Science.gov

Sample records for energy utilization system

  1. Renewable Energy Options for a Utility System

    NASA Astrophysics Data System (ADS)

    Ahmadi, Lena; Panjeshahi, M. Hassan; Perry, Simon

    2009-05-01

    In this paper, renewable energies have been re-addressed with respect to the potentials and feasibility of being incorporated in process industries. Within a process, utility system is considered to be the most appropriate place for using sustainable energies. For integrating the renewable energies, the pinch analysis is applied as the main tool to provide opportunity for energy conservation. The results demonstrated that the power generation by the wind is the most cost effective and environmentally friendly option for energy conservation in comparison to the other sustainable resources. However the tidal energy stands the least due to the long payback period. Also, a computer program has been developed, using MATLAB 7.3, to screen out different scenarios and perform economic study. The outcome data showed that, there are several different opportunities for the integration of alternative energies. Finally, this method has been applied to a case study and various retrofit projects have been identified, each of which has certain amount of CO2 reduction and estimated values for the required investment, saving potential and payback period.

  2. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  3. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  4. How utilities can build quality into their energy management systems

    SciTech Connect

    Not Available

    1993-09-01

    Energy management systems (EMS) are computer-based systems designed to monitor, control, and analyze a utility company's generation and transmission power system. An EMS gathers real-time data from monitoring devices located throughout the power system, calculates a range of economic and operating results, and enables high-speed control of generation and transmission equipment to ensure the economic and reliable operation of the electrical system. Since the EMS is the mission-critical component of a utility's day-to-day operations, it should be a quality system. The following seven steps outline an approach that will help ensure a quality EMS: Change your mindset on how to develop an EMS; use a proven systems development methodology; form a working partnership with the vendor; improve continuously; maximize hands-on utility participation; incorporate change-management techniques; and employ staff-dedicated utility resources for utility tasks.

  5. Novel embossed radiography system utilizing energy subtraction

    NASA Astrophysics Data System (ADS)

    Osawa, Akihiro; Sato, Eiichi; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Abderyim, Purkhet; Tanaka, Etsuro; Izumisawa, Mitsuru; Ogawa, Akira; Sato, Shigehiro

    2008-08-01

    Digital subtraction is useful for carrying out embossed radiography by shifting an x-ray source, and energy subtraction is an important technique for imaging target region by deleting unnecessary region in vivo. X-ray generator had a 100-μm-focus tube, energy subtraction was performed at tube voltages of 40 and 60 kV, and a 3.0-mm-thick aluminum filter was used to absorb low-photon-energy bremsstrahlung x-rays. Embossed radiography was achieved with cohesion imaging using a flat panel detector (FPD) with pixel sizes of 48×48 μm, and the shifting distance of the x-ray source in horizontal direction and the distance between the x-ray source and the FPD face were 5.0 mm and 1.0 m, respectively. At a tube voltage of 60 kV and a tube current of 0.50 mA, x-ray intensities without filtering and with filtering were 307 and 28.4 μGy/s, respectively, at 1.0 m from the source. In embossed radiography of non-living animals, the spatial resolution measured using a lead test chart was approximately 70 μm, and we observed embossed images of fine bones, soft tissues, and coronary arteries of approximately 100 μm.

  6. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  7. Community energy systems and the law of public utilities

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nebraska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitiled ''Community Energy Systems and the Law of Public Utilities--Volume One: An Overview.'' This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  9. Hybrid energy storage systems utilizing redox active organic compounds

    DOEpatents

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  10. Overview of the US Department of Energy Utility Battery Storage Systems Program

    SciTech Connect

    Eaton, R.; Akhil, A.; Butler, P.C.; Hurwitch, J.

    1993-08-01

    The US Department of Energy (DOE) is sponsoring the Utility Battery Storage Systems Program at Sandia National Laboratories and its contractors. This program is specifically aimed at developing battery energy storage systems for electric utility applications commencing in the mid to late 1990s. One factory-integrated utility battery system and three battery technologies: sodium/sulfur, zinc/bromine, and lead-acid are being developed under this program. In the last few years the emphasis of this program has focused on battery system development. This emphasis has included greater interactions with utilities to define application requirements. Recent activities have identified specific applications of battery energy storage in certain utility systems and quantified the value of these applications to these utility companies. In part due to these activities, battery energy storage is no longer regarded by utilities as a load-leveling resource only, but as a multifunction, energy management resource.

  11. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    SciTech Connect

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  12. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  13. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  14. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    SciTech Connect

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  15. The state of energy storage in electric utility systems and its effect on renewable energy resources

    SciTech Connect

    Rau, N S

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  16. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    SciTech Connect

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Mittal, Saurabh; Wu, Hongyu; Jones, Wesley

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.

  17. Control of new energy sources in an electric utility system

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    1981-01-01

    The addition of generators based on renewable resources to the electric power system brings new problems of control and communication if the generators are to be controlled as an integrated part of the power system. Since many of these generators are small, it will require a large number of them, connected to the distribution system, to represent an appreciable fraction of the total generation. This situation contrasts with present day generation control which typically involves only the control of a small number of large generators. This paper examines the system requirements for integrated control, and proposes a control arrangement in which the incremental cost of power is an important parameter.

  18. Community energy systems and the law of public utilities. Volume 20. Louisiana

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Louisiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities--Volume One: An overview. This report also contains a summary of a strategy described in Volume One--An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enchance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Twenty-four. Michigan

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description of the laws and programs of the State of Michigan governing the regulation of public energy facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  1. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 1: (Executive summary)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Integrated Utility Systems (IUS) have been suggested as a means of reducing the cost and conserving the nonrenewable energy resources required to supply utility services (energy, water, and waste disposal) to developments of limited size. The potential for further improving the performance and reducing the cost of IUS installations through the use of energy storage devices is examined and the results are summarized. Candidate energy storage concepts in the general areas of thermal, inertial, superconducting magnetic, electrochemical, chemical, and compressed air energy storage are assessed and the storage of thermal energy as the sensible heat of water is selected as the primary candidate for near term application to IUS.

  2. Solar energy utilization and microcomputer control in the greenhouse builk curing and drying solar system

    SciTech Connect

    Nassar, A.N.H.

    1987-01-01

    Three agricultural applications in a specially designed greenhouse solar system functioning as a multi-purpose solar air collector for crop production and curing/drying processes are examined. An automated hydroponic crop production system is proposed for the greenhouse solar system. Design criteria of the proposed system and its utilization of solar energy for root-zone warming are presented and discussed. Based upon limited testing of the hydroponic system considered, hydroponic production of greenhouse crops is believed reasonable to complement the year-round use of the greenhouse solar system. The hardware/software design features of a microcomputer-based control system applied in the greenhouse solar barn are presented and discussed. On-line management and utilization of incident solar energy by the microcomputer system are investigated for both the greenhouse and tobacco curing/drying modes of operation. The design approach considered for the microcomputer control system is believed suitable for regulating solar energy collection and utilization for crop production applications in greenhouse systems.

  3. Community Energy Systems and the Law of Public Utilities. Volume Twenty-two. Maryland

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maryland governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Five. Arizona

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arizona governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Twenty-five. Minnesota

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Minnesota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Forty-two. South Carolina

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of South Carolina governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Twenty-three. Massachusetts

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Massachusetts governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Twenty-six. Mississippi

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Mississippi governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Eight. Colorado

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Colorado governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Nine. Connecticut

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Connecticut governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Fifty-one. Wisconsin

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wisconsin governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community energy systems and the law of public utilities. Volume thirty-four. New York

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New York governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Forty-three. South Dakota

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of South Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Two. Federal

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is presented of the laws and programs of the Federal government governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Thirty-one. New Hampshire

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Hampshire governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One. An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Six. Arkansas

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arkansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Seven. California

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of California governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Forty-seven. Vermont

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Vermont governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Twenty-one. Maine

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maine governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Thirty-nine. Oregon

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Oregon governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Fifty. West Virginia

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of West Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Thirty-two. New Jersey

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Jersey governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Fourteen. Idaho

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Idaho governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Fifteen. Illinois

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Illinois governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Eighteen. Kansas

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Thirty. Nevada

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nevada governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Forty-nine. Washington

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Washington governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Ten. Delaware

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Delaware governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Twenty-eight. Montana

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Montana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Forty-five. Texas

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Texas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Fifty-two. Wyoming

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wyoming governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Sixteen. Indiana

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Indiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Forty. Pennsylvania

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Pennsylvania governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Thirty-seven. Ohio

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Ohio governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Forty-eight. Virginia

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Twelve. Georgia

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Georgia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Forty-four. Tennessee

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Tennessee governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Twenty-seven. Missouri

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Missouri governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Thirty-three. New Mexico

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Mexico governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Forty-six. Utah

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Utah governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilites, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Energy and water quality management systems for water utility's operations: a review.

    PubMed

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. PMID:25688476

  5. Energy Efficiency and Electric Utilities

    SciTech Connect

    2007-11-15

    The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

  6. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    PubMed

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day). PMID:23596946

  7. The cost of energy from utility-owned solar electric systems. A required revenue methodology for ERDA/EPRI evaluations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation amd maintenance, and the financial structure and tax environment of the utility.

  8. Multiobjective optimal unit sizing of hybrid power generation systems utilizing photovoltaic and wind energy

    SciTech Connect

    Yokoyama, Ryohei; Ito, Koichi . Dept. of Energy Systems Engineering); Yuasa, Yoshiro . Technical Research Center)

    1994-11-01

    A deterministic approach to optimal unit sizing is presented for hybrid power generation systems utilizing photovoltaic and wind energy. Device capacities and electric contract demand are determined so as to minimize the annual total cost and annual energy consumption from the viewpoints of economy and energy saving or reduction in NO[sub x] and CO[sub 2] emission, respectively. This optimization problem is considered as a multiobjective one, and a discrete set of Pareto optimal solutions is derived numerically by using the weighting method. Two systems interconnected with the electric power grid are investigated: one has the option of reverse electricity flow into the grid, and the other has no option. By carrying out some case studies, the tradeoff relationships between the two objectives as well as the optimal values of device capacities are clarified. The influence of electricity deficit on unit sizing is also investigated.

  9. Energy utilization in phonation

    NASA Astrophysics Data System (ADS)

    Krane, Michael

    2015-11-01

    A control volume analysis of energy utilization in phonation is presented. Conversion of subglottal airstream potential energy into work done vibrating the vocal folds, air flowing through the glottis, and radiating sound are described. An approximate numerical model is used to compute the contributions of each of these mechanisms, as a function of subglottal pressure, for normal phonation. An efficiency measure for each energy conversion mechanism is proposed. Acknowledge NIH grant 2R01 2R01DC005642.

  10. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  11. Solar energy research and utilization

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1974-01-01

    The role of solar energy is visualized in the heating and cooling of buildings, in the production of renewable gaseous, liquid and solid fuels, and in the production of electric power over the next 45 years. Potential impacts of solar energy on various energy markets, and estimated costs of such solar energy systems are discussed. Some typical solar energy utilization processes are described in detail. It is expected that at least 20% of the U.S. total energy requirements by 2020 will be delivered from solar energy.

  12. Systems analysis research for energy conversion and utilization technologies (ECUT). FY 1985 annual report

    SciTech Connect

    Eberhardt, J.J.; Gunn, M.E.; Levinson, T.M.

    1985-11-01

    This Annual Report highlights ECUT accomplishments in the Systems Analysis Project for FY 1985. The Systems Analysis Project was established in 1980 along with the ECUT Division. The Systems Analysis mission is to identify, analyze, and assess R and D needs and research program strategies for advanced conservation technologies. The PNL Systems Analysis staff conducts topical research, provides technical studies, and plans program activities in three areas related to energy conversion and utilization technologies: (1) technology assessment, (2) engineering analysis, and (3) project evaluation and review. This report summarizes the technical results and accomplishments of the FY 1985 projects. They relate mostly to tribology, improved ctalysts, regenerative heat exchangers, robotics and electronics industries, and bioprocessing.

  13. A second-law study on packed bed energy storage systems utilizing phase-change materials

    SciTech Connect

    Adebiyi, G.A. )

    1991-08-01

    Thermal modeling of packed bed, thermal energy storage systems has traditionally been limited to first-law considerations. The exceptions include a few second-law studies of sensible heat storage systems and the latent heat storage systems. The cited second-law studies treat the storage and removal processes essentially as batch heating and cooling. The approximation effectively ignores the significant temperature gradient, especially in the axial direction, in the storage medium over a substantial portion of both the storage and removal processes. The results presented in this paper are for a more comprehensive model of the packed bed storage system utilizing encapsulated phase-change materials. The fundamental equations for the system are similar to those of Schumann, except that a transient conduction equation is included for intraparticle conduction in each pellet. The equations are solved numerically, and the media temperatures obtained are used for the determination of the exergy (or availability) disposition in complete storage-removal cycles. One major conclusion of the study from both the first-law and second-law perspectives is that the principal advantage in the use of phase-change storage material is the enhanced storage capacity, compared with the same size of packed bed utilizing a sensible heat storage material. Thermodynamically, however, it does not appear that the system employing phase-change storage material will always, or necessarily, be superior to that using a sensible heat-storage material. The latter conclusion is reached only on the basis of the second-law evaluation.

  14. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  15. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  16. Intelligent utility meter system

    SciTech Connect

    Frew, L.H.; Fuller, M.L.

    1989-02-07

    An intelligent utility meter system installation is described for measuring A.C. electric energy having repetitive A.C. cycles, comprising: (1) an ''outside'' principal meter unit including: (a) means for sampling current and voltage and for calculating power consumption at least 300 times per second; the sampling occurring asynchronously and not in any fixed time relationship with respect to the A.C. electricity cycles; (b) the outside unit further including means for determining the total kilowatt hours used, and the present billing status; and (c) alphanumeric display means for displaying power being used, total kilowatt hours and present billing status; (2) a remote ''inside'' unit including: (a) alphanumeric means for displaying the information displayed by the ''outside'' unit; (b) means for selectively retaining a desired continuously updated display; and (c) means for reading a credit card and automatically changing the billing status information within the intelligent utility meter as credit card information is read; and (3) the system including means for determining both the magnitude and direction of the electric power passing through the meter system.

  17. Design and testing of fish drier system utilizing geothermal energy resource in Ie Suum, Aceh Besar

    NASA Astrophysics Data System (ADS)

    Mubarak, Amir Zaki; Maulana, M. Ilham; Syuhada, Ahmad

    2016-03-01

    In an effort to increase the value of fish produced by the community in Krueng Raya Sub-district, it has been designed and tested a fish drier system utilizing geothermal energy resource in IeSuum Village, Krueng Raya Sub-district, Aceh Besar District. The geothermal energy is in the form of hot water with the temperature range is between 86 and 86.4 °C. Based on the design consideration, it is used a terraced rack type drier system. The drier system consists of a heat exchanger, drying chamber, and a blower to blow the air. Hot water from the geothermal source is passed into the heat exchanger to increase the air temperature outside it. The air is then blown into the drying chamber. Based on the design analysis is obtained that to dry 200 kg of fish in 24 hour, it is required a drying chamber with 1m long, 1 m width and 0.4 m high, the temperature of hot water entering the exchanger is 80 °C and the temperature of the air entering the drying chamber is maintained at 60°C. The average time required to dry fish till 10% of water level is 18-20 jam. The research is then continued by developing and testing the drying system with three layer rack to put in the fish. From the experimental result is obtained that the average water temperature flows out of the chamber is in the range of 76-78 °C and the temperature in the chamber is in the range of 57-62 °C. In addition, the weight of the fish, which initially is 20 kg, becomes12 kg in average after 18 hours drying process.

  18. The Marketability of Integrated Energy/Utility Systems: A Guide to the Dollar Savings Potential in Integrated Energy/Utility Systems; for Campuses, Medical Complexes, and Communities; Architect/Engineers, Industrial and Power Plant Owners; Suppliers; and Constructors.

    ERIC Educational Resources Information Center

    Coxe, Edwin F.; Hill, David E.

    This publication acquaints the prospective marketplace with the potential and underlying logic of the Integrated Utility System (IUS) concept. This system holds promise for educational and medical institutions seeking to reduce their energy costs. The generic IUS concept is described and how it can be incorporated into existing heating and…

  19. Advanced system demonstration for utilization of biomass as an energy source

    SciTech Connect

    Not Available

    1980-10-01

    The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

  20. Possibilities of utilizing alternative energy sources for combined heat supply systems in the Baltic

    SciTech Connect

    Shipkovs, P.; Grislis, V.; Zebergs, V. )

    1991-01-01

    The problem of alternative energy sources is an issue of major importance for the Baltic republics because of the limited supply of conventional energy resources. One of the ways to solve this problem could be the introduction of combined heat supply systems (CHSS). The combined heat supply systems are such systems where various energy sources in different regimes are made use of to ensure the optimum temperature on residential and industrial premises. The influence of climatic conditions on the selection of heat supply systems has been studied at large. In the present paper the use of alternative energy sources (AES) in combined heat supply systems (CHSS) is described.

  1. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems

    SciTech Connect

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  2. Evaluation of Energy Saving Characteristics of a High-Efficient Cogeneration System Utilizing Gas Engine Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) utilizing high temperature exhaust gas from a gas engine is proposed. In the proposed CGS, saturated steam produced in the gas engine is superheated with a super heater utilizing regenerative burner and used to drive a steam turbine generator. The heat energy is supplied by extracting steam from the steam turbine and turbine outlet low-temperature steam. Both of the energy saving characteristics of the proposed CGS and a CGS constructed by using the original gas engine (GE-CGS) were investigated and compared, by taking a case where energy for office buildings was supplied by the conventional energy systems. It was shown that the proposed CGS has energy saving rate of 24.5%, higher than 1.83 times, compared with that of the original GE-CGS.

  3. Energy Conservation Through Effective Utilization

    ERIC Educational Resources Information Center

    Berg, Charles A.

    1973-01-01

    Discusses various ways in which the demand for energy could be decreased, focusing not so much on discouraging demand by increasing prices, as on reducing energy consumption by improving efficiency of energy utilization in buildings and in industry. (JR)

  4. Development and utilization of new and renewable energy with Stirling engine system for electricity in China

    SciTech Connect

    Dong, W.; Abenavoli, R.I.; Carlini, M.

    1996-12-31

    China is the largest developing country in the world. Self-supporting and self-sustaining energy supply is the only solution for development. Recently, fast economic development exposed gradually increasing pressure of energy demand and environment concern. In order to increase the production of electricity of China, the Stirling engine system should be developed. This paper provides an investigation of energy production and consumption in China. The main features of the energy consumption and the development objectives of China`s electric power industry are also described. The necessity and possibility of development of Stirling engine system is discussed.

  5. Conceptual design of thermal energy storage systems for near term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.

    1979-01-01

    Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.

  6. Module two: energy utilization

    SciTech Connect

    Not Available

    1980-01-01

    This report contains a teaching module for presentation at the junior college level. A shortened version can also be presented to civic groups or high school vocational classes. Energy use in the past is contrasted with present energy use in 3 sectors: business, industry and the home. The module explains specifically the changes in energy sources and outlines energy use, the need for, and methods of conservation of energy in these 3 sections. 29 references, 7 figures. (DMC)

  7. Methods of Conserving Heating Energy Utilized in Thirty-One Public School Systems.

    ERIC Educational Resources Information Center

    Davis, Kathy Eggers

    The Memphis City School System was notified by Memphis Light, Gas, and Water that it was necessary to reduce its consumption of natural gas during the winter of 1975-76. A survey was developed and sent to 44 large public school systems to determine which methods of heating energy conservation were used most frequently and which methods were most…

  8. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  9. THE DESIGN AND FABRICATION OF A LOWER COST HELIOSTAT MIRROR SYSTEM FOR UTILIZING SOLAR ENERGY

    EPA Science Inventory

    A heliostat is a mirror based system which is used to continuously reflect sunlight onto a central receiver. The collected solar energy is then converted into electrical power. Currently, costs associated with the construction and maintenance of heliostats have proven prohibit...

  10. Utility integration issues of residential photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yamayee, Z. A.; Peschon, J.

    1981-05-01

    The economic aspects of residential solar photovoltaic (SPV) systems are discussed from the electric utility perspective. The following schemes of SPV integration are considered: (1) SPV with complete utility buy-back and backup; (2) SPV with utility system storage; and (3) SPV with residential storage. Estimates are made of the price that the utility might pay for SPV owner's surplus energy compared to what it would charge for deficits by evaluating economic savings of SVP to the utility.

  11. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  12. Space power system utilizing Fresnel lenses for solar power and also thermal energy storage

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1983-01-01

    A solar power plant suitable for earth orbits passing through Van Allen radiation belts is described. The solar-to-electricity conversion efficiency is estimated to be around 9 percent, and the expected power-to-weight ratio is competitive with photovoltaic arrays. The system is designed to be self-contained, to be indifferent to radiation belt exposures, store energy for periods when the orbiting system is in earth shadow (so that power generation is contant), have no moving parts and no working fluids, and be robust against micrometeorite attack. No electrical batteries are required.

  13. Purdue Solar Energy Utilization Laboratory

    SciTech Connect

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  14. Energy utilization in fluctuating biological energy converters

    PubMed Central

    Szőke, Abraham; Hajdu, Janos

    2016-01-01

    We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003); Curr. Chem. Biol. 1, 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems. PMID:27191009

  15. Wind energy utilization: A bibliography

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  16. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  17. Evaluation of the computerized utilities energy monitoring and control system installed at the US Military Community at Goeppingen, Germany

    SciTech Connect

    Purucker, S.L.; Gettings, M.B.

    1991-11-18

    Under the provisions of an Interagency Agreement between the US Army and the Department of Energy, Martin Marietta Energy Systems, Inc., through the Oak Ridge National Laboratory, is evaluating the Utilities and Energy Monitoring and Control System (UEMCS) installed at the US Military Community Activity at Goeppingen, Germany. This evaluation relies on examination of existing data and information to determine the effectiveness of the UEMCS. The Goeppingen UEMCS is an integral part of a combined UEMCS/district heating system which includes the UEMCS at Schwaebisch Gmuend, Germany. The system was installed during 1985 and 1986. The UEMCS at Goeppingen and Schwaebisch Gmuend are both well designed, implemented, and maintained. The UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS at Schwaebisch Gmuend does not have a central computer, but requires only a dedicated phone line to couple with the one at Goeppingen. Though the conversion to district heat has produced the majority of energy savings, the UEMCS day/night setback program also contributes substantially, with additional savings from start/stop programs, such as seasonal switchover, and various temperature control programs. Further opportunities for savings exist in increasing monitoring and control of water usage and connecting the community`s electrical network to the UEMCS, permitting demand limiting and increased power factor control.

  18. Evaluation of the computerized utilities energy monitoring and control system installed at the US Military Community at Goeppingen, Germany

    SciTech Connect

    Purucker, S.L.; Gettings, M.B.

    1991-11-18

    Under the provisions of an Interagency Agreement between the US Army and the Department of Energy, Martin Marietta Energy Systems, Inc., through the Oak Ridge National Laboratory, is evaluating the Utilities and Energy Monitoring and Control System (UEMCS) installed at the US Military Community Activity at Goeppingen, Germany. This evaluation relies on examination of existing data and information to determine the effectiveness of the UEMCS. The Goeppingen UEMCS is an integral part of a combined UEMCS/district heating system which includes the UEMCS at Schwaebisch Gmuend, Germany. The system was installed during 1985 and 1986. The UEMCS at Goeppingen and Schwaebisch Gmuend are both well designed, implemented, and maintained. The UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS at Schwaebisch Gmuend does not have a central computer, but requires only a dedicated phone line to couple with the one at Goeppingen. Though the conversion to district heat has produced the majority of energy savings, the UEMCS day/night setback program also contributes substantially, with additional savings from start/stop programs, such as seasonal switchover, and various temperature control programs. Further opportunities for savings exist in increasing monitoring and control of water usage and connecting the community's electrical network to the UEMCS, permitting demand limiting and increased power factor control.

  19. TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization

    PubMed Central

    Liao, HeBin; Cheng, XingJun; Zhu, DeKang; Wang, MingShu; Jia, RenYong; Chen, Shun; Chen, XiaoYue; Biville, Francis; Liu, MaFeng; Cheng, AnChun

    2015-01-01

    Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three TonB proteins responsible for energy transduction. These three tonB genes are present in all the R. anatipestifer genomes sequenced so far. Two of these genes are contained within the exbB-exbD-tonB1 and exbB-exbD-exbD-tonB2 operons. The third, tonB3, forms a monocistronic transcription unit. The inability to recover derivatives deleted for this gene suggests its product is essential for R. anatipestifer growth. Here, we show that deletion of tonB1 had no effect on hemin uptake of R. anatipestifer, though disruption of tonB2 strongly decreases hemin uptake, and disruption of both tonB1 and tonB2 abolishes the transport of exogenously added hemin. The ability of R. anatipestifer to grow on iron-depleted medium is decreased by tonB2 but not tonB1 disruption. When expressed in an E. coli model strain, the TonB1 complex, TonB2 complex, and TonB3 protein from R. anatipestifer cannot energize heterologous hemin transporters. Further, only the TonB1 complex can energize a R. anatipestifer hemin transporter when co-expressed in an E. coli model strain. PMID:26017672

  20. Family housing metering test. A test program to determine the feasibility of installing utility meters in military family housing, developing energy ceilings, and operating a penalty billing system for occupants who overconsume energy. Volume II. Appendices

    SciTech Connect

    Not Available

    1980-03-01

    Appendices: Feasibility Study of Utility Metering for Family Housing Units at Public Works Center, Great Lakes, Illinois; Photographs Showing Meter Reading Problems and Typical Meter Installations; Family Housing Survey; Family Housing Mock Utility Billing System User Manual; Analyses of Familiy Housing Norms; The Utility Norm Analysis Task of the Energy Conservation Program; ADP Portion of the Billing System; Occupant Guide to the Military Family Housing Utility Billing Test; NAVFAC Utility Billing System Study; PACNAVFACENGCOM Audit Report; Alternative Strategies for Optimizing Energy Supply, Distribution, and Consumption Systems on Naval Bases; Energy Conservation Attitudes and Behaviors of Navy Family Housing Residents; and The Corry Kil-A-Watt Newsletter.

  1. Energy: Education and Industry Changes for a New Era Utilization System Modifications.

    ERIC Educational Resources Information Center

    Dille, Earl K.; Dreifke, Gerald E.

    This paper provides data and opinions on long- and short-term challenges and changes required to meet the human resource and educational needs in a nuclear electric era as seen from a utility company's point of view. In particular, statements on engineering education curriculum, statistics on certain future manpower requirements, electric utility…

  2. Economics of wind energy for utilities

    NASA Technical Reports Server (NTRS)

    Mccabe, T. F.; Goldenblatt, M. K.

    1982-01-01

    Utility acceptance of this technology will be contingent upon the establishment of both its technical and economic feasibility. This paper presents preliminary results from a study currently underway to establish the economic value of central station wind energy to certain utility systems. The results for the various utilities are compared specifically in terms of three parameters which have a major influence on the economic value: (1) wind resource, (2) mix of conventional generation sources, and (3) specific utility financial parameters including projected fuel costs. The wind energy is derived from modeling either MOD-2 or MOD-0A wind turbines in wind resources determined by a year of data obtained from the DOE supported meteorological towers with a two-minute sampling frequency. In this paper, preliminary results for six of the utilities studied are presented and compared.

  3. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  4. Public utility regulation and national energy policy

    SciTech Connect

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  5. Utilization of emergent aquatic plants for biomass-energy-systems development

    SciTech Connect

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  6. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    NASA Technical Reports Server (NTRS)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  7. Advanced systems demonstration for utilization of biomass as an energy source. Volume 3: Equipment specifications

    NASA Astrophysics Data System (ADS)

    1980-10-01

    Specifications are given for the shipping, marking, inspection, testing, and start up of equipment to be used in a proposed wood fuel cogeneration system in Maine. Couplings, mechanical drives, electric motors, spare parts, coatings, assembling, and materials handling and packaging are covered. Both OSHA and noise control regulations are included along with the ASME code.

  8. Utility energy storage applications studies

    SciTech Connect

    Schoenung, S.M.; Burns, C.

    1996-09-01

    The values of benefits and costs have been estimated for applying energy storage to three situations on the Niagara Mohawk Power Corporation system. One situation is a valuable industrial customer requiring high quality, reliable power. The second situation is the need for reliable power at the end of a radial distribution feeder. The third situation is a case of thermal overload on a transmission line to a growing load in an environmentally sensitive location. The first case requires a small storage system (30 MJ); the second and third require relatively large systems (250 and 550 MWh, respectively). A variety of energy storage technologies was considered for each case. This paper presents the benefit/cost results for the technologies considered for each case. The technologies compared in this study are superconducting magnetics energy storage, batteries, flywheels, capacitors, compressed air energy storage, compressed air in vessels, and pumped hydro storage.

  9. Solar energy research and utilization

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1974-01-01

    The role is described that solar energy will play in the heating and cooling of buildings, the production of renewable gaseous, liquid and solid fuels, and the production of electric power over the next 45 years. Potential impacts on the various energy markets and estimated costs of such systems are discussed along with illustrations of some of the processes to accomplish the goals. The conclusions of the NSF/NASA Solar Energy Panel (1972) are given along with the estimated costs to accomplish the 15 year recommended program and also the recent and near future budget appropriations and recommendations are included.

  10. Conceptual design of thermal energy storage systems for near term electric utility applications. Volume 1: Screening of concepts

    NASA Technical Reports Server (NTRS)

    Hausz, W.; Berkowitz, B. J.; Hare, R. C.

    1978-01-01

    Over forty thermal energy storage (TES) concepts gathered from the literature and personal contacts were studied for their suitability for the electric utility application of storing energy off-peak discharge during peak hours. Twelve selections were derived from the concepts for screening; they used as storage media high temperature water (HTW), hot oil, molten salts, and packed beds of solids such as rock. HTW required pressure containment by prestressed cast-iron or concrete vessels, or lined underground cavities. Both steam generation from storage and feedwater heating from storage were studied. Four choices were made for further study during the project. Economic comparison by electric utility standard cost practices, and near-term availability (low technical risk) were principal criteria but suitability for utility use, conservation potential, and environmental hazards were considered.

  11. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  12. Evaluation of the computerized utilities energy monitoring and control system installed at the US Army, Europe, 282{sup nd} Base Support Battalion, Hohenfels, Germany

    SciTech Connect

    Gettings, M.B.; Tapp, P.A.

    1993-09-01

    Under the provisions of Interagency Agreement DOE No. 1938-B090-A1 between the U.S. DOE and the U.S. Army in Europe, Martin Marietta Energy Systems, Inc. is evaluating utilities and energy monitoring and control systems (UEMCSs) installed at selected U.S. Army installations in Europe. Evaluations of the overall performance and energy efficiency of the UEMCSs installed at U.S. Army installations in Heidelberg, Goeppingen, Pirmasens, Baumholder, and Grafenwoehr, Germany have already been completed. This report presents the results of an evaluation of the UEMCS installed at the 282nd Base Support Battalion in Hohenfels, Germany, which is operated by the Directorate of Engineering and Housing, Utilities Division. No savings based on observed trends of annual energy consumption can be attributed to the Honeywell 5600 system UEMCS. Estimates are presented of energy savings from implementing the Honeywell 1000 UEMCS. Major recommendations related to implementation of the 5600 UEMCS are delineated.

  13. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    NASA Technical Reports Server (NTRS)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  14. Energy utilization rates during shuttle extravehicular activities.

    PubMed

    Waligora, J M; Kumar, K V

    1995-01-01

    The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981-1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA. PMID:11540993

  15. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems. Performance report, April 1, 1989--August 31, 1991

    SciTech Connect

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  16. Utility Battery Storage Systems Program report for FY93

    SciTech Connect

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  17. Utility battery storage systems program report for FY 94

    SciTech Connect

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  18. Equity implications of utility energy conservation programs

    SciTech Connect

    Sutherland, R.J.

    1994-03-15

    This paper uses the Residential Energy Consumption Survey undertaken by the Energy Information Administration in 1990 to estimate the statistical association between household income and participation in electric utility energy conservation programs and the association between participation and the electricity consumption. The results indicate that utility rebates, energy audits, load management programs and other conservation measures tend to be undertaken at greater frequency by high income households than by low income households. Participants in conservation programs tend to occupy relatively new and energy efficient residences and undertake conservation measures other than utility programs, which suggests that utility sponsored programs are substitutes for other conservation investments. Electricity consumption during 1990 is not significantly less for households participating in utility programs than for nonparticipants, which also implies that utility conservation programs are displacing other conservation investments. Apparently, utility programs are not avoiding costs of new construction and instead are transferring wealth, particularly to high income participating households.

  19. Community energy systems and the law of public utilities. Volume thirty-eight. Oklahoma. Final report of a study of the impacts of regulations affecting the acceptance of integrated community energy systems

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Oklahoma governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities, Volume One: An Overview. This report also contains a summary of a strategy described in Volume One: An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Energy Systems Design

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PRESTO, a COSMIC program, handles energy system specifications and predicts design efficiency of cogeneration systems. These systems allow a company to use excess energy produced to generate electricity. PRESTO is utilized by the Energy Systems Division of Thermo Electron Corporation in the custom design of cogeneration systems.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Wyoming. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested in the Wyoming Public Service Commission. The Commission is comprised of three members appointed by the Governor with the advice and consent of the state senate. Each member of the Commission serves a six-year term and no more than two members may be from the same political party. The Commission has exclusive regulatory authority over public utilities. The statutory definition of public utility, however, does not include municipally-owned and operated utility systems to the extent they provide services within the municipality. Such utilities are regulated locally. The Commission reviews no documentation of rates or services of municipallyy-owned systems. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Impacts of solar energy utilization

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Various methods of conducting surveys and analyses to determine the attitude of the public toward the energy crisis are discussed. Models to determine the impact of the energy crisis and proposed alternative sources of energy on the social structure are analyzed. The various interest groups which are concerned with energy and the nature of their interest are identified. The government structure for controlling resource production and allocation is defined.

  3. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect

    Akhil, Abbas Ali; Yamane, Mike; Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into

  4. Overview of waste heat utilization systems

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  5. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. PMID:26798020

  6. Comparison of growth and efficiency of dietary energy utilization by growing pigs offered feeding programs based on the metabolizable energy or the net energy system.

    PubMed

    Acosta, J; Patience, J F; Boyd, R D

    2016-04-01

    The NE system describes the useful energy available for growth better than the ME system. The use of NE in diet formulation should maintain growth performance and carcass parameters when diets contain a diversity of ingredients. This study compared the growth performance of pigs on diets formulated using either the ME or the NE system. A total of 944 gilts and 1,110 castrates (40.8 ± 2.0 kg initial BW) were allotted to group pens and assigned to 1 of 5 different feeding programs according to a randomized complete block design. The 5 treatments included: a corn-soybean meal control diet (CTL), a corn-soybean meal diet plus corn distiller's dried grains with solubles (DDGS), formulated to be equal in ME to the CTL diet (ME-D), a corn-soybean meal diet plus corn DDGS, formulated to be equal in NE to the CTL diet (NE-D), a corn-soybean meal diet plus corn DDGS and corn germ meal, to be equal in ME to the CTL diet (ME-DC) and a corn-soybean meal diet plus corn DDGS and corn germ meal, formulated to be equal in NE to the CTL diet (NE-DC). When required, fat was added as an energy source. Pigs were harvested at an average BW of 130.3 ± 4.0 kg. Growth performance was not affected by treatment ( = 0.581, = 0. 177, and = 0.187 for ADG, ADFI, and G:F, respectively). However, carcass growth decreased with the addition of coproducts except for the NE-D treatment ( = 0.016, = 0.001, = 0.018, = 0.010, and = 0.010 for dressing percentage, HCW, carcass ADG, back fat, and loin depth, respectively). Carcass G:F and lean percentage did not differ among treatments ( = 0.109 and = 0.433, respectively). On the other hand, NE intake decreased ( = 0.035) similarly to that of carcass gain, suggesting a relationship between NE intake and energy retention. Calculations of NE per kilogram of BW gain differed among treatments ( = 0.010), but NE per kilogram of carcass was similar among treatments ( = 0.640). This suggests that NE may be better than ME at explaining the carcass results

  7. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  8. Biomimetic utilization of solar energy

    NASA Astrophysics Data System (ADS)

    Dzhabiev, T. S.; Shilov, Aleksandr E.

    2012-12-01

    The most interesting recent publications dealing with so-called artificial photosynthesis, i.e., the development of photocatalytic converters of solar energy to the chemical bond energy using the fundamental principles of natural oxygenic photosynthesis, are discussed. The key stages of photosynthesis that should be reproduced in the artificial converters include light harvesting and transport of the light quantum to reaction centres where photoinduced charge separation occurs to give elementary reducing agents and oxidants (electrons and holes). The dark catalytic reactions involving the elementary reducing agents and oxidants give stable end products, namely, dioxygen and carbohydrates in the natural photosynthesis or dioxygen and hydrogen in the artificial photosynthesis. The bibliography includes 99 references.

  9. Evaluation of the utility and energy monitoring and control system installed at the US Army, Europe, 409th Base Support Battalion, Military Community at Grafenwoehr, Germany

    SciTech Connect

    Broders, M.A.; Ruppel, F.R.

    1993-05-01

    Under the provisions of Interagency Agreement DOE 1938-B090-A1 between the US Department of Energy (DOE) and the US Army Europe (USAREUR), Martin Marietta Energy Systems, Inc., is providing technical assistance to USAREUR in the areas of computer science, information engineering, energy studies, and engineering and systems development. One of the initial projects authorized under this interagency agreement is the evaluation of utility and energy monitoring and control systems (UEMCSs) installed at selected US Army installations in Europe. This report is an evaluation of the overall energy-conservation effectiveness and use of the UEMCS at the 409th Base Support Battalion located in Grafenwoehr, Germany. The 409th Base Support Battalion is a large USAREUR military training facility that comprises a large training area, leased housing, the main post area, and the camp areas that include Camps Aachen, Algier, Normandy, Cheb, and Kasserine. All of these facilities are consumers of electrical and thermal energy. However, only buildings and facilities in the main post area and Camps Aachen, Algier, and Normandy are under the control of the UEMCS. The focus of this evaluation report is on these specific areas. Recommendations to further increase energy and cost savings and to improve operation of the UEMCS are proposed.

  10. Solar: A Clean Energy Source for Utilities

    SciTech Connect

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  11. Fixed pitch wind turbine system utilizing aerodynamic stall

    SciTech Connect

    Migliori, A.; Humphrey, J.; Midyette, J. III

    1984-01-24

    A fixed-pitch wind turbine system utilizing a permanent magnet alternator. Optimum output power is achieved by controlling the load on the stator output armature of the permanent magnet alternator. Energy is stored in the ac utility grid utilizing a synchronous inverter which couples energy from the alternator for storage in the ac utility grid in a controlled manner to regulate the rotational speed of the wind turbine and thereby extract a substantially optimum amount of output power from the wind turbine.

  12. Integrated Renewable Hydrogen Utility System

    SciTech Connect

    Proton Energy Systems

    2003-04-01

    Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power

  13. Utility battery storage systems. Program report for FY95

    SciTech Connect

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  14. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in North Carolina. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Under the Public Utilities Act of 1965, utilities in North Carolina are regulated by the State's Utility Commission. The Commission consists of seven members who are appointed by the governor, subject to confirmation by the General Assembly sitting in joint session. The Commissioners serve eight year terms and the governor designates one of the commissioners as chairman. The Commission has an office of the executive director, who is appointed to a six year term by the governor subject to confirmaion by the General Assembly. The executive director heads the Commission's public staff. The public staff's duties include reviewing, investigating, and making recommendations on utility rates and services and intervention on behalf of the public in proceedings affecting consumer rates and generating plant certification. The Commission has the same power to regulate the operation of privately-owned public utilities within municipalities as it has to control those ouside. The only power over privately-owned utilities reserved to the municipalities is the power to grant franchises. A municipality may maintain its own utility systems, and such systems are not subject to the control and jurisdiction of the Commission. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  15. Polymers in solar energy utilization

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Coulter, D. R.; Dao, C.; Gupta, A.

    1983-01-01

    A laser photoacoustic technique (LPAT) has been verified for performing accelerated life testing of outdoor photooxidation of polymeric materials used in solar energy applications. Samples of the material under test are placed in a chamber with a sensitive microphone, then exposed to chopped laser radiation. The sample absorbs the light and converts it to heat by a nonradiative deexcitation process, thereby reducing pressure fluctuations within the cell. The acoustic signal detected by the microphone is directly proportional to the amount of light absorbed by the specimen. Tests were performed with samples of ethylene/methylacrylate copolymer (EMA) reprecipitated from hot cyclohexane, compressed, and molded into thin (25-50 microns) films. The films were exposed outdoors and sampled by LPAT weekly. The linearity of the light absorbed with respect to the acoustic signal was verified.Correlations were established between the photoacoustic behavior of the materials aged outdoors and the same kinds of samples cooled and heated in a controlled environment reactor. The reactor tests were validated for predicting outdoor exosures up to 55 days.

  16. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  17. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    ERIC Educational Resources Information Center

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  18. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  19. Smart data acquisition system for utilities metering

    NASA Astrophysics Data System (ADS)

    Ileana, I.; Risteiu, M.; Tulbure, A.; Rusu, M.

    2009-01-01

    The paper approaches the task of automatically reading and recognition of registered data on the utility meters of the users and is a part of a more complex project of our team concerning the remote data acquisition from industrial processes. A huge amount of utility meters in our country is of mechanical type without remote acquiring facilities and as an intermediate solution we propose an intelligent optical acquisition system which will store the read values in desktop and mobile devices. The main requirements of such a system are: portability, data reading accuracy, fast processing and energy independence. The paper analyses several solutions (including Artificial Neural Networks approach) tested by our team and present the experimental results and our conclusions.

  20. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in the United States. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is a summary of a series of preliminary reports describing the laws and regulatory programs of the United states and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). A brief summary of public utility regulatory programs, energy facility siting programs, and municipal franchising authority is presented in this report to identify how such programs and authority may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. Subsequent reports will (1) describe public utility rate regulatory procedures and practices as they might affect an ICES, (2) analyze each of the aforementioned regulatory programs to identify impediments to the development of ICES, and (3) recommend potential changes in legislation and regulatory practices and procedures to overcome such impediments.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in California. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Constitution of the State of California grants to the Legislature control over persons and private corporations that own or operate a line, plant, or system for the production, generation, or transmission of heat, light, water, or power to be furnished either directly or indirectly to or for the public. The Constitution establishes the Public Utilities Commission and grants certain specific powers to the PUC, including the power to fix rates, establish rules and prescribe a uniform system of accounts. The Constitution also recognizes that the Legislature has plenary power to confer additional authority and jurisdiction upon the PUC. The Constitution prohibits regulation by a city, county, or other municipal body of matters over which the Legislature has granted regulatory power to the PUC. This provision does not, however, impair the right of any city to grant franchises for public utilities. The California legislature has enacted the California Public Utilities Code and has designated the PUC as the agency to implement the regulatory provisions of the Code. The Public Utilities Commission consists of five members appointed by the governor and approved by the senate, a majority of the membership concurring, for staggered 6-year terms. Certain limited powers over the conduct of public utilities may still be exercised by municipalities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in South Dakota. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The South Dakota Public Utilities Commission is authorized by statute to regulate gas and electric utilities. The Commission consists of three elected commissioners each of whom serves for a six year term. The Commissioners are elected by district and each must, at the time of election, be a resident of the district from which he has been elected. Each Commissioner must reside in the state capital and devote his entire time to the duties of his office. The Commission is part of the Department of Commerce and Consumer Protection. Municipal power to regulate privately owned electric and gas public utilities was terminated in 1975. A municipally-owned electric utility has the authority to regulate the sale, use, and rates of electric power and energy which it provides. The Commission has no authority to regulate steam, heat, and refrigeration systems; that power resides in cities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  3. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  4. Solar energy utilization by physical methods.

    PubMed

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  5. Technology assessment of solar energy systems: availability and impacts of woody biomass utilization in the Pacific Northwest

    SciTech Connect

    Hopp, W.J.; Chockie, A.D.; Allwine, K.J.

    1981-09-01

    The estimates of the biomass resource base in the Northwest are reviewed for comparison with scenarios used and a preliminary analysis of the issues involved in the collection and use of forest residues as an energy resource is presented. Four issues are reviewed that may serve to constrain the total amount of wood residues available for use as fuel. (MHR)

  6. Plasma characteristics of single- and dual-electrode ion source systems utilized in low-energy ion extraction

    SciTech Connect

    Vasquez, M. R.; Tokumura, S.; Kasuya, T.; Wada, M.

    2014-02-15

    Discharge characteristics in the upstream as well as in the downstream regions of a 50-eV positive ion beam were measured along the beam axis. Single- and dual-electrode configurations made of 0.1-mm diameter tungsten wires were tested. By varying the upstream discharge parameters, the shape of the sheath edge around the extractors, which can either be “planar” or “cylindrical,” can be controlled. The sheath eventually affected the simultaneous extraction of ions and neutralizing electrons. The dual-electrode configuration at the lower discharge current, revealed a homogeneous discharge downstream. At this condition, the edge of the sheath can be inferred to be “planar” which allowed the uniform extraction and propagation of low-energy ions at longer distances. The dual-electrode configuration was capable of transmitting low-energy ions up to 70 mm downstream.

  7. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Arizona. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is one of a series of preliminary reports describing the laws and regulatory programs of the United States and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. This report describes laws and regulatory programs in Arizona. The Arizona state constitution establishes the Arizona Corporation Commission to regulate public service corporations. Within the area of its jurisdiction, the Commission has exclusive power and may not be interfered with by the legislature except in one narrow instance as described in the case Corporation Commission v. Pacific Greyhound Lines.

  8. The FY1992 survey on multi-purpose dam and energy utilization system by the wind power generation eration

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The wind power generation for power supply necessary for pumping for water-use works using underground dam which were pushed at Miyako Island, Okinawa is described. The survey aims to study economic effects of introduction of the wind power generation system by setting areas for irrigation. The field area, which is irrigable by three units of USW's 100kW wind power generator as a load follow-up system, is 100ha. Surplus power, when purchased by power companies, is appropriated for maintenance cost for irrigation and makes farmers' running cost nothing. Even though depreciation expenses and interest rates of the initial cost which is construction cost of the wind power generation system are borne, the system possibly pays. Since a public subsidy is expected to be given to the initial cost portion, burdens of farmers become much lighter. By using an inverter pump system, the number of operated pumps and the revolution number of the pump can be controlled so as to make all output of the wind turbine consume as power of the pump. So the system which is minimum in running cost can be obtained.

  9. Utilization of secondary energy resources at Magnitogorsk Metallurgical Combine

    NASA Astrophysics Data System (ADS)

    Ermolaev, V. N.; Klyuvgant, V. I.

    1982-12-01

    Savings obtained by the use of secondary thermal and energy resources at Magnitogorsk Metallurgical Combine during the period of the 10th five year plan are reviewed. These savings were obtained by fuller utilization of these resources, e.g., fuel from the use of blast furnace and coke oven gases and steam from boiler utilizers and evaporative cooling systems. The savings achieved were substantial.

  10. Hybrid community energy systems.

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Karvelas, D. E.; Energy Systems

    2000-01-01

    The availability of efficient, economical, and reliable energy supplies can help attract industry and commercial businesses to a municipality or a region. Efficient use of energy can also improve the air quality and reduce pollution. Therefore, municipalities should explore and encourage the development and implementation of efficient energy systems. Integrated hybrid energy systems can be designed to meet the total energy requirements of large and small communities. These systems can yield significant energy and cost savings when compared with independent systems serving individual units or when compared with the conventional practice of buying power from a utility and producing thermal energy on-site. To maximize energy and cost savings, the design engineer should look beyond the conventional when designing such systems.

  11. Earth to space dc to dc power transmission system utilizing a microwave beam as source of energy for electric propelled interorbital vehicles

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1985-01-01

    The paper contributes to the credibility of an electric propelled interorbital transportation system by introducing a new low-mass source of continuous dc power for electric propulsion and illustrating how the source can be economically tied to an electric utility on earth by an electronically steered microwave beam. The new thin-film rectenna, which functions as the receiving end of an earth-to-space microwave power transmission system is described. It is easily fabricated, is over 80 percent efficient, has a specific mass of no more than 2 kilograms per kilowatt of continuous dc power output, and is well adapted for deployment in space. The paper then describes a complete system consisting of the interorbital vehicle and the microwave power transmission system that supplies it with power. A design scenario is used to obtain performance data from the system in terms of vehicle transfer times, payload fractions, and costs. Electric energy costs are found to be less than $1000 per kilogram of payload delivered to geosynchronous orbit from low-earth orbit.

  12. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  13. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  14. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    NASA Astrophysics Data System (ADS)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  15. Advanced system demonstration for utilization of biomass as an energy source. Volume 1: Scope and design criteria and project summary

    NASA Astrophysics Data System (ADS)

    1980-10-01

    A generic design is presented for biomass conversion facilities located anywhere biomass is abundant. The plant, its concept of operation, and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and its equipment and facilities are discussed as well as noise control, reliability, maintainability, and safety. The results of studies relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  16. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    SciTech Connect

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  17. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  18. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  19. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  20. Public utilities supply solar energy to eager customers

    SciTech Connect

    1995-01-01

    This articles examines how photovoltaic power is an alternative source of energy that can help utilities earn goodwill from their customers for being innovative, saving money, and reducing harmful emissions. Planners at municipal utilities are discovering the advantages that photovoltaic (PV) power offers. In addition to the thousands of private, federal, state, and commercial PV systems installed during the last 20 years, more than 65 cities in 24 states also have installed such systems. PV power is cost effective in selected utility applications today, and those applications are expanding every year. PV can be useful in applications ranging from low-power uses to decentralized applications to large, central stations. Public utilities in Austin and Sacramento are among those successfully using PV power for all three types of applications.

  1. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    SciTech Connect

    Not Available

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  2. Desalting system utilizing solar energy

    SciTech Connect

    Iida, T.

    1985-06-25

    A heat-transfer medium is heated by a solar heat collector and then adiabatically compressed. The heat-transfer medium thus compressed exchanges heat with the seawater to heat it, and is then adiabatically expanded with the heated seawater being evaporated and the steam thus produced, upon heat exchange with the seawater, changed into fresh water.

  3. Research on Utilization of Geo-Energy

    NASA Astrophysics Data System (ADS)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  4. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Connecticut. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Connecticut statutes expressly provide for the regulation of public utilities. As of January 1, 1979, responsibility for the regulation of utilities is vested in the Public Utilities Control Authority (PUCA). Formerly such authority was exercised by the Public Utilities Commission which has been abolished and replaced by the PUCA. The Public Utilities Act provides that the PUCA is to consist of five members appointed by the governor with the advice and consent of both houses of the general assembly. It should be noted that statutory references to the Public Utilities Commission are deemed to mean the Public Utilities Control Authority. The statute gives only a minor role to local government in regulating public utilities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  5. Knee System Utilizing Personalized Solutions Instrumentation

    MedlinePlus

    ATTUNE® Knee System utilizing the TRUMATCH® Personalized Solutions Instrumentation Click Here to view the BroadcastMed, Inc. Privacy Policy and Legal Notice © 2016 BroadcastMed, Inc. All rights reserved.

  6. Wind Energy Systems.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  7. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  8. Waste heat utilization in an anaerobic digestion system

    NASA Astrophysics Data System (ADS)

    Boissevain, Brett

    Anaerobic digestion has great potential as an energy source. Not only does it provide an effective method for waste mitigation, but it has the potential to generate significant quantities of fuel and electricity. In order to ensure efficient digestion and biomass utilization, however, the system must be continuously maintained at elevated temperatures. It is technically feasible to supplement such a system with outside energy, but it is more cost effective to heat the system using only the produced biogas. While there is considerable literature covering the theory of anaerobic digestion, there are very few practical studies to show how heat utilization affects system operation. This study considers the effect of major design variables (i.e. heat exchanger efficiencies and biogas conditioning) on promoting a completely self-sustaining digestion system. The thesis considers a real world system and analyzes how it can be improved to avoid the need of an external energy source.

  9. Technology Utilization House Study Report. [For Energy Conservation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of Project TECH are: (1) to construct a single family detached dwelling for demonstrating the application of advanced technology and minimizing the requirement for energy and utility services, and (2) to help influence future development in home construction by defining the interaction of integrated energy and water management systems with building configuration and construction materials. Components and methods expected to be cost effective over a 20 year span were studied. Emphasis was placed on the utilization of natural heating and cooling characteristics. Orientation and location of windows, landscaping, natural ventilation, and characteristics of the local climate and microclimate were intended to be used to best advantage. Energy conserving homes are most efficient when design for specific sites, therefore project TECH should not be considered a prototype design suitable for all locations. However, it does provide ideas and analytical methods which can be applied to some degree in all housing.

  10. Cue System Utilization among Beginning Readers.

    ERIC Educational Resources Information Center

    Englander, Meryl; Harste, Jerome

    A study was conducted to determine which of three major cue systems (linguistic, cognitive, or extralinguistic) 146 subjects at the kindergarten, first grade and second grade levels used to reconstruct meaning when confronted with a reading task. Cue system utilization was related to four factors: modality (listening versus reading), reading…

  11. Maximizing Resource Utilization in Video Streaming Systems

    ERIC Educational Resources Information Center

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  12. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Indiana. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Public Service Commission of Indiana. The Commission is comprised of three members appointed by the governor. Commissioners are appointed for four-year terms. They must be free from any employment or pecuniary interest in any public utility. Indiana courts have stated that the Commission was created and vested with regulatory authority over public utilities in order to relieve these utilities from local regulation. Local governments do, however, have specific statutory authority to determine, by contract or ordinance, the quality and character of service to be provided by public utilities within the municipality. Local governments may also regulate the use of streets and other public property by public utilities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  13. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alabama. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alabama legislature has created the Public Service Commission which has general supervisory powers over utilities. The PSC consists of a president and two associates, who are elected to four-year terms. The PSC has no jurisdiction over municipal utilities and, as a result, local governments retain the power to regulate the operation of their municipally-owned utilities. Municipalities also retain their police power over streets and highways within their territory. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  14. The potential benefit of an advanced integrated utility system

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1975-01-01

    The applicability of an advanced integrated utility system based on 1980 technology was investigated. An example of such a system, which provides electricity, heating and air conditioning, solid waste disposal, and water treatment in a single integrated plant, is illustrated for a hypothetical apartment complex. The system requires approximately 50 percent of the energy and approximately 55 percent of the water that would be required by a typical current conventional system.

  15. Benchmarking the performance of density functional theory based Green's function formalism utilizing different self-energy models in calculating electronic transmission through molecular systems.

    PubMed

    Prociuk, Alexander; Van Kuiken, Ben; Dunietz, Barry D

    2006-11-28

    Electronic transmission through a metal-molecule-metal system is calculated by employing a Green's function formalism in the scattering based scheme. Self-energy models representing the bulk and the potential bias are used to describe electron transport through the molecular system. Different self-energies can be defined by varying the partition between device and bulk regions of the metal-molecule-metal model system. In addition, the self-energies are calculated with different representations of the bulk through its Green's function. In this work, the dependence of the calculated transmission on varying the self-energy subspaces is benchmarked. The calculated transmission is monitored with respect to the different choices defining the self-energy model. In this report, we focus on one-dimensional model systems with electronic structures calculated at the density functional level of theory. PMID:17144733

  16. Study of Lyndon B. Johnson Space Center utility systems

    NASA Technical Reports Server (NTRS)

    Redding, T. E.; Huber, W. C.

    1977-01-01

    The results of an engineering study of potential energy saving utility system modifications for the NASA Lyndon B. Johnson Space Center are presented. The objective of the study was to define and analyze utility options that would provide facility energy savings in addition to the approximately 25 percent already achieved through an energy loads reduction program. A systems engineering approach was used to determine total system energy and cost savings resulting from each of the ten major options investigated. The results reported include detailed cost analyses and cost comparisons of various options. Cost are projected to the year 2000. Also included are a brief description of a mathematical model used for the analysis and the rationale used for a site survey to select buildings suitable for analysis.

  17. Doing business with business: Municipal utility energy audits

    SciTech Connect

    1995-12-01

    This article is a review of the ways in which municipal utilities can use energy audits to identify the energy efficiency measures that are most effective for themselves and their customers. Two examples, Osage Municipal Utilities in Iowa and Sacramento Municipal Utility District in California, are used to illustrate the strategies that are most cost effective.

  18. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  19. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    SciTech Connect

    Not Available

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  20. Environmental impacts of utility-scale solar energy

    USGS Publications Warehouse

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in New Hampshire. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Public utilities in New Hampshire are regulated by the Public Utilities Commission. The Commission is comprised of three members appointed for six-year terms by the Governor with the advice and consent of the council. Members of the Commission must be free from any employment or pecuniary interests in any public utility. The Commission is charged with the general regulation and supervision of public utilities. Within the purview of its powers, the authority of the Commission supercedes that of local government. The Commission may suspend the operation of local zoning laws. Local governments do retain the right to license the use of public ways by utilities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Utah. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Utah Public Service Commission comprised of three members appointed by the governor with the consent of the State Senate. Commission members are appointed for six-year terms and must be free from employment and pecuniary interests incompatible with the duties of the Commission. The Commission is charged with the general supervision of public utilities, but its authority does not extend to municipally-owned utilities. Local governments are forbidden from exercising any regulatory powers over public utilities unless the utility is municipally-owned. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  3. Energy utilization: municipal waste incineration. Final report

    SciTech Connect

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  4. Penetration of wind electric conversion systems into the utility grid

    SciTech Connect

    Vachtsevanos, G.J.; Kalaitzakis, K.C.

    1985-07-01

    This paper is concerned with the development of appropriate models for the interconnected operation of wind generator clusters with an autonomous power system and simulation techniques for the study of the degree of penetration of such wind electric conversion devices when operating in parallel with the utility grid. The quality of the interconnected system performance is specified in terms of operational constraints and the resultant penetration strategy is implemented via a microprocessor-based control scheme. The strategy assures a satisfactory level of system performance while optimizing the available energy transfer from the wind generators to the utility grid.

  5. COMMERCIAL UTILITY FLUE GAS DESULFURIZATION SYSTEMS

    EPA Science Inventory

    The article discusses the current status of commercial flue gas desulfurization (FGD) processes applied to coal-fired utility boilers in the U.S. Major objectives of the work were to examine the impacts of the 1979 New Source Performance Standards on FGD system design and operati...

  6. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  7. Impact of alternative energy forms on public utilities

    NASA Technical Reports Server (NTRS)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  8. High slot utilization systems for electric machines

    SciTech Connect

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  9. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in West Virginia. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the West Virginia Public Service Commission, comprised of three members appointed by the governor with the advice and consent of the state senate. Commissioners are appointed for six year terms. They must be free from any pecuniary or employment interest in public utilities. The Commission possesses the exclusive authority to regulate public utilities. While local governments retain the power to control the use of their streets and to grant franchises to public utilities, they cannot use this power to infringe on the exercise of regulatory power by the Commission. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  10. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Tennessee. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Tennessee Public Service Commission has been designated by the legislature as the agency primarily responsible for the regulation of public utilities and carriers. The Commission is comprised of three members elected by the voters of the state. Each member of the Commission serves a six-year term. The Commission is given broad supervisory control over public utilities in the public utilities statute. Included under its authority is the power to determine whether a privilege or franchise granted to a public utility by a municipality is necessary and proper for the public convenience. No privilege or franchise is valid until it has been approved by the Commission. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  11. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Oregon. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Public Utility Commissioner of Oregon. The Commissioner is appointed by the governor, subject to confirmation by the senate, for a term of four years. He must be free of any pecuniary or employment interest in any business subject to the jurisdiction of the Commissioner. While the Commissioner is primarily responsible for regulating public utilities, local governments do retain some control over utility operations within municipal boundaries. A local government may determine by contract or prescribe by ordinance the quality and character of service furnished by a public utility and may control the use of streets and other public property by public utilities. Municipalities may require public utilities to make any modifications, additions, or extensions to facilities as are necessary to the public interest. In addition, local governments may fix, by contract or ordinance, the rates to be charged by public utilities furnishing service within a municipality. The Commissioner, however, has the power to review any of the above-described local actions. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  12. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Arkansas. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Arkansas state constitution contains no provision dealing with public utility regulation. Title 73 of the Arkansas Statutes specifically provides for the regulation of public utilities. The Arkansas Public Service Commission is established by statute as a subagency of the Department of Commerce and is responsible for regulating electric, steam heating, and certain other kinds of utilities. The Commission consists of three members, each appointed by the governor with the approval of the Senate for a term of six years. The Commission has authority over all matters pertaining to the regulation and operation of gas companies, electric companies, and hydro-electric companies among other utilities enumerated in the statute. The role of local governments in the regulation of public utilities has been reduced by recent legislation. Municipal councils formerly had the power to regulate rate-making for investor owned utilities operating within their boundaries. However, as a result of 1977 amendments to the Public Utilities Act, ratemaking for privately owned electric, gas, telephone, and sewer utilities is now within the exclusive jurisdiction of the Public Service Commission. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  13. Healthcare Utilization Monitoring System in Korea

    PubMed Central

    Shin, Hyun Chul; Lee, Youn Tae; Jo, Emmanuel C.

    2015-01-01

    Objectives It is important to monitor the healthcare utilization of patients at the national level to make evidence-based policy decisions and manage the nation's healthcare sector. The Health Insurance Review & Assessment Service (HIRA) has run a Healthcare Utilization Monitoring System (HUMS) since 2008. The objective of this paper is to introduce HIRA's HUMS. Methods This study described the HUMS's system structure, capacity, functionalities, and output formats run by HIRA in the Republic of Korea. Regarding output formats, this study extracted diabetes related health insurance claims through the HUMS from August 1, 2014 to May 31, 2015. Results The HUMS has kept records of health insurance claim data for 4 years. It has a 14-terabyte hardware capacity and employs several easy-to-use programs for maintenance of the system, such as MSTR, SAS, etc. Regarding functionalities, users should input diseases codes, target periods, facility types, and types of attributes, such as the number of healthcare utilizations or healthcare costs. It also has a functionality to predict healthcare utilization and costs. When this study extracted diabetes related data, it was found that the trend of healthcare costs for the treatment of diabetes and the number of patients with diabetes were increasing. Conclusions HIRA's HUMS works well to monitor healthcare utilization of patients at the national level. The HUMS has a high-capacity hardware infrastructure and several operational programs that allows easy access to summaries as well as details to identify contributing factors for abnormality, but it has a limitation in that there is often a time lag between the provision of healthcare to patients and the filing of health claims. PMID:26279955

  14. Workshop on electric utility systems modeling

    SciTech Connect

    Prasad, R.; Kittur, R.; Walker, R.; Marten, D.

    1992-01-01

    The primary objective of this workshop is to obtain a clear understanding of the various details involved in developing electric utility models from public-domain information. The workshop is aimed at providing a thorough tutorial and a hands-on exercise in developing a set of relational databases that can be used to analyze the behavior of selected power systems. Because of several modeling details that can be utility-specific, issues that are common among all systems need to be addressed. These common issues include: Data collection from public-domain sources; generation of connectivity diagrams; generation/load/tie-line MW assignments; parameter database creation (.DAT); development of one-line database (.OL); development of geographic database (.GEO); error-checking between databases; development of power-flow data files (.DCD and IEE); and power-flow analysis

  15. Workshop on electric utility systems modeling

    SciTech Connect

    Prasad, R.; Kittur, R.; Walker, R.; Marten, D.

    1992-12-31

    The primary objective of this workshop is to obtain a clear understanding of the various details involved in developing electric utility models from public-domain information. The workshop is aimed at providing a thorough tutorial and a hands-on exercise in developing a set of relational databases that can be used to analyze the behavior of selected power systems. Because of several modeling details that can be utility-specific, issues that are common among all systems need to be addressed. These common issues include: Data collection from public-domain sources; generation of connectivity diagrams; generation/load/tie-line MW assignments; parameter database creation (.DAT); development of one-line database (.OL); development of geographic database (.GEO); error-checking between databases; development of power-flow data files (.DCD and IEE); and power-flow analysis

  16. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in South Carolina. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Pursuant to constitutional South Carolina mandate the General Assembly has created the Public Service Commission. The Commission is composed of seven members elected to four year terms by the General Assembly. One commissioner is elected from each of seven districts corresponding to the congressional districts as they existed as of January 1, 1930. The commissioners elect one of their members as chairman. The South Carolina statutes contain separate chapters dealing with the regulation of public utilities and electric utilities. Public utility includes the furnishing of gas or heat (other than by means of electricity) to the public. While the Commission is granted general supervisory and regulatory powers over public utilities and electric utilities, total governments retain some control over electrical utilities. All municipality's have the power to grant exclusive franchises to such utilities for the furnishing of light to the municipality and its inhabitants. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  17. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Minnesota. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Minnesota Public Service Commission (PSC) in the Department of Public Service is authorized by statute to regulate public utilities. The PSC consists of five members appointed by the governor with the advice and consent of the senate to terms running for six years. Not more than three commissioners are to belong to the same political party. The commissioners are not to derive any significant portion of their income directly or indirectly from any public utility. Municipalities also have a limited role in the regulation of public utilities. If the municipality controls the exercise of a public utility franchise, it is authorized to assist the PSC as amicus curiae in proceedings with respect to the rates, fares, prices, regulation, or control of a utility operating in the municipality. Municipal utilities are exempt from regulation by the PSC because municipal utilities are presently effectively regulated by the residents of the municipalities which own and operate them. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  18. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Missouri. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Missouri is vested in the Public Service Commission. The Commission is composed of five members who are appointed by the governor with the advice and consent of the senate. Commissioners are appointed for a term of six years. Commissioners must be free from any employment or pecuniary interests incompatible with the duties of the Commission. The Commission is charged with the general supervision of public utilities. The Public Service Commission Law passed in 1913, makes no provision for the regulation of public utilities by municipalities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  19. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Delaware. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The regulation of public utilities in Delaware is the responsibility of the Public Service Commission (PSC). The PSC consists of five commissioners appointed by the governor and confirmed by a majority of the senate for terms of five years each. Not more than three members are to be from the same political party. One member is to be a resident of Kent County, one of Sussex County, one of the City of Wilmington, and two members are to be of New Castle County outside of Wilmington. Local governments retain control over the rates, property, equipment, facilities, and franchises of municipally owned utilities. Such utilities are expressly exempted from PSC regulation. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  20. Geothermal energy in Nevada: development and utilization

    SciTech Connect

    Not Available

    1982-01-01

    The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

  1. Molten salt thermal energy storage for utility peaking loads

    NASA Technical Reports Server (NTRS)

    Ferrara, A.; Haslett, R.; Joyce, J.

    1977-01-01

    This paper considers the use of thermal energy storage (TES) in molten salts to increase the capacity of power plants. Five existing fossil and nuclear electric utility plants were selected as representative of current technology. A review of system load diagrams indicated that TES to meet loads over 95% of peak was a reasonable goal. Alternate TES heat exchanger locations were evaluated, showing that the stored energy should be used either for feedwater heating or to generate steam for an auxiliary power cycle. Specific salts for each concept are recommended. Design layouts were prepared for one plant, and it was shown that a TES tube/shell heat exchanger system could provide about 7% peaking capability at lower cost than adding steam generation capacity. Promising alternate heat exchanger concepts were also identified.

  2. Methods for the photochemical utilization of solar energy

    NASA Technical Reports Server (NTRS)

    Schwerzel, R. E.

    1978-01-01

    The paper considers the 'ground rules' which govern the efficiency of photochemical solar energy conversion and then summarizes the most promising approaches in each of three categories: photochemically assisted thermal systems for the heating and/or cooling of structures; photogalvanic systems for the production of electrical power in applications, such as photorechargeable batteries or inexpensive 'solar cells'; and photochemical formation of fuels for combustion and for use as chemical feedstocks or foods. Three concepts for the photochemical utilization of solar energy in space are found to be particularly promising: (1) photochemical trans-cis isomerization of indigold dyes for photoassisted heating or cooling, (2) the redox stabilized photoelectrolysis cell for the production of hydrogen (and/or oxygen or other useful chemicals), and (3) the liquid-junction photovoltaic cell for the production of electrical power.

  3. Utility investments in low-income energy-efficiency programs

    SciTech Connect

    Brown, M.A.

    1995-06-01

    In the increasingly competitive utility industry, it is imperative that equity programs be as cost-effective as possible. In some cases, this is accomplished by working in partnership with government programs such as the US Department of Energy`s low-income Weatherization Assistance Program. This paper provides an overview of the DSM and conservation programs being operated by utilities for low-income customers and describes the types of utility-government partnerships that exist.

  4. Adaptable formations utilizing heterogeneous unmanned systems

    NASA Astrophysics Data System (ADS)

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  5. Solar energy, its conversion and utilization

    NASA Technical Reports Server (NTRS)

    Farber, E. A.

    1972-01-01

    The work being carried out at the University of Florida Solar Energy and Energy Conversion Laboratory in converting solar energy, our only income, into other needed and useful forms of energy is described. A treatment such as this demonstrates, in proper perspective, how solar energy can benefit mankind with its many problems of shortages and pollution. Descriptions were given of the conversion processes, equipment, and performance. The testing of materials, solar water heating, space heating, cooking and baking, solar distillation, refrigeration and air-conditioning, work with the solar furnace, conversion to mechanical power, hot air engines, solar-heated sewage digestion, conversion to electricity, and other devices will be discussed.

  6. Integrated support systems for electric utility operations

    SciTech Connect

    Hong, H.W.; Imparato, C.F.; Becker, D.L.; Malinowski, J.H. )

    1992-01-01

    Power system dispatch, the real-time monitoring and coordination of transmission and generation facilities, is the focal point of power system operations. However, dispatch is just one of the many duties of the typical power system operations department. Many computer-based tools and systems are used in support of these duties. Energy management systems (EMS), the centralized, mainframe-, or mini-computer-based systems that support dispatch, have been widely publicized, but few of the other support systems have been given much notice. This article provides an overview of these support tools and systems, frames the major issues faced in systems integration, and describes the path taken to integrate EMS, workstations, desktop computers, networks and applications. Network architecture enables the distribution of real-time operations data throughout the company, from EMS to power plants to district offices, on an unprecedented scale.

  7. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Ohio. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Public Utilities Commission (PUCO) is a body created by the Ohio State legislature to administer the provisions of the Ohio Public Utilities Act. It is composed of three commissioners appointed by the governor with the advice and consent of the senate. Once appointed, a commissioner serves for a six-year period. The PUCO is vested with the power and jurisdiction to supervise and regulate public utilities and railroads... . The term public utility includes every corporation, company, co-partnership, person or association, their lessees, trustees, or receivers, as defined in the Ohio Code. Among the various services enumerated in the Code under the definition of public utility are an electric light company; a gas company; a pipeline company transporting gas, oil or coal; a waterworks company; a heating or cooling company. The power to regulate public utilities is shared by the PUCO and municipal governments. The municipal regulatory authority is derived from the Ohio Constitution, statutory provisions, and municipal franchising authority. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  8. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Texas. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Texas is generally vested in the Public Utilities Commission. The Commission is comprised of three members appointed by the governor, with the advice of at least two-thirds of the senate, for a six-year term. Prior to the passage of the Texas Public Utility Regulatory Act (PURA) in 1975, the power to regulate public utilities was vested almost exclusively in municipalities. Under PURA, municipalities retain exclusive original jurisdiction over all electric, water, and sewer utilities within the municipality. PURA provides that all regulations pertaining to public utilities promulgated by local regulatory agencies remain in effect unless they are superceded by Commission rules. The municipality's governing body is required to exercise its regulatory authority under rules and standards consistent with those promulgated by the Commission. The Commission has exclusive appellate jurisdiction to review orders and ordinances of regulatory municipalities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  9. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    SciTech Connect

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  10. Analysis of energy utilization in spinach processing

    SciTech Connect

    Chhinnan, M.S.; Singh, R.P.; Pedersen, L.D.; Carroad, P.A.; Rose, W.W.; Jacob, N.L.

    1980-03-01

    The equipment and methods used to monitor the electrical and thermal energy consumed in various unit operations in a spinach processing plant are described and the results of a processing plant energy audit are presented. It is concluded that it requires 6.5 MJ of natural gas and fuel oil and 0.072 MJ of electric power to process one kg of new spinach; the energy intensive operations in spinach processing are associated with exhaust boxes, blanchers, and retorts; uniform product flow through the canning line is essential to energy conservation; and design improvements are needed for the blancher, exhaust box, and retort. (LCL)

  11. Solar photovoltaic power systems: an electric utility R & d perspective.

    PubMed

    Demeo, E A; Taylor, R W

    1984-04-20

    Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems. PMID:17734901

  12. Renewable energy in electric utility capacity planning: a decomposition approach with application to a Mexican utility

    SciTech Connect

    Staschus, K.

    1985-01-01

    In this dissertation, efficient algorithms for electric-utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase that quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of nondispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The probabilistic second phase uses a Generalized Benders Decomposition approach. Extensive computational tests of the algorithms are reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80% in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali results from this implementation.

  13. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in New Jersey. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate the operations of public utilities in New Jersey is generally vested in the Board of Public Utilities. The Board is subsumed within the Department of Energy for administrative purposes, but functions largely independently of supervision or control by that agency. The Board is composed of three members who serve for six-year terms. They are appointed by the governor with the advice and consent of the senate. Within the purview of its powers, the authority of the Board supersedes that of local governments. The Board, for example, may grant exemptions from local zoning provisions, and has approving authority over privileges or franchises granted by municipalities to public utilities. The Board, however, cannot override the refusal of a municipality to grant consent to the initiation of operations by a public utility. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  14. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  15. Utilizing Internet Technologies in Observatory Control Systems

    NASA Astrophysics Data System (ADS)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  16. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Vermont. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Vermont Public Service Board (PSC). The PSB is comprised of three members appointed by the governor with the advice and consent of the senate. PSB members serve six year terms. Members must be free from any employment or pecuniary interests in any company subject to the supervision of the PSB. Local governments retain little regulatory authority over public utilities. Local governments are responsible for regulating the use of streets and other public property, but any person aggrieved by a local decision may appeal to the PSB within thirty days. The PSB is to review the local action at a public hearing and its decision is final. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  17. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Florida. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Florida Public Service Commission. The Commission is comprised of five members appointed by the governor with the approval of the senate. The governor must choose his appointees from a list of persons recommended by the nine-person Florida Public Service Commission Nominating Council. Commissioners serve either three- or four-year terms. They must be free from any employment or pecuniary interests in any utility subject to the jurisdiction of the Commission. Within the purview of its powers, the authority of the Commission supersedes that of local governments. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  18. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Virginia. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilties is vested generally in the State Corporation Commission. The Commission is comprised of three members elected by a joint vote of the two houses of the general assembly. Commissioners serve six-year terms. They must be free from any employment or pecuniary interests in any company subject to the supervision and regulation of the Commission. The Commission is charged with the primary responsibility of supervising and regulating public utilities. However, local governments retain the power to grant franchises and otherwise regulate the use of streets and other public property. In addition, municipally-owned utilities are not within the jurisdiction of the Commission to the extent that they operate within corporate limits. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  19. Wind energy converter utilizing vortex augmentation

    SciTech Connect

    Edwards, S. S.

    1985-05-14

    A wind energy conversion apparatus is disclosed herein for converting the linear momentum of wind energy into a pair of concentrated, counter-rotating and side-by-side regions of high angular momentum which includes a wing having variable angle of attack positionable forward of the entrance to an elongated duct having a bell mouth including an upper, inner reflex angular surface leading into a bifurcated duct section terminating in a diffuser augmenter at the aft facing area of the duct and which includes propellors operable to extract energy from the angular momentum in the established regions for driving electric generators or generator therefrom.

  20. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Pennsylvania. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is generally vested in the Pennsylvania Public Utility Commission. The Commission is comprised of five members appointed by the governor with the advice and consent of two-thirds of the senate. Commission members are appointed for 10 year terms. They must be free from any employment which is incompatible with the duties of the Commission, and are subject to a statutory code of ethics. The Commission is charged with responsibility for enforcing the Public Utility Law. Within the purview of its powers, the authority of the Commission supersedes that of local governments. The Commission, for example, may grant exemptions from local zoning requirements, and has approving authority over privileges or franchises granted by municipalities to public utilities. The Commission, however, has no authority over municipally owned utilities operating within municipal boundaries. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Georgia. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the Public Service Commission. The Commission is composed of five members elected to six-year terms by the general electorate. Commissioners must be free of employment or pecuniary interests which are incompatible with the duties of the Commission. The Commission is the only agency that may exert regulatory control over public utilities. The legislature has delegated no regulatory authority to local government. Except for the powers incident to granting a franchise and its normal police powers, municipal corporations do not have any role in the supervision of public utilities. The Commission's general supervisory authority does not extend to public utilities owned or operated by municipal corporations. The jurisdiction of the Commission extends to several specific public utilities, including gas or electric light and power companies. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Mississippi. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Mississippi is vested generally in the Public Service Commission, composed of three members elected for four year terms from separate districts of the state. Within the purview of its powers, the authority of the Commission supersedes that of local governments. It is empowered to amend municipal franchises that contain provisions conflicting with its exclusive jurisdiction over the rates and standards of service of public utilities. Local governments play a role in regulating public utilities only through the exercise of their zoning and franchising powers. They may also operate their own utilities which are totally exempt from Commission control, unless they provide services more than one mile beyond their corporate boundaries. Other than a procedure in which certain provisions in municipal franchises may be subject to modification by the Commission, there is no process by which the decisions of local government respecting utilities are reviewed by the Commission. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  3. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Maine. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Maine Supreme Court holds that the regulation of the operations of public utilities is an exercise of the police powers of the state. The legislature has delegated such regulatory authority to the Maine Public Utilities Commission (PUC). The statutes provide no role for local government in the regulation of public utilities. The PUC consists of three full time members, appointed by the Governor subject to review by the Joint Standing Committee on Public Utilities and to confirmation by the Legislature. They each serve seven year terms. One member is designated by the Governor as chairman. The Commission appoints a secretary, assistant secretary, director of transportation, and, with the approval of the Attorney General, a general counsel. A member of the PUC cannot have any official or professional connection or relation with or hold any stock or securities in any public utility. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  4. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Idaho. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Idaho state legislature has created the Idaho Public Utilities Commission and has given the Commission the power and jurisdiction to supervise and regulate every public utility in the state. The Commission is comprised of three members appointed by the governor with the approval of the senate. Commissioners serve full time and are appointed for six year terms. No more than two of the members may be from the same political party. Title 61 of the Idaho Code, which establishes the Commission and delineates its powers, vests all regulatory responsibility in the Commission to the exclusion of local government. However, as an incident to their franchising power, municipalities may impose reasonable regulations on the use of their streets. The Idaho Supreme Court holds that the transfer of regulatory power over public utilities to the Commission did not diminish the powers and duties of municipalities to control and maintain their streets and alleys. Limited statutory authority also exists giving municipalities the power to regulate the fares, rates, rentals, or charges made for the service rendered under any franchise granted in such city, except such as are subject to regulation by the Public Utilities Commission. With the exception of this limited power, the Commission is the sole agency having regulatory power over Idaho public utilities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  5. Hyperspectral imaging utility for transportation systems

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver

    2015-03-01

    The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

  6. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Nebraska. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The state agency with principal authority to regulate electric public utilities is the Power Review Board (Board). However, the Board in fact, exercised little regulatory authority over heat and power utilities because all electrical power in Nebraska is currently supplied by public authorities and is not subject to regulation by the Board. Gas and water utilities are also subject to general supervision by municipalities. The Board is compised of five members - an attorney, an engineer, one accountant, two lay - persons appointed by the governor and confirmed by the legislature. All members are appointed to overlapping four-year terms, and none may serve more than two consecutive terms. Decisions by the Board require the approval of a majority of its members. The Public Service Commission of Nebraska is a constitutionally created body. Its powers and duties include the regulation of rates, service, and general control of common carriers as the legislature may provide by law. Other state agencies also possess limited regulatory jurisdiction which may be relevant to an energy facility. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  7. Pueblo of Laguna Utility Authority Renewable Energy Feasibility Study

    SciTech Connect

    Carolyn Stewart, Red Mountain Tribal Energy

    2008-03-31

    The project, “Renewable Energy Feasibility Study” was designed to expand upon previous work done by the Tribe in evaluating utility formation, generation development opportunities, examining options for creating self-sufficiency in energy matters, and integrating energy management with the Tribe’s economic development goals. The evaluation of project locations and economic analysis, led to a focus primarily on solar projects.

  8. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in New York. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities is vested generally in the New York Public Service Commission. The Commission is composed of five members appointed by the governor with the advice and consent of the senate. Commissioners are appointed for six-year terms. Commissioners may not have any pecuniary or financial interest in any public utility. Local governing bodies are authorized to exercise such power, jurisdiction and authority in enforcing the laws of the state and the orders, rules, and regulations of the commission as may be prescribed by statute or by the commission with respect to public utilities. A Commission spokesman confirmed that no statutes have been passed pursuant to this provision and the Commission has not ceded any of its regulatory powers to local governments. With the exception of the granting of franchises and permits to use public ways, local governments exercise no regulatory powers over public utilities. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  9. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in North Dakota. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The North Dakota Public Service Commission (PSC) is a constitutional body responsible for the regulation of all public utilities. The PSC is composed of three elected commissioners who serve for six year terms. Section 83 of the state's Constitution gives the legislature the power to prescribe the powers and duties of the PCS. Pursuant to this authorization, the legislature adopted Title 49 of the North Dakota Century Code prescribing the jurisdiction as well as the powers and duties of the PSC. It also prescribes various rules and regulations pertaining to electric, gas, and other public utilities. All authority over public utilities is vested in the PSC. Local governments, except for the powers inherent in their franchising and zoning authority, are not given any control over utility regulation. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  10. Solar thermal energy utilization: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  11. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  12. Industrial utilization of waste derived energy

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A technical and economic feasibility study of a partial oxidation unit was conducted. Major objectives of the program were: (1) disposal of both urban (municipal refuse and sewage sludge) and agricultural (dairy) wastes; and (2) the production of a medium-Btu fuel gas. The investigated wasteshed includes those portions of Western San Bernardino County, Eastern Los Angeles County, and Northwestern Riverside County. The available waste supply, transportation of these waste materials, product quantities and energy products of fuel gas steam, and electricity, markets, ferrous metals, aluminum, nonferrous metals, and slag are studied.

  13. Manufactured residential utility wall system (ResCore), overview

    SciTech Connect

    Wendt, R.; Lundell, C.; Lau, T.M.

    1997-05-01

    This paper provides an overview of the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self-contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the residential kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty and students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the US Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a ``layered`` manufacturing technique that allows each major component group--structural, cold water, hot water, drain, gas, electric, etc.--to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

  14. Manufactured Residential Utility Wall System (ResCore),

    SciTech Connect

    Wendt, Robert; Lundell, Clark; Lau, Tin Man

    1997-12-31

    This paper describes the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty, students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the U.S. Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a layered manufacturing technique that allows each major component group: structural, cold water, hot water, drain, gas, electric, etc. to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

  15. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Oklahoma. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Oklahoma Corporation Commission was created by the state constitution, for the purpose of regulating transportation and transmission companies. The Constitution also provides that the Commission may be vested with such additional powers, and charged with such other duties (not inconsistent with this Constitution). Pursuant to this power to regulate the legislature has given the Commission the power to regulate certain public utilities, including electric, gas, and steam. The Commission is composed of three members who are elected to staggered, six-year terms. A commissioner may not have any interests incompatible with the duties of the Commission. The Commission is charged with the general supervision of public utilities. Local governments have no role in the regulation of public utilities although municipalities do have the power to grant franchises. The constitution allows the legislature to pass laws giving cities, towns, and counties the right to regulate the rates and services of their franchises operating within the boundaries of the city, town, or county, although there are no such laws in effect at the present time. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  16. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alaska. Preliminary background report

    SciTech Connect

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alaska Public Utilities Commission is a subagency of the Department of Commerce and Economic Development Department. The Department has general authority to enforce state laws regulating public utilities. The Commission (formerly called the Public Service Commission) was created in 1959. It is made up of five members appointed by the governor and confirmed by the legislature. One of the members is designated by the governor as chairman of the Commission. Members serve six-year terms with the exception of the chairman who serves a four-year term. Members must be qualified as follows: one must be an attorney, one must be an engineer, one must be a graduate of an accredited university with a major in finance, accounting, or business administration, and two must be consumers. The role of local governments in regulating public utilities subject to Commission jurisdiction is limited to the imposition of reasonable fees and conditions for the use of streets and other public property. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  17. (Energy related studies utilizing microline thermochronology)

    SciTech Connect

    Not Available

    1991-01-01

    In our first year of the current funding cycle, we have investigated three interrelated aspects of K-feldspar thermochronology; (1) the Ar diffusion properties and microstructures of K-feldspars, (2) the thermal evolution of the Valles Caldera and (3) the continued development of microanalysis. Results of TEM and light microscopy on heated and unheated samples of MH-10 K-feldspar reveal three classes of substructure are present: (1) cross hatched extinction is common and there is almost no albite/pericline twinning, only tweed microstructure; (2) 5--10 vol. % of this K-feldspar are turbid zones with complex twin and tweed structures at the sub-micron scale and numerous dislocation and strain features; (3) about 20% of the K-feldspar is comprised of 0.01 {times} 0.2-1{mu}m albite exsolution lamellae. The network of fractured/turbid zones divides the sample into blocks of approximately 50 {mu}m and the separation between albite exsolution lamellae produce K-feldspar domains of the order 0.1 {mu}m. Independent crushing and diffusion experiments suggest the scale of the largest domain is order ten's of micron whereas the smallest domain size is inferred to be {approximately}0.1 {mu}m. Many, and perhaps most, alkali feldspars contain diffusion domains with activation energies that may vary by as much as 8 kcal/mol. An extraordinary consequence of even relatively small variations in activation energy between domains is that the shape of an age spectrum can change dramatically by varying the laboratory heating schedule. We have performed {sup 40}Ar/{sup 39}Ar age spectrum experiments on K-feldspar separated from Proterozoic quartz monzonite taken from a depth of 1.76 km down the VC-2B drill hole, Valles Caldera, north-central New Mexcio.

  18. Integrating Solar PV in Utility System Operations

    SciTech Connect

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  19. (Energy related studies utilizing microline thermochronology)

    SciTech Connect

    Not Available

    1989-01-01

    The past two years of research conducted have been fruitful and exciting. Using Microcline Thermochronology (MTC), we have investigated the hydrothermal maturity of the Salton Sea Geothermal Field, potential for hydrocarbon maturation associated with heating due to ridge subduction beneath accretionary prism sediments, developed a single crystal dating system which has proven to greatly enhance interpretations regarding MTC, and also have begun to develop sound theoretical and experimental techniques which truly revolutionize our understanding of argon systematics in K-feldspars.

  20. Energy related studies utilizing microcline thermochronology

    SciTech Connect

    Harrison, T.M.

    1989-11-14

    Using Microcline Thermochronology (MTC), we have investigated the hydrothermal maturity of the Salton Sea Geothermal Field, potential or hydrocarbon maturation associated with heating due to ridge subduction beneath accretionary prism sediments, developed a single crystal dating system which has proven to greatly enhance interpretations regarding MTC, and also have begun to develop sound theoretical and experimental techniques which truly revolutionize our understanding of argon systematics in K-feldspars. The following is a brief synopsis of these projects in accordance with Monitoring and Reporting of Program Performance.''

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Maryland. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The authority to regulate public utilities in Maryland is vested in the Public Service Commission under the authority of the Public Service Commission Law. The Commission consists of five commissioners who are appointed by the governor with the advice and consent of the Senate. Commissioners must be or become citizens of Maryland, at least three are to serve full time, and one of the commissioners is to be nominated as chairman. The tenure of each commissioner is six years and their terms are on a staggered schedule. Commissioners are eligible for reappointment. The Public Service Commission Law provides that the Commission's powers an jurisdiction shall extend to the full extent permitted by the Constitution and laws of the United States. Local governments in Maryland are not given regulatory power over public service companies. The only power that local governments have over the operations of utilities is the power to grant franchises. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Kansas. Preliminary background report

    SciTech Connect

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    The Kansas legislature has created the State Corporation Commission and given the Commission full power, authority, and jurisdiction to supervise and control public utilities. The Commission is empowered to do all things necessary and convenient for the exercise of such power, authority and jurisdiction. The Commission is composed of three members, appointed by the governor by and with the consent of the senate. The Commissioners' appointment is for a four year term. The Commission elects one of its members as chairperson. The Kansas statutes provides that the power and authority to control and regulate all public utilities and common carriers situated and operated wholly or principally within any city or principally operated for the benefit of such city or its people, shall be vested exclusively in such city. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  3. History of energy sources and their utilization in Nigeria

    SciTech Connect

    Ogunsola, O.I. )

    1990-01-01

    Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956 and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.

  4. Energy conservation through utilization of mechanical energy storage

    NASA Astrophysics Data System (ADS)

    Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.

    Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.

  5. Solar house system interfaced with the power utility grid

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1975-01-01

    Photovoltaic cells may be used to convert sunlight directly into electrical energy and into low-grade heat to be used for large scale terrestrial solar energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). CdS/Cu2S solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, stability of performance, are discussed. Systems design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental solar house of the University of Delaware, are given. Economic aspects are discussed.

  6. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    SciTech Connect

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  7. SUTIL: system utilities routines programmer's reference manual

    NASA Technical Reports Server (NTRS)

    Harper, D.

    1976-01-01

    A package of FORTRAN callable subroutines which allows efficient communication of data between users and programs is described. Proper utilization of the SUTIL package to reduce program core requirements and expedite program development is emphasized.

  8. System reliability in electric utility systems with independent wind and solar generation

    SciTech Connect

    Schooley, D.C.; Puettgen, H.B.

    1999-11-01

    The use of alternative energy sources for the generation of electricity in the United States is increasing due to a growing concern about the environmental impact of burning fossil fuels. While alternative energy sources have their benefits, the inherent randomness of wind and solar energy can cause reliability problems for the power grid. Because of changes in the public policy of the US Congress and state governments, utilities are evolving toward a more distributed system with increasing amounts of non-utility generation. This evolution may improve the prospects for PV and other alternative energy sources as they gradually become cost competitive with other types of distributed generation such as gas turbines or cogeneration. This paper provides an overview of a methodology developed to integrate wind and solar energy sources into the electric utility generation mix. The wind and solar energy sources are assumed to be owned and operated by small power producing facilities (SPPF`s). The SPPF`s buy and sell electricity at prices determined by the local utility according to the time-of-day (spot pricing). During each time period, each SPPF makes its own decision whether to buy or sell power. The buy-or-sell decision depends on the price, the energy needs of the SPPF, and the amount of energy available to the SPPF from other sources.

  9. Review of evaluations of utility home-energy-audit programs

    NASA Astrophysics Data System (ADS)

    Berry, L.; Soderstrom, J.; Hirst, E.; Newman, B.; Weaver, R.

    1981-03-01

    Evaluation efforts of utilities with active home energy audit programs are reviewed to suggest methodologies, issues, and data that can contribute to the development of a comprehensive Residential Conservation Service evaluation plan. On the basis mainly of written reports received from the utilities, findings about customer response to programs are summarized. The topics discussed include: correlates of program penetration rates; use of financing; attitudes toward programs; actions taken; characteristics of participants; and energy savings due to programs. Particular attention is given to three studies (Tennessee Valley Authority, Seattle City Light, and Pacific Gas and Electric) that analyze fuel consumption records as part of the evaluation.

  10. Effect of Climate Change on Shallow Geothermal Energy Utilization

    NASA Astrophysics Data System (ADS)

    Park, B. H.; Ha, S. W.; Lee, S. Y.; Kim, H. S.; Lee, K. K.

    2014-12-01

    Climate change resulting from the increase of greenhouse gases became a global agenda, also it is an important issue in our daily life in many aspects. It was reported that the average ambient temperature of Korea has been increased by about 1.5℃ for the last 100 years. This pattern of climate change will also influence on the shallow geothermal energy utilization for space heating and cooling. In this study, degree days concept was used to estimate the heat demand according to the outside temperature variation. The calculated degree days were compared to the electricity consumption of ground source heat pump (GSHP) system in the study area. The results showed that there is a high correlation between the electricity consumption and degree days. Based upon such relationship, heating and cooling degree days were calculated using the future weather files from Representative Concentration Pathway (RCP) scenarios. RCPs mean four greenhouse gas concentration trajectories adopted by the IPCC for its fifth Assessment Report (AR5). Therefore, the resulted degree days will show the variations in heating and cooling demand and their durations according to the future anthropogenic greenhouse gas (GHG) emissions. Keywords : Climate Change, Geothermal Energy, Degree Days, Heat Demand

  11. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 3: (Assessment of technical and cost characteristics of candidate IUS energy storage devices)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Six energy storage technologies (inertial, superconducting magnetic, electrochemical, chemical, compressed air, and thermal) were assessed and evaluated for specific applicability to the IUS. To provide a perspective for the individual storage technologies, a brief outline of the general nature of energy storage and its significance to the user is presented.

  12. Utilization of geothermal energy in the mining and processing of tungsten ore. Quarterly report

    SciTech Connect

    Lane, C.K.; Erickson, M.V.; Lowe, G.D.

    1980-02-01

    The status of the engineering and economic feasibility study of utilizing geothermal energy for the mining and processing of tungsten ore at the Union Carbide-Metals Division Pine Creek tungsten complex near Bishop, Calfironia is reviewed. Results of geophysical data analysis including determination of assumed resource parameters are presented. The energy utilization evaluation identifies potential locations for substituting geothermal energy for fossil fuel energy using current technology. Preliminary analyses for local environmental and institutional barriers to development of a geothermal system are also provided.

  13. Utility investments in low-income-energy-efficiency programs

    SciTech Connect

    Brown, M.A.; Beyer, M.A.; Eisenberg, J.; Power, M.; Lapsa, E.J.

    1994-09-01

    The objective of this study is to describe the energy-efficiency programs being operated by utilities for low-income customers. The study focuses, in particular, on programs that install major residential weatherization measures free-of-charge to low-income households. A survey was mailed to a targeted list of 600 utility program managers. Follow-up telephone calls were made to key non- respondents, and a random sample of other non-respondents also was contacted. Completed surveys were received from 180 utilities, 95 of which provided information on one or more of their 1992 low-income energy-efficiency programs for a total of 132 individual programs. These 132 utility programs spent a total of $140.6 million in 1992. This represents 27% of the total program resources available to weatherize the dwellings of low-income households in that year. Both the total funding and the number of programs has grown by 29% since 1989. A majority of the 132 programs are concentrated in a few regions of the country (California, the Pacific Northwest, the Upper Midwest, and the Northeast). Although a majority of the programs are funded by electric utilities, gas utilities have a significantly greater average expenditure per participant ($864 vs. $307 per participant). The most common primary goal of low-income energy-efficiency programs operating in 1992 was {open_quotes}to make energy services more affordable to low-income customers{close_quotes}. Only 44% of the programs were operated primarily to provide a cost-effective energy resource. Based on a review of household and measure selection criteria, equity and not the efficiency of resource acquisition appears to dominate the design of these programs.

  14. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  15. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    NASA Technical Reports Server (NTRS)

    Baresi, Larry

    1989-01-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  16. Relocatable cargo x-ray inspection systems utilizing compact linacs

    NASA Astrophysics Data System (ADS)

    Sapp, W. Wade; Mishin, Andrey V.; Adams, William L.; Callerame, Joseph; Grodzins, Lee; Rothschild, Peter J.; Schueller, Richard; Smith, Gerald J.

    2001-07-01

    Magnetron-powered, X-band linacs with 3-4 MeV capability are compact enough to be readily utilized in relocatable high energy cargo inspection systems. Just such a system is currently under development at AS&E™ using the commercially available ISOSearch™ cargo inspection system as the base platform. The architecture permits the retention of backscatter imaging, which has proven to be an extremely valuable complement to the more usual transmission images. The linac and its associated segmented detector will provide an additional view with superior penetration and spatial resolution. The complete system, which is housed in two standard 40' ISO containers, is briefly described with emphasis on the installation and operating characteristics of the portable linac. The average rf power delivered by the magnetron to the accelerator section can be varied up to the maximum of about 1 kW. The projected system performance, including radiation dose to the environment, will be discussed and compared with other high energy systems.

  17. Analysis of metabolic energy utilization in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Skylab biomedical data regarding man's metabolic processes for extended periods of weightlessness is presented. The data was used in an integrated metabolic balance analysis which included analysis of Skylab water balance, electrolyte balance, evaporative water loss, and body composition. A theoretical analysis of energy utilization in man is presented. The results of the analysis are presented in tabular and graphic format.

  18. Efficiency of Energy Utilization by Lactating Alpine Goats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-six lactating Alpine does (50.5 ± 1.2 kg BW) were used to determine the effect of stage of lactation on energy utilization. Twelve does were assigned for measurement periods in early, mid-, and late lactation (28-35, 91-98, and 189 to 196 d of lactation). For six does of each group, after m...

  19. Array of titanium dioxide nanostructures for solar energy utilization

    DOEpatents

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  20. System parameters germane to relativistic klystron amplifiers: how the utility of pulse energy depends on pulse duration, the target, and the atmosphere

    NASA Astrophysics Data System (ADS)

    Myers, John M.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) at a variety of carrier wavelengths and pulse durations appear feasible to supply microwave pulses to an array of antennas acting as a beam weapon against targets at or above 100 km in altitude. In order to avoid voltage breakdown in the atmosphere, the array area must be large enough to converge the beam, producing a higher energy flux on target than at intermediate altitudes susceptible to breakdown. The area required depends on the physics of atmospheric ionization and on the pulse duration and the carrier wavelength of the RKA. A quantitative statement of the dependence of array area on relevant parameters is presented. The energy per RKA pulse that is usable without delay lines is determined here as a function of RKA pulse duration and wavelength. Changing the pulse length from 160 ns to 1 microsecond(s) and shortening the wavelength raise the energy usable without delay lines by a factor of 1000.

  1. A control system for improved battery utilization in a PV-powered peak-shaving system

    SciTech Connect

    Palomino, E; Stevens, J.; Wiles, J.

    1996-08-01

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  2. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  3. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. (d) Fuel supply system. (1) Conversion of gas appliances. A service person acceptable to the LAHJ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Utility system connections. 3285... Manufacturer's Installation Instructions § 3285.904 Utility system connections. (a) It is recommended that...

  4. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (d) Fuel supply system. (1) Conversion of gas appliances. A service person acceptable to the LAHJ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Utility system connections. 3285... Manufacturer's Installation Instructions § 3285.904 Utility system connections. (a) It is recommended that...

  5. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section. (d) Fuel supply system. (1) Conversion of gas appliances. A service person acceptable to the LAHJ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Utility system connections. 3285... Manufacturer's Installation Instructions § 3285.904 Utility system connections. (a) It is recommended that...

  6. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section. (d) Fuel supply system. (1) Conversion of gas appliances. A service person acceptable to the LAHJ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Utility system connections. 3285... Manufacturer's Installation Instructions § 3285.904 Utility system connections. (a) It is recommended that...

  7. Solar heating and cooling system for an office building at Reedy Creek Utilities

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  8. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  9. Light Duty Utility Arm System applications for tank waste remediation

    SciTech Connect

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy`s (DOE`s) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE`s underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE`s environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE`s environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design.

  10. Optimal weight based on energy imbalance and utility maximization

    NASA Astrophysics Data System (ADS)

    Sun, Ruoyan

    2016-01-01

    This paper investigates the optimal weight for both male and female using energy imbalance and utility maximization. Based on the difference of energy intake and expenditure, we develop a state equation that reveals the weight gain from this energy gap. We ​construct an objective function considering food consumption, eating habits and survival rate to measure utility. Through applying mathematical tools from optimal control methods and qualitative theory of differential equations, we obtain some results. For both male and female, the optimal weight is larger than the physiologically optimal weight calculated by the Body Mass Index (BMI). We also study the corresponding trajectories to steady state weight respectively. Depending on the value of a few parameters, the steady state can either be a saddle point with a monotonic trajectory or a focus with dampened oscillations.

  11. Utilization of geothermal energy in a pulp and paper mill

    SciTech Connect

    Hotson, G.W.

    1997-01-01

    The Tasman Pulp and Paper Company Ltd.`s Mill at Kawerau, New Zealand, has been utilizing geothermal energy for more than 30 years. The mill produces approximately 200,000 tonnes of kraft pulp and 400,000 tonnes of newsprint per annum. Geothermal energy produces 26% of the process steam requirements and 6% of the mill`s electrical load. The management of the mill`s energy sources is complex and ever changing, which has resulted in unique control strategies being developed over the years to improve efficiencies in the operation of the plant. Complete utilization of the geothermal resource has been the aim of the company and has led to pioneering plant and process developments.

  12. Transformers and the Electric Utility System

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    For electric energy to get from the generating station to a home, it must pass through a transformer, a device that can change voltage levels easily. This article describes how transformers work, covering the following topics: (1) the magnetism-electricity link; (2) transformer basics; (3) the energy seesaw; (4) the turns ratio rule; and (5)…

  13. Energy and waste reduction in the wood fiber and fuel industry utilizing a long wave length catalytic infrared drying system. Progress report Number 3

    SciTech Connect

    Davis, R.

    1998-01-15

    Following the testing of the Cat-Tec handling system, detail design work commenced both at the Catalytic Industrial Systems (CIS) Kansas facility and at the Cat-Tec offices in Minneapolis for the mating of the heating and handling system elements of the catalytic infrared particulate dryer. A used equipment looped handling system designed to feed and recirculate the test material was procured and shipped to CIS in anticipation of the on-site testing. Evaluation of the findings of the test results led the joint CIS-Cat-Tec design team to conclude that the unit to be provided to Lignetics for testing needed to have approximately 120 square feet of agitation bed and approximately 100 feet of infrared generation surfaces. The overall size was thus increased approximately 50% from the initial test unit.

  14. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  15. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  16. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  17. Artificial ocean upwelling utilizing the energy of surface waves

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s‑1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm‑2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  18. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  19. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  20. The World's Evolving Energy System.

    ERIC Educational Resources Information Center

    Hubbert, M. King

    1981-01-01

    Examines energy production, utilization, and resources within a three-phase framework of human history: (1) small human population and low energy utilization; (2) exponential growth and exploitation of fossil fuels; and (3) a return to a steady state of energy utilization. (SK)

  1. Mobile integrated temporary utility system. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The Mobile Integrated Temporary Utility System (MITUS) integrates portable electrical power along with communications and emergency alarm and lighting capabilities to provide safe, centralized power to work areas that need to be de-energized for decommissioning work. MITUS consists of a portable unit substation; up to twenty portable kiosks that house the power receptacles, communications, and emergency alarm and lighting systems; and a central communications unit. This system makes sequential decommissioning efforts efficient and cost-effective by allowing the integrated system to remain intact while being moved to subsequent work sites. Use of the MITUS also eliminates the need to conduct zero-energy tests and implement associated lock-out/tag-out procedures at partially de-energized facilities. Since the MITUS is a designed system, it can be customized to accommodate unique facility conditions simply by varying kiosks and transformer configurations. The MITUS is an attractive alternate to the use of portable generators with stand-alone communications and emergency system. It is more cost-effective than upgrading or reconfiguring existing power distribution systems.

  2. A program for solar energy utilization in spain

    SciTech Connect

    Perches-Escandell, J.; Lorsch, H.G.

    1983-06-01

    The Spanish Association of Electric Utilities (UNESA) and the state-owned industrial holding company (INI) have undertaken a 5-year program for the more efficient utilization of energy through solar energy and other energy conserving technologies. Among the tasks undertaken was the design of a solar collector particularly well suited to Spanish conditions. More than 28,000 m/sup 2/ of this collector have been installed, accounting for 42% of the Spanish market over the past three years. In cooperation with the Franklin Research Center of Philadelphia, PA, the UNESA-INI staff has carried out a binational program of solar energy utilization, funded under the U.S. -Spanish Treaty of Friendship and Cooperation. As a part of this program, five demonstration projects have been constructed or are under construction. Four of them provide space heating and cooling and service water heating by means of evacuated tube collectors, EPDM collectors, air heating collectors, a water-to-water heat pump, and an absorption chiller; a fifth generates electricity by means of photovoltaic cells.

  3. Handbook of energy utilization in agriculture. [Collection of available data

    SciTech Connect

    Pimentel, D.

    1980-01-01

    Available data, published and unpublished, on energy use in agriculture and forestry production are presented. The data specifically focus on the energy-input aspects of crop, livestock, and forest production. Energy values for various agricultural inputs are discussed in the following: Energy Inputs for Nitrogen, Phosphorus, and Potash Fertilizers; Energy Used in the US for Agricultural Liming Materials; Assessing the Fossil Energy Costs of Propagating Agricultural Crops; Energy Requirements for Irrigation; Energy Inputs for the Production, Formulation, Packaging, and Transport of Various Pesticides; Energy Requirements for Various Methods of Crop Drying; Energy Used for Transporting Supplies to the Farm; and Unit Energy Cost of Farm Buildings. Energy inputs and outputs for field crop systems are discussed for barley, corn, oats, rice, rye, sorghum, wheat, soybeans, dry beans, snap beans, peas, safflower, sugarcane in Louisiana, sugar beet, alfalfa, hay, and corn silage. Energy inputs for vegetables are discussed for cabbage, Florida celery, lettuce, potato, pickling cucumbers, cantaloupes, watermelon, peppers, and spinach. Energy inputs and outputs for fruits and tree crops discussed are: Eastern US apples, apricots, cherries, peaches, pears, plums and prunes, grapes in the US, US citrus, banana in selected areas, strawberries in the US, red raspberries, blueberries, cranberries, pecans, walnuts, almonds, and maple production in Vermont. Energy inputs and outputs for livestock production are determined for dairy products, poultry, swine, beef, sheep, and aquaculture. Energy requirments for inshore and offshore fishing crafts (the case of the Northeast fishery) and energy production and consumption in wood harvest are presented.

  4. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric utilization systems. 1910.302 Section 1910.302 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization...

  5. Case study: Automated utilities damage assessment (AUDA) system

    SciTech Connect

    Salavani, R.; Laventure, G.C.; Smith, M.D.

    1994-12-31

    A demonstration program of an automated utility damage assessment system (AUDA) at a United States Air Force facility (USAF) is described. The AUDA is designed to assess damage, in an efficient manner, to military equipment or utilities, such as electrical equipment, potable and waste water, HVAC systems, petroleum, oil and lubricants, and natural gas.

  6. Self-contained small utility system

    DOEpatents

    Labinov, Solomon D.; Sand, James R.

    1995-01-01

    A method and apparatus is disclosed to provide a fuel efficient source of readily converted energy to an isolated or remote energy consumption facility. External heat from any of a large variety of sources is converted to an electrical, mechanical, heat or cooling form of energy. A polyatomic working fluid energized by external heat sources is dissociated to a higher gaseous energy state for expansion through a turbine prime mover. The working fluid discharge from the turbine prime mover is routed to a recouperative heat exchanger for exothermic recombination reaction heat transfer to working fluid discharged from the compressor segment of the thermodynaic cycle discharge. The heated compressor discharge fluid is thereafter further heated by the external heat source to the initial higher energy state. Under the pressure at the turbine outlet, the working fluid goes out from a recouperative heat exchanger to a superheated vapor heat exchanger where it is cooled by ambient medium down to an initial temperature of condensation. Thereafter, the working fluid is condensed to a complete liquid state in a condenser cooled by an external medium. This liquid is expanded isenthalpically down to the lowest pressure of the cycle. Under this pressure, the working fluid is evaporated to the superheated vapor state of the inlet of a compressor.

  7. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  8. Commercial building energy use monitoring for utility load research

    SciTech Connect

    Mazzucchi, R.P.

    1987-01-01

    This paper describes a method to acquire empirical data regarding commercial building energy performance for utility load research. The method was devised and implemented for a large scale monitoring program being conducted for a federal electricity marketing and transmission agency in the Pacific Northwest states. An important feature of this method is its hierarchical approach, wherein building types, end-use loads, and key building characteristics are classified to accommodate analysis at many levels. Through this common taxonomy and measurement protocol, energy-use metering projects of varying detail and comprehensiveness can be coordinated. The procedures devised for this project have been implemented for approximately 150 buildings to date by specially trained contractors. Hence, this paper provides real-world insights of the complexity and power of end use measurements from commercial buildings to address utility load research topics. 6 refs.

  9. Energy utilization and efficiency analysis for hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Moore, R. M.; Hauer, K. H.; Ramaswamy, S.; Cunningham, J. M.

    This paper presents the results of an energy analysis for load-following versus battery-hybrid direct-hydrogen fuel cell vehicles. The analysis utilizes dynamic fuel cell vehicle simulation tools previously presented [R.M. Moore, K.H. Hauer, J. Cunningham, S. Ramaswamy, A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle, Fuel Cells, submitted for publication; R.M. Moore, K.H. Hauer, D.J. Friedman, J.M. Cunningham, P. Badrinarayanan, S.X. Ramaswamy, A. Eggert, A dynamic simulation tool for hydrogen fuel cell vehicles, J. Power Sources, 141 (2005) 272-285], and evaluates energy utilization and efficiency for standardized drive cycles used in the US, Europe and Japan.

  10. Energy optimization system

    DOEpatents

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  11. Systems Technology Laboratory (STL) compendium of utilities

    NASA Technical Reports Server (NTRS)

    Decker, W. J.; Smith, E. J.; Taylor, W. A.; Merwarth, P. D.; Stark, M. E.; Pajerski, R. S.; Mcgarry, F. E.; Green, A. L.

    1981-01-01

    Multipurpose programs, routines and operating systems are described. Data conversion and character string comparison subroutine are included. Graphics packages, and file maintenance programs are also included.

  12. Integrated Baseline System (IBS) Version 1.03: Utilities guide

    SciTech Connect

    Burford, M.J.; Downing, T.R.; Pottier, M.C.; Schrank, E.E.; Williams, J.R.

    1993-01-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool that was developed under the direction of the Federal Emergency Management Agency (FEMA). This Utilities Guide explains how to operate utility programs that are supplied as a part of the IBS. These utility programs are chiefly for managing and manipulating various kinds of IBS data and system administration files. Many of the utilities are for creating, editing, converting, or displaying map data and other data that are related to geographic location.

  13. Energy planning, electric utility regulation, and social research

    SciTech Connect

    Stokes, E.D.

    1983-01-01

    Energy planning in the US is analyzed with the use of a general model of planning which delineates several social issues central to the effort. These issues are concerned with centralization and decentralization of control, process and deterministic planning approaches, and the welfare of society and individuals. The area of electric-utility regulation is used to focus the analysis on administrative policy-making, the ecology of organizations, and the use of information in bureaucratic decision-making. The implications of these activities for social research in the energy field are explored as they relate to the issues embodied in the general planning model.

  14. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    NASA Astrophysics Data System (ADS)

    Vargas, Danilo; Cable Kurwitz, R.; Carron, Igor; DePriest, K. Russell

    2016-02-01

    A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A) consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1) and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  15. [Utilization of expert systems in psychiatry].

    PubMed

    Ohayon, M M

    1993-04-01

    Are expert systems liable to be used as consultants in psychiatry? Most expert systems deal with an over-restricted part of psychiatry and cannot be a real help in everyday care. Moreover, most of them are not actually validated (the comparison between the system's and the expert's conclusions in a few cases is not enough). Another problem is that they reflect the uncertainties of nosographic problems. Validation of such systems needs the careful checking of the logical structure of the underlying nosography, the fitness of the structure's knowledge base and the fitness of the inference engine. Moreover, the naïve use of the system by untrained clinicians is the best means of validation since it provides real life proof of the ability of expert systems to make diagnoses in unselected cases where the need for a common diagnostic reference is clear (for example, epidemiologic, psychopharmacological ornosographic research). Some of the best known expert systems in the field of psychiatry are reviewed and another expert system, Adinfer, is presented. Developed since 1982, Adinfer is a forward-tracking level O system (in its simplified version for micro-computers). The knowledge base is a translation of the DSM-III-R into production rules. The program has been included in several software packages and used in many clinical studies, both among psychiatrists and physicians. The program has been validated with 1,141 unselected cases, and with 47 physicians: an 83% agreement rate was found between the system's and the physician's diagnoses, taking into account that the clinicians were asked to give their conclusions according to their usual nosography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8500073

  16. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  17. Security system helps utility stay competitive

    SciTech Connect

    1995-04-01

    Atlantic Electric is saving more than $750,000 annually in security costs by using an innovative closed-circuit television (CCTV) system to guard its remote sites electronically. Today, a single guard in the central security control room at Atlantic Electric`s headquarters electronically surveys and controls some 20 remote sites such as combustion turbine sites, material storage, administrative facilities and operating centers. Protecting these sites are CCTV cameras mounted around each yard, floodlighting, and a motion detection and signal transmission system called Adpro SiteWatch by vsion Systems Inc. The SiteWatch system automatically displays to the central guard any intrusion at a site, and captures and replays the intrusion events similar to an instant replay in a televised sporting event. Over the five year transition, Atlantic Electric saved nearly $2 million in security costs.

  18. Emission abatement system utilizing particulate traps

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  19. The global energy system.

    PubMed

    Häfele, W; Sassin, W

    1979-05-01

    A global energy system is conceptualized and analyzed, the energy distributor sub-system of the worldwide supranational system. Its many interconnections are examined and traced back to their source to determine the major elements of this global energy system. Long-term trends are emphasized. The analysis begins with a discussion of the local systems that resulted from the deployment of technology in the mid-nineteenth century, continues with a description of the global system based on oil that has existed for the past two decades, and ends with a scenario implying that an energy transition will occur in the future in which use of coal, nuclear, and solar energy will predominate. A major problem for the future will be the management of this energy transition. The optimal use of global resources and the efficient management of this transition will require a stable and persistent global order. PMID:464990

  20. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. PMID:21262520

  1. Utilizing JUSUR in an Information Systems Course

    ERIC Educational Resources Information Center

    Zouhair, Jalila

    2010-01-01

    The aims of this paper are to report the perceptions of both faculty and students when JUSUR, a web based Learning Management System, is used to supplement the teaching inside and outside the classroom during one academic subject; and to compare the experience of the instructor who had previously taught the same course using a course website to…

  2. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  3. Economics and utility energy-efficiency programs: Energy-efficient manufactured housing

    SciTech Connect

    Lee, A.D.; Onisko, S.A.

    1992-10-01

    As utilities investigate ways to implement conservation programs, the differences between customer and utility economic perspectives become more important. Because utilities bear the cost of new energy sources, energy efficiency investments that are cost-effective to them may not be cost-effective to their customers who pay average energy prices and have different economic parameters. The Bonneville Power Administration (BPA) and other parties in the Pacific Northwest have initiated an innovative manufactured (mobile) home energy conservation program. Because manufactured homes are regulated by the Department of Housing and Urban Development (HUD), are exempt from local regulations, and comprise up to 50% of new housing starts in some parts of the United States, utilities and energy planners need to find creative ways to make the economics of manufactured housing energy-efficiency investments more attractive. Differences between the economic criteria and perspectives of consumers and utilities can be used to design energy-efficiency programs. This paper discusses life-cycle cost (LCC) analysis as a framework for highlighting these differences and examines other economic criteria. It then presents information from the Pacific Northwest manufactured housing program to illustrate the application of this framework to a real-world program. Findings from this program should,be of interest to utility and government planners who are designing innovative energy-efficiency programs.

  4. Energy Recovery System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cogeneration system is one in which the energy ordinarily wasted in an industrial process is recovered and reused to create a second form of energy. Such an energy recovery system is in use at Crane Company's plant in Ferguson, KY, which manufactures ceramic bathroom fixtures. Crane's system captures hot stack gases from the company's four ceramic kilns and uses them to produce electrical power for plant operations.

  5. Utilizing feedback in adaptive SAR ATR systems

    NASA Astrophysics Data System (ADS)

    Horsfield, Owen; Blacknell, David

    2009-05-01

    Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.

  6. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  7. Energy Harvesting Devices Utilizing Resonance Vibration of Piezoelectric Buzzer

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Sugisawa, Ryosuke; Sakurada, Yuta; Aoshima, Hiroshi; Hikida, Masahito; Akaishi, Hiroshi

    2013-09-01

    A piezoelectric buzzer for energy harvesting was investigated. Although an external force was added to a buzzer, a lead zirconate titanate (PZT) unimorph in the buzzer, the ceramic disc diameter, thickness, and capacitance of which were respectively 14 mm, 0.2 mm, and 10 nF, generated resonance vibration. As a result, alternating voltages of around 30 V and a frequency of 5 kHz were observed. When the generated voltages were applied to a LED lamp, new devices such as a “night-view footwear” and a “piezo-walker” were developed. It was confirmed that the piezo-buzzer for energy harvesting utilizing resonance vibration is an effective tool for obtaining clean energy.

  8. Assessment of the potential of solar thermal small power systems in small utilities

    NASA Technical Reports Server (NTRS)

    Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.

    1978-01-01

    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.

  9. Short review on solar energy systems

    NASA Astrophysics Data System (ADS)

    Herez, Amal; Ramadan, Mohamad; Abdulhay, Bakri; Khaled, Mahmoud

    2016-07-01

    Solar energy can be utilized mainly in heat generation and electricity production. International energy agency (IEA) shows, in a comparative study on the world energy consumption that in 2050 solar arrays installation will provide about 45% of world energy demand. Solar energy is one of the most important renewable energy source which plays a great role in providing energy solutions. As known there is wide variety of types of collectors and applications of solar energy. This paper aimed to make a short review on solar energy systems, according to types of collectors and applications used.

  10. Community Design for Optimal Energy and Resource Utilization.

    ERIC Educational Resources Information Center

    Bilenky, Stephen; And Others

    Presented is a study which investigated the energy and resource dynamics of a semi-autonomous domestic system for 30 people. The investigation is organized on three levels: (1) developing a preliminary design and design parameters; (2) development and quantification of the energy and resource dynamics; and (3) designing a model to extrapolate…

  11. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  12. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  13. Central airport energy systems using alternate energy sources

    SciTech Connect

    Not Available

    1982-07-01

    The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.

  14. Motion Estimation System Utilizing Point Cloud Registration

    NASA Technical Reports Server (NTRS)

    Chen, Qi (Inventor)

    2016-01-01

    A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.

  15. Interconnecting Single-Phase Generation to the Utility Distribution System

    SciTech Connect

    Dugan, R.C.

    2001-12-05

    One potentially large source of underutilized distributed generation (DG) capacity exists in single-phase standby backup gensets on farms served from single-phase feeder laterals. Utilizing the excess capacity would require interconnecting to the utility system. Connecting single-phase gensets to the utility system presents some interesting technical issues that have not been previously investigated. This paper addresses several of the interconnection issues associated with this form of DG including voltage regulation, harmonics, overcurrent protection, and islanding. A significant amount of single-phase DG can be accommodated by the utility distribution system, but there are definite limitations due to the nature and location of the DG. These limitations may be more restrictive than is commonly assumed for three-phase DG installed on stronger parts of the electric distribution system.

  16. Utility-scale system preventive and failure-related maintenance

    SciTech Connect

    Jennings, C.; Hutchinson, P.

    1995-11-01

    This paper describes the design and performance background on PVUSA utility-scale systems at Davis and Kerman, California, and reports on a preventative and failure-related maintenance approach and costs.

  17. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  18. Integrated Baseline System (IBS) Version 2.0: Utilities Guide

    SciTech Connect

    Burford, M.J.; Downing, T.R.; Williams, J.R.; Bower, J.C.

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

  19. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  20. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project

    NASA Astrophysics Data System (ADS)

    1988-03-01

    Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process.

  1. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process.

  2. A multichannel EEG telemetry system utilizing a PCM subcarrier

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1974-01-01

    A multichannel personal-type telemetry system is described that utilizes PCM encoding for the most effective range with minimum RF bandwidth and noise interference. Recent IC developments (COS MOS) make it possible to implement a sophisticated encoding system (PCM) within the low power and size constraints necessary for a personal biotelemetry system. This system includes low-level high-impedance preamplifiers to make the system suitable for EEG recording.

  3. Smart energy management system

    NASA Astrophysics Data System (ADS)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  4. Coil protection for a utility scale superconducting magnetic energy storage plant

    SciTech Connect

    Loyd, R.J.; Schoenung, S.M.; Hassenzahl, W.V.; Rogers, J.D.; Purcell, J.R.

    1986-01-01

    Superconducting Magnetic Energy Storage (SMES) is proposed for electric utility load leveling. Attractive costs, high diurnal energy efficiency (greater than or equal to 92%), and rapid response are advantages relative to other energy storage technologies. Recent industry-led efforts have produced a conceptual design for a 5000 MWh/1000 MW energy storage plant which is technically feasible at commercially attractive estimated costs. The SMES plant design includes a protection system which prevents damage to the magnetic coil if events require a rapid discharge of stored energy. This paper describes the design and operation of the coil protection system, which is primarily passive and uses the thermal capacity of the coil itself to absorb the stored electromagnetic energy.

  5. Solar energy grid integration systems - Energy storage (SEGIS-ES)

    SciTech Connect

    Ton, Dan; Peek, Georgianne H.; Hanley, Charles; Boyes, John

    2008-05-01

    In late 2007, the U.S. Department of Energy (DOE) initiated a series of studies to address issues related to potential high penetration of distributed photovoltaic (PV) generation systems on our nation’s electric grid. This Renewable Systems Interconnection (RSI) initiative resulted in the publication of 14 reports and an Executive Summary that defined needs in areas related to utility planning tools and business models, new grid architectures and PV systems configurations, and models to assess market penetration and the effects of high-penetration PV systems. As a result of this effort, the Solar Energy Grid Integration Systems (SEGIS) program was initiated in early 2008. SEGIS is an industry-led effort to develop new PV inverters, controllers, and energy management systems that will greatly enhance the utility of distributed PV systems.

  6. ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    NASA Astrophysics Data System (ADS)

    1986-07-01

    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.

  7. ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.

  8. NASA Products to Enhance Energy Utility Load Forecasting

    NASA Technical Reports Server (NTRS)

    Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.

    2012-01-01

    Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.

  9. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  10. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  11. Recognition of binary x-ray systems utilizing the doppler effect

    NASA Technical Reports Server (NTRS)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  12. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  13. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  14. Capacity utilization study for aviation security cargo inspection queuing system

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl

    2010-04-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  15. Automotive energy management system

    SciTech Connect

    Shiber, S.

    1980-09-23

    A hydromechanical/hydrostatic automotive energy management system is described that is comprised of two hydraulic units, the system adapted to provide: an efficient, continuously variable optimal transmission ratio, an intermittent optimal engine operation in city traffic and regenerative braking, thereby, the system is able to reduce a car's fuel consumption by as much as one half while improving drivability.

  16. Utilization of solar energy for the production of hydrogen

    NASA Astrophysics Data System (ADS)

    Steeb, H.; Kleinkauf, W.; Mehrmann, A.

    1983-09-01

    The combination of photovoltaic solar generators and electrolyzers for hydrogen production was investigated. Two different small solar-hydrogen systems are described. The coupling of photovoltaics and electrolysis; the mode of operation of a unit for power processing; and practical operation experiences are discussed. The proposed active electronic adaptation unit can improve photovoltaic electrolyse systems. Solar energy can be converted into the energy carrier hydrogen with a total yearly average efficiency of 16%. This corresponds to 23 Ncum hydrogen per sqm active solar cell surface for a yearly radiation of 1000 kWh/sqm.

  17. RESOURCE CONSERVATION AND UTILIZATION IN ANIMAL WASTE MANAGEMENT. VOLUME III. UTILIZATION OF ANIMAL MANURES AS FEEDSTOCKS FOR ENERGY PRODUCTION

    EPA Science Inventory

    This study critically examined the feasibility of using thermochemical processes such as combustion, pyrolysis, and partial oxidation and anaerobic digestion as methods for utilizing livestock and poultry manures as renewable sources of energy. Technical, economic, and environmen...

  18. Options and consequences of large-scale utilization of renewable energy for power and heat production in Denmark

    SciTech Connect

    Morthorst, P.E.; Nielsen, L.H.

    1996-12-31

    Large-scale utilization of renewable energy in the future Danish energy system has been analyzed in a recent study. This paper describes the results of the study. The main question addressed is, whether technically well-functioning electricity supply systems that are capable of providing the same quality of electric service as exists today can be developed on a time scale up to year 2030, based mainly on fluctuating electricity inputs from the renewable energy sources such as wind power, photovoltaic, wave power and biomass. Detailed energy system configurations are specified and environmental model calculations are carried out for the total Danish energy system. Consequences of the strategies are calculated to yield energy consumption, CO{sub 2}-emissions and the economic consequences. The robustness of the strategies for a transition towards large-scale utilization of renewable energy in the electric system is tested on a medium-term basis.

  19. Distributed photovoltaic systems: Utility interface issues and their present status

    NASA Technical Reports Server (NTRS)

    Hassan, M.; Klein, J.

    1981-01-01

    Major technical issues involving the integration of distributed photovoltaics (PV) into electric utility systems are defined and their impacts are described quantitatively. An extensive literature search, interviews, and analysis yielded information about the work in progress and highlighted problem areas in which additional work and research are needed. The findings from the literature search were used to determine whether satisfactory solutions to the problems exist or whether satisfactory approaches to a solution are underway. It was discovered that very few standards, specifications, or guidelines currently exist that will aid industry in integrating PV into the utility system. Specific areas of concern identified are: (1) protection, (2) stability, (3) system unbalance, (4) voltage regulation and reactive power requirements, (5) harmonics, (6) utility operations, (7) safety, (8) metering, and (9) distribution system planning and design.

  20. Research in biomass production and utilization: Systems simulation and analysis

    NASA Astrophysics Data System (ADS)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  1. FIELD EVALUATION OF A UTILITY DRY SCRUBBING SYSTEM

    EPA Science Inventory

    The report gives results of the first independent evaluation of a full-scale utility spray-dryer/baghouse dry flue gas desulfurization (FGD) system. The system treats flue gas from a nominal 100 MW of coal-fired power generation. The test program, conducted during July-October 19...

  2. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  3. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...

  4. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...

  5. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...

  6. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...

  7. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...

  8. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  9. Potential of utilization of geothermal energy in Arizona. Executive summary

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    Arizona is one of the fastest growing states in the United States. It is in the midst of the movement of the population of the United States from its cold regions to the warm Southwest. Being a hot, arid region, its electrical demand is nearly 50% higher in the peak hot summer months than that of the other seven months. The major uncertainty of utilizing geothermal energy in Arizona is that very little exploration and development have occurred to date. The potential is good, based on (a) the fact that there are over 3000 thermal wells in Arizona out of a total of about 30,000 shallow (less than 1000 ft) irrigation wells. In addition, there is much young volcanic rock in the State of Arizona. The combination of data from thermal wells, young volcanic rock, water geochemistry and other geological tools, indicate that there is a large geothermal resource throughout the southern half of the state. It is believed that most of this resource is in the range of 50/sup 0/C (122/sup 0/F) to 150/sup 0/C (302/sup 0/F), limiting its uses to direct heat utilization rather than for electric power generation.

  10. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  11. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  12. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  13. Optimal control, investment and utilization schemes for energy storage under uncertainty

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency

  14. Living Systems Energy Module

    SciTech Connect

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  15. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  16. Consulting report on the NASA technology utilization network system

    NASA Technical Reports Server (NTRS)

    Hlava, Marjorie M. K.

    1992-01-01

    The purposes of this consulting effort are: (1) to evaluate the existing management and production procedures and workflow as they each relate to the successful development, utilization, and implementation of the NASA Technology Utilization Network System (TUNS) database; (2) to identify, as requested by the NASA Project Monitor, the strengths, weaknesses, areas of bottlenecking, and previously unaddressed problem areas affecting TUNS; (3) to recommend changes or modifications of existing procedures as necessary in order to effect corrections for the overall benefit of NASA TUNS database production, implementation, and utilization; and (4) to recommend the addition of alternative procedures, routines, and activities that will consolidate and facilitate the production, implementation, and utilization of the NASA TUNS database.

  17. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    SciTech Connect

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  18. Study of airbase facility/utility energy R and D requirements. Final report, March 1990-July 1991

    SciTech Connect

    Leigh, G.G.

    1992-04-01

    The objective of this project was to identify USAF airbase facility/utility energy needs over the next 30 years, to evaluate new energy technologies that might be used to help meet these needs, and to recommend R and D efforts that could assist in this process. The existing and projected world energy situation was reviewed, data on USAF airbase energy consumption and costs were analyzed, and new USAF systems and projected force structures were examined as to influences on airbase energy consumption. Baselines of current and projected energy consumption and associated costs were established. Twenty-three (23) new energy technologies were reviewed, and 15 were identified as having potential benefits for USAF airbases. Recommendations for R and D to assist this process are provided.... Airbase energy systems, USAF Energy consumption, New energy systems, Energy costs, Energy R and D.

  19. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; Martin, J.; Chakrabarti, S.

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  20. Wind energy systems information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  1. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  2. Utilizing expert systems for satellite monitoring and control

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.

    1991-01-01

    Spacecraft analysts in the spacecraft control center for the Cosmic Background Explorer (COBE) satellite are currently utilizing a fault-isolation expert system developed to assist in the isolation and correction of faults in the communications link. This system, the communication link expert assistance resource (CLEAR), monitors real time spacecraft and ground systems performance parameters in search of configuration discrepancies and communications link problems. If such a discrepancy or problem is isolated, CLEAR alerts the analyst and provides advice on how to resolve the problem swiftly and effectively. The CLEAR system is the first real time expert system to be used in the operational environment of a satellite control center at the NASA Goddard Space Flight Center. Clear has not only demonstrated the utility and potential of an expert system in the demanding environment of a satellite control center, but also has revealed many of the pitfalls and deficiencies of development of expert systems. One of the lessons learned from this and other initial expert system projects is that prototypes can often be developed quite rapidly, but operational expert systems require considerable effort. Development is generally a slow, tedious process that typically requires the special skills of trained programmers. Due to the success of CLEAR and several other systems in the control center domain, a large number of expert systems will certainly be developed to support control center operations during the early 1990's. To facilitate the development of these systems, a project was initiated to develop an integrated, domain-specific tool, the generic spacecraft analyst assistent (GenSAA), that alows the spacecraft analysts to rapidly create simple expert systems themselves. By providing a highly graphical point-and-select method of system development, GenSAA allows the analyst to utilize and/or modify previously developed rule bases and system components; thus, facilitating

  3. Utilization of accelerators for transmutation and energy production

    SciTech Connect

    Sheffield, Richard L

    2010-09-24

    Given the increased concern over reliable, emission-free power, nuclear power has experienced a resurgence of interest. A sub-critical accelerator driven system (ADS) can drive systems that have either safety constraints (waste transmutation) or reduced fissile content (thorium reactor). The goals of ADS are some or all of the following: (1) to significantly reduce the generation or impacts due to the minor actinides on the packing density and long-term radiotoxicity in the repository design, (2) preserve/use the energy-rich component of used nuclear fuel, and (3) reduce proliferation risk. ADS systems have been actively studied in Europe and Asia over the past two decades and renewed interest is occurring in the U.S. This talk will cover some of the history, possible applicable fuel cycle scenarios, and general issues to be considered in implementing ADS systems.

  4. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    1984-04-01

    The Johns Hopkins University Applied Physics Laboratory is engaged in developing ocean thermal energy conversion (OTEC) systems that are to provide synthetic fuels or an energy intensive product such as ammonia or aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC plants. The laboratory also has a technical advisory role with respect to DOE/DOET's management of the preliminary design activity of an industry team headed by Ocean Thermal Corporation that is designing an OTEC pilot plant that could be built in shallow water off the shore of Oahu, Hawaii. In addition, the Laboratory is now taking part in a program to evaluate and test the pneumatic wave energy conversion system, an ocean energy device consisting of a turbine that is air driven as a result of wave action in a chamber.

  5. Ocean energy systems

    NASA Astrophysics Data System (ADS)

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. The work on the various tasks as of 31 March 1983 is reported.

  6. CURRENT STATUS OF COMMERCIAL UTILITY FLUE GAS DESULFURIZATION SYSTEMS

    EPA Science Inventory

    The report discusses the current status of commercial flue gas desulfurization (FGD) processes applied to coal-fired utility boilers in the U.S. Major objectives of the work were to examine the impacts of the 1979 New Source Performance Standards on FGD system design and operatio...

  7. 42 CFR 457.490 - Delivery and utilization control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of health care services covered by such products to the enrollees, including any variations; and (b) Describe utilization control systems designed to ensure that enrollees receiving health care services under the State plan receive only appropriate and medically necessary health care consistent with...

  8. 42 CFR 457.490 - Delivery and utilization control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of health care services covered by such products to the enrollees, including any variations; and (b) Describe utilization control systems designed to ensure that enrollees receiving health care services under the State plan receive only appropriate and medically necessary health care consistent with...

  9. 42 CFR 457.490 - Delivery and utilization control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of health care services covered by such products to the enrollees, including any variations; and (b) Describe utilization control systems designed to ensure that enrollees receiving health care services under the State plan receive only appropriate and medically necessary health care consistent with...

  10. Relationship Between Systems' Mental Health Paradigm and Personpower Utilization.

    ERIC Educational Resources Information Center

    Hurley, Daniel J., Jr.; Tyler, Forrest B.

    Recent proliferation at training and educational programs for paraprofessional and non professionals has occurred without systematic evaluation of systems' utilization of newly trained people. It was the purpose of this study to assess both job functioning and attitudes of paraprofessionals in relation to professionals and the interaction of…

  11. Visual-Tutorial System for Teaching Media Utilization.

    ERIC Educational Resources Information Center

    Butler, Lucius

    1979-01-01

    Discusses a self-instructional programed Visual-Tutorial learning system, designed to teach preservice elementary school teachers both theory and skills related to effective classroom utilization of audiovisual materials and equipment. An outline of the course, "Media Practicum," is included. (RAO)

  12. Production of concrete articles utilizing heat-reclaiming system

    SciTech Connect

    Wauhop Jr., B. J.; Stratz, W. W.

    1985-07-30

    A method of producing concrete articles comprises reclaiming a portion of the heat energy from the kiln atmosphere during the curing of the concrete articles, and then utilizing the reclaimed heat energy to pre-heat mixing water used to form other concrete articles, or to add to boiler feed water used to generate low pressure steam, or both. In the case where two or more kilns are operated simultaneously at staggered curing cycles, the high temperature kiln atmosphere from the kiln undergoing cool down is intermixed with the low temperature kiln atmosphere from the kiln undergoing heat up thereby reclaiming heat energy from one kiln and using it in the other kiln thereby reducing the total energy consumption required for curing.

  13. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  14. CLASSIFICATION OF THE MGR OFF-SITE UTILITIES SYSTEM

    SciTech Connect

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) offsite utilities system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  15. Energy Requirements of Hydrogen-utilizing Microbes: A Boundary Condition for Subsurface Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    2003-01-01

    Microbial ecosystems based on the energy supplied by water-rock chemistry carry particular significance in the context of geo- and astrobiology. With no direct dependence on solar energy, lithotrophic microbes could conceivably penetrate a planetary crust to a depth limited only by temperature or pressure constraints (several kilometers or more). The deep lithospheric habitat is thereby potentially much greater in volume than its surface counterpart, and in addition offers a stable refuge against inhospitable surface conditions related to climatic or atmospheric evolution (e.g., Mars) or even high-energy impacts (e.g., early in Earth's history). The possibilities for a deep microbial biosphere are, however, greatly constrained by life s need to obtain energy at a certain minimum rate (the maintenance energy requirement) and of a certain minimum magnitude (the energy quantum requirement). The mere existence of these requirements implies that a significant fraction of the chemical free energy available in the subsurface environment cannot be exploited by life. Similar limits may also apply to the usefulness of light energy at very low intensities or long wavelengths. Quantification of these minimum energy requirements in terrestrial microbial ecosystems will help to establish a criterion of energetic habitability that can significantly constrain the prospects for life in Earth's subsurface, or on other bodies in the solar system. Our early work has focused on quantifying the biological energy quantum requirement for methanogenic archaea, as representatives of a plausible subsurface metabolism, in anoxic sediments (where energy availability is among the most limiting factors in microbial population growth). In both field and laboratory experiments utilizing these sediments, methanogens retain a remarkably consistent free energy intake, in the face of fluctuating environmental conditions that affect energy availability. The energy yields apparently required by

  16. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  17. 76 FR 62055 - Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission, Public Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission... Practice and Procedures, and the applicable Tariff on file with the Commission, Mississippi Delta...

  18. Intracanopy lighting reduces electrical energy utilization by closed cowpea stands.

    PubMed

    Frantz, J M; Joly, R J; Mitchell, C A

    2001-01-01

    The high planting densities needed to grow edible biomass in sustainable space life support systems will create problems for planophile crops that form closed, self-shading canopies. The use of traditional overhead-lighting configurations will reduce the penetration of photosynthetically active radiation (PAR) into such canopies and will result in substantial shading of understory leaves. Intracanopy lighting, an irradiation approach that allows plants to grow around fixed arrays of low-intensity lamps, reduces overall energy expenditure for crop production by improving light distribution and interception throughout the canopy. Comparing different fluorescent lamp geometries within vegetative canopies of cowpea (Vigna unguiculata L. Walp) revealed great plasticity of leaf orientation to maximize absorption of PAR from lamps arrayed at various nontraditional angles. Varying the amount of photosynthetic energy available within canopies creates considerable potential to manipulate canopy productivity. Increasing lamp number 38% within cowpea canopies raised stand productivity 45%, reflecting the highly efficient interception and absorption of intracanopy PAR. However, combined above/within-canopy lighting did not increase overall PAR interception and vegetative yield, and productivity did not improve relative to the same input wattage of intracanopy lighting alone. Optimization of intracanopy lighting for crops to be used in future space life support systems will substantially reduce power and energy burdens for food-crop production. PMID:11676456

  19. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    SciTech Connect

    Wills, R.H.

    1994-06-01

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  20. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  1. Driving the Nation Toward a Clean Energy Future: Fuels Utilization Program Fact Sheet

    SciTech Connect

    Thomas, J.

    2000-12-12

    The transportation market in the United States is evolving. As the number of vehicles and miles traveled on American roadways continues to grow, the nation is looking toward advanced vehicles and fuels to meet the increasing demand for more energy efficient, environmentally friendly modes of transport. At the National Renewable Energy Laboratory, the Center for Transportation Technologies and Systems' Fuel Utilization Program is doing its part. We're developing and demonstrating engine and fuel technologies that allow alternative and advanced petroleum fuels to compete with their conventional counterparts.

  2. Energy systems transformation.

    PubMed

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders. PMID:23297208

  3. Utilizing Ocean Thermal Energy in a Submarine Robot

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Chao, Yi

    2009-01-01

    A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.

  4. Development of an energy dispersive spectrometer for a transmission electron microscope utilizing a TES microcalorimeter array

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Mitsuda, Kazuhisa; Hara, Tom; Maehata, Keisuke; Yamasaki, Noriko Y.; Odawara, Akikazu; Nagata, Atsushi; Watanabe, Katsuaki; Takei, Yoh

    2009-12-01

    A high-energy-resolution energy dispersive spectrometer (EDS) utilizing a TES (transition edge sensor) microcalorimeter array is developed for a transmission electron microscope (TEM). The goals of the development are (1) an energy range of 0.3-10 keV, (2) an energy resolution of FWHM <10 eV, (3) a maximum counting rate of 3 kcps, and (4) a cryogen-free cooling system. We adopted a dilution refrigerator (DR) pre-cooled by a Gifford-McMahon (GM) refrigerator to cool the TES microcalorimeter to ˜100 mK. In order to avoid micro phonics of GM fridge to propagate to the TEM, pressurized He gas is circulated between the DR and the GM to reject heat from the DR. The GM is mechanically well isolated from the TEM. In oder to obtain 3 kcps counting rate, we utilize a ten pixel TES array and read out the signals in parallel wtih ten analog signal channels from cryogenic to room temperature electronics. One of the pixels can be always irradiated by a radio isotope for energy calibration. As the first step, we have attached a single pixel TES system cooled by the cryogen-free cooling system to the TEM and obtained an energy resolution of 8 eV at 1.8 keV without degrading the spatial resolution of the TEM at a 2 Å level. A ten pixel TES system is also being developed from the front-end detector assembly to the room temperature digital electronics. We describe the signal processing system and packaging of the detector assembly.

  5. U.S. utilities' experiences with the implementation of energy efficiency programs

    NASA Astrophysics Data System (ADS)

    Goss, Courtney

    In the U.S., many electric utility companies are offering demand-side management (DSM) programs to their customers as ways to save money and energy. However, it is challenging to compare these programs between utility companies throughout the U.S. because of the variability of state energy policies. For example, some states in the U.S. have deregulated electricity markets and others do not. In addition, utility companies within a state differ depending on ownership and size. This study examines 12 utilities' experiences with DSM programs and compares the programs' annual energy savings results that the selected utilities reported to the Energy Information Administration (EIA). The 2009 EIA data suggests that DSM program effectiveness is not significantly affected by electricity market deregulation or utility ownership. However, DSM programs seem to generally be more effective when administered by utilities located in states with energy savings requirements and DSM program mandates.

  6. Energy Storage System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  7. Achieving Land, Energy, and Environmental Compatibility: Utility-Scale Solar Energy Potential and Land-Use in California

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Field, C. B.

    2013-12-01

    Solar energy is an archetype renewable energy technology with great potential to reduce greenhouse gas emissions when substituted for carbon-intensive energy. Utility-scale solar energy (USSE; i.e., > 1 MW) necessitates large quantities of space making the efficient use of land for USSE development critical to realizing its full potential. However, studies elucidating the interaction between land-use and utility-scale solar energy (USSE) are limited. In this study, we assessed 1) the theoretical and technical potential of terrestrial-based USSE systems, and 2) land-use and land-cover change impacts from actual USSE installations (> 20 MW; planned, under construction, operating), using California as a case study due to its early adoption of renewable energy systems, unique constraints on land availability, immense energy demand, and vast natural resources. We used topo-climatic (e.g., slope, irradiance), infrastructural (e.g., proximity to transmission lines), and ecological constraints (e.g., threatened and endangered species) to determine highly favorable, favorable, and unfavorable locations for USSE and to assess its technical potential. We found that the theoretical potential of photovoltaic (PV) and concentrating solar power (CSP) in California is 26,097 and 29,422 kWh/m2/day, respectively. We identified over 150 planned, under construction, and operating USSE installations in California, ranging in size from 20 to 1,000 MW. Currently, 29% are located on shrub- and scrublands, 23% on cultivated crop land, 13% on pasture/hay areas, 11% on grassland/herbaceous and developed open space, and 7% in the built environment. Understanding current land-use decisions of USSE systems and assessing its future potential can be instructive for achieving land, energy, and environmental compatibility, especially for other global regions that share similar resource demands and limitations.

  8. Energy-selective SESD imaging utilizing a CMA

    NASA Astrophysics Data System (ADS)

    Larson, L. A.; Soria, F.; Poppa, H.

    1980-12-01

    A particularly simple conversion of a scanning Auger system for ESD ion energy distributions and scanning ESD has been developed. This approach combines the advantages of the small spot-size electron guns and mapping systems developed for SAM with the capability of ESD for the detection of hydrogen. Our intended use for the device is detection and mapping of surface concentrations of hydrogen on metals. The characteristics of SESD are illustrated with the preliminary results of an investigation into the ESD properties of hydrogenic adsorbates on Nb. It is shown that the ESDIED exhibit distinct differences indicative of the surface preparation, and that the ESD ion angular distributions have an effect on the observed contrast relationships in SESD.

  9. Utilization of rotor kinetic energy storage for hybrid vehicles

    DOEpatents

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  10. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  11. Energy systems transformation

    PubMed Central

    Dangerman, A. T. C. Jérôme; Schellnhuber, Hans Joachim

    2013-01-01

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO2 emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the “Success to the Successful” mode. The present way of generating, distributing, and consuming energy—the largest business on Earth—expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders. PMID:23297208

  12. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect

    Hanley, Charles J.; Ton, Dan T.; Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  13. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    SciTech Connect

    Not Available

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  14. Utilization of microwave energy for decontamination of oil polluted soils.

    PubMed

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment. PMID:21721470

  15. Department of Energy research in utilization of high-performance computers

    SciTech Connect

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-08-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programmatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models, the execution of which is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex, and consequently it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure.

  16. High-efficiency SO{sub 2} removal in utility FGD systems

    SciTech Connect

    Phillips, J.L.; Gray, S.; Dekraker, D.

    1995-11-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO{sub 2}) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company`s Big Bend Station; cocurrent, packed absorbers at Hoosier Energy`s Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company`s Pirkey Station; horizontal spray absorbers at PSI Energy`s Gibson Station; venturi scrubbers at Duquesne Light`s Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations`s (NYSEG`s) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO{sub 2} removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO{sub 2} removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994.

  17. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    SciTech Connect

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energy Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.

  18. MULTIFUNCTIONAL SOLAR ENERGY SYSTEMS RESEARCH PROJECT

    SciTech Connect

    Byard Wood, Lance Seefeldt, Ronald Sims, Bradley Wahlen, and Dan Dye

    2012-06-29

    The solar energy available within the visible portion of the solar spectrum is about 300 W/m2 (43%) and that available in the UV and IR portion is about 400 W/m2 (57%). This provides opportunities for developing integrated energy systems that capture and use specific wavelengths of the solar spectrum for different purposes. For example: biofuels from photosynthetic microbes use only the visible light; solar cells use a narrow band of the solar spectrum that could be either mostly in the visible or in the IR regions of the solar spectrum, depending on the photovoltaic materials, e.g., gallium antimonide (GaSb) cells utilize predominately IR radiation; and finally, solar panels that heat water utilize a broad range of wavelengths (visible plus IR). The basic idea of this research is that sunlight has many possible end-use applications including both direct use and energy conversion schemes; it is technically feasible to develop multifunctional solar energy systems capable of addressing several end-use needs while increasing the overall solar energy utilization efficiency when compared to single-purpose solar technologies. Such a combination of technologies could lead to more cost-competitive ?multifunctional? systems that add value and broaden opportunities for integrated energy systems. The goal of this research is to increase the overall energy efficacy and cost competitiveness of solar systems. The specific objectives of this research were: 1) Evaluate the efficacy of a combined photobioreactor and electric power system; 2) Improve the reliability and cost effectiveness of hybrid solar lighting systems ? a technology in which sunlight is collected and distributed via optical fibers into the interior of a building; 3) Evaluate the efficacy of using filtered light to increase the production of biomass in photobioreactors and provide more solar energy for other uses; 4) Evaluates several concepts for wavelength shifting such that a greater percentage of the solar

  19. Heat storage system utilizing phase change materials government rights

    DOEpatents

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  20. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  1. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    PubMed Central

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  2. Global renewable energy-based electricity generation and smart grid system for energy security.

    PubMed

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  3. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  4. Energy Systems Divisions

    NASA Technical Reports Server (NTRS)

    Applewhite, John

    2011-01-01

    This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.

  5. Energy systems and applications

    SciTech Connect

    Not Available

    1983-01-01

    The Institute of Gas Technology (IGT) Systems and Applications Group provides decision support services to help industry and government reach sound policy and planning decisions. They identify critical factors that affect the development and commercialization of energy systems. The multidisciplinary IGT team provides economic and financial analyses, technology assessments, feasibility studies, market evaluations, policy analyses, and impact assessments. Their information can be used to plan for diversification, operations, research and development, investment, options identification, and market strategies. The authors cite sample analyses and summarize experience in such areas as pipeline cost estimation. 3 figures, 2 tables.

  6. Method of utility-system source-impedance measurement for the industrial power engineer

    SciTech Connect

    Corvin, W C

    1982-05-24

    In general, the power company that delivers energy to an industrial power system will supply, upon request, information describing the utility source impedance at the point of interconnection with the industrial customer. this information is usually expressed as the maximum available short-circuit MVA (megavolt amperes) that the utility can deliver at some nominal voltage. For sizing the interrupting ratings of protective equipment, this number is important. However, better information is required for modeling the utility system under all conditions of system switching, generation, and loading. In this paper a method is described for measuring the utility source impedance that gives a more realistic representation of the utility at the point of interconnection. It is increasingly important that the industrial power engineer accurately view the power company as a power source of variable impedance. Industrial loads may operate and interact differently, depending on the relative stiffness of their power source. Electric utilities increasingly experience planned voltage reductions, brownouts, and temporary line-switching configurations that can leave the industrial customer with a power source far different from the one normally expected.

  7. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  8. Energy Systems Integration Facility Overview

    SciTech Connect

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  9. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  10. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  11. Solar and wind energy utilization in broiler production

    SciTech Connect

    Brinsfield, R.B.; Yaramanoglu, M.; Wheaton, F.

    1984-01-01

    Available solar and wind energy and both the electrical and thermal energy demand of a typical broiler facility were mathematically modeled based on 10 years of weather data for Salisbury, Maryland. The available energy was then compared with the broiler facility demands as a means of sizing solar and wind energy collection equipment to meet the demands.

  12. Energy-Systems Economic Analysis

    NASA Technical Reports Server (NTRS)

    Doane, J.; Slonski, M. L.; Borden, C. S.

    1982-01-01

    Energy Systems Economic Analysis (ESEA) program is flexible analytical tool for rank ordering of alternative energy systems. Basic ESEA approach derives an estimate of those costs incurred as result of purchasing, installing and operating an energy system. These costs, suitably aggregated into yearly costs over lifetime of system, are divided by expected yearly energy output to determine busbar energy costs. ESEA, developed in 1979, is written in FORTRAN IV for batch execution.

  13. Optimum utilization of site energy sources for all-season thermal comfort in new residential construction for single-family attached (rowhouse/townhouse) designs

    SciTech Connect

    Not Available

    1981-02-26

    A proposed design analysis is presented of a passive solar energy efficient system for a typical three-level, three bedroom, two story, garage-under townhouse. The design incorporates the best, most performance-proven and cost effective products, materials, processes, technologies, and sub-systems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration sysems, the plenum-supply system, the thermal-storage party-fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described. Features of the design under analysis and on which conclusions have not yet been formulated are: the energy reclamation system, auxiliary energy back-up systems, the distribution system and operating modes, the control systems, and non-comfort energy systems and inputs. (MCW)

  14. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    SciTech Connect

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  15. Energy storage systems program report for FY1996

    SciTech Connect

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  16. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  17. Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp

    SciTech Connect

    Bird, Lori A.; Cory, Karlynn S.; Swezey, Blair G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  18. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    SciTech Connect

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  19. Resource Management Plan for the US Department of Energy Oak Ridge Reservation. Volume 14, Appendix O: utilities

    SciTech Connect

    Daugherty, R.O.

    1984-07-01

    This document provides data to support effective management of the utility and transportation systems serving the Department of Energy (DOE) Oak Ridge Reservation (ORR). The major surface, overhead, and underground utilities and the transportation systems are discussed and shown primarily for the ORR area outside plant perimeter fences. Details of individual plant utilities, streets, and railroads are available on master record drawings on file in each plant's engineering record center. This appendix identifies all of the major utility and transportation resources on the Reservation in a single document, heretofore only available from several sources. The major utilities serving the Reservation are electrical power, telecommunications, raw and treated water, natural gas, and sanitary sewers, Highways, access roads, and railroads are also included in this appendix because of the similar services they provide. 21 references, 6 figures, 2 tables.

  20. Energy conversion system

    DOEpatents

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  1. Energy conversion system

    DOEpatents

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  2. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  3. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  4. Electric-utility solar-energy activities: 1982 survey update. Special report

    SciTech Connect

    Spelman, J.R.

    1982-12-01

    The results are presented of a survey to determine the scope of electric utility participation in solar energy projects in the United States. This eighth edition of the survey contains brief descriptions of 128 new projects for 1982 and summarizes significant changes from 1981 in ongoing projects. A total of 930 projects were reported by 235 utility companies. An index of projects by category, a statistical summary, a list of participating utilities with information contacts and addresses, a list of utilities with projects organized by technology, a list of utilities organized by state, and a list of new reports on utility-sponsored projects are included.

  5. National Maglev initiative: California line electric utility power system requirements

    NASA Technical Reports Server (NTRS)

    Save, Phil

    1994-01-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  6. Renewable Energy Positioning System: Energy Positioning: Control and Economics

    SciTech Connect

    2012-03-01

    GENI Project: The University of Washington and the University of Michigan are developing an integrated system to match well-positioned energy storage facilities with precise control technologies so the electric grid can more easily include energy from renewable power sources like wind and solar. Because renewable energy sources provide intermittent power, it is difficult for the grid to efficiently allocate those resources without developing solutions to store their energy for later use. The two universities are working with utilities, regulators, and the private sector to position renewable energy storage facilities in locations that optimize their ability to provide and transmit electricity where and when it is needed most. Expanding the network of transmission lines is prohibitively expensive, so combining well-placed storage facilities with robust control systems to efficiently route their power will save consumers money and enable the widespread use of safe, renewable sources of power.

  7. Time Utility Functions for Modeling and Evaluating Resource Allocations in a Heterogeneous Computing System

    SciTech Connect

    Briceno, Luis Diego; Khemka, Bhavesh; Siegel, Howard Jay; Maciejewski, Anthony A; Groer, Christopher S; Koenig, Gregory A; Okonski, Gene D; Poole, Stephen W

    2011-01-01

    This study considers a heterogeneous computing system and corresponding workload being investigated by the Extreme Scale Systems Center (ESSC) at Oak Ridge National Laboratory (ORNL). The ESSC is part of a collaborative effort between the Department of Energy (DOE) and the Department of Defense (DoD) to deliver research, tools, software, and technologies that can be integrated, deployed, and used in both DOE and DoD environments. The heterogeneous system and workload described here are representative of a prototypical computing environment being studied as part of this collaboration. Each task can exhibit a time-varying importance or utility to the overall enterprise. In this system, an arriving task has an associated priority and precedence. The priority is used to describe the importance of a task, and precedence is used to describe how soon the task must be executed. These two metrics are combined to create a utility function curve that indicates how valuable it is for the system to complete a task at any given moment. This research focuses on using time-utility functions to generate a metric that can be used to compare the performance of different resource schedulers in a heterogeneous computing system. The contributions of this paper are: (a) a mathematical model of a heterogeneous computing system where tasks arrive dynamically and need to be assigned based on their priority, precedence, utility characteristic class, and task execution type, (b) the use of priority and precedence to generate time-utility functions that describe the value a task has at any given time, (c) the derivation of a metric based on the total utility gained from completing tasks to measure the performance of the computing environment, and (d) a comparison of the performance of resource allocation heuristics in this environment.

  8. 78 FR 75366 - 30-Day Notice of Proposed Information Collection: Public Housing Energy Audits and Utility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... establish, review and revise utility allowances for PHA-furnished utilities and for resident-purchased...--Energy Performance 22 1 22 100 2,200 Contracts 965.402--Benefit/Cost Analysis.. 5 1 1 3 15 965.502--Establish utility 5 1 5 20 100 allowances 965.507--Review utility 13,100 1 3,100 2 6,200 allowances...

  9. Bandwidth utilization maximization of scientific RF communication systems

    SciTech Connect

    Rey, D.; Ryan, W.; Ross, M.

    1997-01-01

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, was developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.

  10. Energy Utilization Technology Curriculum Materials FY 91. Illinois Plan for Industrial Technology Education.

    ERIC Educational Resources Information Center

    Gallo, Dennis; Welty, Kenneth

    This document contains technology-based learning activities for the Illinois energy utilization technology course at the orientation level (grades 9 and 10). This packet includes a course rationale, course mission statement, course description, course outline, suggested learning objectives for each of the energy utilization areas, and suggested…

  11. 75 FR 32494 - Energy Conservation for PHA-Owned or Leased Project-Audits, Utility Allowances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... URBAN DEVELOPMENT Energy Conservation for PHA-Owned or Leased Project-Audits, Utility Allowances AGENCY... thereof) are established. PHAs complete energy audits, benefit/cost analyses for individual vs. master... or Leased Project-Audits, Utility Allowances. OMB Approval Number: 2577-0062. Form Numbers:...

  12. Genomic architecture of energy utilization and its role in beef cattle efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, academia revisits energy utilization every 10 to 15 years with each cycle providing some benefit to the producer. The lack of progress in factors limiting the understanding of the genetics of energy utilization include the difficulty and costs to accurately measure individual intakes, ...

  13. Optimizing bandwidth utilization in packet based telemetry systems

    SciTech Connect

    Kalibjian, J.R.

    1995-10-17

    A consistent theme in spacecraft telemetry system design is the desire to obtain maximum bandwidth utilization given a fixed transmission capability (usually due to cost/weight criteria). Extensions to basic packetization telemetry architectures are discussed which can facilitate a reduction in the amount of actual data telemetered, without loss of data quality. Central to the extensions are the establishment of an ``intelligent`` telemetry process, which can evaluate pending data to be telemetered, and act to compress, discard, or re-formulate data before actual transmission to ground stations.

  14. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small

  15. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Bruno, Cy

    2012-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single

  16. Solar-hydrogen energy system for Pakistan

    SciTech Connect

    Lutfi, N.

    1990-01-01

    A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parameters have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.

  17. Energy Conversion and Utilization Technologies Program (ECUT) electrocatalysis research

    NASA Technical Reports Server (NTRS)

    Warren, L. F.

    1984-01-01

    The general field of electrocatalysis, from both the technical and business standpoints is accessed and research areas and approaches most likely to lead to substantial energy/cost savings are identified. The overall approach was to compile and evaluate available information, relying heavily on inputs/recommendations of research managers and technical personnel in responsible positions in industry and at universities. Some promising approaches identified to date include the use of transition metal compounds as electrocatalysts and the use of the new electrochemical photocapacitance spectroscopy (EPS) technique for electrocatalyst characterization/development. For the first time, an oxygen electrocatalyst based on the K2NiF4 structure was synthesized, investigated and compared with a perovskite analog. Results show that this class of materials, based on Ni(3+), forms very efficient and stable O2 anodes in basic solution and suggest that other structure-types be examined in this regard. The very difficult problem of dinitrogen and carbon dioxide electroreductions is addressed through the use of biological model systems which can mimic the enzyme processes in nature.

  18. Space Station Freedom external fluid utilities system design and integration

    NASA Astrophysics Data System (ADS)

    Reinhard, Dawn M.

    1993-02-01

    This paper presents the current Space Station Freedom External Fluid System Design, which is an integrated design of numerous criteria, such as safety, reliability, availability, manufacturability, commonality and compatibility with Extravehicular Activity (EVA). McDonnell Douglas engineers are working to meet a Critical Design Review (CDR) in 1993 and to begin production of fluid system hardware for first launch in 1996, with successive launches continuing through the decade. The fluid system design hardware, such as the 316L Stainless Steel tubing, Inconel, flexible metal hoses, tee fittings, clamping systems and quick disconnect couplings will be presented, with special emphasis on how they were selected in the early phases of the design process. Fabrication and assembly of the Space Station Freedom fluid utility system, using the Numerically Controlled (NC) tube bender and Orbital Welder will be discussed. The Extravehicular Activity (EVA) on-orbit assembly and maintenance techniques of this system will also be briefly explained. Recommendations which have contributed to the success of this design effort include: Consistent communications between groups. a centralized computer-aided drafting/Computer-aided manufacturing (CAD/CAM) system with Electronic Development Fixture (EDF) capability, and technical review boards to control and minimize changes to the design baseline.

  19. Powering the planet: Chemical challenges in solar energy utilization

    PubMed Central

    Lewis, Nathan S.; Nocera, Daniel G.

    2006-01-01

    Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species. PMID:17043226

  20. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  1. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    The redox flow cell energy storage system being developed by NASA for use in remote power systems and distributed storage installations for electric utilities is presented. The system under consideration is an electrochemical storage device which utilizes the oxidation and reduction of two fully soluble redox couples (acidified chloride solutions of chromium and iron) as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of redox flow cells where the electrochemical reactions take place at porous carbon felt electrodes. Redox equipment has allowed the incorporation of state of charge readout, stack voltage control and system capacity maintenance (rebalance) devices to regulate cells in a stack jointly. A 200 W, 12 V system with a capacity of about 400 Wh has been constructed, and a 2 kW, 10kWh system is planned.

  2. Training in tooth preparation utilizing a support system.

    PubMed

    Nishida, M; Sohmura, T; Takahashi, J

    2004-02-01

    Tooth preparation is an essential technique for dental treatment, but it is a skill not easily learned by a dental student. To facilitate this leaning process, a new tooth preparation support system with a parallel link mechanism was developed. This study reports the educational efficiency of this system for dental students. Dental students with no experience in clinical practice were selected and divided into two groups; one trained with this support system; and the other, with freehand preparation. They prepared axial walls in right maxillary second premolars and molars mounted in a phantom manikin with an air-turbine handpiece. Convergence angles of the axial walls and parallelisms between axes of prepared teeth were evaluated. Training with the support system led to significantly smaller convergence angles and parallelisms as compared with freehand preparation training. With the freehand preparation after training, the convergence angles and parallelisms became smaller in the group trained with the support system than those trained with freehand. The above findings suggest that training in tooth preparation utilizing the newly developed support system can be one of practical programs that are useful for dental students to achieve greater competency in tooth preparation. PMID:15009599

  3. Why geothermal energy? Geothermal utilization in the Philippines

    SciTech Connect

    Gazo, F.M.

    1997-12-31

    This paper discusses the advantages of choosing geothermal energy as a resource option in the Philippine energy program. The government mandates the full-scale development of geothermal energy resources to meet increased power demand brought by rapid industrialization and economic growth, and to reduce fossil fuel importation. It also aims to realize these additional geothermal capacities by tapping private sector investments in the exploration, development, exploitation, construction, operation and management of various geothermal areas in the country.

  4. A dynamic model of metabolizable energy utilization in growing and mature cattle. III. Model evaluation.

    PubMed

    Williams, C B; Jenkins, T G

    2003-06-01

    Component models of heat production identified in a proposed system of partitioning ME intake and a dynamic systems model that predicts gain in empty BW in cattle resulting from a known intake of ME were evaluated. Evaluations were done in four main areas: 1) net efficiency of ME utilization for gain, 2) relationship between recovered energy and ME intake, 3) predicting gain in empty BW from recovered energy, and 4) predicting gain in empty BW from ME intake. An analysis of published data showed that the net partial efficiencies of ME utilization for protein and fat gain were approximately 0.2 and 0.75, respectively, and that the net efficiency of ME utilization for gain could be estimated using these net partial efficiencies and the fraction of recovered energy that is contained in protein. Analyses of published sheep and cattle experimental data showed a significant linear relationship between recovered energy and ME intake, with no evidence for a nonlinear relationship. Growth and body composition of Hereford x Angus steers simulated from weaning to slaughter showed that over the finishing period, 20.8% of ME intake was recovered in gain. These results were similar to observed data and comparable to feedlot data of 26.5% for a shorter finishing period with a higher-quality diet. The component model to predict gain in empty BW from recovered energy was evaluated with growth and body composition data of five steer genotypes on two levels of nutrition. Linear regression of observed on predicted values for empty BW resulted in an intercept and slope that were not different (P < 0.05) from 0 and 1, respectively. Evaluations of the dynamic systems model to predict gain in empty BW using ME intake as the input showed close agreement between predicted and observed final empty BW for steers that were finished on high-energy diets, and the model accurately predicted growth patterns for Angus, Charolais, and Simmental reproducing females from 10 mo to 7 yr of age. PMID

  5. Inverter for interfacing advanced energy sources to a utility grid

    DOEpatents

    Steigerwald, Robert L.

    1984-01-01

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  6. Electric utility restructuring and the California biomass energy industry

    SciTech Connect

    Morris, G.

    1997-05-01

    A shock jolted the electric power industry in April 1994, when the California Public Utilities Commission (CPUC) announced its intention to restructure the industry. The proposal, commonly referred to as retail wheeling, is based on the principle that market deregulation and competition will bring down the cost of electricity for all classes of customers. It would effectively break up the monopoly status of the regulated utilities and allow customers to purchase electricity directly from competing suppliers. According to the original CPUC proposal, cost alone would be the basis for determining which generating resources would be used. The proposal was modified in response to public inputs, and issued as a decision at the end of 1995. The final proposal recognized the importance of renewables, and included provisions for a minimum renewables purchase requirement (MRPR). A Renewables Working Group convened to develop detailed proposals for implementing the CPUC`s renewables program. Numerous proposals, which represented the range of possible programs that can be used to support renewables within the context of a restructured electric utility industry, were received.

  7. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of

  8. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  9. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  10. Plant Wide Assessment of Energy Usage Utilizing SitEModelling as a Tool for Optimizing Energy Consumption

    SciTech Connect

    Ralf Janowsky, Ph.D.; Tracey Mole, Ph.D.

    2007-12-31

    The Evonik Degussa Corporation is the global market leader in the specialty chemicals industry. Innovative products and system solutions make an indispensable contribution to our customers' success. We refer to this as "creating essentials". In fiscal 2004, Degussa's 45,000 employees worldwide generated sales of 11.2 billion euros and operating profits (EBIT) of 965 million euros. Evonik Degussa Corporation has performed a plant wide energy usage assessment at the Mapleton, Illinois facility, which consumed 1,182,330 MMBTU in 2003. The purpose of this study was to identify opportunities for improvement regarding the plant’s utility requirements specific to their operation. The production is based mainly on natural gas usage for steam, process heating and hydrogen production. The current high price for natural gas in the US is not very competitive compared to other countries. Therefore, all efforts must be taken to minimize the utility consumption in order to maximize market position and minimize fixed cost increases due to the rising costs of energy. The main objective of this plant wide assessment was to use a methodology called Site Energy Modelling (SitE Modelling) to identify areas of potential improvement for energy savings, either in implementing a single process change or in changing the way different processes interact with each other. The overall goal was to achieve energy savings of more than 10% compared to the 2003 energy figures of the Mapleton site. The final savings breakdown is provided below: - 4.1% savings for steam generation and delivery These savings were accomplished through better control schemes, more constant and optimized loading of the boilers and increased boiler efficiency through an advanced control schemes. - 1.6% savings for plant chemical processing These saving were accomplished through optimized processing heating efficiency and batch recipes, as well as an optimized production schedule to help equalize the boiler load (e

  11. Information-to-free-energy conversion: Utilizing thermal fluctuations

    PubMed Central

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Maxwell’s demon is a hypothetical creature that can convert information to free energy. A debate that has lasted for more than 100 years has revealed that the demon’s operation does not contradict the laws of thermodynamics; hence, the demon can be realized physically. We briefly review the first experimental demonstration of Maxwell’s demon of Szilard’s engine type that converts information to free energy. We pump heat from an isothermal environment by using the information about the thermal fluctuations of a Brownian particle and increase the particle’s free energy. PMID:27493548

  12. Improved Water and Energy Management Utilizing Seasonal to Interannual Hydroclimatic Forecasts

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Lall, U.

    2014-12-01

    Seasonal to interannual climate forecasts provide valuable information for improving water and energy management. Given that the climatic attributes over these time periods are typically expressed as probabilistic information, we propose an adaptive water and energy management framework that uses probabilistic inflow forecasts to allocate water for uses with pre-specified reliabilities. To ensure that the system needs are not compromised due to forecast uncertainty, we propose uncertainty reduction using model combination and based on a probabilistic constraint in meeting the target storage. The talk will present findings from recent studies from various basins that include (a) role of multimodel combination in reducing the uncertainty in allocation (b) relevant system characteristics that improve the utility of forecasts, (c) significance of streamflow forecasts in promoting interbasin transfers and (d) scope for developing power demand forecasts utilizing temperature forecasts. Potential for developing seasonal nutrient forecasts using climate forecasts for supporting water quality trading will also be presented. Findings and synthesis from the panel discussion from the recently concluded AGU chapman conference on "Seaonal to Interannual Hydroclimatic Forecasts and Water Management" will also be summarized.

  13. Environmental accounting and reporting of energy utility companies. Research notes

    SciTech Connect

    Heiskanen, E.; Heininen, M.; Heurlin, E.; Lovio, R.; Paenkaelaeinen, M.

    1997-09-01

    The research note consists of articles written by a number of authors. The aim of the articles is to describe general development trends of environmental accounting and reporting from the point of view of the energy sector.

  14. Residential Utility Core Wall System - ResCore

    SciTech Connect

    Boyd, G.; Lundell, C.; Wendt, R.

    1999-06-01

    This paper describes activities associated with the RESidential utility CORE wall system (ResCore) developed by students and faculty in the Department of Industrial Design at Auburn University between 1996 and 1998. These activities analyize three operational prototype units installed in Habitat for Humanity Houses. The paper contains two Parts: 1) analysis of the three operational prototype units, 2) exploration of alternative design solutions. ResCore is a manufactured construction component designed to expedite home building by decreasing the need for skilled labor at the work site. The unit concentrates untility elements into a wall unit(s), which is shipped to the construction site and installed in minimum time. The ResCore unit is intended to be built off-site in a manufacturing environment where the impact of vagaries of weather and work-crew coordination and scheduling are minimized. The controlled environment of the factory enhances efficient production of building components through material and labor throughput controls, enabling the production of components at a substantially reduced per-unit cost. The ResCore unit when compared to traditional "stick-built" utility wall components is in may ways analogous to the factory built roof truss compared to on-site "stick-Built" roof framing.

  15. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  16. An overview of energy efficiency techniques in cluster computing systems

    SciTech Connect

    Valentini, Giorgio Luigi; Lassonde, Walter; Khan, Samee Ullah; Min-Allah, Nasro; Madani, Sajjad A.; Li, Juan; Zhang, Limin; Wang, Lizhe; Ghani, Nasir; Kolodziej, Joanna; Li, Hongxiang; Zomaya, Albert Y.; Xu, Cheng-Zhong; Balaji, Pavan; Vishnu, Abhinav; Pinel, Fredric; Pecero, Johnatan E.; Kliazovich, Dzmitry; Bouvry, Pascal

    2011-09-10

    Two major constraints demand more consideration for energy efficiency in cluster computing: (a) operational costs, and (b) system reliability. Increasing energy efficiency in cluster systems will reduce energy consumption, excess heat, lower operational costs, and improve system reliability. Based on the energy-power relationship, and the fact that energy consumption can be reduced with strategic power management, we focus in this survey on the characteristic of two main power management technologies: (a) static power management (SPM) systems that utilize low-power components to save the energy, and (b) dynamic power management (DPM) systems that utilize software and power-scalable components to optimize the energy consumption. We present the current state of the art in both of the SPM and DPM techniques, citing representative examples. The survey is concluded with a brief discussion and some assumptions about the possible future directions that could be explored to improve the energy efficiency in cluster computing.

  17. Advances in Energy Management Systems

    SciTech Connect

    Horton, J.S.; Prince, B.; Sasson, A.M.; Wynne, W.T.; Trefny, F.; Cleveland, F.

    1986-08-01

    This paper is one of the series prepared for a special session to be held at PICA 85. The objective is to review the advances that have been made in Energy Management Systems and to obtain a more common agreement as to the usefulness and future of such systems. The paper contains a summary of five discussions of Energy Management Systems. These discussions focus on the major components of an Energy Management System and address important questions as to the usefulness, past developments, the current state-of-the-art, and needs in Energy Management Systems. Each author provides a different perspective of these systems. The discussions are intended to provide insight into Energy Management Systems, to solicit discussions, and to provide a forum for discussions of Energy Management System's developments and future needs.

  18. Facial image tracking system architecture utilizing real-time labeling

    NASA Astrophysics Data System (ADS)

    Fujino, Yuichi; Ogura, Takeshi; Tsuchiya, Toshiaki

    1993-10-01

    This paper proposes a new moving-objects tracking method processed by a local spiral labeling with CAM (Content Addressable Memory). The local spiral labeling method was proposed in order to improve one of the shortcomings of TV telephones. The conventional labeling, however, needs huge processing time and a memory capacity in order to compute connecting relations between label numbers. CAM has some functions to search and write the plural contents of the memory at the same time. CAM is suitable for a real time labeling. This paper shows a new labeling algorithm called local spiral labeling, a real-time labeling scheme utilizing CAM, and a prototype system of human head tracking using 0.5 micrometers BiCMOS gate-array technology.

  19. Order sets utilization in a clinical order entry system.

    PubMed

    Cowden, Daniel; Barbacioru, Catalin; Kahwash, Eiad; Saltz, Joel

    2003-01-01

    An order set is a predefined template that has been utilized in the standard care of hospitals for many years. While in the past, it took the form of pen and paper, today, it is, indeed, electronic. Within order sets are distinct ordering patterns that may yield fruitful results for clinicians and informaticians, alike. Protocols like there electronic counterpart, order sets, provide an 'indication' identifying the clinical scenario of the patient's condition when the ordering event occurred. This 'indication' is rarely captured by individual orders, and provides difficult challenges to developers of information systems. While mandating an 'indication' be entered for every medication or lab order makes the job much more tasking on the physician provider, it is appealing to researchers and accountants. We have attempted to bypasses that consideration by identifying ordering patterns that predict diagnostic related codes (DRGs) and diagnostic codes which would greatly facilitate the information gathering process and still provide a flexible and user friendly physician interface. PMID:14728324

  20. Pneumatic Regolith Transfer Systems for In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.

    2010-01-01

    One aspect of In-Situ Resource Utilization (lSRU) in a lunar environment is to extract oxygen and other elements from the minerals that make up the lunar regolith. Typical ISRU oxygen production processes include but are not limited to hydrogen reduction, carbothermal and molten oxide electrolysis. All of these processes require the transfer of regolith from a supply hopper into a reactor for chemical reaction processing, and the subsequent extraction of the reacted regolith from the reactor. This paper will discuss recent activities in the NASA ISRU project involved with developing pneumatic conveying methods to achieve lunar regolith simulant transfer under I-g and 1/6-g gravitational environments. Examples will be given of hardware that has been developed and tested by NASA on reduced gravity flights. Lessons learned and details of pneumatic regolith transfer systems will be examined as well as the relative performance in a 1/6th G environment

  1. Isothermal separation processes update. Energy Conversion and Utilization Technologies Program

    SciTech Connect

    England, C.

    1984-08-01

    The isothermal processes of membrane separation, supercritical extraction and condensed-phase chromatography were examined using availability analysis, a method which addresses the thermodynamic value of energy as well as its amount. The general approach was to derive equations that identified where energy, expressed in terms of thermodynamic work, is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of the theories of ideal and regular solutions. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Close examination of supercritical extraction found a relatively simple thermodynamic relationship among the thermodynamic properties of the solvent, the entropy of mixing, and the heat of solution. This allows a direct estimate of the work requirements. The actual work, however, is largely due to the requirement to cycle pressure at high levels in this method. Still, the energy requirements are very low, making up for usually high capital costs for equipment. 12 references, 9 figures, 2 tables.

  2. Performance improvement of a solar heating system utilizing off-peak electric auxiliary

    SciTech Connect

    Eltimsahy, A.H.

    1980-06-01

    The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

  3. Energy accounting and optimization for mobile systems

    NASA Astrophysics Data System (ADS)

    Dong, Mian

    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets. In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms. We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can

  4. 24 CFR 3285.904 - Utility system connections.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Information for... services each be consulted before connecting the manufactured home to any utilities, or (2) Where no LAHJ... manufactured home to any utility service; or (3) In rural areas where no LAHJ or utility services are...

  5. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  6. Utilizing hydropower for load balancing non-storable renewable energy sources - technical and environmental challenges

    NASA Astrophysics Data System (ADS)

    Alfredsen, K. T.; Killingtveit, A.

    2011-12-01

    About 99% of the total energy production in Norway comes from hydropower, and the total production of about 120 TWh makes Norway Europe's largest hydropower producer. Most hydropower systems in Norway are based on high-head plants with mountain storage reservoirs and tunnels transporting water from the reservoirs to the power plants. In total, Norwegian reservoirs contributes around 50% of the total energy storage capacity in Europe. Current strategies to reduce emission of greenhouse gases from energy production involve increased focus on renewable energy sources, e.g. the European Union's 202020 goal in which renewable energy sources should be 20% of the total energy production by 2020. To meet this goal new renewable energy installations must be developed on a large scale in the coming years, and wind power is the main focus for new developments. Hydropower can contribute directly to increase renewable energy through new development or extensions to existing systems, but maybe even more important is the potential to use hydropower systems with storage for load balancing in a system with increased amount of non-storable renewable energies. Even if new storage technologies are under development, hydro storage is the only technology available on a large scale and the most economical feasible alternative. In this respect the Norwegian system has a high potential both through direct use of existing reservoirs and through an increased development of pump storage plants utilizing surplus wind energy to pump water and then producing during periods with low wind input. Through cables to Europe, Norwegian hydropower could also provide balance power for the North European market. Increased peaking and more variable operation of the current hydropower system will present a number of technical and environmental challenges that needs to be identified and mitigated. A more variable production will lead to fluctuating flow in receiving rivers and reservoirs, and it will also

  7. Utilization of commercial communications systems for space based research applications

    NASA Astrophysics Data System (ADS)

    Overmyer, Carolyn; Thompson, Clark

    1998-01-01

    With the increase in utilization of space for research and development activities, the need for a communication system which improves the availability of payload uplink and downlink with the ground becomes increasingly more critical. At the same time, experiment developers are experiencing a tightening of their budgets for space based research. They don't have the capability to develop a unique communication interface that requires unique software and hardware packages. They would prefer to use commercial protocols and standards available through off-the-shelf components. Also, the need for secure communication is critical to keep proprietary data from being distributed to competing organizations. In order to meet the user community needs, SPACEHAB is currently in the process of developing and testing a system designed specifically for the user community called the SPACEHAB Universal Communication System (SHUCS). The purpose of this paper is to present customer requirements, the SHUCS design approach and top level operations, terrestrial test results, and flight testing scheduled for STS-91 and -95.

  8. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, W. B.; Howard, F. S.; Swisher, J. H.

    1976-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - have been identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described. An awareness of probable shortages of strategic materials has been maintained in these suggested programs.

  9. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.

    1975-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.

  10. Design and cost of a utility scale superconducting magnetic energy storage plant

    SciTech Connect

    Loyd, R.J.; Nakamura, T.; Schoenung, S.M.; Lieurance, D.W.; Hilal, M.A.; Rogers, J.D.; Purcell, J.R.; Hassenzahl, W.V.

    1985-01-01

    Superconducting Magnetic Energy Storage (SMES) has potential as a viable technology for use in electric utility load leveling. The advantage of SMES over other energy storage technologies is its high net roundtrip energy efficiency. This paper reports the major features and costs of a jointly developed 5000 MWh SMES plant design.

  11. Utility Energy Service Contracts Improvement Act of 2013

    THOMAS, 113th Congress

    Sen. Schatz, Brian [D-HI

    2013-11-05

    11/05/2013 Read twice and referred to the Committee on Energy and Natural Resources. (text of measure as introduced: CR S7830-7831) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Multifunctional Catalysts to Synthesize and Utilize Energy Carriers

    SciTech Connect

    Lercher, Johannes A.; Appel, Aaron M.; Autrey, Thomas; Bullock, R. Morris; Camaioni, Donald M.; Cho, Herman M.; Dixon, David A.; Dohnalek, Zdenek; Gao, Feng; Glezakou, Vassiliki Alexandra; Henderson, Michael A.; Hu, Jian Z.; Iglesia, Enrique; Karkamkar, Abhijeet J.; Kay, Bruce D.; Kimmel, Gregory A.; Linehan, John C.; Liu, Jun; Lyubinetsky, Igor; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Schenter, Gregory K.; Shaw, Wendy J.; Szanyi, Janos; Wang, Huamin; Wang, Yong; Weber, Robert S.

    2014-06-23

    The central role and critical importance of catalysis in a future based on sustainability, together with the insight that developments have to be knowledge-based have motivated significant efforts to better understand catalyzed processes and to develop new catalytic routes from this knowledge. Overall, three main energy carriers are used worldwide, carbon (and hydrocarbons), hydrogen, and electrons. Conventionally, the stored energy is accessed by oxidizing carbon and hydrogen, forming O-H and C-O bonds and performing work with the produced heat or electricity. Conversely, to synthesize energy carriers sustainably, it is consequently required to reverse the direction, i.e., to break C-O and O-H bonds and form C-C, C-H and H-H bonds. To address these challenges, PNNL’s BES-sponsored program comprises three thrust areas with subtasks, focusing on the fundamentals of biomass conversion processes, direct and indirect CO2 reduction, and on elementary studies aimed at generating and using H2. Multi-functionality, i.e., the simultaneous interaction of more than one catalytically active site with the substrate is the key to achieving the atom and energy efficiency in individual steps. The combination of several types of these sites with carefully selected energetics and rate constants is used to generate complex catalysts able to enhance the rates of multistep processes. This short report summarizes recent results obtained in this BES-funded program.

  13. LANDFILL GAS ENERGY UTILIZATION: TECHNICAL AND NON-TECHNICAL CONSIDERATIONS

    EPA Science Inventory

    The paper discusses technical issues associated with the use of landfill gas (LFG) compared with natural gas--which is the primary fuel used for energy conversion equipment such as internal combustion engines, gas turbines, and fuel cells. FG is a medium-heating-value fuel contai...

  14. LANDFILL GAS ENERGY UTILIZATION: TECHNOLOGY OPTIONS AND CASE STUDIES

    EPA Science Inventory

    The report discusses technical, environmental, and other issues associated with using landfill gas as fuel, and presents case studies of projects in the U.S. illustrating some common energy uses. he full report begins by covering basic issues such as gas origin, composition, and ...

  15. Geothermal Energy: Resource and Utilization. A Teaching Module.

    ERIC Educational Resources Information Center

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  16. Federal Energy Information Systems.

    ERIC Educational Resources Information Center

    Coyne, Joseph G.; Moneyhun, Dora H.

    1979-01-01

    Describes the Energy Information Administration (EIA) and the Technical Information Center (TIC), and lists databases accessible online to the Department of Energy and its contractors through DOE/RECON. (RAA)

  17. Preliminary energy sector assessments of Jamaica. Volume V: electric utility rate analysis

    SciTech Connect

    Not Available

    1980-01-01

    The study analyzes the electric utility rate structure of the Jamaica Public Service Company (JPS) in order to determine whether it promotes economically efficient use of electricity, is based on principles of equity and fairness, and provides JPS with sufficient resources to maintain acceptable service quality. Current tariffs are described, and features such as declining block tariffs (decreasing unit price with increasing volume used), expander clauses (decreasing rate if total energy use increases without increasing maximum power demand), and ratchet clauses (little or no reduction in charges if use falls below a previously set high), which may not encourage conservation or efficient system usage, are noted. Various tariff options, based on marginal cost pricing principles (tying prices to the additional cost of supplying the electricity), are presented for each rate category in the JPS system (residential, small commercial, industrial, and large commercial). Flat rate (with and without demand charges), time of use pricing, fuel adjustment, and cost of service adjustment are considered.

  18. Photovoltaics as a terrestrial energy source. Volume 2: System value

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.

  19. Energy conversion system

    SciTech Connect

    Wang, F.E.

    1981-06-30

    A thermal-mechanical energy converting device is disclosed that has at least two rotatably supported wheels and with one or more endless transmission elements of a material having a memory effect capable in the bending mode of converting thermal energy into mechanical energy when heated from a temperature below its transition temperature to a temperature above its transition temperature; the transmission elements serve to drive one wheel from the other wheel upon application of thermal energy to the transmission elements, whereby the thermal energy is transferred from the other wheel to the transmission elements over at least a major portion of the circumferential contact of the transmission elements with the other wheel.

  20. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; McConaughy, G.; Lynnes, C.; Morse, S.; Isaac, D.

    2004-12-01

    The last decade's influx of raw data and derived geophysical parameters from several Earth observing satellites to NASA data centers has created a data-rich environment for Earth science research and applications. For example, the Distributed Active Archive Centers of NASA's Earth Observing System Data and Information System held over 2.8 petabytes of data at the end of 2003, growing at a rate of about 3 terabytes per day. The data products are distributed to a large community of scientific researchers, educators and operational government agencies. With advances in computational hardware, networks, information management and software technologies, much progress has been made over the last decade in data archiving and providing data access for a broad, diverse user community. However, to realize the full potential of the growing archives of valuable scientific data, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. The set of providers of data and services pertaining to archiving and distribution of Earth science data is quite heterogeneous and distributed today and is likely to be even more so in the future. This is due to the diversity of Earth Science disciplines and the distribution of expertise needed to provide data and services in those disciplines. Thus, in typical real world applications scenarios, the data and services will be obtained through service chains involving multiple data archive sites or systems. It is in this context that the development of technologies to improve data utilization must occur. Sponsored by NASA's Intelligent Systems Project within the Computing, Information and Communication Technology Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization by adding intelligence into the archives in the context of an overall knowledge building system. Potential Intelligent Archive concepts

  1. Energy and Environmental Systems Division's publications publications 1968-1982

    SciTech Connect

    1982-03-01

    Books, journal articles, conference papers, and technical reports produced by the Energy and Environmental Systems Division of Argonne National Laboratory are listed in this bibliography. Subjects covered are energy resources (recovery and use); energy-efficient technology; electric utilities, and environments. (MCW)

  2. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  3. Imprecise results: Utilizing partial computations in real-time systems

    NASA Technical Reports Server (NTRS)

    Lin, Kwei-Jay; Natarajan, Swaminathan; Liu, Jane W.-S.

    1987-01-01

    In real-time systems, a computation may not have time to complete its execution because of deadline requirements. In such cases, no result except the approximate results produced by the computations up to that point will be available. It is desirable to utilize these imprecise results if possible. Two approaches are proposed to enable computations to return imprecise results when executions cannot be completed normally. The milestone approach records results periodically, and if a deadline is reached, returns the last recorded result. The sieve approach demarcates sections of code which can be skipped if the time available is insufficient. By using these approaches, the system is able to produce imprecise results when deadlines are reached. The design of the Concord project is described which supports imprecise computations using these techniques. Also presented is a general model of imprecise computations using these techniques, as well as one which takes into account the influence of the environment, showing where the latter approach fits into this model.

  4. Solar total energy project at Shenandoah, Georgia system design

    NASA Technical Reports Server (NTRS)

    Poche, A. J.

    1980-01-01

    The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.

  5. Solar total energy project at Shenandoah, Georgia system design

    NASA Astrophysics Data System (ADS)

    Poche, A. J.

    1980-05-01

    The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.

  6. High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

  7. Utility of extracting {alpha}-particle energy by waves

    SciTech Connect

    Fisch, N.J.; Herrmann, M.C.

    1994-05-01

    The utility of extracting {alpha}-particle power, and then diverting this power to fast fuel ions, is investigated. As power is diverted to fast ions and then to ions, a number of effects come into play, as the relative amounts of pressure taken up by electrons, fuel ions, and fast {alpha}-particles shift. In addition, if the {alpha}-particle power is diverted to fast fuel ions, there is an enhanced fusion reactivity because of the nonthermal component of the ion distribution. Some useful expressions for describing these effects are derived, and it is shown that fusion reactors with power density about twice what otherwise might be obtained can be contemplated, so long as a substantial amount of the {alpha}-particle power can be diverted. Interestingly, in this mode of operation, once the electron heat is sufficiently confined, further improvement in confinement is actually not desirable. A similar improvement in fusion power density can be obtained for advanced fuel mixtures such as D-He{sup 3}, where the power of both the energetic {alpha}-particles and the energetic protons might be diverted advantageously.

  8. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  9. High temperature underground thermal energy storage system for solar energy

    NASA Technical Reports Server (NTRS)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  10. The impact of municipal refuse utilization on energy and our environment

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The incinerator/boiler configuration is stressed as the most reliable method of waste utilization. It is also pointed out that the high cost of refuse disposal and the ever increasing cost of energy, have made this method attractive. A plan is outlined for operating a waste utilization plant. Community participation is encouraged in investigating the feasibility of refuse to energy facilities in their area.

  11. Evaluating sustainable energy strategies for a water utility.

    PubMed

    Zakkour, P D; Gochin, R J; Lester, J N

    2002-07-01

    Research suggests that political will to deliver improvements in the quality of surface water in the UK and across the EU, alongside measures to place tighter controls on the quality of biosolids applied to agricultural land, will augment the levels of energy used in sewage and sludge treatment. This coincides with increasing concerns over the use of fossil fuel derived energy sources and their potential to enhance the Earth's greenhouse effect and promote global climate change, creating a serious paradox for these responsible for managing the aquatic environment. However, previous research also suggests that novel technologies and practices could potentially mitigate the problem in hand. This paper describes the development of a model for estimating future energy use and CO2 emissions in the wastewater treatment sector, and outlines the results of different projections using incumbent and novel practices. Indications are that using incumbent approaches could augment CO2 emissions by 15-30% in the medium- to long-term, while loss of the agricultural sludge route and deployment of an incineration strategy could mean increases are of the order of 50-70%. Alternatively, the construction of a greater number of sludge treatment facilities, with greater biogas recovery, could reduce this burden to around -8 to +7% over the same period, while the realisation of the full potential an anaerobic pre-treatment process could lead to reductions of up to 16%. Nevertheless, some of the options will come at a higher cost than incumbents, and the potential for making the business case for these investments is explored. PMID:12164642

  12. Energy - A systems problem

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.

    1982-01-01

    Energy management in its most comprehensive sense encompasses economic, technical, environmental, and political problems. The present evaluation of prospects notes that opportunities for energy conservation are widespread, in such fields as building air conditioning, transportation, electrical appliances, and industrial processes. Further conservation is expected to be achieved through a combination of technology development and economics; the latter factor must not be unduly influenced by political measures that shield consumers from the true cost of energy.

  13. Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities

    NASA Technical Reports Server (NTRS)

    Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi

    2011-01-01

    Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.

  14. EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Zhu, Rong; Ma, Guo-hong

    2016-02-01

    As a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

  15. Energy substrate utilization in a poorly differentiated rat hepatoma

    SciTech Connect

    Mares-Perlman, J.A.

    1987-01-01

    Metabolism of energy substrates in a transplantable, poorly differentiated rat hepatoma and the effect of high fat total parenteral nutrition (TPN) on growth of this neoplasms and host were studied. Although high-fat TPN better maintained host weight and nitrogen balance than oral feeding and did not increase tumor growth, adverse consequences of high-fat TPN were found. These included liver lipid infiltration and indications of the possible development of insulin resistance. A method for isolating fresh hepatoma cells was designed to study the metabolism of energy substrates by this neoplasms. The metabolic viability of cells obtained by this procedure in sustained incubations was demonstrated by observations of linear rates of leucine and uridine incorporation into acid-insoluble material, retention of cellular ATP and ADP content and stable rates of oxygen consumption. Cells isolated by this procedure were used to determine whether this hepatoma was capable of oxidizing fatty acids and ketones and to estimate the contribution oxidation of these substrates made to ATP production relative to glucose and glutamine. Incorporation of radiolabel from both palmitate and ..beta..-hydroxybutyrate carbon into CO/sub 2/ was observed.

  16. The Utilization of Classifications in High-Energy Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Atwood, Bill

    2012-03-01

    The history of high-energy gamma observations stretches back several decades. But it was with the launch of the Energetic Gamma Ray Experiment Telescope (EGRET) in 1991 onboard the Compton Gamma Ray Observatory (CGRO) [1], that the field entered a new era of discovery. At the high-energy end of the electromagnetic spectrum, incoming particles of light, photons, interact with matter mainly by producing electron-positron pairs and this process dominates above an energy of 10-30MeV depending on the material. To a high degree the directionality of the incoming gamma ray is reflected in the e+ and e-, and hence the detection of the trajectories of the e+e- pair can be used to infer the direction of the originating photon. Measuring these high-energy charged particles is the domain of high-energy particle physics and so it should be of little surprise that particle physicists played a significant role in the design and construction of EGRET, as well as the design and implementation of analysis methods for the resulting data. Prior to EGRET, only a handful of sources in the sky were known as high-energy gamma-ray emitters. During EGRET's 9-years mission the final catalog included over 270 sources including new types such as Gamma Ray Bursts (GRBs). This set the stage for the next-generation mission, the Gamma ray Large Area Space Telescope (GLAST) [2]. Very early in the EGRET mission, the realization that the high-energy gamma-ray sky was extremely interesting led to a competition to develop the next-generation instruments. The technology used in EGRET was frozen in the late 1970s and by 1992, enormous advances had been made in experimental particle physics. In particular the effort to develop solid state detectors, targeted for use at the Super Conducting Super Collider (SSC), had made the technology of silicon strip detectors (SSDs) commercially viable for use in large area arrays. Given the limitations imposed by the space environment (e.g., operate in a vacuum, scarce

  17. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  18. Is enhanced energy utilization the answer to prevention of excessive adiposity?

    PubMed

    Redinger, Richard N

    2009-06-01

    Excessive adiposity is the result of an imbalance in energy homeostasis whereby excessive food intake is not balanced by increased energy utilization. Much has been learned about the physiology of energy expenditure during resting, eating, and physical activity that allows optimal energy utilization that could reduce excessive adiposity. Resting metabolic rate and diet-induced thermogenesis collectively contribute 75% of energy expenditure that is largely based on carbohydrate rather than fat metabolism. Conversely, physical activity, whether active (planned) or spontaneous (non-exercise activity thermogenesis), predominately utilizes fatty acids as sources of energy expenditure. Such enhanced fat-derived thermogenesis most optimally results in weight loss to achieve maintenance of balanced energy homeostasis. While decreased energy expenditure of 100-200 Kcal/day from sedentary activities can cause weight gain, unplanned spontaneous physical activity expenditure of 100-800 Kcal/day from routine activities such as walking and fidgeting is sufficient to prevent weight gain. Furthermore, planned physical activity can be enhanced up to 16-fold, such that additional fat thermogenesis can be optimized. Such physical activity also achieves adaptive conditioning for more efficient energy utilization and weight loss. It is, therefore, necessary that children as well as adults embrace all forms of non-exercise and planned active exercise activities to achieve optimal fat thermogenesis for optimal energy homeostasis including weight loss for either the overweight or obese. Such lifestyles need to be promoted through educational, environmental, and legislative changes that optimize healthy nutrition and physical activity. PMID:19585941

  19. Gross Motor Function Classification System: impact and utility.

    PubMed

    Morris, Christopher; Bartlett, Doreen

    2004-01-01

    In summary, the GMFCS has had, and continues to have, a major effect on the health care of children with CP. The number of citations of the GMFCS has been increasing every year, and the classification system has had good uptake internationally and across the spectrum of health professionals for use in research design and clinical practice by providing a system for clearly communicating about children's gross motor function. The utility of diagnostic labels such as diplegia has been questioned. However, although by definition CP is a disorder of posture and movement, the movement disability is often only one of the neurodevelopmental problems for many children with CP. When a complete description of a child's clinical presentation is required we recommend that the GMFCS be used together with the Surveillance of Cerebral Palsy in Europe classification indicating the type and topography of movement impairment. When appropriate the clinical profile will similarly be enhanced with details of other impairments and disabilities such as epilepsy or sensory, learning, feeding, or emotional disturbance. The observations in this annotation are constrained by the amount of information in the public domain. Although these sources adequately represent the effect of the GMFCS on research design, they are less likely to inform us of how the GMFCS is being used in administration, clinical practice, or education. It is not yet clear whether information is being used for these purposes or in assisting with case load management, as intended by the developers. By its localized nature, such information might remain difficult to gauge. We would therefore be interested to hear from others who are using the system for these or any other purposes. PMID:14974650

  20. Electric utility value determination for wind energy. Volume II. A user's guide. [WTP code; WEIBUL code; ROSEN code; ULMOD code; FINAM code

    SciTech Connect

    Percival, David; Harper, James

    1981-02-01

    This report describes a method for determining the value of wind energy systems to electric utilities. It is performed by a package of computer models available from SERI that can be used with most utility planning models. The final output of these models gives a financial value ($/kW) of the wind energy system under consideration in the specific utility system. This volume, the second of two volumes, is a user's guide for the computer programs available from SERI. The first volume describes the value determination methodology and gives detailed discussion on each step of the computer modeling.