Science.gov

Sample records for engineered three-dimensional lung

  1. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  2. Inhibition of Tumor Growth and Angiogenesis by a Lysophosphatidic Acid Antagonist in a Engineered Three-dimensional Lung Cancer Xenograft Model

    PubMed Central

    Xu, Xiaoyu; Prestwich, Glenn D

    2009-01-01

    BACKGROUND We developed an engineered three-dimensional (3-D) tumor xenograft model of non-small cell lung cancer (NSCLC) in nude mice, and used this model to evaluate a dual-activity inhibitor of lysophosphatidic acid (LPA) biosynthesis and receptor activation. METHODS First, BrP-LPA, a pan-antagonist for four LPA receptors and inhibitor of the lyosphospholipase D activity of autotaxin, was examined for inhibition of cell migration and cell invasion by human NSCLC A549 cells. Second, A549 cells were encapsulated in 3-D in three semi-synthetic ECMs based on chemically-modified glycosaminoglycans, and injected subcutaneously in nude mice. Tumor volume and vascularity were deteremined as a function of sECM composition. Third, engineered NSCLC xenografts were formed from A549 cells in either Extracel-HP or Matrigel, and mice were treated with four intraperitoneal injections of 3 mg/kg of BrP-LPA. RESULTS First, BrP-LPA inhibited cell migration and invasiveness of A549 cells in vitro. Second, tumor growth and microvessel formation for 3-D encapsulated A549 cells in vivo in nude mice increased in the order: buffer only < Extracel < Extracel-HP < Extracel-HP containing growth factors plus laminin. Third, tumor volumes increased rapidly in both Matrigel and Extracel-HP encapsulated A549 cells, and tumor growth was markedly inhibited by BrP-LPA treatment. Finally, tumor vascularization was dramatically reduced in the A549 tumors treated with BrP-LPA. CONCLUSIONS Engineered A549 lung tumors can be created by 3-D encapsulation in an ECM substitute with user controlled composition. The engineered tumors regress and lose vascularity in response to a dual activity inhibitor of the LPA signaling pathway. PMID:20143443

  3. Three-Dimensional Engineered High Fidelity Normal Human Lung Tissue-Like Assemblies (TLA) as Targets for Human Respiratory Virus Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.

    2003-01-01

    Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.

  4. [A three dimensional fractal simulation of the lung bronchial tree].

    PubMed

    Huang, Xiuyi; Tan, Xiaoping; Pei, Juemin

    2004-06-01

    The lungs are naturally irregular and asymmetrical organ in anatomy. The conducting bronchial trees in the lungs display complex self-similar structure. We have established the host mesh coordinates of the right lung on the basis of the anatomical data from the literature. A three-dimensional fractal model of the conducting airways was set up by calculating the coordinates of the mass centers of the divided blocks, searching the branch direction and determining branch lengths with the use of the drawing tool OpenGL. Specific data of the lengths at various grades, branching angles, and capillary diameters were obtained. As a result, the computed data were identical with those of the existing statistical data. The fractal covering dimensionality obtained in the computation of this model was 2.19, which is very close to the ideal dimensionality, 2.17, from the literature. The present model has laid the foundation for further research of the gas diffusion and transfer performance in the lungs using the fractal concept, and furthermore, it helps to save the computer memories and fastening the graphic transfer. PMID:15250137

  5. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    PubMed

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology. PMID:26466597

  6. A three-dimensional study of alveologenesis in mouse lung.

    PubMed

    Branchfield, Kelsey; Li, Rongbo; Lungova, Vlasta; Verheyden, Jamie M; McCulley, David; Sun, Xin

    2016-01-15

    Alveologenesis is the final step of lung maturation, which subdivides the alveolar region of the lung into smaller units called alveoli. Each of the nascent dividers serves as a new gas-exchange surface, and collectively they drastically increase the surface area for breathing. Disruption of alveologenesis results in simplification of alveoli, as is seen in premature infants diagnosed with bronchopulmonary dysplasia (BPD), a prevalent lung disease that is often associated with lifelong breathing deficiencies. To date, a majority of studies of alveologenesis rely on two-dimensional (2D) analysis of tissue sections. Given that an overarching theme of alveologenesis is thinning and extension of the epithelium and mesenchyme to facilitate gas exchange, often only a small portion of a cell or a cellular structure is represented in a single 2D plane. Here, we use a three-dimensional (3D) approach to examine the structural architecture and cellular composition of myofibroblasts, alveolar type 2 cells, elastin and lipid droplets in normal as well as BPD-like mouse lung. We found that 2D finger-like septal crests, commonly used to depict growing alveolar septae, are often artifacts of sectioning through fully established alveolar walls. Instead, a more accurate representation of growing septae are 3D ridges that are lined by platelet-derived growth factor receptor alpha (PDGFRA) and alpha smooth muscle actin (α-SMA)-expressing myofibroblasts, as well as the elastin fibers that they produce. Accordingly in 3D, both α-SMA and elastin were each found in connected networks underlying the 3D septal ridges rather than as isolated dots at the tip of 2D septal crests. Analysis through representative stages of alveologenesis revealed unappreciated dynamic changes in these patterns. PDGFRA-expressing cells are only α-SMA-positive during the first phase of alveologenesis, but not in the second phase, suggesting that the two phases of septae formation may be driven by distinct

  7. A Review of Three-Dimensional Printing in Tissue Engineering.

    PubMed

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed. PMID:26857350

  8. Utilizing stem cells for three-dimensional neural tissue engineering.

    PubMed

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs. PMID:26890524

  9. Structural engineering of three-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea

    2016-02-01

    Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.

  10. Porous three-dimensional carbon nanotube scaffolds for tissue engineering.

    PubMed

    Lalwani, Gaurav; Gopalan, Anu; D'Agati, Michael; Sankaran, Jeyantt Srinivas; Judex, Stefan; Qin, Yi-Xian; Sitharaman, Balaji

    2015-10-01

    Assembly of carbon nanomaterials into three-dimensional (3D) architectures is necessary to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. Herein, we report the fabrication and comprehensive cytocompatibility assessment of 3D chemically crosslinked macrosized (5-8 mm height and 4-6 mm diameter) porous carbon nanotube (CNT) scaffolds. Scaffolds prepared via radical initiated thermal crosslinking of single- or multiwalled CNTs (SWCNTs and MWCNTs) possess high porosity (>80%), and nano-, micro-, and macroscale interconnected pores. MC3T3 preosteoblast cells on MWCNT and SWCNT scaffolds showed good cell viability comparable to poly(lactic-co-glycolic) acid (PLGA) scaffolds after 5 days. Confocal live cell and immunofluorescence imaging showed that MC3T3 cells were metabolically active and could attach, proliferate, and infiltrate MWCNT and SWCNT scaffolds. SEM imaging corroborated cell attachment and spreading and suggested that cell morphology is governed by scaffold surface roughness. MC3T3 cells were elongated on scaffolds with high surface roughness (MWCNTs) and rounded on scaffolds with low surface roughness (SWCNTs). The surface roughness of scaffolds may be exploited to control cellular morphology and, in turn, govern cell fate. These results indicate that crosslinked MWCNTs and SWCNTs scaffolds are cytocompatible, and open avenues toward development of multifunctional all-carbon scaffolds for tissue engineering applications. PMID:25788440

  11. Three-dimensional volume analysis of vasculature in engineered tissues

    NASA Astrophysics Data System (ADS)

    YousefHussien, Mohammed; Garvin, Kelley; Dalecki, Diane; Saber, Eli; Helguera, María.

    2013-01-01

    Three-dimensional textural and volumetric image analysis holds great potential in understanding the image data produced by multi-photon microscopy. In this paper, an algorithm that quantitatively analyzes the texture and the morphology of vasculature in engineered tissues is proposed. The investigated 3D artificial tissues consist of Human Umbilical Vein Endothelial Cells (HUVEC) embedded in collagen exposed to two regimes of ultrasound standing wave fields under different pressure conditions. Textural features were evaluated using the normalized Gray-Scale Cooccurrence Matrix (GLCM) combined with Gray-Level Run Length Matrix (GLRLM) analysis. To minimize error resulting from any possible volume rotation and to provide a comprehensive textural analysis, an averaged version of nine GLCM and GLRLM orientations is used. To evaluate volumetric features, an automatic threshold using the gray level mean value is utilized. Results show that our analysis is able to differentiate among the exposed samples, due to morphological changes induced by the standing wave fields. Furthermore, we demonstrate that providing more textural parameters than what is currently being reported in the literature, enhances the quantitative understanding of the heterogeneity of artificial tissues.

  12. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    PubMed

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  13. Three-dimensional simulation, surgical navigation and thoracoscopic lung resection

    PubMed Central

    Kanzaki, Masato; Kikkawa, Takuma; Sakamoto, Kei; Maeda, Hideyuki; Wachi, Naoko; Komine, Hiroshi; Oyama, Kunihiro; Murasugi, Masahide; Onuki, Takamasa

    2013-01-01

    This report describes a 3-dimensional (3-D) video-assisted thoracoscopic lung resection guided by a 3-D video navigation system having a patient-specific 3-D reconstructed pulmonary model obtained by preoperative simulation. A 78-year-old man was found to have a small solitary pulmonary nodule in the left upper lobe in chest computed tomography. By a virtual 3-D pulmonary model the tumor was found to be involved in two subsegments (S1 + 2c and S3a). Complete video-assisted thoracoscopic surgery bi-subsegmentectomy was selected in simulation and was performed with lymph node dissection. A 3-D digital vision system was used for 3-D thoracoscopic performance. Wearing 3-D glasses, the patient's actual reconstructed 3-D model on 3-D liquid-crystal displays was observed, and the 3-D intraoperative field and the picture of 3-D reconstructed pulmonary model were compared. PMID:24964426

  14. Three-dimensional display of the heart, aorta, lungs, and airway using CT

    SciTech Connect

    Fram, E.K.; Godwin, J.D.; Putman, C.E.

    1982-12-01

    In previous studies of human anatomy, three-dimensional display of CT data has required laborious manual boundary tracking, except for high-contrast structures such as the spine. Automated boundary tracking techniques have been extended so that they can function well for both high-contrast and soft-tissue interfaces. These methods have been applied to the in vivo study of human lungs, heart, aorta, and larynx in this paper.

  15. Three-dimensional histopathology of lung cancer with multimodality image registration

    NASA Astrophysics Data System (ADS)

    de Ryk, Jessica; Weydert, Jamie; Christensen, Gary; Thiesse, Jacqueline; Namati, Eman; Reinhardt, Joseph; Hoffman, Eric; McLennan, Geoffrey

    2007-03-01

    Identifying the three-dimensional content of non-small cell lung cancer tumors is a vital step in the pursuit of understanding cancer growth, development and response to treatment. The majority of non-small cell lung cancer tumors are histologically heterogeneous, and consist of the malignant tumor cells, necrotic tumor cells, fibroblastic stromal tissue, and inflammation. Geometric and tissue density heterogeneity are utilized in computed tomography (CT) representations of lung tumors for distinguishing between malignant and benign nodules. However, the correlation between radiolographical heterogeneity and corresponding histological content has been limited. In this study, a multimodality dataset of human lung cancer is established, enabling the direct comparison between histologically identified tissue content and micro-CT representation. Registration of these two datasets is achieved through the incorporation of a large scale, serial microscopy dataset. This dataset serves as the basis for the rigid and non-rigid registrations required to align the radiological and histological data. The resulting comprehensive, three-dimensional dataset includes radio-density, color and cellular content of a given lung tumor. Using the registered datasets, neural network classification is applied to determine a statistical separation between cancerous and non-cancerous tumor regions in micro-CT.

  16. Three-dimensional topographic amplification of seismic motion: Engineering Applications

    NASA Astrophysics Data System (ADS)

    Assimaki, D.; Mohammadi, K.

    2012-12-01

    Topography effects are associated with the presence of strong topographic relief; documented observations during strong seismic events have shown that structures on the tops of hills, ridges, and canyons had suffered greater damage than similar structures at the hill bases or on level ground. While there is qualitative agreement between theory and observations on topography effects, there is clear quantitative discrepancy: numerical predictions of crest-to-base amplification factors rarely exceed the value of 2, while amplification values observed in the field are as high as 10. We here investigate the focusing and scattering of seismic waves in 3D features by means of a systematic parametric study of the seismic response of idealized geometries on the surface of homogeneous elastic half space using finite differences, to quantify the role of geometry, material properties and ground motion characteristics in the predicted ground surface response. We specifically focus on pyramid (convex) geometries and elastic homogeneous material behavior, and use Ricker wavelets as vertical and oblique incident pulses on ground surface. Results are compared to analytical solutions and thereafter extended to account for soil layering, nonlinear response and broadband incident motion characteristics. We then develop geometry, material and ground motion dependent dimensionless amplification factors that can multiply flat ground surface response spectra and account for topography effects as part of engineering design code provisions.omparison of the scattered wavefield complexity emanating at the vertex and toe of a 45deg single slope upon incidence of a vertical, a forward and a backward oblique wave.

  17. Preliminary results of a prospective trial using three dimensional radiotherapy for lung cancer

    SciTech Connect

    Graham, M.V.; Purdy, J.A.; Emami, B.

    1995-12-01

    The purpose of this report is to evaluate the preliminary results of a prospective trial using three-dimensional (3D) treatment for lung cancer. Seventy patients with inoperable Stage I through IIIB lung cancer were treated with three-dimensional thoracic irradiation with or without chemotherapy (35% received chemotherapy). Total prescribed dose to the tumor ranged from 60-74 Gy (uncorrected for lung density). All patients were evaluated for local control, survival, and development of pneumonitis. These parameters were evaluated in respect to and compared with three-dimensional parameters used in their treatment planning. With a minimum follow-up of 6 to 30 months, the 2-year cause-specific survival rate for Stages I and II was 90% and 53% for Stage III (no difference between Stages IIIA and IIIB). Patients with local tumor control had a better 2-year overall survival rate (47%) than those with local failure (31%). Volumetrically heterogeneously calculated doses were important to the accurate delineation of dose-volume coverage as there was a wide range of dicrepancies between a homogeneously prescribed point dose calculation and the heterogeneously calculated volume coverage of that prescription. High-grade pneumonitis was correlated with the location of the tumor with lower lobe tumors having a much higher risk than those with upper lobe tumors. A critical volume effect and threshold dose were apparent in the development of high-grade pneumonitis. Future dose escalation trials in lung cancer should be directed to volumes that limit the amount of elective nodal irradiation. However, the volume of necessary elective nodal irradiation remains unknown and should be studied prospectively. Dose escalation trials are indicated and may be facilitated by smaller target volumes. 22 refs., 8 figs., 2 tabs.

  18. Three-dimensional velocity mapping of lung motion using vessel bifurcation pattern matching

    SciTech Connect

    Tashiro, Mutsumi; Minohara, Shinichi; Kanai, Tatsuaki; Yusa, Ken; Sakurai, Hideyuki; Nakano, Takashi

    2006-06-15

    We present a new quantification technique for three-dimensional (3D) lung motion by means of tracking the anatomical features inside the lung using a set of sequential 3D-CT images (a 4D-CT image). The method is based on the conservation of topology, such as connections and junctions of vessels, during the motion. Lung CT images are used to do lung volume modeling, lung vessel extracting and thinning, and coordinates of vessel bifurcations are derived as feature points. Such feature points are tracked in a series of 3D-CT images, i.e., the points are individually tracked between two successive 3D-CT images, in which the lung is deformed. Consequently, 3D displacement vectors are obtained. The feature point tracking is carried out using point pattern matching with a probabilistic relaxation method. We examined this technique using a lung 3D-CT image and artificially deformed one, and separately scanned CT images for a rigid bifurcation phantom. The studies estimated that the error of the vectors is within {approx}1 voxel, i.e., 1 mm or less. Therefore, the accuracy is expected to be high enough for radiation therapy. This technique enables us to quantify realistic 3D organ motion without any fiducial markers. It can be applied to the quantification of tumor (target volume) deformation by gridding interpolation into all voxels. We expect it to be useful for dose estimation in mobile organs and for 4D treatment planning in radiation therapy.

  19. In Situ Tissue Engineering Using Magnetically Guided Three-Dimensional Cell Patterning

    PubMed Central

    Grogan, Shawn P.; Pauli, Chantal; Chen, Peter; Du, Jiang; Chung, Christine B.; Kong, Seong Deok; Colwell, Clifford W.; Lotz, Martin K.; Jin, Sungho

    2012-01-01

    Manipulation of cell patterns in three dimensions in a manner that mimics natural tissue organization and function is critical for cell biological studies and likely essential for successfully regenerating tissues—especially cells with high physiological demands, such as those of the heart, liver, lungs, and articular cartilage.1,2 In the present study, we report on the feasibility of arranging iron oxide-labeled cells in three-dimensional hydrogels using magnetic fields. By manipulating the strength, shape, and orientation of the magnetic field and using crosslinking gradients in hydrogels, multi-directional cell arrangements can be produced in vitro and even directly in situ. We show that these ferromagnetic particles are nontoxic between 0.1 and 10 mg/mL; certain species of particles can permit or even enhance tissue formation, and these particles can be tracked using magnetic resonance imaging. Taken together, this approach can be adapted for studying basic biological processes in vitro, for general tissue engineering approaches, and for producing organized repair tissues directly in situ. PMID:22224660

  20. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration

    PubMed Central

    Wagner, Darcy E.; Bonenfant, Nicholas R.; Sokocevic, Dino; DeSarno, Michael; Borg, Zachary; Parsons, Charles; Brooks, Elice M.; Platz, Joseph; Khalpey, Zain; Hoganson, David M.; Deng, Bin; Lam, Ying Wai; Oldinski, Rachael A.; Ashikaga, Takamaru; Weiss, Daniel J.

    2014-01-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de- and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼1–3cm3) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. PMID:24411675

  1. Calculations and Expectations: How Engineering Students Describe Three-Dimensional Forces

    ERIC Educational Resources Information Center

    Miller-Young, Janice E.

    2013-01-01

    The premise of student-centered teaching is to respond to the ways in which students engage with the context and content of their learning, and therefore the purpose of this study was to find out how students visualize three-dimensional statics problems from two-dimensional diagrams early in a first-year engineering course. Think-alouds were…

  2. Development and proof-of-concept of three-dimensional lung histology volumes

    NASA Astrophysics Data System (ADS)

    Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace

    2012-03-01

    Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.

  3. Three Dimensional Imaging of Paraffin Embedded Human Lung Tissue Samples by Micro-Computed Tomography

    PubMed Central

    Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.

    2015-01-01

    Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902

  4. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M.; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  5. Target volume definition for three-dimensional conformal radiation therapy of lung cancer.

    PubMed

    Armstrong, J G

    1998-06-01

    Three-dimensional conformal radiation therapy (3DCRT) is a mode of high precision radiotherapy which has the potential to improve the therapeutic ratio of radiation therapy for locally advanced non-small cell lung cancer. The preliminary clinical experience with 3DCRT has been promising and justifies further endeavour to refine its clinical application and ultimately test its role in randomized trials. There are several steps to be taken before 3DCRT evolves into an effective single modality for the treatment of lung cancer and before it is effectively integrated with chemotherapy. This article addresses core issues in the process of target volume definition for the application of 3DCRT technology to lung cancer. The International Commission on Radiation Units and Measurements Report no. 50 definitions of target volumes are used to identify the factors influencing target volumes in lung cancer. The rationale for applying 3DCRT to lung cancer is based on the frequency of failure to eradicate gross tumour with conventional approaches. It may therefore be appropriate to ignore subclinical or microscopic extensions when designing a clinical target volume, thereby restricting target volume size and allowing dose escalation. When the clinical target volume is expanded to a planning target volume, an optimized margin would result in homogeneous irradiation to the highest dose feasible within normal tissue constraints. To arrive at such optimized margins, multiple factors, including data acquisition, data transfer, patient movement, treatment reproducibility, and internal organ and target volume motion, must be considered. These factors may vary significantly depending on technology and techniques, and published quantitative analyses are no substitute for meticulous attention to detail and audit of performance. PMID:9849380

  6. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model.

    PubMed

    Choe, Melanie M; Sporn, Peter H S; Swartz, Melody A

    2006-09-01

    Airway wall remodeling is a hallmark of asthma, characterized by subepithelial thickening and extracellular matrix (ECM) remodeling. Mechanical stress due to hyperresponsive smooth muscle cells may contribute to this remodeling, but its relevance in a three-dimensional environment (where the ECM plays an important role in modulating stresses felt by cells) is unclear. To characterize the effects of dynamic compression in ECM remodeling in a physiologically relevant three-dimensional environment, a tissue-engineered human airway wall model with differentiated bronchial epithelial cells atop a collagen gel containing lung fibroblasts was used. Lateral compressive strain of 10 or 30% at 1 or 60 cycles per hour was applied using a novel straining device. ECM remodeling was assessed by immunohistochemistry and zymography. Dynamic strain, particularly at the lower magnitude, induced airway wall remodeling, as indicated by increased deposition of types III and IV collagen and increased secretion of matrix metalloproteinase-2 and -9. These changes paralleled increased myofibroblast differentiation and were fibroblast-dependent. Furthermore, the spatial pattern of type III collagen deposition correlated with that of myofibroblasts; both were concentrated near the epithelium and decreased diffusely away from the surface, indicating some epithelial control of the remodeling response. Thus, in a physiologically relevant three-dimensional model of the bronchial wall, dynamic compressive strain induced tissue remodeling that mimics many features of remodeling seen in asthma, in the absence of inflammation and dependent on epithelial-fibroblast signaling. PMID:16601241

  7. Three-Dimensional Volumetric Analysis of Irradiated Lung With Adjuvant Breast Irradiation

    SciTech Connect

    Teh, Amy Yuen Meei; Park, Eileen J.H.; Shen Liang; Chung, Hans T.

    2009-12-01

    Purpose: To retrospectively evaluate the dose-volume histogram data of irradiated lung in adjuvant breast radiotherapy (ABR) using a three-dimensional computed tomography (3D-CT)-guided planning technique; and to investigate the relationship between lung dose-volume data and traditionally used two-dimensional (2D) parameters, as well as their correlation with the incidence of steroid-requiring radiation pneumonitis (SRRP). Methods and Materials: Patients beginning ABR between January 2005 and February 2006 were retrospectively reviewed. Patients included were women aged >=18 years with ductal carcinoma in situ or Stage I-III invasive carcinoma, who received radiotherapy using a 3D-CT technique to the breast or chest wall (two-field radiotherapy [2FRT]) with or without supraclavicular irradiation (three-field radiotherapy [3FRT]), to 50 Gy in 25 fractions. A 10-Gy tumor-bed boost was allowed. Lung dose-volume histogram parameters (V{sub 10}, V{sub 20}, V{sub 30}, V{sub 40}), 2D parameters (central lung depth [CLD], maximum lung depth [MLD], and lung length [LL]), and incidence of SRRP were reported. Results: A total of 89 patients met the inclusion criteria: 51 had 2FRT, and 38 had 3FRT. With 2FRT, mean ipsilateral V{sub 10}, V{sub 20}, V{sub 30}, V{sub 40} and CLD, MLD, LL were 20%, 14%, 11%, and 8% and 2.0 cm, 2.1 cm, and 14.6 cm, respectively, with strong correlation between CLD and ipsilateral V{sub 10-V40} (R{sup 2} = 0.73-0.83, p < 0.0005). With 3FRT, mean ipsilateral V{sub 10}, V{sub 20}, V{sub 30}, and V{sub 40} were 30%, 22%, 17%, and 11%, but its correlation with 2D parameters was poor. With a median follow-up of 14.5 months, 1 case of SRRP was identified. Conclusions: With only 1 case of SRRP observed, our study is limited in its ability to provide definitive guidance, but it does provide a starting point for acceptable lung irradiation during ABR. Further prospective studies are warranted.

  8. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  9. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks

    PubMed Central

    Yoshida, H.; Asakura, K.; Fukuda, J.; Ozaki, M.

    2015-01-01

    Topological defects in liquid crystals not only affect the optical and rheological properties of the host, but can also act as scaffolds in which to trap nano or micro-sized colloidal objects. The creation of complex defect shapes, however, often involves confining the liquid crystals in curved geometries or adds complex-shaped colloidal objects, which are unsuitable for device applications. Using topologically patterned substrates, here we demonstrate the controlled generation of three-dimensional defect lines with non-trivial shapes and even chirality, in a flat slab of nematic liquid crystal. By using the defect lines as templates and the electric response of the liquid crystals, colloidal superstructures are constructed, which can be reversibly reconfigured at a voltage as low as 1.3 V. Three-dimensional engineering of the defect shapes in liquid crystals is potentially useful in the fabrication of self-healing composites and in stabilizing artificial frustrated phases. PMID:25994837

  10. MO-C-17A-08: Evaluation of Lung Deformation Using Three Dimensional Strain Maps

    SciTech Connect

    Cui, T; Huang, Q; Miller, W; Zhong, X; Yin, F; Cai, J

    2014-06-15

    Purpose: To develop a systematic approach to generate three dimensional (3D) strain maps of lung using the displacement vector field (DVF) during the respiratory deformation, and to demonstrate its application in evaluating deformable image registration (DIR). Methods: A DVF based strain tensor at each voxel of interest (VOI) was calculated from the relative displacements between the VOI and each of the six nearest neighbors. The maximum and minimum stretches of a VOI can be determined by the principal strains (E{sub 1}, E{sub 2} and E{sub 3}), which are the eigenvalues and the corresponding strain tensors. Two healthy volunteers enrolled in this study under IRB-approved protocol, each was scanned using 3D Hyperpolarized He-3 tagging-MRI and 3D proton-MRI with TrueFISP sequence at the endof- inhalation (EOI) and the end-of-exhalation (EOE) phases. 3D DVFs of tagging- and proton-MRI were obtained by the direct measurements of the tagging grid trajectory and by the DIR method implemented in commercial software. Results: 3D strain maps were successfully generated for all DVFs. The principal strain E1s were calculated as 0.43±0.05 and 0.17±0.25 for tagging-MRI and proton-MRI, respectively. The large values of E{sub 1} indicate the predominant lung motion in the superior-inferior (SI) direction. Given that the DVFs from the tagging images are considered as the ground truth, the discrepancies in the DIR-based strain maps suggest the inaccuracy of the DIR algorithm. In the E{sub 1} maps of tagging-MRI for subject 1, the fissures were distinguishable by the larger values (0.49±0.02) from the adjacent tissues (0.41±0.03) due to the larger relative displacement between the lung lobes. Conclusion: We have successfully developed a methodology to generate DVF-based 3D strain maps of lung. It can potentially enable us to better understand the pulmonary biomechanics and to evaluate and improve the DIR algorithms for the lung deformation. We are currently studying more

  11. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering

    PubMed Central

    Lu, Tingli; Li, Yuhui; Chen, Tao

    2013-01-01

    Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering because of their nanoscaled architecture, eg, nanofibers and nanopores, similar to the native extracellular matrix. In the conventional “top-down” approach, cells are seeded onto a biocompatible and biodegradable scaffold, in which cells are expected to populate in the scaffold and create their own extracellular matrix. The top-down approach based on these scaffolds has successfully engineered thin tissues, including skin, bladder, and cartilage in vitro. However, it is still a challenge to fabricate complex and functional tissues (eg, liver and kidney) due to the lack of vascularization systems and limited diffusion properties of these large biomimetic scaffolds. The emerging “bottom-up” method may hold great potential to address these challenges, and focuses on fabricating microscale tissue building blocks with a specific microarchitecture and assembling these units to engineer larger tissue constructs from the bottom up. In this review, state-of-the-art methods for fabrication of three-dimensional biomimetic scaffolds are presented, and their advantages and drawbacks are discussed. The bottom-up methods used to assemble microscale building blocks (eg, microscale hydrogels) for tissue engineering are also reviewed. Finally, perspectives on future development of the bottom-up approach for tissue engineering are addressed. PMID:23345979

  12. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds

    PubMed Central

    Mouriño, Viviana; Boccaccini, Aldo R.

    2010-01-01

    This paper provides an extensive overview of published studies on the development and applications of three-dimensional bone tissue engineering (TE) scaffolds with potential capability for the controlled delivery of therapeutic drugs. Typical drugs considered include gentamicin and other antibiotics generally used to combat osteomyelitis, as well as anti-inflammatory drugs and bisphosphonates, but delivery of growth factors is not covered in this review. In each case reviewed, special attention has been given to the technology used for controlling the release of the loaded drugs. The possibility of designing multifunctional three-dimensional bone TE scaffolds for the emerging field of bone TE therapeutics is discussed. A detailed summary of drugs included in three-dimensional scaffolds and the several approaches developed to combine bioceramics with various polymeric biomaterials in composites for drug-delivery systems is included. The main results presented in the literature are discussed and the remaining challenges in the field are summarized with suggestions for future research directions. PMID:19864265

  13. Investigation on three-dimensional surface roughness evaluation of engineering ceramic for rotary ultrasonic grinding machining

    NASA Astrophysics Data System (ADS)

    Wei, Shiliang; Zhao, Hong; Jing, Juntao

    2015-12-01

    Surface roughness has considerable influence on its quality and function of products in precision and ultra-precision machining, and the same situation applies to engineering ceramic for rotary ultrasonic grinding machining (RUGM). This paper presents a new parameter, called fractal root mean square deviation, for evaluating engineering ceramic three-dimensional (3D) surface roughness of RUGM. Based on engineering ceramics surface of RUGM is typical isotropic, the mathematical model of fractal root mean square deviation was established, and it possesses double characteristics of absolute measurement and multi-scale. Then validation has been implemented, and fractal root mean square deviation is superior to evaluate engineering ceramic 3D surface roughness with better resolution and sensitivity. Furthermore, the relationship between main factor parameters and fractal root mean square deviation was proposed. The evaluation parameter and the results could be implemented in practice to get higher quality surface.

  14. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues

    NASA Astrophysics Data System (ADS)

    Miller, Jordan S.; Stevens, Kelly R.; Yang, Michael T.; Baker, Brendon M.; Nguyen, Duc-Huy T.; Cohen, Daniel M.; Toro, Esteban; Chen, Alice A.; Galie, Peter A.; Yu, Xiang; Chaturvedi, Ritika; Bhatia, Sangeeta N.; Chen, Christopher S.

    2012-09-01

    In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture. Here, we printed rigid 3D filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks that could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices, and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core.

  15. Application of an Engineering Inviscid-Boundary Layer Method to Slender Three-Dimensional Vehicle Forebodies

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.

    1993-01-01

    An engineering inviscid-boundary layer method has been modified for application to slender three-dimensional (3-D) forebodies which are characteristic of transatmospheric vehicles. An improved shock description in the nose region has been added to the inviscid technique which allows the calculation of a wider range of body geometries. The modified engineering method is applied to the perfect gas solution over a slender 3-D configuration at angle of attack. The method predicts surface pressures and laminar heating rates on the windward side of the vehicle that compare favorably with numerical solutions of the thin-layer Navier-Stokes equations. These improvements extend the 3-D capabilities of the engineering method and significantly increase its design applications.

  16. Application of an engineering inviscid-boundary layer method to slender three-dimensional vehicle forebodies

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.

    1993-01-01

    An engineering inviscid-boundary layer method has been modified for application to slender three-dimensional (3-D) forebodies which are characteristic of transatmospheric vehicles. An improved shock description in the nose region has been added to the inviscid technique which allows the calculation of a wider range of body geometries. The modified engineering method is applied to the perfect gas solution over a slender 3-D configuration at angle of attack. The method predicts surface pressures and laminar heating rates on the windward side of the vehicle that compare favorably with numerical solutions of the thin-layer Navier-Stokes equations. These improvements extend the 3-D capabilities of the engineering method and significantly increase its design applications.

  17. [The three-dimensional culture of adult mesenchymal stem cells for intervertebral disc tissue engineering].

    PubMed

    Feng, Ganjun; Liu, Hao; Deng, Li; Chen, Xiaohe; Zhao, Xianfeng; Liang, Tao; Li, Xiuqiong

    2009-12-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain. As current clinical treatments are aimed at restoring biomechanical function and providing symptomatic relief, the methods focused on biological repair have aroused interest and several tissue engineering approaches using different cell types have been proposed. Owing to the unsuitable nature of degenerate cells for tissue engineering, attention has been given to the use of mesenchymal stem cells (MSCs). In this connection, we have made a study on the characteristics of MSCs derived from adult bone marrow and on the feasibility of constructing IVD tissue-engineering cell under a Three-Dimensional Pellet Culture System. The human bone marrow MSCs were isolated and purified with density gradient solution and attachment-independent culture system. MSCs isolated using this method are a homogeneous population as indicated by morphology and other criteria. They have the capacity for self-renewal and proliferation, and the multilineage potential to differentiate. PMID:20095491

  18. Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs

    NASA Astrophysics Data System (ADS)

    Meissner, Sven; Knels, Lilla; Krueger, Alexander; Koch, Thea; Koch, Edmund

    2009-09-01

    There is a growing interest in analyzing lung mechanics at the level of the alveoli in order to understand stress-related pathogenesis and possibly avoid ventilator associated lung injury. Emerging quantitative models to simulate fluid mechanics and the associated stresses and strains on delicate alveolar walls require realistic quantitative input on alveolar geometry and its dynamics during ventilation. Here, three-dimensional optical coherence tomography (OCT) and conventional intravital microscopy are joined in one setup to investigate the geometric changes of subpleural alveoli during stepwise pressure increase and release in an isolated and perfused rabbit lung model. We describe good qualitative agreement and quantitative correlation between the OCT data and video micrographs. Our main finding is the inflation and deflation of individual alveoli with noticeable hysteresis. Importantly, this three-dimensional geometry data can be extracted and converted into input data for numerical simulations.

  19. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine.

    PubMed

    Lalwani, Gaurav; Patel, Sunny C; Sitharaman, Balaji

    2016-06-01

    Carbon nanomaterials such as carbon nanotubes and graphene have gained significant interest in the fields of materials science, electronics and biomedicine due to their interesting physiochemical properties. Typically these carbon nanomaterials have been dispersed in polymeric matrices at low concentrations to improve the functional properties of nanocomposites employed as two-dimensional (2D) substrates or three-dimensional (3D) porous scaffolds for tissue engineering applications. There has been a growing interest in the assembly of these nanomaterials into 2D and 3D architectures without the use of polymeric matrices, surfactants or binders. In this article, we review recent advances in the development of 2D or 3D all-carbon assemblies using carbon nanotubes or graphene as nanoscale building-block biomaterials for tissue engineering and regenerative medicine applications. PMID:27126776

  20. Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model

    SciTech Connect

    Horie, Masafumi; Saito, Akira; Mikami, Yu; Ohshima, Mitsuhiro; Morishita, Yasuyuki; Nakajima, Jun; Kohyama, Tadashi; Nagase, Takahide

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We established three patient-paired sets of CAFs and NFs. Black-Right-Pointing-Pointer CAFs and NFs were analyzed using three-dimensional co-culture experiments. Black-Right-Pointing-Pointer CAFs clearly enhanced collagen gel contraction. Black-Right-Pointing-Pointer CAFs showed higher {alpha}-SMA expression than NFs. Black-Right-Pointing-Pointer CAFs were implicated in invasion and differentiation of lung cancer cells. -- Abstract: Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher {alpha}-smooth muscle actin ({alpha}-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.

  1. Production of three-dimensional tissue-engineered cartilage through mutual fusion of chondrocyte pellets.

    PubMed

    Hoshi, K; Fujihara, Y; Mori, Y; Asawa, Y; Kanazawa, S; Nishizawa, S; Misawa, M; Numano, T; Inoue, H; Sakamoto, T; Watanabe, M; Komura, M; Takato, T

    2016-09-01

    In this study, the mutual fusion of chondrocyte pellets was promoted in order to produce large-sized tissue-engineered cartilage with a three-dimensional (3D) shape. Five pellets of human auricular chondrocytes were first prepared, which were then incubated in an agarose mold. After 3 weeks of culture in matrix production-promoting medium under 5.78g/cm(2) compression, the tissue-engineered cartilage showed a sufficient mechanical strength. To confirm the usefulness of these methods, a transplantation experiment was performed using beagles. Tissue-engineered cartilage prepared with 50 pellets of beagle chondrocytes was transplanted subcutaneously into the cell-donor dog for 2 months. The tissue-engineered cartilage of the beagles maintained a rod-like shape, even after harvest. Histology showed fair cartilage regeneration. Furthermore, 20 pellets were made and placed on a beta-tricalcium phosphate prism, and this was then incubated within the agarose mold for 3 weeks. The construct was transplanted into a bone/cartilage defect in the cell-donor beagle. After 2 months, bone and cartilage regeneration was identified on micro-computed tomography and magnetic resonance imaging. This approach involving the fusion of small pellets into a large structure enabled the production of 3D tissue-engineered cartilage that was close to physiological cartilage tissue in property, without conventional polyper scaffolds. PMID:27173826

  2. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1993-01-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.

  3. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-II

    SciTech Connect

    Reitz, R.D.; Rutland, C.J.

    1993-09-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: Wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo`vich NO{sub x}, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described in this report. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and computations have been made of intake flow in the ports and combustion chamber of a two-intake-valve engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons have been made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results have been obtained showing the effect of injection rate and split injections on engine performance and emissions.

  4. Online monitoring of mechanical properties of three-dimensional tissue engineered constructs for quality assessment

    NASA Astrophysics Data System (ADS)

    Reinwald, Yvonne; Bagnaninchi, Pierre O.; Yang, Ying; Baba Ismail, Yanny M.; El Haj, Alicia J.

    2016-03-01

    Mechanical preconditioning and mechanical properties of tissue engineered constructs are essential for their capability to regenerate damaged tissues. To online monitor the mechanical properties a hydrostatic pressure bioreactor was coupled with optical coherence tomography into a new image modality termed hydrostatic pressure optical coherence elastography (HP-OCE). HP-OCE was utilised to assess the properties of three-dimensional (3D) tissue constructs while being physically stimulated within the hydrostatic force bioreactor. Hydrogels have been infiltrated into porous rapid prototyped or salt-leached scaffolds to mimic heterogeneous mechanical properties of cell-seeded constructs. Variations of mechanical properties in the solid scaffolds and agarose gels with different gel concentrations as well as the presences of cells have been clearly delineated by HP-OCE. Results indicate that HP-OCE allows contactless real-time non-invasive monitoring of the mechanical properties of tissue constructs and the effect of physical stimulation on cellular activities.

  5. A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields

    PubMed Central

    Hronik-Tupaj, Marie

    2012-01-01

    The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed. PMID:22046979

  6. A three-dimensional turbine engine analysis compressor code (TEACC) for steady-state inlet distortion

    SciTech Connect

    Hale, A.; O`Brien, W.

    1998-07-01

    The direct approach of modeling the flow between all blade passages for each blade row in the compressor is too computationally intensive for practical design and analysis investigations with inlet distortion. Therefore a new simulation tool called the Turbine Engine Analysis Compressor Code (TEACC) has been developed. TEACC solves the compressible, time-dependent, three-dimensional Euler equations modified to include turbomachinery source terms, which represent the effect of the blades. The source terms are calculated for each blade row by the application of a streamline curvature code. TEACC was validated against experimental data from the transonic NASA rotor, Rotor 1B, for a clean inlet and for an inlet distortion produced by a 90-deg, one-per-revolution distortion screen. TEACC revealed that strong swirl produced by the rotor caused the compressor to increase in loading in the direction of rotor rotation through the distorted region and decrease in loading circumferentially away from the distorted region.

  7. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  8. Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs

    PubMed Central

    Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun

    2012-01-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794

  9. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation

    PubMed Central

    Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr

    2015-01-01

    Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling. PMID:26858826

  10. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  11. Estimating Cell Concentration in Three-Dimensional Engineered Tissues using High Frequency Quantitative Ultrasound

    PubMed Central

    Mercado, Karla P.; Helguera, Marίa; Hocking, Denise C.; Dalecki, Diane

    2015-01-01

    Histology and biochemical assays are standard techniques for estimating cell concentration in engineered tissues. However, these techniques are destructive and cannot be used for longitudinal monitoring of engineered tissues during fabrication processes. The goal of this study was to develop high-frequency quantitative ultrasound techniques to nondestructively estimate cell concentration in three-dimensional (3-D) engineered tissue constructs. High-frequency ultrasound backscatter measurements were obtained from cell-embedded, 3-D agarose hydrogels. Two broadband single-element transducers (center frequencies of 30 and 38 MHz) were employed over the frequency range of 13 to 47 MHz. Agarose gels with cell concentrations ranging from 1×104 to 1×106 cells mL−1 were investigated. The integrated backscatter coefficient (IBC), a quantitative ultrasound spectral parameter, was calculated and used to estimate cell concentration. Accuracy and precision of this technique were analyzed by calculating the percent error and coefficient of variation of cell concentration estimates. The IBC increased linearly with increasing cell concentration. Axial and lateral dimensions of regions of interest that resulted in errors of less than 20% were determined. Images of cell concentration estimates were employed to visualize quantitatively regional differences in cell concentrations. This ultrasound technique provides the capability to rapidly quantify cell concentration within 3-D tissue constructs noninvasively and nondestructively. PMID:24627179

  12. A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair.

    PubMed

    Ainola, Mari; Tomaszewski, Waclaw; Ostrowska, Barbara; Wesolowska, Ewa; Wagner, H Daniel; Swieszkowski, Wojciech; Sillat, Tarvo; Peltola, Emilia; Konttinen, Yrjö T

    2016-01-01

    The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration. PMID:26341661

  13. Open-Source Three-Dimensional Printing of Biodegradable Polymer Scaffolds for Tissue Engineering

    PubMed Central

    Trachtenberg, Jordan E.; Mountziaris, Paschalia M.; Miller, Jordan S.; Wettergreen, Matthew; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    The fabrication of scaffolds for tissue engineering requires elements of customization depending on the application and is often limited due to the flexibility of the processing technique. This investigation seeks to address this obstacle by utilizing an open-source three-dimensional printing (3DP) system that allows vast customizability and facilitates reproduction of experiments. The effects of processing parameters on printed poly(ε-caprolactone) scaffolds with uniform and gradient pore architectures have been characterized with respect to fiber and pore morphology and mechanical properties. The results demonstrate the ability to tailor the fiber diameter, pore size, and porosity through modification of pressure, printing speed, and programmed fiber spacing. A model was also used to predict the compressive mechanical properties of uniform and gradient scaffolds, and it was found that modulus and yield strength declined with increasing porosity. The use of open-source 3DP technologies for printing tissue engineering scaffolds provides a flexible system that can be readily modified at a low cost and is supported by community documentation. In this manner, the 3DP system is more accessible to the scientific community, which further facilitates the translation of these technologies toward successful tissue engineering strategies. PMID:25493313

  14. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering

    PubMed Central

    Lee, Ju-Yeon; Choi, Bogyu; Wu, Benjamin; Lee, Min

    2013-01-01

    Three-dimensional printing (3DP) is a rapid prototyping (RP) technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient’s external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone (PCL) and chitosan (CH) for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design (CAD) models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite-coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication. PMID:24060622

  15. Three-dimensional pattern formation of magnetically labeled microgel beads for biological tissue engineering

    NASA Astrophysics Data System (ADS)

    Kawamoto, H.; Inoue, H.; Nakamura, M.

    2009-03-01

    We commenced basic research on the three-dimensional (3D) pattern formation of microgel beads for applications in biological tissue engineering. In this new technique, microgel beads are premagnetized by doping them with magnetic nanoparticles. Living cells will be included in the beads for actual use. If a nonuniform magnetic field is applied to a solution containing these magnetized beads, the beads will align, contact, and form a 3D structure. The structure is controlled by the seed pattern of the magnetic particles plugged in a substrate and the profile of the magnetic field distribution. We constructed tubes, which imitate blood vessels, for demonstration using gel beads whose diameters are of the order of several tens of micrometers. The diameter of the demonstrated tube was less than 0.5 mm and its length was 6.6 mm, although living cells were not included in the beads. Numerical calculations by using the discrete element method were conducted to confirm the formation of the tube and to predict the effect of centrifugal force, which will be applied to fill cells in the space between magnetically patterned beads. Although this unique technology is in the nascent stage, this 3D pattern formation technique by the control of the magnetic field has potential to be one of the effective engineering technologies for manufacturing 3D patterned biological tissues in the future.

  16. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size

    PubMed Central

    Loh, Qiu Li

    2013-01-01

    Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues or organs. These scaffolds serve to mimic the actual in vivo microenvironment where cells interact and behave according to the mechanical cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are vital in determining cellular response and fate. These 3D scaffolds are generally highly porous with interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. This review focuses on the various fabrication techniques (e.g., conventional and rapid prototyping methods) that have been employed to fabricate 3D scaffolds of different pore sizes and porosity. The different pore size and porosity measurement methods will also be discussed. Scaffolds with graded porosity have also been studied for their ability to better represent the actual in vivo situation where cells are exposed to layers of different tissues with varying properties. In addition, the ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffolds will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix. Overall, the limitations of current scaffold fabrication approaches for tissue engineering applications and some novel and promising alternatives will be highlighted. PMID:23672709

  17. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering.

    PubMed

    Xu, Helan; Cai, Shaobo; Xu, Lan; Yang, Yiqi

    2014-07-22

    Intrinsically water-stable scaffolds composed of ultrafine keratin fibers oriented randomly and evenly in three dimensions were electrospun for cartilage tissue engineering. Keratin has been recognized as a biomaterial that could substantially support the growth and development of multiple cell lines. Besides, three-dimensional (3D) ultrafine fibrous structures were preferred in tissue engineering due to their structural similarity to native extracellular matrices in soft tissues. Recently, we have developed a nontraditional approach to developing 3D fibrous scaffolds from alcohol-soluble corn protein, zein, and verified their structural advantages in tissue engineering. However, keratin with highly cross-linked molecular structures could not be readily dissolved in common solvents for fiber spinning, which required the remarkable drawability of solution. So far, 3D fibrous scaffolds from pure keratin for biomedical applications have not been reported. In this research, the highly cross-linked keratin from chicken feathers was de-cross-linked and disentangled into linear and aligned molecules with preserved molecular weights, forming highly stretchable spinning dope. The solution was readily electrospun into scaffolds with ultrafine keratin fibers oriented randomly in three dimensions. Due to the highly cross-linked molecular structures, keratin scaffolds showed intrinsic water stability. Adipose-derived mesenchymal stem cells could penetrate much deeper, proliferate, and chondrogenically differentiate remarkably better on the 3D keratin scaffolds than on 2D PLA fibrous scaffolds, 3D soy protein fibrous scaffolds, or 3D commercial nonfibrous scaffolds. In summary, the electrospun 3D ultrafine fibrous scaffolds from keratin could be promising candidates for cartilage tissue engineering. PMID:25010870

  18. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography.

    PubMed

    Papantoniou, Ioannis; Sonnaert, Maarten; Geris, Liesbet; Luyten, Frank P; Schrooten, Jan; Kerckhofs, Greet

    2014-03-01

    To successfully implement tissue-engineered (TE) constructs as part of a clinical therapy, it is necessary to develop quality control tools that will ensure accurate and consistent TE construct release specifications. Hence, advanced methods to monitor TE construct properties need to be further developed. In this study, we showed proof of concept for contrast-enhanced nanofocus computed tomography (CE-nano-CT) as a whole-construct imaging technique with a noninvasive potential that enables three-dimensional (3D) visualization and quantification of in vitro engineered extracellular matrix (ECM) in TE constructs. In particular, we performed a 3D qualitative and quantitative structural and spatial assessment of the in vitro engineered ECM, formed during static and perfusion bioreactor cell culture in 3D TE scaffolds, using two contrast agents, namely, Hexabrix® and phosphotungstic acid (PTA). To evaluate the potential of CE-nano-CT, a comparison was made to standardly used techniques such as Live/Dead viability/cytotoxicity, Picrosirius Red staining, and to net dry weight measurements of the TE constructs. When using Hexabrix as the contrast agent, the ECM volume fitted linearly with the net dry ECM weight independent from the flow rate used, thus suggesting that it stains most of the ECM. When using PTA as the contrast agent, comparing to net weight measurements showed that PTA only stains a part of the ECM. This was attributed to the binding specificity of this contrast agent. In addition, the PTA-stained CE-nano-CT data showed pronounced distinction between flow conditions when compared to Hexabrix, indicating culture-specific structural ECM differences. This novel type of information can contribute to optimize bioreactor culture conditions and potentially critical quality characteristics of TE constructs such as ECM quantity and homogeneity, facilitating the gradual transformation of TE constructs in well-characterized TE products. PMID:23800097

  19. Three-Dimensional Characterization of Tissue-Engineered Constructs by Contrast-Enhanced Nanofocus Computed Tomography

    PubMed Central

    Papantoniou, Ioannis; Sonnaert, Maarten; Geris, Liesbet; Luyten, Frank P.; Kerckhofs, Greet

    2014-01-01

    To successfully implement tissue-engineered (TE) constructs as part of a clinical therapy, it is necessary to develop quality control tools that will ensure accurate and consistent TE construct release specifications. Hence, advanced methods to monitor TE construct properties need to be further developed. In this study, we showed proof of concept for contrast-enhanced nanofocus computed tomography (CE-nano-CT) as a whole-construct imaging technique with a noninvasive potential that enables three-dimensional (3D) visualization and quantification of in vitro engineered extracellular matrix (ECM) in TE constructs. In particular, we performed a 3D qualitative and quantitative structural and spatial assessment of the in vitro engineered ECM, formed during static and perfusion bioreactor cell culture in 3D TE scaffolds, using two contrast agents, namely, Hexabrix® and phosphotungstic acid (PTA). To evaluate the potential of CE-nano-CT, a comparison was made to standardly used techniques such as Live/Dead viability/cytotoxicity, Picrosirius Red staining, and to net dry weight measurements of the TE constructs. When using Hexabrix as the contrast agent, the ECM volume fitted linearly with the net dry ECM weight independent from the flow rate used, thus suggesting that it stains most of the ECM. When using PTA as the contrast agent, comparing to net weight measurements showed that PTA only stains a part of the ECM. This was attributed to the binding specificity of this contrast agent. In addition, the PTA-stained CE-nano-CT data showed pronounced distinction between flow conditions when compared to Hexabrix, indicating culture-specific structural ECM differences. This novel type of information can contribute to optimize bioreactor culture conditions and potentially critical quality characteristics of TE constructs such as ECM quantity and homogeneity, facilitating the gradual transformation of TE constructs in well-characterized TE products. PMID:23800097

  20. Particle path tracking method in two- and three-dimensional continuously rotating detonation engines

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Wu, Dan; Liu, Yan; Wang, Jian-Ping

    2014-12-01

    The particle path tracking method is proposed and used in two-dimensional (2D) and three-dimensional (3D) numerical simulations of continuously rotating detonation engines (CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F—J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F—J cycle, and much smaller than ZND cycle.

  1. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.

    PubMed

    Obregon, F; Vaquette, C; Ivanovski, S; Hutmacher, D W; Bertassoni, L E

    2015-09-01

    Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of these key challenges. It enables precise manufacture of various biomaterials with complex 3D architectures, while being compatible with multiple cell sources and being customizable to patient-specific needs. This review describes different 3D bioprinting methods and summarizes how different classes of biomaterials (polymer hydrogels, ceramics, composites, and cell aggregates) may be used for 3D biomanufacturing of scaffolds, as well as craniofacial tissue analogs. While the fabrication of scaffolds upon which cells attach, migrate, and proliferate is already in use, printing of all the components that form a tissue (living cells and matrix materials together) to produce tissue constructs is still in its early stages. In summary, this review seeks to highlight some of the key advantages of 3D bioprinting technology for the regeneration of craniofacial structures. Additionally, it stimulates progress on the development of strategies that will promote the translation of craniofacial tissue engineering from the laboratory bench to the chair side. PMID:26124216

  2. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    PubMed

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation. PMID:25669871

  3. Mediastinal irradiation in a patient affected by lung carcinoma after heart transplantation: Helical tomotherapy versus three dimensional conformal radiotherapy.

    PubMed

    Giugliano, Francesca M; Iorio, Vincenzo; Cammarota, Fabrizio; Toledo, Diego; Senese, Rossana; Francomacaro, Ferdinando; Muto, Matteo; Muto, Paolo

    2016-04-26

    Patients who have undergone solid organ transplants are known to have an increased risk of neoplasia compared with the general population. We report our experience using mediastinal irradiation with helical tomotherapy versus three-dimensional conformal radiation therapy to treat a patient with lung carcinoma 15 years after heart transplantation. Our dosimetric evaluation showed no particular difference between the techniques, with the exception of some organs. Mediastinal irradiation after heart transplantation is feasible and should be considered after evaluation of the risk. Conformal radiotherapy or intensity-modulated radiotherapy appears to be the appropriate treatment in heart-transplanted oncologic patients. PMID:27148425

  4. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  5. Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds.

    PubMed

    Li, Y; Ma, T; Yang, S T; Kniss, D A

    2001-03-01

    Nonwoven fibrous matrices have been widely used as scaffolds in tissue engineering, and modification of microstructure of these matrices is needed to organize cells in three-dimensional space with spatially balanced proliferation and differentiation required for functional tissue development. The method of thermal compression of nonwoven polyethylene terephthalate (PET) fabrics was developed and key parameters of temperature, pressure, and compression duration were evaluated in this study. The permanent deformation was obtained at elevated temperature under pressure and the viscoelastic compressional behaviors were observed, characterized by a distinct apparent modulus change in glass transition temperature region. A liquid extrusion method was further employed to analyze both pore size and its distribution for matrices with porosity ranging from 84 to 93%. It is also found that a more uniformly distributed pore size was resulted from thermal compression and the isotropic nature of nonwoven fabrics was preserved because of the proportional reduction of the pore by compression. The thermally compressed fabric matrices with two different pore sizes (15 and 20 microm in pore radius) were used to culture human trophoblast ED27 and NIH 3T3 cells. It was found that cells cultured in the different pore-size PET matrices had different cell spatial organization and proliferation rates. The smaller pores in the matrix allowed cells to spread better and proliferate faster, while cells in the larger pores tended to form large aggregates and had lower proliferation rate. The thermal compression technique also can be applied to other synthetic fibrous matrices including biodegradable polymers used in tissue engineering to modify the microstructure according to their viscoelastic properties. PMID:11219726

  6. A three-dimensional incompressible flow simulation method and its application to the Space Shuttle main engine. II Turbulent flow

    NASA Technical Reports Server (NTRS)

    Chang, J. L. C.; Rosen, R.; Dao, S. C.; Kwak, D.

    1985-01-01

    An implicit finite difference code cast in general curvilinear coordinates is further developed for three-dimensional incompressible turbulent flows. The code is based on the method of pseudocompressibility and utilizes the Beam and Warming implicit approximate factorization algorithm to achieve computational efficiency. A multiple-zone method is further extended to include composite-grids to overcome the excessive computer memory required for solving turbulent flows in complex three-dimensional geometries. A simple turbulence model is proposed for internal flows. The code is being used for the Space Shuttle Main Engine (SSME) internal flow analyses.

  7. Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth.

    PubMed

    Lampe, Kyle J; Antaris, Alexander L; Heilshorn, Sarah C

    2013-03-01

    The design of bioactive materials allows tailored studies probing cell-biomaterial interactions, however, relatively few studies have examined the effects of ligand density and material stiffness on neurite growth in three-dimensions. Elastin-like proteins (ELPs) have been designed with modular bioactive and structural regions to enable the systematic characterization of design parameters within three-dimensional (3-D) materials. To promote neurite out-growth and better understand the effects of common biomaterial design parameters on neuronal cultures we here focused on the cell-adhesive ligand density and hydrogel stiffness as design variables for ELP hydrogels. With the inherent design freedom of engineered proteins these 3-D ELP hydrogels enabled decoupled investigations into the effects of biomechanics and biochemistry on neurite out-growth from dorsal root ganglia. Increasing the cell-adhesive RGD ligand density from 0 to 1.9×10(7)ligands μm(-3) led to a significant increase in the rate, length, and density of neurite out-growth, as quantified by a high throughput algorithm developed for dense neurite analysis. An approximately two-fold improvement in total neurite out-growth was observed in materials with the higher ligand density at all time points up to 7 days. ELP hydrogels with initial elastic moduli of 0.5, 1.5, or 2.1kPa and identical RGD ligand densities revealed that the most compliant materials led to the greatest out-growth, with some neurites extending over 1800μm by day 7. Given the ability of ELP hydrogels to efficiently promote neurite out-growth within defined and tunable 3-D microenvironments these materials may be useful in developing therapeutic nerve guides and the further study of basic neuron-biomaterial interactions. PMID:23128159

  8. Three-dimensional functional imaging of lung parenchyma using optical coherence tomography combined with confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Knels, Lilla; Meissner, Sven; Koch, Edmund

    2011-03-01

    Optical coherence tomography (OCT), as a non-invasive technique for studying tissue morphology, is widely used in in vivo studies, requiring high resolution and fast three-dimensional imaging. Based on light scattering it reveals micrometer sized substructures of the samples due to changes in their optical properties and therefore allows quantification of the specimen's geometry. Utilizing fluorescence microscopy further information can be obtained from molecular compositions embedded in the investigated object. Fluorescent markers, specifically binding to the substance of interest, reveal the sample's chemical structure and give rise to functional studies. This research presents the application of a combined OCT and laser scanning confocal microscopy (LSCM) system to investigate structural details in lung tissue. OCT reveals the three-dimensional morphology of the alveoli whereas fluorescence detection, arising from the fluorophore Sulforhodamin B (SRB) which is binding to elastin, shows the elastic meshwork of the organs extracellular matrix. Different plains of fluorescence can be obtained by using a piezo driven objective and exploiting the confocal functionality of the setup. Both techniques combined in one optical system not only ease the experimental procedure but also contribute to a thorough description of tissue's morphology and chemical composition.

  9. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI.

    PubMed

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Rasche, Volker; Stiller, Detlef

    2015-11-01

    Emphysema is a life-threatening pathology that causes irreversible destruction of alveolar walls. In vivo imaging techniques play a fundamental role in the early non-invasive pre-clinical and clinical detection and longitudinal follow-up of this pathology. In the present study, we aimed to evaluate the feasibility of using high resolution radial three-dimensional (3D) zero echo time (ZTE) and 3D ultra-short echo time (UTE) MRI to accurately detect lung pathomorphological changes in a rodent model of emphysema.Porcine pancreas elastase (PPE) was intratracheally administered to the rats to produce the emphysematous changes. 3D ZTE MRI, low and high definition 3D UTE MRI and micro-computed tomography images were acquired 4 weeks after the PPE challenge. Signal-to-noise ratios (SNRs) were measured in PPE-treated and control rats. T2* values were computed from low definition 3D UTE MRI. Histomorphometric measurements were made after euthanizing the animals. Both ZTE and UTE MR images showed a significant decrease in the SNR measured in PPE-treated lungs compared with controls, due to the pathomorphological changes taking place in the challenged lungs. A significant decrease in T2* values in PPE-challenged animals compared with controls was measured using UTE MRI. Histomorphometric measurements showed a significant increase in the mean linear intercept in PPE-treated lungs. UTE yielded significantly higher SNR compared with ZTE (14% and 30% higher in PPE-treated and non-PPE-treated lungs, respectively).This study showed that optimized 3D radial UTE and ZTE MRI can provide lung images of excellent quality, with high isotropic spatial resolution (400 µm) and SNR in parenchymal tissue (>25) and negligible motion artifacts in freely breathing animals. These techniques were shown to be useful non-invasive instruments to accurately and reliably detect the pathomorphological alterations taking place in emphysematous lungs, without incurring the risks of cumulative radiation

  10. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy.

    PubMed

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D; Shrivastava, Shyam K; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  11. Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering

    NASA Astrophysics Data System (ADS)

    Tretiakov, O. A.; Abanov, Ar.; Murakami, Shuichi; Sinova, Jairo

    2010-08-01

    We study the thermoelectric properties of three-dimensional topological Anderson insulators with line dislocations. We show that at high densities of dislocations the thermoelectric figure of merit ZT can be dominated by one-dimensional topologically protected conducting states channeled through the lattice screw dislocations in the topological insulator materials with a nonzero time-reversal-invariant momentum such as Bi0.9Sb0.1. When the chemical potential does not exceed much the mobility edge the ZT at room temperatures can reach large values, much higher than unity for reasonable parameters, hence making this system a strong candidate for applications in heat management of nanodevices.

  12. Comparisons of computed and measured three-dimensional velocity fields in a motored two-stroke engine

    SciTech Connect

    Amsden, A.A.; O'Rourke, P.J.; Butler, T.D. ); Meintjes, K.; Fansler, T.D. )

    1991-01-01

    Computer simulations are compared with measurements of the three-dimensional, unsteady scavenging flows of a motored two-stroke engine. Laser Doppler velocimetry measurements were made on a modified Suzuki DT-85 ported engine. Calculations were performed using KIVA-3, a computer program that efficiently solves the intake and exhaust port flows along with those in the cylinder. Measured and computed cylinder pressures and velocities are compared. Pressures agree well over the cycle as do the velocities at the intake ports. In-cylinder velocities differ in detail, but the tumbling motion in the cylinder is well replicated in vertical plane passing through the cylinder axis. 20 refs., 7 figs., 3 tabs.

  13. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  14. Postoperative Radiotherapy for Lung Cancer: Improvement in Locoregional Control Using Three-Dimensional Compared With Two-Dimensional Technique

    SciTech Connect

    Masson-Cote, Laurence; Couture, Christian; Fortin, Andre; Dagnault, Anne

    2011-07-01

    Purpose: To determine whether lung cancer patients treated with three-dimensional (3D) postoperative radiotherapy (PORT) have more favorable outcomes than those treated with two-dimensional (2D) PORT. Patients and Methods: We retrospectively analyzed the charts of 153 lung cancer patients who underwent PORT with curative intent at our center between 1995 and 2007. The patients were grouped according to the RT technique; 66 patients were in the 2D group and 87 in the 3D group. The outcomes included locoregional control, survival, and secondary effects. All patients were treated using a linear accelerator at a total dose of approximately 50 Gy and 2 Gy/fraction. A few patients (21%) also received chemotherapy. Most tumors were in the advanced stage, either Stage II (30%) or Stage III (65%). The main clinical indications for PORT were positive resection margins (23%) and Stage pN2 (52%) and pN1 (22%). The patient characteristics were comparable in both groups. Results: Kaplan-Meier analysis showed that the 3D technique significantly improved the locoregional control rate at 5 years compared with the 2D technique (81% vs. 56%, p = .007 [Cox]). The 2D technique was associated with a more than twofold increased risk of locoregional recurrence (hazard ratio, 2.7; 95% confidence interval, 1.3-5.5; p = .006). The overall survival rate did not differ at 5 years (38% vs. 20%, p = .3 [Cox]). The toxicities were also similar and acceptable in both groups. Conclusion: The 3D technique for conformal PORT for lung cancer improved the locoregional control rates of patients compared with the 2D technique.

  15. Benefit of three-dimensional image-guided stereotactic localization in the hypofractionated treatment of lung cancer

    SciTech Connect

    Wang Lu . E-mail: lu.wang@fccc.edu; Feigenberg, Steve; Chen Lili; Pasklev, Kamen M.S.; Ma, Charlie C.-M.

    2006-11-01

    Purpose: The aim of this study was to investigate the benefit of image-guided stereotactic localization in the hypofractionated treatment for medically inoperable non-small-cell lung cancer. Methods and Materials: A stereotactic body localizer (SBL) system was used for patient immobilization, reliable image registration among multiphase computed tomography (CT) scanning, and image-guided stereotactic localization. Three sets of CT scans were taken (free breathing, and breath holding at the end-tidal inspiration and expiration, respectively) to contrast target motion. Target delineation was performed on all 3 sets of images and the combination of the targets forms an internal target volume (ITV). In this retrospective study of treatment dose verification, we performed image fusion between the simulation CT scan and each pretreatment CT scan to obtain the same target and critical structure information. The same treatment plans were reloaded onto each pretreatment CT scan with their respective stereotactic coordinate system. The changes in dose distributions were assessed by dose-volume histograms of the planning target volume (PTV) and the critical structures before and after isocenter corrections which were prompted by image-guided stereotactic localization. We compared D{sub 95}, D{sub 99}, and V{sub 95} for the PTV and internal target volume, and V{sub 2} and V{sub 3} for the ipsilateral lung. Results: Our retrospective study for 10 patients with 40 dose reconstructions showed that the average D{sub 95}, D{sub 99}, and V{sub 95} of the PTVs are 92.1%, 88.1%, and 95.8% of the planned values before isocenter corrections. With the corrections, all of these values are improved to 100% of the planned values. Conclusions: Three-dimensional image guidance is crucial for stereotactic radiotherapy of lung tumors.

  16. Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Abanov, Artem; Murakami, Shuichi; Sinova, Jairo

    2011-03-01

    We study the thermoelectric properties of three-dimensional topological Anderson insulators with line dislocations. We show that at high densities of dislocations the thermoelectric figure of merit ZT can be dominated by one-dimensional topologically protected conducting states channeled through the lattice screw dislocations in the topological insulator materials with a nonzero time-reversal-invariant momentum such as Bi 0.9 Sb 0.1 . When the chemical potential does not exceed much the mobility edge the ZT at room temperatures can reach large values, much higher than unity for reasonable parameters, hence making this system a strong candidate for applications in heat management of nanodevices. This work was supported by NSF under Grant Nos. DMR-0547875 and 0757992, by the Research Corporation Cottrell Scholar Award, and by the Welch Foundation (A-1678).

  17. Exploratory study of transient upstart phenomena in a three-dimensional fixed-geometry scramjet engine

    NASA Technical Reports Server (NTRS)

    Wieting, A. R.

    1976-01-01

    The structural and thermal design of a hydrogen fueled regeneratively cooled three dimensional fixed geometry scramjet was examined. An exploratory study was conducted at Mach 5.3 in the 7-inch Mach 7 pilot tunnel to investigate the unstart phenomena and to provide the experimental data base required to predict the design pressure loads. The test results indicate that the peak pressures occurred during the transient unstart and not during steady state started or unstarted flow conditions. The local peak pressures can be conservatively predicted by normal shock wave theory as the peak approaches the pressure that would exist behind a stationary normal shock with an upstream Mach number equal to the area weighted local Mach number for the normal started condition.

  18. Three-dimensional transient numerical simulation for intake process in the engine intake port-valve-cylinder system.

    PubMed

    Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao

    2003-01-01

    This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system. PMID:12765285

  19. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment.

    PubMed

    Hockemeyer, K; Janetopoulos, C; Terekhov, A; Hofmeister, W; Vilgelm, A; Costa, Lino; Wikswo, J P; Richmond, A

    2014-07-01

    Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the "single file" pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12. PMID:25379090

  20. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment

    PubMed Central

    Hockemeyer, K.; Janetopoulos, C.; Terekhov, A.; Hofmeister, W.; Vilgelm, A.; Costa, Lino; Wikswo, J. P.; Richmond, A.

    2014-01-01

    Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the “single file” pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12. PMID:25379090

  1. Dispersion engineering of metasurfaces for dual-frequency quasi-three-dimensional cloaking of microwave radiators.

    PubMed

    Jiang, Zhi Hao; Werner, Douglas H

    2016-05-01

    In this work, the design methodology and experimental investigation of compact and lightweight dispersive coatings, comprised by multiple layers of anisotropic metasurfaces, which are capable of cloaking radiators at multiple frequencies are presented. To determine the required surface electromagnetic properties for each layer, an analytical model is developed for predicting the scattering from a cylinder surrounded by multiple layers of anisotropic metasurfaces subject to plane-wave illumination at a general oblique incidence angle. Particularly, two different metasurface coating solutions with different dispersive properties are designed to provide more than 10 dB scattering width suppression at two pre-selected frequencies within a field-of-view (FOV) of ± 20° off normal incidence. Both coating designs implemented using metasurfaces are fabricated and measured, experimentally demonstrating the simultaneous suppression of mutual coupling and quasi-three-dimensional radiation blockage at the two pre-selected frequency ranges. At the same time, the functionality of the coated monopole is still well-maintained. The performance comparison further sheds light on how the optimal performance can be obtained by properly exploiting the dispersion of each metasurface layer of the coating. In addition, the cloaking effect is retained even when the distance between the radiators is significantly reduced. The concept and general design methodology presented here can be extended for applications that would benefit from cloaking multi-spectral terahertz as well as optical antennas. PMID:27137576

  2. Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kim, Jong Young; Park, Eui Kyun; Kim, Shin-Yoon; Shin, Jung-Woog; Cho, Dong-Woo

    2008-05-01

    Recent developments in tissue-engineering techniques allow physicians to treat a range of previously untreatable conditions. In the development of such techniques, scaffolds with a controllable pore size and porosity have been manufactured using solid free-form fabrication methods to investigate cell interaction effects such as cell proliferation and differentiation. In this study, we describe the fabrication of scaffolds from two types of biodegradable materials using a precision deposition system that we developed. The precision deposition system uses technology that enables the manufacture of three-dimensional (3D) microstructures. The fabrication of 3D tissue-engineering scaffolds using the precision deposition system required the combination of several technologies, including motion control, thermal control, pneumatic control and CAD/CAM software. Through the fabrication and cell interaction analysis of two kinds of scaffolds using polycaprolactone and poly-lactic-co-glycolic acid, feasibility of application to the tissue engineering of the developed SFF-based precision deposition system is demonstrated.

  3. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  4. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. PMID:25766036

  5. Chemical functionalization of surfaces for building three-dimensional engineered biosensors

    NASA Astrophysics Data System (ADS)

    Marques, Marco E.; Mansur, Alexandra A. P.; Mansur, Herman S.

    2013-06-01

    This study presents a new approach for developing biosensors based on enzymatic systems with designed three-dimensional structures. Silica glass slides were chemically functionalized at surfaces by reacting with organosilanes, 3-mercaptopropyltriethoxysilane (MPTES), and 3-aminopropyltriethoxysilane (APTES), using sol-gel process at room temperature. The functionalization of the supports was characterized by contact angle measurements and FTIR spectroscopy. The first enzyme layer was covalently immobilized to the support by a bi-functional linker (glutaraldehyde). The second enzyme layer was deposited using the protein conjugation method based on the high affinity "avidin-biotin" interactions. Each enzyme was biotinylated before being added to the nanostructured system and avidin was used as the binder between consecutive enzyme layers. The biochemical response was assayed at all stages to certify that the enzymatic bioactivity was retained throughout the entire layer-by-layer (LBL) process. The model of building 3D-enzymatic systems was evaluated using the enzymatic structure with glucose oxidase (GOx) and horseradish peroxidase (HRP). It was verified that the amino-modified support presented the highest bioactivity response compared to the other chemical functionalities. Moreover, the bienzyme nanostructure demonstrated relevant biochemical activity upon injecting the glucose substrate into the system. Finally, as a proof of concept, the bienzyme systems were assayed using real samples of regular and sugar-free soft drinks where they effectively behaved as structured biosensor for glucose with the built-in 3D hybrid architecture. Based on the results, it can be foreseen the development of promising new nanomaterials for several analytical applications such as monitoring the quality of food and beverages for nutrition purposes.

  6. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds.

    PubMed

    Sabetkish, Shabnam; Kajbafzadeh, Abdol-Mohammad; Sabetkish, Nastaran; Khorramirouz, Reza; Akbarzadeh, Aram; Seyedian, Sanam Ladi; Pasalar, Parvin; Orangian, Saghar; Beigi, Reza Seyyed Hossein; Aryan, Zahra; Akbari, Hesam; Tavangar, Seyyed Mohammad

    2015-04-01

    To report the results of whole liver decellularization by two different methods. To present the results of grafting rat and sheep decellularized liver matrix (DLM) into the normal rat liver and compare natural cell seeding process in homo/xenograft of DLM. To compare the results of in vitro whole liver recellularization with rats' neonatal green fluorescent protein (GFP)-positive hepatic cells with outcomes of in vivo recellularization process. Whole liver of 8 rats and 4 sheep were resected and cannulated via the hepatic vein and perfused with sodium dodecyl sulfate (SDS) or Triton + SDS. Several examinations were performed to compare the efficacy of these two decellularization procedures. In vivo recellularization of sheep and rat DLMs was performed following transplantation of multiple pieces of both scaffolds in the subhepatic area of four rats. To compare the efficacy of different scaffolds in autologous cell seeding, biopsies of homograft and xenograft were assessed 8 weeks postoperatively. Whole DLMs of 4 rats were also recellularized in vitro by perfusion of rat's fetal GFP-positive hepatic cells with pulsatile bioreactor. Histological evaluation and enzymatic assay were performed for both in vivo and in vitro recellularized samples. The results of this study demonstrated that the triton method was a promising decellularization approach for preserving the three-dimensional structure of liver. In vitro recellularized DLMs were more similar to natural ones compared with in vivo recellularized livers. However, homografts showed better characteristics with more organized structure compared with xenografts. In vitro recellularization of liver scaffolds with autologous cells represents an attractive prospective for regeneration of liver as one of the most compound organs. In vivo cell seeding on the scaffold of the same species may have more satisfactory outcomes when compared with the results of xenotransplantation. This study theoretically may pave the road for

  7. Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei.

    PubMed Central

    Mattinen, M. L.; Kontteli, M.; Kerovuo, J.; Linder, M.; Annila, A.; Lindeberg, G.; Reinikainen, T.; Drakenberg, T.

    1997-01-01

    Three-dimensional solution structures for three engineered, synthetic CBDs (Y5A, Y31A, and Y32A) of cellobiohydrolase I (CBHI) from Trichoderma reesei were studied with nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. According to CD measurements the antiparallel beta-sheet structure of the CBD fold was preserved in all engineered peptides. The three-dimensional NMR-based structures of Y31A and Y32A revealed only small local changes due to mutations in the flat face of CBD, which is expected to bind to crystalline cellulose. Therefore, the structural roles of Y31 and Y32 are minor, but their functional importance is obvious because these mutants do not bind strongly to cellulose. In the case of Y5A, the disruption of the structural framework at the N-terminus and the complete loss of binding affinity implies that Y5 has both structural and functional significance. The number of aromatic residues and their precise spatial arrangement in the flat face of the type I CBD fold appears to be critical for specific binding. A model for the CBD binding in which the three aligned aromatic rings stack onto every other glucose ring of the cellulose polymer is discussed. PMID:9041630

  8. Functional Properties of Cell-Seeded Three-Dimensionally Woven Poly(ε-Caprolactone) Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Moutos, Franklin T.

    2010-01-01

    Articular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(ɛ-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (μeq ∼0.1–0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL–fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct. PMID:19903085

  9. Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei.

    PubMed

    Mattinen, M L; Kontteli, M; Kerovuo, J; Linder, M; Annila, A; Lindeberg, G; Reinikainen, T; Drakenberg, T

    1997-02-01

    Three-dimensional solution structures for three engineered, synthetic CBDs (Y5A, Y31A, and Y32A) of cellobiohydrolase I (CBHI) from Trichoderma reesei were studied with nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. According to CD measurements the antiparallel beta-sheet structure of the CBD fold was preserved in all engineered peptides. The three-dimensional NMR-based structures of Y31A and Y32A revealed only small local changes due to mutations in the flat face of CBD, which is expected to bind to crystalline cellulose. Therefore, the structural roles of Y31 and Y32 are minor, but their functional importance is obvious because these mutants do not bind strongly to cellulose. In the case of Y5A, the disruption of the structural framework at the N-terminus and the complete loss of binding affinity implies that Y5 has both structural and functional significance. The number of aromatic residues and their precise spatial arrangement in the flat face of the type I CBD fold appears to be critical for specific binding. A model for the CBD binding in which the three aligned aromatic rings stack onto every other glucose ring of the cellulose polymer is discussed. PMID:9041630

  10. Adipose Tissue Engineering in Three-Dimensional Levitation Tissue Culture System Based on Magnetic Nanoparticles

    PubMed Central

    Daquinag, Alexes C.; Souza, Glauco R.

    2013-01-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  11. An Evaluation of Two Internal Surrogates for Determining the Three-Dimensional Position of Peripheral Lung Tumors

    SciTech Connect

    Spoelstra, Femke Soernsen de Koste, John R. van; Vincent, Andrew; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2009-06-01

    Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed tomography (CT) scans, acquired during uncoached breathing, were identified in 23 patients with Stage I lung cancer. Repeat scans were co-registered to the initial 4D CT scan, and tumor, carina, and ipsilateral diaphragm were manually contoured in all phases of each 4D CT data set. Correlation between positions of carina and diaphragm with 3D tumor position was studied by use of log-likelihood ratio statistics. Models to predict 3D tumor position from internal surrogates at end inspiration (EI) and end expiration (EE) were developed, and model accuracy was tested by calculating SDs of differences between predicted and actual tumor positions. Results: Motion of both the carina and diaphragm significantly correlated with tumor motion, but log-likelihood ratios indicated that the carina was more predictive for tumor position. When craniocaudal tumor position was predicted by use of craniocaudal carina positions, the SDs of the differences between the predicted and observed positions were 2.2 mm and 2.4 mm at EI and EE, respectively. The corresponding SDs derived with the diaphragm positions were 3.7 mm and 3.9 mm at EI and EE, respectively. Prediction errors in the other directions were comparable. Prediction accuracy was similar at EI and EE. Conclusions: The carina is a better surrogate of 3D tumor position than diaphragm position. Because residual prediction errors were observed in this analysis, additional studies will be performed using audio-coached scans.

  12. Computational experience with a three-dimensional rotary engine combustion model

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  13. Three-Dimensional Lung Tumor Microenvironment Modulates Therapeutic Compound Responsiveness In Vitro – Implication for Drug Development

    PubMed Central

    Ekert, Jason E.; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C.

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  14. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.

    PubMed

    Ekert, Jason E; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  15. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear.

    PubMed

    Cervantes, Thomas M; Bassett, Erik K; Tseng, Alan; Kimura, Anya; Roscioli, Nick; Randolph, Mark A; Vacanti, Joseph P; Hadlock, Theresa A; Gupta, Rajiv; Pomerantseva, Irina; Sundback, Cathryn A

    2013-10-01

    Engineered cartilage is a promising option for auricular reconstruction. We have previously demonstrated that a titanium wire framework within a composite collagen ear-shaped scaffold helped to maintain the gross dimensions of the engineered ear after implantation, resisting the deformation forces encountered during neocartilage maturation and wound healing. The ear geometry was redesigned to achieve a more accurate aesthetic result when implanted subcutaneously in a nude rat model. A non-invasive method was developed to assess size and shape changes of the engineered ear in three dimensions. Computer models of the titanium framework were obtained from CT scans before and after implantation. Several parameters were measured including the overall length, width and depth, the minimum intrahelical distance and overall curvature values for each beam section within the framework. Local curvature values were measured to gain understanding of the bending forces experienced by the framework structure in situ. Length and width changed by less than 2%, whereas the depth decreased by approximately 8% and the minimum intrahelical distance changed by approximately 12%. Overall curvature changes identified regions most susceptible to deformation. Eighty-nine per cent of local curvature measurements experienced a bending moment less than 50 µN-m owing to deformation forces during implantation. These quantitative shape analysis results have identified opportunities to improve shape fidelity of engineered ear constructs. PMID:23904585

  16. Glasses-free three-dimensional endoscopic bronchoplasty, arterioplasty, and angioplasty of the superior vena cava for the radical treatment of right middle upper lung cancer

    PubMed Central

    Shao, Wenlong; Yin, Weiqiang; Wang, Wei; Zhang, Xin; Peng, Guilin; Chen, Xuewei; Mo, Lili

    2016-01-01

    The role of video-assisted thoracoscopic surgery (VATS) radical resection in the treatment of lung cancer has widely recognized. Studies have demonstrated that the thoracoscopic radical treatment of lung cancer can achieve similar long-term survival as that of conventional open surgeries; meanwhile, it can be applied for bronchial sleeve resection that is more challenging for most thoracic surgeons. Bronchial sleeve pneumonectomy can avoid total pneumonectomy when removing tumors, and therefore it can lower the surgery-associated mortality and improve the long-term survival by maximizing the preservation of lung function. Thus, it has become a standard procedure for central-type lung cancer. We have completed a glasses-free three-dimensional (3D) complete thoracoscopic surgery in a patient with central-type lung cancer in his right lung. During the surgery, we found the tumor had invaded the right pulmonary trunk, right main bronchus, and lateral wall of superior vena cava. PMID:27076959

  17. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients

    NASA Astrophysics Data System (ADS)

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G.; McGuigan, Alison P.

    2016-02-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia.

  18. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients.

    PubMed

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G; McGuigan, Alison P

    2016-02-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia. PMID:26595121

  19. Lung tissue engineering.

    PubMed

    Hoganson, David M; Bassett, Erik K; Vacanti, Joseph P

    2014-01-01

    Lung tissue engineering is an emerging field focused on the development of lung replacement devices and tissue to treat patients with end stage lung disease. Microfluidic based lung assist devices have been developed that have biomimetically designed vascular networks that achieve physiologic blood flow. Gas exchange in these devices occurs across a thin respiratory membrane. Designed for intrathoracic implantation as a bridge to transplant or destination therapy, these lung assist devices will allow ambulation and hospital discharge for patients with end stage lung disease. Decellularized lungs subsequently recellularized with epithelial and endothelial cells have been implanted in small animal models with demonstration of initial gas exchange. Further development of these tissues and scaling to large animal models will validate this approach and may be an organ source for lung transplantation. Initial clinical success has been achieved with decellularized tracheal implants using autologous stem cells. Development of microfluidic lung models using similar architecture to the lung assist device technology allows study of lung biology and diseases with manipulation of lung cells and respiratory membrane strain. PMID:24896347

  20. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage

    NASA Astrophysics Data System (ADS)

    Moutos, Franklin T.; Freed, Lisa E.; Guilak, Farshid

    2007-02-01

    Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present a microscale 3D weaving technique to generate anisotropic 3D woven structures as the basis for novel composite scaffolds that are consolidated with a chondrocyte-hydrogel mixture into cartilage tissue constructs. Composite scaffolds show mechanical properties of the same order of magnitude as values for native articular cartilage, as measured by compressive, tensile and shear testing. Moreover, our findings showed that porous composite scaffolds could be engineered with initial properties that reproduce the anisotropy, viscoelasticity and tension-compression nonlinearity of native articular cartilage. Such scaffolds uniquely combine the potential for load-bearing immediately after implantation in vivo with biological support for cell-based tissue regeneration without requiring cultivation in vitro.

  1. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering.

    PubMed

    Ovsianikov, Aleksandr; Deiwick, Andrea; Van Vlierberghe, Sandra; Dubruel, Peter; Möller, Lena; Dräger, Gerald; Chichkov, Boris

    2011-04-11

    In the present work, 3D CAD scaffolds for tissue engineering applications were developed starting from methacrylamide-modified gelatin (GelMOD) using two-photon polymerization (2PP). The scaffolds were cross-linked employing the biocompatible photoinitiator Irgacure 2959. Because gelatin is derived from collagen (i.e., the main constituent of the ECM), the developed materials mimic the cellular microenvironment from a chemical point of view. In addition, by applying the 2PP technique, structural properties of the cellular microenvironment can also be mimicked. Furthermore, in vitro degradation assays indicated that the enzymatic degradation capability of gelatin is preserved for the methacrylamide-modified derivative. An in depth morphological analysis of the 2PP-fabricated scaffolds demonstrated that the parameters of the CAD model are reproduced with great precision, including the ridge-like surface topography on the order of 1.5 μm. The developed scaffolds showed an excellent stability in culture medium. In a final part of the present work, the suitability of the developed scaffolds for tissue engineering applications was verified. The results indicated that the applied materials are suitable to support porcine mesenchymal stem cell adhesion and subsequent proliferation. Upon applying osteogenic stimulation, the seeded cells differentiated into the anticipated lineage. Energy dispersive X-ray (EDX) analysis showed the induced calcification of the scaffolds. The results clearly indicate that 2PP is capable of manufacturing precisely constructed 3D tissue engineering scaffolds using photosensitive polymers as starting material. PMID:21366287

  2. Development of three-dimensional tissue engineered bone-oral mucosal composite models.

    PubMed

    Almela, Thafar; Brook, Ian M; Moharamzadeh, Keyvan

    2016-04-01

    Tissue engineering of bone and oral mucosa have been extensively studied independently. The aim of this study was to develop and investigate a novel combination of bone and oral mucosa in a single 3D in vitro composite tissue mimicking the natural structure of alveolar bone with an overlying oral mucosa. Rat osteosarcoma (ROS) cells were seeded into a hydroxyapatite/tri-calcium phosphate scaffold and bone constructs were cultured in a spinner bioreactor for 3 months. An engineered oral mucosa was fabricated by air/liquid interface culture of immortalized OKF6/TERET-2 oral keratinocytes on collagen gel-embedded fibroblasts. EOM was incorporated into the engineered bone using a tissue adhesive and further cultured prior to qualitative and quantitative assessments. Presto Blue assay revealed that ROS cells remained vital throughout the experiment. The histological and scanning electron microscope examinations showed that the cells proliferated and densely populated the scaffold construct. Micro computed tomography (micro-CT) scanning revealed an increase in closed porosity and a decrease in open and total porosity at the end of the culture period. Histological examination of bone-oral mucosa model showed a relatively differentiated parakeratinized epithelium, evenly distributed fibroblasts in the connective tissue layer and widely spread ROS cells within the bone scaffold. The feasibility of fabricating a novel bone-oral mucosa model using cell lines is demonstrated. Generating human 'normal' cell-based models with further characterization is required to optimize the model for in vitro and in vivo applications. PMID:26883949

  3. Three-dimensional Simulations of Long Duration Gamma-ray Burst Jets: Timescales from Variable Engines

    NASA Astrophysics Data System (ADS)

    López-Cámara, D.; Lazzati, Davide; Morsony, Brian J.

    2016-08-01

    Gamma-ray burst (GRB) light curves are characterized by marked variability, each showing unique properties. The origin of this variability, at least for a fraction of long GRBs, may be the result of an unsteady central engine. It is thus important to study the effects that an episodic central engine has on the jet propagation and, eventually, on the prompt emission within the collapsar scenario. Thus, in this study we follow the interaction of pulsed outflows with their progenitor stars with hydrodynamic numerical simulations in both two and three dimensions. We show that the propagation of unsteady jets is affected by the interaction with the progenitor material well after the break-out time, especially for jets with long quiescent times comparable to or larger than a second. We also show that this interaction can lead to an asymmetric behavior in which pulse durations and quiescent periods are systematically different. After the pulsed jets drill through the progenitor and the interstellar medium, we find that, on average, the quiescent epochs last longer than the pulses (even in simulations with symmetrical active and quiescent engine times). This could explain the asymmetry detected in the light curves of long quiescent time GRBs.

  4. Three-dimensional visualization of morphology and ventilation procedure (air flow and diffusion) of a subdivision of the acinus using synchrotron radiation microtomography of the human lung specimens

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka

    2004-04-01

    We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.

  5. Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Thein-Han, W. W.; Misra, R. D. K.

    2009-09-01

    We describe the structure of biodegradable chitosan-nanohydroxyapatite (nHA) composites scaffolds and their interaction with pre-osteoblasts for bone tissue engineering. The scaffolds were fabricated via freezing and lyophilization. The nanocomposite scaffolds were characterized by a highly porous structure and pore size of ˜50-125 μm, irrespective of nHA content. The observed significant enhancement in the biological response of pre-osteoblast on nanocomposite scaffolds expressed in terms of cell attachment, proliferation, and widespread morphology in relation to pure chitosan points toward their potential use as scaffold material for bone regeneration.

  6. Urinary Bladder Smooth Muscle Engineered from Adipose Stem Cells and a Three Dimensional Synthetic Composite

    PubMed Central

    Jack, Gregory S.; Zhang, Rong; Lee, Min; Xu, Yuhan; Wu, Ben; Rodríguez, Larissa V.

    2009-01-01

    Human adipose stem cells were cultured in smooth muscle inductive media and seeded into synthetic bladder composites to tissue engineer bladder smooth muscle. 85:15 poly-lactic-glycolic acid bladder dome composites were cast using an electropulled microfiber luminal surface combined with an outer porous sponge. Cell seeded bladders expressed smooth muscle actin, myosin heavy chain, calponinin, and caldesmon via RT-PCR and immunoflourescence. Nude rats (n=45) underwent removal of half their bladder and repair using: (i) augmentation with the adipose stem cell seeded composites, (ii) augmentation with a matched acellular composite, or (iii) suture closure. Animals were followed for 12 weeks post-implantation and bladders were explanted serially. Results showed that bladder capacity and compliance were maintained in the cell seeded group throughout the 12 weeks, but deteriorated in the acellular scaffold group sequentially with time. Control animals repaired with sutures regained their baseline bladder capacities by week 12, demonstrating a long term limitation of this model. Histological analysis of explanted materials demonstrated viable adipose stem cells and increasing smooth muscle mass in the cell seeded scaffolds with time. Tissue bath stimulation demonstrated smooth muscle contraction of the seeded implants but not the acellular implants after 12 weeks in vivo. Our study demonstrates the feasibility and short term physical properties of bladder tissue engineered from adipose stem cells. PMID:19345408

  7. Three-dimensional spray distributions in a direct injection diesel engine

    SciTech Connect

    Yoshizaki, Takuo; Nishida, Keiya; Hiroyasu, Hiroyuki; Song, K.K.

    1994-09-01

    Experiments and modeling of a spray impinged onto a cavity wall of a simulated piston were performed under simulated diesel engine conditons (pressure and density) at an ambient temperature. The diesel fuel was delivered from a Bosch-type injection pump to a single-hole nozzle, the hole being drilled in the same direction as the original five-hole nozzle. The fuel was injected into a high-pressure bomb in which an engine combustion chamber, composed of a piston, a cylinder head and a cylinder liner, was installed. Distributions of the spray impinging on the simulated combustion chamber were observed from various directions while changing some of the experimental parameters, such as combustion chamber shape, nozzle projection and top-clearance. High-speed photography was used in the constant volume bomb to examine the effect of these parameters on the spray distributions. The spray distributions obtained in the simulated combustion chamber are compared to the distributions calculated by a spray model based on a multi-package, spray model 3 refs., 13 figs., 1 tab.

  8. Three-Dimensional Supermacroporous Carrageenan-Gelatin Cryogel Matrix for Tissue Engineering Applications

    PubMed Central

    Sharma, Archana; Bhat, Sumrita; Vishnoi, Tanushree; Nayak, Vijayashree; Kumar, Ashok

    2013-01-01

    A tissue-engineered polymeric scaffold should provide suitable macroporous structure similar to that of extracellular matrix which can induce cellular activities and guide tissue regeneration. Cryogelation is a technique in which appropriate monomers or polymeric precursors frozen at sub-zero temperature leads to the formation of supermacroporous cryogel matrices. In this study carrageenan-gelatin (natural polymers) cryogels were synthesized by using glutaraldehyde and 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride and N-hydroxysuccinimide (EDC-NHS) as crosslinking agent at optimum concentrations. Matrices showed large and interconnected pores which were in the range of 60–100 μm diameter. Unconfined compression analysis showed elasticity and physical integrity of all cryogels, as these matrices regained their original length after 90% compressing from the original size. Moreover Young's modulus was found to be in the range of 4–11 kPa for the dry cryogel sections. These cryogels also exhibited good in vitro degradation capacity at 37 °C within 4 weeks of incubation. Supermacroporous carrageenan-gelatin cryogels showed efficient cell adherence and proliferation of Cos-7 cells which was examined by SEM. PI nuclear stain was used to observe cell-matrix interaction. Cytotoxicity of the scaffolds was checked by MTT assay which showed that cryogels are biocompatible and act as a potential material for tissue engineering and regenerative medicine. PMID:23936806

  9. Three-Dimensional Models of Topological Insulators: Engineering of Dirac Cones and Robustness of the Spin Texture

    NASA Astrophysics Data System (ADS)

    Soriano, David; Ortmann, Frank; Roche, Stephan

    2012-12-01

    We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.

  10. Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1989-01-01

    A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.

  11. Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Jordan, Jacqueline; Fraga, Denise N.

    2007-01-01

    A process has been developed for the rapid tissue engineering of multicellular-tissue-equivalent assemblies by the controlled enzymatic degradation of polymeric beads in a low-fluid-shear bioreactor. In this process, the porous polymeric beads serve as temporary scaffolds to support the assemblies of cells in a tissuelike 3D configuration during the critical initial growth phases of attachment of anchorage-dependent cells, aggregation of the cells, and formation of a 3D extracellular matrix. Once the cells are assembled into a 3D array and enmeshed in a structural supportive 3D extracellular matrix (ECM), the polymeric scaffolds can be degraded in the low-fluid-shear environment of the NASA-designed bioreactor. The natural 3D tissuelike assembly, devoid of any artificial support structure, is maintained in the low-shear bioreactor environment by the newly formed natural cellular/ECM. The elimination of the artificial scaffold allows normal tissue structure and function.

  12. Three-dimensional numerical simulation of operation process in rotating detonation engine

    NASA Astrophysics Data System (ADS)

    Frolov, S. M.; Dubrovskii, A. V.; Ivanov, V. S.

    2013-03-01

    The aim of this work was to create an efficient tool for transient threedimensional (3D) numerical simulation of the operation process in a Rotating Detonation Engine (RDE) with the particular emphasis to the design issues of the combustion chamber and isolators, thermal management and operation control. The governing equations are unsteady Reynolds-Averaged Navier-Stokes (URANS) equations coupled with a turbulence model and with the continuity and energy equations for a multicomponent reactive mixture. The algorithm used is the combination of Finite Volume Method and Particle Method recently developed at ICP to treat simultaneously frontal and volumetric combustion. The capabilities of the new numerical tool have been demonstrated for the annular cylindrical RDE operating on homogeneous stoichiometric hydrogen-air mixture with a detonation rotation frequency of about 126,000 rpm. The calculations revealed considerable temperature and pressure pulsations at RDE inlet and outlet; however, special design adaptations were shown to allow their reduction.

  13. Bio-Pick, Place, and Perfuse: A New Instrument for Three-Dimensional Tissue Engineering

    PubMed Central

    Blakely, Andrew M.; Manning, Kali L.; Tripathi, Anubhav

    2015-01-01

    A grand challenge of tissue engineering is the fabrication of large constructs with a high density of living cells. By adapting the principles of pick-and-place machines used in the high-speed assembly of electronics, we have developed an innovative instrument, the Bio-Pick, Place, and Perfuse (Bio-P3), which picks up large complex multicellular building parts, transports them to a build area, and precisely places the parts at desired locations while perfusing the parts. These assembled parts subsequently fuse to form a larger contiguous tissue construct. Multicellular microtissues were formed by seeding cells into nonadhesive micro-molds, wherein cells self-assembled scaffold-free parts in the shape of spheroids, toroids, and honeycombs. After removal from the molds, the parts were gripped, transported (using an x, y, z controller), and released using the Bio-P3 with little to no effect on cell viability or part structure. As many as 16 toroids were stacked over a 170 μm diameter post where they fused over the course of 48 h to form a single tissue. Larger honeycomb parts were also gripped and stacked onto a build head that, like the gripper head, provided fluid suction to hold and perfuse the parts during assembly. Scaffold-free building parts help to address several of the engineering and biological challenges to large tissue biofabrication, and the Bio-P3 described in this article is a novel instrument for the controlled gripping, placing, stacking, and perfusing of living building parts for solid organ fabrication. PMID:25530515

  14. Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines

    NASA Astrophysics Data System (ADS)

    Mehdipour, R.; Baniamerian, Z.; Delauré, Y.

    2016-05-01

    An accurate knowledge of heat transfer and temperature distribution in vehicle engines is essential to have a good management of heat transfer performance in combustion engines. This may be achieved by numerical simulation of flow through the engine cooling passages; but the task becomes particularly challenging when boiling occurs. Neglecting two phase flow processes in the simulation would however result in significant inaccuracy in the predictions. In this study a three dimensional numerical model is proposed using Fluent 6.3 to simulate heat transfer of fluid flowing through channels of conventional size. Results of the present theoretical and numerical model are then compared with some empirical results. For high fluid flow velocities, departure between experimental and numerical results is about 9 %, while for lower velocity conditions, the model inaccuracy increases to 18 %. One of the outstanding capabilities of the present model, beside its ability to simulate two phase fluid flow and heat transfer in three dimensions, is the prediction of the location of bubble formation and condensation which can be a key issue in the evaluation of the engine performance and thermal stresses.

  15. Three-dimensional computer-aided human factors engineering analysis of a grafting robot.

    PubMed

    Chiu, Y C; Chen, S; Wu, G J; Lin, Y H

    2012-07-01

    The objective of this research was to conduct a human factors engineering analysis of a grafting robot design using computer-aided 3D simulation technology. A prototype tubing-type grafting robot for fruits and vegetables was the subject of a series of case studies. To facilitate the incorporation of human models into the operating environment of the grafting robot, I-DEAS graphic software was applied to establish individual models of the grafting robot in line with Jack ergonomic analysis. Six human models (95th percentile, 50th percentile, and 5th percentile by height for both males and females) were employed to simulate the operating conditions and working postures in a real operating environment. The lower back and upper limb stresses of the operators were analyzed using the lower back analysis (LBA) and rapid upper limb assessment (RULA) functions in Jack. The experimental results showed that if a leg space is introduced under the robot, the operator can sit closer to the robot, which reduces the operator's level of lower back and upper limbs stress. The proper environmental layout for Taiwanese operators for minimum levels of lower back and upper limb stress are to set the grafting operation at 23.2 cm away from the operator at a height of 85 cm and with 45 cm between the rootstock and scion units. PMID:22900432

  16. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications

    PubMed Central

    Chan, Elsa C.; Kuo, Shyh-Ming; Kong, Anne M.; Morrison, Wayne A.; Dusting, Gregory J.; Mitchell, Geraldine M.

    2016-01-01

    Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo. PMID:26900837

  17. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications.

    PubMed

    Zhang, Yi; Wang, Qiang-Song; Yan, Kuo; Qi, Yun; Wang, Gui-Fang; Cui, Yuan-Lu

    2016-08-01

    In liver tissue engineering, scaffolds with porous structure desgined to supply nutrient and oxygen exchange for three-dimensional (3-D) cells culture, and maintain liver functions. Meanwhile, genipin, as a natural crosslinker, is widely used to crosslink biomaterials in tissue engineering, with lower cytotoxicity and better biocompatibility. In present study, chitosan/gelatin 3-D scaffolds crosslinked by genipin, glutaraldehyde or 1-(3-dimethylaminopropyl)-3-ethyl-carbodimide hydrochloride (EDC) were prepared and characterized by Fourier-transform infrared (FT-IR) and scanning electron microscopy (SEM). The biocompatibility of chitosan/gelatin scaffolds corsslinked with different crosslinkers was investigated by cell viability, morphology and liver specific functions. The result showed that the 1% and 2% genipin crosslinked chitosan/gelatin scaffolds possess ideal porosity. The genipin crosslinked 3-D scaffolds possessed the best biocompatibility than that of the others, and maintained liver specific functions when HepG2 cells seeded on scaffolds. The cellular morphology of HepG2 cells seeded on scaffolds showed that cells could penetrate into the scaffolds and proliferate significantly. Therefore, genipin crosslinked chitosan/gelatin scaffolds could be a promising biomaterial used in liver tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1863-1870, 2016. PMID:27027247

  18. Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone.

    PubMed

    Zhu, Guang-Chang; Gu, Yong-Quan; Geng, Xue; Feng, Zeng-Guo; Zhang, Shu-Wen; Ye, Lin; Wang, Zhong-Gao

    2015-02-01

    Studies on three-dimensional tissue engineered graft (3DTEG) have attracted great interest among researchers as they present a means to meet the pressing clinical demand for tissue engineering scaffolds. To explore the feasibility of 3DTEG, high porosity poly-ε-caprolactone (PCL) was obtained via the co-electrospinning of polyethylene glycol and PCL, and used to construct small-diameter poly-ε-caprolactone-lysine (PCL-LYS-H) scaffolds, whereby heparin was anchored to the scaffold surface by lysine groups. A variety of small-diameter 3DTEG models were constructed with different PCL layers and the mechanical properties of the resulting constructs were evaluated in order to select the best model for 3DTEGs. Bone marrow mononuclear cells were induced and differentiated to endothelial cells (ECs) and smooth muscle cells (SMCs). A 3DTEG (labeled '10-4%') was successfully produced by the dynamic co-culture of ECs on the PCL-LYS-H scaffolds and SMCs on PCL. The fluorescently labeled cells on the 3DTEG were subsequently observed by laser confocal microscopy, which showed that the ECs and SMCs were embedded in the 3DTEG. Nitric oxide and endothelial nitric oxide synthase assays showed that the ECs behaved normally in the 3DTEG. This study consequently provides a new thread to produce small-diameter tissue engineered grafts, with excellent mechanical properties, that are perfusable to vasculature and functional cells. PMID:25665848

  19. Novel integrative methodology for engineering large liver tissue equivalents based on three-dimensional scaffold fabrication and cellular aggregate assembly.

    PubMed

    Pang, Y; Horimoto, Y; Sutoko, S; Montagne, K; Shinohara, M; Mathiue, D; Komori, K; Anzai, M; Niino, T; Sakai, Yasuyuki

    2016-01-01

    A novel engineering methodology for organizing a large liver tissue equivalent was established by intergrating both 'top down' and 'bottom up' approaches. A three-dimensional (3D) scaffold was engineered comprising 43 culture chambers (volume: 11.63 cm(3)) assembled in a symmetrical pattern on 3 layers, a design which enables further scaling up of the device to a clinically significant size (volume: 500 cm(3)). In addition, an inter-connected flow channel network was designed and proved to homogenously deliver culture medium to each chamber with the same pressure drop. After fabrication using nylon-12 and a selective laser sintering process, co-cultured cellular aggregates of human hepatoma Hep G2 and TMNK-1 cells were loosely packed into the culture chambers with biodegradable poly-L-lactic acid fibre pieces for 9 days of perfusion culture. The device enabled increased hepatic function and well-maintained cell viability, demonstrating the importance of an independent medium flow supply for cell growth and function provided by the current 3D scaffold. This integrative methodology from the macro- to the micro-scale provides an efficient way of arranging engineered liver tissue with improved mass transfer, making it possible to further scale up to a construct with clinically relevant size while maintaining high per-volume-based physiological function in the near future. PMID:27579855

  20. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering.

    PubMed

    Nadeem, Danish; Smith, Carol-Anne; Dalby, Matthew J; Meek, R M Dominic; Lin, Sien; Li, Gang; Su, Bo

    2015-01-01

    Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration. PMID:25562325

  1. Middle ear mucosal regeneration with three-dimensionally tissue-engineered autologous middle ear cell sheets in rabbit model.

    PubMed

    Yaguchi, Yuichiro; Murakami, Daisuke; Yamato, Masayuki; Hama, Takanori; Yamamoto, Kazuhisa; Kojima, Hiromi; Moriyama, Hiroshi; Okano, Teruo

    2016-03-01

    The likelihood of recurrent retraction and adhesion of newly formed tympanic membrane is high when middle ear mucosa is extensively lost during cholesteatoma and adhesive otitis media surgery. If rapid postoperative regeneration of the mucosa on the exposed bone surface can be achieved, prevention of recurrent eardrum adhesion and cholesteatoma formation, for which there has been no definitive treatment, can be expected. Suture-less transplantation of tissue-engineered mucosal cell sheets was examined immediately after the operation of otitis media surgery in order to quickly regenerate middle ear mucosa lost during surgery in a rabbit model. Transplantable middle ear mucosal cell sheets with a three-dimensional tissue architecture very similar to native middle ear mucosa were fabricated from middle ear mucosal tissue fragments obtained in an autologous manner from middle ear bulla on temperature-responsive culture surfaces. Immediately after the mucosa was resected from middle ear bone bulla inner cavity, mucosal cell sheets were grafted at the resected site. Both bone hyperplasia and granulation tissue formation were inhibited and early mucosal regeneration was observed in the cell sheet-grafted group, compared with the control group in which only mucosal removal was carried out and the bone surface exposed. This result indicates that tissue engineered mucosal cell sheets would be useful to minimize complications after the surgical operation on otitis media and future clinical application is expected. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23894137

  2. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering.

    PubMed

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca

    2016-09-01

    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. PMID:27219851

  3. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering.

    PubMed

    Long, Teng; Yang, Jun; Shi, Shan-Shan; Guo, Ya-Ping; Ke, Qin-Fei; Zhu, Zhen-An

    2015-10-01

    An ideal scaffold for bone tissue engineering should have interconnected porous structure, good biocompatibility, and mechanical properties well-matched with natural bones. Collagen is the key component in the extracellular matrix (ECM) of natural bones, and plays an important role in bone regeneration. The biological activity of collagen has promoted it to be an advantageous biomaterial for bone tissue engineering; however, the mechanical properties of these scaffolds are insufficient and the porous structures are not stable in the wet state. An effective strategy to solve this problem is to fabricate a hybrid scaffold of biologically derived and synthetic material, which have the necessary bioactivity and mechanical stability needed for bone synthesis. In this work, a three-dimensional macroporous bone scaffold based on collagen (CO) fiber and bioglass (BG) is fabricated by a slurry-dipping technique, and its relevant mechanical and biological properties are evaluated. The CO/BG scaffold is interconnected with a porosity of 81 ± 4.6% and pore size of 40-200 μm. Compared with CO scaffold, water absorption value of CO/BG scaffold decreases greatly from 889% to 52%, which significantly alleviates the swelling behavior of collagen and improves the stability of scaffold structure. The CO/BG scaffold has a compression strength of 5.8 ± 1.6 MPa and an elastic modulus of 0.35 ± 0.01 Gpa, which are well-matched with the mechanical properties of trabecular bones. In vitro cell assays demonstrate that the CO/BG scaffold has good biocompatibility to facilitate the spreading and proliferation of human bone marrow stromal cells. Hence, the CO/BG scaffold is promising for bone tissue engineering application. PMID:25430707

  4. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F

    2014-11-01

    The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. PMID:24443220

  5. Three-Dimensional Culture of Cells and Matrix Biomolecules for Engineered Tissue Development and Biokinetics Model Validation

    PubMed Central

    Mason, Shelley S.; Kohles, Sean S.; Zelick, Randy D.; Winn, Shelley R.; Saha, Asit K.

    2011-01-01

    There has been considerable progress in cellular and molecular engineering due to recent advances in multiscale technology. Such technologies allow controlled manipulation of physiochemical interactions among cells in tissue culture. In particular, a novel chemomechanical bioreactor has recently been designed for the study of bone and cartilage tissue development, with particular focus on extracellular matrix formation. The bioreactor is equally significant as a tool for validation of mathematical models that explore biokinetic regulatory thresholds (Saha, A. K., and Kohles, S. S., 2010, “A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model,” J. Nanotechnol. Eng. Med., 1(3), p. 031005; 2010, “Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis,” J. Nanotechnol. Eng. Med., 1(4), p. 041001). In the current study, three-dimensional culture protocols are described for maintaining the cellular and biomolecular constituents within defined parameters. Preliminary validation of the bioreactor’s form and function, expected bioassays of the resulting matrix components, and application to biokinetic models are described. This approach provides a framework for future detailed explorations combining multiscale experimental and mathematical analyses, at nanoscale sensitivity, to describe cell and biomolecule dynamics in different environmental regimes. PMID:21709743

  6. Lung alveolar wall disruption in three-dimensional space identified using second-harmonic generation and multiphoton excitation fluorescence

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Hogg, James

    2010-02-01

    Second harmonic generation and multiphoton excited fluorescence microscopy methods were used to examine structural remodeling of the extracellular matrix in human lung alveolar walls undergoing emphysematous destruction. Fresh lung samples removed from a patient undergoing lung transplantation for very severe chronic obstructive pulmonary disease were compared to similar samples from an unused donor lung that served as a control. The generated spatially resolved 3D images show the spatial distribution of collagen, elastin and other endogenously fluorescent tissue components such as macrophages. In the case of control lung tissue, we found well ordered alveolar walls with composite type structure made up of collagen matrix and relatively fine elastic fibers. In contrast, lung tissue undergoing emphysematous destruction was highly disorganized with increased alveolar wall thickness compared to control lung tissue.

  7. X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Fan, Shuai; Li, Mo

    2015-01-01

    Concrete cracking and deterioration can potentially be addressed by innovative self-healing cementitious materials, which can autogenously regain transport properties and mechanical characteristics after the damage self-healing process. For the development of such materials, it is crucial, but challenging, to precisely characterize the extent and quality of self-healing due to a variety of factors. This study adopted x-ray computed microtomography (μCT) to derive three-dimensional morphological data on microcracks before and after healing in engineered cementitious composite (ECC). Scanning electron microscope and energy dispersive x-ray spectroscopy were also used to morphologically and chemically analyze the healing products. This work showed that the evolution of the microcrack 3D structure due to self-healing in cementitious materials can be directly and quantitatively characterized by μCT. A detailed description of the μCT image analysis method applied to ECC self-healing was presented. The results revealed that the self-healing extent and rate strongly depended on initial surface crack width, with smaller crack width favoring fast and robust self-healing. We also found that the self-healing mechanism in cementitious materials is dependent on crack depth. The region of a crack close to the surface (from 0 to around 50-150 μm below the surface) can be sealed quickly with crystalline precipitates. However, at greater depths the healing process inside the crack takes a significantly longer time to occur, with healing products more likely resulting from continued hydration and pozzolanic reactions. Finally, the μCT method was compared with other self-healing characterization methods, with discussions on its importance in generating new scientific knowledge for the development of robust self-healing cementitious materials.

  8. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    NASA Astrophysics Data System (ADS)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  9. Three-dimensional Fourier-domain optical coherence tomography of alveolar mechanics in stepwise inflated and deflated isolated and perfused rabbit lungs

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund

    2007-07-01

    Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.

  10. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  11. Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics

    PubMed Central

    MEENACH, SAMANTHA A.; TSORAS, ALEXANDRA N.; McGARRY, RONALD C.; MANSOUR, HEIDI M.; HILT, J. ZACH; ANDERSON, KIMBERLY W.

    2016-01-01

    Three-dimensional (3D) lung multicellular spheroids (MCS) in liquid-covered culture (LCC) and air-interface culture (AIC) conditions have both been developed for the evaluation of aerosol anticancer therapeutics in solution and aerosols, respectively. The MCS were formed by seeding lung cancer cells on top of collagen where they formed spheroids due to the prevalence of cell-to-cell interactions. LCC MCS were exposed to paclitaxel (PTX) in media whereas AIC MCS were exposed to dry powder PEGylated phospholipid aerosol microparticles containing paclitaxel. The difference in viability for 2D versus 3D culture for both LCC and AIC was evaluated along with the effects of the particles on lung epithelium via transepithelial electrical resistance (TEER) measurements. For LCC and AIC conditions, the 3D spheroids were more resistant to treatment with higher IC50 values for A549 and H358 cell lines. TEER results initially indicated a decrease in resistance upon drug or particle exposure, however, these values increased over the course of several days indicating the ability of the cells to recover. Overall, these studies offer a comprehensive in vitro evaluation of aerosol particles used in the treatment of lung cancer while introducing a new method for culturing lung cancer MCS in both LCC and AIC conditions. PMID:26846376

  12. Comparison of inverse-planned three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for non-small-cell lung cancer

    SciTech Connect

    Christian, Judith A. . E-mail: judith.christian@nuh.nhs.uk; Bedford, James L.; Webb, Steve; Brada, Michael

    2007-03-01

    Purpose: Lungs are the major dose-limiting organ during radiotherapy (RT) for non-small-cell lung cancer owing to the development of pneumonitis. This study compared intensity-modulated RT (IMRT) with three-dimensional conformal RT (3D-CRT) in reducing the dose to the lungs. Methods: Ten patients with localized non-small-cell lung cancer underwent computed tomography (CT). The planning target volume (PTV) was defined and the organs at risk were outlined. An inverse-planning program, AutoPlan, was used to design the beam angle-optimized six-field noncoplanar 3D-CRT plans. Each 3D-CRT plan was compared with a series of five IMRT plans per patient. The IMRT plans were created using a commercial algorithm and consisted of a series of three, five, seven, and nine equidistant coplanar field arrangements and one six-field noncoplanar plan. The planning objectives were to minimize the lung dose while maintaining the dose to the PTV. The percentage of lung volume receiving >20 Gy (V{sub 20}) and the percentage of the PTV covered by the 90% isodose (PTV{sub 90}) were the primary endpoints. The PTV{sub 90}/V{sub 20} ratio was used as the parameter accounting for both the reduction in lung volume treated and the PTV coverage. Results: All IMRT plans, except for the three-field coplanar plans, improved the PTV{sub 90}/V{sub 20} ratio significantly compared with the optimized 3D-CRT plan. Nine coplanar IMRT beams were significantly better than five or seven coplanar IMRT beams, with an improved PTV{sub 90}/V{sub 20} ratio. Conclusion: The results of our study have shown that IMRT can reduce the dose to the lungs compared with 3D-CRT by improving the conformity of the plan.

  13. Three-dimensional lithostratigraphic model at Yucca Mountain, Nevada: A framework for fluid transport modeling and engineering design

    SciTech Connect

    Buesch, D.C.; Spengler, R.W.; Nelson, J.E.; Dickerson, R.P.

    1993-12-31

    A three-dimensional lithostratigraphic model of the central block of Yucca MounEain. Nevada, illustrates how some activities can serve both site characterization and dcsign and construction of the Exploratory Studies Facility (ESF). Site-characterization activities supported bv this model include characterizing the three-dimensional geometry of lithologic units and faults, and providing boundary conditions for geostatistical models and site-scale fluid flow modeling. The model supports the conceptual design as construction efforts for the proposed ramps of the ESF and potential high-level nuclear waste repository.

  14. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  15. Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease.

    PubMed

    Cheng, George Z; San Jose Estepar, Raul; Folch, Erik; Onieva, Jorge; Gangadharan, Sidhu; Majid, Adnan

    2016-05-01

    Recent advances in the three-dimensional (3D) printing industry have enabled clinicians to explore the use of 3D printing in preprocedural planning, biomedical tissue modeling, and direct implantable device manufacturing. Despite the increased adoption of rapid prototyping and additive manufacturing techniques in the health-care field, many physicians lack the technical skill set to use this exciting and useful technology. Additionally, the growth in the 3D printing sector brings an ever-increasing number of 3D printers and printable materials. Therefore, it is important for clinicians to keep abreast of this rapidly developing field in order to benefit. In this Ahead of the Curve, we review the history of 3D printing from its inception to the most recent biomedical applications. Additionally, we will address some of the major barriers to wider adoption of the technology in the medical field. Finally, we will provide an initial guide to 3D modeling and printing by demonstrating how to design a personalized airway prosthesis via 3D Slicer. We hope this information will reduce the barriers to use and increase clinician participation in the 3D printing health-care sector. PMID:26976347

  16. High-dose-rate Three-dimensional Conformal Radiotherapy Combined with Active Breathing Control for Stereotactic Body Radiotherapy of Early-stage Non-small-cell Lung Cancer.

    PubMed

    Wang, Ruozheng; Yin, Yong; Qin, Yonghui; Yu, Jinming

    2015-12-01

    The purpose of this study was to evaluate the feasibility and benefits of using high-dose-rate three-dimensional conformal radiotherapy (3D-CRT) combined with active breathing control (ABC) for stereotactic body radiotherapy (SBRT) of patients with early-stage non-small-cell lung cancer (NSCLC). Eight patients with early-stage NSCLC underwent CT scans under standard free-breathing (FB) and moderately deep inspiration breath-hold (mDIBH) with ABC. Two high-dose-rate 3D-CRT plans (1000 Mu/min) were designed based on the CT scans with FB and mDIBH. The maximal dose (D1%), minimal dose (D99%), conformity index (CI), and homogeneity index (HI) of the planning target volume (PTV), and dose-volume indices of the organs at risk between each plan were compared. The mean PTV volume decreased from 158.04 cm(3) with FB to 76.90 cm(3) with mDIBH (p < 0.05). When mDIBH was used, increases in the affected lung volume (by 47%), contralateral lung volume (by 55%), and total lung volume (by 50%) were observed compared to FB (p < 0.05). The V5-V40 of the affected lung (Vx represented the percentage volume of organs receiving at least the x Gy), V5-V40 and the mean dose for the total lung, V5-V40 and mean dose of the chest wall, and the maximum dose of the spinal cord were less for mDIBH than FB (p < 0.05). There were no significant differences in CI, HI, D1%, or D99% for the PTV between the plans. In conclusion, high-dose-rate 3D-CRT combined with ABC reduced the radiation dose to the lungs and chest wall without affecting the dose distribution in SBRT of early-stage NSCLC patients. PMID:24988055

  17. Three-Dimensional-Engineered Matrix to Study Cancer Stem Cells and Tumorsphere Formation: Effect of Matrix Modulus

    PubMed Central

    Yang, Xiaoming; Sarvestani, Samaneh K.; Moeinzadeh, Seyedsina; He, Xuezhong

    2013-01-01

    Maintenance of cancer stem cells (CSCs) is regulated by the tumor microenvironment. Synthetic hydrogels provide the flexibility to design three-dimensional (3D) matrices to isolate and study individual factors in the tumor microenvironment. The objective of this work was to investigate the effect of matrix modulus on tumorsphere formation by breast cancer cells and maintenance of CSCs in an inert microenvironment without the interference of other factors. In that regard, 4T1 mouse breast cancer cells were encapsulated in inert polyethylene glycol diacrylate hydrogels and the effect of matrix modulus on tumorsphere formation and expression of CSC markers was investigated. The gel modulus had a strong effect on tumorsphere formation and the effect was bimodal. Tumorsphere formation and expression of CSC markers peaked after 8 days of culture. At day 8, as the matrix modulus was increased from 2.5 kPa to 5.3, 26.1, and 47.1 kPa, the average tumorsphere size changed from 37±6 μm to 57±6, 20±4, and 12±2 μm, respectively; cell number density in the gel changed from 0.8±0.1×105 cells/mL to 1.7±0.2×105, 0.4±0.1×105, and 0.2±0.1×105 cells/mL after initial encapsulation of 0.14×105 cells/mL; and the expression of CD44 breast CSC marker changed from 17±4-fold to 38±9-, 3±1-, and 2±1-fold increase compared with the initial level. Similar results were obtained with MCF7 human breast carcinoma cells. Mouse 4T1 and human MCF7 cells encapsulated in the gel with 5.3 kPa modulus formed the largest tumorspheres and highest density of tumorspheres, and had highest expression of breast CSC markers CD44 and ABCG2. The inert polyethylene glycol hydrogel can be used as a model-engineered 3D matrix to study the role of individual factors in the tumor microenvironment on tumorigenesis and maintenance of CSCs without the interference of other factors. PMID:23013450

  18. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    SciTech Connect

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  19. Mediastinal irradiation in a patient affected by lung carcinoma after heart transplantation: Helical tomotherapy versus three dimensional conformal radiotherapy

    PubMed Central

    Iorio, Vincenzo; Cammarota, Fabrizio; Toledo, Diego; Senese, Rossana; Francomacaro, Ferdinando; Muto, Matteo; Muto, Paolo

    2016-01-01

    Abstract Patients who have undergone solid organ transplants are known to have an increased risk of neoplasia compared with the general population. We report our experience using mediastinal irradiation with helical tomotherapy versus three‐dimensional conformal radiation therapy to treat a patient with lung carcinoma 15 years after heart transplantation. Our dosimetric evaluation showed no particular difference between the techniques, with the exception of some organs. Mediastinal irradiation after heart transplantation is feasible and should be considered after evaluation of the risk. Conformal radiotherapy or intensity‐modulated radiotherapy appears to be the appropriate treatment in heart‐transplanted oncologic patients. PMID:27148425

  20. Three-dimensional reconstruction and display of the heart, lungs and circulation by multiplanar X-ray scanning videodensitometry

    NASA Technical Reports Server (NTRS)

    Robb, R. A.; Ritman, E. L.; Wood, E. H.

    1975-01-01

    A device was developed which makes possible the dynamic reconstruction of the heart and lungs within the intact thorax of a living dog or human and which can record approximately 30 multiplanar X-ray images of the thorax practically instantaneously, and at frequent enough intervals of time and with sufficient density and spatial resolution to capture and resolve the most rapid changes in cardiac structural detail throughout each cardiac cycle. It can be installed in a clinical diagnostic setting as well as in a research environment and its construction and application for determination and display in real-time modes of cross sections of the functioning thorax and its contents of living animals and man is technologically feasible.

  1. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model

    PubMed Central

    Ardakani, Amir G.; Cheema, Umber; Brown, Robert A.; Shipley, Rebecca J.

    2014-01-01

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm−1 in the spiral direction induced a mean migratory speed of 1015 μm day−1. Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime. PMID:24966240

  2. Three-dimensional x-ray imaging of the anatomy and function of the lungs and pulmonary arteries in dogs following single lung transplant

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Hua; McGregor, Christopher G. A.; Wu, Xue-Si; Rinaldi, Mauro; Nilsson, Folke N.; Tazelaar, Henry D.; Ritman, Erik L.

    1996-04-01

    It was the goal of this study to see if relatively noninvasive CT studies could provide a quantitative index of acute lung rejection in single lung transplantation. Using volume scanning fast CT, the change in cross-sectional area of the major pulmonary arteries from systole to diastole, regional lung perfusion and ventilation was measured in 12 dogs with left lung allotransplantation before and during rejection and four dogs with left lung autotransplantation. All dogs were anesthetized and scanned in a fast computed tomography scanner (dynamic spatial reconstructor--DSR) during several ventilatory cycles and again during injection of contrast medium into the right atrium. There was significant reduction of regional air content, ventilation, perfusion and pulmonary artery compliance during rejection of the transplanted lung. The severity of these changes related linearly with the histological indices of rejection. It is concluded that minimally invasive dynamic CT imaging of transplanted lung can be used to detect acute rejection and its severity.

  3. Radiological and Clinical Pneumonitis After Stereotactic Lung Radiotherapy: A Matched Analysis of Three-Dimensional Conformal and Volumetric-modulated Arc Therapy Techniques

    SciTech Connect

    Palma, David A.; Senan, Suresh; Haasbeek, Cornelis J.A.; Verbakel, Wilko F.A.R.; Vincent, Andrew; Lagerwaard, Frank

    2011-06-01

    Purpose: Lung fibrosis is common after stereotactic body radiotherapy (SBRT) for lung tumors, but the influence of treatment technique on rates of clinical and radiological pneumonitis is not well described. After implementing volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) for SBRT, we scored the early pulmonary changes seen with arc and conventional three-dimensional SBRT (3D-CRT). Methods and Materials: Twenty-five SBRT patients treated with RA were matched 1:2 with 50 SBRT patients treated with 3D-CRT. Dose fractionations were based on a risk-adapted strategy. Clinical pneumonitis was scored using Common Terminology Criteria for Adverse Events version 3.0. Acute radiological changes 3 months posttreatment were scored by three blinded observers. Relationships among treatment type, baseline factors, and outcomes were assessed using Spearman's correlation, Cochran-Mantel-Haenszel tests, and logistic regression. Results: The RA and 3D-CRT groups were well matched. Forty-three patients (57%) had radiological pneumonitis 3 months after treatment. Twenty-eight patients (37%) had computed tomography (CT) findings of patchy or diffuse consolidation, and 15 patients (20%) had ground-glass opacities only. Clinical pneumonitis was uncommon, and no differences were seen between 3D-CRT vs. RA patients in rates of grade 2/3 clinical pneumonitis (6% vs. 4%, respectively; p = 0.99), moderate/severe radiological changes (24% vs. 36%, respectively, p = 0.28), or patterns of CT changes (p = 0.47). Radiological severity scores were associated with larger planning target volumes (p = 0.09) and extended fractionation (p = 0.03). Conclusions: Radiological changes after lung SBRT are common with both approaches, but no differences in early clinical or radiological findings were observed after RA. Longer follow-up will be required to exclude late changes.

  4. Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering.

    PubMed

    Olubamiji, Adeola D; Izadifar, Zohreh; Zhu, Ning; Chang, Tuanjie; Chen, Xiongbiao; Eames, B Frank

    2016-05-01

    Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis using Alcian blue staining and immunofluorescent staining assessed the secretion of sulfated glycosaminoglycan (GAGs) and collagen type II (Col2) in the cell-laden hybrid constructs over time. Second, optimization of inline PCI-CT was performed by investigating three sample-to-detector distances (SDD): 0.25, 1 and 3 m. Then, the optimal SDD was utilized to visualize structural changes in the constructs over a 42-day culture period. The results showed that there was progressive secretion of cartilage-specific ECM by ATDC5 cells in the hybrid constructs over time. An SDD of 3 m provided edge-enhancement fringes that enabled simultaneous visualization of all components of hybrid constructs in aqueous solution. Structural changes that might reflect formation of ECM also were evident in SR-inline-PCI-CT images. Summarily, SR-inline-PCI-CT images captured at the optimized SDD enables visualization of the different components in hybrid cartilage constructs over a 42-day culture period. PMID:27140161

  5. A comparative analysis of lung cancer patients treated with lobectomy via three-dimensional video-assisted thoracoscopic surgery versus two-dimensional resection

    PubMed Central

    Yang, Chengliang; Mo, Lili; Ma, Yegang; Peng, Guilin; Ren, Yi; Wang, Wei; Liu, Yongyu

    2015-01-01

    Background Three-dimensional (3D) vision systems are now available for thoracic surgery. It is unclear whether 3D video-assisted thoracic surgery (VATS) is superior to 2D VATS systems. This study aimed to compare the operative and perioperative data between 2D and 3D VATS lobectomy (VTL) and to identify the actual role of 3D VTL in thoracic surgery. Methods A two-institutional comparative study was conducted from November 2013 to November 2014 at Liaoning Cancer Hospital & Institute and the First Affiliated Hospital of Guangzhou Medical University, China, of 300 patients with resectable non-small cell lung cancer (NSCLC). Patients were assigned to receive either the 3D VATS (n=150) or 2D VATS (n=150) lobectomy. The operative and perioperative data between 2D VATS and 3D VATS were compared. Results Although there was no significant difference between the two groups regarding the incidence of each single complication, a significantly less operative time was found in the 3D VATS group (145 min) than in the 2D VATS group (176 min) (P=0.006). Postoperative mortality rates in 3D VATS and 2D VATS groups were both 0%.No significant difference was found between groups for estimated blood loss (P=0.893), chest drainage tube placement time (P=0.397), length of hospital stay (P=0.199), number of lymph nodes resected (P=0.397), postoperative complications (P=0.882) and cost of care (P=0.913). Conclusions Early results of this study demonstrate that the 3D VATS lobectomy procedure can be performed with less operative time. 3D VATS and 2D VATS lobectomy are both safe procedures in first-line surgical treatment of NSCLC. PMID:26623103

  6. Risk factors for acute esophagitis in non-small-cell lung cancer patients treated with concurrent chemotherapy and three-dimensional conformal radiotherapy

    SciTech Connect

    Wei Xiong; Liu, H. Helen . E-mail: hliu@mdanderson.org; Tucker, Susan L.; Liao Zhongxing; Hu Chaosu; Mohan, Radhe; Cox, James D.; Komaki, Ritsuko

    2006-09-01

    Purpose: To determine the risk factors for acute esophagitis (AE) in non-small-cell lung cancer (NSCLC) patients treated with concurrent chemotherapy (CCT) and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: Clinical data were retrospectively analyzed for 215 NSCLC patients treated with CCT and 3D-CRT during 2000-2003, 127 of whom also had induction chemotherapy (ICT). Carboplatin and paclitaxel were the most commonly used agents for both ICT and CCT. The median prescription dose of radiotherapy was 63.5 Gy in 35 fractions. AE was graded during each treatment week and 1-month follow-up visits. The factors related to clinical and disease characteristics, CCT and 3D-CRT treatments, and treatment planning were reviewed and analyzed for their association with Grade {>=}3 AE using univariate and multivariate logistic tests. Results: The rate of any grade AE was 93.0% and of Grade {>=}3 was 20.5%. Univariate analyses showed that none of the clinical factors was significantly associated with Grade {>=}3 AE. However, the mean radiation dose to the esophagus, the absolute esophageal volume treated above 15 Gy (aV15) through aV45 Gy, and the relative esophagus volume treated above 10 Gy (rV10) through rV45 Gy were significant risk factors for Grade {>=}3 AE. Only rV20 was retained as the single risk factor in multivariate analyses. Conclusions: The risk of AE in the NSCLC patients treated with CCT and 3D-CRT was primarily determined by dosimetric factors. These factors should be carefully considered during treatment planning to minimize the incidence of AE.

  7. High-resolution three-dimensional 19F-magnetic resonance imaging of rat lung in situ: evaluation of airway strain in the perfluorocarbon-filled lung.

    PubMed

    Weigel, Julia K; Steinmann, Daniel; Emerich, Philipp; Stahl, Claudius A; v Elverfeldt, Dominik; Guttmann, Josef

    2011-02-01

    Perfluorocarbons (PFC) are biologically and chemically inert fluids with high oxygen and CO(2) carrying capacities. Their use as liquid intrapulmonary gas carriers during liquid ventilation has been investigated. We established a method of high resolution 3D-(19)F-MRI of the totally PFC-filled lung. The goal of this study was to investigate longitudinal and circumferential airway strain in the setting of increasing airway pressures on 3D-(19)F-MR images of the PFC-filled lung. Sixteen female Wistar rats were euthanized and the liquid perfluorocarbon FC-84 instilled into their lungs. 3D-(19)F-MRI was performed at various intrapulmonary pressures. Measurements of bronchial length and cross-sectional area were obtained from transversal 2D images for each pressure range. Changes in bronchial area were used to determine circumferential strain, while longitudinal strain was calculated from changes in bronchial length. Our method of 3D-(19)F-MRI allowed clear visualization of the great bronchi. Longitudinal strain increased significantly up to 31.1 cmH(2)O. The greatest strain could be found in the range of low airway pressures. Circumferential strain increased strongly with the initial pressure rise, but showed no significant changes above 10.4 cmH(2)O. Longitudinal strain was generally higher in distal airways, while circumferential strain showed no difference. Analysis of mechanical characteristics showed that longitudinal and circumferential airway expansion occurred in an anisotropic fashion. Whereas longitudinal strain still increased with higher pressures, circumferential strain quickly reached a 'strain limit'. Longitudinal strain was higher in distal bronchi, as dense PFCs gravitate to dependent, in this case to dorso-basal parts of the lung, acting as liquid positive end expiratory pressure. PMID:21193813

  8. Laser-guided direct writing for three-dimensional tissue engineering: Analysis and application of radiation forces

    NASA Astrophysics Data System (ADS)

    Nahmias, Yaakov Koby

    Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our

  9. On the use of a three-dimensional Navier-Stokes solver for rocket engine pump impeller design

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-07-01

    A 3D Reynolds-averaged Navier-Stokes Solver and a Fast Grid Generator (FGG), developed specially for centrifugal impeller design, were incorporated into the pump impeller design process. The impeller performance from the CFD analysis was compared to one-dimensional prediction. Both analyses showed good agreement of the impeller hydraulic efficiency, 94.5 percent, but with an 8 percent discrepancy of Euler head prediction. The impeller blade angle, discharge hub to shroud width, axial length and blade stacking were systematically changed to achieve an optimum impeller design. Impeller overall efficiency, loss distribution, hub-to-tip flow angle distortion and blade-to-blade flow angle change are among those criteria used to evaluate impeller performance. Two grid sizes, one with 10 K grid points and one with 80 K grid points were used to evaluate grid dependency issues. The effects of grid resolution on the accuracy and turnaround time are discussed. In conclusion, it is demonstrated that CFD can be effectively used for design and optimization of rocket engine pump components.

  10. Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin-montmorillonite/cellulose scaffold for tissue engineering.

    PubMed

    Haroun, Ahmed A; Gamal-Eldeen, Amira; Harding, David R K

    2009-12-01

    This work focused on studying the effect of blending gelatin (Gel) with Cellulose (Cel), in the presence of montmorillonite (MMT), on the swelling behavior, in vitro degradation and surface morphology. Additionally, the effect of the prepared biocomposites on the characteristics of the human osteosarcoma cells (Saos-2), including proliferation, scaffold/cells interactions, apoptosis and their potential of the cells to induce osteogenesis and differentiation was evaluated. The crosslinked biocomposites with glutaraldehyde (GA) or N,N-methylene-bisacrylamide (MBA) was prepared via an intercalation process and freeze-drying technique. Properties including SEM morphology, X-ray diffraction characterization and in vitro biodegradation were investigated. The successful generation of 3-D biomimetic porous scaffolds incorporating Saos-2 cells indicated their potential for de novo bone formation that exploits cell-matrix interactions. In vitro studies revealed that the scaffolds containing 12 and 6% MMT crosslinked by 5 and 0.5% GA seem to be the two most efficient and effective biodegradable scaffolds, which promoted Saos-2 cells proliferation, migration, expansion, adhesion, penetration, spreading, and differentiation, respectively. MMT improved cytocompatibility between the osteoblasts and the biocomposite. In vitro analysis indicated good biocompatibility of the scaffold and presents the scaffold as a new potential candidate as suitable biohybrid material for tissue engineering. PMID:19629650

  11. Three-Dimensional, Soft Neotissue Arrays as High Throughput Platforms for the Interrogation of Engineered Tissue Environments

    PubMed Central

    Floren, Michael; Tan, Wei

    2015-01-01

    Local signals from tissue-specific extracellular matrix (ECM) microenvironments, including matrix adhesive ligand, mechanical elasticity and micro-scale geometry, are known to instruct a variety of stem cell differentiation processes. Likewise, these signals converge to provide multifaceted, mechanochemical cues for highly-specific tissue morphogenesis or regeneration. Despite accumulated knowledge about the individual and combined roles of various mechanochemical ECM signals in stem cell activities on 2-dimensional matrices, the understandings of morphogenetic or regenerative 3-dimenstional tissue microenvironments remain very limited. To that end, we established high-throughput platforms based on soft, fibrous matrices with various combinatorial ECM proteins meanwhile highly-tunable in elasticity and 3-dimensional geometry. To demonstrate the utility of our platform, we evaluated 64 unique combinations of 6 ECM proteins (collagen I, collagen III, collagen IV, laminin, fibronectin, and elastin) on the adhesion, spreading and fate commitment of mesenchymal stem cell (MSCs) under two substrate stiffness (4.6 kPa, 20 kPa). Using this technique, we identified several neotissue microenvironments supporting MSC adhesion, spreading and differentiation toward early vascular lineages. Manipulation of the matrix properties, such as elasticity and geometry, in concert with ECM proteins will permit the investigation of multiple and distinct MSC environments. This paper demonstrates the practical application of high through-put technology to facilitate the screening of a variety of engineered microenvironments with the aim to instruct stem cell differentiation. PMID:25956850

  12. On the use of a three-dimensional Navier-Stokes solver for rocket engine pump impeller design

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    A 3D Reynolds-averaged Navier-Stokes Solver and a Fast Grid Generator (FGG), developed specially for centrifugal impeller design, were incorporated into the pump impeller design process. The impeller performance from the CFD analysis was compared to one-dimensional prediction. Both analyses showed good agreement of the impeller hydraulic efficiency, 94.5 percent, but with an 8 percent discrepancy of Euler head prediction. The impeller blade angle, discharge hub to shroud width, axial length and blade stacking were systematically changed to achieve an optimum impeller design. Impeller overall efficiency, loss distribution, hub-to-tip flow angle distortion and blade-to-blade flow angle change are among those criteria used to evaluate impeller performance. Two grid sizes, one with 10 K grid points and one with 80 K grid points were used to evaluate grid dependency issues. The effects of grid resolution on the accuracy and turnaround time are discussed. In conclusion, it is demonstrated that CFD can be effectively used for design and optimization of rocket engine pump components.

  13. Three-dimensional sonoembryology.

    PubMed

    Benoit, Bernard; Hafner, Tomislav; Kurjak, Asim; Kupesić, Sanja; Bekavac, Ivanka; Bozek, Tomislav

    2002-01-01

    Three-dimensional (3D) ultrasound plays an important role in obstetrics, predominantly for assessing fetal anatomy. Presenting volume data in a standard anatomic orientation valuably assists both ultrasonographers and pregnant patients to recognize the anatomy more readily. Three-dimensional ultrasound is advantageous in studying normal embryonic and/or fetal development, as well as providing information for families at risk for specific congenital anomalies by confirming normality. This method offers advantages in assessing the embryo in the first trimester due to its ability to obtain multiplanar images through endovaginal volume acquisition. Rotation allows the systematic review of anatomic structures and early detection of fetal anomalies. Three-dimensional ultrasound imaging in vivo compliments pathologic and histologic evaluation of the developing embryo, giving rise to a new term: 3D sonoembryology. Rapid technological development will allow real-time 3D ultrasound to provide improved and expanded patient care on the one side, and increased knowledge of developmental anatomy on the other. PMID:11933658

  14. Comparison of outcomes for patients with medically inoperable Stage I non-small-cell lung cancer treated with two-dimensional vs. three-dimensional radiotherapy

    SciTech Connect

    Fang, L. Christine; Komaki, Ritsuko . E-mail: rkomaki@mdanderson.org; Allen, Pamela; Guerrero, Thomas; Mohan, Radhe; Cox, James D.

    2006-09-01

    Purpose: This retrospective analysis was performed to assess the outcomes of three-dimensional (3D) conformal radiotherapy and two-dimensional (2D) planning. Methods and Materials: Between 1978 and 2003, 200 patients with Stage I non-small-cell lung cancer (NSCLC) were treated with radiotherapy alone at M.D. Anderson Cancer Center. Eighty-five patients were treated with 3D conformal radiotherapy. For the 3D group, median age, radiation dose, and follow-up was 73 (range, 50-92), 66 Gy (range, 45-90.3 Gy), and 19 months (range, 3-77 months), respectively; and for the 2D group, 69 (range, 44-88), 64 Gy (range, 20-74 Gy), 20 months (range, 1-173 months), respectively. Overall survival (OS), disease-specific survival (DSS), disease-free survival (DFS), locoregional control (LRC), and distant metastasis-free survival (DMFS) rates were analyzed. Results: There was no statistically significant difference in patient and tumor characteristics between 2D and 3D groups, except the 3D patients were older (p = 0.006). The OS, DSS, and LRC rates were significantly higher in patients who were treated by 3D conformal radiotherapy. Two- and 5-year OS for the 3D group were 68% and 36%, respectively, and 47% and 10% in the 2D group (p = 0.001). DSS at 2 and 5 years for the 3D group were 83% and 68%, respectively, vs. 62% and 29% in the 2D group (p < 0.001). LRC rates at 2 and 5 years for patients in the 3D group were 77% and 70% and 53% and 34% in the 2D group (p < 0.001). On univariate analysis elective, nodal irradiation was associated with decreased OS, DSS, and LRC. On multivariate analysis, 3D conformal radiotherapy was associated with increased OS and DSS. Male sex, age {>=}70, weight loss {>=}5%, and tumor size {>=}4 cm were associated with decreased OS and DSS. Conclusions: This study demonstrates that 3D conformal radiotherapy improves outcomes in patients with medically inoperable Stage I NSCLC compared with 2D treatment and is an acceptable treatment for this group of

  15. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    PubMed

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion. PMID:25333855

  16. The Use of Total Human Bone Marrow Fraction in a Direct Three-Dimensional Expansion Approach for Bone Tissue Engineering Applications: Focus on Angiogenesis and Osteogenesis

    PubMed Central

    Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-01-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion. PMID:25333855

  17. Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer

    SciTech Connect

    Shih, Helen A.; Jiang, Steve B.; Aljarrah, Khaled M.; Doppke, Karen P.; Choi, Noah C. . E-mail: nchoi@partners.org

    2004-10-01

    helical scan at free breathing (n = 14) required the largest internal margin (mean, 3.5 mm; maximum, 18 mm; standard deviation [SD], 4.2 mm) to match the composite GTV, compared with those of the 4-s slow scan (mean 2.7 mm, maximum 14 mm, SD 3.5 mm) or combined breath-hold scans (mean 1.1 mm, maximum 9 mm, SD 1.9 mm). Internal margins (expansion margins) required to approximate the composite GTV in 95% of cases were 13 mm, 10 mm, and 5 mm for the GTVs of a single fast scan, 4-s slow scan, and breath-hold scans at the end of tidal volume inspiration and expiration, respectively. Conclusions: The internal margins required to account for the internal tumor motion in three-dimensional conformal radiotherapy are substantial. For the use of symmetric and population-based margins to account for internal tumor motion, GTV defined with breath-hold scans at the end of tidal volume inspiration and expiration has a narrower range of internal margins in all directions than that of either a single fast scan or 4-s slow scan.

  18. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  19. Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

    PubMed Central

    Roura, Santiago; Soler-Botija, Carolina; Bagó, Juli R.; Llucià-Valldeperas, Aida; Férnandez, Marco A.; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Blanco, Jerónimo

    2015-01-01

    Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound. Significance Ischemic heart failure (HF) is the end stage of many cardiovascular diseases, including myocardial infarction. The only definitive treatment for HF is cardiac transplant, which is hampered by limited number of heart donors and graft rejection. In recent times, cellular cardiomyoplasty has been expected to repair infarcted myocardium by implantation of different sources of stem or progenitor cells. However, low cell survival and myocardial implantation rates have motivated the emergence of novel approaches with the objective of generating graftable cell-based implants. Here, the potential

  20. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  1. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Cedola, Alessia; Campi, Gaetano; Pelliccia, Daniele; Bukreeva, Inna; Fratini, Michela; Burghammer, Manfred; Rigon, Luigi; Arfelli, Fulvia; Chen, Rong Chang; Dreossi, Diego; Sodini, Nicola; Mohammadi, Sara; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2014-01-01

    Computed x-ray phase contrast micro-tomography is the most valuable tool for a three dimensional (3D) and non destructive analysis of the tissue engineered bone morphology. We used a Talbot interferometer installed at SYRMEP beamline of the ELETTRA synchrotron (Trieste, Italy) for a precise 3D reconstruction of both bone and soft connective tissue, regenerated in vivo within a porous scaffold. For the first time the x-ray tomographic reconstructions have been combined with x-ray scanning micro-diffraction measurement on the same sample, in order to give an exhaustive identification of the different tissues participating to the biomineralization process. As a result, we were able to investigate in detail the different densities in the tissues, distinguishing the 3D organization of the amorphous calcium phosphate from the collagen matrix. Our experimental approach allows for a deeper understanding of the role of collagen matrix in the organic-mineral transition, which is a crucial issue for the development of new bio-inspired composites.

  2. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages.

    PubMed

    Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P; Yuan, Fangping; Ye, Fei; Kowalski, William J; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K; Keller, Bradley B

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

  3. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages

    PubMed Central

    Masumoto, Hidetoshi; Nakane, Takeichiro; Tinney, Joseph P.; Yuan, Fangping; Ye, Fei; Kowalski, William J.; Minakata, Kenji; Sakata, Ryuzo; Yamashita, Jun K.; Keller, Bradley B.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs. We then determined the impact of cell composition on ECT structural and functional properties. In vitro force measurement showed that CM+EC+MC ECTs possessed preferential electromechanical properties versus ECTs without vascular cells indicating that incorporation of vascular cells augmented tissue maturation and function. The inclusion of MCs facilitated more mature CM sarcomeric structure, preferential alignment, and activated multiple tissue maturation pathways. The CM+EC+MC ECTs implanted onto infarcted, immune tolerant rat hearts engrafted, displayed both host and graft-derived vasculature, and ameliorated myocardial dysfunction. Thus, a composition of CMs and multiple vascular lineages derived from hiPSCs and incorporated into ECTs promotes functional maturation and demonstrates myocardial replacement and perfusion relevant for clinical translation. PMID:27435115

  4. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography.

    PubMed

    Cedola, Alessia; Campi, Gaetano; Pelliccia, Daniele; Bukreeva, Inna; Fratini, Michela; Burghammer, Manfred; Rigon, Luigi; Arfelli, Fulvia; Chang Chen, Rong; Dreossi, Diego; Sodini, Nicola; Mohammadi, Sara; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2014-01-01

    Computed x-ray phase contrast micro-tomography is the most valuable tool for a three dimensional (3D) and non destructive analysis of the tissue engineered bone morphology. We used a Talbot interferometer installed at SYRMEP beamline of the ELETTRA synchrotron (Trieste, Italy) for a precise 3D reconstruction of both bone and soft connective tissue, regenerated in vivo within a porous scaffold. For the first time the x-ray tomographic reconstructions have been combined with x-ray scanning micro-diffraction measurement on the same sample, in order to give an exhaustive identification of the different tissues participating to the biomineralization process. As a result, we were able to investigate in detail the different densities in the tissues, distinguishing the 3D organization of the amorphous calcium phosphate from the collagen matrix. Our experimental approach allows for a deeper understanding of the role of collagen matrix in the organic-mineral transition, which is a crucial issue for the development of new bio-inspired composites. PMID:24334371

  5. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering

    PubMed Central

    Tong, Shuang; Xu, Da-Peng; Liu, Zi-Mei; Du, Yang; Wang, Xu-Kai

    2016-01-01

    The role of transforming growth factor-β1 (TGF-β1) in normal human fracture healing has been previously demonstrated. The objective of the present study was to examine the biocompatibility of TGF-β1-silk fibroin-chitosan (TGF-β1-SF-CS) three-dimensional (3D) scaffolds in order to construct an ideal scaffold for bone tissue engineering. We added TGF-β1 directly to the SF-CS scaffold to construct a 3D scaffold for the first time, to the best of our knowledge, and performed evaluations to determine whether it may have potential applications as a growth factor delivery device. Bone marrow-derived mesenchymal stem cells (BMSCs) were seeded on the TGF-β1-SF-CS scaffolds and the silk fibroin-chitosan (SF-CS) scaffolds. On the TGF-β1-SF-CS and the SF-CS scaffolds, the cell adhesion rate increased in a time-dependent manner. Using a Cell Counting Kit-8 (CCK-8) assay and analyzing the alkaline phosphatase (ALP) expression proved that TGF-β1 significantly enhanced the growth and proliferation of BMSCs on the SF-CS scaffolds in a time-dependent manner. To examine the in vivo biocompatibility and osteogenesis of the TGF-β1-SF-CS scaffolds, the TGF-β1-SF-CS scaffolds and the SF-CS scaffolds were implanted in rabbit mandibles and studied histologically and microradiographically. The 3D computed tomography (CT) scan and histological examinations of the samples showed that the TGF-β1-SF-CS scaffolds exhibited good biocompatibility and extensive osteoconductivity with the host bone after 8 weeks. Moreover, the introduction of TGF-β1 to the SF-CS scaffolds markedly enhanced the efficiency of new bone formation, and this was confirmed using bone mineral density (BMD) and biomechanical evaluation, particularly at 8 weeks after implantation. We demonstrated that the TGF-β1-SF-CS scaffolds possessed as good biocompatibility and osteogenesis as the hybrid ones. Taken together, these findings indicate that the TGF-β1-SF-CS scaffolds fulfilled the basic requirements of bone

  6. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.

    PubMed

    Tong, Shuang; Xu, Da-Peng; Liu, Zi-Mei; Du, Yang; Wang, Xu-Kai

    2016-08-01

    The role of transforming growth factor-β1 (TGF-β1) in normal human fracture healing has been previously demonstrated. The objective of the present study was to examine the biocompatibility of TGF-β1-silk fibroin-chitosan (TGF-β1-SF-CS) three-dimensional (3D) scaffolds in order to construct an ideal scaffold for bone tissue engineering. We added TGF-β1 directly to the SF-CS scaffold to construct a 3D scaffold for the first time, to the best of our knowledge, and performed evaluations to determine whether it may have potential applications as a growth factor delivery device. Bone marrow-derived mesenchymal stem cells (BMSCs) were seeded on the TGF-β1-SF-CS scaffolds and the silk fibroin-chitosan (SF-CS) scaffolds. On the TGF-β1‑SF-CS and the SF-CS scaffolds, the cell adhesion rate increased in a time‑dependent manner. Using a Cell Counting Kit-8 (CCK-8) assay and analyzing the alkaline phosphatase (ALP) expression proved that TGF-β1 significantly enhanced the growth and proliferation of BMSCs on the SF-CS scaffolds in a time-dependent manner. To examine the in vivo biocompatibility and osteogenesis of the TGF-β1‑SF-CS scaffolds, the TGF-β1-SF-CS scaffolds and the SF-CS scaffolds were implanted in rabbit mandibles and studied histologically and microradiographically. The 3D computed tomography (CT) scan and histological examinations of the samples showed that the TGF-β1-SF-CS scaffolds exhibited good biocompatibility and extensive osteoconductivity with the host bone after 8 weeks. Moreover, the introduction of TGF-β1 to the SF-CS scaffolds markedly enhanced the efficiency of new bone formation, and this was confirmed using bone mineral density (BMD) and biomechanical evaluation, particularly at 8 weeks after implantation. We demonstrated that the TGF-β1‑SF-CS scaffolds possessed as good biocompatibility and osteogenesis as the hybrid ones. Taken together, these findings indicate that the TGF-β1-SF-CS scaffolds fulfilled the basic

  7. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue.

    PubMed

    Chiarini, Anna; Freddi, Giuliano; Liu, Daisong; Armato, Ubaldo; Dal Prà, Ilaria

    2016-08-01

    Retracting hypertrophic scars resulting from healed burn wounds heavily impact on the patients' life quality. Biomaterial scaffolds guiding burned-out skin regeneration could suppress or lessen scar retraction. Here we report a novel silk noil-based three-dimensional (3D) nonwoven scaffold produced by carding and needling with no formic acid exposure, which might improve burn healing. Once wetted, it displays human skin-like physical features and a high biocompatibility. Human keratinocyte-like cervical carcinoma C4-I cells seeded onto the carded-needled nonwovens in vitro quickly adhered to them, grew, and actively metabolized glutamine releasing lactate. As on plastic, they released no proinflammatory IL-1β, although secreting tumor necrosis factor-alpha, an inducer of the autocrine mitogen amphiregulin in such cells. Once grafted into interscapular subcutaneous tissue of mice, carded-needled nonwovens guided the afresh assembly of a connective tissue enveloping the fibroin microfibers and filling the interposed voids within 3 months. Fibroblasts and a few poly- or mononucleated macrophages populated the engineered tissue. Besides, its extracellular matrix contained thin sparse collagen fibrils and a newly formed vascular network whose endothelin-1-expressing endothelial cells grew first on the fibroin microfibrils and later expanded into the intervening matrix. Remarkably, no infiltrates of inflammatory leukocytes and no packed collagen fibers bundles among fibroin microfibers, no fibrous capsules at the grafts periphery, and hence no foreign body response was obtained at the end of 3 months of observation. Therefore, we posit that silk noil-based 3D carded-needled nonwoven scaffolds are tools for translational medicine studies as they could guide connective tissue regeneration at deep burn wounds averting scar retraction with good functional results. PMID:27411949

  8. Three dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

  9. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Technical Reports Server (NTRS)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  10. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Astrophysics Data System (ADS)

    Elovic, E.; O'Brien, J. E.; Pepper, D. W.

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  11. Comparison of forward planning with automated inverse planning for three-dimensional conformal radiotherapy of non-small cell lung cancer without IMRT.

    PubMed

    Mendes, Ruheena; Lavrenkov, Konstantin; Bedford, James L; Henrys, Anthony; Ashley, Sue; Brada, Michael

    2006-03-01

    The forward and inverse treatment plans of 10 patients with lung cancer were compared in terms of PTV coverage, sparing of normal lung and time required to generate a plan. The inverse planning produced as good treatment plans as an experienced dosimetrist with considerable reduction in staff time. When translated to other complex sites, inverse non-IMRT planning may have considerable impact on manpower requirements. PMID:16564591

  12. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.

    PubMed

    Schantz, Jan-Thorsten; Teoh, Swee Hin; Lim, Thiam Chye; Endres, Michaela; Lam, Christopher Xu Fu; Hutmacher, Dietmar Werner

    2003-01-01

    Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the

  13. Three dimensional responsive structure of tough hydrogels

    NASA Astrophysics Data System (ADS)

    Yang, Xuxu; Ma, Chunxin; Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Jin, Yongbin; Zhu, Ziqi; Liu, Junjie; Li, Tiefeng

    2015-04-01

    Three dimensional responsive structures have high value for the application of responsive hydrogels in various fields such as micro fluid control, tissue engineering and micro robot. Whereas various hydrogels with stimuli-responsive behaviors have been developed, designing and fabricating of the three dimensional responsive structures remain challenging. We develop a temperature responsive double network hydrogel with novel fabrication methods to assemble the complex three dimensional responsive structures. The shape changing behavior of the structures can be significantly increased by building blocks with various responsiveness. Mechanical instability is built into the structure with the proper design and enhance the performance of the structure. Finite element simulation are conducted to guide the design and investigate the responsive behavior of the hydrogel structures

  14. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography.

    PubMed

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, Thea; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 microm of subpleural lung parenchyma with a 3-D resolution of 16 x 16 x 8 microm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI). PMID:16526892

  15. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, T.; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 µm of subpleural lung parenchyma with a 3-D resolution of 16×16×8 µm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).

  16. Proton Beam Radiotherapy Versus Three-Dimensional Conformal Stereotactic Body Radiotherapy in Primary Peripheral, Early-Stage Non-Small-Cell Lung Carcinoma: A Comparative Dosimetric Analysis

    SciTech Connect

    Macdonald, O. Kenneth; Kruse, Jon J.; Miller, Janelle M.; Garces, Yolanda I.; Brown, Paul D.; Miller, Robert C.; Foote, Robert L.

    2009-11-01

    Purpose: Proton radiotherapy (PT) and stereotactic body radiotherapy (SBRT) have the capacity to optimize the therapeutic ratio. We analyzed the dosimetric differences between PT and SBRT in treating primary peripheral early-stage non-small-cell lung cancer. Methods and Materials: Eight patients were simulated, planned, and treated with SBRT according to accepted techniques. SBRT treatments were retrospectively planned using heterogeneity corrections. PT treatment plans were generated using single-, two-, and three-field passively scattered and actively scanned proton beams. Calculated dose characteristics were compared. Results: Comparable planning target volume (PTV) median minimum and maximum doses were observed between PT and SBRT plans. Higher median maximum doses 2 cm from the PTV were observed for PT, but higher median PTV doses were observed for SBRT. The total lung mean and V5 doses were significantly lower with actively scanned PT. The lung V13 and V20 were comparable. The dose to normal tissues was lower with PT except to skin and ribs. Although the maximum doses to skin and ribs were similar or higher with PT, the median doses to these structures were higher with SBRT. Passively scattered plans, compared with actively scanned plans, typically demonstrated higher doses to the PTV, lung, and organs at risk. Conclusions: Single-, two-, or three-field passively or actively scanned proton therapy delivered comparable PTV dose with generally less dose to normal tissues in these hypothetic treatments. Actively scanned beam plans typically had more favorable dose characteristics to the target, lung, and other soft tissues compared with the passively scanned plans. The clinical significance of these findings remains to be determined.

  17. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2014-08-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  18. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  19. Three dimensional magnetic abacus memory.

    PubMed

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338

  20. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways.

    PubMed

    Müller, Loretta; Riediker, Michael; Wick, Peter; Mohr, Martin; Gehr, Peter; Rothen-Rutishauser, Barbara

    2010-02-01

    Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-alpha concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. PMID:19586954

  1. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  2. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    SciTech Connect

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  3. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo.

    PubMed

    Fielding, Gary; Bose, Susmita

    2013-11-01

    Calcium phosphate (CaP) scaffolds with three-dimensionally-interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (able to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (able to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated into three-dimensional printed β-tricalcium phosphate (β-TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common in bone and have also been shown to have many beneficial properties, from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. The addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introducing osteoinductive properties to CaPs. PMID:23871941

  4. Chemical and structural stability of zirconium-based metal-organic frameworks with large three-dimensional pores by linker engineering.

    PubMed

    Kalidindi, Suresh B; Nayak, Sanjit; Briggs, Michael E; Jansat, Susanna; Katsoulidis, Alexandros P; Miller, Gary J; Warren, John E; Antypov, Dmytro; Corà, Furio; Slater, Ben; Prestly, Mark R; Martí-Gastaldo, Carlos; Rosseinsky, Matthew J

    2015-01-01

    The synthesis of metal-organic frameworks with large three-dimensional channels that are permanently porous and chemically stable offers new opportunities in areas such as catalysis and separation. Two linkers (L1=4,4',4'',4'''-([1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(ethyne-2,1-diyl)) tetrabenzoic acid, L2=4,4',4'',4'''-(pyrene-1,3,6,8-tetrayltetrakis(ethyne-2,1-diyl))tetrabenzoic acid) were used that have equivalent connectivity and dimensions but quite distinct torsional flexibility. With these, a solid solution material, [Zr6 O4 (OH)4 (L1)2.6 (L2)0.4 ]⋅(solvent)x , was formed that has three-dimensional crystalline permanent porosity with a surface area of over 4000 m(2)  g(-1) that persists after immersion in water. These properties are not accessible for the isostructural phases made from the separate single linkers. PMID:25521699

  5. Strategies for Whole Lung Tissue Engineering

    PubMed Central

    Calle, Elizabeth A.; Ghaedi, Mahboobe; Sundaram, Sumati; Sivarapatna, Amogh; Tseng, Michelle K.

    2014-01-01

    Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function. PMID:24691527

  6. Strategies for whole lung tissue engineering.

    PubMed

    Calle, Elizabeth A; Ghaedi, Mahboobe; Sundaram, Sumati; Sivarapatna, Amogh; Tseng, Michelle K; Niklason, Laura E

    2014-05-01

    Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function. PMID:24691527

  7. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  8. Three-dimensional silicon micromachining

    NASA Astrophysics Data System (ADS)

    Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.

    2012-11-01

    A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.

  9. Dose Escalation of Gemcitabine Is Possible With Concurrent Chest Three-Dimensional Rather Than Two-Dimensional Radiotherapy: A Phase I Trial in Patients With Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Zinner, Ralph G. Cox, James D.; Glisson, Bonnie S.; Pisters, Katherine M.W.; Herbst, Roy S.; Kies, Merril; Hong, Waun K.; Fossella, Frank V.

    2009-01-01

    Purpose: To determine in a Phase I study the maximum tolerated dose of weekly gemcitabine concurrent with radiotherapy in locally advanced non-small-cell lung cancer (NSCLC), as well as the relationship between the volume of the esophagus irradiated and severe esophagitis. Methods and Materials: Twenty-one patients with Stage III NSCLC received gemcitabine initially at 150 mg/m{sup 2}/wk over 7 weeks concurrently with chest radiotherapy to 63 Gy in 34 fractions. The first 9 patients underwent treatment with two-dimensional (2D) radiotherapy; the remaining 12 patients, with three-dimensional conformal radiotherapy (3D-CRT) and target volume reduced to clinically apparent disease. Consolidation was 4 cycles of gemcitabine at 1000 mg/m{sup 2}/wk and cisplatin 60 mg/m{sup 2}. Results: In the 2D group, the dose-limiting toxicity, Grade 3 esophagitis, occurred in 3 of 6 patients in the 150-mg/m{sup 2}/wk cohort and 2 of 3 patients in the 125-mg/m{sup 2}/wk cohort. No cases of Grade 3 esophagitis occurred at these doses in the 3D group. At gemcitabine 190 mg/m{sup 2}/wk, 2 of 6 patients in the 3D cohort had Grade 3 esophagitis. The mean percentages of esophagus irradiated to 60 Gy were 68% in the 2D cohort and 18% in the 3D cohort. Conclusions: We could not escalate the dose of gemcitabine with concurrent radiotherapy when using 2D planning because of severe acute esophagitis. However, we could escalate the dose of gemcitabine to 190 mg/m{sup 2}/wk when using 3D planning. The Phase II dose is 150 mg/m{sup 2}/wk. Three-dimensional CRT permitted the use of higher doses of gemcitabine.

  10. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  11. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  12. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  13. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  14. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  15. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  16. A new technique for studying directional cell migration in a hydrogel-based three-dimensional matrix for tissue engineering model systems.

    PubMed

    Topman, Gil; Shoham, Naama; Sharabani-Yosef, Orna; Lin, Feng-Huei; Gefen, Amit

    2013-08-01

    Cell migration has a key role in biological processes, e.g. malignancy, wound healing, immune response and morphogenesis. Studying migration and factors that influence it is beneficial, e.g. for developing drugs to suppress metastasis, heal wounds faster or enhance the response to infection. Though the majority of the literature describes two-dimensional (2D) migration studies in culture dishes, a more realistic approach is to study migration in three-dimensional (3D) constructs. However, simple-to-implement, straight-forward standardized quantitative techniques for analysis of migration rates of cell colonies in 3D are still required in the field. Here, we describe a new model system for quantifying directional migration of colonies in a hyaluronic acid (oxi-HA) and adipic acid dihydrazide (ADH) hydrogel-based 3D matrix. We further demonstrate that our previously reported image processing technique for measuring migration in 2D (Topman et al., 2011, 2012) is extendable for analyzing the rates of migration of cells that directionally migrate in the hydrogel and are fluorescently stained with a 4',6-diamidino-2-phenylindole (DAPI) nuclear stain. Together, the present experimental setup and image processing algorithm provide a standard test bench for measuring migration rates in a fully automated, robust assay which is useful for high-throughput screening in large-scale drug evaluations, where effects on migration in a 3D matrix are sought. PMID:23896652

  17. One-step method for the preparation of poly(methyl methacrylate) modified titanium-bioactive glass three-dimensional scaffolds for bone tissue engineering.

    PubMed

    Han, Xiao; Lin, Huiming; Chen, Xiang; Li, Xin; Guo, Gang; Qu, Fengyu

    2016-04-01

    A novel three-dimensional (3D) titanium (Ti)-doping meso-macroporous bioactive glasses (BGs)/poly(methyl methacrylate) (PMMA) composite was synthesised using PMMA and EO20PO70EO20 (P123) as the macroporous and mesoporous templates, respectively. Unlike the usual calcination method, the acid steam technique was used to improve the polycondensation of Ti-BGs, and then PMMA was partially extracted via chloroform to induce the macroporous structure. Simultaneously, the residual PMMA which remained in the wall enhanced the compressive strength to 2.4 MPa (0.3 MPa for pure BGs). It is a simple and green method to prepare the macro-mesoporous Ti-BGs/PMMA. The materials showed the 3D interconnected hierarchical structure (250 and 3.4 nm), making the fast inducing-hydroxyapatite growth and the controlled drug release. Besides mentioned above, the good antimicrobial property and biocompatible of the scaffold also ensure it is further of clinical use. Herein, the fabricated materials are expected to have potential application on bone tissue regeneration. PMID:27074853

  18. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    NASA Astrophysics Data System (ADS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  19. Bioreactor Development for Lung Tissue Engineering

    PubMed Central

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  20. Three-dimensional fault drawing

    SciTech Connect

    Dongan, L. )

    1992-01-01

    In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.

  1. Three-Dimensional Imaging. Chapter 10

    NASA Technical Reports Server (NTRS)

    Kelso, R. M.; Delo, C.

    1999-01-01

    This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.

  2. Three-dimensional obstetric ultrasound.

    PubMed

    Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H

    2008-04-01

    Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140

  3. Three-dimensional coronary angiography

    NASA Astrophysics Data System (ADS)

    Suurmond, Rolf; Wink, Onno; Chen, James; Carroll, John

    2005-04-01

    Three-Dimensional Coronary Angiography (3D-CA) is a novel tool that allows clinicians to view and analyze coronary arteries in three-dimensional format. This will help to find accurate length estimates and to find the optimal viewing angles of a lesion based on the three-dimensional vessel orientation. Various advanced algorithms are incorporated in this 3D processing utility including 3D-RA calibration, ECG phase selection, 2D vessel extraction, and 3D vessel modeling into a utility with optimized workflow and ease-of-use features, which is fully integrated in the environment of the x-ray catheterization lab. After the 3D processing, the 3D vessels can be viewed and manipulated interactively inside the operating room. The TrueView map provides a quick overview of gantry angles with optimal visualization of a single or bifurcation lesion. Vessel length measurements can be performed without risk of underestimating a vessel segment due to foreshortening. Vessel cross sectional diameters can also be measured. Unlike traditional, projection-based quantitative coronary analysis, the additional process of catheter calibration is not needed for diameter measurements. Validation studies show a high reproducibility of the measurements, with little user dependency.

  4. Three-dimensional conformal radiotherapy by delineations on CT-based simulation in different respiratory phases for the treatment of senile patients with non-small cell lung cancer

    PubMed Central

    Wang, Weifeng; Yuan, Feng; Wang, Guoping; Lin, Zhiren; Pan, Yanling; Chen, Longhua

    2015-01-01

    Aim This study aimed to evaluate the application of three-dimensional conformal radiotherapy (3D-CRT) for elderly patients with non-small cell lung cancer (NSCLC) based on computed tomography (CT) simulations in different respiratory phases. Methods A total of 64 patients aged >70 years old with NSCLC were treated by 3D-CRT using CT images in different respiratory phases. The gross tumor volumes (GTVs) at the end of inspiration and end of expiration were combined to obtain the total GTV, which was close to the motional range of tumors during respiration, and no additional expansion of the clinical target volume (CTAV) to planning target volume (PTV) (CTAV:PTV) was included during the recording of respiratory movements. Patients were also planned according to the classic 3D-CRT approach. Efficacy, prognostic factors, and side effects were evaluated. Results Compared with the classic approach, the average PTV was 18.9% lower (median: 17.3%), and the average lung volume receiving a prescribed dose for a tumor was 22.4% lower (median: 20.9%). The 1-, 2-, and 3-year survival rates were 70.6%, 54.9%, and 29.4%, respectively, with an overall tumor response rate of 79.7%. The Karnofsky performance status and N stage were independent prognostic factors, whereas age was not. Conclusion Without affecting therapeutic effects, CT simulations in different respiratory phases were well-tolerated in elderly patients with NSCLC, could effectively reduce PTV, and could improve the quality of life. PMID:26392773

  5. Phase I Study of Concurrent High-Dose Three-Dimensional Conformal Radiotherapy With Chemotherapy Using Cisplatin and Vinorelbine for Unresectable Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Sekine, Ikuo; Sumi, Minako; Ito, Yoshinori; Horinouchi, Hidehito; Nokihara, Hiroshi; Yamamoto, Noboru; Kunitoh, Hideo; Ohe, Yuichiro; Kubota, Kaoru; Tamura, Tomohide

    2012-02-01

    Purpose: To determine the maximum tolerated dose in concurrent three-dimensional conformal radiotherapy (3D-CRT) with chemotherapy for unresectable Stage III non-small-cell lung cancer (NSCLC). Patients and Methods: Eligible patients with unresectable Stage III NSCLC, age {>=}20 years, performance status 0-1, percent of volume of normal lung receiving 20 GY or more (V{sub 20}) {<=}30% received three to four cycles of cisplatin (80 mg/m{sup 2} Day 1) and vinorelbine (20 mg/m{sup 2} Days 1 and 8) repeated every 4 weeks. The doses of 3D-CRT were 66 Gy, 72 Gy, and 78 Gy at dose levels 1 to 3, respectively. Results: Of the 17, 16, and 24 patients assessed for eligibility, 13 (76%), 12 (75%), and 6 (25%) were enrolled at dose levels 1 to 3, respectively. The main reasons for exclusion were V{sub 20} >30% (n = 10) and overdose to the esophagus (n = 8) and brachial plexus (n = 2). There were 26 men and 5 women, with a median age of 60 years (range, 41-75). The full planned dose of radiotherapy could be administered to all the patients. Grade 3-4 neutropenia and febrile neutropenia were noted in 24 (77%) and 5 (16%) of the 31 patients, respectively. Grade 4 infection, Grade 3 esophagitis, and Grade 3 pulmonary toxicity were noted in 1 patient, 2 patients, and 1 patient, respectively. The dose-limiting toxicity was noted in 17% of the patients at each dose level. The median survival and 3-year and 4-year survival rates were 41.9 months, 72.3%, and 49.2%, respectively. Conclusions: 72 Gy was the maximum dose that could be achieved in most patients, given the predetermined normal tissue constraints.

  6. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering.

    PubMed

    Leferink, Anne M; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2016-08-01

    In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis. PMID:26825610

  7. Effects of implantation of three-dimensional engineered bone tissue with a vascular-like structure on repair of bone defects

    NASA Astrophysics Data System (ADS)

    Nishi, Masanori; Matsumoto, Rena; Dong, Jian; Uemura, Toshimasa

    2012-12-01

    Previously, to create an implantable bone tissue associated with blood vessels, we co-cultured rabbit bone marrow mesenchymal stem cells (MSCs) with MSC-derived endothelial cells (ECs) within a porous polylactic acid-based scaffold utilizing a rotating wall vessel (RWV) bioreactor. Here, this engineered tissue was orthotopically implanted into defects made in femurs of immunodeficient rats, and histological analysis were carried out to examine the repair of the damage and the formation of bone around the implant. The bone defects were better repaired in the implanted group than control group after 3 weeks. The results indicate that the engineered bone could repair bone defects.

  8. Three-dimensional Camera Phone

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2004-12-01

    An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

  9. Three-dimensional visual stimulator

    NASA Astrophysics Data System (ADS)

    Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki

    1995-02-01

    We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.

  10. A Phase II Study of Synchronous Three-Dimensional Conformal Boost to the Gross Tumor Volume for Patients With Unresectable Stage III Non-Small-Cell Lung Cancer: Results of Korean Radiation Oncology Group 0301 Study

    SciTech Connect

    Cho, Kwan Ho Ahn, Sung Ja; Pyo, Hong Ryull; Kim, Kyu-Sik; Kim, Young-Chul; Moon, Sung Ho; Han, Ji-Youn; Kim, Heung Tae; Koom, Woong Sub; Lee, Jin Soo

    2009-08-01

    Purpose: We evaluated the efficacy of synchronous three-dimensional (3D) conformal boost to the gross tumor volume (GTV) in concurrent chemoradiotherapy for patients with locally advanced non-small-cell lung cancer (NSCLC). Methods and Materials: Eligibility included unresectable Stage III NSCLC with no pleural effusion, no supraclavicular nodal metastases, and Eastern Cooperative Oncology Group performance score of 0-1. Forty-nine patients with pathologically proven NSCLC were enrolled. Eighteen patients had Stage IIIA and 31 had Stage IIIB. By using 3D conformal radiotherapy (RT) techniques, a dose of 1.8 Gy was delivered to the planning target volume with a synchronous boost of 0.6 Gy to the GTV, with a total dose of 60 Gy to the GTV and 45 Gy to the planning target volume in 25 fractions during 5 weeks. All patients received weekly chemotherapy consisting of paclitaxel and carboplatin during RT. Results: With a median follow-up of 36.8 months (range, 29.0-45.5 months) for surviving patients, median survival was 28.1 months. One-, 2- and 3-year overall survival rates were 77%, 56.4%, and 43.8%, respectively. Corresponding local progression-free survival rates were 71.2%, 53.7%, and 53.7%. Compliance was 90% for RT and 88% for chemotherapy. Acute esophagitis of Grade 2 or higher occurred in 29 patients. Two patients with T4 lesions died of massive bleeding and hemoptysis during treatment (Grade 5). Overall late toxicity was acceptable. Conclusions: Based on the favorable outcome with acceptable toxicity, the acceleration scheme using 3D conformal GTV boost in this trial is warranted to compare with conventional fractionation in a Phase III trial.

  11. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254

  12. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  13. Nanowired three-dimensional cardiac patches

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.

    2011-11-01

    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.

  14. Nanowired three-dimensional cardiac patches.

    PubMed

    Dvir, Tal; Timko, Brian P; Brigham, Mark D; Naik, Shreesh R; Karajanagi, Sandeep S; Levy, Oren; Jin, Hongwei; Parker, Kevin K; Langer, Robert; Kohane, Daniel S

    2011-11-01

    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches. PMID:21946708

  15. Airway branching morphogenesis in three dimensional culture

    PubMed Central

    2010-01-01

    Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching

  16. Dynamic Three-Dimensional Echocardiography

    NASA Astrophysics Data System (ADS)

    Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro

    2000-08-01

    Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.

  17. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  18. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177

  19. Three-Dimensional Schlieren Measurements

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Cochrane, Andrea

    2004-11-01

    Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.

  20. True three-dimensional camera

    NASA Astrophysics Data System (ADS)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  1. Heterogeneous, three-dimensional texturing of graphene.

    PubMed

    Wang, Michael Cai; Chun, SungGyu; Han, Ryan Steven; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2015-03-11

    We report a single-step strategy to achieve heterogeneous, three-dimensional (3D) texturing of graphene and graphite by using a thermally activated shape-memory polymer substrate. Uniform arrays of graphene crumples can be created on the centimeter scale by controlling simple thermal processing parameters without compromising the electrical properties of graphene. In addition, we show the capability to selectively pattern crumples from otherwise flat graphene and graphene/graphite in a localized manner, which has not been previously achievable using other methods. Finally, we demonstrate 3D crumpled graphene field-effect transistor arrays in a solution-gated configuration. The presented approach has the capability to conform onto arbitrary 3D surfaces, a necessary prerequisite for adaptive electronics, and will enable facile large-scale topography engineering of not only graphene but also other thin-film and 2D materials in the future. PMID:25667959

  2. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  3. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  4. In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ɛ-caprolactone: Effect of bio-functionalization for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-A.; Jyoti, Md. Anirban; Song, Ho-Yeon

    2014-05-01

    Biphasic calcium phosphate (BCP) and poly ɛ-caprolactone (PCL) each have many applications as tissue repair materials. In this study, a three dimensional (3D) PCL infiltrated BCP scaffold was prepared. This composite was further modified and bio-functionalized for bone tissue engineering by subsequent amination and immobilization technique using silicon (Si) and fibronectin (FN) on the surfaces (BCP/PCL + Si and BCP/PCL + Si + FN). In this study, such 3D porous scaffolds were evaluated for bone formation applicability. In vitro studies by immunocytochemistry showed cell morphology and adherence on these scaffolds. Interconnected networks like appearance of tubulin and vinculin expression were notably higher in BCP/PCL + Si and BCP/PCL + Si + FN scaffold surfaces than BCP/PCL surfaces. The scaffolds were also investigated detailed and quantitatively using micro-CT tomography for the repair of bone defects (4 mm diameter) in rats. Micro-CT tomography showed the BCP/PCL + Si + FN scaffolds were almost replaced by newly grown bone within 12 weeks after surgery, suggesting that they have an especially strong capacity for osteogenesis, mineralization, and biodegradation for bone replacement.

  5. Three-dimensional Stress Analysis Using the Boundary Element Method

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1984-01-01

    The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.

  6. Three dimensional geometric modeling of processing-tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterizing tomato geometries with different shapes and sizes would facilitate the design of tomato processing equipments and promote computer-based engineering simulations. This research sought to develop a three-dimensional geometric model that can describe the morphological attributes of proce...

  7. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  8. Three-dimensional imaging through scattering media using three-dimensionally coded pattern projection.

    PubMed

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-08-20

    We propose a method for visualizing three-dimensional objects in scattering media. Our method is based on active illumination using three-dimensionally coded patterns and a numerical algorithm employing a sparsity constraint. We experimentally demonstrated the proposed imaging method for test charts located three-dimensionally at different depths in the space behind a translucent sheet. PMID:26368767

  9. Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility

    ERIC Educational Resources Information Center

    Szállassy, Noémi; Gánóczy, Anita; Kriska, György

    2009-01-01

    The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…

  10. Three-dimensional Printing in the Intestine.

    PubMed

    Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John

    2016-08-01

    Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913

  11. Automatic creation of three-dimensional avatars

    NASA Astrophysics Data System (ADS)

    Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader

    2003-01-01

    Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

  12. Three Dimensional Primary Hepatocyte Culture

    NASA Technical Reports Server (NTRS)

    Yoffe, Boris

    1998-01-01

    Our results demonstrated for the first time the feasibility of culturing PHH in microgravity bioreactors that exceeded the longest period obtained using other methods. Within the first week of culture, isolated hepatocytes started to form aggregates, which continuously increased in size (up to 1 cm) and macroscopically appeared as a multidimensional tissue-like assembly. To improve oxygenation and nutrition within the spheroids we performed experiments with the biodegradable nonwoven fiber-based polymers made from PolyGlycolic Acid (PGA). It has been shown that PGA scaffolds stimulate isolated cells to regenerate tissue with defined sizes and shapes and are currently being studied for various tissue-engineering applications. Our data demonstrated that culturing hepatocytes in the presence of PGA scaffolds resulted in more efficient cell assembly and formations of larger cell spheroids (up to 3 cm in length, see figure). The histology of cell aggregates cultured with PGA showed polymer fibers with attached hepatocytes. We initiated experiments to co-culture primary human hepatocytes with human microvascular endothelial cells in the bioreactor. The presence of endothelial cells in co-cultures were established by immunohistochemistry using anti-CD34 monoclonal Ab. Our preliminary data demonstrated that cultures of purified hepatocytes with human microvascular endothelial cells exhibited better growth and expressed higher levels of albumin MRNA for a longer period of time than cultures of ppfified, primary human hepatocytes cultured alone. We also evaluated microsomal deethylation activity of hepatocytes cultured in the presence of endothelial cells.In summary, we have established liver cell culture, which mimicked the structure and function of the parent tissue.

  13. Primary and Secondary Three Dimensional Microbatteries

    NASA Astrophysics Data System (ADS)

    Cirigliano, Nicolas

    Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick

  14. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  15. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  16. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  17. THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS

    EPA Science Inventory

    Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...

  18. Device fabrication: Three-dimensional printed electronics

    NASA Astrophysics Data System (ADS)

    Lewis, Jennifer A.; Ahn, Bok Y.

    2015-02-01

    Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.

  19. Three-Dimensional Icosahedral Phase Field Quasicrystal

    NASA Astrophysics Data System (ADS)

    Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.

    2016-08-01

    We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.

  20. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  1. The three-dimensional Event-Driven Graphics Environment (3D-EDGE)

    NASA Technical Reports Server (NTRS)

    Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.

    1993-01-01

    Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.

  2. Vision in our three-dimensional world

    PubMed Central

    2016-01-01

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595

  3. Vision in our three-dimensional world.

    PubMed

    Parker, Andrew J

    2016-06-19

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269595

  4. Three-dimensional microbubble streaming flows

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  5. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  6. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  7. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  8. Three-Dimensional Robotic Vision System

    NASA Technical Reports Server (NTRS)

    Nguyen, Thinh V.

    1989-01-01

    Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.

  9. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  10. Three-Dimensional Extended Bargmann Supergravity.

    PubMed

    Bergshoeff, Eric; Rosseel, Jan

    2016-06-24

    We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712