Science.gov

Sample records for energy technology support

  1. Energy Efficient Engine acoustic supporting technology report

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.

    1985-01-01

    The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.

  2. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    ERIC Educational Resources Information Center

    Kulo, Violet; Bodzin, Alec

    2013-01-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…

  3. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    SciTech Connect

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  4. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    NASA Astrophysics Data System (ADS)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  5. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  6. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  7. Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.

    SciTech Connect

    Lee, Moo Yul; Bauer, Stephen J.

    2004-06-01

    This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

  8. Energy Technology.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  9. Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Blair, Nate; Cory, Karlynn; Hand, Maureen; Parkhill, Linda; Speer, Bethany; Stehly, Tyler; Feldman, David; Lantz, Eric; Augusting, Chad; Turchi, Craig; O'Connor, Patrick

    2015-07-08

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  10. Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    NASA Technical Reports Server (NTRS)

    Duderstadt, E. C.; Agarwal, P.

    1983-01-01

    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.

  11. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    SciTech Connect

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  12. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  13. Renewable energy technology characterizations

    SciTech Connect

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations front matter lists the chapters and tables that support this report on the technical and economic status of the major emerging renewable energy options for electricity supply.

  14. Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

    2009-08-31

    This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BT’s Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the “long-term.”

  15. Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms

    SciTech Connect

    Lewis, Joanna; Wiser, Ryan

    2005-11-15

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

  16. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Design Support for Tooling Optimization

    SciTech Connect

    Wang, Dongtao

    2011-09-23

    High pressure die casting is an intrinsically efficient net shape process and improvements in energy efficiency are strongly dependent on design and process improvements that reduce scrap rates so that more of the total consumed energy goes into acceptable, usable castings. Computer simulation has become widely used within the industry but use is not universal. Further, many key design decisions must be made before the simulation can be run and expense in terms of money and time often limits the number of decision iterations that can be explored. This work continues several years of work creating simple, very fast, design tools that can assist with the early stage design decisions so that the benefits of simulation can be maximized and, more importantly, so that the chances of first shot success are maximized. First shot success and better running processes contributes to less scrap and significantly better energy utilization by the process. This new technology was predicted to result in an average energy savings of 1.83 trillion BTUs/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2012, a market penetration of 30% by 2015 is 1.89 trillion BTUs/year by 2022. Along with these energy savings, reduction of scrap and improvement in yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2022 is 0.037 Million Metric Tons of Carbon Equivalent (MM TCE).

  17. Water Requirements for Energy Production Technologies: A Collaborative Effort to Support Integrated Resource Planning

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Macknick, J.; Participants in The WaterEnergy Workshop

    2010-12-01

    Global, national and regional concerns are emerging about the capacity of available water resources to meet increasing energy demands posed by a growing population—particularly as water availability is expected to shift as a result of a warming climate. For the same reasons, the use of both non-traditional water resources and water transport is expected to increase, creating greater demand for energy to move and treat water. Integrated planning efforts designed to avoid collisions between water and energy resource management decisions require consistent data outlining both the water requirements for energy development, and the energy required to move and treat water. Here we present the results of a collaborative, interagency effort to compile, assess, and outline consumptive uses of water associated with different parts of the energy generation process. A consistent set of data is important to support integrated modeling efforts in support of decision making and planning. The leaders of several efforts occurring in parallel to collate water use data converged at a workshop held in August 2010. The participants shared estimates of water use related to the major water-consuming steps of all the energy production processes currently operating in the U.S., and those expected to be online in the future. Discussions also addressed underlying data assumptions, data reliability concerns, and regional variability in reported ranges of values. Participants identified key data gaps, determining whether outside expert engagement could fill the gaps, or if additional research was required. The team collaborated after the meeting to fill in the data gaps utilizing institutional knowledge from a wide variety of agencies. The end result is a compilation of best estimates of the water requirements for energy production, as agreed to by the expert participants at the workshop and subsequent interactions. One key informational gap emerging from the workshop is the need to

  18. Understanding Teenagers' Personal Contexts to Design Technology That Supports Learning about Energy Consumption

    ERIC Educational Resources Information Center

    Avramides, Katerina; Craft, Brock; Luckin, Rosemary

    2016-01-01

    Energy sustainability is prevalent in political and popular rhetoric and yet energy consumption is rising. Teenagers are an important category of future energy consumers, but little is known of their conceptions about energy and energy saving. We report on empirical research with two groups of teenagers. This is part of ongoing work to design…

  19. Technology in Instructional Support Services.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This manual is intended to provide directors of funded programs and teachers with an awareness of a wide range of technology services, programs, and applications for improving the quality and effectiveness of instructional support services in New York State schools. The first of nine chapters contains two papers: "Technology Support for…

  20. Energy efficient engine high pressure turbine ceramic shroud support technology report

    NASA Technical Reports Server (NTRS)

    Nelson, W. A.; Carlson, R. G.

    1982-01-01

    This work represents the development and fabrication of ceramic HPT (high pressure turbine) shrouds for the Energy Efficient Engine (E3). Details are presented covering the work performed on the ceramic shroud development task of the NASA/GE Energy Efficient Engine (E3) component development program. The task consists of four phases which led to the selection of a ZrO2-BY2O3 ceramic shroud material system, the development of an automated plasma spray process to produce acceptable shroud structures, the fabrication of select shroud systems for evaluation in laboratory, component, and CF6-50 engine testing, and finally, the successful fabrication of ZrO2-8Y2O3/superpeg, engine quality shrouds for the E3 engine.

  1. Grid Computing and Collaboration Technology in Support of Fusion Energy Sciences

    NASA Astrophysics Data System (ADS)

    Schissel, D. P.

    2004-11-01

    The SciDAC Initiative is creating a computational grid designed to advance scientific understanding in fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling, and allowing more efficient use of experimental facilities. The philosophy is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as easy to use network available services. Access to services is stressed rather than portability. Services share the same basic security infrastructure so that stakeholders can control their own resources and helps ensure fair use of resources. The collaborative control room is being developed using the open-source Access Grid software that enables secure group-to-group collaboration with capabilities beyond teleconferencing including application sharing and control. The ability to effectively integrate off-site scientists into a dynamic control room will be critical to the success of future international projects like ITER. Grid computing, the secure integration of computer systems over high-speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. The first grid computational service deployed was the transport code TRANSP and included tools for run preparation, submission, monitoring and management. This approach saves user sites from the laborious effort of maintaining a complex code while at the same time reducing the burden on developers by avoiding the support of a large number of heterogeneous installations. This tutorial will present the philosophy behind an advanced collaborative environment, give specific examples, and discuss its usage beyond FES.

  2. Enabling Technology in Support of Fusion Science

    NASA Astrophysics Data System (ADS)

    Baker, Charles C.

    1999-03-01

    This paper summarizes remarks made at Fusion Power Associates annual meeting, July 17, 2000 in San Diego. It describes the U.S. Department of Energy Office of Fusion Enegy Sciences programs in plasma and fusion technology in support of the U. S. fusion energy sciences program.

  3. Appendix A: Energy storage technologies

    SciTech Connect

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  4. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  5. Transformational Energy Technologies

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency’s inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The 37 projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E’s investment in these projects catalyzed an additional $33 million in investments.

  6. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  7. Energy and technology review

    SciTech Connect

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  8. Data analysis, analytical support, and technology transfer support for the Federal Energy Management Program Office of Conservation and Renewable Energy Department of Energy. Final technical report, August 8, 1987--August 7, 1992

    SciTech Connect

    Tremper, C.

    1992-12-31

    Activities included the collecting, reporting, and analysis of Federal energy usage and cost data; development of program guidance and policy analysis of Federal energy usage and cost data; development of program guidance and policy analysis; inter-agency liaison; promotion of energy efficiency initiatives; and extensive technology transfer and outreach activities.

  9. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  10. CSPMS supported by information technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hudan; Wu, Heng

    This paper will propose a whole new viewpoint about building a CSPMS(Coal-mine Safety Production Management System) by means of information technology. This system whose core part is a four-grade automatic triggered warning system achieves the goal that information transmission will be smooth, nondestructive and in time. At the same time, the system provides a comprehensive and collective technology platform for various Public Management Organizations and coal-mine production units to deal with safety management, advance warning, unexpected incidents, preplan implementation, and resource deployment at different levels. The database of this system will support national related industry's resource control, plan, statistics, tax and the construction of laws and regulations effectively.

  11. Energy Audits. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy audits is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training…

  12. Energy technology glossary

    SciTech Connect

    Bishop, C.T.

    1986-06-23

    This glossary covers six topics: Energy Concepts; Nuclear Energy; Fossil Fuels; Solar Energy; Earth Energies; and Energy Technologies in one alphabetical listing of all energy related terms. Two tables at the end of the glossary define the relationships between the more commonly used units are given.

  13. Research Supporting Satellite Communications Technology

    NASA Technical Reports Server (NTRS)

    Horan Stephen; Lyman, Raphael

    2005-01-01

    This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

  14. GeoEnergy technology

    SciTech Connect

    1980-12-31

    The goal of the GeoEnergy Technology Program is to improve the understanding and efficiency of energy extraction and conversion from geologic resources, hence maintaining domestic production capability of fossil energy resources and expanding the usage of geothermal energy. The GeoEnergy Technology Program conducts projects for the Department of Energy in four resource areas--coal, oil and gas, synthetic fuels and geothermal energy. These projects, which are conducted collaboratively with private industry and DOE`s Energy Technology Centers, draw heavily on expertise derived from the nuclear weapons engineering capabilities of Sandia. The primary technologies utilized in the program are instrumentation development and application, geotechnical engineering, drilling and well completions, and chemical and physical process research. Studies in all four resource areas are described.

  15. Lunar Surface Systems Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; Meseroll, Robert; Quiter, John; Shannon, Russell; Easton, John W.; Madaras, Eric I.; BrownTaminger, Karen M.; Tabera, John T.; Tellado, Joseph; Williams, Marth K.; Zeitlin, Nancy P.

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  16. German energy technology prospects.

    PubMed

    Popp, M

    1982-12-24

    After more than 25 years of development of nuclear power and almost 10 years of research and development in numerous areas of nonnuclear energy, there is now a good basis for judging the future prospects of energy technologies in the Federal Republic of Germany. The development of nuclear power has provided an important and economically advantageous new source of energy. Further efforts are needed to establish the nuclear fuel cycle in all stages and to exploit the potential of advanced reactors. In all other areas of energy technology, including energy conservation, new energy sources, and coal, economics has turned out to be the key problem, even at today's energy prices. Opportunities to overcome these economic problems through additional R & D are limited. There is some potential for special applications, and there are many technologies that could contribute to the energy supply of developing countries. In general, however, progress in energy conservation and the use of renewable energy sources will depend on the degree to which energy policy measures can improve their economic basis. For some technologies, such as solar thermal power stations and coal liquefaction, large-scale economic deployment cannot be foreseen today. Instead of establishing costly demonstration projects, emphasis will be put on improving key components of these technologies with the aim of having the most advanced technology available when the economic parameters are more favorable. PMID:17770150

  17. Renewable Energy Technology

    ERIC Educational Resources Information Center

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  18. Bonneville Power Administration and the Industrial Technologies Program Leverage Support to Overcome Energy Efficiency Barriers in the Northwest

    SciTech Connect

    2010-06-18

    Through its Energy Smart Industrial program, BPA is informing and assisting utilities and industries to have a better understanding of the benefits that come from participating in energy-savings programs. Read about how BPA is encouraging energy efficiency projects through its utilities.

  19. Designing Corporate Databases to Support Technology Innovation

    ERIC Educational Resources Information Center

    Gultz, Michael Jarett

    2012-01-01

    Based on a review of the existing literature on database design, this study proposed a unified database model to support corporate technology innovation. This study assessed potential support for the model based on the opinions of 200 technology industry executives, including Chief Information Officers, Chief Knowledge Officers and Chief Learning…

  20. Biological Life Support Technologies: Commercial Opportunities

    NASA Technical Reports Server (NTRS)

    Nelson, Mark (Editor); Soffen, Gerald (Editor)

    1990-01-01

    The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.

  1. Integration of Supportive Design Features and Technology

    ERIC Educational Resources Information Center

    Lazaros, Edward J.; Ahmadi, Reza

    2008-01-01

    Integrating supportive design features and technology into the home are excellent ways to plan to make a home "age-friendly." When an immediate need occurs for eliminating barriers in an existing home, supportive design features and technology will most often need to be examined, and some form of implementation will need to take place. While…

  2. Memory function and supportive technology

    PubMed Central

    Charness, Neil; Best, Ryan; Souders, Dustin

    2013-01-01

    Episodic and working memory processes show pronounced age-related decline, with other memory processes such as semantic, procedural, and metamemory less affected. Older adults tend to complain the most about prospective and retrospective memory failures. We introduce a framework for deciding how to mitigate memory decline using augmentation and substitution and discuss techniques that change the user, through mnemonics training, and change the tool or environment, by providing environmental support. We provide examples of low-tech and high-tech memory supports and discuss constraints on the utility of high-tech systems including effectiveness of devices, attitudes toward memory aids, and reliability of systems. PMID:24379752

  3. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  4. Supporting industries energy and environmental profile

    SciTech Connect

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  5. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    SciTech Connect

    Weakley, Steven A.

    2012-04-15

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  6. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    SciTech Connect

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  7. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    SciTech Connect

    Ziritt, Jose Luis

    1999-11-03

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  8. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  9. Technology Needs to Support Future Mars Exploration

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.; Baker, John; Lillard, Randolph P.

    2013-01-01

    The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.

  10. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    SciTech Connect

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  11. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    SciTech Connect

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  12. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    SciTech Connect

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  13. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  14. Technologies, Products, and Models Supporting Knowledge Management.

    ERIC Educational Resources Information Center

    Luan, Jing; Serban, Andreea M.

    2002-01-01

    Based on a taxonomy of knowledge management processes, provides a synopsis of technologies and vendors that support knowledge management. Proposes a model for classifying the various types of technologies related to knowledge management that are most often used in institutional research. (EV)

  15. Review of US Department of Energy health and environmental research and development program support to SRC-II technology development

    SciTech Connect

    Massey, M.J.; Fillo, J.P.; Kreisher, J.H.; Sgro, G.A.

    1980-07-01

    This document outlines the technical framework of DOE's overall synthetic fuels health and environmental characterization program. Current project environmental activities directly associated with SRC-II technology development are summarized for the convenience of the Environmental Impact Statement reviewers. An extended, technically detailed statement of the SRC-II health and environmental program, activities, and plans was released in late 1980, as part of the final Environmental Impact Statement of the SRC-II Demonstration Project. Program development is necessarily iterative. Early screening results on a small scale equipment suggest the need for further screening studies on a larger-scale system. Results of screening studies set the priorities for more extensive and costly long-term baseline biological and ecological studies. Parametric studies establish the sensitivity of measured screening and baseline characteristics to changes in processing conditions and also provide a basis for correlating low- and high-tier biological and ecological test information. Monitoring system development is stimulated by findings in screening and baseline characterization efforts. Choice of monitoring systems is dependent upon screening and baseline biological and ecological test results and results of initial site analyses. As a result, the overall characterization program necessarily emerges in phases, each with a distribution of activities in the four component areas. Characterization efforts on PDU- and pilot-scale equipment focus on screening and baseline studies of steady state and non-steady state production. At the demonstration scale, these activities are expanded to include extensive monitoring and the investigation of large-scale steady state and non-steady state effluent production and control characteristics.

  16. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  17. Natural gas and oil technology partnership support

    SciTech Connect

    Schmidt, T.W.

    1996-06-01

    The Natural Gas and Oil Technology Partnership expedites development and transfer of advanced technologies through technical interactions and collaborations between the national laboratories and the petroleum industry - majors, independents, service companies, and universities. The Partnership combines the expertise, equipment, facilities, and technologies of the Department of Energy`s national laboratories with those of the US petroleum industry. The laboratories utilize unique capabilities developed through energy and defense R&D including electronics, instrumentation, materials, computer hardware and software, engineering, systems analysis, physics, and expert systems. Industry contributes specialized knowledge and resources and prioritizes Partnership activities.

  18. Cyrogenic Life Support Technology Development Project

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  19. Decision support software technology demonstration plan

    SciTech Connect

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  20. Energy and technology review

    SciTech Connect

    Not Available

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

  1. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  2. Energy and Technology Review

    SciTech Connect

    Bookless, W.A.; Quirk, W.J.

    1994-06-01

    This report discusses: The Clementine satellite, the first US satellite to the Moon in more than two decades, sent back more than 1.5 million images of the lunar surface using cameras designed and calibrated by LLNL. An LLNL-developed laser ranger provided information that will be used to construct a relief map of the Moon`s surface; and Uncertainty and the Federal Role in Science and Technology, Ralph E. Gomory was a recent participate in the Director`s Distinguished Lecturer Series at LLNL. In his lecture, he addressed some of the tensions, conflicts, and possible goals related to federal support for science and technology.

  3. Advances in energy technology

    SciTech Connect

    Sauer, H.J. Jr.; Hegler, B.E.

    1982-01-01

    Papers on various topics of energy conservation, new passive solar heating and storage devices, governmental particiaption in developing energy technologies, and the development of diverse energy sources and safety features are presented. Attention is given to recent shifts in the federal and state government roles in energy research, development and economic incentives. The applications of passive solar walls, flat plate collectors and trombe walls as retorfits for houses, institutions, and industries were examined. Attention was given to the implementation of wind power by a zoo and the use of spoilers as speed control devices in a Darrieus wind turbine. Aspects of gasohol, coal, synfuel, and laser-pyrolyzed coal products use are investigated. Finally, the economic, social, and political factors influencing energy system selection are explored, together with conservation practices in housing, government, and industry, and new simulators for enhancing nuclear power plant safety.

  4. Federal Ocean Energy Technology

    NASA Astrophysics Data System (ADS)

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY86. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  5. EDITORIAL: Renewing energy technology Renewing energy technology

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2011-06-01

    Renewable energy is now a mainstream concern among businesses and governments across the world, and could be considered a characteristic preoccupation of our time. It is interesting to note that many of the energy technologies currently being developed date back to very different eras, and even predate the industrial revolution. The fuel cell was first invented as long ago as 1838 by the Swiss--German chemist Christian Friedrich Schönbein [1], and the idea of harnessing solar power dates back to ancient Greece [2]. The enduring fascination with new means of harnessing energy is no doubt linked to man's innate delight in expending it, whether it be to satisfy the drive of curiosity, or from a hunger for entertainment, or to power automated labour-saving devices. But this must be galvanized by the sustained ability to improve device performance, unearthing original science, and asking new questions, for example regarding the durability of photovoltaic devices [3]. As in so many fields, advances in hydrogen storage technology for fuel cells have benefited significantly from nanotechnology. The idea is that the kinetics of hydrogen uptake and release may be reduced by decreasing the particle size. An understanding of how effective this may be has been hampered by limited knowledge of the way the thermodynamics are affected by atom or molecule cluster size. Detailed calculations of individual atoms in clusters are limited by computational resources as to the number of atoms that can studied, and other innovative approaches that deal with force fields derived by extrapolating the difference between the properties of clusters and bulk matter require labour-intensive modifications when extending such studies to new materials. In [4], researchers in the US use an alternative approach, considering the nanoparticle as having the same crystal structure as the bulk but relaxing the few layers of atoms near the surface. The favourable features of nanostructures for catalysis

  6. Energy conservation technologies

    SciTech Connect

    Courtright, H.A.

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  7. Energy and technology review

    SciTech Connect

    Brown, P.S.

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  8. Energy and technology review

    SciTech Connect

    Johnson, K.C.

    1991-04-01

    This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of US science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and, (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities. (BN)

  9. Energy and technology review

    NASA Astrophysics Data System (ADS)

    Johnson, K. C.

    1991-04-01

    This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.

  10. Decision support for redesigning wastewater treatment technologies.

    PubMed

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated. PMID:25225855

  11. Technology and Web-Based Support

    ERIC Educational Resources Information Center

    Smith, Carol

    2008-01-01

    Many types of technology support caregiving: (1) Assistive devices include medicine dispensers, feeding and bathing machines, clothing with polypropylene fibers that stimulate muscles, intelligent ambulatory walkers for those with both vision and mobility impairment, medication reminders, and safety alarms; (2) Telecare devices ranging from…

  12. Electronic Performance Support Systems and Technological Literacy

    ERIC Educational Resources Information Center

    Maughan, George R.

    2005-01-01

    Electronic performance support systems (EPSS) can provide alternative learning opportunities to supplement traditional classroom or training strategies. Today's students may benefit from educational settings and strategies that they will use in the future. In using EPSS to nurture the development of technological literacy, workers and students can…

  13. Toward a Technology of "Nonaversive" Behavioral Support

    ERIC Educational Resources Information Center

    Horner, Robert H.; Dunlap, Glen; Koegel, Robert L.; Carr, Edward G.; Sailor, Wayne; Anderson, Jacki; Albin, Richard W.; O'Neill, Robert E.

    2005-01-01

    Nonaversive behavior management is an approach to supporting people with undesirable behaviors that integrates technology and values. Although this approach has attracted numerous proponents, more adequate definition and empirical documentation are still needed. This article presents an introduction to the nonaversive approach. Important…

  14. Chemistry for Energy Technology II. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in chemistry for energy technology is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  15. Chemistry for Energy Technology I. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in chemistry for energy technology is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  16. Technology Education Tackles Energy Crisis.

    ERIC Educational Resources Information Center

    Cutshall, Sandy

    2002-01-01

    Describes the solar-hydrogen technologies at the East Valley Institute of Technology, the only technology center in the nations that offers this class. Describes its focus on solving the energy crisis. (JOW)

  17. Computational Support for Technology- Investment Decisions

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey

    2007-01-01

    Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.

  18. ISRU Technologies for Mars Life Support

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Sridhar, K. R.

    2000-01-01

    The primary objectives of the Mars Exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolution stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the robotic + human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere. ISRU for propellant production and for generation of life support consumables is a key element of human exploration mission plans because of the tremendous savings that can be realized in terms of launch costs and reduction in overall risk to the mission. The Human Exploration and Development of Space (HEDS) Enterprise has supported ISRU technology development for several years, and is funding the MIP and PROMISE payloads that will serve as the first demonstrations of ISRU technology for Mars. In our discussion and presentation at the workshop, we will highlight how the PROMISE ISRU experiment that has been selected by HEDS for a future Mars flight opportunity can extend and enhance the science experiments on board.

  19. Energy and Technology Review

    SciTech Connect

    Quirk, W.J.

    1993-08-01

    The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, we other major programs have been added including laser fusion, and laser isotope separation, biomedical and environmental science, strategic defense and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computer science and technology, engineering and physics. In this issue, Herald Brown, the Laboratory`s third director and now counselor at the Center for Strategic and International Studies, reminisces about his years at Livermore and comments about the Laboratory`s role in the future. Also an article on visualizing dynamic systems in three dimensions is presented. Researchers can use our interactive algorithms to translate massive quantities of numerical data into visual form and can assign the visual markers of their choice to represent three- dimensional phenomena in a two-dimensional setting, such as a monitor screen. Major work has been done in the visualization of climate modeling, but the algorithms can be used for visualizing virtually any phenomena.

  20. Energy and Technology Review

    NASA Astrophysics Data System (ADS)

    Quirk, W. J.

    1993-08-01

    The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, other major programs have been added including laser fusion, and laser isotope separation, biomedical and environmental science, strategic defense and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computer science and technology, engineering and physics. In this issue, Herald Brown, the Laboratory's third director and now counselor at the Center for Strategic and International Studies, reminisces about his years at Livermore and comments about the Laboratory's role in the future. Also an article on visualizing dynamic systems in three dimensions is presented. Researchers can use our interactive algorithms to translate massive quantities of numerical data into visual form and can assign the visual markers of their choice to represent three-dimensional phenomena in a two-dimensional setting, such as a monitor screen. Major work has been done in the visualization of climate modeling, but the algorithms can be used for visualizing virtually any phenomena.

  1. Benefits from energy storage technologies

    SciTech Connect

    Copeland, R J; Kannberg, L D; O'Connell, L G; Eisenhaure, D; Hoppie, L O; Barlow, T M; Steele, R S; Strauch, S; Lawson, L J; Sapowith, A P

    1983-11-01

    The United States is continuing to rely upon nondomestic and nonsecure sources of energy. Large quantities of energy are lost as a result of time mismatches between the supply and the demand for power. Substantial improvements in energy efficiency are possible through the use of improved energy storage; advanced energy storage can also improve the utilization of domestic energy resources (coal, geothermal, solar, wind, and nuclear) by providing energy in accordance with a user's time-varying needs. Advanced storage technologies offer potentially substantial cost and performance advantages but also have significant technical risk. If even a fraction of the proposed technologies reach fruition, they will make an important contribution to better use of our domestic energy resources. The Energy Storage and Transport Technologies Committee of the American Society of Mechanical Engineers encourages research, development, and application of energy storage technologies to reduce imports and energy costs.

  2. Benefits from energy storage technologies

    SciTech Connect

    Copeland, R.J.; Barlow, T.M.; Eisenhaure, D.; Hoppie, L.O.; Kunnberg, L.D.; Lawson, L.J.; O'Connell, L.G.; Sapowith, A.P.; Steele, R.S.; Strauch, S.

    1984-02-01

    The United States is continuing to rely upon nondomestic and nonsecure sources of energy. Large quantities of energy are lost as a result of time mismatches between the supply and the demand for power. Substantial improvements in energy efficiency are possible through the use of improved energy storage; advanced energy storage can also improve the utilization of domestic energy resources (coal, geothermal, solar, wind, and nuclear) by providing energy in accordance with a user's time-varying needs. Advanced storage technologies offer potentially substantial cost and performance advantages but also have significant technical risk. If even a fraction of the proposed technologies reach fruition, they will make an important contribution to better use of our domestic energy resources. The Energy Storage and Transport Technologies Committee of the American Society of Mechanical Engineers encourages research, development, and application of energy storage technologies to reduce imports and energy costs.

  3. Energy and technology review

    SciTech Connect

    Poggio, A.J.

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an x-ray microscope for biological research.

  4. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  5. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  6. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  7. Technology Applications that Support Space Exploration

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  8. Surface transport vehicles and supporting technology requirements

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Dias, W. C.; Levin, R. R.; Lindemann, R. A.; Smith, J. H.; Venkataraman, S. T.

    1992-01-01

    Requirements have been identified for surface transport vehicles which allow remote scientific exploration on the moon, as well as lunar resource recovery and emplacement of a permanent base on the lunar surface. Attention is given to the results of a design study which developed configurational concepts for lunar surface transport vehicles and inferred technology-development requirements, with a view to a phased program of implementation. Distinct benefits are noted for the design of simple vehicle platforms with high commonality, in order to reduce logistical-support requirements and maximize functional flexibility. Two generic vehicle classed are defined.

  9. Stirling engine supporting research and technology

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1985-01-01

    The supporting research and technology effort is intended to provide technical support to the current engine program and also to investigate advanced concepts for the next generation of Stirling engines. Technical areas represented are: seals, materials, engine experiments, combustion, system analysis, cseramics, and tribology. A collage of more recent work in each area is presented. Under seals, analysis and some experimental data on the effect of wear on rod seal performance is presented. The material work described concerns the effect of water content on hydrogen permeation. Results of experiments with the Philips' Advenco engine are presented. A comparison is made of two combustor nozzles, an air atomizing and an ultrasonic atomizing nozzle. A new venture in systems analysis to provide more rigorous Stirling engine simulation is discussed. The results of hydrogen corrosion tests on silicon carbide are presented. Friction and wear tests on candidate materials for engine hot ring tests are discussed.

  10. Energy and Technology Review

    SciTech Connect

    Poggio, A.J.; Mayall, B.H.

    1989-04-01

    The Lawrence Livermore National Laboratory (LLNL) is an acknowledged world center for analytical cytology. This leadership was recognized by the Regents of the University of California (UC), who in 1982 established and funded the Program for Analytical Cytology to facilitate the transfer of this technology from scientists at LLNL to their University colleagues, primarily through innovative collaborative research. This issue of Energy and Technology Review describes three of the forty projects that have been funded in this way; chosen to illustrate the potential medical application of the research. Analytical cytology is a relatively new field of biomedical research that is increasingly being applied in clinical medicine. It has been particularly important in unraveling the complexities of the human immune system and in quantifying the pathobiology of malignancy. Defined as the characterization and measurement of cells and cellular constituents for biological and medical purposes, analytical cytology bridges the gap between the quantitative discipline of molecular biology and the more qualitative disciplines of anatomy and pathology. It is itself multidisciplinary in nature. Two major approaches to analytical cytology are flow cytometry and image cytometry. In each of these research techniques, cells are measured one at a time in an automated device. In flow instruments, the cells are dispersed in fluid suspension and pass in single file through a beam of laser light to generate optical signals that are measured. In image cytometry, cells are dispersed on a slide and are imaged through a microscope onto an electronic imaging and analysis system that processes the cell image to extract measurements of interest.

  11. Advanced Life Support Technologies and Scenarios

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  12. How should support for climate-friendly technologies be designed?

    PubMed

    Fischer, Carolyn; Torvanger, Asbjørn; Shrivastava, Manish Kumar; Sterner, Thomas; Stigson, Peter

    2012-01-01

    Stabilizing global greenhouse gas concentrations at levels to avoid significant climate risks will require massive "decarbonization" of all the major economies over the next few decades, in addition to the reduced emissions from other GHGs and carbon sequestration. Achieving the necessary scale of emissions reductions will require a multifaceted policy effort to support a broad array of technological and behavioral changes. Change on this scale will require sound, well-thought-out strategies. In this article, we outline some core principles, drawn from recent social science research, for guiding the design of clean technology policies, with a focus on energy. The market should be encouraged to make good choices: pricing carbon emissions and other environmental damage, removing distorting subsidies and barriers to competition, and supporting RD&D broadly. More specific policies are required to address particular market failures and barriers. For those technologies identified as being particularly desirable, some narrower RD&D policies are available. PMID:22314855

  13. Electromechanical Devices. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electromechanical devices is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training…

  14. Microcomputer Hardware. Energy Technology Series.

    ERIC Educational Resources Information Center

    Technical Education Research Centre-Southwest, Waco, TX.

    This course in microcomputer hardware is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  15. Microcomputer Operations. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in microcomputer operations is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  16. Technological Support for Logistics Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bujak, Andrzej; Śliwa, Zdzisław; Gębczyńska, Alicja

    The modern world is changing introducing robots, remotely controlled vehicles and other crewless means of transportation to reduce people's mistakes, as the main cause of incidents and crashes during traffic. New technologies are supporting operators and drivers, and according to some studies they can even replace them. Such programs as: AHS, UAH, IVBSS or MTVR are under development to improve traffic flow and its safety, to reduce traffic hazards and crashes. It is necessary to analyze such concepts and implement them boldly, including Polish logistics' companies, new programs, highways' system etc., as they will be applied in the future, so it is necessary to prepare logistics infrastructure ahead of time in order to capitalize on these improvements. The problem is quite urgent as transportation in the country must not be outdated to meet clients' expectations and to keep pace with competing foreign companies.

  17. Semantic technologies in a decision support system

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.

    2015-10-01

    The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).

  18. Risk Management for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    jones, Harry

    2005-01-01

    NASA requires continuous risk management for all programs and projects. The risk management process identifies risks, analyzes their impact, prioritizes them, develops and carries out plans to mitigate or accept them, tracks risks and mitigation plans, and communicates and documents risk information. Project risk management is driven by the project goal and is performed by the entire team. Risk management begins early in the formulation phase with initial risk identification and development of a risk management plan and continues throughout the project life cycle. This paper describes the risk management approach that is suggested for use in NASA's Human Support Technology Development. The first step in risk management is to identify the detailed technical and programmatic risks specific to a project. Each individual risk should be described in detail. The identified risks are summarized in a complete risk list. Risk analysis provides estimates of the likelihood and the qualitative impact of a risk. The likelihood and impact of the risk are used to define its priority location in the risk matrix. The approaches for responding to risk are either to mitigate it by eliminating or reducing the effect or likelihood of a risk, to accept it with a documented rationale and contingency plan, or to research or monitor the risk, The Human Support Technology Development program includes many projects with independently achievable goals. Each project must do independent risk management, considering all its risks together and trading them against performance, budget, and schedule. Since the program can succeed even if some projects fail, the program risk has a complex dependence on the individual project risks.

  19. Geo energy research and development: technology transfer

    SciTech Connect

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  20. ISRU Technologies for Mars Life Support

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Kliss, Mark; Sridhar, K. R.; Iacomini, Christie

    2001-01-01

    Life support systems can take advantage of elements in the atmosphere of Mars to provide for necessary consumables such as oxygen and buffer gas for makeup of leakage. In situ consumables production (ISCP) can be performed effectively in conjunction with in situ propellant production, in which oxygen and methane are manufactured for rocket fuel. This project considers ways of achieving the optimal system objectives from the two sometimes competing objectives of ISPP and ISCP. In previous years we worked on production of a nitrogen-argon buffer gas as a by- product of the CO2 acquisition and compression system. Recently we have been focusing on combined electrolysis of water vapor and carbon dioxide. Combined electrolysis of water vapor and carbon dioxide is essential for reducin,o the complexity of a combined ISPP/ISCP plant. Using a solid oxide electrolysis cell (SOEC) for this combined process would be most advantageous for it allows mainly gas phase reactions, O2 gas delivered from the electrolyzer is free of any H2O vapor, and SOE is already a proven technology for pure CO2 electrolysis. Combined SOEC testing is conducted at The University of Arizona in the Space Technologies Laboratory (STL) of the Aerospace and Mechanical Engineering Department.

  1. Industrial energy conservation technology

    SciTech Connect

    Schmidt, P.S.; Williams, M.A.

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  2. Industrial Energy Conservation Technology

    SciTech Connect

    Not Available

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  3. Energy and technology review

    SciTech Connect

    Not Available

    1981-10-01

    Research is described in three areas, high-technology design of unconventional, nonnuclear weapons, a model for analyzing special nuclear materials safeguards decisions, and a nuclear weapons accident exercise (NUWAX-81). (GHT)

  4. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  5. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  6. Energy and Technology Review

    SciTech Connect

    Bookless, W.A.; McElroy, L.; Wheatcraft, D.; Middleton, C.; Shang, S.

    1994-10-01

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure.

  7. Energy 101: Fuel Cell Technology

    ScienceCinema

    None

    2014-06-06

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  8. Energy 101: Fuel Cell Technology

    SciTech Connect

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  9. Energy and technology review

    SciTech Connect

    Not Available

    1982-08-01

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets. (GHT)

  10. Tower-supported solar-energy collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.

  11. Energy Conservation. CORD Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy conservation is one of 16 courses in the Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored training programs. Comprised of seven modules,…

  12. Information support for high technologies: issues of innovation

    NASA Astrophysics Data System (ADS)

    Piskorskaya, S. Yu; Goncharov, A. E.; Prohorovich, G. A.; Perantseva, A. V.

    2016-04-01

    The current development of high technologies and innovative projects requires systematic information support. This article describes examples of information support and promotion of regional technological platforms of the Krasnoiarskii krai on the base of communications projects which are being realized by students at SibSAU. These technological platforms correspond to the prioritized fields of developing science and research in the Russian Federation.

  13. Teacher Candidates' Perceptions of Technology Supported Literacy Practices

    ERIC Educational Resources Information Center

    Wake, Donna; Whittingham, Jeff

    2013-01-01

    This study explores teacher education candidates' perceptions of technologies used to support K-12 student literacy development. Candidates scored each technology based on their impressions of its ability to support student literacy development. They also evaluated their own level of expertise with each piece of technology using a pre-post…

  14. Battery energy storage technologies

    NASA Astrophysics Data System (ADS)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  15. Energy and technology review

    SciTech Connect

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  16. Energy and technology review

    SciTech Connect

    Not Available

    1981-05-01

    Research programs at LLNL are reviewed. This issue discusses validation of the pulsed-power design for FXR, the NOVA plasma shutter, thermal control of the MFTF superconducting magnet, a low-energy x-ray spectrometer for pulsed-source diagnostics, micromachining, the electronics engineer's design station, and brazing with a laser microtorch. (GHT)

  17. Energy and technology review

    SciTech Connect

    Not Available

    1983-10-01

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

  18. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.

    2009-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of

  19. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.

    2011-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set

  20. Role of Technology Adoption within the Department of Energy's Solar Energy Technologies Program

    SciTech Connect

    Hanley, C.; Thornton, J.

    2005-01-01

    Several technical activities are undertaken on behalf of DOE's Solar Energy Technologies Program in the interests of increasing the broader adoption of solar technologies in the marketplace. Included in these activities are technical support to the development of electrical codes and standards; installer and hardware certification programs; domestic and international technical support activities with leveraged partners; developing new systems configurations, such as building-integrated systems; and studies on environmental, safety, and health-related aspects of production. These technology adoption (TA) activities provide a valuable link between the systems-driven approach (SDA), and both fundamental and applied R&D within the program. Through TA support, the Solar Energy Technologies Program is able to identify market-based needs through data gathering and analysis and to communicate these needs to program researchers. In addition, TA activities maintain the role of the DOE and the laboratories as impartial brokers of information as the markets for these products continue to grow.

  1. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  2. Energy Efficiency for Electrical Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in electrical technology. The following topics are examined: where to look for energy waste; conservation methods for electrical consumers, for…

  3. How X-37 Technology Demonstration Supports Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Manley, David J.; Cervisi, Richard T.; Staszak, Paul R.

    2000-01-01

    This presentation discusses, in viewgraph form, how X-37 Technology Demonstration Supports Reusable Launch Vehicles. The topics include: 1) X-37 Program Objectives; 2) X-37 Description; 3) X-37 Vehicle Characteristics; 4) X-37 Expands the Testbed Envelope to Orbital Capability; 5) Overview of X-37 Flight Test Program; 6) Thirty-Nine Technologies and Experiments are Being Demonstrated on the X-37; 7) X-37 Airframe/Structures Technologies; 8) X-37 Mechanical, Propulsion, and Thermal System Technologies and Experiments; 9) X-37 GN&C Technologies; 10) X-37 Avionics, Power, and Software Technologies and Experiments; and 11) X-37 Technologies and Experiments Support Reusable Launch Vehicle Needs.

  4. Scientific Challenges in Sustainable Energy Technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-03-01

    This presentation will describe and evaluate the challenges, both technical, political, and economic, involved with widespread adoption of renewable energy technologies. First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years. Secondly, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels. Thirdly, we evaluate the level and timescale of R&D investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements. Fifth, we evaluate the challenges to the chemical sciences to

  5. Scientific challenges in sustainable energy technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  6. Energy and Technology Review

    SciTech Connect

    Not Available

    1986-02-01

    A specialized laser amplifier for use with velocity-measuring systems is described which makes possible detailed measurements of explosion-driven targets extending over long times. The experimental and diagnostic facilities of the Bunker 801 project enables sensitive and thorough hydrodynamics tests on the high-explosive components of nuclear devices. An improved spectrometry system has been developed covering the energy range from 0.025 eV to 20 MeV for use in radiation monitoring, and a new material is being tested for the neutron dosimeter worn with identification badges.

  7. Information Technology Support in the 8000 Directorate

    NASA Technical Reports Server (NTRS)

    2004-01-01

    My summer internship was spent supporting various projects within the Environmental Management Office and Glenn Safety Office. Mentored by Eli Abumeri, I was trained in areas of Information Technology such as: Servers, printers, scanners, CAD systems, Web, Programming, and Database Management, ODIN (networking, computers, and phones). I worked closely with the Chemical Sampling and Analysis Team (CSAT) to redesign a database to more efficiently manage and maintain data collected for the Drinking Water Program. This Program has been established for over fifteen years here at the Glenn Research Center. It involves the continued testing and retesting of all drinking water dispensers. The quality of the drinking water is of great importance and is determined by comparing the concentration of contaminants in the water with specifications set forth by the Environmental Protection Agency (EPA) in the Safe Drinking Water Act (SDWA) and its 1986 and 1991 amendments. The Drinking Water Program consists of periodic testing of all drinking water fountains and sinks. Each is tested at least once every 2 years for contaminants and naturally occurring species. The EPA's protocol is to collect an initial and a 5 minute draw from each dispenser. The 5 minute draw is what is used for the maximum contaminant level. However, the CS&AT has added a 30 second draw since most individuals do not run the water 5 minutes prior to drinking. This data is then entered into a relational Microsoft Access database. The database allows for the quick retrieval of any test@) done on any dispenser. The data can be queried by building number, date or test type, and test results are documented in an analytical report for employees to read. To aid with the tracking of recycled materials within the lab, my help was enlisted to create a database that could make this process less cumbersome and more efficient. The date of pickup, type of material, weight received, and unit cost per recyclable. This

  8. Center for Global Health announces grants to support portable technologies

    Cancer.gov

    NCI’s Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm

  9. Brain-Based Learning With Technological Support

    ERIC Educational Resources Information Center

    Miller, Anita

    2004-01-01

    Utilization of technology in secondary schools is varied and depends on the training and interest of the individual instructors. Even though technology has advanced way beyond its utilitarian roots of being viewed solely by educators as a useful machine for teachers to key exams and worksheets on, there are still many secondary educators who still…

  10. Energy & Technology Review, April 1994

    SciTech Connect

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D; McElroy, L.; Kroopnick, H.

    1994-04-01

    The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, other major programs have been added, including technology transfer, laser science, biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs in turn require research in basic scientific disciplines including chemistry, and materials science, computing science and technology, engineering and physics. This review highlights two R&D 100 award winning research topics: (1) The world`s fastest digitizer which captures 30 ps transient electrical events, and (2) the MACHO camera system which fully exploits the power of large format digital imagers and integrates into one package the taking and analysis of images at a prodigious rate and the storage and archiving of extensive amounts of data. (GHH)

  11. Essays on Energy Technology Innovation Policy

    NASA Astrophysics Data System (ADS)

    Chan, Gabriel Angelo Sherak

    .S. Department of Energy's National Laboratories, and provide the first quantitative evidence that technology transfer agreements at the Labs lead to greatly increased rates of innovation spillovers. This chapter also makes a key methodological contribution by introducing a technique to utilize automated text analysis in an empirical matching design that is broadly applicable to other types of social science studies. This work has important implications for how policies should be designed to maximize the social benefits of the $125 billion in annual federal funding allocated to research and development and the extent to which private firms can benefit from technology partnerships with the government. The final chapter of this dissertation explores the effectiveness of international policy to facilitate the deployment of low-emitting energy technologies in developing countries. Together with Joern Huenteler, I examine wind energy deployment in China supported through international climate finance flows under the Kyoto Protocol's Clean Development Mechanism. Utilizing a project-level financial model of wind energy projects parameterized with high-resolution observations of Chinese wind speeds, we find that the environmental benefits of projects financed under the Clean Development Mechanism are substantially lower than reported, as many Chinese wind projects would have been built without the Mechanism's support, and thus do not represent additional clean energy generation. Together, the essays in this dissertation suggest several limitations of energy technology innovation policy and areas for reform. Public funds for energy research and development could be made more effective if decision making approaches were better grounded in available technical expertise and developed in framework that captures the important interactions of technologies in a research and development portfolio. The first chapter of this dissertation suggests a politically feasible path towards this type of

  12. Supporting research and technology for automotive Stirling engine development

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1980-01-01

    The technology advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or backups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. These planned SRT activities are related to the timeline of the engine development program that they must support.

  13. Advanced Life Support Systems: Opportunities for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.

    1994-01-01

    NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers

  14. Energy conservation through sealing technology

    NASA Technical Reports Server (NTRS)

    Stair, W. K.; Ludwig, L. P.

    1978-01-01

    Improvements in fluid film sealing resulting from a proposed research program could lead to an annual energy saving, on a national basis, equivalent to about 37 million bbl of oil or 0.3% of the total U.S. energy consumption. Further, the application of known sealing technology can result in an annual saving of an additional 10 million bbl of oil. The energy saving would be accomplished by reduction in process heat energy loss, reduction of frictional energy generated, and minimization of energy required to operate ancillary equipment associated with the seal system. In addition to energy saving, cost effectiveness is further enhanced by reduction in maintenance and in minimization of equipment for collecting leakage and for meeting environmental pollution standards.

  15. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  16. Wind energy technology program summary

    NASA Astrophysics Data System (ADS)

    1984-10-01

    The purpose of the Federal Wind Energy Technology Program is to perform research that will enable the private sector to develop and utilize safe, reliable, and efficient wind energy systems. Generic research will provide the technology base and scientific understanding necessary to allow industry to develop wind energy systems competitive with conventional energy sources. The goal of the DOE wind program is to improve the basic understanding of aerodynamics and structural dynamics in order to more accurately predict wind turbine aerodynamic performance, natural resonance frequencies, and structural loads. Areas included in the research plan being developed for the next five years include: advanced fluid dynamics, aerodynamics research, structural dynamics research, and advanced components and systems research, including multimegawatt (MOD-5) development.

  17. Flywheel Energy Storage technology workshop

    SciTech Connect

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  18. A Catalyst for Collaboration: Supporting Technology in Teaching through Partnerships.

    ERIC Educational Resources Information Center

    Alway, Mark; Lewis, Tom; Macklin, Scott

    The Web-based Catalyst Initiative was created at the University of Washington (UW) to support innovation in teaching through technology. The approach utilizes participatory design techniques in the development of next generation technologies in order to scale beyond early to second wave adopters. Catalyst is the product of a support strategy that…

  19. Myths about Technology-Supported Professional Learning

    ERIC Educational Resources Information Center

    Killion, Joellen; Treacy, Barbara

    2014-01-01

    The future of professional learning is shaped by its present and past. As new technologies emerge to increase affordability, access, and appropriateness of professional learning, three beliefs are visible in current practices related to online learning. Each contains a premise that merits identification and examination. The authors call these…

  20. Supporting Decentralized Education with Personal Technologies.

    ERIC Educational Resources Information Center

    Hedestig, Ulf; Kaptelinin, Victor; Orre, Carl Johan

    This paper deals with the use of personal technologies in decentralized university education. Decentralized education, delivered to off-campus students located in the same geographical area, is a hybrid genre combining features of both on-campus and distance education. The paper reports two studies. The first study focused on communication…

  1. Information Technology Services Support for Emergencies

    ERIC Educational Resources Information Center

    Spicer, Donald Z.

    2008-01-01

    For at least the last quarter century, enterprises--including higher education institutions--have increasingly relied on Information Technology Services (ITS) for business functions. As a result, IT organizations have had to develop the discipline of production operations as well as recovery procedures to respond when those operations are…

  2. Using Technology to Support STEM Reading

    ERIC Educational Resources Information Center

    Schneps, Matthew H.; O'Keeffe, Jamie K.; Heffner-Wong, Amanda; Sonnert, Gerhard

    2010-01-01

    Tasks in science, technology, engineering, and mathematics (STEM) are unusually varied because they target phenomena occurring in diverse domains and call upon a wide range of abilities to perform them. The fact that STEM tasks cover such a broad spectrum of abilities makes these fields uncharacteristically inclusive: Individuals with disabilities…

  3. Federal R & D Policies Supporting Educational Technology.

    ERIC Educational Resources Information Center

    Blaschke, Charles; And Others

    1989-01-01

    Summarizes factors contributing to successful federal research and development (R&D) funding for educational technology, and provides policy recommendations based on these findings. Topics discussed include the role of industry; public policy issues; legislative initiatives; executive branch administration; staff continuity; procurement process;…

  4. An algorithmic interactive planning framework in support of sustainable technologies

    NASA Astrophysics Data System (ADS)

    Prica, Marija D.

    This thesis addresses the difficult problem of generation expansion planning that employs the most effective technologies in today's changing electric energy industry. The electrical energy industry, in both the industrialized world and in developing countries, is experiencing transformation in a number of different ways. This transformation is driven by major technological breakthroughs (such as the influx of unconventional smaller-scale resources), by industry restructuring, changing environmental objectives, and the ultimate threat of resource scarcity. This thesis proposes a possible planning framework in support of sustainable technologies where sustainability is viewed as a mix of multiple attributes ranging from reliability and environmental impact to short- and long-term efficiency. The idea of centralized peak-load pricing, which accounts for the tradeoffs between cumulative operational effects and the cost of new investments, is the key concept in support of long-term planning in the changing industry. To start with, an interactive planning framework for generation expansion is posed as a distributed decision-making model. In order to reconcile the distributed sub-objectives of different decision makers with system-wide sustainability objectives, a new concept of distributed interactive peak load pricing is proposed. To be able to make the right decisions, the decision makers must have sufficient information about the estimated long-term electricity prices. The sub-objectives of power plant owners and load-serving entities are profit maximization. Optimized long-term expansion plans based on predicted electricity prices are communicated to the system-wide planning authority as long-run bids. The long-term expansion bids are cleared by the coordinating planner so that the system-wide long-term performance criteria are satisfied. The interactions between generation owners and the coordinating planning authority are repeated annually. We view the proposed

  5. Wormholes supported by phantom energy

    NASA Astrophysics Data System (ADS)

    González, J. A.; Guzmán, F. S.; Montelongo-García, N.; Zannias, T.

    2009-03-01

    By a combination of analytical and numerical techniques, we demonstrate the existence of spherical, asymptotically flat traversable wormholes supported by exotic matter whose stress tensor relative to the orthonormal frame of Killing observers takes the form of a perfect fluid possessing anisotropic pressures and subject to linear equations of state: τ=λρc2, P=μρc2. We show that there exists a four parameter family of asymptotically flat spherical wormholes parametrized by the area of the throat A(0), the gradient Λ(0) of the red shift factor evaluated on the throat as well as the values of (λ,μ). The latter are subject to restrictions: λ>1 and 2μ>λ or λ<0 and 2μ<-|λ|. For particular values of (λ,μ), the stress tensor may be interpreted as representing a phantom configuration, while for other values represents exotic matter. All solutions have the property that the two asymptotically flat ends possess finite Arnowitt-Deser-Misner mass.

  6. Leveraging Information Technology. Track IV: Support Services.

    ERIC Educational Resources Information Center

    CAUSE, Boulder, CO.

    Seven papers from the 1987 CAUSE conference's Track IV, Support Services, are presented. They include: "Application Development Center" (John F. Leydon); "College Information Management System: The Design and Implementation of a Completely Integrated Office Automation and Student Information System" (Karen L. Miselis); "Improving Managerial…

  7. Language Technologies to Support Formative Feedback

    ERIC Educational Resources Information Center

    Berlanga, Adriana J.; Kalz, Marco; Stoyanov, Slavi; van Rosmalen, Peter; Smithies, Alisdair; Braidman, Isobel

    2011-01-01

    Formative feedback enables comparison to be made between a learner's current understanding and a desired learning goal. Obtaining this information is a time consuming task that most tutors cannot afford. We therefore wished to develop a support software tool, which provides tutors and learners with information that identifies a learner's progress,…

  8. Assistive Technology: Supporting Learners in Inclusive Classrooms

    ERIC Educational Resources Information Center

    Simpson, Cynthia G.; McBride, Rebecca; Spencer, Vicky G.; Lowdermilk, John; Lynch, Sharon

    2009-01-01

    Over the past 10 years, the numbers of students with physical disability who are being educated in inclusive or universal design for learning (UDL) classrooms have been increasing steadily. These students are expected to complete grade-level assignments, but not all of them are provided the necessary supports to do so. Many teachers in inclusive…

  9. Software support for improving technology infusion

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Hicks, K. A.; Johnson, K. R.; Cornford, S. L.

    2003-01-01

    This paper focuses on describing the custom software tool, DDP, that was developed to support the TIMA process, and on showing how the needs of the TIMA process have influenced the development of the structure and capabilities of the DDP software.

  10. Your First Stop for Clean Energy Policy Support (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial and UN-Energy, helps governments design and adopt policies and programs that support the deployment of transformational low-carbon technologies. The Solutions Center serves as a first-stop clearinghouse of clean energy policy reports, data, and tools and provides expert assistance and peer-to-peer learning forums. This factsheet highlights key Solutions Center offerings, including 'ask an expert' assistance on clean energy policy matters, training and peer learning, and technical resources for policy makers worldwide.

  11. Supporting Teachers in Their Integration of Technology with Literacy

    ERIC Educational Resources Information Center

    Moore-Hart, Margaret A.

    2008-01-01

    This study investigates how two elementary teachers begin to use technology in a private school that had access to technology at many levels. Using a collaborative teacher-research model, the researcher specifically examined how to support teachers' practice as they integrated technology tools within their literacy curriculum. Due to a supportive…

  12. Technology-Supported Learning Environments in Science Classrooms in India

    ERIC Educational Resources Information Center

    Gupta, Adit; Fisher, Darrell

    2012-01-01

    The adoption of technology has created a major impact in the field of education at all levels. Technology-supported classroom learning environments, involving modern information and communication technologies, are also entering the Indian educational system in general and the schools in Jammu region (Jammu & Kashmir State, India) in particular.…

  13. Technology Supported Learning and Teaching: A Staff Perspective

    ERIC Educational Resources Information Center

    O'Donoghue, John, Ed.

    2006-01-01

    "Technology Supported Learning and Teaching: A Staff Perspective" presents accounts and case studies of first-hand experience in developing, implementing, or evaluating learning technologies. This book highlights the many areas in which practitioners are attempting to implement learning technologies and reflects themes of current topical interest.…

  14. Exploring Technology Supported Collaborative and Cooperative Group Formation Mechanisms

    ERIC Educational Resources Information Center

    Carapina, Mia; Boticki, Ivica

    2015-01-01

    This paper reflects on the systematic literature review paper (in progress), which analyzes technology enhanced collaborative and cooperative learning in elementary education worldwide from 2004 to 2015, focusing on the exploration of technology mediated group formation. The review paper reports on only a few cases of technology supported methods…

  15. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  17. Developing an Information Technology Support Model for Higher Education.

    ERIC Educational Resources Information Center

    Kesner, Richard M.

    1997-01-01

    Babson College (Massachusetts) responded to expanded campus computer use and resulting demand for support services by developing service delivery tailored to user groups' needs. Resources devoted to this effort have grown dramatically, and include help desk and dispatch support, program of technology specialists, evening support to residence…

  18. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  19. More Support of Basic Energy Research Urged.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    Summarizes a National Research Council report indicating that the Department of Energy (DOE) underfunds basic, exploratory scientific research. Presents a matrix to provide DOE with perspectives for assessing the potential impact of chemistry-focused, basic, long-range, and pioneering research on various energy technology areas. (Author/SK)

  20. Energy Technology Division research summary - 1999.

    SciTech Connect

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  1. Environmental data, energy technology characterizations: petroleum

    SciTech Connect

    Serrajian, N.M.

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. The first publication, Summary, provides information in tabular form on the eight technology areas examined; subsequent publications provide more detailed information on the technologies. This publication provides documentation of petroleum. The transformation of the energy in petroleum into a more useful form is described in this document in terms of major activity areas in the petroleum cycle, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. These activities represent both well-documented and less well-documented activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The less well-documented activity areas examined are those like oil storage in salt domes and exploration for which engineering studies were performed. The organization of the chapters in this volume is designed to support the tabular presentation in the Summary. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning, and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  2. Technology and Soviet energy availability

    NASA Astrophysics Data System (ADS)

    1981-11-01

    This study addresses in detail the significance of American petroleum equipment and technology to the U.S.S.R. and the resulting options for U.S. policy. It examines the problems and opportunities that confront the U.S.S.R. in its five primary energy industries: oil, gas, coal, nuclear, and electric power. It discusses plausible prospects for these industries in the next ten years; identifies the equipment and technology most important to the U.S.S.R.. In these areas; evaluates the extent to which the United States is the sole or preferred supplier of such items and analyzes the implications for both the entire Soviet bloc and the Western alliance of either providing or withholding Western equipment and technology.

  3. New energy technologies for buildings

    NASA Technical Reports Server (NTRS)

    Schoen, R.; Hirshberg, A.; Weingart, J.

    1975-01-01

    The principal objective of the present work is to identify a variety of strategic approaches which could significantly enhance the rate of commercial development and deployment of total energy systems, fuel cells, and solar conversion. Emphasis is on the need for integration of research, conference, legislation, federal program, and industrial program aspects, leading to a fruitful feedback and follow-through process involving new energy technologies. The discussions are on a general, lay level. Recommendations made feature (1) action which improves the environment for innovation and change, (2) action which decreases risk and creates positive incentives, and (3) action which reflects the distance a particular technology is from commercialization and widespread use, as determined by its position on a development/diffusion scale.

  4. Technology for aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  5. Supportability Technologies for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watson, Kevin; Thompson, Karen

    2007-01-01

    Future long-duration human exploration missions will be challenged by resupply limitations and mass and volume constraints. Consequently, it will be essential that the logistics footprint required to support these missions be minimized and that capabilities be provided to make them highly autonomous from a logistics perspective. Strategies to achieve these objectives include broad implementation of commonality and standardization at all hardware levels and across all systems, repair of failed hardware at the lowest possible hardware level, and manufacture of structural and mechanical replacement components as needed. Repair at the lowest hardware levels will require the availability of compact, portable systems for diagnosis of failures in electronic systems and verification of system functionality following repair. Rework systems will be required that enable the removal and replacement of microelectronic components with minimal human intervention to minimize skill requirements and training demand for crews. Materials used in the assembly of electronic systems (e.g. solders, fluxes, conformal coatings) must be compatible with the available repair methods and the spacecraft environment. Manufacturing of replacement parts for structural and mechanical applications will require additive manufacturing systems that can generate near-net-shape parts from the range of engineering alloys employed in the spacecraft structure and in the parts utilized in other surface systems. These additive manufacturing processes will need to be supported by real-time non-destructive evaluation during layer-additive processing for on-the-fly quality control. This will provide capabilities for quality control and may serve as an input for closed-loop process control. Additionally, non-destructive methods should be available for material property determination. These nondestructive evaluation processes should be incorporated with the additive manufacturing process - providing an in

  6. Essays on Energy Technology Innovation Policy

    NASA Astrophysics Data System (ADS)

    Chan, Gabriel Angelo Sherak

    .S. Department of Energy's National Laboratories, and provide the first quantitative evidence that technology transfer agreements at the Labs lead to greatly increased rates of innovation spillovers. This chapter also makes a key methodological contribution by introducing a technique to utilize automated text analysis in an empirical matching design that is broadly applicable to other types of social science studies. This work has important implications for how policies should be designed to maximize the social benefits of the $125 billion in annual federal funding allocated to research and development and the extent to which private firms can benefit from technology partnerships with the government. The final chapter of this dissertation explores the effectiveness of international policy to facilitate the deployment of low-emitting energy technologies in developing countries. Together with Joern Huenteler, I examine wind energy deployment in China supported through international climate finance flows under the Kyoto Protocol's Clean Development Mechanism. Utilizing a project-level financial model of wind energy projects parameterized with high-resolution observations of Chinese wind speeds, we find that the environmental benefits of projects financed under the Clean Development Mechanism are substantially lower than reported, as many Chinese wind projects would have been built without the Mechanism's support, and thus do not represent additional clean energy generation. Together, the essays in this dissertation suggest several limitations of energy technology innovation policy and areas for reform. Public funds for energy research and development could be made more effective if decision making approaches were better grounded in available technical expertise and developed in framework that captures the important interactions of technologies in a research and development portfolio. The first chapter of this dissertation suggests a politically feasible path towards this type of

  7. Linquistic geometry: new technology for decision support

    NASA Astrophysics Data System (ADS)

    Stilman, Boris; Yakhnis, Vladimir

    2003-09-01

    Linguistic Geometry (LG) is a revolutionary gaming approach which is ideally suited for military decision aids for Air, Ground, Naval, and Space-based operations, as well guiding robotic vehicles and traditional entertainment games. When thinking about modern or future military operations, the game metaphor comes to mind right away. Indeed, the air space together with the ground and seas may be viewed as a gigantic three-dimensional game board. Refining this picture, the LG approach is capable of providing an LG hypergame, that is, a system of multiple concurrent interconnected multi-player abstract board games (ABG) of various resolutions and time frames reflecting various kinds of hardware and effects involved in the battlespace and the solution space. By providing a hypergame representation of the battlespace, LG already provides a significant advance in situational awareness. However, the greatest advantage of the LG approach is an ability to provide commanders of campaigns and missions with decision options resulting in attainment of the commander's intent. At each game turn, an LG decision support tool assigns the best actions to each of the multitude of battlespace actors (UAVs, bombers, cruise missiles, etc.). This is done through utilization of algorithms finding winning strategies and tactics, which are the core of the LG approach.

  8. Arctic energy technologies workshop: proceedings

    SciTech Connect

    Not Available

    1985-04-01

    The objectives of this ''Arctic Energy Technologies Workshop'' were threefold: To acquaint participants with the current US Department of Energy, Office of Fossil Energy, Arctic and Offshore Research Program. To obtain information on Arctic oil and gas development problem areas, and on current and planned research. To provide an opportunity for technical information exchange among engineers, geologists, geophysicists, physical scientists, oceanographers, statisticians, analysts, and other participants engaged in similar research areas. The first section of the proceedings is the keynote address ''Current Arctic Offshore Technology'', presented by Kenneth Croasdale, of K.R. Croasdale and Associates, Ltd., Calgary, Alberta, Canada. The second section of the proceedings includes 14 technical papers presented in two sessions at the Workshop: Sea Ice Research, and Seafloor/Soils Research. The third section of the proceedings includes the summaries of four work-group discussion sessions from the second day of the meeting: (1) Arctic Offshore Structures, (2) Arctic Offshore Pipelines, (3) Subice Development Systems, and (4) Polar-Capable Ice Vessels. The work groups addressed state-of-the-art, technical issues, R and D needs, and environmental concerns in these four areas. All papers in this proceedings have been processed for inclusion in the Energy Data Base.

  9. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  10. Current Renewable Energy Technologies and Future Projections

    SciTech Connect

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  11. Supporting the Development of Emotional Intelligence through Technology.

    ERIC Educational Resources Information Center

    Goldsworthy, Richard

    2002-01-01

    Explains emotional intelligence, traces its history, and proposes a framework for the design and development of technology-based instruction for emotional intelligence that will be used to elucidate potential uses of computer technology to support the development of emotional intelligence. Reviews the literature related to computers and emotional…

  12. Supporting Families of Young Children with Disabilities Using Technology

    ERIC Educational Resources Information Center

    Parette, Howard P.; Meadan, Hedda; Doubet, Sharon; Hess, Jackie

    2010-01-01

    Research has frequently focused on needs, preferences, and practices of families of young children with disabilities. Surprisingly, relatively little seems to be known about how families use technology to gain information about and support their needs, even though Web-based and other information and communication technology applications have…

  13. Science and Technology Roadmapping to Support Project Planning

    SciTech Connect

    Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

    2001-07-01

    Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

  14. Decision Technology Systems: A Vehicle to Consolidate Decision Making Support.

    ERIC Educational Resources Information Center

    Forgionne, Guisseppi A.

    1991-01-01

    Discussion of management decision making and the support needed to manage successfully highlights a Decision Technology System (DTS) that integrates other information systems. Topics discussed include computer information systems (CISs); knowledge gateways; the decision-making process; decision support systems (DSS); expert systems; and facility…

  15. The Potential of Technology for Enhancing Individual Placement and Support Supported Employment

    PubMed Central

    Lord, Sarah E.; McGurk, Susan R.; Nicholson, Joanne; Carpenter-Song, Elizabeth A.; Tauscher, Justin S.; Becker, Deborah R.; Swanson, Sarah J.; Drake, Robert E.; Bond, Gary R.

    2015-01-01

    Topic The potential of technology to enhance delivery and outcomes of Individual Placement and Support (IPS) supported employment. Purpose IPS supported employment has demonstrated robust success for improving rates of competitive employment among individuals with psychiatric disabilities. Still, a majority of those with serious mental illnesses are not employed (Bond, Drake, & Becker, 2012). The need to promote awareness of IPS and expand services is urgent. In this study, we describe ways that technologies may enhance delivery of IPS supported employment across the care continuum and stakeholder groups. Directions for research are highlighted. Sources Used published literature, clinical observations, IPS learning collaborative. Conclusions and Implications for Practice Technology has the potential to enhance direct service as well as workflow in the IPS supported employment process, which may lead to improved fidelity and client outcomes. Mobile and cloud technologies open opportunities for collaboration, self-directed care, and ongoing support to help clients obtain and maintain meaningful employment. Research is needed to evaluate efficacy of technology-based approaches for promoting client employment outcomes, to identify provider and organization barriers to using technology for IPS delivery, and to determine effective strategies for implementing technology with IPS in different settings and with diverse client audiences. PMID:24912058

  16. Exploration Life Support Technology Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  17. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  18. What does voice-processing technology support today?

    PubMed Central

    Nakatsu, R; Suzuki, Y

    1995-01-01

    This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720

  19. Environmental data energy technology characterizations: synthetic fuels

    SciTech Connect

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  20. Environmental data energy technology characterizations: natural gas

    SciTech Connect

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides backup documentation on natural gas. The transformation of the energy in gas into a more useful form is described in this document in terms of major activity areas in the gas cycle; that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are exploration, extraction, purification, power-plants, storage and transportation of natural gas. These activities represent both well-documented and non-documented activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The other activity areas examined are those like exploration and extraction, where reliance on engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning, and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  1. Wormholes supported by a phantom energy

    SciTech Connect

    Sushkov, Sergey

    2005-02-15

    We extend the notion of phantom energy, which is generally accepted for homogeneously distributed matter with w<-1 in the universe, on inhomogeneous spherically symmetric spacetime configurations. A spherically symmetric distribution of phantom energy is shown to be able to support the existence of static wormholes. We find an exact solution describing a static spherically symmetric wormhole with phantom energy and show that a spatial distribution of the phantom energy is mainly restricted by the vicinity of the wormhole's throat. The maximal size of the spherical region, surrounding the throat and containing the most part of the phantom energy, depends on the equation-of-state parameter w and cannot exceed some upper limit.

  2. Technology tools to support reading in the digital age.

    PubMed

    Biancarosa, Gina; Griffiths, Gina G

    2012-01-01

    Advances in digital technologies are dramatically altering the texts and tools available to teachers and students. These technological advances have created excitement among many for their potential to be used as instructional tools for literacy education. Yet with the promise of these advances come issues that can exacerbate the literacy challenges identified in the other articles in this issue. In this article Gina Biancarosa and Gina Griffiths characterize how literacy demands have changed in the digital age and how challenges identified in other articles in the issue intersect with these new demands. Rather than seeing technology as something to be fit into an already crowded education agenda, Biancarosa and Griffiths argue that technology can be conceptualized as affording tools that teachers can deploy in their quest to create young readers who possess the higher levels of literacy skills and background knowledge demanded by today's information-based society. Biancarosa and Griffiths draw on research to highlight some of the ways technology has been used to build the skills and knowledge needed both by children who are learning to read and by those who have progressed to reading to learn. In their review of the research, Biancarosa and Griffiths focus on the hardware and software used to display and interface with digital text, or what they term e-reading technology. Drawing on studies of e-reading technology and computer technology more broadly, they also reflect on the very real, practical challenges to optimal use of e-reading technology. The authors conclude by presenting four recommendations to help schools and school systems meet some of the challenges that come with investing in e-reading technology: use only technologies that support Universal Design for Learning; choose evidence-based tools; provide technology users with systemic supports; and capitalize on the data capacities and volume of information that technology provides. PMID:23057135

  3. Energy & Technology Review, March 1994

    SciTech Connect

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.; Van Dyke, P.

    1994-03-01

    This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide better healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.

  4. Future Technologies to Enhance Geothermal Energy Recovery

    SciTech Connect

    Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

    2008-07-25

    Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

  5. Second program on energy research and technologies

    NASA Astrophysics Data System (ADS)

    1982-10-01

    The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.

  6. Second program on energy research and technologies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.

  7. Arctic Energy Technology Development Laboratory

    SciTech Connect

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  8. Selection of battery technology to support grid-integrated renewable electricity

    NASA Astrophysics Data System (ADS)

    Leadbetter, Jason; Swan, Lukas G.

    2012-10-01

    Operation of the electricity grid has traditionally been done using slow responding base and intermediate load generators with fast responding peak load generators to capture the chaotic behavior of end-use demands. Many modern electricity grids are implementing intermittent non-dispatchable renewable energy resources. As a result, the existing support services are becoming inadequate and technological innovation in grid support services are necessary. Support services fall into short (seconds to minutes), medium (minutes to hours), and long duration (several hours) categories. Energy storage offers a method of providing these services and can enable increased penetration rates of renewable energy generators. Many energy storage technologies exist. Of these, batteries span a significant range of required storage capacity and power output. By assessing the energy to power ratio of electricity grid services, suitable battery technologies were selected. These include lead-acid, lithium-ion, sodium-sulfur, and vanadium-redox. Findings show the variety of grid services require different battery technologies and batteries are capable of meeting the short, medium, and long duration categories. A brief review of each battery technology and its present state of development, commercial implementation, and research frontiers is presented to support these classifications.

  9. A survey of state clean energy fund support for biomass

    SciTech Connect

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-08-20

    This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

  10. Models Support Energy-Saving Microwave Technologies

    NASA Technical Reports Server (NTRS)

    2012-01-01

    During the Apollo Program, astronauts on the Moon encountered a small menace that created big problems: lunar dust. Similar to how tiny bits of Styrofoam behave on Earth adhering to anything they touch lunar dust sticks to spacesuits, spacecraft, tools, and equipment, and is extremely difficult to remove. The clingy nature of the substance is partly due to its electrostatic charge but is also due to its physical characteristics: The sharp, irregularly shaped grains have edges like burrs and feel like abrasive talcum powder to the touch. Not only a nuisance, Moon dust is also a potential health and safety risk. Because it is often laden with ultraviolet radiation and high iron content, it can be detrimental if it gets into the eyes or lungs. In fact, some of the particles are so small that the human body does not even detect them in order to expel them. On the Apollo missions, equipment covered with the dark-colored Moon dust suffered from the absorption of sunlight and tended to overheat. NASA has investigated tools and techniques to manage the sticky stuff, including magnets, vacuums, and shields. In 2009, Kennedy Space Center collaborated with a small business to investigate a method to harden the Moon's surface in a sense, to pave the surface so astronauts and robots could land, drive, and work without disrupting and scattering the material.

  11. The US Support Program Assistance to the IAEA Safeguards Information Technology, Collection, and Analysis 2008

    SciTech Connect

    Tackentien,J.

    2008-06-12

    One of the United States Support Program's (USSP) priorities for 2008 is to support the International Atomic Energy Agency's (IAEA) development of an integrated and efficient safeguards information infrastructure, including reliable and maintainable information systems, and effective tools and resources to collect and analyze safeguards-relevant information. The USSP has provided funding in support of this priority for the ISIS Re-engineering Project (IRP), and for human resources support to the design and definition of the enhanced information analysis architecture project (nVision). Assistance for several other information technology efforts is provided. This paper will report on the various ongoing support measures undertaken by the USSP to support the IAEA's information technology enhancements and will provide some insights into activities that the USSP may support in the future.

  12. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 5: Human Support

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft integrated technology plan (ITP) on human support are included. Topics covered include: human support program; human factors; life support technology; fire safety; medical support technology; advanced refrigeration technology; EVA suit system; advanced PLSS technology; and ARC-EVA systems research program.

  13. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  14. Decision analysis as a life support technology assessment capability.

    PubMed

    Ballin, M G

    1995-01-01

    Applied research and technology development is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Decision making regarding which technologies to advance and what resources to devote to them is a challenging but essential task, especially in a resource-constrained environment. In the application of life support technology to future manned space flight, new technology concepts typically are characterized by rough approximations of technology performance, uncertain future flight program needs, and a complex, time-intensive process to develop technology to a flight-ready status. Decision analysis is a quantitative, logic-based discipline that imposes formalism and structure to complex problems confronting a decision maker. It also accounts for the limits of knowledge available at the time a decision is needed. The utility of decision analysis to life support technology R&D was evaluated by applying it to two case studies. The methodology was found to provide useful insight for making technology development resource allocation decisions. PMID:11538570

  15. Supporting learner-centered technology integration through situated mentoring

    NASA Astrophysics Data System (ADS)

    Rosenberg, Marian Goode

    Situated mentoring was used as a professional development method to help 11 high school science teachers integrate learner-centered technology. The teachers' learner-centered technology beliefs and practices as well as their perception of barriers to learner-centered technology integration were explored before and after participating in the mentoring program. In addition, the participants' thoughts about the effectiveness of various components of the mentoring program were analyzed along with the mentor's observations of their practices. Situated mentoring can be effective for supporting learner-centered technology integration, in particular decreasing the barriers teachers experience. Goal setting, collaborative planning, reflection, and onsite just-in-time support were thought to be the most valuable components of the mentoring program.

  16. Supporting People with Dementia Using Pervasive Healthcare Technologies

    NASA Astrophysics Data System (ADS)

    Mulvenna, Maurice D.; Nugent, Chris D.; Moelaert, Ferial; Craig, David; Dröes, Rose-Marie; Bengtsson, Johan E.

    In this chapter, an introduction is provided into pervasive healthcare technology, specifically as the use of information and communications technology in support of European policies, primarily inclusion. The focus of the chapter, and indeed the book, is on how such technologies can support people suffering from debilitating diseases including Alzheimer's. The work describes a research project called COGKNOW, comprising a multidisciplinary research consortium of scientists from across Europe, and relates some of the early achievements of the group from some very different perspectives, including technical, clinical, ethical, and of course how the needs of people with dementia and their carers can be harnessed in the development process to produce pervasive healthcare technology and services that are valued by all the stakeholders in the process.

  17. Energy Technology Division research summary 1997.

    SciTech Connect

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  18. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  19. Space Life Support Technology Applications to Terrestrial Environmental Problems

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Sleeper, Howard L.

    1993-01-01

    Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.

  20. Life Support System Technologies for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2007-01-01

    The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.

  1. Advanced support systems development and supporting technologies for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei

    1994-01-01

    A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.

  2. Environmental aspects of solar energy technologies

    SciTech Connect

    Strojan, C.L.

    1980-09-01

    Solar energy technologies have environmental effects, and these may be positive or negative compared with current ways of producing energy. In this respect, solar energy technologies are no different from other energy systems. Where solar energy technologies differ is that no unresolvable technological problems (e.g., CO/sub 2/ emissions) or sociopolitical barriers (e.g., waste disposal, catastrophic accidents) have been identified. This report reviews some of the environmental aspects of solar energy technologies and ongoing research designed to identify and resolve potential environmental concerns. It is important to continue research and assessment of environmental aspects of solar energy to ensure that unanticipated problems do not arise. It is also important that the knowledge gained through such environmental research be incorporated into technology development programs and policy initiatives.

  3. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, L. (Editor)

    1997-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  4. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  5. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  6. Management support services to the Office of Utility Technologies. Final technical report

    SciTech Connect

    Not Available

    1993-12-16

    The Office of Utility Technologies works cooperatively with industry and the utility sector to realize the market potential for energy efficiency and renewable energy technologies. Under this contract, BNF has provided management support services for OUT R&D activities for the following Program offices: (1) Office of Energy Management; (2) Office of Solar Energy Conversion; (3) Office of Renewable Energy Conversion; and (4) Deputy Assistant Secretary. During the period between 4/17/91 and 9/17/93, BNF furnished the necessary personnel, equipment, materials, facilities and travel required to provide management support services for each of the above Program Offices. From 9/18/93 to 12/17/93, BNF has been involved in closeout activities, including final product deliverables. Research efforts that have been supported in these Program Offices are: (1) for Energy Management -- Advanced Utility Concepts Division; Utility Systems Division; Integrated Planning; (2) for Solar Energy Conversion -- Photovoltaics Division; Solar Thermal and Biomass Power Division; (3) for Renewable Energy Conversion -- Geothermal Division; Wind, Hydroelectric and Ocean Systems Division; (4) for the Deputy Assistant Secretary -- support as required by the Supporting Staff. This final report contains summaries of the work accomplished for each of the Program Offices listed above.

  7. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  8. Gas separation applications to METC-supported technologies

    SciTech Connect

    Poku, J.A.; Plunkett, J.E.

    1989-12-01

    The objectives of this study were to catalog both hot and cold gas separation technologies, to identify the status and the developers of each, and to identify how these separation processes might be applied to METC-supported technologies for removal of trace contaminants, or purification of gases used in or generated by coal processing. Discussions on gas separation process names, typical feeds, process developers, and operating conditions are provided in the following sections of this report, as well as descriptions of how these gas cleanup techniques would be used in developmental coal conversion technologies. 82 refs., 22 figs., 14 tabs.

  9. NREL Supports Development of New National Code for Hydrogen Technologies (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    On December 14, 2010, the National Fire Protection Association (NFPA) issued a new national code for hydrogen technologies - NFPA 2 Hydrogen Technologies Code - which covers critical applications and operations such as hydrogen dispensing, production, and storage. The new code consolidates existing hydrogen-related NFPA codes and standards requirements into a single document and also introduces new requirements. This consolidation makes it easier for users to prepare code-compliant permit applications and to review/approve these applications. The National Renewable Energy Laboratory helped support the development of NFPA 2 on behalf of the U.S. Department of Energy Fuel Cell Technologies Program.

  10. Technology, energy and the environment

    NASA Astrophysics Data System (ADS)

    Mitchell, Glenn Terry

    This dissertation consists of three distinct papers concerned with technology, energy and the environment. The first paper is an empirical analysis of production under uncertainty, using agricultural production data from the central United States. Unlike previous work, this analysis identifies the effect of actual realizations of weather as well as farmers' expectations about weather. The results indicate that both of these are significant factors explaining short run profits in agriculture. Expectations about weather, called climate, affect production choices, and actual weather affects realized output. These results provide better understanding of the effect of climate change in agriculture. The second paper examines how emissions taxes induce innovation that reduces pollution. A polluting firm chooses technical improvement to minimize cost over an infinite horizon, given an emission tax set by a planner. This leads to a solution path for technical change. Changes in the tax rate affect the path for innovation. Setting the tax at equal to the marginal damage (which is optimal in a static setting with no technical change) is not optimal in the presence of technical change. When abatement is also available as an alternative to technical change, changes in the tax can have mixed effects, due to substitution effects. The third paper extends the theoretical framework for exploring the diffusion of new technologies. Information about new technologies spreads through the economy by means of a network. The pattern of diffusion will depend on the structure of this network. Observed networks are the result of an evolutionary process. This paper identifies how these evolutionary outcomes compare with optimal solutions. The conditions guaranteeing convergence to an optimal outcome are quite stringent. It is useful to determine the set of initial population states that do converge to an optimal outcome. The distribution of costs and benefits among the agents within an

  11. Addressing Energy Poverty through Smarter Technology

    ERIC Educational Resources Information Center

    Oldfield, Eddie

    2011-01-01

    Energy poverty is a key detriment to labor productivity, economic growth, and social well-being. This article presents a qualitative review of literature on the potential role of intelligent communication technology, web-based standards, and smart grid technology to alleviate energy costs and improve access to clean distributed energy in developed…

  12. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  13. Alternative energy technologies for the Caribbean islands

    SciTech Connect

    Pytlinski, J.T. )

    1992-01-01

    All islands in the Caribbean except Puerto Rico can be classified as developing islands. Of these islands, all except Trinidad and Tobago are oil importers. Uncertainties concerning uninterrupted oil supply and increasing oil prices causes economic, social and political instability and jeopardizes further development of these islands. The paper discusses the energy situation of the Caribbean islands and presents alternative energy options. Several alternative energy projects financed by local, federal and international organizations are presented. Present and future uses of alternative energy technologies are described in different islands. Barrier which handicap developing and implementing alternative energy sources in the Caribbean are discussed. The potential and possible applications of alternative energy technologies such as: solar-thermal energy, photovoltaics, wind energy, ocean thermal energy conversion (OTEC), ocean currents and tides energy, biomass, peat energy, municipal solid wastes, bioconversion, hydropower, geothermal energy, nuclear energy and energy conservation are discussed in detail as means to alleviate the energy situation in the Caribbean islands.

  14. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  15. Student Outreach With Renewable Energy Technology

    NASA Technical Reports Server (NTRS)

    Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.

    2003-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is a joint grant that involves a collaboration between three HBCU's (Central State University, Savannah State University, and Wilberforce University) and NASA John H. Glenn Research Center at Lewis Field. The overall goal of the grant is to increase the interest of minority students in the technical disciplines, to encourage participating minority students to continue their undergraduate study in these disciplines, and to promote graduate school to these students. As a part of SORET, Central State University has developed an undergraduate research associates program over the past two years. As part of this program, students are required to take special laboratory courses offered at Wilberforce University that involve the application of renewable energy systems. The course requires the students to design, construct, and install a renewable energy project. In addition to the applied renewable energy course, Central State University provided four undergraduate research associates the opportunity to participate in summer internships at Texas Southern University (Renewable Energy Environmental Protection Program) and the Cleveland African-American Museum (Renewable Energy Summer Camp for High School Students) an activity co sponsored by NASA and the Cleveland African-American Museum. Savannah State University held a high school summer program with a theme of the Direct Impact of Science on Our Every Day Lives. The purpose of the institute was to whet the interest of students in science, mathematics, engineering, and technology (SMET) by demonstrating the effectiveness of science to address real world problems. The 2001 institute involved the design and installation of a PV water pumping system at the Center for Advanced Water Technology and Energy Systems at Savannah State. Both high school students and undergraduates contributed to this project. Wilberforce University has used NASA support to provide

  16. 31 CFR 542.304 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 542.304 Section 542.304 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY SYRIAN SANCTIONS REGULATIONS General Definitions § 542.304...

  17. 31 CFR 549.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 549.313 Section 549.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS General Definitions § 549.313...

  18. 31 CFR 548.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 548.313 Section 548.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BELARUS SANCTIONS REGULATIONS General Definitions § 548.313...

  19. 31 CFR 546.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 546.313 Section 546.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY DARFUR SANCTIONS REGULATIONS General Definitions § 546.313...

  20. 31 CFR 537.327 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 537.327 Section 537.327 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BURMESE SANCTIONS REGULATIONS General Definitions § 537.327...

  1. 31 CFR 543.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 543.313 Section 543.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CÃTE D'IVOIRE SANCTIONS REGULATIONS General Definitions §...

  2. 31 CFR 548.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 548.313 Section 548.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BELARUS SANCTIONS REGULATIONS General Definitions § 548.313...

  3. 31 CFR 549.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 549.313 Section 549.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS General Definitions § 549.313...

  4. 31 CFR 594.317 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 594.317 Section 594.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions §...

  5. 31 CFR 547.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 547.313 Section 547.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY DEMOCRATIC REPUBLIC OF THE CONGO SANCTIONS REGULATIONS General...

  6. 31 CFR 546.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 546.313 Section 546.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY DARFUR SANCTIONS REGULATIONS General Definitions § 546.313...

  7. 31 CFR 595.317 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 595.317 Section 595.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM SANCTIONS REGULATIONS General Definitions § 595.317...

  8. 31 CFR 595.317 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 595.317 Section 595.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM SANCTIONS REGULATIONS General Definitions § 595.317...

  9. 31 CFR 588.312 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 588.312 Section 588.312 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WESTERN BALKANS STABILIZATION REGULATIONS General Definitions §...

  10. 31 CFR 594.317 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 594.317 Section 594.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions §...

  11. 31 CFR 547.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 547.313 Section 547.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY DEMOCRATIC REPUBLIC OF THE CONGO SANCTIONS REGULATIONS General...

  12. 31 CFR 588.312 - Financial, material, or technological support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Financial, material, or technological support. 588.312 Section 588.312 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WESTERN BALKANS STABILIZATION REGULATIONS General Definitions §...

  13. 31 CFR 543.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Financial, material, or technological support. 543.313 Section 543.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CÃTE D'IVOIRE SANCTIONS REGULATIONS General Definitions §...

  14. Solving the Technology Support Dilemma: The Solution is Students.

    ERIC Educational Resources Information Center

    Ingram, Traci

    1998-01-01

    Describes the Computer Support Program (CSP) at Monett (Missouri) Schools where high school students operating from a "control room" assist students and teachers throughout the district in their use of technology. Benefits include increased teacher self-reliance and increased self-esteem in CSP students, and CSP student-created Internet scavenger…

  15. Supporting the Use of Technology in Organizations over Time

    ERIC Educational Resources Information Center

    Skattebo, Amie L.

    2009-01-01

    In the current research, I introduce a multidimensional construct, system support climate (SSC), and predict that different dimensions of this construct are more or less influential across different stages of the lifespan of a technology in the workplace. Specifically, I seek to address the following: (1) What are the dimensions of SSC that are…

  16. 31 CFR 594.317 - Financial, material, or technological support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Financial, material, or technological support. 594.317 Section 594.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions §...

  17. Using New Technologies in Support of Future Space Missions

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.; Welch, David C.

    1997-01-01

    This paper forms a perspective of how new technologies such as onboard autonomy and internet-like protocols will change the look and feel of operations. It analyzes the concept of a lights-out mission operations control center and it's role in future mission support and it describes likely scenarios for evolving from current concepts.

  18. Toward Understanding Non-Centralized Technology Support in Higher Education

    ERIC Educational Resources Information Center

    Jackson, Robert Jonathan

    2009-01-01

    The focus of this research is an examination of service quality provided by non-centralized technology personnel, Local Technical Support Providers (LSPs), at a southern research university. The SERVQUAL instrument was selected to measure service quality of LSPs within the Academic Affairs Division. The rationale for selecting and testing SERVQUAL…

  19. 31 CFR 547.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Financial, material, or technological support. 547.313 Section 547.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY DEMOCRATIC REPUBLIC OF THE CONGO SANCTIONS REGULATIONS General...

  20. 31 CFR 548.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Financial, material, or technological support. 548.313 Section 548.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BELARUS SANCTIONS REGULATIONS General Definitions § 548.313...

  1. 31 CFR 588.312 - Financial, material, or technological support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Financial, material, or technological support. 588.312 Section 588.312 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WESTERN BALKANS STABILIZATION REGULATIONS General Definitions §...

  2. 31 CFR 549.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Financial, material, or technological support. 549.313 Section 549.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS General Definitions § 549.313...

  3. 31 CFR 594.317 - Financial, material, or technological support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Financial, material, or technological support. 594.317 Section 594.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions §...

  4. 31 CFR 588.312 - Financial, material, or technological support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Financial, material, or technological support. 588.312 Section 588.312 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WESTERN BALKANS STABILIZATION REGULATIONS General Definitions §...

  5. 31 CFR 548.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Financial, material, or technological support. 548.313 Section 548.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BELARUS SANCTIONS REGULATIONS General Definitions § 548.313...

  6. 31 CFR 546.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Financial, material, or technological support. 546.313 Section 546.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY DARFUR SANCTIONS REGULATIONS General Definitions § 546.313...

  7. 31 CFR 594.317 - Financial, material, or technological support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Financial, material, or technological support. 594.317 Section 594.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions §...

  8. 31 CFR 543.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Financial, material, or technological support. 543.313 Section 543.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CôTE D'IVOIRE SANCTIONS REGULATIONS General Definitions §...

  9. 31 CFR 549.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Financial, material, or technological support. 549.313 Section 549.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY LEBANON SANCTIONS REGULATIONS General Definitions § 549.313...

  10. 31 CFR 548.313 - Financial, material, or technological support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Financial, material, or technological support. 548.313 Section 548.313 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY BELARUS SANCTIONS...