, Nepomuk; McCann, Andrew

    2012-07-20

    The observations of gamma-ray emission from pulsars with the Fermi-LAT detector and the detection of the Crab pulsar with the VERITAS array of Cherenkov telescopes at energies above 100 GeV make it unlikely that curvature radiation is the main source of photons above GeV energies in the Crab and many other pulsars. We outline a model in which the broad UV-X-ray component and the very high energy {gamma}-ray emission of pulsars are explained within the synchrotron self-Compton framework. We argue that the bulk of the observed radiation is generated by the secondary plasma, which is produced in cascades in the outer gaps of the magnetosphere. We find that the inverse Compton (IC) scattering occurs in the Klein-Nishina regime, which favors synchrotron photons in the UV band as target field for the scattering process. The primary beam is accelerated in a modest electric field, with a field strength that is of the order of a few percent of the magnetic field near the light cylinder. Overall, for IC scattering occurring in the Klein-Nishina regime, the particle distribution in the gap does not evolve toward a stationary distribution and thus is intrinsically time-dependent. We point out that in a radiation reaction-limited regime of particle acceleration the gamma-ray luminosity L{sub {gamma}} scales linearly with the pulsar spin-down power E-dot , L{sub {gamma}}{proportional_to} E-dot , and not proportional to {radical}( E-dot ) as expected from potential-limited acceleration.

  20. Water stress, energy security and adaptation under changing climate: case study of Zeravshan river

    NASA Astrophysics Data System (ADS)

    Khujanazarov, T.; Namura, R.; Touge, Y.; Tanaka, K.; Toderich, K.

    2014-12-01

    Zeravshan a transboundary river in Central Asia is a snow-glacier fed river originating in Tajikistan that use only 4% of its resources, further flows to Uzbekistan who fully utilize river resources for irrigation. Such disparity in river usage causes Tajikistan to consider heavy investments in hydropower dams that will increase social and political tension between counterparts. Traditional irrigation under arid climate causes high rates of water losses in infiltration and evapotranspiration leading to land. Water stress analysis and water resources distribution under climate change and possible adaptation measures were investigated. The framework includes model to analyze available water resources and assessment of the basin efficiency including dam operation and irrigation demand, based on it adaptation measures were suggested. Comparison of the increasing irrigation efficiency in downstream to the 10% rate can decrease water requirements on early stages, however there are still large deficiency of the water resources in the peak irrigation season. Dam operation to benefit irrigation has positive impact while can't compensate the needs of energy in winter months. Cooperation of the both sides are required to address such changes in river flow as interest lies on opposite side. Increasing irrigation efficiency through using return marginal waters and salt tolerant crops under water stress were suggested. The plants were tested on several sites in the downstream of the river using mineralized return waters. The results suggest that using such plants can provide additional outcome for the local community while decreasing demand of the water resources and improving soil conditions. Combination of dam operation for energy production and increasing irrigation efficiency additionally by using return waters can provide a beneficial scenario for the region under future climate change. However, it will require strong political will to address energy swap to achieve nexus

  1. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGESBeta

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  2. How subsurface patterns affect surface energy budget patterns: a sudanian case study

    NASA Astrophysics Data System (ADS)

    Robert, D.; Cohard, J.; Descloitres, M.; Vandervaere, J.; Braud, I.; Vauclin, M.

    2011-12-01

    Fractured bedrock areas are still challenging for hydrological modeling because of their complex underground property distributions. The heterogeneity in soil hydraulic properties, for example, can control the subsurface water fluxes and create surface soil moisture pattern which becomes preferential areas for runoff production or evapotranspiration. This study aimed to evaluate the impact of a bedrock topography, including outcropping, on subsurface water fluxes and the induced energy budget patterns at the surface. To deal with these ground water/surface water interactions, we run the Parflow-CLM distributed coupled land surface and groundwater model over the 12km2 Ara watershed (Northern Benin) for different bedrock configurations. The Ara catchment is submitted to a sudanian climate with 1200mm total rainfall per year. It is part of the AMMA-Catch project in which 3 meso sites have been documented along a south to north transect in West Africa. The geology of the Ara catchment is composed of metamorphic rocks. The main orientation of the geological structures (and of the gneiss foliation) is roughly north-south and the dip angle is 20° east. These structure create patterns in effective porosity distribution which is supposed to induce subsurface flow perpendicular to surface slope direction. Controlled Parflow-CLM simulation results are compared with energy budget data, including 3 net radiation measurements, eddy covariance station, scintillometric measurements to estimate evapotranspiration at different scales. The experimental device also include ground measurements like distributed surface soil moisture profile and piezometers. Parflow-CLM simulations are in good agreement with energy budget observations if observed Leaf Area Index time series are take into account. Then different hydraulic property distributions (effective porosity, hydraulic transmissivity, water retention curves) are evaluated through watershed dynamic differences.

  3. DOE Zero Energy Ready Home Case Study: The Imery Group — Proud Green Home, Serenbe, GA

    SciTech Connect

    none,

    2014-09-01

    The first certified Zero Energy Ready Home in Georgia was honored in the Custom Builder category of the 2014 Housing Innovation Awards. The 2,811-ft2, two-story custom home has 2x6 advanced framed walls filled with R-20 of open-cell spray foam, plus an R-6.6 insulated coated OSB sheathing. Also included is electronic monitoring equipment that tracks the PV, solar thermal water heater, ERV, mini-split heat pump with three indoor heads, solar water heater, and LED and CFL lighting.

  4. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Seattle, Washington

    SciTech Connect

    none,

    2013-09-01

    This house incorporates slab-on-grade, EPS roof, and radiant heating with an air-to-water heat pump that also preheats domestic hot water. Without counting in the solar panels, the home earns a home energy rating system (HERS) score of 37, with projected utility bills of about $740 a year. With the 6.4-kW photovoltaic power system installed on the roof, the home’s HERS scores drops to -1 and utility bills for the all-electric home drop to zero. This home was awarded a 2013 Housing Innovation Award in the affordable builder category.

  5. Data Center Energy Benchmarking: Part 3 - Case Study on an ITEquipment-testing Center (No. 20)

    SciTech Connect

    Xu, Tengfang; Greenberg, Steve

    2007-07-01

    The data center in this study had a total floor area of 3,024 square feet (ft{sup 2}) with one-foot raised-floors. It was a rack lab with 147 racks, and was located in a 96,000 ft{sup 2} multi-story office building in San Jose, California. Since the data center was used only for testing equipment, it was not configured as a critical facility in terms of electrical and cooling supply. It did not have a dedicated chiller system but was served by the main building chiller plant and make-up air system. Additionally it was served by only a single electrical supply with no provision for backup power in the event of a power outage. The Data Center operated on a 24 hour per day, year-round cycle, and users had full-hour access to the data center facility. The study found that data center computer load accounted for 15% of the overall building electrical load, while the total power consumption attributable to the data center including allocated cooling load and lighting was 22% of the total facility load. The density of installed computer loads (rack load) in the data center was 61 W/ft{sup 2}. Power consumption density for all data center allocated load (including cooling and lighting) was 88 W/ft{sup 2}, approximately eight times the average overall power density in rest of the building (non-data center portion). The building and its data center cooling system was provided with various energy optimizing systems that included the following: (1) Varying chilled water flow rate through variable speed drives on the primary pumps. (2) No energy losses due to nonexistence of UPS or standby generators. (3) Minimized under-floor obstruction that affects the delivery efficiency of supply air. (4) Elimination of dehumidification/humidification within the CRAH units. For the data center, 70% of the overall electric power was the rack critical loads, 14% of the power was consumed by chillers, 12% by CRAH units, 2% by lighting system, and about 2% of the power was consumed by chilled

  6. DOE Zero Energy Ready Home Case Study: Manatee County Habitat for Humanity, Ellenton, Florida

    SciTech Connect

    none,

    2013-09-01

    In this 18-home community, all homes are LEED Platinum and meet ENERGY STAR for Homes Version 3 requirements, HERS 23–53. Half way through the project, Habitat for Humanity heard about the DOE Challenge Home program and signed on, committing to build the next home, a three-bedroom, two-bath, 1,143 ft2 duplex, to Challenge Home criteria. The home is the first DOE Challenge Home in Manatee County, and was awarded a 2013 Housing Innovation Award in the affordable builder category.

  7. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, Arizona

    SciTech Connect

    none,

    2013-09-01

    This builder built fourteen homes in the Gordon Estates subdivision that achieved Challenge Home certification with HERS 38–58 on an affordable budget for homeowners. Every Mandalay home in the development also met the National Green Building Standard gold level. The Gordon Estates subdivision is also serving as a showcase of energy efficiency, and Mandalay is hosting education workshops for realtors, state and local officials, other builders, students, potential homeowners, and the public. The builder won a 2013 Housing Innovation Award in the affordable builder category.

  8. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and natural…

  9. On the Conflicting Estimations of Pigment Site Energies in Photosynthetic Complexes: A Case Study of the CP47 Complex.

    PubMed

    Reinot, Tonu; Chen, Jinhai; Kell, Adam; Jassas, Mahboobe; Robben, Kevin C; Zazubovich, Valter; Jankowiak, Ryszard

    2016-01-01

    We focus on problems with elucidation of site energies [Formula: see text] for photosynthetic complexes (PSCs) in order to raise some genuine concern regarding the conflicting estimations propagating in the literature. As an example, we provide a stern assessment of the site energies extracted from fits to optical spectra of the widely studied CP47 antenna complex of photosystem II from spinach, though many general comments apply to other PSCs as well. Correct values of [Formula: see text] for chlorophyll (Chl) a in CP47 are essential for understanding its excitonic structure, population dynamics, and excitation energy pathway(s). To demonstrate this, we present a case study where simultaneous fits of multiple spectra (absorption, emission, circular dichroism, and nonresonant hole-burned spectra) show that several sets of parameters can fit the spectra very well. Importantly, we show that variable emission maxima (690-695 nm) and sample-dependent bleaching in nonresonant hole-burning spectra reported in literature could be explained, assuming that many previously studied CP47 samples were a mixture of intact and destabilized proteins. It appears that the destabilized subpopulation of CP47 complexes could feature a weakened hydrogen bond between the 13(1)-keto group of Chl29 and the PsbH protein subunit, though other possibilities cannot be entirely excluded, as discussed in this work. Possible implications of our findings are briefly discussed. PMID:27279733

  10. Energy saving on wastewater treatment plants through improved online control: case study wastewater treatment plant Antwerp-South.

    PubMed

    De Gussem, Kris; Fenu, Alessio; Wambecq, Tom; Weemaes, Marjoleine

    2014-01-01

    This work provides a case study on how activated sludge modelling and computational fluid dynamics (CFD) can help to optimize the energy consumption of a treatment plant that is already equipped with an advanced control based on online nutrient measurements. Currently, aeration basins on wastewater treatment plant Antwerp-South are operated sequentially while flow direction and point of inflow and outflow vary as a function of time. Activated sludge modelling shows that switching from the existing alternating flow based control to a simultaneous parallel feeding of all aeration tanks saves 1.3% energy. CFD calculations also illustrate that the water velocity is still sufficient if some impellers in the aeration basins are shutdown. The simulations of the Activated Sludge Model No. 2d indicate that the coupling of the aeration control with the impeller control, and automatically switching off some impellers when the aeration is inactive, can save 2.2 to 3.3% of energy without affecting the nutrient removal efficiency. On the other hand, all impellers are needed when the aeration is active to distribute the oxygen. PMID:24622558

  11. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    PubMed

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. PMID:24841069

  12. On the Conflicting Estimations of Pigment Site Energies in Photosynthetic Complexes: A Case Study of the CP47 Complex

    PubMed Central

    Reinot, Tonu; Chen, Jinhai; Kell, Adam; Jassas, Mahboobe; Robben, Kevin C.; Zazubovich, Valter; Jankowiak, Ryszard

    2016-01-01

    We focus on problems with elucidation of site energies (E0n) for photosynthetic complexes (PSCs) in order to raise some genuine concern regarding the conflicting estimations propagating in the literature. As an example, we provide a stern assessment of the site energies extracted from fits to optical spectra of the widely studied CP47 antenna complex of photosystem II from spinach, though many general comments apply to other PSCs as well. Correct values of E0n for chlorophyll (Chl) a in CP47 are essential for understanding its excitonic structure, population dynamics, and excitation energy pathway(s). To demonstrate this, we present a case study where simultaneous fits of multiple spectra (absorption, emission, circular dichroism, and nonresonant hole-burned spectra) show that several sets of parameters can fit the spectra very well. Importantly, we show that variable emission maxima (690–695 nm) and sample-dependent bleaching in nonresonant hole-burning spectra reported in literature could be explained, assuming that many previously studied CP47 samples were a mixture of intact and destabilized proteins. It appears that the destabilized subpopulation of CP47 complexes could feature a weakened hydrogen bond between the 131-keto group of Chl29 and the PsbH protein subunit, though other possibilities cannot be entirely excluded, as discussed in this work. Possible implications of our findings are briefly discussed. PMID:27279733

  13. New Whole-House Solutions Case Study: Nexus EnergyHomes, Frederick, Maryland

    SciTech Connect

    2014-02-01

    With this new home—which achieved the highest rating possible under the National Green Building Standard—Nexus EnergyHomes demonstrated that green and affordable can go hand in hand. The mixed-humid climate builder, along with the U.S. Department of Energy Building America team Partnership for Home Innovation, embraced the challenge to create a new duplex home in downtown Frederick, Maryland, that successfully combines affordability with state-of-the-art efficiency and indoor environmental quality. To limit costs, the builder designed a simple rectangular shape and kept interesting architectural features such as porches outside the building’s structure. This strategy avoided the common pitfall of creating potential air leakage where architectural features are connected to the structure before the building is sealed against air infiltration. To speed construction and limit costs, the company chose factory-assembled components such as structural insulated panel walls and floor and roof trusses. Factory-built elements were key in achieving continuous insulation around the entire structure. Open-cell spray foam at the rim joist and attic roofline completed the insulation package, and kept the heating, ventilating, and air-conditioning system in conditioned space.

  14. Converting campus waste into renewable energy - a case study for the University of Cincinnati.

    PubMed

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C

    2015-05-01

    This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively. PMID:25697388

  15. Can long-term bisphosphonate use causes low-energy fractures? A case report.

    PubMed

    Dandinoğlu, T; Akarsu, S; Karadeniz, M; Tekin, L; Arıbal, S; Kıralp, M Z

    2014-02-01

    Bisphosphonates are inorganic pyrophosphate analog which accumulate on the bone surface, cause osteoclast apoptosis, and inhibit bone resorption. The nitrogen-containing bisphosphonates continue to be the drug of choice for the treatment of osteoporosis in both men and women. Although histomorphometric studies including bone biopsies have not shown any evidence of microcracks, recent studies have revealed that potent bisphosphonates are responsible for the oversuppression of bone turnover leading to microdamages, reduced bone strength, and increased fracture risk. There are individual cases reporting atypical femoral fractures and severely suppressed bone turnover along with long-term (≥ 5 years) use of biphosphonates. In this study, we report on a 74-year-old woman with a history of continuous alendronate use for nearly 16 years who presented to the emergency department with right proximal humerus and left femur fracture. PMID:23824297

  16. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  17. Energy Feedback via Shocks in Starburst Environments: the Case of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry; Seaquist, Ernie; Matzner, Christopher

    2011-08-01

    We propose to image the entire 30 Doradus nebula in the [FeII] emission line at 1.64 micron with NEWFIRM on the CTIO 4-m telescope. The proposed observation will reveal the spatial distribution of shocks in the region, which serves as a strong complement to the NEWFIRM H_2 and Br(gamma) images we already obtained, and our proposed spectroscopic observations using the NTT. We aim to quantify the fraction of each energy input (shock and radiation) in the 30 Doradus PDR with the H_2/Br(gamma), [FeII]/H_2, and [FeII]/Br(gamma) ratios, and to ultimately better understand subsequent star formation in starburst regions.

  18. Reconstructing the public in old and new governance: a Korean case of nuclear energy policy.

    PubMed

    Kim, Hyomin

    2014-04-01

    Korean nuclear energy regulatory policies started to change from earlier exclusively technocratic policies into open dialogues after several anti-nuclear protests in the 1990s. However, technocratic policies still coexist with the new regulatory orientation towards openness, participation and institutional accountability. This paper analyzes Korean nuclear regulatory policies since approximately 2005 as a blend of old and new governance. The aim of the paper is not to decide whether new nuclear governance is deliberative or not by completely reviewing Korean nuclear policies after the 2000s. Instead, it provides an empirical account of how seemingly more participatory processes in decision-making entail new problems while they work with and reproduce social assumptions of different groups of the public. PMID:24681803

  19. Pygmy dipole strength close to particle-separation energies --The case of the Mo isotopes

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Grosse, E.; Erhard, M.; Junghans, A.; Kosev, K.; Schilling, K.-D.; Schwengner, R.; Wagner, A.

    2006-03-01

    The distribution of electromagnetic dipole strength in 92, 98, 100Mo has been investigated by photon scattering using bremsstrahlung from the new ELBE facility. The experimental data for well-separated nuclear resonances indicate a transition from a regular to a chaotic behaviour above 4MeV of excitation energy. As the strength distributions follow a Porter-Thomas distribution much of the dipole strength is found in weak and in unresolved resonances appearing as fluctuating cross section. An analysis of this quasi-continuum --here applied to nuclear resonance fluorescence in a novel way-- delivers dipole strength functions, which are combining smoothly to those obtained from (γ, n) data. Enhancements at 6.5MeV and at ˜ 9MeV are linked to the pygmy dipole resonances postulated to occur in heavy nuclei.

  20. Cutting energy costs in multifamily housing: Practical case studies for the builder and developer

    SciTech Connect

    Whiddon, W.I.

    1986-01-01

    This book is based on an expert evaluation of nine existing and three proposed multifamily housing projects across the US. The existing buildings include three lowrise projects (three to four stories), six midrises (five to seven stories), and three highrise buildings (nine to thirty-nine stories). Two projects were designed and built in the late 1950's, two in the late 1960's, and five late in the ''energy-crisis'' of the 1970's. The existing projects range from municipally subsidized elderly housing, to HUD Section-8 suburban developments, to luxury urban highrise buildings. The three ''future'' buildings, designed by the NAHB research team, were based on trends anticipated in the multifamily industry by IREM and NAHB leaders, over the next five years. The key trends identified were: downsizing of units (by 10 to 20%); increased project size (in number of units), denser developments (more midrise and highrise projects), and increased amenities - all in the context of more affordable housing.

  1. Protecting contract workers: case study of the US Department of Energy's nuclear and chemical waste management.

    PubMed

    Gochfeld, Michael; Mohr, Sandra

    2007-09-01

    Increased reliance on subcontractors in all economic sectors is a serious occupational health and safety challenge. Short-term cost savings are offset by long-term liability. Hiring subcontractors brings specialized knowledge but also young, inexperienced, inadequately trained workers onto industrial and hazardous waste sites, which leads to increased rates of accidents and injuries. Reliable data on subcontractor occupational health and safety programs and performance are sparse. The US Department of Energy has an excellent safety culture on paper, but procurement practices and contract language deliver a mixed message--including some safety disincentives. Its biphasic safety outcome data are consistent with underreporting by some subcontractors and underachievement by others. These observations are relevant to the private and public sectors. Occupational health and safety should be viewed as an asset, not merely a cost. PMID:17666686

  2. Public Health and Medicine in an Age of Energy Scarcity: The Case of Petroleum

    PubMed Central

    Parker, Cindy L.; Hess, Jeremy; Frumkin, Howard

    2011-01-01

    Petroleum supplies have heretofore been abundant and inexpensive, but the world petroleum production peak is imminent, and we are entering an unprecedented era of petroleum scarcity. This fact has had little impact on policies related to climate, energy, the built environment, transportation, food, health care, public health, and global health. Rising prices are likely to spur research and drive efficiency improvements, but such innovations may be unable to address an increasing gap between supply and demand. The resulting implications for health and the environment are explored in the articles we have selected as additional contributions in this special issue. Uncertainty about the timing of the peak, the shape of the production curve, and decline rates should not delay action. The time for quick, decisive, comprehensive action is now. PMID:21778506

  3. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    SciTech Connect

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-02-01

    This report describes a Berkeley Lab effort to model the economics and operation of small-scale (<500 kW) on-site electricity generators based on real-world installations at several example customer sites. This work builds upon the previous development of the Distributed Energy Resource Customer Adoption Model (DER-CAM), a tool designed to find the optimal combination of installed equipment, and idealized operating schedule, that would minimize the site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a historic test period, usually a recent year. This study offered the first opportunity to apply DER-CAM in a real-world setting and evaluate its modeling results. DER-CAM has three possible applications: first, it can be used to guide choices of equipment at specific sites, or provide general solutions for example sites and propose good choices for sites with similar circumstances; second, it can additionally provide the basis for the operations of installed on-site generation; and third, it can be used to assess the market potential of technologies by anticipating which kinds of customers might find various technologies attractive. A list of approximately 90 DER candidate sites was compiled and each site's DER characteristics and their willingness to volunteer information was assessed, producing detailed information on about 15 sites of which five sites were analyzed in depth. The five sites were not intended to provide a random sample, rather they were chosen to provide some diversity of business activity, geography, and technology. More importantly, they were chosen in the hope of finding examples of true business decisions made based on somewhat sophisticated analyses, and pilot or demonstration projects were avoided. Information on the benefits and pitfalls of implementing a DER system was also presented from an additional ten sites including agriculture, education, health

  4. Conservation Planning for Offsetting the Impacts of Development: A Case Study of Biodiversity and Renewable Energy in the Mojave Desert.

    PubMed

    Kreitler, Jason; Schloss, Carrie A; Soong, Oliver; Hannah, Lee; Davis, Frank W

    2015-01-01

    Balancing society's competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species' habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation prioritization tools are designed to handle this problem, but have seen little application to offset siting and analysis. To address this need we designed an offset siting support tool for the Desert Renewable Energy Conservation Plan (DRECP) of California, and present a case study of hypothetical impacts from solar development in the Western Mojave subsection. We compare two offset scenarios designed to mitigate a hypothetical 15,331 ha derived from proposed utility-scale solar energy development (USSED) projects. The first scenario prioritizes offsets based precisely on impacted features, while the second scenario offsets impacts to maximize biodiversity conservation gains in the region. The two methods only agree on 28% of their prioritized sites and differ in meeting species-specific offset goals. Differences between the two scenarios highlight the importance of clearly specifying choices and priorities for offset siting and mitigation in general. Similarly, the effects of background climate and land use change may lessen the durability or effectiveness of offsets if not considered. Our offset siting support tool was designed specifically for the DRECP area, but with minor code modification could work well in other offset analyses, and could provide

  5. Conservation planning for offsetting the impacts of development: a case study of biodiversity and renewable energy in the Mojave Desert

    USGS Publications Warehouse

    Kreitler, Jason R.; Schloss, Carrie A.; Soong, Oliver; Lee Hannah; Davis, Frank W.

    2015-01-01

    Balancing society’s competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species’ habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation prioritization tools are designed to handle this problem, but have seen little application to offset siting and analysis. To address this need we designed an offset siting support tool for the Desert Renewable Energy Conservation Plan (DRECP) of California, and present a case study of hypothetical impacts from solar development in the Western Mojave subsection. We compare two offset scenarios designed to mitigate a hypothetical 15,331 ha derived from proposed utility-scale solar energy development (USSED) projects. The first scenario prioritizes offsets based precisely on impacted features, while the second scenario offsets impacts to maximize biodiversity conservation gains in the region. The two methods only agree on 28% of their prioritized sites and differ in meeting species-specific offset goals. Differences between the two scenarios highlight the importance of clearly specifying choices and priorities for offset siting and mitigation in general. Similarly, the effects of background climate and land use change may lessen the durability or effectiveness of offsets if not considered. Our offset siting support tool was designed specifically for the DRECP area, but with minor code modification could work well in other offset analyses, and could provide

  6. Conservation Planning for Offsetting the Impacts of Development: A Case Study of Biodiversity and Renewable Energy in the Mojave Desert

    PubMed Central

    Kreitler, Jason; Schloss, Carrie A.; Soong, Oliver; Hannah, Lee; Davis, Frank W.

    2015-01-01

    Balancing society’s competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species’ habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation prioritization tools are designed to handle this problem, but have seen little application to offset siting and analysis. To address this need we designed an offset siting support tool for the Desert Renewable Energy Conservation Plan (DRECP) of California, and present a case study of hypothetical impacts from solar development in the Western Mojave subsection. We compare two offset scenarios designed to mitigate a hypothetical 15,331 ha derived from proposed utility-scale solar energy development (USSED) projects. The first scenario prioritizes offsets based precisely on impacted features, while the second scenario offsets impacts to maximize biodiversity conservation gains in the region. The two methods only agree on 28% of their prioritized sites and differ in meeting species-specific offset goals. Differences between the two scenarios highlight the importance of clearly specifying choices and priorities for offset siting and mitigation in general. Similarly, the effects of background climate and land use change may lessen the durability or effectiveness of offsets if not considered. Our offset siting support tool was designed specifically for the DRECP area, but with minor code modification could work well in other offset analyses, and could provide

  7. Is there a need for government interventions to adapt energy infrastructures to climate change? A German case study

    NASA Astrophysics Data System (ADS)

    Groth, Markus; Cortekar, Jörg

    2015-04-01

    The option of adapting to climate change is becoming more and more important in climate change policy. Hence, responding to climate change now involves both mitigation to address the cause and adaptation as a response to already ongoing and expected changes. These changes also have relevance for the current and future energy sector in Germany. An energy sector that in the course of the German Energiewende also has to deal with a fundamental shift in energy supply from fossil fuel to renewable energies in the next decades. Thereby it needs to be considered that the energy sector is one critical infrastructure in the European Union that needs to be protected. Critical infrastructures can be defined as organisations or facilities of special importance for the country and its people where failure or functional impairment would lead to severe supply bottlenecks, significant disturbance of public order or other dramatic consequences. Regarding the adaptation to climate change, the main question is, whether adaptation options will be implemented voluntarily by companies or not. This will be the case, when the measure is considered a private good and is economically beneficial. If, on the contrary, the measure is considered a public good, additional incentives are needed. Based on a synthesis of the current knowledge regarding the possible impacts of climate change on the German energy sector along its value-added chain, the paper points out, that the power distribution and the grid infrastructure is consistently attributed the highest vulnerability. Direct physical impacts and damages to the transmission and distribution grids, utility poles, power transformers, and relay stations are expected due to more intense extreme weather events like storms, floods or thunderstorms. Furthermore fundaments of utility poles can be eroded and relay stations or power transformers can be flooded, which might cause short circuits etc. Besides these impacts causing damage to the physical

  8. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    PubMed Central

    Thorman, Rachel M; Kumar T. P., Ragesh; Fairbrother, D Howard

    2015-01-01

    different nature and energy dependence of each process. We then explore the value of studying these processes through comparative gas phase and surface studies for four commonly-used FEBID precursors: MeCpPtMe3, Pt(PF3)4, Co(CO)3NO, and W(CO)6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors. PMID:26665061

  9. Data Center Energy Benchmarking: Part 4 - Case Study on aComputer-testing Center (No. 21)

    SciTech Connect

    Xu, Tengfang; Greenberg, Steve

    2007-08-01

    The data center in this study had a total floor area of 8,580 square feet (ft{sup 2}) with one-foot raised-floors. It was a rack lab with 440 racks, and was located in a 208,240 ft{sup 2} multi-story office building in San Jose, California. Since the data center was used only for testing equipment, it was not configured as a critical facility in terms of electrical and cooling supply. It did not have a dedicated chiller system but served by the main building chiller plant and make-up air system. Additionally, it was served by a single electrical supply with no provision for backup power. The data center operated on a 24 hour per day, year-round cycle, and users had all hour full access to the data center facility. The study found that data center computer load accounted for 23% of the overall building electrical load, while the total power consumption attributable to the data center including allocated cooling load and lighting was 30% of the total facility load. The density of installed computer loads (rack load) in the data center was 63 W/ft{sup 2}. Power consumption density for all data center allocated load (including cooling and lighting) was 84 W/ft{sup 2}, approximately 12 times the average overall power density in rest of the building (non-data center portion). For the data center, 75% of the overall electric power was the rack critical loads, 11% of the power was consumed by chillers, 9% by CRAH units, 1% by lighting system, and about 4% of the power was consumed by pumps. The ratio of HVAC to IT power demand in the data center in this study was approximately 0.32. General recommendations for improving overall data center energy efficiency include improving the lighting control, airflow optimization, and control of mechanical systems serving the data center in actual operation. This includes chilled water system, airflow management and control in data centers. Additional specific recommendations or considerations to improve energy efficiency are provided

  10. Public engagement with information on renewable energy developments: The case of single, semi-urban wind turbines.

    PubMed

    Parks, J M; Theobald, K S

    2013-01-01

    This paper explores perceptions of public engagement with information on renewable energy developments. It draws on a case study of proposals by a major supermarket chain to construct single wind turbines in two semi-urban locations in the UK, analysing data from interviews with key actors in the planning process and focus groups with local residents. The paper concludes that key actors often had high expectations of how local people should engage with information, and sometimes implied that members of the public who were incapable of filtering or processing information in an organised or targeted fashion had no productive role to play in the planning process. It shows how the specific nature of the proposals (single wind turbines in semi-urban locations proposed by a commercial private sector developer) shaped local residents' information needs and concerns in a way that challenged key actors' expectations of how the public should engage with information. PMID:23832884

  11. Extension of the non-Markovian Energy-Corrected Sudden model to the case of parallel and perpendicular infrared bands.

    PubMed

    Buldyreva, Jeanna; Daneshvar, Leila

    2013-10-28

    The non-Markovian Energy-Corrected Sudden approach [J. Buldyreva and L. Bonamy, Phys. Rev. A 60, 370 (1999)] previously developed for wide-band rototranslational Raman spectra of linear rotors is extended to the case of infrared absorption by linear molecules with stretching and bending modes. Basic relations such as detailed balance and double-sided sum rules for the rotational relaxation matrix are easily satisfied owing to the specific choice of a symmetric metric in the Liouville space. A single set of model parameters deduced from experimental widths of isolated isotropic Raman lines enables calculations of line-shape characteristics and full spectra up to the far wings. Applications to the important but quite complex example of pure carbon dioxide indicate the crucial role of the frequency dependence in the relaxation operator even for calculations of isolated-line characteristics. PMID:24182004

  12. Cloud-based decision framework for waste-to-energy plant site selection - A case study from China.

    PubMed

    Wu, Yunna; Chen, Kaifeng; Zeng, Bingxin; Yang, Meng; Geng, Shuai

    2016-02-01

    Waste-to-energy (WtE) plant site selection is crucially important during the whole life cycle. Currently, the scholars launch some research in the WtE plant site selection. However, there are still two great problems in the present methods. Firstly, the uncertainty of information is not fully described. Secondly, the correlation among criteria lacks rationality, which is mainly manifested in two aspects: one is ignoring the correlation, and the other is measuring unreasonably. Firstly cloud model is introduced to describe the fuzziness and randomness of the information fully and precisely. Secondly, the 2-order additive fuzzy measures based on the Mobius transform and correlation coefficient matrix is introduced for fuzzy measure scientifically and reasonably. Thirdly, Cloud Choquet integral (CCI) operator is constructed to evaluate the alternatives. Finally, a case from China proves the effectiveness. PMID:26639410

  13. Ultra-high energy collisions in static space-times: single versus multi-black hole cases

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2015-04-01

    We consider collision of two particles near static electrically charged extremal black holes and elucidate the conditions under which the energy in the centre of mass frame grows unbounded. For a single black hole, we generalize the results obtained earlier for the Reissner-Nordström metric, to distorted black holes. In the multi-black hole space-time, qualitatively new features appear. If the point of collision is close to at least two horizons simultaneously, unbounded are possible (i) without fine-tuning of particles' parameters, (ii) for an arbitrary mutual orientation of two velocities. Such a combination of properties (i) and (ii) has no analogues in the single black hole case and facilitates the condition of getting unbounded . Collisions in the electro-vacuum Majumdar-Papapetrou metric (several extremal black holes in equilibrium) is analyzed explicitly.

  14. Public/stakeholder involvement at two Department of Energy sites: Case studies

    SciTech Connect

    Gray, R.H.

    1995-12-31

    Efforts to communicate the results of environmental studies and involve the public in environmental decisions have increased nationwide. Outreach efforts at two US Department of Energy sites (i.e., the Hanford Site in southeastern Washington State and the Pantex Plant in the Texas Panhandle) have used a broad spectrum of communications media, including technical articles (open literature and symposium publications, annual and topical reports); information brochures and fact sheets; video productions; interactive exhibits, presentations at scientific, technical, civic, and other public meetings; and proactive interactions with the news media and with local, state, federal, and other agencies. In addition, representatives of local communities now operate offsite environmental monitoring stations and Native Americans are involved in studying cultural resources, fisheries, and other issues at Hanford and a program to obtain environmental samples from neighbor`s property is underway at the Pantex Plant. All major environmental programs, such as the multi-year effort to reconstruct past radiological doses to offsite human populations at Hanford, are now conducted with open public participation.

  15. Building state capacity in Russia: A case study of energy sector reform, 1992--1998

    NASA Astrophysics Data System (ADS)

    Kim, Younkyoo

    This study seeks an explanation for the neglect of state building in Russia. The major hypothesis is that dependence on external rent leads to the weakness of the state. Three intervening variables---transaction costs, bargaining power of the state, and discount rates---are posited to explain variance on the dependent variable, the weakness of the state. Based on the exploration of three dimensions of energy sector reform, the dissertation argues that in the short run resource rents may be the only reliable and adequate source of finance for the Russian government. The division of resource rents among the many claimants (state vs. business, state vs. society, Moscow vs. regions, and Russia vs. foreign companies), it submits, will pose a stringent test of the viability of democratic governance in Russia. The dissertation concludes that some evidence indicates that Russia has in fact met the characteristics of the rentier state. The greater reliance on a large resource sector for revenue has led to high transaction costs of tax collection, weak bargaining power of the state, and high discount rates of government officials in Russia.

  16. Minimally Invasive Medial Plating of Low-Energy Lisfranc Injuries: Preliminary Experience with Five Cases

    PubMed Central

    del Vecchio, Jorge Javier; Ghioldi, Mauricio; Raimondi, Nicolás; De Elias, Manuel

    2016-01-01

    Fracture dislocations involving the Lisfranc joint are rare; they represent only 0.2% of all the fractures. There is no consensus about the surgical management of these lesions in the medical literature. However, both anatomical reduction and tarsometatarsal stabilization are essential for a good outcome. In this clinical study, five consecutive patients with a diagnosis of Lisfranc low-energy lesion were treated with a novel surgical technique characterized by minimal osteosynthesis performed through a minimally invasive approach. According to the radiological criteria established, the joint reduction was anatomical in four patients, almost anatomical in one patient (#4), and nonanatomical in none of the patients. At the final follow-up, the AOFAS score for the midfoot was 96 points (range, 95–100). The mean score according to the VAS (Visual Analog Scale) at the end of the follow-up period was 1.4 points over 10 (range, 0–3). The surgical technique described in this clinical study is characterized by the use of implants with the utilization of a novel approach to reduce joint and soft tissue damage. We performed a closed reduction and minimally invasive stabilization with a bridge plate and a screw after achieving a closed anatomical reduction. PMID:27340569

  17. X-ray Spectroscopy for Chemical and Energy Sciences. the Case of Heterogeneous Catalysis

    SciTech Connect

    Frenkel, A. I.; van Bokhoven, J. A.

    2014-09-01

    Heterogeneous catalysis is the enabling technology for much of the current and future processes relevant for energy conversion and chemicals synthesis. The development of new materials and processes is greatly helped by the understanding of the catalytic process at the molecular level on the macro/micro-kinetic time scale and on that of the actual bond breaking and bond making. The performance of heterogeneous catalysts is inherently the average over the ensemble of active sites. Much development aims at unravelling the structure of the active site; however, in general, these methods yield the ensemble-average structure. A benefit of X-ray-based methods is the large penetration depth of the X-rays, enabling in situ and operando measurements. Furthermore, the potential of X-ray absorption and emission spectroscopy methods (XANES, EXAFS, HERFD, RIXS and HEROS) to directly measure the structure of the catalytically active site at the single nanoparticle level using nanometer beams at diffraction-limited storage ring sources is highlighted. Use of pump-probe schemes coupled with single-shot experiments will extend the time range from the micro/macro-kinetic time domain to the time scale of bond breaking and making.

  18. Case studies on developing local industry by using hot spring water and geothermal energy

    SciTech Connect

    Sasaki, Akira; Umetsu, Yoshio; Narita, Eiichi

    1997-12-31

    We have investigated the new ways to develop local industries by using hot spring water, geothermal water and geothermal energy from the Matsukawa Geothermal Power Plant in Iwate Prefecture, which is the first geothermal power plant established in Japan. The new dyeing technique, called {open_quotes}Geothermal Dyeing{close_quotes} was invented in which hydrogen sulfide in the water exhibited decoloration effect. By this technique we succeeded to make beautiful color patterns on fabrics. We also invented the new way to make the light wight wood, called {open_quotes}Geo-thermal Wood{close_quotes} by using hot spring water or geothermal water. Since polysaccharides in the wood material were hydrolyzed and taken out during the treatment in the hot spring water, the wood that became lighter is weight and more porous state. On the bases of these results, we have produced {open_quotes}Wooded Soap{close_quotes} on a commercial scale which is the soap, synthesized in the pore of the treated wood in round slice. {open_quotes}Collapsible Wood Cabin{close_quotes} was also produced for enjoyable outdoor life by using the modified properties of Geothermal Wood.

  19. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study.

    PubMed

    Corbin, Kendall R; Byrt, Caitlin S; Bauer, Stefan; DeBolt, Seth; Chambers, Don; Holtum, Joseph A M; Karem, Ghazwan; Henderson, Marilyn; Lahnstein, Jelle; Beahan, Cherie T; Bacic, Antony; Fincher, Geoffrey B; Betts, Natalie S; Burton, Rachel A

    2015-01-01

    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition. PMID:26305101

  20. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    PubMed

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. PMID:26028558

  1. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study

    PubMed Central

    Corbin, Kendall R.; Byrt, Caitlin S.; Bauer, Stefan; DeBolt, Seth; Chambers, Don; Holtum, Joseph A. M.; Karem, Ghazwan; Henderson, Marilyn; Lahnstein, Jelle; Beahan, Cherie T.; Bacic, Antony; Fincher, Geoffrey B.; Betts, Natalie S.; Burton, Rachel A.

    2015-01-01

    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like—rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47–50% w/w) and non-cellulosic polysaccharides (16–22% w/w), and whole leaves were low in lignin (9–13% w/w). Of the dry mass of whole Agave leaves, 85–95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41–48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition. PMID:26305101

  2. The presentation of energy and fields in physics texts - a case of literary inertia

    NASA Astrophysics Data System (ADS)

    Strube, Paul

    1988-11-01

    The extracts from the physics texts demonstrate how little the style of presentation of certain themes has changed over significant stretches of time. Rather than repeat the essence of the discussions given above, this summary, by contrast, comments on what these texts have not shown. Language characteristics Regardles of any shifts in emphasis placed on theory or practical, the language of the textbooks has not shown significant changes from the formal style present at the origin of such mass-produced texts in the early 20th century (Strube and Lynch 1984). There is not an increase in the use of figurative language, nor of models, nor of quotations from scientists, nor of uses of primary sources. There has not been a change in the numbers of sentences that are questions, or are addressed to the reader, or that refer in enquiring terms to the experiences of the readers' everyday world. View of science There have not been any shifts away from the emphasis on stating information, as even he practicals are written in such a way as to stress the information (e.g. the proper way to set it up, to draw graphs, to take temperatures). In other words, the laboratory techniques are part of what is to be learned, rather than tools to uncover information. Stylistic characteristics While there may be a case for changes in sentence length (Everett averages over 25 words per sentence, Parham and Webber only 17), there persists a tendency to use shorter sentences for statements of fact and longer sentences for explaining both the development of the fact and its consequences. In short, these texts may be characterised as follows. Their explanations generally take the form of inductivist/deductivist arguments. The role of the laboratory is reduced to a secondary, verificationist one. And there is a great deal of logical reasoning from first principles. Their instructional language is a formal, didactic one, which mainly states conclusions rather than guides enquiry. There is a high

  3. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    SciTech Connect

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and construction

  4. Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua

    NASA Astrophysics Data System (ADS)

    Barido, Diego Ponce de Leon; Johnston, Josiah; Moncada, Maria V.; Callaway, Duncan; Kammen, Daniel M.

    2015-10-01

    The global carbon emissions budget over the next decades depends critically on the choices made by fast-growing emerging economies. Few studies exist, however, that develop country-specific energy system integration insights that can inform emerging economies in this decision-making process. High spatial- and temporal-resolution power system planning is central to evaluating decarbonization scenarios, but obtaining the required data and models can be cost prohibitive, especially for researchers in low, lower-middle income economies. Here, we use Nicaragua as a case study to highlight the importance of high-resolution open access data and modeling platforms to evaluate fuel-switching strategies and their resulting cost of power under realistic technology, policy, and cost scenarios (2014-2030). Our results suggest that Nicaragua could cost-effectively achieve a low-carbon grid (≥80%, based on non-large hydro renewable energy generation) by 2030 while also pursuing multiple development objectives. Regional cooperation (balancing) enables the highest wind and solar generation (18% and 3% by 2030, respectively), at the least cost (US127 MWh-1). Potentially risky resources (geothermal and hydropower) raise system costs but do not significantly hinder decarbonization. Oil price sensitivity scenarios suggest renewable energy to be a more cost-effective long-term investment than fuel oil, even under the assumption of prevailing cheap oil prices. Nicaragua’s options illustrate the opportunities and challenges of power system decarbonization for emerging economies, and the key role that open access data and modeling platforms can play in helping develop low-carbon transition pathways.

  5. New Whole-House Solutions Case Study: Tommy Williams Homes Initial Performance of Two Zero Energy Homes, Gainesville, Florida

    SciTech Connect

    none,

    2011-11-01

    Tommy Williams Homes worked with PNNL, Florida HERO, Energy Smart Home Plans, and Florida Solar Energy Center to design and test two zero energy homes. Energy use was 30% lower in one home and 60% lower in the other.

  6. The role of the underground for massive storage of energy: a preliminary glance of the French case

    NASA Astrophysics Data System (ADS)

    Audigane, Pascal; Gentier, Sylvie; Bader, Anne-Gaelle; Beccaletto, Laurent; Bellenfant, Gael

    2014-05-01

    The question of storing energy in France has become of primary importance since the launch of a road map from the government which places in pole position this topic among seven major milestones to be challenged in the context of the development of innovative technology in the country. The European objective to reach 20% of renewables in the energy market, from which a large part would come from wind and solar power generation, raises several issues regarding the capacity of the grid to manage the various intermittent energy sources in line with the variability of the public demand and offer. These uncertainties are highly influenced by unpredictable weather and economic fluctuations. To facilitate the large-scale integration of variable renewable electricity sources in grids, massive energy storage is needed. In that case, electric energy storage techniques involving the use of underground are often under consideration as they offer a large storage capacity volume with a adapted potential of confining and the space required for the implantation. Among the panel of massive storage technologies, one can find (i) the Underground Pumped Hydro-Storage (UPHS) which are an adaptation of classical Pumped Hydro Storage system often connected with dam constructions, (ii) the compressed air storage (CAES) and (iii) the hydrogen storage from conversion of electricity into H2 and O2 by electrolysis. UPHS concept is based on using the potential energy between two water reservoirs positioned at different heights. Favorable natural locations like mountainous areas or cliffs are spatially limited given the geography of the territory. This concept could be extended with the integration of one of these reservoirs in an underground cavities (specifically mined or reuse of preexisting mines) to increase opportunities on the national territory. Massive storage based on compression and relaxation of air (CAES) requires high volume and confining pressure around the storage that exists

  7. Energy Ambiguity and the Inductive Rail Oscillator

    ERIC Educational Resources Information Center

    Hecking, Patrick C.

    2007-01-01

    In electric or mixed electric-mechanic systems, the distinction between potential and kinetic energy is not as clear as in purely mechanical systems. A solution for the motion of an inductively loaded rail generator is presented. In this case, the magnetic field energy (1/2)Li[superscript 2] can be written "formally" in terms of a potential…

  8. Market and behavioral barriers to energy efficiency: A preliminary evaluation of the case for tariff financing in California

    SciTech Connect

    Fujita, K. Sydny

    2011-06-23

    of outdated appliances, in California rental housing. Appliances in rental housing are on average older than those in owner occupied housing. More importantly, a substantial proportion of very old appliances are in rental housing. Having established that a very old stock of appliances exists in California rental housing, I discuss tariff financing as a policy option to reduce the impact of the remaining market and behavioral barriers. In a tariff financing program, the utility pays the initial cost of an appliance, and is repaid through subsequent utility bills. By eliminating upfront costs, tying repayment to the gas or electric meter, requiring a detailed energy audit, and relying upon utility bill payment history rather than credit score in determining participant eligibility, tariff financing largely overcomes many barriers to energy efficiency. Using California as a case study, I evaluate the feasibility of implementing tariff financing. For water heaters in particular, this appears to be a cost-effective strategy. Tariff financing from utilities is particularly valuable because it improves the ability of low-income renters to lower their utility bills, without burdening landlords with unrecoverable capital costs. To implement tariff financing country-wide, regulations in many states defining private loan-making institutions or the allowable use of public benefit funds may need to be modified. Tariff financing is relatively new and in most locations is only available as a pilot program or has only recently exited pilot phase. This preliminary evaluation suggests that tariff financing is a valuable future addition to the toolkit of policymakers who aim to increase the diffusion of efficient appliances. While regulatory approval is necessary in states that wish to pursue tariff financing, at this point, the major barrier to further implementation appears to be the newness of the financing mechanism.

  9. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  10. The effects of divergent and nondivergent winds on the kinetic energy budget of a mid-latitude cyclone - A case study

    NASA Technical Reports Server (NTRS)

    Chen, T.-C.; Alpert, J. C.; Schlatter, T. W.

    1978-01-01

    The magnitude of the divergent component of the wind is relatively small compared to that of the nondivergent component in large-scale atmospheric flows; nevertheless, it plays an important role in the case of explosive cyclogenesis examined here. The kinetic energy budget for the life cycle of an intense, developing cyclone over North America is calculated. The principal kinetic energy source is the net horizontal transport across the boundaries of the region enclosing the cyclone. By investigating the relative importance of the divergent and nondivergent wind components in the kinetic energy budget, it was found, as expected, that neglecting the divergent wind component in calculating the magnitude of the kinetic energy is of little consequence, but that the horizontal flux convergence and generation of kinetic energy depend crucially upon the divergent component. Modification of the divergent wind component can result in significant changes in the kinetic energy budget of the synoptic system.

  11. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    SciTech Connect

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  12. Compressed Air System Optimization Saves Energy and Improves Production at a Textile Manufacturing Mill (Peerless Division, Thomaston Mills, Inc.): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    SciTech Connect

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the textile manufacturing mill project.

  13. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.

    PubMed

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO(2)e per annum. The internal rate of return (IRR) of the project is only -0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO(2), the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO(2) emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China. PMID:23365532

  14. Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

    PubMed Central

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO2e per annum. The internal rate of return (IRR) of the project is only −0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO2, the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO2 emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China. PMID:23365532

  15. Impact Assessment of the Renewable Energies in the Cultural Heritage: the Case of the Way of St. James in Spain

    NASA Astrophysics Data System (ADS)

    Chias, P.; Abad, T.

    2014-06-01

    Medieval town centres and landscapes along the Way of St. James are being affected by renewable energy sources at the architectural, urban and territorial scales. The impact is not only visual, but thermal, accoustic and electromagnetic. Visual impact of solar photovoltaic power plants - which are placed over traditional crops close to the urban borders -, and also wind farms located at the hilltops, are sometimes remarkable. Solar photovoltaic modules are integrated into ancient roofs, and small scale wind turbines are taking up the ancient urban spaces. Among other effects on animal life and vegetation, the rise in temperature, radioelectric interferences, as well as changes in the traditional land uses are noticeable, and a deep analysis is needed. Our main target is to define an integrated methodology which considers all these effects. As a part of our project premises, we work with Open Source programs. We obtained a digital terrain model - 25 m spatial resolution -, and from Corine Land Cover images we got different raster files according to our research targets. Databases where implemented from both remote sensing and measures obtained directly in the field work. We applied GIS based multicriteria decision analysis and weighted linear combination, and then we adapted GRASS tools for a better usability. Our case studies are particularly interesting due to their situation along the Spanish Way of St. James, which is an itinerary named one of UNESCO's World Heritage Sites.

  16. Energy.

    PubMed

    Chambers, David W

    2012-01-01

    Energy is the capacity to do the things we are capable of and desire to accomplish. Most often this is thought of in terms of PEP--personal energy potential--a reservoir of individual vivacity and zest for work. Like a battery, energy can be conceived of as a resource that is alternatively used and replenished. Transitions between activities, variety of tasks, and choices of what to spend energy on are part of energy management. Energy capacity can be thought of at four levels: (a) so little that harm is caused and extraordinary steps are needed for recovery, (b) a deficit that slightly impairs performance but will recover naturally, (c) the typical range of functioning, and (d) a surplus that may or may not be useful and requires continual investment to maintain. "Flow" is the experience of optimal energy use when challenges balance capacity as a result of imposing order on our environment. There are other energy resources in addition to personal vim. Effective work design reduces demands on energy. Money, office design, and knowledge are excellent substitutes for personal energy. PMID:22856055

  17. Competition and Synergy of Different Technologies in the Subsurface: A Case Study for CCS vs. Geothermal Energy Production

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Juan-Lien Ramírez, Alina; Class, Holger

    2013-04-01

    Global climate change, shortage of resources and the resulting turn towards renewable sources of energy lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, "renewable" methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas, and coal. The different uses of the subsurface can result in competition for the limited subsurface space, but in some cases there may also be synergetic effects, if the technologies are combined in a clever way. The idea behind this case study is to investigate the effects of a CCS site on a geothermal power plant operated in its vicinity and present both positive and negative impacts. During CCS operations large quantities of carbon dioxide (CO2) are injected into a storage formation. This causes a pressure increase as the brine in the formation is displaced by CO2. These elevations in pressure can have an extent of several tens of kilometers from the injection well in contrast to the much smaller extent of the CO2 plume. If geothermal power plants operate in the range influenced by pressure evaluation, this may have an impact on their performance. For example: Increased discharge of "warm" brine could be favorable for geothermal power plants as the time until thermal depletion of the reservoir may also increase Early breakthrough of the cold water front between an injection and an extraction well due to a brine discharge "pushing" the cold water front towards the extraction well may lead to a decrease in performance of the power plant Of course, there is a huge number of possible hydrogeological settings and technical configurations for geothermal power production that may be combined to an even larger number of possible scenarios. In this work however we use a simple model setup in which we incorporate and vary the parameters that we think are crucial. Only porous (not fractured

  18. Energy Assessments under the Top 10,000 Program - A Case Study for a Steel Mill in China

    SciTech Connect

    Lu, Hongyou; Price, Lynn; Nimbalkar, Sachin U; Thekdi, Arvind; Degroot, Matthew; Shi, Jun

    2014-01-01

    One of the largest energy-savings programs for the Chinese industrial sector was the Top-1,000 Program, which targeted the 1,000 largest industrial enterprises in China. This program was launched in 2006, implemented through 2010, and covered 33% of national energy usage. Because of the success of the Top-1000 initiative, the program has now been expanded to the Top-10,000 program in the 12th Five-Year Plan period (2011-2015). The Top-10,000 program covers roughly 15,000 industrial enterprises, or about two-thirds of China s total energy consumption. Implementing energy audit systems and conducting industrial energy efficiency assessments are key requirements of the Top-10,000 program. Previous research done by Lawrence Berkeley National Laboratory (LBNL) has shown that there is a significant potential for improvement in energy assessment practices and applications in China. Issues such as lack of long term policy mechanisms, insufficient motivation for industrial enterprises, limited technical scope of energy assessments, and lack of systematic standardization have been identified. Through the support of the U.S. Department of Energy (DOE) and the U.S. State Department (with additional co-funding from the Energy Foundation China), LBNL, Oak Ridge National Laboratory, the Institute for Sustainable Communities (ISC), and DOE Energy Experts worked collaboratively with Chinese local organizations and conducted a series of industrial energy efficiency assessment demonstrations in selected Chinese industrial plants. The project aimed to not only introduce standardized methodologies and tools for energy assessments, but also to bring the systems approach for energy system analysis to the Top 10,000 enterprises. Through the project, five energy system assessments were conducted, and more than 300 Chinese experts from local energy conservation centers, universities, research organizations, energy service companies, and plant engineers were trained. This paper begins by

  19. Ocean Wave Energy Estimation Using Active Satellite Imagery as a Solution of Energy Scarce in Indonesia Case Study: Poteran Island's Water, Madura

    NASA Astrophysics Data System (ADS)

    Nadzir, Z. A.; Karondia, L. A.; Jaelani, L. M.; Sulaiman, A.; Pamungkas, A.; Koenhardono, E. S.; Sulisetyono, A.

    2015-10-01

    Ocean wave energy is one of the ORE (Ocean Renewable Energies) sources, which potential, in which this energy has several advantages over fossil energy and being one of the most researched energy in developed countries nowadays. One of the efforts for mapping ORE potential is by computing energy potential generated from ocean wave, symbolized by Watt per area unit using various methods of observation. SAR (Synthetic Aperture Radar) is one of the hyped and most developed Remote Sensing method used to monitor and map the ocean wave energy potential effectively and fast. SAR imagery processing can be accomplished not only in remote sensing data applications, but using Matrices processing application as well such as MATLAB that utilizing Fast Fourier Transform and Band-Pass Filtering methods undergoing Pre-Processing stage. In this research, the processing and energy estimation from ALOSPALSAR satellite imagery acquired on the 5/12/2009 was accomplished using 2 methods (i.e Magnitude and Wavelength). This resulted in 9 potential locations of ocean wave energy between 0-228 W/m2, and 7 potential locations with ranged value between 182-1317 W/m2. After getting through buffering process with value of 2 km (to facilitate the construction of power plant installation), 9 sites of location were estimated to be the most potential location of ocean wave energy generation in the ocean with average depth of 8.058 m and annual wind speed of 6.553 knot.

  20. Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO

    SciTech Connect

    Zimring, Mark

    2011-06-23

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

  1. How can small hydro energy and other renewable energy mitigate impact of climate change in remote Central Africa: Cameroon case study.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Central Africa owns important renewable energy potential, namely hydro, solar and biomass. This important potential is still suffering from poor development up to the point where the sub region is still abundantly using the fossil energy and biomass as main power source. This is harmful to the climate and the situation is still ongoing. The main cause of the poor use of renewable energy is the poor management of resources by governments who have not taken the necessary measures to boost the renewable energy sector. Since the region is experiencing power shortage, thermal plants are among other solutions planned or under construction. Firewood is heavily used in remote areas without a sustainability program behind. This solution is not environment friendly and hence is not a long term solution. Given the fact that the region has the highest hydro potential of the continent, up to one-quarter of the world's tropical forest, important oil production with poor purchase power, the aim of this paper is to identify actions for improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure in Central Africa and the promotion of small hydro and other renewable energy. The work will show at first the potential for the three primary energy sources which are solar, biomass and hydro while showing where available the level of development, with an emphasis on small hydro. Then identified obstacles for the promotion of clean energy will be targeted. From lessons learned, suggestions will be made to help the countries develop an approach aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon has a great renewable energy potential and some data are available on energy. From the overview of institutional structure reform of the Cameroon power sector and assessments, specific suggestions based on the weaknesses

  2. Penetrating injury to the chest by an attenuated energy projectile: a case report and literature review of thoracic injuries caused by "less-lethal" munitions

    PubMed Central

    Rezende-Neto, Joao; Silva, Fabriccio DF; Porto, Leonardo BO; Teixeira, Luiz C; Tien, Homer; Rizoli, Sandro B

    2009-01-01

    We present the case of a patient who sustained a penetrating injury to the chest caused by an attenuated energy rubber bullet and review the literature on thoracic injuries caused by plastic and rubber "less-lethal" munitions. The patient of this report underwent a right thoracotomy to extract the projectile as well as a wedge resection of the injured lung parenchyma. This case demonstrates that even supposedly safe riot control munition fired at close range, at the torso, can provoke serious injury. Therefore a thorough investigation and close clinical supervision are justified. PMID:19555511

  3. Economic Analysis of Energy-Efficiency Measures: Tribal Case Studies with the Yurok Tribe, the Confederated Salish and Kootenai Tribes of the Flathead Reservation, and the Pascua Yaqui Tribe

    ERIC Educational Resources Information Center

    Acker, Thomas L.; Auberle, William M.; Eastwood, John D.; Laroche, David R.; Slack, Robert P.; Smith, Dean H.; Ormond, Amanda S.

    2005-01-01

    The results of three energy-efficiency case studies conducted with three different Native American tribes in the western United States is presented. The case studies demonstrate that energy-efficiency is economically feasible and has the potential to reduce air pollution, and can potentially help tribes meet other important tribal objectives.

  4. Existing Whole-House Solutions Case Study: Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest

    SciTech Connect

    2014-03-01

    This project analyzes the cost effectiveness of energy-saving measures installed by a large public housing authority in Salishan, and evaluates those solutions to improve efficiency of affordable housing for new and existing homes. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7.

  5. The evaluation of building occupants' public awareness on energy efficiency: The study case of Chancellery Building, USM

    NASA Astrophysics Data System (ADS)

    Baharum, Faizal; Zainon, Mohamad Rizal; Seng, Loh Yong

    2016-08-01

    It is increasingly perceived that considerable energy savings in building can be accomplished in buildings through changes in staff's behavior. This study explored the public awareness of energy consumption and their perceived level of control over energy use. Generally, individual awareness and attitudes about the need to conserve energy, the perceived actions and opinions of other users and views of control over the ease and opportunity to reduce energy consumption were seen by staffs to identify with whether they would expect to save energy in Chancellery Building, USM. It is important that staff engagement in the successful achievement of the target on energy saving. Therefore, the aim of this research is to create a survey instrument by using staffs as benchmark of evaluation, for the identification of problems in respect to aware the public of energy saving and energy-efficiency in Chancellery Building. This research was conducted in the office of Chancellery Building, USM. Survey forms had been distributed to the staffs in the office to determine their awareness towards energy saving. The results were investigated by utilizing Statistical Package for the Social Science (SPSS) in order to determine its reliability and validity. The research result helped the advancement of energy-efficiency and determine the wastefulness of the existed building.

  6. New Whole-House Solutions Case Study: Singer Village - A Cold Climate Zero Energy Ready Home, Derby, Connecticut

    SciTech Connect

    2015-03-01

    After progressively incorporating ENERGY STAR for Homes Versions 1, 2, and 3 into its standard practices over the years, builder Brookside Development was seeking to build an even more sustainable product that would further increase energy efficiency, while also addressing indoor air quality, water conservation, renewable-ready, and resiliency. These objectives align with the framework of the U.S. Department of Energy Zero Energy Ready Home program, which builds upon the comprehensive building science requirements of ENERGY STAR for Homes Version 3 and proven Building America innovations and best practices. To meet this goal, Consortium for Advanced Residential Buildings partnered with Brookside Development to design and construct the first zero energy ready home in a development of seven new homes on the old Singer Estate in Derby, Connecticut.

  7. Barriers and opportunities for improving energy efficiency in the social housing sector: Case study of E4C's Division of Housing and Mental Health

    NASA Astrophysics Data System (ADS)

    Marchand-Smith, Patrick

    Energy efficiency improvements in the social housing sector have the potential to produce a range of environmental and social benefits. These improvements can be produced through retrofits that deliver energy savings or new construction built to a high standard of energetic efficiency. However, implementation of these approaches is hindered by economic and organizational constraints affecting the agencies that provide society with social housing and the governments that support the provision of these services. This thesis builds on the work of other researchers studying these constraints by supplying an in-depth case study from Alberta and a discussion based on its findings. The case study focuses on E4C, a social service agency with several housing projects. Overall, findings matched important themes identified in the academic literature. The in-depth nature of the case study added additional insight to many of these themes. Most barriers are economic in nature and related to a lack of sufficient funding or the up-front costs of energy-saving retrofits. The recommendations presented are based on consideration of the multiple barriers and opportunities faced. Most of these require a considerable investment of time on the part of agencies and would be followed up by capital investments to implement energy-saving changes. Therefore it is important to note that the most significant barrier is commitment, which is one of E4C's central values. This thesis showed that commitment cannot exceed capacity to act. Greater commitment on the part of governments, agencies or society at large could have significant impacts in improving the energy efficiency of buildings in the Albertan, and Canadian, social housing sector.

  8. The economics of energy conservation in developing countries: A case study for the electrical sector in Brazil

    NASA Astrophysics Data System (ADS)

    Goldemberg, Jose; Williams, Robert H.

    1985-11-01

    A wide range of high efficiency, energy-using technologies have become commercially available in recent years, in North America, Western Europe, and Japan. Contrary to the widely held view that these technologies are relevant mainly to the rich, already-industrialized countries, we show that from an economic perspective, energy efficiency improvements often make as much or even more sense for capital-poor, developing countries. We illustrate the relevance to developing countries of more energy-efficient end-use technology, with an analysis of the economics of energy-efficient refrigerators and light bulbs in the context of the electrical system of Brazil, from both the consumer's perspective and that of society. We show that the required extra investments in energy efficiency generate attractive returns in electricity savings for the consumer. Moreover, for the country as a whole, investments in energy efficiency can lead to net savings of scarce capital resources, by reducing the need for new electrical generating capacity. Because electricity in Brazil is largely based on low-cost hydro-electric power, showing the importance of energy efficiency improvements in this situation is an ``acid-test'' for the relevance of energy efficiency to developing countries more generally. Capturing the economic benefits of energy efficiency improvements probably requires that utilities be transformed from being energy supply companies into companies that market energy services, by facilitating investments on the ``customer's side of the meter'' as well as in new supplies. Some utilities in industrialized countries are already beginning to shift their activities in this direction. An even more active utility role may be desirable in developing countries, because there most of the population is poor, and the poor tend to be far more first-cost sensitive, and thus resistant to making investments in energy efficiency improvement, than higher income consumers.

  9. An Assessment Model for Energy Efficiency Program Planning in Electric Utilities: Case of the Pacific of Northwest U.S.A

    NASA Astrophysics Data System (ADS)

    Iskin, Ibrahim

    Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy

  10. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes — First DOE Zero Energy Ready Home Retrofit, Garland, TX

    SciTech Connect

    none,

    2014-09-01

    This builder was honored with an Affordable Builder award in the 2014 Housing Innovation Awards, for the first retrofit home certified to the DOE Zero Energy Ready home requirements.The 60-year-old, three-bedroom ranch home is expected to save its homeowner more than $1,000 a year in utility bills compared to a home built to the current 2009 International Energy Conservation Code.

  11. Synergy of Nuclear and Electronic Energy Losses in Ion-irradiation Processes: the Case of Vitreous Silicon Dioxide

    SciTech Connect

    Toulemonde, Marcel; Weber, William J.; Li, Guosheng; Shutthanandan, V.; Kluth, Patrick; Yang, Tengfei; Wang, Yugang; Zhang, Yanwen

    2011-02-16

    Structural modification of vitreous SiO2 by Au ion irradiation is investigated over an energy regime (~ 0.3-15 MeV) where the decrease of the nuclear energy loss with increasing energy is compensated by the increase of the electronic energy loss, leading to a nearly constant total energy loss of ~ 4 keV/nm. The radii of damaged zones resulting from the ion impact, deduced from changes in infrared bands as a function of ion fluence, decrease from 4.9 nm at 0.3 MeV to 2.5 and 2.6 nm at 9.8 MeV and 14.8 MeV, respectively. Based on previous data where vitreous SiO2 was irradiated with much higher energy Au ions, the damage zone radius increases from 2.4 nm at 22.7 MeV to 5.4 nm at 168 MeV, and a U-shaped dependence on energy within experimental uncertainty is observed in the energy region from 0.3 MeV to 168 MeV. The current results demonstrate that large damage radii at low and high ion energy can be explained by the elastic or inelastic thermal spike model, respectively. In the transition regime where both nuclear and electronic energy loss are significant, an unified thermal spike model consisting a coherent synergy of the elastic collision spike model with the inelastic thermal spike model is suggested to interpret and describe the radius evolution from the nuclear to the electronic energy regime.

  12. Synergy of Nuclear and Electronic Energy Losses in Ion-irradiation Processes: the Case of Vitreous Silicon Dioxide

    SciTech Connect

    Toulemonde, Marcel; Weber, William J; Li, Guosheng; Shutthanandan, Vaithiyalingam; Kluth, Patrick; Yang, Tengfei; Wang, Yuguang; Zhang, Yanwen

    2011-01-01

    Structural modification of vitreous SiO2 by Au ion irradiation is investigated over an energy regime (~ 0.3-15 MeV) where the decrease of the nuclear energy loss with increasing energy is compensated by the increase of the electronic energy loss, leading to a nearly constant total energy loss of ~ 4 keV/nm. The radii of damaged zones resulting from the ion impact, deduced from changes in infrared bands as a function of ion fluence, decrease from 4.9 nm at 0.3 MeV to 2.5 and 2.6 nm at 9.8 MeV and 14.8 MeV, respectively. Based on previous data where vitreous SiO2 was irradiated with much higher energy Au ions, the damage zone radius increases from 2.4 nm at 22.7 MeV to 5.4 nm at 168 MeV, and a U-shaped dependence on energy within experimental uncertainty is observed in the energy region from 0.3 MeV to 168 MeV. The current results demonstrate that large damage radii at low and high ion energy can be explained by the elastic or inelastic thermal spike model, respectively. In the transition regime where both nuclear and electronic energy loss are significant, an unified thermal spike model consisting a coherent synergy of the elastic collision spike model with the inelastic thermal spike model is suggested to interpret and describe the radius evolution from the nuclear to the electronic energy regime.

  13. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema

    Hennessey, John (President, Stanford University)

    2012-03-14

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Energy.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This document describes a course designed to acquaint students with the many societal and technological problems facing the United States and the world due to the increasing demand for energy. The course begins with a writing assignment that involves readings on the environmental philosophy of Native Americans and the Chernobyl catastrophe.…

  15. University of Colorado at Boulder: Energy and Climate Revolving Fund. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Caine, Rebecca

    2012-01-01

    The University of Colorado at Boulder's student run Environmental Center leads the campus' sustainability efforts. The Center created the Energy and Climate Revolving Fund (ECRF) in 2007 to finance energy-efficiency upgrades. The ECRF functions as a source of funding for project loans and provides a method of financing projects that seeks to save…

  16. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  17. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado (Brochure)

    SciTech Connect

    Van Geet, O.

    2010-04-01

    As a Laboratories for the 21st Century (Labs21) partner, NREL set aggressive goals for energy savings, daylighting, and achieving a LEED Gold rating (through the U.S. Green Building Council's Leadership in Energy and Environmental Design program) for its S&TF building.

  18. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    PubMed

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. PMID:27237574

  19. A Complex Systems Approach to Energy Poverty in sub-Saharan Africa: Nigeria as a Case Study

    NASA Astrophysics Data System (ADS)

    Chidebell Emordi, Chukwunonso

    Energy poverty is pervasive in sub-Saharan Africa. Nigeria, located in sub-Saharan West Africa, is the world's seventh largest oil exporting country and is a resource-rich nation. It however experiences the same levels of energy poverty as most of its neighboring countries. Attributing this paradox only to corruption or the "Dutch Disease", where one sector booms at the expense of other sectors of the economy, is simplistic and enervates attempts at reform. In addition, data on energy consumption is aggregated at the national level via estimates, disaggregated data is virtually non-existent. Finally, the wave of decentralization of vertically integrated national utilities sweeping the developing world has caught on in sub-Saharan Africa. However, little is known of the economic and social implications of these transitions within the unique socio-technical system of the region's electricity sector, especially as it applies to energy poverty. This dissertation proposes a complex systems approach to measuring and mitigating energy poverty in Nigeria due to its multi-dimensional nature. This is done via a three-fold approach: the first section of the study delves into causation by examining the governance institutions that create and perpetuate energy poverty; the next section proposes a context-specific minimum energy poverty line based on field data collected on energy consumption; and the paper concludes with an indicator-based transition management framework encompassing institutional, economic, social, and environmental themes of sustainable transition within the electricity sector. This work contributes to intellectual discourse on systems-based mitigation strategies for energy poverty that are widely applicable within the sub-Saharan region, as well as adds to the knowledge-base of decision-support tools for addressing energy poverty in its complexity.

  20. Put a Coalatom in Your Tank: The Compelling Case for a Marriage of Coal and Nuclear Energy

    SciTech Connect

    Penfield, Scott R. Jr.; Bolthrunis, Charles O.

    2006-07-01

    Increasing costs and security concerns with present fossil energy sources, plus environmental concerns related to CO{sub 2} emissions and the emergence of new technologies in the energy and transportation sectors set the stage for a marriage of convenience between coal and nuclear energy. As the price of oil continues to increase and supply becomes increasingly constrained, coal offers a secure domestic alternative to foreign oil as a source of liquid fuels. However, conventional technologies for converting coal to liquid fuels produce large quantities of CO{sub 2} that must be released or sequestered. Advanced nuclear technologies, particularly the High-Temperature Gas-Cooled Reactor (HTGR), have the potential to produce hydrogen via water splitting; however, the transportation and storage of hydrogen are significant barriers to the 'Holy Grail', the Hydrogen Economy. In a coal/nuclear marriage, the hydrogen and oxygen provided by nuclear energy are joined with coal as a source of carbon to provide liquid fuels with negligible CO{sub 2} release from the process. In combination with emerging hybrid vehicles, fuels based on a coal/nuclear marriage promise stable prices, increased domestic security and a reduction in CO{sub 2} emissions without the need to completely replace our transportation fuels infrastructure. The intent of this paper is to outline the technical basis for the above points and to show that process energy applications of nuclear energy can provide the basis for answering some of the tougher questions related to energy and the environment. (authors)

  1. Case Study: Impact of Inter- and Intra-Day Energy Parameters on Bone Health, Menstrual Function, and Hormones in an Elite Junior Female Triathlete.

    PubMed

    Vescovi, Jason D; VanHeest, Jaci L

    2016-08-01

    This observational case study examined the association of inter- and intraday energy intake and exercise energy expenditure with bone health, menstrual status and hematological factors in a female triathlete. The study spanned 7 months whereby energy intake and exercise energy expenditure were monitored three times (13 d); 16 blood samples were taken, urinary hormones were assessed for 3 months, and bone mineral density was measured twice. Energy availability tended to be sustained below 30 kcal/kg FFM/d and intraday energy intake patterns were often "back-loaded" with approximately 46% of energy consumed after 6 p.m. Most triiodothyronine values were low (1.1-1.2nmol/L) and supportive of reduced energy availability. The athlete had suppressed estradiol (105.1 ± 71.7pmol/L) and progesterone (1.79 ±1.19nmol/L) concentrations as well as urinary sex-steroid metabolites during the entire monitoring period. Lumbar spine (L1-L4) bone mineral density was low (age-matched Z-score -1.4 to -1.5). Despite these health related maladies the athlete was able to perform typical weekly training loads (swim: 30-40 km, bike: 120-300 km, run 45-70 km) and was competitive as indicated by her continued improvement in ITU World Ranking during and beyond the assessment period. There is a delicate balance between health and performance that can become blurred especially for endurance athletes. Education (athletes, coaches, parents) and continued monitoring of specific indicators will enable evidence-based recommendations to be provided and help reduced the risk of health related issues while maximizing performance gains. Future research needs to longitudinally examine how performance on standardized tests in each discipline (e.g., 800-m swim, 20-km time trial, 5-km run) is impacted when aspects of the female athlete triad are present. PMID:26696652

  2. A Framework for Statewide Analysis of Site Suitability, Energy Estimation, Life Cycle Costs, Financial Feasibility and Environmental Assessment of Wind Farms: A Case Study of Indiana

    NASA Astrophysics Data System (ADS)

    Kumar, Indraneel

    In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include

  3. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    PubMed

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  4. New Whole-House Solutions Case Study: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York

    SciTech Connect

    2015-04-01

    The Consortium for Advanced Residential Buildings is working with the EcoVillage co-housing community and builder AquaZephyr in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community-scale project consists of 40 housing units—15 apartments, and 25 single family residences that range in size from 1,250 ft2–1,664 ft2 and cost from $80,000 to $235,000. The community is pursing DOE Zero Energy Ready Home (ZERH), US Green Building Council Leadership in Energy and Environmental Design (LEED) Gold, and ENERGY STAR certifications for the entire project.

  5. Building America Case Study: Whole-House Solutions for Existing Homes: Greenbelt Homes, Inc. Pilot Retrofit Program; Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-06-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. With the community upgrade fully funded by the cooperative through their membership without outside subsidies, this project presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements. Phase 1: baseline evaluation for a representative set of 28 homes sited in seven buildings; Phase 2: installation of the building envelope improvements and continued monitoring of the energy consumption for the heating season and energy simulations supporting recommendations for HVAC and water heating upgrades to be implemented in Phase 3.

  6. Consumer-behavorial analysis of alternate-energy adoption: the case of geothermal energy in New Mexico. Final report, 6/1/80-8/1/81

    SciTech Connect

    McDevitt, P.; Pratt, E.; Michie, D.

    1981-08-01

    The overall objectives of the research described here are the determination of the market penetration prospects of geothermal energy in New Mexico and the identification of the key determinants of geothermal adoption by prospective consumers. The resources considered are intermediate temperature (65/sup 0/C less than or equal to T less than or equal to 150/sup 0/C) hydrothermal resources, and the applications examined are direct (non-electric) uses. In order to achieve the overall research objectives, four specific work tasks were undertaken: the design of a marketing research instrument for investigating prospects for the market penetration of geothermal energy; the implementation of the marketing research instrument through a pilot study of adoption behavior of prospective consumers of geothermal energy in the state of New Mexico; the identification and evaluation of market considerations which will affect the commercialization of direct geothermal applications within the state; and the design of a comprehensive marketing program to maximize the commercialization of geothermal energy in New Mexico.

  7. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    SciTech Connect

    Judkoff, Ron

    2010-08-01

    This report documents the initial Phase 1 test process for testing the reliability of software models that predict retrofit energy savings of existing homes, including their associated calibration methods.

  8. New Whole-House Solutions Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale - Fresno, California

    SciTech Connect

    2014-10-01

    In this project, IBACOS partnered with builder Wathen-Castanos Hybrid Homes to develop a simple and low-cost methodology by which community-scale energy savings can be evaluated based on results at the occupied test house level.Research focused on the builder and trade implementation of a whole-house systems integrated measures package and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

  9. Existing Whole-House Solutions Case Study: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York

    SciTech Connect

    J. Dentz, F. Conlin, D. Podorson, and K. Alaigh

    2014-08-01

    In this project, Building America team ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units are refurbished between occupancies.

  10. DOE Zero Energy Ready Home Case Study: Amerisips Homes — Miller-Bloch Residence, Johns Island, SC

    SciTech Connect

    none,

    2014-09-01

    For this DOE Zero Energy Ready Home that won a Custom Builder award in the 2014 Housing Innovation Awards, the builder uses structural insulated panels to construct the entire building shell, including the roof, walls, and floor of the home.

  11. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson — Church Community and Housing Corporation, Charlestown, RI

    SciTech Connect

    none,

    2014-09-01

    This DOE Zero Energy Ready Home garnered an Affordable Builder award in the 2014 Housing Innovation Awards, for its highly insulated construction, minisplit heat pump and water heater, and triple pane windows.

  12. New Market Paradigm for Zero-Energy Homes: The Comparative San Diego Case Study; Volume 1 and Volume 2 (Appendixes)

    SciTech Connect

    Farhar, B. C.; Coburn, T. C.

    2006-12-01

    This study suggests a conceptually fresh alternative paradigm for the building and marketing of zero-energy homes (ZEHs) based on experience which will help builders create sustainable communities for our well-being and that of future generations.

  13. Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants: case study of Oslo, Norway.

    PubMed

    Venkatesh, G; Brattebø, Helge

    2011-01-01

    Wastewater treatment plants, while performing the important function of treating wastewater to meet the prescribed discharge standards, consume energy and a variety of chemicals. This paper analyses the consumption of energy and chemicals by wastewater treatment plants in Oslo over eight years, and their potential environmental impacts. Global warming and acidification were the dominant impacts for chemicals and energy, respectively. Avoided impacts due to usable by-products - sludge, ammonium nitrate and biogas - play a key role in shrinking the environmental footprint of the wastewater plants. The scope for decreasing this footprint by streamlining energy and chemicals consumption is limited, however, considering that over 70% of the impact is accounted for by the eutrophication potential (thanks to the nitrogen and phosphorus which is discharged to the sink) of the treated effluent wastewater. PMID:21411954

  14. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    SciTech Connect

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

    2010-08-01

    The U.S. Department of Energy tasked NREL to develop a process for testing the reliability of models that predict retrofit energy savings, including their associated calibration methods. DOE asked NREL to conduct the work in phases so that a test procedure would be ready should DOE need it to meet legislative requirements related to residential retrofits in FY 2010. This report documents the initial 'Phase 1' test procedure.

  15. The role of natural resource and environmental economics in determining the trade-offs in consumption and production of energy inputs: The case of biomass energy crops

    SciTech Connect

    Downing, M.; Graham, R.L.

    1993-12-31

    Natural resource economics issues deal with flows and funds of renewable and nonrenewable resources over time. These issues include topics concerned with management of fisheries, forests, mineral, energy resources, the extinction of species and the irreversibility of development over time. Environmental economics issues deal with regulation of polluting activities and the valuation of environmental amenities. In this study we outline a framework for studying both natural resource and environmental economics issues for any renewable or nonrenewable resource. Valuation from both the cost and benefit sides are addressed as they relate to the valuation of environmental programs or policies. By using this top-down approach to analyze and determine the costs and benefits of using renewable or nonrenewable resources, policy-makers on the global, national and local scales may be better informed as to the probable nonmarket and market ramifications of their natural resource and environmental policy decisions. This general framework for analysis is then focused to address biomass energy crops and their usage as inputs to energy production. As with any energy technology, a complete analysis must include an examination of the entire fuel cycle; specifically both production and consumption sides. From a production standpoint, market valuation issues such as crop management techniques, inputs to production, and community economics issues must be addressed as well as nonmarket valuation issues such as soil erosion, ground water effects and carbon sequestration. On the consumption side, market valuation considerations such as energy fuel efficiency and quality, cost of conversion and employment of labor are important factors while the critical nonmarket valuation factors are ambient air visibility, greenhouse gas release, and disposal of the by-products of conversion and combustion.

  16. Building America Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory.). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the community scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

  17. Existing Whole-House Solutions Case Study: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island

    SciTech Connect

    2014-03-01

    Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. Thirty-seven of these projects were comprehensive retrofits while five were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. Building Science Corporation developed a consistent "package" of measures in terms of the performance targeted for major building components. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects, and was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

  18. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    SciTech Connect

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  19. Climate change and its role in forecasting energy demand in buildings: A case study of Douala City, Cameroon

    NASA Astrophysics Data System (ADS)

    Nematchoua, Modeste Kameni; Roshan, Gh R.; Tchinda, René; Nasrabadi, T.; Ricciardi, Paola

    2015-02-01

    The foremost role of a building is to assure the comfort of its occupants. The thermal comfort of a building depends on the outdoor climate and requires a demand in energy for heating and cooling. In this paper, demand of energy (heating/cooling) in the buildings is discussed in Douala, Cameroon. Daily data of the last 40 years coming from five weather stations of Cameroon have been studied. Some forecasts have been carried out with 14 GCM models, associated to three future climate scenarios B1, A2, and A1B. However, only INCM3 of General Circulation Model (GCM) and A2 scenario was used. Energy demand in buildings is valued by HDD (heating degree day) and CDD (cooling degree day) indices. Obtained results show that the temperature evolves more quickly in dry season than in rainy season in Douala. Climate rise indicates an increasing demand of energy in the buildings for cooling. Global Douala heating shows a definite effect on outdoor comfort. From 2045 to 2075, the demand of energy for cooling will be superior to 50%. The total demand in energy for heating in the buildings is estimated to be 67.882 kcal from 1970 to 2000 and will be around 67.774 kcal from 2013 to 2043.

  20. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

    NASA Astrophysics Data System (ADS)

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm-3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.

  1. Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: a case study of CNTs//Li4Ti5O12.

    PubMed

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li(4)Ti(5)O(12) (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm(-3), much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems. PMID:25586374

  2. Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12

    PubMed Central

    Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm−3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems. PMID:25586374

  3. Colorectal adenomas and energy intake, body size and physical activity: a case-control study of subjects participating in the Nottingham faecal occult blood screening programme.

    PubMed Central

    Little, J.; Logan, R. F.; Hawtin, P. G.; Hardcastle, J. D.; Turner, I. D.

    1993-01-01

    Most case-control studies of colorectal cancer have shown a positive association with energy intake. In contrast studies which have considered physical activity have found the most active to have a lower risk of colonic cancer and obesity appears to be no more than weakly related to colorectal cancer. We therefore compared energy intake determined by a diet history interview, self-reported height and weight, together with measures of lifetime job activity levels and leisure activity in the year prior to interview in 147 cases with colorectal adenomas and two control groups (a) 153 age-sex matched FOB-negative subjects (b) 176 FOB-positive subjects in whom no adenoma or carcinoma was found. Unconditional logistic regression was used to estimate relative risks (RR) and 95% confidence intervals () adjusted for age, sex and social class. No association with weight or body mass index was found. The only association with physical activity found with both control groups was an inverse association with running or cycling for half an hour continuously at least once a week RR 0.46 (0.2-1.3) compared with control group (a), and RR = 0.32 (0.1-0.8) compared with (b), but few subjects engaged in such activity. There was an inverse association with energy intake (trend chi 2 = 5.3, P < 0.025) in the comparison with control group (a) only, a finding which is consistent with those of two previous studies of asymptomatic adenoma. PMID:8427777

  4. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan.

    PubMed

    Kuo, Yu-Ming; Fukushima, Yasuhiro

    2009-03-01

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. PMID:19320274

  5. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon

    2015-01-01

    Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the

  6. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    SciTech Connect

    Rezaee, Mohammad Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  7. Building America Case Study: High Performance Ducts in Hot-Dry Climates; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    ?Ducts in conditioned space (DCS) represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. Various strategies exist for incorporating ducts within the conditioned thermal envelope. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of various DCS strategies. Builders were given incentives and design support in exchange for providing site access for construction observation, diagnostic testing, and builder survey feedback. Information from the project was designed to feed into California's 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project complemented information collected in the California project with BEopt simulations of DCS performance in hot/dry climate regions.

  8. Machine-learning-based selective sampling procedure for identifying the low-energy region in a potential energy surface: A case study on proton conduction in oxides

    NASA Astrophysics Data System (ADS)

    Toyoura, Kazuaki; Hirano, Daisuke; Seko, Atsuto; Shiga, Motoki; Kuwabara, Akihide; Karasuyama, Masayuki; Shitara, Kazuki; Takeuchi, Ichiro

    2016-02-01

    In this paper, we propose a selective sampling procedure to preferentially evaluate a potential energy surface (PES) in a part of the configuration space governing a physical property of interest. The proposed sampling procedure is based on a machine-learning method called the Gaussian process, which is used to construct a statistical model of the PES for identifying the region of interest in the configuration space. We demonstrate the efficacy of the proposed procedure for atomic diffusion and ionic conduction, specifically, the proton conduction in a well-studied proton-conducting oxide, barium zirconate (BaZrO3) . The results of the demonstration study indicate that our procedure can efficiently identify the low-energy region characterizing the proton conduction in the host crystal lattice and that the descriptors used for the statistical PES model have a great influence on the performance.

  9. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  10. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    SciTech Connect

    Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

    2010-08-06

    Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different

  11. The impact of rising energy prices on household energy consumption and expenditure patterns: The Persian Gulf crisis as a case example

    SciTech Connect

    Henderson, L.J. ); Poyer, D.A.; Teotia, A.P.S. . Energy Systems Div.)

    1992-09-01

    The Iraqi invasion of Kuwait and the subsequent war between Iraq and an international alliance led by the United States triggered immediate increases in world oil prices. Increases in world petroleum prices and in US petroleum imports resulted in higher petroleum prices for US customers. In this report, the effects of the Persian Gulf War and its aftermath are used to demonstrate the potential impacts of petroleum price changes on majority, black, and Hispanic households, as well as on poor and nonpoor households. The analysis is done by using the Minority Energy Assessment Model developed by Argonne National Laboratory for the US Department of Energy (DOE). The differential impacts of these price increases and fluctuations on poor and minority households raise significant issues for a variety of government agencies, including DOE. Although the Persian Gulf crisis is now over and world oil prices have returned to their prewar levels, the differential impacts of rising energy prices on poor and minority households as a result of any future crisis in the world oil market remains a significant long-term issue.

  12. Land use impacts of low-carbon energy system transition - the case of UK bioenergy deployment under the Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Lupton, R.; Skelton, S.

    2015-12-01

    The UK Department of Energy and Climate Change has developed four low-carbon energy transition pathways - the Carbon Plan - towards achieving the legally binding 80% territorial greenhouse gas emissions reduction, stipulated in the 2008 Climate Change Act by 2050. All the pathways require increase in bioenergy deployment, of which a significant amount could be indigenously sourced from crops. But will increased domestic production of energy crops conflict with other land use and ecosystem priorities? To address this question, a coupled analysis of the four energy transition pathways and land use has been developed using an integrated resource accounting platform called ForeseerTM. The two systems are connected by the bioenergy component, and are projected forward in time to 2050, under different scenarios of energy crop composition and yield, and accounting for various constraints on land use for agriculture and ecosystem services. The results show between 7 and 61% of UK agricultural land could be required to meet bioenergy deployment projections under different combinations of crop yield and compositions for the transition pathways. This could result in competition for land for food production and other socio-economic and ecological land uses. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.

  13. What is greener than a VMT tax? The case for an indexed energy user fee to finance us surface transportation

    SciTech Connect

    Greene, David L

    2011-01-01

    Highway finance in the United States is perceived by many to be in a state of crisis, primarily due to the erosion of motor fuel tax revenues due to inflation, fuel economy improvement, increased use of alternative sources of energy and diversion of revenues to other purposes. Monitoring vehicle miles of travel (VMT) and charging highway users per mile has been proposed as a replacement for the motor fuel tax. A VMT user fee, however, does not encourage energy efficiency in vehicle design, purchase and operation, as would a user fee levied on all forms of commercial energy used for transportation and indexed to the average efficiency of vehicles on the road and to inflation. An indexed roadway user toll on energy (IRoUTE) would induce two to four times as much reduction in greenhouse gas (GHG) emissions and petroleum use as a pure VMT user fee. However, it is not a substitute for pricing GHG emissions and would make only a small but useful contribution to reducing petroleum dependence. An indexed energy user fee cannot adequately address the problems of traffic congestion and heavy vehicle cost responsibility. It could, however, be a key component of a comprehensive system of financing surface transportation that would eventually also include time and place specific monitoring of VMT for congestion pricing, externality charges and heavy vehicle user fees.

  14. Sensitivity study of six public health risk computation cases from the US Department of Energy risk- and cost-estimate process pilot study

    SciTech Connect

    Chamberlain, P.J. II; Droppo, J.G. Jr.; Castleton, K.J.; Eslinger, P.W.

    1993-09-01

    This report contains a description of the results from the analysis of the sensitivity of estimated public health risks to changes in model parameters relating to the contaminant source releases, contaminant transports, and human exposures contaminants from six waste sites. Estimated public health risks associated with these and other sites at US Department of Energy (DOE) compounds were reported in a pilot study done by the Oak Ridge National Laboratory (ORNL) for the DOE (ORNL 1992). The objective of the sensitivity analysis was to identify the subset of model input parameters whose variations accounted for the majority of the variation in the computed public health risk values. All environmental modeling in this study and the pilot study done by ORNL (1992) was based on the Multimedia Environmental Pollutant Assessment System (Whelan et al. 1992). The results of the sensitivity analysis for the atmospheric case indicate that the most influential variables were emission rate and, to a lesser extent, population size. For groundwater cases, there was no consistent ordering of the influential variables. Depending on the case considered, some influential variables include the following: Equilibrium partition coefficient (K{sub d}), size of population, pore water velocity, constituent inventory, contaminant flux rate from source, and thickness of saturated zone. For the overland transport case, the regression model fit was not adequate for a reliable identification of the influential variables.

  15. U.S. DEPARTMENT OF ENERGY EXPERIENCE IN CREATING AND COMMUNICATING THE CASE FOR THE SAFETY OF A POTENTIAL YUCCA MOUNTAIN REPOSITORY

    SciTech Connect

    W.J. Boyle; A.E. Van Luik

    2005-08-30

    Experience gained by the U.S. Department of Energy (the Department) in making the recommendation for the development of the Yucca Mountain site as the nation's first high-level waste and spent nuclear fuel repository is useful for creating documents to support the next phase in the repository program, the licensing phase. The experience that supported the successful site-recommendation process involved a three-tiered approach. First, was making a highly technical case for regulatory compliance. Second, was making a broader case for safety in an Environmental Impact Statement. And third, producing plain language brochures, made available to the public in hard copy and on the Internet, to explain the Department's action and its legal and scientific bases. This paper reviews lessons learned from this process, and makes suggestions for the next stage of the repository program: licensing.

  16. Energy flux parametrization as an opportunity to get Urban Heat Island insights: The case of Athens, Greece (Thermopolis 2009 Campaign).

    PubMed

    Loupa, G; Rapsomanikis, S; Trepekli, A; Kourtidis, K

    2016-01-15

    Energy flux parameterization was effected for the city of Athens, Greece, by utilizing two approaches, the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) and the Bulk Approach (BA). In situ acquired data are used to validate the algorithms of these schemes and derive coefficients applicable to the study area. Model results from these corrected algorithms are compared with literature results for coefficients applicable to other cities and their varying construction materials. Asphalt and concrete surfaces, canyons and anthropogenic heat releases were found to be the key characteristics of the city center that sustain the elevated surface and air temperatures, under hot, sunny and dry weather, during the Mediterranean summer. A relationship between storage heat flux plus anthropogenic energy flux and temperatures (surface and lower atmosphere) is presented, that results in understanding of the interplay between temperatures, anthropogenic energy releases and the city characteristics under the Urban Heat Island conditions. PMID:26520258

  17. The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study.

    PubMed

    Liu, Haohui; Ren, Zekun; Liu, Zhe; Aberle, Armin G; Buonassisi, Tonio; Peters, Ian Marius

    2015-04-01

    Si based tandem solar cells represent an alternative to traditional compound III-V multijunction cells as a promising way to achieve high efficiencies. A theoretical study on the energy yield of GaAs on Si (GaAs/Si) tandem solar cells is performed to assess their energy yield potential under realistic illumination conditions with varying spectrum. We find that the yield of a 4-terminal contact scheme with thick top cell is more than 15% higher than for a 2-terminal scheme. Furthermore, we quantify the main losses that occur for this type of solar cell under varying spectra. Apart from current mismatch, we find that a significant power loss can be attributed to low irradiance seen by the sub-cells. The study shows that despite non-optimal bandgap combination, GaAs/Si tandem solar cells have the potential to surpass 30% energy conversion efficiency. PMID:25968803

  18. Energy

    SciTech Connect

    Crowley, M.

    1980-01-01

    Nearly 800 organizations are described as sources of information and publications relating to any aspect of energy. The descriptions enable the user to identify organizations by their concerns, goals, and backers as well as their information services. The majority of entries are US organizations, with some international, Canadian, and United Kingdom. Source organizations are arranged alphabetically in eight major categories: Government agencies and quasi-governmental organizations; Activist/civic/public education organizations; Professional/labor/trade asociations; University-affiliated research centers and programs; Independent research organizations; Corporations and other businesses; Publishers, distributors, and information services; and International, foreign agencies, research institutes, corporations, and other associations. The appendices list other grass-roots organizations and sources, title, and subject indices. (DCK)

  19. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  20. California Institute of Technology: Caltech Energy Conservation Investment Program. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Caine, Rebecca

    2011-01-01

    The Caltech Energy Conservation Investment Program (CECIP) was initiated in 2009. It manages $8 million within an existing fund in the school's endowment, which had been created to finance capital projects. Any member of the Caltech community may submit a project proposal, and projects are considered for approval as long as they have at least a 15…

  1. DOE Zero Energy Ready Home Case Study: New Town Builders — The ArtiZEN Plan, Denver, CO

    SciTech Connect

    none,

    2014-09-01

    The Grand Winner in the Production Builder category of the 2014 Housing Innovation Awards, this builder plans to convert all of its product lines to DOE Zero Energy Ready Home construction by the end of 2015. This home achieves HERS 38 without photovoltaics (PV) and HERS -3 with 8.0 kW of PV.

  2. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes — Village Park Eco Home, Double Park, TX

    SciTech Connect

    none,

    2014-09-01

    This builder won a Custom Builder honor in the 2014 Housing Innovation Awards for this showcase home that serves as an energy-efficient model home for the custom home builder: 1,300 visitors toured the home, thousands more learned about the home’s advanced construction via the webpage, YouTube, Twitter, Facebook, Instagram, and Pinterest.

  3. New Whole-House Solutions Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida

    SciTech Connect

    none,

    2012-10-01

    PNNL, Florida HERO, and Energy Smart Home Plans helped Ravenwood Homes achieve a HERS 15 with PV or HERS 65 without PV on a home in Florida with SEER 16 AC, concrete block and rigid foam walls, high-performance windows, solar water heating, and 5.98 kW PV.

  4. Designing for Multiple Stakeholder Interests within the Humanitarian Market: The Case of Off-Grid Energy Devices

    ERIC Educational Resources Information Center

    Nielsen, Brita Fladvad; Rodrigues Santos, Ana Laura

    2013-01-01

    A "humanitarian market" for off-grid renewable energy technologies for displaced populations in remote areas has emerged. Within this market, there are multiple stakeholder agendas. End-user needs and sustainable development goals are currently not considered through the customer-enterprise relationship and the applied product and…

  5. The Examining of Prospective Teachers? Views about Renewable and Non-Renewable Energy Sources: A Case Study of Turkey

    ERIC Educational Resources Information Center

    Hasiloglu, Mehmet Akif

    2014-01-01

    The aim of this study is to determine prospective teachers? views about renewable and non-renewable energy sources. To collect data, a questionnaire with 5 open-ended questions was conveyed to 463 prospective teachers selected from Agri Ibrahim Cecen University. The results showed that almost three fourths of the prospective teachers tend to…

  6. Challenges Posed by Some Misconceptions in Mathematical Physics: A Case Study of Work Done and Potential Energy

    ERIC Educational Resources Information Center

    Yah, Jake K.

    2011-01-01

    This study is focused on the concept and formalism of work done and potential energy on the very fundamental level. A detailed analysis of the incomplete presentations of the topics found a major misconception that precluded acknowledgement of existence of certain nonradial effects caused by classical radial/center-bound gravitational force fields…

  7. DOE Zero Energy Ready Home Case Study: AquaZephyr — Eco-Village-Ithaca, Ithaca, NY

    SciTech Connect

    none,

    2014-09-01

    This two-story, 1,664 ft2 home is one of 17 single-family and four duplex homes built as part of an energy-efficient cooperative. Winner in the Production Builder category of the 2014 Housing Innovation Awards, the home achieves a HERS 56 without photovoltaics and HERS 15 with 4 kW of photovoltaics.

  8. A clustering approach for the analysis of solar energy yields: A case study for concentrating solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Peruchena, Carlos M. Fernández; García-Barberena, Javier; Guisado, María Vicenta; Gastón, Martín

    2016-05-01

    The design of Concentrating Solar Thermal Power (CSTP) systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest. Meteorological series are often condensed into one representative year with the aim of data volume reduction and speeding-up of energy system simulations, defined as Typical Meteorological Year (TMY). This approach seems to be appropriate for rather detailed simulations of a specific plant; however, in previous stages of the design of a power plant, especially during the optimization of the large number of plant parameters before a final design is reached, a huge number of simulations are needed. Even with today's technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work presents a simple and efficient methodology for selecting number of individual days able to represent the electrical production of the plant throughout the complete year. To achieve this objective, a new procedure for determining a reduced set of typical weather data in order to evaluate the long-term performance of a solar energy system is proposed. The proposed methodology is based on cluster analysis and permits to drastically reduce computational effort related to the calculation of a CSTP plant energy yield by simulating a reduced number of days from a high frequency TMY.

  9. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  10. Streamlined environmental remediation characterization using remote sensing techniques: Case studies for the US Department of Energy, Oak Ridge Operations

    SciTech Connect

    Carden, D.M.; Smyre, J.L.; Evers, T.K.; King, A.L.

    1996-07-01

    This paper provides an overview of the DOE Oak Ridge Operations Remote Sensing Program and discusses how data from this program have assisted the environmental restoration program in streamlining site-characterization activities. Three case studies are described where remote sensing imagery has provided a more focused understanding of site problems with a resultant reduction in the need for costly and time-consuming, ground-based sampling approaches.

  11. Resource scarcity, energy use and environmental impact: A case study of the New Bedford, Massachusetts, USA, fisheries

    NASA Astrophysics Data System (ADS)

    Mitchell, Catherine; Cleveland, Cutler J.

    1993-05-01

    The commercial fishing fleet in New Bedford, Massachusetts, USA, harvests seafood on George’s Bank, home of one of the nation’s most productive fisheries. We calculated the energy return on investment (EROI) and carbon intensity of protein harvest in the New Bedford fisheries from 1968 to 1988. EROI is the ratio of the energy content of the edible fish protein harvested to the quantity of fossil fuel energy used directly in the harvesting process. Carbon intensity is the quantity of carbon dioxide (CO2) released (from the burning of fossil fuels) per calorie of edible fish protein harvested. The results show that the EROI of protein harvest declined from 0.18 to 0.028 from 1968 to 1988, indicating that the energy used to harvest seafood increased from about 6 to 36 kcal of fuel for each kilocalorie of protein harvested. The quantity of CO2 released per calorie of edible fish protein is a linear function of energy use and therefore increased in a similar manner. During this period there was a large increase in fishing effort (caused by the increase in the real price of seafood products, favorable tax treatment for new vessel construction, and low interest loans from the government), and a decline in several important species of fish. The results suggest that fishing pressure could be managed effectively by the regulation of fuel use by the fleet. Despite the increase in the price of many seafood products, fishermen absorbed many of the costs of increasing scarcity in the form of longer working hours and fewer men per vessel.

  12. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  13. The reform of energy subsidies for the enhancement of marine sustainability: An empirical analysis of energy subsidies worldwide and an in-depth case study of South Korea's energy subsidy policies

    NASA Astrophysics Data System (ADS)

    Shim, Jae Hyun

    This dissertation seeks to raise awareness about harmful effects of fossil fuel and nuclear energy subsidies that have blocked transition from conventional energy to a decarbonized, renewable energy system. Today, humans face daunting challenges in the form of global warming, which results mainly from the burning of fossil fuels. To avoid catastrophe, the transition to a renewable energy regime should be an urgent priority; however, the reality is that the progress of renewable energy is very slow due to the various political and economic factors when compared to conventional energy resources. A chief factor is that the energy subsidy for fossil fuel and nuclear energy obstructs the "level playing field" for renewable energy. Energy subsidies for conventional energy can be understood in the context of the commodification paradigm, which regards nature as an object of conquest and supports the principle of more is better. Although fossil fuel energy damages the environment, economy, and social equity, all countries subsidize such energy, no matter the country's state of development. This holds true as much in the U.S. and the EU as in China, India and South Korea. The oceans, which cover 71% of the earth, are threatened by the activities of conventional energy, which are underpinned by subsidies. These subsidies have contributed to the destruction of the marine ecosystem through increased GHG emissions like CO2 and NOx which cause a sea temperature increase and coral bleaching. Subsidies also significantly affect fishery overexploitation, oil pollution, and thermal pollution. In-depth empirical analysis of South Korea showed how fossil fuel and nuclear energy activities have threatened marine sustainability through thermal pollution, algae bloom (red tides), overexploitation, and oil-related marine pollution. Reforming subsidies of fossil fuel and nuclear energy should be a global priority because of imminent of global warming. As strategies for energy subsidy

  14. Italian guidelines for energy performance of cultural heritage and historical buildings: the case study of the Sassi of Matera.

    NASA Astrophysics Data System (ADS)

    Negro, Elisabetta; Cardinale, Tiziana; Cardinale, Nicola

    2016-04-01

    The Sassi of Matera are a unique example in the world of rock settlement, developed from natural caves carved into the rock and then molded into increasingly complex structures inside two large natural amphitheatres: the Sasso Caveoso and the Sasso Barisano. Thanks also to this aspects Matera is an UNESCO world heritage site and was elected European Capital of Culture in 2019. Our research focuses on the compatibility of the energy efficiency measures applied in of Sassi buildings with the recent MiBACT (Italian Ministry of Cultural Heritage) guidelines on "Energy efficiency improvements in the cultural heritage" and AiCARR (Italian Association of Air Conditioning) guidelines on "Energy efficiency of historical building". One of the essential measures highlighted by Mibact guidelines is ensure the Indoor Environmental Quality improvement of the historical architecture in order to preserve their identity and cultural heritage. These paper aims to analyze energy and environmental performance of different buildings typology and monuments present in the Sassi site. The energy performance and microclimate measures conducted on different type of building by non-destructive measurements and laboratory tests in situ are useful to verify and quantify the thermal characteristics of the envelopes of the Mediterranean tradition and also to demonstrate their capacity to ensure internal comfort conditions. The calcarenite walls of vernacular building of Sassi show the excellent energy behavior of these constructions. But these material often present high moisture content which negatively influence the room microclimate in particular in presence of mural frescos and rocky churches. However these structures, once restored and in a condition of normal use, give indoor comfort within the limits of thermo-hygrometrics standards established by indices as the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). Another interesting consideration stated from our

  15. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    PubMed

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  16. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    PubMed Central

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  17. DOE Zero Energy Ready Home Case Study: John Hubert Associates — EXIT-0 House, North Cape May, NJ

    SciTech Connect

    none,

    2014-09-01

    This house is the first DOE Zero Energy Ready Home for this builder and won a Custom Builder award in the 2014 Housing Innovation Awards. The 1,871-ft2 home features advanced-framed above-grade walls with R-21 fiberglass batt plus an R-3.6-insulated coated OSB sheathing, R-18 rigid-foam-insulated crawlspace walls, solar water heating, a high-efficiency heat pump, an HRV, and mostly LED lighting.

  18. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  19. Impacts of Urban Water Conservation Strategies on Energy, Greenhouse Gas Emissions, and Health: Southern California as a Case Study

    PubMed Central

    Sokolow, Sharona; Godwin, Hilary

    2016-01-01

    Objectives. To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. Methods. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Results. Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public’s health. Conclusions. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations. PMID:26985606

  20. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.