Science.gov

Sample records for energy-level schemes

  1. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    SciTech Connect

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  2. Optical Energy Levels Scheme for Co2+ doped in K(Mg,Zn)F3 Fluoroperovskites

    NASA Astrophysics Data System (ADS)

    Barb, A. M.; Gruia, A. S.; Avram, C. N.

    2016-02-01

    The aim of this paper is to model the crystal field parameters and simulate the fine structure of optical energy levels scheme of Co2+:K(Mg,Zn)F3 systems. The crystal field parameters were modeled in the frame of an Exchange Charge Model of the crystal field theory, taking into account the effects of the covalent bond formation between the Co2+ and F- ions. The obtained parameters were used for simulating the fine structure of the system energy levels scheme, by diagonalization of the full Hamiltonian matrix, in the base of 100 wave functions of Co2+ ion. For resolving some discrepancies, the electron-phonon interaction in 4T2g excited state is investigated in the frame of the Ham theory, with the Jahn-Teller stabilization energy calculation. The comparison of the calculated energy levels with experimental data gives a good agreement, which confirms the model and used method.

  3. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-01

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  4. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    SciTech Connect

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-24

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  5. Enzymatic versus inorganic oxygen reduction catalysts: comparison of the energy levels in a free-energy scheme.

    PubMed

    Kjaergaard, Christian H; Rossmeisl, Jan; Nørskov, Jens K

    2010-04-19

    In this paper, we present a method to directly compare the energy levels of intermediates in enzymatic and inorganic oxygen reduction catalysts. We initially describe how the energy levels of a Pt(111) catalyst, operating at pH = 0, are obtained. By a simple procedure, we then convert the energy levels of cytochrome c oxidase (CcO) models obtained at physiological pH = 7 to the energy levels at pH = 0, which allows for comparison. Furthermore, we illustrate how different bias voltages will affect the free-energy landscapes of the catalysts. This allows us to determine the so-called theoretical overpotential of each system, which is shown to be significantly lower for the enzymatic catalysts compared to the inorganic Pt(111) catalyst. Finally, we construct theoretical polarization curves for the CcO models, in order to illustrate the effect of the low overpotentials on turnover rates per site. PMID:20380458

  6. Energy Levels of Hydrogen and Deuterium

    National Institute of Standards and Technology Data Gateway

    SRD 142 Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  7. Energy level modeling of lanthanide materials: review and uncertainty analysis.

    PubMed

    Joos, Jonas J; Poelman, Dirk; Smet, Philippe F

    2015-07-15

    Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared. PMID:26129935

  8. Energy levels for F-16 (Fluorine-16)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope F-16 (fluorine, atomic number Z = 9, mass number A = 16).

  9. Automated drawing system of quantum energy levels

    NASA Astrophysics Data System (ADS)

    Stampoultzis, M.; Sinatkas, J.; Tsakstara, V.; Kosmas, T. S.

    2014-03-01

    The purpose of this work is to derive an automated system that provides advantageous drawings of energy spectra for quantum systems (nuclei, atoms, molecules, etc.) required in various physical sciences. The automation involves the development of appropriate computational code and graphical imaging system based on raw data insertion, theoretical calculations and experimental or bibliographic data insertion. The system determines the appropriate scale to depict graphically with the best possible way in the available space. The presently developed code operates locally and the results are displayed on the screen and can be exported to a PostScript file. We note its main features to arrange and visualize in the available space the energy levels with their identity, taking care the existence in the final diagram the least auxiliary deviations. Future improvements can be the use of Java and the availability on the Internet. The work involves the automated plotting of energy levels in molecules, atoms, nuclei and other types of quantized energy spectra. The automation involves the development of an appropriate computational code and graphical imaging system.

  10. Energy-level alignment at organic heterointerfaces

    PubMed Central

    Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg

    2015-01-01

    Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447

  11. Four energy levels device for skin punching

    NASA Astrophysics Data System (ADS)

    Savastru, D.; Ristici, Esofina; Mustata, Marina; Miclos, S.; Rusu, M. I.; Radu, C.; Savu, V.

    2007-03-01

    Generally, the beam distribution in the tissue in interaction with a pulsed laser is defined by optical properties (effective scattering and absorption coefficient). In 2900 nm range, the effective scattering coefficient is much smaller than the absorption coefficient. An Er:YAG skin puncher is presented. Thermal action of a laser beam can be described as one of three types: hyperthermia, coagulation and volatilization, depending on the degree and the duration of tissue heating. We are interested in the volatilization process that means a loss of material. The various constituents of the tissue disappear in smoke at above 100 0C in a relatively short time of around one tenth of a second. At the edges of the volatilization zone there is a region of coagulation necrosis. In presented case of an Er:YAG laser operating in a free generation mode, the mechanical effects can result from explosive vaporization. When the exposure time of the laser is lower than the characteristic time of the thermal diffusion in the tissue, it produces a thermal containment with an accumulation of heat without diffusion and an explosive vaporization of the target. The Er:YAG laser device has the pulse length of about 160 microseconds and four emitted energy levels. This device is used to punch the skin for blood sampling for different kinds of analysis. The front panel of the device has four keys to select the desired energy according to the skin type.

  12. Energy levels and zero field splitting parameter for Fe{sup 2+} doped in ZnS

    SciTech Connect

    Ivaşcu, Simona

    2013-11-13

    The aim of present paper is to report the results on the modeling of the crystal field parameters of Fe{sup 2+} doped in host matrix ZnS, simulate the energy levels scheme and calculate the zero field splitting parameter D of such system. The crystal field parameters were modeled in the frame of the superposition model of crystal field and the simulation of the energy levels scheme and calculation of the zero field splitting parameters done by diagonalization the Hamiltonian of Fe{sup 2+}:ZnS system. The obtained results were disscused and compared with experimental data. Satisfactory agreement have been obtained.

  13. Energy levels in helium and neon atoms by an electron-impact method

    NASA Astrophysics Data System (ADS)

    Taylor, N.; Bartle, K. D.; Mills, D.; Beard, D. S.

    1981-03-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. Singlet-triplet energy differences may be resolved, and the spectra of helium and neon may be used to illustrate the applicability of Russell-Saunders and other, ''intermediate,'' coupling schemes.

  14. Energy levels of a heavy ion moving in dense plasmas

    SciTech Connect

    Hu, Hongwei; Chen, Wencong; Zhao, Yongtao; Li, Fuli; Dong, Chenzhong

    2013-12-15

    In this paper, the potential of a slowly moving test particle moving in collisional dense plasmas is studied. It is composed of the Debye-shielding potential, wake potential, and collision term. The Ritz variational-perturbational method is developed for calculating relativistic binding energy levels of a heavy ion moving in dense plasmas. Binding energy levels of a heavy ion moving in plasmas are calculated. The results show that both non-relativistic energy levels and relativistic energy levels become more negative as the temperature becomes high. They also become more negative as the number density decreasing. Relativistic correction is important for calculating binding energy levels. Both relativistic energy levels and non-relativistic energy levels vary minutely as the speed of heavy ion varies.

  15. Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom

    NASA Astrophysics Data System (ADS)

    Tian Yi, Zhang; Neng Wu, Zheng

    2009-08-01

    Full Text PDF Though the electrons configuration for boron atom is simple and boron atom has long been of interest for many researchers, the theoretical studies for properties of BI are not systematic, there are only few results reported on energy levels of high excited states of boron, and transition measurements are generally restricted to transitions involving ground states and low excited states without considering fine structure effects, provided only multiplet results, values for transitions between high excited states are seldom performed. In this article, by using the scheme of the weakest bound electron potential model theory calculations for energy levels of five series are performed and with the same method we give the transition probabilities between excited states with considering fine structure effects. The comprehensive set of calculations attempted in this paper could be of some value to workers in the field because of the lack of published calculations for the BI systems. The perturbations coming from foreign perturbers are taken into account in studying the energy levels. Good agreement between our results and the accepted values taken from NIST has been obtained. We also reported some values of energy levels and transition probabilities not existing on the NIST data bases.

  16. Theory of Energy Level Tuning in Quantum Dots by Surfactants

    NASA Astrophysics Data System (ADS)

    Zherebetskyy, Danylo; Wang, Lin-Wang; Materials Sciences Division, Lawrence Berkeley National Laboratory Team

    2015-03-01

    Besides quantum confinement that provides control of the quantum dot (QD) band gap, surface ligands allow control of the absolute energy levels. We theoretically investigate energy level tuning in PbS QD by surfactant exchange. We perform direct calculations of real-size QD with various surfactants within the frame of the density functional theory and explicitly analyze the influence of the surfactants on the electronic properties of the QD. This work provides a hint for predictable control of the absolute energy levels and their fine tuning within 3 eV range by modification of big and small surfactants that simultaneously passivate the QD surface.

  17. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  18. "Piekara's Chair": Mechanical Model for Atomic Energy Levels.

    ERIC Educational Resources Information Center

    Golab-Meyer, Zofia

    1991-01-01

    Uses the teaching method of models or analogies, specifically the model called "Piekara's chair," to show how teaching classical mechanics can familiarize students with the notion of energy levels in atomic physics. (MDH)

  19. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  20. Calculation of Rydberg energy levels for the francium atom

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Zhong; Chu, Jin-Min

    2010-06-01

    Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the np2Po1/2 (n = 7-50) and np2Po3/2 (n = 7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.

  1. Revised energy levels and hyperfine structure constants of Ta II

    NASA Astrophysics Data System (ADS)

    Windholz, Laurentius; Arcimowicz, Bronislaw; Uddin, Zaheer

    2016-06-01

    Using a wave number calibrated Fourier transform spectrum, we determined the energy levels of the first ion of tantalum with high accuracy. To get the correct center of gravity wave numbers of the observed spectral lines, the knowledge of the hyperfine constants of the involved levels was necessary. From the observed values we deduced the energy levels in a global fit. A comparison between our results and all available literature values is presented.

  2. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  3. Hybrid variational-perturbation method for calculating ro-vibrational energy levels of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Pavlyuchko, A. I.; Yurchenko, S. N.; Tennyson, Jonathan

    2015-07-01

    A procedure for calculation of rotational-vibrational states of medium-sized molecules is presented. It combines the advantages of variational calculations and perturbation theory. The vibrational problem is solved by diagonalising a Hamiltonian matrix, which is partitioned into two sub-blocks. The first, smaller sub-block includes matrix elements with the largest contribution to the energy levels targeted in the calculations. The second, larger sub-block comprises those basis states which have little effect on these energy levels. Numerical perturbation theory, implemented as a Jacobi rotation, is used to compute the contributions from the matrix elements of the second sub-block. Only the first sub-block needs to be stored in memory and diagonalised. Calculations of the vibrational-rotational energy levels also employ a partitioning of the Hamiltonian matrix into sub-blocks, each of which corresponds either to a single vibrational state or a set of resonating vibrational states, with all associated rotational levels. Physically, this partitioning is efficient when the Coriolis coupling between different vibrational states is small. Numerical perturbation theory is used to include the cross-contributions from different vibrational states. Separate individual sub-blocks are then diagonalised, replacing the diagonalisation of a large Hamiltonian matrix with a number of small matrix diagonalisations. Numerical examples show that the proposed hybrid variational-perturbation method greatly speeds up the variational procedure without significant loss of precision for both vibrational-rotational energy levels and transition intensities. The hybrid scheme can be used for accurate nuclear motion calculations on molecules with up to 15 atoms on currently available computers.

  4. Correlation between the energy level structure of cerium-doped yttrium aluminum garnet and luminescent behavior at varying temperatures

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Liu, Xiaolang; He, Lizhu; Liu, Q. L.

    2016-05-01

    Luminescent spectra of cerium-doped yttrium aluminum garnet are measured at varying temperatures. It is found that the two excitation peaks demonstrate a reverse trend as the temperature rises, and the breadth of the high-energy emission peak experiences an abrupt widening. These effects could be directly linked to the energy level scheme of Ce3+ under the crystal field of local symmetry. Moreover, an alternative fitting function is provided which could effectively resolve the emission curve.

  5. Temperature dependent energy levels of methylammonium lead iodide perovskite

    SciTech Connect

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J. E-mail: mgupta@virginia.edu; Sun, Keye; Gupta, Mool C. E-mail: mgupta@virginia.edu; Saidi, Wissam A.; Scudiero, Louis E-mail: mgupta@virginia.edu

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  6. Electronic energy levels of intermediates in the laboratory

    NASA Astrophysics Data System (ADS)

    Howard, I. A.; Horlick, G.

    1980-12-01

    Using the multiple scattering X-alpha method, electronic energy levels have been found self-consistently for the intermediates Ni(CO)(n), n = 1,2,3 in the formation of nickel tetracarbonyl via the Ni-CO surface reaction. Linear geometries have been assumed for NiCO and Ni(CO)2, and a trigonal planar conformation for Ni(CO)3, in accordance with previously published IR spectra. The intermediates were assumed to be in the gas phase, free of surface interaction. From the energy level structure found, all three of the intermediates were determined to be diamagnetic, as Ni(CO)4 is known to be.

  7. Electronic energy levels of intermediates in the nickel carbonylation reaction

    NASA Astrophysics Data System (ADS)

    Howard, I. A.; Pratt, G. W.; Johnson, K. H.; Dresselhaus, G.

    1981-03-01

    Using the multiple scattering Xa method, electronic energy levels have been found self-consistently for the intermediates Ni(CO)n, n = 1,2,3 in the formation of nickel tetracarbonyl via the Ni-CO surface reaction. Linear geometries have been assumed for NiCO and Ni(CO)2, and a trigonal planar conformation for Ni(CO)3, in accordance with previously published IR spectra. The intermediates were assumed to be in the gas phase, free of surface interaction. From the energy level structure found, all three of the intermediates were determined to be diamagnetic, as Ni(CO)4 is known to be.

  8. Efficiencies of thermodynamics when temperature-dependent energy levels exist.

    PubMed

    Yamano, Takuya

    2016-03-14

    Based on a generalized form of the second law of thermodynamics, in which the temperature-dependent energy levels of a system are appropriately included in entropy generation, we show that the effect reasonably appears in efficiencies of thermodynamic processes. PMID:26890276

  9. Degeneracy of energy levels of pseudo-Gaussian oscillators

    SciTech Connect

    Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina

    2015-12-07

    We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.

  10. Energy levels of hybrid monolayer-bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Ketabi, S. A.; da Costa, D. R.; Peeters, F. M.

    2016-04-01

    Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.

  11. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  12. S-matrix calculations of energy levels of alkalilike ions

    NASA Astrophysics Data System (ADS)

    Sapirstein, Jonathan; Cheng, K. T.

    2013-05-01

    A recent S-matrix based QED calculation of energy levels of the lithium isoelectronic sequence is extended to the general case of a valence electron outside an arbitrary filled core. Formulas are presented that allow calculation of the energy levels of valence ns , np1 / 2 , np3 / 2 , nd3 / 2 , and nd5 / 2 states. Emphasis is placed on modifications of the lithiumlike formulas required because more than one core state is present, and a discussion of an unusual feature of the two-photon exchange contribution involving autoiononizing states is given. The method is illustrated with a calculation of energy levels of the sodium isoelectronic sequence, with results for 3s1 / 2 , 3p1 / 2 , and 3p3 / 2 energies tabulated for the range Z = 20 - 100 . A detailed breakdown of the calculation is given for Z = 74 . Comparison with experiment and other calculations is given, and prospects for extension of the method to ions with more complex electronic structure discussed. The work of JS was supported in part by NSF Grant No. PHY-1068065. The work of KTC was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Energy levels, lifetimes and radiative data of Ba XXVI

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Goyal, Arun; Khatri, Indu; Aggarwal, Sunny; Sharma, Rinku; Mohan, Man

    2016-05-01

    We report an extensive and an elaborate theoretical study of atomic data for Ba XXVI by considering Singlet, Doublet and Triplet (SDT) electron excitations within N-shell and single excitations from N-shell to O-shell. We have calculated energy levels and lifetimes for lowest 110 fine structure levels by using Multi-configuration Dirac-Fock method (MCDF). We have also considered Quantum Electrodynamics (QED) and Breit corrections in our calculations. We have presented the radiative data for electric and magnetic dipole (E1, M1) and quadrupole (E2, M2) transitions among lowest 110 levels. We have made comparisons of our calculated excitation energies and EUV (Extreme Ultraviolet) transition wavelengths with experimentally observed energy levels and wavelengths and achieved good agreement. We have also computed energy levels by performing similar relativistic distorted wave calculations using Flexible Atomic Code (FAC). Additionally, we have provided new atomic data for Ba XXVI which are not published elsewhere in the literature. We believe that our results may be beneficial in fusion plasma research and astrophysical investigations and applications.

  14. Charge separation at nanoscale interfaces: Energy-level alignment including two-quasiparticle interactions

    SciTech Connect

    Li, Huashan; Lin, Zhibin; Lusk, Mark T. Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  15. Rovibrational bound states of neon trimer: quantum dynamical calculation of all eigenstate energy levels and wavefunctions.

    PubMed

    Yang, Benhui; Chen, Wenwu; Poirier, Bill

    2011-09-01

    Exact quantum dynamics calculations of the eigenstate energy levels and wavefunctions for all bound rovibrational states of the Ne(3) trimer (J = 0-18) have been performed using the ScalIT suite of parallel codes. These codes employ a combination of highly efficient methods, including phase-space optimized discrete variable representation, optimal separable basis, and preconditioned inexact spectral transform methods, together with an effective massive parallelization scheme. The Ne(3) energy levels and wavefunctions were computed using a pair-wise Lennard-Jones potential. Jacobi coordinates were used for the calculations, but to identify just those states belonging to the totally symmetric irreducible representation of the G(12) complete nuclear permutation-inversion group, wavefunctions were plotted in hyperspherical coordinates. "Horseshoe" states were observed above the isomerization barrier, but the horseshoe localization effect is weaker than in Ar(3). The rigid rotor model is found to be applicable for only the ground and first excited vibrational states at low J; fitted rotational constant values are presented. PMID:21913762

  16. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    NASA Astrophysics Data System (ADS)

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S. H.

    2014-05-01

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s23p4, 3s3p5, 3s23p33d, 3s23p34s, 3s23p34p, and 3s23p34d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit-Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin-orbit, spin-other-orbit, and spin-spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications.

  17. New Fe ii energy levels from stellar spectra

    NASA Astrophysics Data System (ADS)

    Castelli, F.; Kurucz, R. L.

    2010-09-01

    Aims: The spectra of B-type and early A-type stars show numerous unidentified lines in the whole optical range, especially in the 5100-5400 Å interval. Because Fe ii transitions to high energy levels should be observed in this region, we used semiempirical predicted wavelengths and gf-values of Fe ii to identify unknown lines. Methods: Semiempirical line data for Fe ii computed by Kurucz are used to synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000. Results: We determined a total of 109 new 4f levels for Fe ii with energies ranging from 122 324 cm-1 to 128 110 cm-1. They belong to the Fe ii subconfigurations 3d6(3P)4f (10 levels), 3d6(3H)4f (36 levels), 3d6(3F)4f (37 levels), and 3d6(3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7 levels), and 6d (4 levels) configurations. The new levels have allowed us to identify more than 50% of the previously unidentified lines of HR 6000 in the wavelength region 3800-8000 Å. Tables listing the new energy levels are given in the paper; tables listing the spectral lines with log gf ≥ -1.5 that are transitions to the 4f energy levels are given in the Online Material. These new levels produce 18 000 lines throughout the spectrum from the ultraviolet to the infrared. Tables 6-9 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A57

  18. Energy levels of double triangular graphene quantum dots

    SciTech Connect

    Liang, F. X.; Jiang, Z. T. Zhang, H. Y.; Li, S.; Lv, Z. T.

    2014-09-28

    We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection is inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.

  19. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  20. Energy level alignment in Au/pentacene/PTCDA trilayer stacks

    NASA Astrophysics Data System (ADS)

    Sehati, P.; Braun, S.; Fahlman, M.

    2013-09-01

    Ultraviolet photoelectron spectroscopy is used to investigate the energy level alignment and molecular orientation at the interfaces in Au/pentacene/PTCDA trilayer stacks. We deduced a standing orientation for pentacene grown on Au while we conclude a flat lying geometry for PTCDA grown onto pentacene. We propose that the rough surface of polycrystalline Au induces the standing geometry in pentacene. It is further shown that in situ deposition of PTCDA on pentacene can influence the orientation of the surface pentacene layer, flipping part of the surface pentacene molecules into a flat lying geometry, maximizing the orbital interaction across the pentacene-PTCDA heterojunction.

  1. Energy level control: toward an efficient hot electron transport

    PubMed Central

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-01-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864

  2. The Alternative Scheme to Describe Nuclei with X(5) Symmetry

    NASA Astrophysics Data System (ADS)

    Dai, L. R.; Pan, F.; Liu, R. L.; Yu, H.; Zhang, W. L.

    The possible nuclei with X(5) symmetry are investigated in the Interacting Boson Model (IBM), in which the traditional scheme and a new alternative scheme from the spherical to the axially deformed limit of the IBM with a schematic Hamiltonian are studied by using the SU(3) quadrupole-quadrupole term and O(6) cubic interaction, respectively. The low-lying energy levels and E2 transition rates from the new scheme are calculated and compared with the experimental data and those of the traditional U(5) - SU(3) description. It is shown that the results from this new scheme seem better than those of the traditional description.

  3. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  4. Electron Energy Levels in the 1D-2D Transition

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint

    Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.

  5. Energy levels and radiative transition rates for Ba XLVIII

    NASA Astrophysics Data System (ADS)

    Khatri, Indu; Goyal, Arun; Aggarwal, Sunny; Singh, A. K.; Mohan, Man

    2016-01-01

    Energy levels and radiative rates are reported for transitions in F-like Ba XLVIII. Configuration interaction has been included among 27 configurations (generating 431 levels) over a wide energy range up to 618 Rydbergs, and the fully relativistic multi-configurational Dirac-Fock method adopted for the calculations. To assess the accuracy, calculations have also been performed with the flexible atomic code, FAC. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions from the lowest 3 levels, although calculations have been performed for a much larger number of levels. We have made comparisons of our results with existing available results and a good agreement has been achieved. Additionally, lifetimes for all 431 levels are listed.

  6. Energy level offset analysis of lead atom in laser plasma

    NASA Astrophysics Data System (ADS)

    Zhou, X. M.; Chen, C. S.; Man, B. Y.; Guo, J.; Wang, J.

    2009-08-01

    The optical emission spectra of the plasma generated by a 1064 nm laser irradiation of lead target in air were recorded and analyzed. Temporal evolvement trait of spectral lines was investigated. The Stark width and line shift were measured at different delay time and laser energies. The electron densities were determined using Stark-broadening parameters of spectral lines. The atomic energy level offset in plasma surroundings was explored by analyzing the line shift. The experimental data of Stark widths and line shifts were analyzed using the regularity of the Stark parameters’ dependence on effective ionization potential. However an inverse experimental result was found compared with the theoretical calculation. In addition, the change of the Stark widths and line shifts with the delay time and laser energies was discussed.

  7. Energy levels, oscillator strengths, and radiative rates for Si-like Zn XVII, Ga XVIII, Ge XIX, and As XX

    SciTech Connect

    Abou El-Maaref, A.; Allam, S.H.; El-Sherbini, Th.M.

    2014-01-15

    The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p and 3s{sup 2}3p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated. -- Highlights: •We have calculated the fine-structure energy levels of Si-like Zn, Ga, Ge and As. •The calculations are performed using the configuration interaction method (CIV3). •We have calculated the oscillator strengths, line strengths and transition rates. •The wavelengths of the transitions are listed in this article. •We also have made comparisons between our data and other calculations.

  8. Energy levels and transition probability matrix elements of ruby for maser applications

    NASA Technical Reports Server (NTRS)

    Berwin, R. W.

    1971-01-01

    Program computes fine structure energy levels of ruby as a function of magnetic field. Included in program is matrix formulation, each row of which contains a magnetic field and four corresponding energy levels.

  9. Interaction Determined Electron Energy Levels in One-Dimension

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Kumar, Sanjeev; Thomas, Kalarikad; Smith, Luke; Creeth, Graham; Farrer, Ian; Ritchie, David; Jones, Geraint; Jonathan, Griffiths; UCL Collaboration; Cavendish Laboratory Collaboration

    2015-03-01

    We have investigated electron transport in a quasi-one dimensional electron gas in the GaAs-AlGaAs heterostructure designed so that the confinement potential can be progressively weakened. This causes the energy levels to decrease in energy relative to each other, however this decrease occurs at different rates, a feature attributed to the energy being determined by both confinement and the electron-electron repulsion which varies with the shape of the wavefunction. It is found that the initial ground state crosses the higher levels so resulting in missing plateaux of quantised conductance. A change in the nature of the ground state to a more extended form causes an increase in the capacitance between the confining gates and the electrons. Both crossings and anti-crossings of the levels are found and these will be discussed along with other consequences of the form of the level interactions. The effects of level crossing on the spin dependent 0.7 structure will be presented. Supported by EPSRC (UK).

  10. Energy levels and the de Broglie relationship for high school students

    NASA Astrophysics Data System (ADS)

    Gianino, Concetto

    2008-07-01

    In this article, four examples of possible lessons on energy levels for high school are described: a particle in a box, a finite square well, the hydrogen atom and a harmonic oscillator. The energy levels are deduced through the use of the steady-state condition and the de Broglie relationship. In particular, the harmonic oscillator energy levels are deduced using correspondence with circular uniform motion.

  11. Rovibrational energy levels of hydrogen peroxide, studied by MULTIMODE with a reaction path Hamiltonian.

    PubMed

    Carter, S; Handy, N C

    2004-07-01

    Recently, Carter and Handy [J. Chem. Phys. 113 (2000) 987] have introduced the theory of the reaction path Hamiltonian (RPH) [J. Chem. Phys. 72 (1980) 99] into the variational scheme MULTIMODE, for the calculation of the J=0 vibrational levels of polyatomic molecules, which have a single large-amplitude motion. In this theory the reaction path coordinate s becomes the fourth dimension of the moment-of-inertia tensor, and must be treated separately from the remaining 3N-7 normal coordinates in the MULTIMODE program. In the modified program, complete integration is performed over s, and the M-mode MULTIMODE coupling approximation for the evaluation of the matrix elements applies only to the 3N-7 normal coordinates. In this paper the new algorithm is extended to the calculation of rotational-vibration energy levels (i.e. J>0) with the RPH, following from our analogous implementation for rigid molecules [Theoret. Chem. Acc. 100 (1998) 191]. The full theory is given, and all extra terms have been included to give the exact kinetic energy operator. In order to validate the new code, we report studies on hydrogen peroxide (H2O2), where the reaction path is equivalent to torsional motion. H2O2 has previously been studied variationally using a valence coordinate Hamiltonian; complete agreement for calculated rovibrational levels is obtained between the previous results and those from the new code, using the identical potential surface. MULTIMODE is now able to calculate rovibrational levels for polyatomic molecules which have one large-amplitude motion. PMID:15248993

  12. Energy Levels and the de Broglie Relationship for High School Students

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2008-01-01

    In this article, four examples of possible lessons on energy levels for high school are described: a particle in a box, a finite square well, the hydrogen atom and a harmonic oscillator. The energy levels are deduced through the use of the steady-state condition and the de Broglie relationship. In particular, the harmonic oscillator energy levels…

  13. Energy levels and spectral lines of tungsten, W III through W LXXIV

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.; Shirai, T.

    2009-05-01

    The energy levels and spectral lines of multiply ionized tungsten atoms, W 2+ through W 73+, have been compiled. Experimental data on spectral lines and energy levels exist for the spectra of W III through W VII, W XXVIII through W LI, W LIII, and W LV through LXV. For W VIII, the four lowest energy levels were derived from the series limits of W VII. For W LXIV (Na-like) and W LVI (K-like), we supplement experimental data on energy levels and wavelengths with predicted values found by accurate interpolations and extrapolations along the isoelectronic sequences. For W LXXIII (He-like) and W LXXIV (H-like), theoretical data on energy levels and line wavelengths are compiled. For W III, we include experimentally determined radiative transition probabilities where available. The ground state configurations and terms were determined for all stages of ionization. A value of ionization energy is included for each ion.

  14. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  15. Tabled Execution in Scheme

    SciTech Connect

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  16. Indirect visual cryptography scheme

    NASA Astrophysics Data System (ADS)

    Yang, Xiubo; Li, Tuo; Shi, Yishi

    2015-10-01

    Visual cryptography (VC), a new cryptographic scheme for image. Here in encryption, image with message is encoded to be N sub-images and any K sub-images can decode the message in a special rules (N>=2, 2<=K<=N). Then any K of the N sub-images are printed on transparency and stacked exactly, the message of original image will be decrypted by human visual system, but any K-1 of them get no information about it. This cryptographic scheme can decode concealed images without any cryptographic computations, and it has high security. But this scheme lacks of hidden because of obvious feature of sub-images. In this paper, we introduce indirect visual cryptography scheme (IVCS), which encodes sub-images to be pure phase images without visible strength based on encoding of visual cryptography. The pure phase image is final ciphertexts. Indirect visual cryptography scheme not only inherits the merits of visual cryptography, but also raises indirection, hidden and security. Meanwhile, the accuracy alignment is not required any more, which leads to the strong anti-interference capacity and robust in this scheme. System of decryption can be integrated highly and operated conveniently, and its process of decryption is dynamic and fast, which all lead to the good potentials in practices.

  17. Rotation vibration energy level clustering in the XB1 ground electronic state of PH2

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Thiel, W.; Jensen, Per; Bunker, P. R.

    2006-10-01

    We use previously determined potential energy surfaces for the Renner-coupled XB1 and AA1 electronic states of the phosphino (PH 2) free radical in a calculation of the energies and wavefunctions of highly excited rotational and vibrational energy levels of the X˜ state. We show how spin-orbit coupling, the Renner effect, rotational excitation, and vibrational excitation affect the clustered energy level patterns that occur. We consider both 4-fold rotational energy level clustering caused by centrifugal distortion, and vibrational energy level pairing caused by local mode behaviour. We also calculate ab initio dipole moment surfaces for the X˜ and A˜ states, and the X˜-A˜ transition moment surface, in order to obtain spectral intensities.

  18. A Simple Approach for the Calculation of Energy Levels of Light Atoms

    ERIC Educational Resources Information Center

    Woodyard, Jack R., Sr.

    1972-01-01

    Describes a method for direct calculation of energy levels by using elementary techniques. Describes the limitations of the approach but also claims that with a minimum amount of labor a student can get greater understanding of atomic physics problems. (PS)

  19. ENERGY LEVELS AND SPECTRAL LINES OF SINGLY IONIZED MANGANESE (Mn II)

    SciTech Connect

    Kramida, Alexander; Sansonetti, Jean E.

    2013-04-01

    This compilation revises the previously recommended list of energy levels of singly ionized manganese (Mn II) and provides a comprehensive list of observed spectral lines and transition probabilities in this spectrum. The new level optimization takes into account critically assessed uncertainties of measured wavelengths and includes about a hundred high-precision wavelengths determined by laser spectroscopy and Fourier transform techniques. Uncertainties of 63% of energy levels and 74% of Ritz wavelengths are reduced by a factor of three on average.

  20. Doping Scheme of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomic chains, precise structures of atomic scale created on an atomically regulated substrate surface, are candidates for future electronics. A doping scheme for intrinsic semiconducting Mg chains is considered. In order to suppress the unwanted Anderson localization and minimize the deformation of the original band shape, atomic modulation doping is considered, which is to place dopant atoms beside the chain periodically. Group I atoms are donors, and group VI or VII atoms are acceptors. As long as the lattice constant is long so that the s-p band crossing has not occurred, whether dopant atoms behave as donors or acceptors is closely related to the energy level alignment of isolated atomic levels. Band structures are calculated for Br-doped (p-type) and Cs-doped (n-type) Mg chains using the tight-binding theory with universal parameters, and it is shown that the band deformation is minimized and only the Fermi energy position is modified.

  1. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  2. Nonstandard finite difference schemes

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1995-01-01

    The major research activities of this proposal center on the construction and analysis of nonstandard finite-difference schemes for ordinary and partial differential equations. In particular, we investigate schemes that either have zero truncation errors (exact schemes) or possess other significant features of importance for numerical integration. Our eventual goal is to bring these methods to bear on problems that arise in the modeling of various physical, engineering, and technological systems. At present, these efforts are extended in the direction of understanding the exact nature of these nonstandard procedures and extending their use to more complicated model equations. Our presentation will give a listing (obtained to date) of the nonstandard rules, their application to a number of linear and nonlinear, ordinary and partial differential equations. In certain cases, numerical results will be presented.

  3. Photoluminescence properties and energy levels of RE (RE = Pr, Sm, Er, Tm) in layered-CaZnOS oxysulfide

    SciTech Connect

    Zhang, Zhi-Jun; Feng, Ang; Chen, Xiang-Yang; Zhao, Jing-Tai

    2013-12-07

    RE{sup 3+} (RE = Pr, Sm, Er, Tm)-activated CaZnOS samples were prepared by a solid-state reaction method at high temperature, and their photoluminescence properties were investigated. Doping with RE{sup 3+} (RE = Pr, Sm, Er, Tm) into layered-CaZnOS resulted in typical RE{sup 3+} (RE = Pr, Sm, Er, Tm) f-f line absorptions and emissions, as well as the charge transfer band of Sm{sup 3+} at about 3.3 eV. The energy level scheme containing the position of the 4f and 5d levels of all divalent and trivalent lanthanide ions with respect to the valence and conduction bands of CaZnOS has been constructed based on the new data presented in this work, together with the data from literature on Ce{sup 3+} and Eu{sup 2+} doping in CaZnOS. The detailed energy level scheme provides a platform for interpreting the optical spectra and could be used to comment on the valence stability of the lanthanide ions in CaZnOS.

  4. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    SciTech Connect

    Emin, D.

    1984-11-15

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (approx.1/N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments.

  5. Check-Digit Schemes.

    ERIC Educational Resources Information Center

    Wheeler, Mary L.

    1994-01-01

    Discusses the study of identification codes and check-digit schemes as a way to show students a practical application of mathematics and introduce them to coding theory. Examples include postal service money orders, parcel tracking numbers, ISBN codes, bank identification numbers, and UPC codes. (MKR)

  6. Chemical control over the energy-level alignment in a two-terminal junction

    NASA Astrophysics Data System (ADS)

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-07-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

  7. Correspondence between energy levels and evolution curves of fixed points in nonlinear Landau-Zener model

    NASA Astrophysics Data System (ADS)

    Liu, Xuan-Zuo; Tian, Dong-Ping; Chong, Bo

    2016-06-01

    Liu et al. [Phys. Rev. Lett. 90(17), 170404 (2003)] proved that the characters of transition probabilities in the adiabatic limit should be entirely determined by the topology of energy levels and the stability of fixed points in the classical Hamiltonian system, according to the adiabatic theorem. In the special case of nonlinear Landau-Zener model, we simplify their results to be that the properties of transition probabilities in the adiabatic limit should just be determined by the attributes of fixed points. It is because the topology of energy levels is governed by the behavior and symmetries of fixed points, and intuitively this fact is represented as a correspondence between energy levels and evolution curves of the fixed points which can be quantitatively described as the same complexity numbers.

  8. Chemical control over the energy-level alignment in a two-terminal junction.

    PubMed

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C S Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  9. Chemical control over the energy-level alignment in a two-terminal junction

    PubMed Central

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  10. Impact behaviour of Napier/polyester composites under different energy levels

    NASA Astrophysics Data System (ADS)

    Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.

    2016-07-01

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  11. Experimental Energy Levels and Partition Function of the 12C2 Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szabó, István; Császár, Attila G.; Bernath, Peter F.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-06-01

    The carbon dimer, the 12C2 molecule, is ubiquitous in astronomical environments. Experimental-quality rovibronic energy levels are reported for 12C2, based on rovibronic transitions measured for and among its singlet, triplet, and quintet electronic states, reported in 42 publications. The determination utilizes the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The 23,343 transitions measured experimentally and validated within this study determine 5699 rovibronic energy levels, 1325, 4309, and 65 levels for the singlet, triplet, and quintet states investigated, respectively. The MARVEL analysis provides rovibronic energies for six singlet, six triplet, and two quintet electronic states. For example, the lowest measurable energy level of the {{a}}{}3{{{\\Pi }}}{{u}} state, corresponding to the J = 2 total angular momentum quantum number and the F 1 spin-multiplet component, is 603.817(5) cm‑1. This well-determined energy difference should facilitate observations of singlet–triplet intercombination lines, which are thought to occur in the interstellar medium and comets. The large number of highly accurate and clearly labeled transitions that can be derived by combining MARVEL energy levels with computed temperature-dependent intensities should help a number of astrophysical observations as well as corresponding laboratory measurements. The experimental rovibronic energy levels, augmented, where needed, with ab initio variational ones based on empirically adjusted and spin–orbit coupled potential energy curves obtained using the Duo code, are used to obtain a highly accurate partition function, and related thermodynamic data, for 12C2 up to 4000 K.

  12. Energy levels of odd-even nuclei using broken pair model

    NASA Astrophysics Data System (ADS)

    Hamammu, I. M.; Haq, S.; Eldahomi, J. M.

    2012-09-01

    A method to calculate energy levels and wave functions of odd-even nuclei, in the frame work of the broken pair model have been developed. The accuracy of the model has been tested by comparing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model, where there are two-proton/neutron + one-neutron/proton in the valence levels. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.

  13. Energy levels of odd-even nuclei using broken pair model

    SciTech Connect

    Hamammu, I. M.; Haq, S.; Eldahomi, J. M.

    2012-09-06

    A method to calculate energy levels and wave functions of odd-even nuclei, in the frame work of the broken pair model have been developed. The accuracy of the model has been tested by comparing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model, where there are two-proton/neutron + one-neutron/proton in the valence levels. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.

  14. Calculating splittings between energy levels of different symmetry using path-integral methods.

    PubMed

    Mátyus, Edit; Althorpe, Stuart C

    2016-03-21

    It is well known that path-integral methods can be used to calculate the energy splitting between the ground and the first excited state. Here we show that this approach can be generalized to give the splitting patterns between all the lowest energy levels from different symmetry blocks that lie below the first-excited totally symmetric state. We demonstrate this property numerically for some two-dimensional models. The approach is likely to be useful for computing rovibrational energy levels and tunnelling splittings in floppy molecules and gas-phase clusters. PMID:27004864

  15. WAVELENGTHS, ENERGY LEVELS, LIFETIMES, AND WEIGHTED OSCILLATOR STRENGTHS FOR THE S VIII SPECTRUM

    SciTech Connect

    Pagan, C. J. B.; Cavalcanti, G. H.; Trigueiros, A. G.; Jupen, C.

    2011-10-01

    The weighted oscillator strengths (gf) and lifetimes for S VIII presented in this work were obtained by a multiconfigurational Hartree-Fock relativistic approach. In this calculation, the electrostatic energy parameters were optimized by a least-squares procedure in order to improve the adjustment to experimental energy levels. The values for gf and lifetimes were then calculated on the basis of these adjusted parameters. New classifications are proposed for energy levels belonging to the 4s and 4d configurations and lines related to them.

  16. Energy Levels and Half-Lives of Gallium Isotopes Obtained by Photo-Nuclear Reaction

    NASA Astrophysics Data System (ADS)

    Dulger, F.; Akkoyun, S.; Bayram, T.; Dapo, H.; Boztosun, I.

    2015-04-01

    We have run an experiment to determine the energy levels and half-lives of Gallium nucleus by using the photonuclear reactions with end-point energy of 18 MeV bremsstrahlung photons, produced by a clinical linear accelerator. As a result of 71Ga(y,n)70Ga and 69Ga(Y,n)68Ga photonuclear reactions, the energy levels and half-lives of 70Ga and 68Ga nuclei have been determined. The results are in good agreement with the literature values.

  17. Hybridization schemes for clusters

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    The concept of an optimum hybridization scheme for cluster compounds is developed with particular reference to electron counting. The prediction of electron counts for clusters and the interpretation of the bonding is shown to depend critically upon the presumed hybridization pattern of the cluster vertex atoms. This fact has not been properly appreciated in previous work, particularly in applications of Stone's tensor surface harmonic (TSH) theory, but is found to be a useful tool when dealt with directly. A quantitative definition is suggested for the optimum cluster hybridization pattern based directly upon the ease of interpretation of the molecular orbitals, and results are given for a range of species. The relationship of this scheme to the detailed cluster geometry is described using Löwdin's partitioned perturbation theory, and the success and range of application of TSH theory are discussed.

  18. Beyond Scheme F

    SciTech Connect

    Elliott, C.J.; Fisher, H.; Pepin, J.; Gillmann, R.

    1996-07-01

    Traffic classification techniques were evaluated using data from a 1993 investigation of the traffic flow patterns on I-20 in Georgia. First we improved the data by sifting through the data base, checking against the original video for questionable events and removing and/or repairing questionable events. We used this data base to critique the performance quantitatively of a classification method known as Scheme F. As a context for improving the approach, we show in this paper that scheme F can be represented as a McCullogh-Pitts neural network, oar as an equivalent decomposition of the plane. We found that Scheme F, among other things, severely misrepresents the number of vehicles in Class 3 by labeling them as Class 2. After discussing the basic classification problem in terms of what is measured, and what is the desired prediction goal, we set forth desirable characteristics of the classification scheme and describe a recurrent neural network system that partitions the high dimensional space up into bins for each axle separation. the collection of bin numbers, one for each of the axle separations, specifies a region in the axle space called a hyper-bin. All the vehicles counted that have the same set of in numbers are in the same hyper-bin. The probability of the occurrence of a particular class in that hyper- bin is the relative frequency with which that class occurs in that set of bin numbers. This type of algorithm produces classification results that are much more balanced and uniform with respect to Classes 2 and 3 and Class 10. In particular, the cancellation of errors of classification that occurs is for many applications the ideal classification scenario. The neural network results are presented in the form of a primary classification network and a reclassification network, the performance matrices for which are presented.

  19. Improved Experimental and Theoretical Energy Levels of Carbon I from Solar Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Chang, Edward S.; Geller, Murray

    1997-01-01

    We have improved the energy levels in neutral carbon using high resolution infrared solar spectra. The main source is the ATMOS spectrum measured by the Fourier transaform spectroscopy technique from 600 to 4800 cm-1, supplemented by the MARK IV balloon data, covering from 4700 to 5700 cm-1.

  20. Peculiarities of collisional excitation transfer with excited screened energy levels of atoms

    SciTech Connect

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2007-09-15

    We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.

  1. Probing Energy Levels of Large Array Quantum Dot Superlattice by Electronic Transport Measurement

    NASA Astrophysics Data System (ADS)

    Bisri, S. Z.; Degoli, E.; Spallanzani, N.; Krishnan, G.; Kooi, B.; Ghica, C.; Yarema, M.; Protesescu, L.; Heiss, W.; Kovalenko, M.; Pulci, O.; Ossicini, S.; Iwasa, Y.; Loi, M. A.

    2015-03-01

    Colloidal quantum dot superlattice (CQDS) emerges as new type of hybrid solids allowing easy fabrication of devices that exploits the quantum confinement properties of individual QD. This materials displays peculiar characters, making investigation of their transport properties nontrivial. Besides the bandgap variations, 0D nature of QD lead to the formation of discrete energy subbands. These subbands are crucial for multiple exciton generation (for efficient solar cell), thermoelectric material and multistate transistor. Full understanding of the CQDS energy level structure is vital to use them in complex devices. Here we show a powerful method to determine the CQDS electronic energy levels from their intrinsic charge transport characteristics. Via the use of ambipolar transistors with CQDS as active materials and gated using highly capacitive ionic liquid gating, Fermi energy can be largely tuned. It can access energy levels beyond QD's HOMO & LUMO. Ability to probe not only the bandgap, but also the discrete energy level from large assembly of QD at room temperature suggests the formation of energy minibands in this system.

  2. Energy level realignment in weakly interacting donor-acceptor binary molecular networks.

    PubMed

    Zhong, Jian-Qiang; Qin, Xinming; Zhang, Jia-Lin; Kera, Satoshi; Ueno, Nobuo; Wee, Andrew Thye Shen; Yang, Jinlong; Chen, Wei

    2014-02-25

    Understanding the effect of intermolecular and molecule-substrate interactions on molecular electronic states is key to revealing the energy level alignment mechanism at organic-organic heterojunctions or organic-inorganic interfaces. In this paper, we investigate the energy level alignment mechanism in weakly interacting donor-acceptor binary molecular superstructures, comprising copper hexadecafluorophthalocyanine (F16CuPc) intermixed with copper phthalocyanine (CuPc), or manganese phthalocynine (MnPc) on graphite. The molecular electronic structures have been systematically studied by in situ ultraviolet photoelectron spectroscopy (UPS) and low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS) experiments and corroborated by density functional theory (DFT) calculations. As demonstrated by the UPS and LT-STM/STS measurements, the observed unusual energy level realignment (i.e., a large downward shift in donor HOMO level and a corresponding small upward shift in acceptor HOMO level) in the CuPc-F16CuPc binary superstructures originates from the balance between intermolecular and molecule-substrate interactions. The enhanced intermolecular interactions through the hydrogen bonding between neighboring CuPc and F16CuPc can stabilize the binary superstructures and modify the local molecular electronic states. The obvious molecular energy level shift was explained by gap-state-mediated interfacial charge transfer. PMID:24433044

  3. Energy Levels in Helium and Neon Atoms by an Electron-Impact Method.

    ERIC Educational Resources Information Center

    Taylor, N.; And Others

    1981-01-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. (Author/SK)

  4. Energy level modification in lead sulfide quantum dot thin films through ligand exchange.

    PubMed

    Brown, Patrick R; Kim, Donghun; Lunt, Richard R; Zhao, Ni; Bawendi, Moungi G; Grossman, Jeffrey C; Bulović, Vladimir

    2014-06-24

    The electronic properties of colloidal quantum dots (QDs) are critically dependent on both QD size and surface chemistry. Modification of quantum confinement provides control of the QD bandgap, while ligand-induced surface dipoles present a hitherto underutilized means of control over the absolute energy levels of QDs within electronic devices. Here, we show that the energy levels of lead sulfide QDs, measured by ultraviolet photoelectron spectroscopy, shift by up to 0.9 eV between different chemical ligand treatments. The directions of these energy shifts match the results of atomistic density functional theory simulations and scale with the ligand dipole moment. Trends in the performance of photovoltaic devices employing ligand-modified QD films are consistent with the measured energy level shifts. These results identify surface-chemistry-mediated energy level shifts as a means of predictably controlling the electronic properties of colloidal QD films and as a versatile adjustable parameter in the performance optimization of QD optoelectronic devices. PMID:24824726

  5. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks

    PubMed Central

    Srie Vidhya Janani, E.; Ganesh Kumar, P.

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417

  6. Classification Schemes: Developments and Survival.

    ERIC Educational Resources Information Center

    Pocock, Helen

    1997-01-01

    Discusses the growth, survival and future of library classification schemes. Concludes that to survive, a scheme must constantly update its policies, and readily adapt itself to accommodate growing disciplines and changing terminology. (AEF)

  7. ESCAP mobile training scheme.

    PubMed

    Yasas, F M

    1977-01-01

    In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries. PMID:12265562

  8. Using Steffe's Advanced Fraction Schemes

    ERIC Educational Resources Information Center

    McCloskey, Andrea V.; Norton, Anderson H.

    2009-01-01

    Recognizing schemes, which are different from strategies, can help teachers understand their students' thinking about fractions. Using Steffe's advanced fraction schemes, the authors describe a progression of development that upper elementary and middle school students might follow in understanding fractions. Each scheme can be viewed as a…

  9. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1benergy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  10. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGESBeta

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  11. Critically Evaluated Energy Levels and Spectral Lines of Singly Ionized Indium (In II)

    PubMed Central

    Kramida, A

    2013-01-01

    A comprehensive list of the best measured wavelengths in the In II spectrum has been compiled. Uncertainties of the wavelength measurements have been analyzed, and existing inconsistencies have been resolved. An optimized set of fine-structure energy levels that fits all observed wavelengths has been derived. Uncertainties of the energy level values have been reduced by an order of magnitude. An improved value of the ionization limit of In II has been determined by fitting quantum-defect and polarization formulas for several series of levels. Intensities of lines observed by different authors have been analyzed and converted to a uniform scale. A set of recommended values of radiative transition rates has been critically compiled, and uncertainties of these rates have been estimated. The hyperfine structure interval in the 5s 2S ground state of In III has been determined from the measurements of the 5sng and 5snh series in In II. PMID:26401424

  12. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  13. Variational Calculations of Ro-Vibrational Energy Levels and Transition Intensities for Tetratomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A description is given of an algorithm for computing ro-vibrational energy levels for tetratomic molecules. The expressions required for evaluating transition intensities are also given. The variational principle is used to determine the energy levels and the kinetic energy operator is simple and evaluated exactly. The computational procedure is split up into the determination of one dimensional radial basis functions, the computation of a contracted rotational-bending basis, followed by a final variational step coupling all degrees of freedom. An angular basis is proposed whereby the rotational-bending contraction takes place in three steps. Angular matrix elements of the potential are evaluated by expansion in terms of a suitable basis and the angular integrals are given in a factorized form which simplifies their evaluation. The basis functions in the final variational step have the full permutation symmetries of the identical particles. Sample results are given for HCCH and BH3.

  14. Two-wavelength holographic recording in photopolymer using four-energy-level system: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Hua; Cho, Sheng-Lung; Lin, Shiuan-Huei; Chi, Sien; Hsu, Ken-Yuh

    2014-11-01

    We investigate a two-wavelength method for recording a persistent hologram in a doped photopolymer. The recording method is based on two separated optical excitations of the four-energy-level system of the doped element, one at λ=325 nm as the sensitizing wavelength and the other at λ=647 nm as the writing wavelength, allowing for an experimental demonstration of nondestructive readout in phenanthrenequinone-doped poly(methyl methacrylate). Further, a four-energy-level rate equations model is proposed for describing the dynamics of hologram recording. The model successfully explains our experimental finding and further provides a general method to investigate such a two-wavelength holographic recording in photopolymer.

  15. Magnetic field dependence of energy levels in biased bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.

    2016-02-01

    Using the tight-binding approach, we study the influence of a perpendicular magnetic field on the energy levels of hexagonal, triangular, and circular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We obtain the energy levels for AB (Bernal)-stacked BLG QDs in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). We find different regions in the spectrum of biased QDs with respect to the crossing point between the lowest-electron and -hole Landau levels of a biased BLG sheet. Those different regions correspond to electron states that are localized at the center, edge, or corner of the BLG QD. Quantum Hall corner states are found to be absent in circular BLG QDs. The spatial symmetry of the carrier density distribution is related to the symmetry of the confinement potential, the position of zigzag edges, and the presence or absence of interlayer inversion symmetry.

  16. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O, and D218O

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Dénes, Nóra; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Hu, Shui-Ming; Szidarovszky, Tamás; Vasilenko, Irina A.

    2014-07-01

    This paper is the fourth of a series of papers reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: D216O, D217O, and D218O. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-14 016, 0-7969, and 0-9108 cm-1 for D216O, D217O, and D218O, respectively. For D216O, D217O, and D218O, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for D216O, D217O, and D218O, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm-1, from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved.

  17. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  18. Perovskite Solar Cells Employing Dopant-Free Organic Hole Transport Materials with Tunable Energy Levels.

    PubMed

    Liu, Yongsheng; Hong, Ziruo; Chen, Qi; Chen, Huajun; Chang, Wei-Hsuan; Yang, Yang Michael; Song, Tze-Bin; Yang, Yang

    2016-01-20

    Conjugated small-molecule hole-transport materials (HTMs) with tunable energy levels are designed and synthesized for efficient perovskite solar cells. A champion device with efficiency of 16.2% is demonstrated using a dopant-free DERDTS-TBDT HTM, while the DORDTS-DFBT-HTM-based device shows an inferior performance of 6.2% due to its low hole mobility and unmatched HOMO level with the valence band of perovskite film. PMID:26588665

  19. Interfacial energy level bending in a crystalline p/p-type organic heterostructure

    SciTech Connect

    Zhu Feng; Grobosch, Mandy; Treske, Uwe; Knupfer, Martin; Huang Lizhen; Ji Shiliang; Yan Donghang

    2011-05-16

    A conduction channel was observed at the heterointerface of the crystalline p-type organic films copper phthalocyanine (CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T). Energy level bending at the interface is confirmed by photoemission spectroscopy, which verifies a charge transfer between CuPc and BP2T. This provides a further route to utilize interfacial electronic properties in functional devices and also documents the importance of reconsidering the interfacial electronic structure of organic heterostructures.

  20. Effect of a metallic gate on the energy levels of a shallow donor

    SciTech Connect

    Slachmuylders, A. F.; Partoens, B.; Peeters, F. M.; Magnus, W.

    2008-02-25

    We have investigated the effect of a metallic gate on the bound states of a shallow donor located near the gate. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anticrossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.

  1. Resonance lines and energy levels of Cs III, Ba IV, and La V

    NASA Technical Reports Server (NTRS)

    Epstein, G. L.; Reader, J.

    1976-01-01

    Spectra of Cs III, Ba IV, and La V were photographed in a low-voltage sliding spark on a 10.7 m normal-incidence vacuum spectrograph. These ions are isoelectronic with neutral iodine and display a halogen-like energy level structure. Detailed isoelectronic comparisons, level transition diagrams, and tabular data on the transitions of the ions and percentage compositions of Cs III configurations are presented.

  2. Model for describing non-equilibrium helium plasma energy level population

    NASA Astrophysics Data System (ADS)

    Kavyrshin, D. I.; Chinnov, V. F.; Ageev, A. G.

    2015-11-01

    A new method for calculating the population of excited levels of helium atoms and ions is suggested. The method is based on direct solution of a system of balance equations for all energy levels for which it was possible to obtain process speed constants. The equations include terms for the processes of particle loss and income by excitation and deexcitation, ionization and recombination as well as losses due to diffusion and radiation. The challenge of solution of such large system is also discussed.

  3. Enhanced cardiovascular function and energy level by a novel chromium (III)-supplement.

    PubMed

    Thirunavukkarasu, Mahesh; Penumathsa, Sureshvarma; Juhasz, Bela; Zhan, Lijun; Bagchi, Manashi; Yasmin, Taharat; Shara, Michael A; Thatte, Hemant S; Bagchi, Debasis; Maulik, Nilanjana

    2006-01-01

    The impetus for the novel Energy Formula (EF) which combines the niacin-bound chromium (III) (0.45%) (NBC), standardized extract of Withania somnifera extracts (10.71%), caffeine (22.76%), D-ribose (10.71%) and selected amino acids such as phenylalanine, taurine and glutamine (55.37%) was based on the knowledge of the cardioprotective potentials of the Withania somnifera extract, caffeine and D-ribose as well as their abilities to increase energy levels and the abilities of amino acids to increase the muscle mass and energy levels. The effect of oral supplementation of EF on the safety, myocardial energy levels and cardioprotective ability were investigated in an ischemic-reperfused myocardium model in both male and female Sprague-Dawley rats over 90 days trial period. At the completion of 90 days, the EF-treated male and female rats gained 9.4% and 3.1% less body weights, respectively, as compared to their corresponding control groups. No significant difference was found in the levels of lipid peroxidation and activities of hepatic Aspartate transaminase, Alanine transaminase and Alkaline phosphatase in EF treatment when compared with control animals. The male and female rat hearts were subjected to 30 min of global ischemia followed by 2 h of reperfusion at 30 and 90 days of EF treatment. Cardiovascular functions including heart rate, coronary flow, aortic flow, dp/dt(max), left ventricular developed pressure (LVDP) and infarct size were monitored. The levels of myocardial adenosine triphosphate (ATP), creatine phosphate (CP), phospho-adenosine monophosphate kinase (p-AMPK) levels, were analyzed at the end of 30 and 90 days of treatment. Significant improvement was observed in all parameters in the EF treatment groups as compared to their corresponding controls. Thus the niacin-bound chromium (III) based energy formula is safe and effective supplement to boost energy levels and cardioprotection. PMID:17012764

  4. Energy Level Alignment at Aqueous GaN and ZnO Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.; Kharche, Neerav; Muckerman, James T.

    2014-03-01

    Electronic energy level alignment at semiconductor-electrolyte interfaces is fundamental to electrochemical activity. Motivated in particular by the search for new materials that can be more efficient for photocatalysis, we develop a first principles method to calculate this alignment at aqueous interfaces and demonstrate it for the specific case of non-polar GaN and ZnO interfaces with water. In the first step, density functional theory (DFT) based molecular dynamics is used to sample the physical interface structure and to evaluate the electrostatic potential step at the interface. In the second step, the GW approach is used to evaluate the reference electronic energy level separately in the bulk semiconductor (valence band edge energy) and in bulk water (the 1b1 energy level), relative to the internal electrostatic energy reference. Use of the GW approach naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. With this predicted interface alignment, specific redox levels in water, with potentials known relative to the 1b1 level, can then be compared to the semiconductor band edge positions. Our results will be discussed in the context of experiments in which photoexcited GaN and ZnO drive the hydrogen evolution reaction. Research carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  5. Energy transfer and energy level decay processes of Er3+ in water-free tellurite glass

    NASA Astrophysics Data System (ADS)

    Gomes, Laercio; Rhonehouse, Daniel; Nguyen, Dan T.; Zong, Jie; Chavez-Pirson, Arturo; Jackson, Stuart D.

    2015-12-01

    This report details the fundamental spectroscopic properties of a new class of water-free tellurite glasses studied for future applications in mid-infrared light generation. The fundamental excited state decay processes relating to the 4I11/2 → 4I13/2 transition in singly Er3+-doped Tellurium Zinc Lanthanum glass have been investigated using time-resolved fluorescence spectroscopy. The excited state dynamics was analyzed for Er2O3 concentrations between 0.5 mol% and 4 mol%. Selective laser excitation of the 4I11/2 energy level at 972 nm and selective laser excitation of the 4I13/2 energy level at 1485 nm has established that in a similar way to other Er3+-doped glasses, a strong energy-transfer upconversion by way of a dipole-dipole interaction between two excited erbium ions in the 4I13/2 level populates the 4I11/2 upper laser level of the 3 μm transition. The 4I13/2 and 4I11/2 energy levels emitted luminescence with peaks located at 1532 nm and 2734 nm respectively with luminescence efficiencies of 100% and 8% for the higher (4 mol.%) concentration sample. Results from numerical simulations showed that a population inversion is reached at a threshold pumping intensity of ∼57 kW cm-2 for a CW laser pump at 976 nm for [Er2O3] = 2 mol.%.

  6. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    NASA Astrophysics Data System (ADS)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  7. by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Kou, Dong-Xing; Zhou, Wen-Hui; Zhou, Zheng-Ji; Wu, Si-Xin; Cao, Xuan

    2014-05-01

    In this work, we employed a convenient one-step synthesis method for synthesizing Cu2ZnSnSe4 (CZTSe) nanocrystals (NCs) in an excess selenium environment. This excess selenium situation enhanced the reaction of metal acetylacetonates with selenium, resulting in the burst nucleation of NCs at relatively low temperatures. The phase morphology and surface and optoelectronic properties of NCs before and after ligand exchange were discussed in depth. It was found that pure tetragonal-phase structure CZTSe NCs with approximately 1.7-eV bandgap could be synthesized. The removal of large organic molecules on CZTSe NCs after ligand exchange by S2- decreased the resistivity. The bandgap of the films after ligand exchange by 550°C selenization was also decreased due to better crystallinity. For potential application in CZTSe solar cells, we constructed an energy level diagram to explain the mutual effect between the absorption layer and CdS layer. Using cyclic voltammetry (CV) measurement, we found that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of CZTSe films shifted down after ligand exchange. After energy level alignment at the CdS/CZTSe interface, a type I band alignment structure was more conveniently formed after ligand exchange. This structure acted as the barrier against injection electrons from ZnO to the CZTSe layer, and recombination would subsequently be depressed.

  8. Energy-level structure of the hydrogen atom confined by a penetrable cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Méndez-Fragoso, R.; Cruz, S. A.

    2016-01-01

    The bound-state energy spectrum and its evolution for a hydrogen atom located along the axis of a standard cylindrical confining cavity with either impenetrable or penetrable confining boundaries are obtained by solving the stationary Schrödinger equation using a finite differences approach. New results are first presented for a nuclear-centered position for the penetrable case as the barrier height and cavity size change. Special attention is then given to the energy-level dependence on the nuclear position along the cylinder axis, where proper identification for the evolution of states from the nuclear-centered position (centered states) up to the cylinder cap (cap states) is proposed, while the corresponding state evolution for intermediate nuclear positions (intermediate states) remains consistent with node conservation and symmetry. It is found that in general the energy levels evolve with an increasing value as the nuclear position is shifted from the central position up to a cylinder cap. As the barrier height (and cavity size) are reduced, a progressive extinction of bound states appears in the order cap states, intermediate states and centered states. Finally, a predominance of cavity-size over barrier-height effects on the energy level shift is found.

  9. Variational calculation of highly excited rovibrational energy levels of H2O2.

    PubMed

    Polyansky, Oleg L; Kozin, Igor N; Ovsyannikov, Roman I; Małyszek, Paweł; Koput, Jacek; Tennyson, Jonathan; Yurchenko, Sergei N

    2013-08-15

    Results are presented for highly accurate ab initio variational calculation of the rotation-vibration energy levels of H2O2 in its electronic ground state. These results use a recently computed potential energy surface and the variational nuclear-motion programs WARV4, which uses an exact kinetic energy operator, and TROVE, which uses a numerical expansion for the kinetic energy. The TROVE calculations are performed for levels with high values of rotational excitation, J up to 35. The purely ab initio calculations of the rovibrational energy levels reproduce the observed levels with a standard deviation of about 1 cm(-1), similar to that of the J = 0 calculation, because the discrepancy between theory and experiment for rotational energies within a given vibrational state is substantially determined by the error in the vibrational band origin. Minor adjustments are made to the ab initio equilibrium geometry and to the height of the torsional barrier. Using these and correcting the band origins using the error in J = 0 states lowers the standard deviation of the observed-calculated energies to only 0.002 cm(-1) for levels up to J = 10 and 0.02 cm(-1) for all experimentally known energy levels, which extend up to J = 35. PMID:23611762

  10. Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures

    PubMed Central

    Cochrane, K. A.; Schiffrin, A.; Roussy, T. S.; Capsoni, M.; Burke, S. A.

    2015-01-01

    Organic semiconductor devices rely on the movement of charge at and near interfaces, making an understanding of energy level alignment at these boundaries an essential element of optimizing materials for electronic and optoelectronic applications. Here we employ low temperature scanning tunneling microscopy and spectroscopy to investigate a model system: two-dimensional nanostructures of the prototypical organic semiconductor, PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) adsorbed on NaCl (2 ML)/Ag(111). Pixel-by-pixel scanning tunneling spectroscopy allows mapping of occupied and unoccupied electronic states across these nanoislands with sub-molecular spatial resolution, revealing strong electronic differences between molecules at the edges and those in the centre, with energy level shifts of up to 400 meV. We attribute this to the change in electrostatic environment at the boundaries of clusters, namely via polarization of neighbouring molecules. The observation of these strong shifts illustrates a crucial issue: interfacial energy level alignment can differ substantially from the bulk electronic structure in organic materials. PMID:26440933

  11. Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures.

    PubMed

    Cochrane, K A; Schiffrin, A; Roussy, T S; Capsoni, M; Burke, S A

    2015-01-01

    Organic semiconductor devices rely on the movement of charge at and near interfaces, making an understanding of energy level alignment at these boundaries an essential element of optimizing materials for electronic and optoelectronic applications. Here we employ low temperature scanning tunneling microscopy and spectroscopy to investigate a model system: two-dimensional nanostructures of the prototypical organic semiconductor, PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) adsorbed on NaCl (2 ML)/Ag(111). Pixel-by-pixel scanning tunneling spectroscopy allows mapping of occupied and unoccupied electronic states across these nanoislands with sub-molecular spatial resolution, revealing strong electronic differences between molecules at the edges and those in the centre, with energy level shifts of up to 400 meV. We attribute this to the change in electrostatic environment at the boundaries of clusters, namely via polarization of neighbouring molecules. The observation of these strong shifts illustrates a crucial issue: interfacial energy level alignment can differ substantially from the bulk electronic structure in organic materials. PMID:26440933

  12. Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Cochrane, K. A.; Schiffrin, A.; Roussy, T. S.; Capsoni, M.; Burke, S. A.

    2015-10-01

    Organic semiconductor devices rely on the movement of charge at and near interfaces, making an understanding of energy level alignment at these boundaries an essential element of optimizing materials for electronic and optoelectronic applications. Here we employ low temperature scanning tunneling microscopy and spectroscopy to investigate a model system: two-dimensional nanostructures of the prototypical organic semiconductor, PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) adsorbed on NaCl (2 ML)/Ag(111). Pixel-by-pixel scanning tunneling spectroscopy allows mapping of occupied and unoccupied electronic states across these nanoislands with sub-molecular spatial resolution, revealing strong electronic differences between molecules at the edges and those in the centre, with energy level shifts of up to 400 meV. We attribute this to the change in electrostatic environment at the boundaries of clusters, namely via polarization of neighbouring molecules. The observation of these strong shifts illustrates a crucial issue: interfacial energy level alignment can differ substantially from the bulk electronic structure in organic materials.

  13. The program LOPT for least-squares optimization of energy levels

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    2011-02-01

    The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.

  14. Energy Levels--An Important Factor in Identifying and Facilitating the Development of Giftedness in Young Children.

    ERIC Educational Resources Information Center

    Bergman, Jerry

    1979-01-01

    Research shows that there is a positive relationship between high energy levels and creativity and giftedness. To provide for the high energy levels, these children need to be kept busy at beneficial activities such as independent study, individualized programs, and/or enrichment classes. (Author/PHR)

  15. Calculation of energy levels, {ital E}1 transition amplitudes, and parity violation in francium

    SciTech Connect

    Dzuba, V.A.; Flambaum, V.V.; Sushkov, O.P.

    1995-05-01

    Many-body perturbation theory in the screened Coulomb interaction was used to calculate energy levels, {ital E}1 trransition amplitudes, and the parity-nonconserving (PNC) {ital E}1 amplitude of the 7{ital s}-8{ital s} transition in francium. The method takes into account the core-polarization effect, the second-order correlations, and the three dominating sequences of higher-order correlation diagrams: screening of the electron-electron interaction, particle-hole interaction, and the iterations of the self-energy operator. The result for the PNC amplitude for {sup 223}Fr is {ital E}1(7{ital s}-8{ital s})=(1.59{plus_minus}{similar_to}1%){times}10{sup {minus}10}{ital iea}{sub {ital B}}({minus}{ital Q}{sub {ital W}}/{ital N}), where {ital Q}{sub {ital W}} is the weak charge of the nucleus, {ital N}=136 is the number of neutrons, {ital e}={vert_bar}{ital e}{vert_bar} is the elementary charge, and {ital a}{sub {ital B}} is the Bohr radius. Our prediction for the position of the 8{ital s} energy level of Fr, which has not been measured yet, is 13 110 cm{sup {minus}1} below the limit of the continuous spectrum. The accuracy of the calculations was controlled by comparison with available experimental data and analogous calculations for cesium. It is estimated to be {similar_to}0.1% for the energy levels and {similar_to}1% for the transition amplitudes.

  16. Experimental Energy Levels of HD18O and D_218O

    NASA Astrophysics Data System (ADS)

    Mikhailenko, S. N.; Naumenko, O. V.; Tashkun, S. A.; Liu, A.-W.; Hu, S.-M.

    2010-06-01

    Extended sets of experimental energy levels of HD18O and D_218O have been obtained as the result of the analysis of recent high-resolution spectra and previously reported data. Spectra of the enriched by deuterium and oxygen-18 water samples were recorded with a Bruker IFS 120HR spectrometer at room temperature in the 1000 - 9200 cm-1 range a,b for this purpose. The RITZ code h was used for analysis of the rotation-vibration transitions and the energy levels determination. New energy levels as well as comparison with previous experimental and theoretical studies will be presented. This work was supported by Grant nos. 06-03-39014 and 10-05-91176 of RFBR (Russia) and by Grant nos. 20903085 and 10574124 of NSFC (China). Work of SNM and SAT was also partly supported by CRDF (USA) Grant RUG1-2954-TO-09 and by RFBR. Grant 09-05-92508. A.-W. Liu et al., J. Mol. Spectrosc. 237, 149-162 (2006). H.-Y. Ni et al., Mol. Phys. 106, 1793-1801 (2008). J. Bellet et al., J. Mol. Spectrosc. 47, 388-402 (1973). J.W.C. Johns, J. Opt. Soc. Am. B2, 1340-1354 (1985). R.A. Toth, J. Mol. Spectrosc. 162, 41-54 (1993). W.F. Wang et al., J. Mol. Spectrosc. 176, 226-228 (1996). R.A. Toth, J. Mol. Structure, 742, 49-68 (2005). S.N. Mikhailenko et al., JQSRT, 110, 597-608 (2009). A. Liu et al., JQSRT, 110, 1781-1800 (2009). O.V. Naumenko et al., JQSRT, 111, 36-44 (2010).

  17. Effects of Dietary Energy Levels on the Physiological Parameters and Reproductive Performance of Gestating Gilts

    PubMed Central

    Jin, S. S.; Jung, S. W.; Jang, J. C.; Chung, W. L.; Jeong, J. H.; Kim, Y. Y.

    2016-01-01

    This experiment was conducted to investigate the effects of dietary energy levels on the physiological parameters and reproductive performance of gestating first parity sows. A total of 52 F1 gilts (Yorkshire×Landrace) were allocated to 4 dietary treatments using a completely randomized design. Each treatment contained diets with 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg, and the daily energy intake of the gestating gilts in each treatment were 6,200, 6,400, 6,600, and 6,800 kcal of ME, respectively. During gestation, the body weight (p = 0.04) and weight gain (p = 0.01) of gilts linearly increased with increasing dietary energy levels. Backfat thickness was not affected at d110 of gestation by dietary treatments, but increased linearly (p = 0.05) from breeding to d 110 of gestation. There were no significant differences on the litter size or litter birth weight. During lactation, the voluntary feed intake of sows tended to decrease when the dietary energy levels increased (p = 0.08). No difference was observed in backfat thickness of the sows within treatments; increasing energy levels linearly decreased the body weight of sows (p<0.05) at d 21 of lactation and body weight gain during lactation (p<0.01). No significant differences were observed in the chemical compositions of colostrum and milk. Therefore, these results indicated that high-energy diets influenced the bodyweight and backfat thickness of sows during gestation and lactation. NRC (2012) suggested that the energy requirement of the gestation gilt should be between 6,678 and 7,932 kcal of ME/d. Similarly, our results suggested that 3,100 kcal of ME/kg is not enough to maintain the reproductive performance for gilts during gestation with 2 kg feed daily. Gilts in the treatment 3,400 kcal of ME/kg have a higher weaning number of piglets, but bodyweight and backfat loss were higher than other treatments during lactation. But bodyweight and backfat loss were higher than other

  18. Energy level alignment at the interfaces in a multilayer organic light-emitting diode structure

    NASA Astrophysics Data System (ADS)

    Olthof, S.; Meerheim, R.; Schober, M.; Leo, K.

    2009-06-01

    We use photoelectron spectroscopy to study the electronic structure and energy level alignment throughout an organic light-emitting diode. The structure under investigation is a state-of-the-art long-living red phosphorescent device composed of doped charge-injection layers, charge-blocking layers, and an emission layer. By consecutively building up the whole device, the key parameters of every interface are measured. Our results show that the doped layers have a significant influence on the device energetics, especially in controlling the built-in potential, and that there are mostly only small dipoles present at the interfaces of the intrinsic organic layers.

  19. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  20. Energy Levels and Transition Rates for GA-Like Ions (Xe XXIV-Pr XXIX)

    NASA Astrophysics Data System (ADS)

    El-Sayed, F.

    2015-07-01

    Energy levels, wavelengths, transition probabilities, oscillator strengths, and line strengths have been calculated for allowed electric dipole 4s 2 4p-4s4p 2 and 4s 2 4p-4s 2 4d transitions of Gallium-like ions from Z = 54 to 59, Xe XXIV, Cs XXV, Ba XXVI, La XXVII, Ce XXVIII, and Pr XXIX. The fully relativistic multiconfiguration Dirac-Fock method, taking into account both correlations within the n = 4 complex and the quantum electrodynamic effects, has been used in the calculations. The results have been compared with the available experimental and other theoretical results.

  1. Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    SciTech Connect

    Dzuba, V. A.; Safronova, U. I.; Johnson, W. R.

    2003-09-01

    To address the shortage of experimental data for electron spectra of triply ionized rare-earth elements we have calculated energy levels and lifetimes of 4f{sup n+1} and 4f{sup n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration-interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III, and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.

  2. Effects of Dietary Energy Levels on the Physiological Parameters and Reproductive Performance of Gestating Gilts.

    PubMed

    Jin, S S; Jung, S W; Jang, J C; Chung, W L; Jeong, J H; Kim, Y Y

    2016-07-01

    This experiment was conducted to investigate the effects of dietary energy levels on the physiological parameters and reproductive performance of gestating first parity sows. A total of 52 F1 gilts (Yorkshire×Landrace) were allocated to 4 dietary treatments using a completely randomized design. Each treatment contained diets with 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg, and the daily energy intake of the gestating gilts in each treatment were 6,200, 6,400, 6,600, and 6,800 kcal of ME, respectively. During gestation, the body weight (p = 0.04) and weight gain (p = 0.01) of gilts linearly increased with increasing dietary energy levels. Backfat thickness was not affected at d110 of gestation by dietary treatments, but increased linearly (p = 0.05) from breeding to d 110 of gestation. There were no significant differences on the litter size or litter birth weight. During lactation, the voluntary feed intake of sows tended to decrease when the dietary energy levels increased (p = 0.08). No difference was observed in backfat thickness of the sows within treatments; increasing energy levels linearly decreased the body weight of sows (p<0.05) at d 21 of lactation and body weight gain during lactation (p<0.01). No significant differences were observed in the chemical compositions of colostrum and milk. Therefore, these results indicated that high-energy diets influenced the bodyweight and backfat thickness of sows during gestation and lactation. NRC (2012) suggested that the energy requirement of the gestation gilt should be between 6,678 and 7,932 kcal of ME/d. Similarly, our results suggested that 3,100 kcal of ME/kg is not enough to maintain the reproductive performance for gilts during gestation with 2 kg feed daily. Gilts in the treatment 3,400 kcal of ME/kg have a higher weaning number of piglets, but bodyweight and backfat loss were higher than other treatments during lactation. But bodyweight and backfat loss were higher than other

  3. Plotting and Scheming

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 Click for larger view

    These two graphics are planning tools used by Mars Exploration Rover engineers to plot and scheme the perfect location to place the rock abrasion tool on the rock collection dubbed 'El Capitan' near Opportunity's landing site. 'El Capitan' is located within a larger outcrop nicknamed 'Opportunity Ledge.'

    The rover visualization team from NASA Ames Research Center, Moffett Field, Calif., initiated the graphics by putting two panoramic camera images of the 'El Capitan' area into their three-dimensional model. The rock abrasion tool team from Honeybee Robotics then used the visualization tool to help target and orient their instrument on the safest and most scientifically interesting locations. The blue circle represents one of two current targets of interest, chosen because of its size, lack of dust, and most of all its distinct and intriguing geologic features. To see the second target location, see the image titled 'Plotting and Scheming.'

    The rock abrasion tool is sensitive to the shape and texture of a rock, and must safely sit within the 'footprint' indicated by the blue circles. The rock area must be large enough to fit the contact sensor and grounding mechanism within the area of the outer blue circle, and the rock must be smooth enough to get an even grind within the abrasion area of the inner blue circle. If the rock abrasion tool were not grounded by its support mechanism or if the surface were uneven, it could 'run away' from its target. The rock abrasion tool is location on the rover's instrument deployment device, or arm.

    Over the next few martian days, or sols, the rover team will use these and newer, similar graphics created with more recent, higher-resolution panoramic camera images and super-spectral data from the miniature thermal emission spectrometer. These data will be used to pick the best

  4. Hampshire Probation Sports Counselling Scheme.

    ERIC Educational Resources Information Center

    Waldman, Keith

    A sports counseling scheme for young people on criminal probation in Hampshire (England) was developed in the 1980s as a partnership between the Sports Council and the Probation Service. The scheme aims to encourage offenders, aged 14 and up, to make constructive use of their leisure time; to allow participants the opportunity to have positive…

  5. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  6. Lorentz and CPT violating corrections to hydrogen energy levels at order 2̂

    NASA Astrophysics Data System (ADS)

    Adkins, Gregory; Yoder, Theodore

    2012-03-01

    The standard model extension (SME) is an effective field theory for physics beyond the SM that contains non-SM effects such as Lorentz and CPT violation. The SME effective Lagrangian contains a number of coefficients that describe new interactions. These as-yet-unobserved coefficients must be small. One approach for the detection of the SME coefficients is to calculate their effect on observable physical quantities, particularly those measureable to high precision. We have calculated the effect of the SME interactions on the energy levels of hydrogen. Starting from the field theory effective Lagrangian we have obtained the Hamiltonian of an SME-extended Dirac equation and have applied a Foldy-Wouthuysen expansion to obtain a non-relativistic effective Hamiltonian correct through terms quadratic in the momentum 3-vector. This Hamiltonian, at the order of interest, has the form H'=(Ai j+Bi j kσk)p^i p^j where Ai j and Bi j k are linear combinations of the SME parameters. We have evaluated the energy level corrections due to H', which are of order 2̂ times the SME coefficients. Constraints on the combinations of SME coefficients found in Ai j and Bi j k can be obtained by comparison with experimental results.

  7. Spectrum and energy levels of five-times ionized zirconium (Zr VI)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Lindsay, Mark D.

    2016-02-01

    We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ˜420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ˜135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm-1 (96.38 ± 0.04 eV).

  8. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  9. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  10. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  11. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    PubMed Central

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  12. K-shell energy levels and radiative rates for transitions in Si ix

    NASA Astrophysics Data System (ADS)

    Wei, H. G.; Shi, J. R.; Wang, F. L.; Zhong, J. Y.; Liang, G. Y.; Zhao, G.

    2014-06-01

    Context. Accurate atomic data are needed to analyze the Si ix K-shell features in astrophysical X-ray spectra. Relative large discrepancies in the existing atomic data have impeded this progress. Aims: We present the accurate Si ix K-shell transition data, including K-shell energy levels, wavelengths, radiative rates, and oscillator strengths. Methods: The flexible atomic code (FAC), which is a fully relativistic atomic code with configuration interaction (CI) included, was employed to calculate these data. To investigate the CI effects, calculations with different configurations included were carried out. Results: The K-shell atomic data of Si ix transitions between 1s22s22p2, 1s22s2p3, 1s22p4, 1s2s22p3, 1s2s2p4, and 1s2p5 are reported. The accuracy of our data is demonstrated by comparing them with the available experimental measurements and theoretical calculations. The energy levels are accurate to 3.5 eV, the wavelengths to within 15 mÅ. For most transitions, the radiative rates an accuracy of 20%. The effects of CI from high-energy configurations were investigated as well. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A105

  13. Calculation of energy levels, lifetimes and radiative data for La XXIX to Sm XXXIV

    NASA Astrophysics Data System (ADS)

    Goyal, Arun; Khatri, Indu; Aggarwal, Sunny; Singh, A. K.; Mohan, Man

    2016-01-01

    We present the most comprehensive atomic data for La XXIX to Sm XXXIV with single electron excitation from M-shell to N-shell and N-shell to higher shells. We have presented energy levels, lifetimes and radiative data using Multi-configuration Dirac-Fock (MCDF) method for the lowest 27 states belonging to the configuration 3d104l (l = 0 , 1 , 2 , 3), 3d105l (l = 0 , 1 , 2 , 3 , 4), 3d106l (l = 0 , 1 , 2 , 3 , 4) and 3d94s2. We have also considered relativistic effects by incorporating quantum electrodynamics (QED) and Breit corrections. We have made comparisons of our presented results with available theoretical as well as experimental results and a good agreement is achieved. Further, we have also reported energy levels by performing distorted wave calculations with fully relativistic flexible atomic code (FAC). The calculations match well with MCDF results. Additionally, we have investigated the effect of nuclear charge on transition wavelength and radiative rates for strong Extreme Ultraviolet (EUV) transitions from n = 4 → 4. We believe that our reported data in this work may be useful in various applications of lanthanide ions related to broad area of research such as applied physics, laser physics and astrophysics etc.

  14. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2014-11-01

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ˜98 Ryd), which mainly belong to the 3s23p5, 3s3p6, 3s23p43d, 3s23p33d2, 3s3p43d2, 3s23p23d3, and 3p63d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  15. A spectral-Lagrangian Boltzmann solver for a multi-energy level gas

    SciTech Connect

    Munafò, Alessandro; Haack, Jeffrey R.; Gamba, Irene M.; Magin, Thierry E.

    2014-05-01

    In this paper a spectral-Lagrangian method is proposed for the full, non-linear Boltzmann equation for a multi-energy level gas typical of a hypersonic re-entry flow. Internal energy levels are treated as separate species and inelastic collisions (leading to internal energy excitation and relaxation) are accounted for. The formulation developed can also be used for the case of a gas mixture made of monatomic gases without internal energy (where only elastic collisions occur). The advantage of the spectral-Lagrangian method lies in the generality of the algorithm in use for the evaluation of the elastic and inelastic collision operators, as well as the conservation of mass, momentum and energy during collisions. The latter is realized through the solution of constrained optimization problems. The computational procedure is based on the Fourier transform of the partial elastic and inelastic collision operators and exploits the fact that these can be written as weighted convolutions in Fourier space with no restriction on the cross-section model. The feasibility of the proposed approach is demonstrated through numerical examples for both space homogeneous and in-homogeneous problems. Computational results are compared with those obtained by means of the DSMC method in order to assess the accuracy of the proposed spectral-Lagrangian method.

  16. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    NASA Astrophysics Data System (ADS)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S. R.; Henneberger, F.; Koch, N.

    2015-04-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  17. Energy levels, radiative rates and electron impact excitation rates for transitions in C III

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2015-06-01

    We report energy levels, radiative rates (A-values) and lifetimes for the astrophysically important Be-like ion C III. For the calculations, 166 levels belonging to the n ≤ 5 configurations are considered and the GRASP (General-purpose Relativistic Atomic Structure Package) is adopted. Einstein A-coefficients are provided for all E1, E2, M1 and M2 transitions, while lifetimes are compared with available measurements as well as theoretical results, and no large discrepancies noted. Our energy levels are assessed to be accurate to better than 1 per cent for a majority of levels, and A-values to better than 20 per cent for most transitions. Collision strengths are also calculated, for which the Dirac Atomic R-matrix Code (DARC) is used. A wide energy range, up to 21 Ryd, is considered and resonances resolved in a fine energy mesh in the thresholds region. The collision strengths are subsequently averaged over a Maxwellian velocity distribution to determine effective collision strengths up to a temperature of 8.0 × 105 K, sufficient for most astrophysical applications. Our data are compared with the recent R-matrix calculations of Fernández-Menchero et al., and significant differences (up to over an order of magnitude) are noted for several transitions over the complete temperature range of the results.

  18. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  19. Calculation of energy levels and transition amplitudes for barium and radium.

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Physics; Univ. of New South Wales

    2007-01-01

    The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium are insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s, 7p and 6d single-electron states as well as the states of the 7s8s, 7s8p and 7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d{sup 2}, 7s8s, 7p{sup 2} and 6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.

  20. S-matrix Calculations of Energy Levels of the Lithium Isoelectronic Sequence

    SciTech Connect

    sapirstein, J; Cheng, K T

    2010-11-02

    A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections a comprehensive tabulation of the 2s, 2p{sub 1/2} and 2p{sub 3/2} energy levels as well as the 2s - 2p{sub 1/2} and 2s - 2p{sub 3/2} transition energies for Z = 10 - 100 is presented.

  1. Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.

    2016-01-01

    We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

  2. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. PMID:26892203

  3. Accuracy of analytic energy level formulas applied to hadronic spectroscopy of heavy mesons

    NASA Technical Reports Server (NTRS)

    Badavi, Forooz F.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.

    1988-01-01

    Linear and harmonic potential models are used in the nonrelativistic Schroedinger equation to obtain article mass spectra for mesons as bound states of quarks. The main emphasis is on the linear potential where exact solutions of the S-state eigenvalues and eigenfunctions and the asymptotic solution for the higher order partial wave are obtained. A study of the accuracy of two analytical energy level formulas as applied to heavy mesons is also included. Cornwall's formula is found to be particularly accurate and useful as a predictor of heavy quarkonium states. Exact solution for all partial waves of eigenvalues and eigenfunctions for a harmonic potential is also obtained and compared with the calculated discrete spectra of the linear potential. Detailed derivations of the eigenvalues and eigenfunctions of the linear and harmonic potentials are presented in appendixes.

  4. Organic semiconductor density of states controls the energy level alignment at electrode interfaces

    PubMed Central

    Oehzelt, Martin; Koch, Norbert; Heimel, Georg

    2014-01-01

    Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867

  5. SPECTRUM AND ENERGY LEVELS OF Pr{sup 3+} IN ThBr{sub 4}

    SciTech Connect

    Conway, J. G.; Krupa, J. C.; Delamoye, P.; Genet, M.

    1980-06-01

    The strong features in the absorption spectrum and the laser excited fluorescence spectrum have been interpreted as arising from levels of Pr{sup 3+} in the D{sub 2d} symmetry site of ThBr{sub 4} . 43 energy levels have been fitted to the parameters with an RMS deviation of 61 cm{sup -1}. The values of the crystal field parameters are. B{sub 0}{sup 2} = 260.0 cm {sup -1}, B{sub 0}{sup 4} = - 644.2 cm{sup -1}, B{sub 4}{sup 4} = 929.2 cm{sup -1}, B{sub 0}{sup 6} = 1089.0 cm{sup -1} and B{sub 4}{sup 6} = 240.6 cm{sup -1}. The presence of other crystal symmetry sites is observed.

  6. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    SciTech Connect

    Chen, Shi; Goh, Teck Wee; Sum, Tze Chien E-mail: Tzechien@ntu.edu.sg; Sabba, Dharani; Chua, Julianto; Mathews, Nripan; Huan, Cheng Hon Alfred E-mail: Tzechien@ntu.edu.sg

    2014-08-01

    The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/copper phthalocyanine (CuPc) interface is investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation – verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH{sub 3}NH{sub 3}PbI{sub 3}, facilitating hole transfer from CH{sub 3}NH{sub 3}PbI{sub 3} to CuPc. However, subsequent hole extraction from CuPc may be impeded by the downward band bending in the CuPc layer.

  7. Impurity effects on energy levels and far-infrared spectra of nanorings

    NASA Astrophysics Data System (ADS)

    Hui, Pan; Jia-Lin, Zhu

    2003-11-01

    The effects of a positively charged impurity on the energy levels and far-infrared spectra of one and two electrons in semiconductor nanorings under magnetic fields are studied. The effects of the nanoring size and the impurity position are also discussed. It is shown that the electron-electron interaction and electron-impurity one in nanorings are strongly dependent on the nanoring size and the impurity position. Based on the studies of the impurity and field effects, the impurity-induced Aharonov-Bohm oscillations of the far-infrared spectra are found. The results predict a possibility of observing phenomena related to electron-impurity interaction in a nanoring in the future.

  8. Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy

    NASA Astrophysics Data System (ADS)

    Gobbi, M.; Pietrobon, L.; Atxabal, A.; Bedoya-Pinto, A.; Sun, X.; Golmar, F.; Llopis, R.; Casanova, F.; Hueso, L. E.

    2014-06-01

    The energetics of metal/molecular semiconductor interfaces plays a fundamental role in organic electronics, determining the performance of very diverse devices. So far, information about the energy level alignment has been most commonly gained by spectroscopy techniques that typically require experimental conditions far from the real device operation. Here we demonstrate that a simple three-terminal device allows the acquisition of spectroscopic information about the metal/molecule energy alignment in real operative condition. As a proof of principle, we employ the proposed device to measure the energy barrier height between different clean metals and C60 molecules and we recover typical results from photoemission spectroscopy. The device is designed to inject a hot electron current directly into the molecular level devoted to charge transport, disentangling the contributions of both the interface and the bulk to the device total resistance, with important implications for spintronics and low-temperature physics.

  9. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  10. Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV

    NASA Astrophysics Data System (ADS)

    Hao, Liang-Huan; Kang, Xiao-Ping

    2014-07-01

    The multi-configuration Dirac-Hartree-Fock method is employed to calculate the fine-structure energy levels, wavelengths, transition probabilities, and oscillator strengths for electric dipole allowed (E1) and forbidden (M1, E2, M2) lines for the 4 s 24 p and 4 s4 p 2 configurations of W XLIV. The valence-valence and core-valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics (QED) effects are estimated in subsequent relativistic configuration interaction (CI) calculations. The present results are in good agreement with other available theoretical and experimental values, and we predict new data for several levels where no other theoretical and/or experimental results are available, precise measurements are clearly needed here.

  11. Spectrum and energy levels of the sodiumlike ion Sr/sup 27+/

    SciTech Connect

    Reader, J.

    1986-06-01

    The spectrum of Sr/sup 27+/ was observed with a laser-produced plasma and a 2.2-m grazing-incidence spectrograph in the region 12--160 A-circle. From the identification of 37 lines, a system of 27 energy levels of the type 2p-italic/sup 6/n-italicl-italic was determined. The level system includes the configurations n-italics-italic(n-italic = 3-5), n-italicp-italic(n-italic = 3-6), n-italicd-italic(n-italic = 3-7), n-italicf-italic(n-italic = 4-6), and 5g-italic. The ionization energy is determined as 11 188200 +- 1000 cm/sup -1/ (1387.16 +- 0.12 eV).

  12. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect

    Aggarwal, Sunny Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  13. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Goh, Teck Wee; Sabba, Dharani; Chua, Julianto; Mathews, Nripan; Huan, Cheng Hon Alfred; Sum, Tze Chien

    2014-08-01

    The energy level alignment at the CH3NH3PbI3/copper phthalocyanine (CuPc) interface is investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation - verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH3NH3PbI3, facilitating hole transfer from CH3NH3PbI3 to CuPc. However, subsequent hole extraction from CuPc may be impeded by the downward band bending in the CuPc layer.

  14. Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy.

    PubMed

    Gobbi, M; Pietrobon, L; Atxabal, A; Bedoya-Pinto, A; Sun, X; Golmar, F; Llopis, R; Casanova, F; Hueso, L E

    2014-01-01

    The energetics of metal/molecular semiconductor interfaces plays a fundamental role in organic electronics, determining the performance of very diverse devices. So far, information about the energy level alignment has been most commonly gained by spectroscopy techniques that typically require experimental conditions far from the real device operation. Here we demonstrate that a simple three-terminal device allows the acquisition of spectroscopic information about the metal/molecule energy alignment in real operative condition. As a proof of principle, we employ the proposed device to measure the energy barrier height between different clean metals and C60 molecules and we recover typical results from photoemission spectroscopy. The device is designed to inject a hot electron current directly into the molecular level devoted to charge transport, disentangling the contributions of both the interface and the bulk to the device total resistance, with important implications for spintronics and low-temperature physics. PMID:24946715

  15. Multiphoton transitions between energy levels in a current-biased Josephson tunnel junction.

    PubMed

    Wallraff, A; Duty, T; Lukashenko, A; Ustinov, A V

    2003-01-24

    The escape of a current-biased Josephson tunnel junction from the zero-voltage state in the presence of weak microwave radiation is investigated experimentally at low temperatures. The measurements of the junction switching current distribution indicate the macroscopic quantum tunneling of the phase below a crossover temperature of T small star, filled approximately 280 mK. At temperatures below T small star, filled we observe both single-photon and multiphoton transitions between the junction energy levels by applying microwave radiation in the frequency range between 10 and 38 GHz to the junction. These observations reflect the anharmonicity of the junction potential containing only a small number of levels. PMID:12570519

  16. First-Principles Approach to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    2015-03-01

    We have developed a first principles method to calculate the energy level alignment between semiconductor band edges and reference energy levels at aqueous interfaces. This alignment is fundamental to understand the electrochemical characteristics of any semiconductor electrode in general and the potential for photocatalytic activity in particular. For example, in the search for new photo-catalytic materials, viable candidates must demonstrate both efficient absorption of the solar spectrum and an appropriate alignment of the band edge levels in the semiconductor to the redox levels for the target reactions. In our approach, the interface-specific contribution to the electrostatic step across the interface is evaluated using density functional theory (DFT) based molecular dynamics to sample the physical interface structure and the corresponding change in the electrostatic potential at the interface. The reference electronic levels in the semiconductor and in the water are calculated using the GW approach, which naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. Taken together, our calculations provide the alignment of the semiconductor valence band edge to the centroid of the highest occupied 1b1 level in water. The known relationship of the 1b1 level to the normal hydrogen electrode completes the connection to electrochemical levels. We discuss specific results for GaN, ZnO, and TiO2. The effect of interface structural motifs, such as different degrees of water dissociation, and of dynamical characteristics, will be presented together with available experimental data. Work supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

  17. Energy levels, radiative rates, and lifetimes for transitions in W XL

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (GRASP). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s{sup 2}4p{sup 5},4s{sup 2}4p{sup 4}4d,4s{sup 2}4p{sup 4}4f,4s4p{sup 6},4p{sup 6}4d,4s4p{sup 5}4d,4s{sup 2}4p{sup 3}4d{sup 2}, and 4s{sup 2}4p{sup 3}4d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in GRASP. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  18. Energy levels and transition rates for helium-like ions with Z = 10-36

    NASA Astrophysics Data System (ADS)

    Si, R.; Guo, X. L.; Wang, K.; Li, S.; Yan, J.; Chen, C. Y.; Brage, T.; Zou, Y. M.

    2016-08-01

    Aims: Helium-like ions provide an important X-ray spectral diagnostics in astrophysical and high-temperature fusion plasmas. An interpretation of the observed spectra provides information on temperature, density, and chemical compositions of the plasma. Such an analysis requires information for a wide range of atomic parameters, including energy levels and transition rates. Our aim is to provide a set of accurate energy levels and transition rates for helium-like ions with Z = 10-36. Methods: The second-order many-body perturbation theory (MBPT) was adopted in this paper. To support our MBPT results, we performed an independent calculation using the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Results: We provide accurate energies for the lowest singly excited 70 levels among 1snl(n ≤ 6,l ≤ (n-1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln'l'(n' ≤ 6,l' ≤ (n'-1)) configurations of helium-like ions with Z = 10-36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels. Conclusions: Our MBPT results for singly excited n ≤ 2 levels show excellent agreement with other elaborate calculations, while those for singly excited n ≥ 3 and doubly excited levels show significant improvements over previous theoretical results. Our results will be very helpful for astrophysical line identification and plasma diagnostics. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A141

  19. Energy levels and transition rates for the boron isoelectronic sequence: Si X, Ti XVIII - Cu XXV

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; Ekman, J.; Gustafsson, S.; Hartman, H.; Karlsson, L. B.; du Rietz, R.; Gaigalas, G.; Godefroid, M. R.; Froese Fischer, C.

    2013-11-01

    Relativistic configuration interaction (RCI) calculations are performed for 291 states belonging to the configurations 1s22s22p, 1s22s2p2, 1s22p3, 1s22s23l, 1s22s2p3l, 1s22p23l, 1s22s24l', 1s22s2p4l', and 1s22p24l' (l = 0,1,2 and l' = 0,1,2,3) in boron-like ions Si X and Ti XVIII to Cu XXV. Electron correlation effects are represented in the wave functions by large configuration state function (CSF) expansions. States are transformed from jj-coupling to LS-coupling, and the LS-percentage compositions are used for labeling the levels. Radiative electric dipole transition rates are given for all ions, leading to massive data sets. Calculated energy levels are compared with other theoretical predictions and crosschecked against the Chianti database, NIST recommended values, and other observations. The accuracy of the calculations are high enough to facilitate the identification of observed spectral lines. Research supported in part by the Swedish Research council and the Swedish Institute. Part of this work was supported by the Communauté française of Belgium, the Belgian National Fund for Scientific Research (FRFC/IISN Convention) and by the IUAP-Belgian State Science Policy (BriX network P7/12).Tables of energy levels and transition rates (Tables 3-19) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A100

  20. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  1. Novel driving scheme for FLCD

    NASA Astrophysics Data System (ADS)

    Wu, Jiin-chuan; Wang, Chi-Chang

    1996-03-01

    A frame change data driving scheme (FCDDS) for ferroelectric LCD(FLCD) of matrix- addressing is developed which uses only positive voltages for the row and column waveforms to achieve bipolar driving waveforms on the FLCD pixels. Thus the required supply voltage for the driver chips is half that of the conventional driving scheme. Each scan line is addressed in only twice the switching time (tau) (minimum response time of FLC) so that this scheme is suitable for high duty ratio panels. In order to meet this bistable electro-optic effect of FLCD and zero net dc voltage across each pixel of the liquid crystal, turning on and turning off pixels are done at different time slots and frame slots. This driving scheme can be easily implemented using commercially available STN LCD drivers plus a small external circuit or by making an ASIC which is a slight modification of the STN driver. Both methods are discussed.

  2. On the marginal stability of upwind schemes

    NASA Astrophysics Data System (ADS)

    Gressier, J.; Moschetta, J.-M.

    Following Quirk's analysis of Roe's scheme, general criteria are derived to predict the odd-even decoupling. This analysis is applied to Roe's scheme, EFM Pullin's scheme, EIM Macrossan's scheme and AUSM Liou's scheme. Strict stability is shown to be desirable to avoid most of these flaws. Finally, the link between marginal stability and accuracy on shear waves is established.

  3. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  4. In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium

    NASA Astrophysics Data System (ADS)

    Raeder, Sebastian; Fies, Silke; Gottwald, Tina; Mattolat, Christoph; Rothe, Sebastian; Wendt, Klaus

    2010-02-01

    In-source resonance ionization spectroscopy of uranium has been carried out as preparation for the analysis of low contaminations of nuclear material in environmental samples via laser mass spectrometry. Using three-step resonance ionization spectroscopy, 86 levels of odd parity in the energy range from 37,200-38,650 cm - 1 were studied, 51 of these levels were previously unknown. Suitable excitation schemes for analytic applications are discussed.

  5. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  6. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  7. Nonlinear secret image sharing scheme.

    PubMed

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  8. Nonlinear Secret Image Sharing Scheme

    PubMed Central

    Shin, Sang-Ho; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2⁡m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  9. Energy partitioning schemes: a dilemma.

    PubMed

    Mayer, I

    2007-01-01

    Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components. PMID:17328441

  10. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor

    NASA Astrophysics Data System (ADS)

    Orgiu, Emanuele; Crivillers, Núria; Herder, Martin; Grubert, Lutz; Pätzel, Michael; Frisch, Johannes; Pavlica, Egon; Duong, Duc T.; Bratina, Gvido; Salleo, Alberto; Koch, Norbert; Hecht, Stefan; Samorì, Paolo

    2012-08-01

    Organic semiconductors are suitable candidates for printable, flexible and large-area electronics. Alongside attaining an improved device performance, to confer a multifunctional nature to the employed materials is key for organic-based logic applications. Here we report on the engineering of an electronic structure in a semiconducting film by blending two molecular components, a photochromic diarylethene derivative and a poly(3-hexylthiophene) (P3HT) matrix, to attain phototunable and bistable energy levels for the P3HT's hole transport. As a proof-of-concept we exploited this blend as a semiconducting material in organic thin-film transistors. The device illumination at defined wavelengths enabled reversible tuning of the diarylethene's electronic states in the blend, which resulted in modulation of the output current. The device photoresponse was found to be in the microsecond range, and thus on a technologically relevant timescale. This modular blending approach allows for the convenient incorporation of various molecular components, which opens up perspectives on multifunctional devices and logic circuits.

  11. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications

    SciTech Connect

    Pérez, E. Castán, H.; García, H.; Dueñas, S.; Bailón, L.; Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G.; Olea, J.

    2015-01-12

    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.

  12. Energy levels, transition probabilities, and electron impact excitations for La XXX

    SciTech Connect

    Zhong, J.Y. . E-mail: jyzhong@aphy.iphy.ac.cn; Zhao, G.; Zhang, J.

    2006-09-15

    energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.

  13. Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal

    NASA Astrophysics Data System (ADS)

    Gao, Jinyun; Zhang, Qingli; Sun, Dunlu; Luo, Jianqiao; Liu, Wenpeng; Yin, Shaotang

    2012-10-01

    The single crystal Nd3+-doped in GdY2Sc2Ga3O12 (Nd3+:GYSGG) was grown by Czochralski method successfully, and its absorption spectra was analyzed in a wider spectral wavelength range at 7.6 K and 300 K, respectively. The free-ions and crystal-field parameters were fitted to the experimental energy levels at 7.6 K and 300 K with the root mean square deviation of 11.25 and 12.48 cm-1, respectively. According to the crystal-field calculations, 116 levels of Nd3+ at 7.6 K and 114 levels of Nd3+ at 300 K were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Nd3+:GSGG and Nd3+:YSAG. The results indicated that the free-ions parameters are similar to those of the Nd3+ in GYSGG, GSGG and YSAG crystals, and the crystal-field interaction of GSGG and YSAG is stronger than that of GYSGG, which results in the dual-wavelength properties of Nd3+:GYSGG crystal.

  14. Electromagnetic Shifts of Energy Levels of a Hydrogen Atom in Idealized Cavities.

    NASA Astrophysics Data System (ADS)

    Burzan, Dragisa

    Available from UMI in association with The British Library. Requires signed TDF. Energy level shifts are evaluated for the 2p-2s transition for a hydrogen atom in various confining geometries with idealized perfectly conducting metallic boundaries in all cases. The minimal coupling Hamiltonian formalism is employed in the non-relativistic approximation in the Coulomb gauge to calculate the level shifts. Bethe's work for the Lamb shift in free space for the hydrogen atom is used as the model for working out the transverse level shifts in the various confining geometries. The Stark effect arising from the interaction of an atom with its image in the metal is used to evaluate the longitudinal level shift. The analysis is carried out by first quantizing the electro-magnetic field in a general cavity after a discussion is presented in the introduction of the relation of this work to that of other authors on related topics. The theory is then developed in detail in the various special confining geometries starting with case of the parallelopiped and its limiting cases of two plates and one plate respectively. The confining geometries of a finite and infinite cylinder are considered next followed by that of sphere. Detailed numerical results are presented in each of the various special cases with graphs and tables after extensive computation. The conclusions of the thesis are summarized separately.

  15. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

    PubMed

    Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip

    2016-04-26

    We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces. PMID:27002483

  16. Intranasal Insulin Suppresses Food Intake via Enhancement of Brain Energy Levels in Humans

    PubMed Central

    Jauch-Chara, Kamila; Friedrich, Alexia; Rezmer, Magdalena; Melchert, Uwe H.; G. Scholand-Engler, Harald; Hallschmid, Manfred; Oltmanns, Kerstin M.

    2012-01-01

    Cerebral insulin exerts anorexic effects in humans and animals. The underlying mechanisms, however, are not clear. Because insulin physiologically facilitates glucose uptake by most tissues of the body and thereby fosters intracellular energy supply, we hypothesized that intranasal insulin reduces food consumption via enhancement of the neuroenergetic level. In a double-blind, placebo–controlled, within-subject comparison, 15 healthy men (BMI 22.2 ± 0.37 kg/m2) aged 22–28 years were intranasally administered insulin (40 IU) or placebo after an overnight fast. Cerebral energy metabolism was assessed by 31P magnetic resonance spectroscopy. At 100 min after spray administration, participants consumed ad libitum from a test buffet. Our data show that intranasal insulin increases brain energy (i.e., adenosine triphosphate and phosphocreatine levels). Cerebral energy content correlates inversely with subsequent calorie intake in the control condition. Moreover, the neuroenergetic rise upon insulin administration correlates with the consecutive reduction in free-choice calorie consumption. Brain energy levels may therefore constitute a predictive value for food intake. Given that the brain synchronizes food intake behavior in dependence of its current energetic status, a future challenge in obesity treatment may be to therapeutically influence cerebral energy homeostasis. Intranasal insulin, after optimizing its application schema, seems a promising option in this regard. PMID:22586589

  17. Interfacial energy level shifts in few-molecule clusters of the organic semiconductor PTCDA

    NASA Astrophysics Data System (ADS)

    Burke, Sarah; Cochrane, Katherine; Schiffrin, Agustin; Roussy, Tanya

    2014-03-01

    Detailed knowledge of the local electronic structure of organic semiconductors near interfaces is crucial for the understanding of a variety of electronic and optoelectronic applications of these emerging materials. However, organic molecules are highly sensitive to the local environment, which abruptly changes at an interface. Here, we present a study on the prototypical organic semiconductor PTCDA by scanning tunneling microscopy and spectroscopic mapping. Nanoscale clusters of varying size and geometry were probed on a bilayer NaCl film on Ag(111). The molecular states, while decoupled from the underlying metal surface, are relatively delocalized within these monolayer islands. Depending on the size of the cluster and arrangement of molecules within the cluster, edge molecules exhibit varying energy level shifts relative to the central molecules, both of which differ from the isolated molecule. For well ordered islands, this leads to a type-1 heterojunction, with a larger band gap at the edge of the cluster differing by as much as 0.5eV. In considering nanoscale structures within multicomponent device architectures, such internal heterostructures established by differences in the local environment are an important consideration, and could even be exploited.

  18. The IUPAC Database of Rotational-Vibrational Energy Levels and Transitions of Water Isotopologues from Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Furtenbacher, T.; Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.

    2014-06-01

    The results of an IUPAC Task Group formed in 2004 on "A Database of Water Transitions from Experiment and Theory" (Project No. 2004-035-1-100) are presented. Energy levels and recommended labels involving exact and approximate quantum numbers for the main isotopologues of water in the gas phase, H216O, H218O, H217O, HD16O, HD18O, HD17O, D216O, D218O, and D217O, are determined from measured transition wavenumbers. The transition wavenumbers and energy levels are validated using the MARVEL (measured active rotational-vibrational energy levels) approach and first-principles nuclear motion computations. The extensive data, e.g., more than 200,000 transitions have been handled for H216O, including lines and levels that are required for analysis and synthesis of spectra, thermochemical applications, the construction of theoretical models, and the removal of spectral contamination by ubiquitous water lines. These datasets can also be used to assess where measurements are lacking for each isotopologue and to provide accurate frequencies for many yet-to-be measured transitions. The lack of high-quality frequency calibration standards in the near infrared is identified as an issue that has hindered the determination of high-accuracy energy levels at higher frequencies. The generation of spectra using the MARVEL energy levels combined with transition intensities computed using high accuracy ab initio dipole moment surfaces are discussed.

  19. An intelligent robotics control scheme

    NASA Technical Reports Server (NTRS)

    Orlando, N. E.

    1984-01-01

    The problem of robot control is viewed at the level of communicating high-level commands produced by intelligent algorithms to the actuator/sensor controllers. Four topics are considered in the design of an integrated control and communications scheme for an intelligent robotic system: the use of abstraction spaces, hierarchical versus heterarchical control, distributed processing, and the interleaving of the steps of plan creation and plan execution. A scheme is presented for an n-level distributed hierarchical/heterarchical control system that effectively interleaves intelligent planning, execution, and sensory feedback. A three-level version of this scheme has been successfully implemented in the Intelligent Systems Research Lab at NASA Langley Research Center. This implementation forms the control structure for DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), a testbed system integrating AI software with robotics hardware.

  20. The influence of triplet energy levels of bridging ligands on energy transfer processes in Ir(III)/Eu(III) dyads.

    PubMed

    Jiang, Weili; Lou, Bin; Wang, Jianqiang; Lv, Hongbin; Bian, Zuqiang; Huang, Chunhui

    2011-11-21

    A series of N^N,O^O-bridging ligands based on substituted 1-(pyridin-2-yl)-3-methyl-5-pyrazolone and their corresponding heteroleptic iridium(III) complexes as well as Ir-Eu bimetallic complexes were synthesized and fully characterized. The influence of the triplet energy levels of the bridging ligands on the energy transfer (ET) process from the Ir(III) complexes to Eu(III) ions in solution was investigated at 77 K in Ir(III)/Eu(III) dyads. Photophysical experiment results show the bridging ligands play an important role in the ET process. Only when the triplet energy level of the bridging ligand was lower than the triplet metal-to-ligand charge transfer ((3)MLCT) energy level of the Ir moiety, was pure emission from the Eu(III) ion observed, implying complete ET took place from the Ir moiety to the Eu(III) ion. PMID:21931913

  1. Development of a RILIS ionisation scheme for gold at ISOLDE, CERN

    NASA Astrophysics Data System (ADS)

    Marsh, B. A.; Fedosseev, V. N.; Kosuri, P.

    2006-07-01

    At the ISOLDE on-line isotope separation facility, the resonance ionisation laser ion source (RILIS) can be used to ionise reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionisation of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. With the addition of a new three-step ionisation scheme for gold, the RILIS is now capable of ionising 26 of the elements. The optimal scheme was determined during an extensive study of the atomic energy levels and auto-ionising states of gold, carried out by means of in-source resonance ionisation spectroscopy. Details of the ionisation scheme and a summary of the spectroscopy study are presented.

  2. Development of a RILIS ionisation scheme for gold at ISOLDE, CERN

    NASA Astrophysics Data System (ADS)

    Marsh, B. A.; Fedosseev, V. N.; Kosuri, P.

    At the ISOLDE on-line isotope separation facility, the resonance ionisation laser ion source (RILIS) can be used to ionise reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionisation of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. With the addition of a new three-step ionisation scheme for gold, the RILIS is now capable of ionising 26 of the elements. The optimal scheme was determined during an extensive study of the atomic energy levels and auto-ionising states of gold, carried out by means of in-source resonance ionisation spectroscopy. Details of the ionisation scheme and a summary of the spectroscopy study are presented.

  3. Effect of residual gases in high vacuum on the energy-level alignment at noble metal/organic interfaces

    SciTech Connect

    Helander, M. G.; Wang, Z. B.; Lu, Z. H.

    2011-10-31

    The energy-level alignment at metal/organic interfaces has traditionally been studied using ultraviolet photoelectron spectroscopy (UPS) in ultra-high vacuum (UHV). However, since most devices are fabricated in high vacuum (HV), these studies do not accurately reflect the interfaces in real devices. We demonstrate, using UPS measurements of samples prepared in HV and UHV and current-voltage measurements of devices prepared in HV, that the small amounts of residual gases that are adsorbed on the surface of clean Cu, Ag, and Au (i.e., the noble metals) in HV can significantly alter the energy-level alignment at metal/organic interfaces.

  4. Energy level alignment in polymer organic solar cells at donor-acceptor planar junction formed by electrospray vacuum deposition

    SciTech Connect

    Kim, Ji-Hoon; Hong, Jong-Am; Kwon, Dae-Gyeon; Seo, Jaewon; Park, Yongsup

    2014-04-21

    Using ultraviolet photoelectron spectroscopy (UPS), we have measured the energy level offset at the planar interface between poly(3-hexylthiophene) (P3HT) and C{sub 61}-butyric acid methylester (PCBM). Gradual deposition of PCBM onto spin-coated P3HT in high vacuum was made possible by using electrospray vacuum deposition (EVD). The UPS measurement of EVD-prepared planar interface resulted in the energy level offset of 0.91 eV between P3HT HOMO and PCBM LUMO, which is considered as the upper limit of V{sub oc} of the organic photovoltaic cells.

  5. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling

    PubMed Central

    Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong

    2016-01-01

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given. PMID:26931762

  6. Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section

    SciTech Connect

    Khordad, R. Bahramiyan, H.

    2014-03-28

    In this paper, optical phonon modes are studied within the framework of dielectric continuum approach for parallelogram and triangular quantum wires, including the derivation of the electron-phonon interaction Hamiltonian and a discussion on the effects of this interaction on the electronic energy levels. The polaronic energy shift is calculated for both ground-state and excited-state electron energy levels by applying the perturbative approach. The effects of the electron-phonon interaction on the expectation value of r{sup 2} and diamagnetic susceptibility for both quantum wires are discussed.

  7. Optimal Monochromatic Energy Levels in Spectral CT Pulmonary Angiography for the Evaluation of Pulmonary Embolism

    PubMed Central

    Wu, Huawei; Zhang, Qing; Hua, Jia; Hua, Xiaolan; Xu, Jianrong

    2013-01-01

    Background The aim of this study was to determine the optimal monochromatic spectral CT pulmonary angiography (sCTPA) levels to obtain the highest image quality and diagnostic confidence for pulmonary embolism detection. Methods The Institutional Review Board of the Shanghai Jiao Tong University School of Medicine approved this study, and written informed consent was obtained from all participating patients. Seventy-two patients with pulmonary embolism were scanned with spectral CT mode in the arterial phase. One hundred and one sets of virtual monochromatic spectral (VMS) images were generated ranging from 40 keV to 140 keV. Image noise, clot diameter and clot to artery contrast-to-noise ratio (CNR) from seven sets of VMS images at selected monochromatic levels in sCTPA were measured and compared. Subjective image quality and diagnostic confidence for these images were also assessed and compared. Data were analyzed by paired t test and Wilcoxon rank sum test. Results The lowest noise and the highest image quality score for the VMS images were obtained at 65 keV. The VMS images at 65 keV also had the second highest CNR value behind that of 50 keV VMS images. There was no difference in the mean noise and CNR between the 65 keV and 70 keV VMS images. The apparent clot diameter correlated with the keV levels. Conclusions The optimal energy level for detecting pulmonary embolism using dual-energy spectral CT pulmonary angiography was 65–70 keV. Virtual monochromatic spectral images at approximately 65–70 keV yielded the lowest image noise, high CNR and highest diagnostic confidence for the detection of pulmonary embolism. PMID:23667583

  8. Energy transfer and energy level decay processes in Tm{sup 3+}-doped tellurite glass

    SciTech Connect

    Gomes, Laercio; Lousteau, Joris; Milanese, Daniel; Scarpignato, Gerardo C.; Jackson, Stuart D.

    2012-03-15

    The primary excited state decay and energy transfer processes in singly Tm{sup 3+}-doped TeO{sub 2}:ZnO:Bi{sub 2}O{sub 3}:GeO{sub 2} (TZBG) glass relating to the {sup 3}F{sub 4}{yields}{sup 3}H{sub 6}{approx}1.85 {mu}m laser transition have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the {sup 3}H{sub 4} manifold at 794 nm, the {sup 3}H{sub 5} manifold at 1220 nm, and {sup 3}F{sub 4} manifold at 1760 nm has established that the {sup 3}H{sub 5} manifold is entirely quenched by multiphonon relaxation in tellurite glass. The luminescence from the {sup 3}H{sub 4} manifold with an emission peak at 1465 nm suffers strong suppression due to cross relaxation that populates the {sup 3}F{sub 4} level with a near quadratic dependence on the Tm{sup 3+} concentration. The {sup 3}F{sub 4} lifetime becomes longer as the Tm{sup 3+} concentration increases due to energy migration and decreases to 2.92 ms when [Tm{sup 3+}] = 4 mol. % as a result of quasi-resonant energy transfer to free OH{sup -} radicals present in the glass at concentrations between 1 x 10{sup 18} cm{sup -3} and 2 x 10{sup 18} cm{sup -3}. Judd-Ofelt theory in conjunction with absorption measurements were used to obtain the radiative lifetimes and branching ratios of the energy levels located below 25 000 cm{sup -1}. The spectroscopic parameters, the cross relaxation and Tm{sup 3+}({sup 3}F{sub 4}) {yields} OH{sup -} energy transfer rates were used in a numerical model for laser transitions emitting at 2335 nm and 1865 nm.

  9. Energy levels, radiative rates and electron impact excitation rates for transitions in Si II

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2014-07-01

    Energies for the lowest 56 levels, belonging to the 3s2 3p, 3s 3p2, 3p3, 3s2 3d, 3s 3p 3d, 3s2 4ℓ and 3s2 5ℓ configurations of Si II, are calculated using the General-purpose Relativistic Atomic Structure Package (GRASP) code. Analogous calculations have also been performed (for up to 175 levels) using the Flexible Atomic Code (FAC). Furthermore, radiative rates are calculated for all E1, E2, M1 and M2 transitions. Extensive comparisons are made with available theoretical and experimental energy levels, and the accuracy of the present results is assessed to be better than 0.1 Ryd. Similarly, the accuracy for radiative rates (and subsequently lifetimes) is estimated to be better than 20 per cent for most of the (strong) transitions. Electron impact excitation collision strengths are also calculated, with the Dirac Atomic R-matrix Code (DARC), over a wide energy range up to 13 Ryd. Finally, to determine effective collision strengths, resonances are resolved in a fine energy mesh in the thresholds region. These collision strengths are averaged over a Maxwellian velocity distribution and results listed over a wide range of temperatures, up to 105.5 K. Our data are compared with earlier R-matrix calculations and differences noted, up to a factor of 2, for several transitions. Although scope remains for improvement, the accuracy for our results of collision strengths and effective collision strengths is assessed to be about 20 per cent for a majority of transitions.

  10. Relativistic Electron Acceleration during High Intensity Auroral Activities: Maximum Energy Level Dependence

    NASA Astrophysics Data System (ADS)

    Hajra, Rajkumar; Tsurutani, Bruce; Echer, Ezequiel; Gonzalez, Walter

    2015-04-01

    Radiation belt relativistic (E > 0.6, > 2.0, and > 4.0 MeV) electron acceleration at geosynchronous orbit is studied for solar cycle 23 (1995-2008). High-intensity, long-duration, continuous AE activity (HILDCAA) events are considered as the basis of the analyses. Cluster-4 passes were examined for electromagnetic chorus waves in the 5 < L < 10 and 0 < MLT < 12 region. All the HILDCAA events under study were found to be characterized by enhanced whistler-mode chorus waves and flux enhancements of magnetospheric relativistic electrons of all three energies compared to the pre-event flux levels. The response of the energetic electrons to HILDCAAs was found to vary with solar cycle phase. The initial electron fluxes were lower for events occurring during the ascending and solar maximum (AMAX) phases than for events occurring during the descending and solar minimum (DMIN) phases. The flux increases for the DMIN-phase events were > 50% larger than for the AMAX-phase events. It is concluded that electrons are accelerated to relativistic energies most often and most efficiently during the DMIN-phases of the solar cycle. We propose two possible solar UV-related mechanisms to explain this solar cycle effect. Enhanced E > 0.6 MeV electron fluxes at geosynchronous orbit were first detected ~1 day after the statistical onset of HILDCAAs, E > 2.0 MeV electrons after ~1.5 days, and E > 4.0 MeV electrons after ~2.5 days. We estimated acceleration and decay rates and timescales for the three energy levels, which will be provided for wave-particle investigators to attempt to match their models to empirically derived values.

  11. Fundamental Limitations in Advanced LC Schemes

    SciTech Connect

    Mikhailichenko, A. A.

    2010-11-04

    Fundamental limitations in acceleration gradient, emittance, alignment and polarization in acceleration schemes are considered in application for novel schemes of acceleration, including laser-plasma and structure-based schemes. Problems for each method are underlined whenever it is possible. Main attention is paid to the scheme with a tilted laser bunch.

  12. A scheme for symmetrization verification

    NASA Astrophysics Data System (ADS)

    Sancho, Pedro

    2011-08-01

    We propose a scheme for symmetrization verification in two-particle systems, based on one-particle detection and state determination. In contrast to previous proposals, it does not follow a Hong-Ou-Mandel-type approach. Moreover, the technique can be used to generate superposition states of single particles.

  13. Invisibly Sanitizable Digital Signature Scheme

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  14. Geophysical Inversion Through Hierarchical Scheme

    NASA Astrophysics Data System (ADS)

    Furman, A.; Huisman, J. A.

    2010-12-01

    Geophysical investigation is a powerful tool that allows non-invasive and non-destructive mapping of subsurface states and properties. However, non-uniqueness associated with the inversion process prevents the quantitative use of these methods. One major direction researchers are going is constraining the inverse problem by hydrological observations and models. An alternative to the commonly used direct inversion methods are global optimization schemes (such as genetic algorithms and Monte Carlo Markov Chain methods). However, the major limitation here is the desired high resolution of the tomographic image, which leads to a large number of parameters and an unreasonably high computational effort when using global optimization schemes. Two innovative schemes are presented here. First, a hierarchical approach is used to reduce the computational effort for the global optimization. Solution is achieved for coarse spatial resolution, and this solution is used as the starting point for finer scheme. We show that the computational effort is reduced in this way dramatically. Second, we use a direct ERT inversion as the starting point for global optimization. In this case preliminary results show that the outcome is not necessarily beneficial, probably because of spatial mismatch between the results of the direct inversion and the true resistivity field.

  15. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.

  16. Calculated Energy Levels, Oscillator Strengths and Lifetimes in Al-like Argon

    NASA Astrophysics Data System (ADS)

    Gupta, G. P.; Msezane, A. Z.

    Excitation energies, oscillator strengths and transition probabilities for electric-dipole-allowed and inter-combination transitions among the 25 LS levels belonging to the (1s22s22p6)3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3s24s, 3s24p, 3s24d, 3s24f and 3s3p4s configurations of Ar VI are calculated using extensive configuration-interaction (CI) wave functions. From our transition probabilities we have also calculated the radiative lifetimes of doublet and quartet states of Ar VI. Our results are compared with other available theoretical calculations and the experimental data. To assess the importance of relativistic effects on our calculated values, we have also carried out calculations in the intermediate-coupling scheme. These effects are incorporated through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the experimental values. The energy splitting of 54 fine-structure levels, the oscillator strengths and transition probabilities for some strong dipole-allowed and intercombination transitions and the lifetimes of some fine-structure levels are presented and compared with available experimental and other theoretical values. Our lifetime for the 3s3p(1Po)3d(2Po) level calculated in intermediate-coupling scheme, while differing significantly from our LS value, shows excellent agreement with the experimental result of Pinnington et al. In this calculation we also predict new data for several levels where no other theoretical and experimental results are available.

  17. Analytical Calculation of Energy levels of mono- and bilayer Graphene Quantum Dots Used as Light Absorber in Solar Cells

    NASA Astrophysics Data System (ADS)

    Tamandani, Shahryar; Darvish, Ghafar; Faez, Rahim

    2016-01-01

    In this paper by solving Dirac equation, we present an analytical solution to calculate energy levels and wave functions of mono- and bilayer graphene quantum dots. By supposing circular quantum dots, we solve Dirac equation and obtain energy levels and band gap with relations in a new closed and practical form. The energy levels are correlated with a radial quantum number and radius of quantum dots. In addition to monolayer quantum dots, AA- and AB-stacked bilayer quantum dots are investigated and their energy levels and band gap are calculated as well. Also, we analyze the influence of the quantum dots size on their energy spectrum. It can be observed that the band gap decreases as quantum dots' radius increases. On the other hand, increase in the band gap is more in AB-stacked bilayer quantum dots. Using the obtained relations, the band gap is obtained in each state. Comparing the energy spectra obtained from the tight-binding approximation with those of our obtained relations shows that the behavior of the energies as function of the dot size is qualitatively similar, but in some cases, quantitative differences can be seen. As quantum dots radius increases, the analytical results approach to the tight-binding method results.

  18. Response of chicks to two diets of differing energy levels under conditions of brooding with or without supplemental heat

    NASA Astrophysics Data System (ADS)

    Donkoh, A.; Kese, A. G.

    1987-12-01

    A 2×2 factorial experiment was conducted to determine the performance and certain physiological parameters of 200 day-old chicks fed diets containing either 2600 or 3000 kcal metabolizable energy (ME) per kilogram for a period of 28 days under conditions of brooding with or without supplemental heat in a hot humid tropical area. The results indicated that within each dietary energy level, there was no significant difference in growth rates of chicks brooded with or without supplemental heat, however, the high energy diet significantly (P<0.01) promoted greater weight gains than the low energy diet. Brooding chicks with supplemental heat and with the high energy diet, decreased feed intake and improved feed conversion efficiency. Chicks brooded without supplemental heat consumed significantly (P<0.01) less water than those brooded with heat, irrespective of the dietary energy level. Mortality and blood glucose levels were not affected by the heat and dietary energy treatments. Thyroid weight expressed as percentage of body weight, haemoglobin and hematocrit values were significantly (P<0.01) higher for chicks brooded without supplemental heat. On the other hand, dietary energy levels did not exert any effect on these physiological parameters. No significant heat and dietary energy level interaction effects were noted on all the parameters considered under this trial.

  19. Simultaneous integrated boost to intraprostatic lesions using different energy levels of intensity-modulated radiotherapy and volumetric-arc therapy

    PubMed Central

    Sonmez, S; Erbay, G; Guler, O C; Arslan, G

    2014-01-01

    Objective: This study compared the dosimetry of volumetric-arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) with a dynamic multileaf collimator using the Monte Carlo algorithm in the treatment of prostate cancer with and without simultaneous integrated boost (SIB) at different energy levels. Methods: The data of 15 biopsy-proven prostate cancer patients were evaluated. The prescribed dose was 78 Gy to the planning target volume (PTV78) including the prostate and seminal vesicles and 86 Gy (PTV86) in 39 fractions to the intraprostatic lesion, which was delineated by MRI or MR-spectroscopy. Results: PTV dose homogeneity was better for IMRT than VMAT at all energy levels for both PTV78 and PTV86. Lower rectum doses (V30–V50) were significantly higher with SIB compared with PTV78 plans in both IMRT and VMAT plans at all energy levels. The bladder doses at high dose level (V60–V80) were significantly higher in IMRT plans with SIB at all energy levels compared with PTV78 plans, but no significant difference was observed in VMAT plans. VMAT plans resulted in a significant decrease in the mean monitor units (MUs) for 6, 10, and 15 MV energy levels both in plans with and those without SIB. Conclusion: Dose escalation to intraprostatic lesions with 86 Gy is safe without causing serious increase in organs at risk (OARs) doses. VMAT is advantageous in sparing OARs and requiring less MU than IMRT. Advances in knowledge: VMAT with SIB to intraprostatic lesion is a feasible method in treating prostate cancer. Additionally, no dosimetric advantage of higher energy is observed. PMID:24319009

  20. Stable maps and Quot schemes

    NASA Astrophysics Data System (ADS)

    Popa, Mihnea; Roth, Mike

    2003-06-01

    In this paper we study the relationship between two different compactifications of the space of vector bundle quotients of an arbitrary vector bundle on a curve. One is Grothendieck's Quot scheme, while the other is a moduli space of stable maps to the relative Grassmannian. We establish an essentially optimal upper bound on the dimension of the two compactifications. Based on that, we prove that for an arbitrary vector bundle, the Quot schemes of quotients of large degree are irreducible and generically smooth. We precisely describe all the vector bundles for which the same thing holds in the case of the moduli spaces of stable maps. We show that there are in general no natural morphisms between the two compactifications. Finally, as an application, we obtain new cases of a conjecture on effective base point freeness for pluritheta linear series on moduli spaces of vector bundles.

  1. Subranging scheme for SQUID sensors

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor)

    2008-01-01

    A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.

  2. A biometric signcryption scheme without bilinear pairing

    NASA Astrophysics Data System (ADS)

    Wang, Mingwen; Ren, Zhiyuan; Cai, Jun; Zheng, Wentao

    2013-03-01

    How to apply the entropy in biometrics into the encryption and remote authentication schemes to simplify the management of keys is a hot research area. Utilizing Dodis's fuzzy extractor method and Liu's original signcryption scheme, a biometric identity based signcryption scheme is proposed in this paper. The proposed scheme is more efficient than most of the previous proposed biometric signcryption schemes for that it does not need bilinear pairing computation and modular exponentiation computation which is time consuming largely. The analysis results show that under the CDH and DL hard problem assumption, the proposed scheme has the features of confidentiality and unforgeability simultaneously.

  3. The self-consistent calculation of pseudo-molecule energy levels, construction of energy level correlation diagrams and an automated computation system for SCF-X(Alpha)-SW calculations

    NASA Technical Reports Server (NTRS)

    Schlosser, H.

    1981-01-01

    The self consistent calculation of the electronic energy levels of noble gas pseudomolecules formed when a metal surface is bombarded by noble gas ions is discussed along with the construction of energy level correlation diagrams as a function of interatomic spacing. The self consistent field x alpha scattered wave (SCF-Xalpha-SW) method is utilized. Preliminary results on the Ne-Mg system are given. An interactive x alpha programming system, implemented on the LeRC IBM 370 computer, is described in detail. This automated system makes use of special PROCDEFS (procedure definitions) to minimize the data to be entered manually at a remote terminal. Listings of the special PROCDEFS and of typical input data are given.

  4. EFFICIENCY PROBLEMS RELATED TO PERMANGANATE OXIDATION SCHEMES

    EPA Science Inventory

    Oxidation schemes for the in-situ destruction of chlorinated solvents, using potassium permanganate, are receiving considerable attention. Indication from field studies and from our own work are that permanganate oxidation schemes have inherent problems that could severely limit...

  5. Effect of dt{mu} quasinucleus structure on energy levels of the (dt{mu})Xee exotic molecule

    SciTech Connect

    Kartavtsev, O.I.; Malykh, A.V.; Permyakov, V.P.

    2004-08-01

    Precise energies of rovibrational states of the exotic hydrogen-like molecule (dt{mu})Xee are of importance for dt{mu} resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and rotation of the dt{mu} quasi-nucleus on energy levels is studied using the three-body description of the (dt{mu})Xee molecule based on the hierarchy of scales and corresponding energies of its constituent subsystems. For a number of rovibrational states of (dt{mu})dee and (dt{mu})tee, the shifts and splittings of energy levels are calculated in the second order of the perturbation theory.

  6. Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; VandeVondele, Joost

    2016-02-01

    Understanding charge transfer at electrochemical interfaces requires consistent treatment of electronic energy levels in solids and in water at the same level of the electronic structure theory. Using density-functional-theory-based molecular dynamics and thermodynamic integration, the free energy levels of six redox couples in water are calculated at the level of the random phase approximation and a double hybrid density functional. The redox levels, together with the water band positions, are aligned against a computational standard hydrogen electrode, allowing for critical analysis of errors compared to the experiment. It is encouraging that both methods offer a good description of the electronic structures of the solutes and water, showing promise for a full treatment of electrochemical interfaces.

  7. Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional.

    PubMed

    Cheng, Jun; VandeVondele, Joost

    2016-02-26

    Understanding charge transfer at electrochemical interfaces requires consistent treatment of electronic energy levels in solids and in water at the same level of the electronic structure theory. Using density-functional-theory-based molecular dynamics and thermodynamic integration, the free energy levels of six redox couples in water are calculated at the level of the random phase approximation and a double hybrid density functional. The redox levels, together with the water band positions, are aligned against a computational standard hydrogen electrode, allowing for critical analysis of errors compared to the experiment. It is encouraging that both methods offer a good description of the electronic structures of the solutes and water, showing promise for a full treatment of electrochemical interfaces. PMID:26967430

  8. Interfacial energy level alignments between low-band-gap polymer PTB7 and indium zinc oxide anode

    NASA Astrophysics Data System (ADS)

    Shin, Dongguen; Lee, Jeihyun; Park, Soohyung; Jeong, Junkyeong; Seo, Ki-Won; Kim, Hyo-Joong; Kim, Han-Ki; Choi, Min-Jun; Chung, Kwun-Bum; Yi, Yeonjin

    2015-09-01

    The interfacial energy level alignments between poly(thieno[3,4-b]-thiophene)-co-benzodithiophene (PTB7) and indium zinc oxide (IZO) were investigated. In situ ultraviolet photoemission spectroscopy measurements were conducted with the step-by-step deposition of PTB7 on IZO substrate. All spectral changes were analyzed between each deposition step, and interfacial energy level alignments were estimated. The hole barrier of standard ultraviolet-ozone treated IZO is 0.58 eV, which is lower than the value of 1.09 eV obtained for bare IZO. The effect of barrier reduction on the hole transport was also confirmed with electrical measurements of hole-dominated devices.

  9. Pay scheme preferences and health policy objectives.

    PubMed

    Abelsen, Birgit

    2011-04-01

    This paper studies the preferences among healthcare workers towards pay schemes involving different levels of risk. It identifies which pay scheme individuals would prefer for themselves, and which they think is best in furthering health policy objectives. The paper adds, methodologically, a way of defining pay schemes that include different levels of risk. A questionnaire was mailed to a random sample of 1111 dentists. Respondents provided information about their current and preferred pay schemes, and indicated which pay scheme, in their opinion, would best further overall health policy objectives. A total of 504 dentists (45%) returned the questionnaire, and there was no indication of systematic non-response bias. All public dentists had a current pay scheme based on a fixed salary and the majority of individuals preferred a pay scheme with more income risk. Their preferred pay schemes coincided with the ones believed to further stabilise healthcare personnel. The predominant current pay scheme among private dentists was based solely on individual output, and the majority of respondents preferred this pay scheme. In addition, their preferred pay schemes coincided with the ones believed to further efficiency objectives. Both public and private dentists believed that pay schemes, furthering efficiency objectives, had to include more performance-related pay than the ones believed to further stability and quality objectives. PMID:20565995

  10. Quantum Signature Scheme with Weak Arbitrator

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Chen, Xiu-Bo; Yun, Deng; Yang, Yi-Xian

    2012-07-01

    In this paper, we propose one quantum signature scheme with a weak arbitrator to sign classical messages. This scheme can preserve the merits in the original arbitrated scheme with some entanglement resources, and provide a higher efficiency in transmission and reduction the complexity of implementation. The arbitrator is costless and only involved in the disagreement case.

  11. Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme

    NASA Technical Reports Server (NTRS)

    Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook

    1995-01-01

    Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.

  12. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    PubMed

    Koput, Jacek

    2016-10-01

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state. PMID:27481562

  13. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials. PMID:27384817

  14. Position-dependent energy-level shifts of an accelerated atom in the presence of a boundary

    SciTech Connect

    Zhu Zhiying; Yu Hongwei

    2010-10-15

    We consider a uniformly accelerated atom interacting with a vacuum electromagnetic field in the presence of an infinite conducting plane boundary and calculate separately the contributions of vacuum fluctuations and radiation reaction to the atomic energy-level shift. We analyze in detail the behavior of the total energy shift in three different regimes of the distance in both the low-acceleration and high-acceleration limits. Our results show that, in general, an accelerated atom does not behave as if immersed in a thermal bath at the Unruh temperature in terms of the atomic energy-level shifts, and the effect of the acceleration on the atomic energy-level shifts may in principle become appreciable in certain circumstances, although it may not be realistic for actual experimental measurements. We also examine the effects of the acceleration on the level shifts when the acceleration is of the order of the transition frequency of the atom and we find some features which differ from what was obtained in the existing literature.

  15. A dynamic bandwidth allocation scheme for EPON

    NASA Astrophysics Data System (ADS)

    Li, Xiuyuan; Wu, Xiaojuan; Ma, Maode; Li, Wenming; Zhang, Yuanyuan

    2008-11-01

    This paper analyses current bandwidth schemes and proposes a novel dynamic bandwidth allocation scheme for EPON. According the scheme, we define four kinds of multimedia services such as Unsolicited Request Service (URS), Realtime Service (rt-S), Non-Real-time Service (nrt-S) and Best Effort (BE). Different kinds of services have different Quality of Service (QoS) requirements. Our scheme considers the diverse QoS request, e.g., delay for rt-S, throughput for nrt-S and fairness for BE. The simulation results show this novel scheme can ensure the quality of service (QoS) and improve bandwidth utilization.

  16. High-Order Energy Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2008-01-01

    A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.

  17. Efficient implementation of weighted ENO schemes

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Shan; Shu, Chi-Wang

    1995-01-01

    In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially non-oscillatory) finite difference schemes of Liu, Osher and Chan. It was shown by Liu et al. that WENO schemes constructed from the r-th order (in L1 norm) ENO schemes are (r+1)-th order accurate. We propose a new way of measuring the smoothness of a numerical solution, emulating the idea of minimizing the total variation of the approximation, which results in a 5-th order WENO scheme for the case r = 3, instead of the 4-th order with the original smoothness measurement by Liu et al. This 5-th order WENO scheme is as fast as the 4-th order WENO scheme of Liu et al., and both schemes are about twice as fast as the 4-th order ENO schemes on vector supercomputers and as fast on serial and parallel computers. For Euler systems of gas dynamics, we suggest computing the weights from pressure and entropy instead of the characteristic values to simplify the costly characteristic procedure. The resulting WENO schemes are about twice as fast as the WENO schemes using the characteristic decompositions to compute weights, and work well for problems which do not contain strong shocks or strong reflected waves. We also prove that, for conservation laws with smooth solutions, all WENO schemes are convergent. Many numerical tests, including the 1D steady state nozzle flow problem and 2D shock entropy wave interaction problem, are presented to demonstrate the remarkable capability of the WENO schemes, especially the WENO scheme using the new smoothness measurement, in resolving complicated shock and flow structures. We have also applied Yang's artificial compression method to the WENO schemes to sharpen contact discontinuities.

  18. Scheme of thinking quantum systems

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Sornette, D.

    2009-11-01

    A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.

  19. Matroids and quantum-secret-sharing schemes

    SciTech Connect

    Sarvepalli, Pradeep; Raussendorf, Robert

    2010-05-15

    A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.

  20. A new approach to the symmetric rectangular quantum well: Analytic determination of well width from energy levels

    NASA Astrophysics Data System (ADS)

    Fouillant, C.; Alibert, C.

    1994-06-01

    Many articles on the determination of the energy levels of a symmetric rectangular quantum well (SRQW) have been published in this Journal over the past 20 years. Standard textbooks of quantum mechanics as well as research papers offer graphical solutions. Exercises on quantum well (QW) remain rather difficult for students, because transcendental equations must be solved with boundaries at which the solution will be discontinuous. Numerical solutions generally determine the energy (En), assuming that the thickness is known, for each level number n. In this note, we show that the width L of an SRQW can be expressed directly as a function of the energy En for n=0,1,2,3,... .

  1. Positronium energy levels at order m α7 : Product contributions in the two-photon-annihilation channel

    NASA Astrophysics Data System (ADS)

    Adkins, Gregory S.; Tran, Lam M.; Wang, Ruihan

    2016-05-01

    Ongoing improvements in the measurement of positronium transition intervals motivate the calculation of the O (m α7) corrections to these intervals. In this work we focus on corrections to the spin-singlet parapositronium energies involving virtual annihilation to two photons in an intermediate state. We have evaluated all contributions to the positronium S -state energy levels that can be written as the product of a one-loop correction on one side of the annihilation event and another one-loop correction on the other side. These effects contribute Δ E =-0.561971 (25 ) m α7/π3 to the parapositronium ground-state energy.

  2. Rapid Parameterization Schemes for Aircraft Shape Optimization

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2012-01-01

    A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.

  3. How can conceptual schemes change teaching?

    NASA Astrophysics Data System (ADS)

    Wickman, Per-Olof

    2012-03-01

    Lundqvist, Almqvist and Östman describe a teacher's manner of teaching and the possible consequences it may have for students' meaning making. In doing this the article examines a teacher's classroom practice by systematizing the teacher's transactions with the students in terms of certain conceptual schemes, namely the epistemological moves, educational philosophies and the selective traditions of this practice. In connection to their study one may ask how conceptual schemes could change teaching. This article examines how the relationship of the conceptual schemes produced by educational researchers to educational praxis has developed from the middle of the last century to today. The relationship is described as having been transformed in three steps: (1) teacher deficit and social engineering, where conceptual schemes are little acknowledged, (2) reflecting practitioners, where conceptual schemes are mangled through teacher practice to aid the choices of already knowledgeable teachers, and (3) the mangling of the conceptual schemes by researchers through practice with the purpose of revising theory.

  4. Quantum Authentication Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Penghao, Niu; Yuan, Chen; Chong, Li

    2016-01-01

    Based on the entanglement swapping, a quantum authentication scheme with a trusted- party is proposed in this paper. With this scheme, two users can perform mutual identity authentication to confirm each other's validity. In addition, the scheme is proved to be secure under circumstances where a malicious attacker is capable of monitoring the classical and quantum channels and has the power to forge all information on the public channel.

  5. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Lin, S.

    1985-01-01

    A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.

  6. Simulation of the Australian Mobilesat signalling scheme

    NASA Technical Reports Server (NTRS)

    Rahman, Mushfiqur

    1990-01-01

    The proposed Australian Mobilesat system will provide a range of circuit switched voice/data services using the B-series satellites. The reliability of the signalling scheme between the Network Management Station (NMS) and the mobile terminal (MT) is of critical importance to the performance of the overall system. Simulation results of the performance of the signalling scheme under various channel conditions and coding schemes are presented.

  7. Ab-inito calculation of energy level alignment and vacuum level shift at CuPc/C60 interfaces

    NASA Astrophysics Data System (ADS)

    Sai, Na; Zhu, Xiaoyang; Chelikowsky, James; Leung, Kevin

    2012-02-01

    The alignment of the donor and acceptor enegy levels is of crucial importance for organic photovotaic performance. We investigate the interfaical electronic structure and energy level alignment of copper phthalocyanine (CuPc)/fullerene (C60) using ab-inito density functional theory calculations including van der Waals interactions and hybrid density functionals. We show that energy level alignment critically depends on the standing-up and lying-down orientation of the CuPc molecules relative to C60 at the interface. We calculate the magnitude of the interface dipole at different molecular orientations and compare them to the vacuum level shift observed in photoemission spectroscopy. The validity of existing theoretical models which invoke charge transfer on this organic interface will be discussed in light of our predictions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    SciTech Connect

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S.; Strange, Mikkel; Solomon, Gemma C.

    2013-11-14

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

  9. Interplay between Energy-Level Position and Charging Effect of Manganese Phthalocyanines on an Atomically Thin Insulator.

    PubMed

    Liu, Liwei; Dienel, Thomas; Widmer, Roland; Gröning, Oliver

    2015-10-27

    Understanding the energy-level alignment and charge transfer of organic molecules at large bandgap semiconductors is of crucial importance to optimize device performance in organic electronics. We have studied submonolayer coverage of manganese phthalocyanine (MnPc) on hexagonal boron nitride (h-BN) on Rh(111) as a model system by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The adsorbed molecules show three distinctly different bias-dependent topographic signatures, which depend on their adsorption positions on the h-BN. Among these three types of MnPc, one shows pronounced charging because of the proximity of the highest occupied molecular orbital (HOMO) to the Fermi level on the decoupling h-BN substrate. The charging of the MnPc from its neutral to the MnPc(+) state leads to a down shift of the Mn 3d-related orbital by 840 meV as determined from the difference in energy position between high- and low-bias charging. We find that the charging field is linearly related to the HOMO position with respect to the Fermi level, with a clear correlation to the adsorption orientations of the MnPc. Our results show how critically energy level alignment and field-induced charge transfer process can depend on adsorption configurations, even on an apparently low-interacting substrate like metal supported monolayer h-BN. PMID:26390030

  10. VizieR Online Data Catalog: SiIX K-shell energy levels and transitions (Wei+, 2014)

    NASA Astrophysics Data System (ADS)

    Wei, H. G.; Shi, J. R.; Wang, F. L.; Zhong, J. Y.; Liang, G. Y.; Zhao, G.

    2014-05-01

    Accurate atomic data are needed to analyze the SiIX K-shell features in astrophysical X-ray spectra. Relative large discrepancies in the existing atomic data have impeded this progress. We present the accurate SiIX K-shell transition data, including K-shell energy levels, wavelengths, radiative rates, and oscillator strengths. The flexible atomic code (FAC), which is a fully relativistic atomic code with configuration interaction (CI) included, was employed to calculate these data. To investigate the CI effects, calculations with different configurations included were carried out. The K-shell atomic data of SiIX transitions between 1s22s22p2, 1s22s2p3, 1s22p4, 1s2s22p3, 1s2s2p4, and 1s2p5 are reported. The accuracy of our data is demonstrated by comparing them with the available experimental measurements and theoretical calculations. The energy levels are accurate to 3.5eV, the wavelengths to within 15mÅ. For most transitions, the radiative rates an accuracy of 20%. The effects of CI from high-energy configurations were investigated as well. (2 data files).

  11. Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers.

    PubMed

    Yao, Huifeng; Zhang, Hao; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Hou, Jianhui

    2016-02-17

    Dialkylthio-substituted thienyl-benzodithiophene (BDT-DST) was designed and synthesized as a building block to modulate the molecular levels of the conjugated polymers, and three copolymers named PDST-BDD, PDST-TT and PDST-DPP were prepared and applied in polymer solar cells (PSCs). Theoretical calculations and electrochemical cyclic voltammetry (CV) measurement suggested that the dialkylthio group could decrease the molecular energy levels of the resulting polymers distinctly. The open-circuit voltage (VOC) of PSC devices based on PDST-BDD, PDST-TT, and PDST-DPP are as high as 1.0, 0.98, and 0.88 V, respectively, which are ∼0.15 V higher than those of the corresponding alky-substituted analogues. Moreover, the influence of the dialkylthio group on the absorption spectra, crystalline properties, hole mobilities, and blend morphologies of the polymers was also investigated. The results indicate that the dialkythio substitution is an effective method to modulate the molecular energy levels and that the BDT-DST unit has potential for constructing high-efficiency photovoltaic polymers. PMID:26359953

  12. Probing the Crystal Structure, Composition-Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures.

    PubMed

    Saji, Pintu; Ganguli, Ashok K; Bhat, Mohsin A; Ingole, Pravin P

    2016-04-18

    The absolute electronic energy levels in silver indium sulfide (AIS) nanocrystals (NCs) with varying compositions and crystallographic phases have been determined by using cyclic voltammetry. Different crystallographic phases, that is, metastable cubic, orthorhombic, monoclinic, and a mixture of cubic and orthorhombic AIS NCs, were studied. The band gap values estimated from the cyclic voltammetry measurements match well with the band gap values calculated from the diffuse reflectance spectra measurements. The AIS nanostructures were found to show good electrocatalytic activity towards the hydrogen evolution reaction (HER). Our results clearly establish that the electronic and electrocatalytic properties of AIS NCs are strongly sensitive to the composition and crystal structure of AIS NCs. Monoclinic AIS was found to be the most active HER electrocatalyst, with electrocatalytic activity that is almost comparable to the MoS2 -based nanostructures reported in the literature, whereas cubic AIS was observed to be the least active of the studied crystallographic phases and compositions. In view of the HER activity and electronic band structure parameters observed herein, we hypothesize that the Fermi energy level of AIS NCs is an important factor that decides the electrocatalytic efficiency of these nanocomposites. The work presented herein, in addition to being the first of its kind regarding the composition and phase-dependence of electrochemical aspects of AIS NCs, also presents a simple solvothermal method for the synthesis of different crystallographic phases with various Ag/In molar ratios. PMID:26812447

  13. Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2010-09-01

    Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises. PMID:20386964

  14. 4f and 5d energy levels of the divalent and trivalent lanthanide ions in M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba)

    SciTech Connect

    Kate, O.M. ten; Zhang, Z.; Dorenbos, P.; Hintzen, H.T.; Kolk, E. van der

    2013-01-15

    Optical data of Sm, Tb and Yb doped Ca{sub 2}Si{sub 5}N{sub 8} and Sr{sub 2}Si{sub 5}N{sub 8} phosphors that have been prepared by solid-state synthesis, are presented. Together with luminescence data from literature on Ce{sup 3+} and Eu{sup 2+} doping in the M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba) hosts, energy level schemes were constructed showing the energy of the 4f and 5d levels of all divalent and trivalent lanthanide ions relative to the valence and conduction band. The schemes were of great help in interpreting the optical data of the lanthanide doped phosphors and allow commenting on the valence stability of the ions, as well as the stability against thermal quenching of the Eu{sup 2+}d-f emission. Tb{sup 3+} substitutes on both a high energy and a low energy site in Ca{sub 2}Si{sub 5}N{sub 8}, due to which excitation at 4.77 eV led to emission from both the {sup 5}D{sub 3} and {sup 5}D{sub 4} levels, while excitation at 4.34 eV gave rise to mainly {sup 5}D{sub 4} emission. Doping with Sm resulted in typical Sm{sup 3+}f-f line absorption, as well as an absorption band around 4.1 eV in Ca{sub 2}Si{sub 5}N{sub 8} and 3.6 eV in Sr{sub 2}Si{sub 5}N{sub 8} that could be identified as the Sm{sup 3+} charge transfer band. Yb on the other hand was incorporated in both the divalent and the trivalent state in Ca{sub 2}Si{sub 5}N{sub 8}. - Graphical abstract: Energy level schemes showing the 4f ground states of the trivalent ( Black-Down-Pointing-Small-Triangle ) and divalent ( Black-Up-Pointing-Small-Triangle ) lanthanide ions and lowest energy 5d states of the trivalent ({nabla}) and divalent ({Delta}) ions with respect to the valence and conduction bands of Ca{sub 2}Si{sub 5}N{sub 8} (left) and Sr{sub 2}Si{sub 5}N{sub 8} (right). Highlights: Black-Right-Pointing-Pointer Construction of energy level schemes of all lanthanides within the M{sub 2}Si{sub 5}N{sub 8} hosts. Black-Right-Pointing-Pointer Construction was done by analyzing existing as well as new

  15. Localization scheme for relativistic spinors

    NASA Astrophysics Data System (ADS)

    Ciupka, J.; Hanrath, M.; Dolg, M.

    2011-12-01

    A new method to determine localized complex-valued one-electron functions in the occupied space is presented. The approach allows the calculation of localized orbitals regardless of their structure and of the entries in the spinor coefficient matrix, i.e., one-, two-, and four-component Kramers-restricted or unrestricted one-electron functions with real or complex expansion coefficients. The method is applicable to localization schemes that maximize (or minimize) a functional of the occupied spinors and that use a localization operator for which a matrix representation is available. The approach relies on the approximate joint diagonalization (AJD) of several Hermitian (symmetric) matrices which is utilized in electronic signal processing. The use of AJD in this approach has the advantage that it allows a reformulation of the localization criterion on an iterative 2 × 2 pair rotating basis in an analytical closed form which has not yet been described in the literature for multi-component (complex-valued) spinors. For the one-component case, the approach delivers the same Foster-Boys or Pipek-Mezey localized orbitals that one obtains from standard quantum chemical software, whereas in the multi-component case complex-valued spinors satisfying the selected localization criterion are obtained. These localized spinors allow the formulation of local correlation methods in a multi-component relativistic framework, which was not yet available. As an example, several heavy and super-heavy element systems are calculated using a Kramers-restricted self-consistent field and relativistic two-component pseudopotentials in order to investigate the effect of spin-orbit coupling on localization.

  16. An Accounting Scheme for Personality Study.

    ERIC Educational Resources Information Center

    Dillon, James J.; Feldman, S. Shirley

    Realizing the importance of human personality variables in comprehensive educational assessment structures, Operation PEP sought to develop a tool to assess specific human personality characteristics. The resulting accounting scheme is divided into three chapters: (1) an outline and definition of relevant terminology, (2) a scheme to account for…

  17. Finite volume renormalization scheme for fermionic operators

    SciTech Connect

    Monahan, Christopher; Orginos, Kostas

    2013-11-01

    We propose a new finite volume renormalization scheme. Our scheme is based on the Gradient Flow applied to both fermion and gauge fields and, much like the Schr\\"odinger functional method, allows for a nonperturbative determination of the scale dependence of operators using a step-scaling approach. We give some preliminary results for the pseudo-scalar density in the quenched approximation.

  18. Assessment of chromium tripicolinate supplementation and dietary energy level and source on growth, carcass, and blood criteria in growing pigs.

    PubMed

    van de Ligt, C P A; Lindemann, M D; Cromwell, G L

    2002-02-01

    Two experiments were conducted to evaluate potential interactive effects of supplemental Cr and dietary energy supply in growing pigs. Experiment 1 used 36 individually penned barrows, 25 to 65 kg, in a 2 x 3 factorial arrangement of supplemental Cr (0 or 200 ppb) and energy level (70, 80, or 90% of ME requirement). A corn-soybean meal basal diet was designed to supply all protein, mineral, and vitamin needs and 70% of the estimated ME need at 70% of ad libitum feed intake. Additional energy to 80% or 90% of the ME requirement was provided by a cornstarch/corn oil blend. In Exp. 2, 30 individually penned barrows, 23 to 68 kg, were used in a 2 x 4 factorial arrangement of supplemental Cr (0 or 200 ppb) and added energy source (none, cornstarch, corn oil, or choice white grease) with basal diets identical to Exp. 1. The various energy sources were added to 90% of the ME requirement. In both experiments, growth data were collected over a 50-d period and pigs were killed at 70.1 kg. Increasing energy levels increased (linear, P < 0.01) ADG, average backfat thickness, 10th rib backfat thickness, and cooler shrink and decreased (linear, P < 0.01) longissimus muscle area in Exp. 1. Carcass composition increased (linear, P < 0.01) in lipid and decreased in protein, water, and protein:lipid ratio in response to increasing ME levels. Similar results were observed in Exp. 2 in response to added energy, regardless of the energy source used. In response to ME, linear increases (P < 0.05) in plasma insulin concentration before feeding and after feeding were observed in Exp. 1. In Exp. 2, plasma insulin concentration was lower for the basal diet before feeding (P < 0.05) and higher for the starch diet after feeding (P < 0.01); insulin:glucose ratio increased (P < 0.01) after feeding for starch compared to oil and fat. No consistent effect of Cr or Cr x ME level on performance or carcass was observed (P > 0.10) in these experiments. Similarly, no Cr effect or Cr x ME interaction

  19. The basic function scheme of polynomial type

    SciTech Connect

    WU, Wang-yi; Lin, Guang

    2009-12-01

    A new numerical method---Basic Function Method is proposed. This method can directly discrete differential operator on unstructured grids. By using the expansion of basic function to approach the exact function, the central and upwind schemes of derivative are constructed. By using the second-order polynomial as basic function and applying the technique of flux splitting method and the combination of central and upwind schemes to suppress the non-physical fluctuation near the shock wave, the second-order basic function scheme of polynomial type for solving inviscid compressible flow numerically is constructed in this paper. Several numerical results of many typical examples for two dimensional inviscid compressible transonic and supersonic steady flow illustrate that it is a new scheme with high accuracy and high resolution for shock wave. Especially, combining with the adaptive remeshing technique, the satisfactory results can be obtained by these schemes.

  20. Two level scheme solvers for nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; DiJulio, Douglas; Cederkäll, Joakim

    2011-10-01

    A program for building level schemes from γ-spectroscopy coincidence data has been developed. The scheme builder was equipped with two different algorithms: a statistical one based on the Metropolis method and a more logical one, called REMP (REcurse, Merge and Permute), developed from scratch. These two methods are compared both on ideal cases and on experimental γ-ray data sets. The REMP algorithm is based on coincidences and transition energies. Using correct and complete coincidence data, it has solved approximately half a million schemes without failures. Also, for incomplete data and data with minor errors, the algorithm produces consistent sub-schemes when it is not possible to obtain a complete scheme from the provided data.

  1. Investigation of nonlinear motion simulator washout schemes

    NASA Technical Reports Server (NTRS)

    Riedel, S. A.; Hofmann, L. G.

    1978-01-01

    An overview is presented of some of the promising washout schemes which have been devised. The four schemes presented fall into two basic configurations; crossfeed and crossproduct. Various nonlinear modifications further differentiate the four schemes. One nonlinear scheme is discussed in detail. This washout scheme takes advantage of subliminal motions to speed up simulator cab centering. It exploits so-called perceptual indifference thresholds to center the simulator cab at a faster rate whenever the input to the simulator is below the perceptual indifference level. The effect is to reduce the angular and translational simulation motion by comparison with that for the linear washout case. Finally, the conclusions and implications for further research in the area of nonlinear washout filters are presented.

  2. Quantum proxy signature scheme with public verifiability

    NASA Astrophysics Data System (ADS)

    Zhou, Jingxian; Zhou, Yajian; Niu, Xinxin; Yang, Yixian

    2011-10-01

    In recent years, with the development of quantum cryptography, quantum signature has also made great achievement. However, the effectiveness of all the quantum signature schemes reported in the literature can only be verified by a designated person. Therefore, its wide applications are limited. For solving this problem, a new quantum proxy signature scheme using EPR quantum entanglement state and unitary transformation to generate proxy signature is presented. Proxy signer announces his public key when he generates the final signature. According to the property of unitary transformation and quantum one-way function, everyone can verify whether the signature is effective or not by the public key. So the quantum proxy signature scheme in our paper can be public verified. The quantum key distribution and one-time pad encryption algorithm guarantee the unconditional security of this scheme. Analysis results show that this new scheme satisfies strong non-counterfeit and strong non-disavowal.

  3. A novel key management scheme using biometrics

    NASA Astrophysics Data System (ADS)

    Sui, Yan; Yang, Kai; Du, Yingzi; Orr, Scott; Zou, Xukai

    2010-04-01

    Key management is one of the most important issues in cryptographic systems. Several important challenges in such a context are represented by secure and efficient key generation, key distribution, as well as key revocation. Addressing such challenges requires a comprehensive solution which is robust, secure and efficient. Compared to traditional key management schemes, key management using biometrics requires the presence of the user, which can reduce fraud and protect the key better. In this paper, we propose a novel key management scheme using iris based biometrics. Our newly proposed scheme outperforms traditional key management schemes as well as some existing key-binding biometric schemes in terms of security, diversity and/or efficiency.

  4. Splitting scheme for poroelasticity and thermoelasticity problems

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.; Vasil'eva, M. V.; Kolesov, A. E.

    2014-08-01

    Boundary value problems in thermoelasticity and poroelasticity (filtration consolidation) are solved numerically. The underlying system of equations consists of the Lamé stationary equations for displacements and nonstationary equations for temperature or pressure in the porous medium. The numerical algorithm is based on a finite-element approximation in space. Standard stability conditions are formulated for two-level schemes with weights. Such schemes are numerically implemented by solving a system of coupled equations for displacements and temperature (pressure). Splitting schemes with respect to physical processes are constructed, in which the transition to a new time level is associated with solving separate elliptic problems for the desired displacements and temperature (pressure). Unconditionally stable additive schemes are constructed by choosing a weight of a three-level scheme.

  5. Structural stability of Lattice Boltzmann schemes

    NASA Astrophysics Data System (ADS)

    David, Claire; Sagaut, Pierre

    2016-02-01

    The goal of this work is to determine classes of traveling solitary wave solutions for Lattice Boltzmann schemes by means of a hyperbolic ansatz. It is shown that spurious solitary waves can occur in finite-difference solutions of nonlinear wave equation. The occurrence of such a spurious solitary wave, which exhibits a very long life time, results in a non-vanishing numerical error for arbitrary time in unbounded numerical domain. Such a behavior is referred here to have a structural instability of the scheme, since the space of solutions spanned by the numerical scheme encompasses types of solutions (solitary waves in the present case) that are not solutions of the original continuous equations. This paper extends our previous work about classical schemes to Lattice Boltzmann schemes (David and Sagaut 2011; 2009a,b; David et al. 2007).

  6. Efficient DSMC collision-partner selection schemes.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert

    2010-07-01

    The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

  7. Efficient DSMC collision-partner selection schemes.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert

    2010-05-01

    The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

  8. Resonance energy transfer based on shallow and deep energy levels of biotin-polyethylene glycol/polyamine stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Lü, W.; Tokuhiro, Y.; Umezu, I.; Sugimura, A.; Nagasaki, Y.

    2006-10-01

    Fluorescent resonance energy transfer between the poly(ethylene glycol)-b-poly(2-(N ,N-dimethylamino)ethyl methacrylate) stabilized CdS quantum dots (QDs) and texas-red streptavidin was observed. We propose a four-state model to explain photoluminescence (PL) process of CdS QDs and suggest that there are two emission processes originated from shallow and deep trap energy levels corresponding to fast and slow components of PL decay, respectively. Energy transfer mechanism was discussed based on Dexter theory [J. Chem. Phys. 21, 863 (1953)] and the proposed four-state model. It is found that the energy transfer efficiency of deep energy level is higher than that of shallow energy level. The calculated distance between QD and texas red with the parameters of shallow energy level is the same with that of deep level, which indicates that the proposed model is reasonable for explaining the PL dynamics of CdS QDs.

  9. VizieR Online Data Catalog: Energy levels & transition rates of Be-like ions (Wang+, 2015)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Guo, X. L.; Liu, H. T.; Li, D. F.; Long, F. Y.; Han, X. Y.; Duan, B.; Li, J. G.; Huang, M.; Wang, Y. S.; Hutton, R.; Zou, Y. M.; Zeng, J. L.; Chen, C. Y.; Yan, J.

    2015-08-01

    We report calculations of energy levels and radiative rates for transitions among the lowest 116 fine-structure levels arising from the n<=5 configurations in Be-like ions with Z=10-30. The wavelengths, oscillator strengths, line strengths, and radiative rates for all possible electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among the 116 levels have been calculated using the combined configuration interaction and many-body perturbation method. The accuracy of the results is determined through extensive comparisons with existing laboratory measurements and theoretical results. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modeling and diagnostics of astrophysical and fusion plasmas. (2 data files).

  10. Improved optimization of perturbation theory: Applications to the oscillator energy levels and Bose-Einstein condensate critical temperature

    NASA Astrophysics Data System (ADS)

    Kneur, Jean-Loïc; Neveu, André; Pinto, Marcus B.

    2004-05-01

    Improving perturbation theory via a variational optimization has generally produced in higher orders an embarrassingly large set of solutions, most of them unphysical (complex). We introduce an extension of the optimized perturbation method which leads to a drastic reduction of the number of acceptable solutions. The properties of this method are studied and it is then applied to the calculation of relevant quantities in different ϕ4 models, such as the anharmonic oscillator energy levels and the critical Bose-Einstein condensation temperature shift Δ Tc recently investigated by various authors. Our present estimates of Δ Tc , incorporating the most recently available six and seven loop perturbative information, are in excellent agreement with all the available lattice numerical simulations. This represents a very substantial improvement over previous treatments.