Science.gov

Sample records for engineering clostridium strain

  1. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    PubMed Central

    Nevin, Kelly P.; Woodard, Trevor L.; Lovley, Derek R.

    2014-01-01

    ABSTRACT Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. PMID:25336453

  2. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans.

    PubMed

    Tolonen, Andrew C; Zuroff, Trevor R; Ramya, Mohandass; Boutard, Magali; Cerisy, Tristan; Curtis, Wayne R

    2015-08-15

    Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance. PMID:26048945

  3. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans

    PubMed Central

    Zuroff, Trevor R.; Ramya, Mohandass; Boutard, Magali; Cerisy, Tristan; Curtis, Wayne R.

    2015-01-01

    Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance. PMID:26048945

  4. Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain

    SciTech Connect

    Yee, Kelsey L; Rodriguez Jr, Miguel; Thompson, Olivia A; Fu, Chunxiang; Wang, Zeng-Yu; Davison, Brian H; Mielenz, Jonathan R

    2014-01-01

    Background: Switchgrass is an abundant and dedicated bioenergy feedstock however its inherent recalcitrance is one of the economic hurdles for producing biofuels. The down-regulation of the caffeic acid O-methyl transferase (COMT) gene in the lignin pathway of switchgrass reduced lignin content and S/G ratio, and the transgenic lines showed improved fermentation yield with S. cerevisiae and C. thermocellum (ATCC 27405) in comparison to the wild-type switchgrass. Results: Here we examine the fermentation potential of the COMT transgenic switchgrass and its wild-type line, with an engineered and evolved Clostridium thermocellum (M1570) strain. The fermentation of the transgenic switchgrass had superior conversion relative to the control line with an increase of 20% and ethanol was the primary metabolite accounting for 90% of the total metabolites measured by HPLC. Conclusions: The down-regulation of the COMT gene in switchgrass reduced recalcitrance and improved microbial bioconversion yield. Moreover, these results showed ethanol as the main fermentation metabolite produced by an engineered and evolved C. thermocellum strain grown on a transgenic switchgrass.

  5. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.

    PubMed

    Ueki, Toshiyuki; Nevin, Kelly P; Woodard, Trevor L; Lovley, Derek R

    2014-01-01

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. Importance: The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  6. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    SciTech Connect

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  7. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

    PubMed

    Beri, Dhananjay; Olson, Daniel G; Holwerda, Evert K; Lynd, Lee R

    2016-06-01

    Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are bacteria under investigation for production of biofuels from plant biomass. Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at high yield (>90% of theoretical) and titer (>70 g/l). Efforts to engineer C. thermocellum have not, to date, been as successful, and efforts are underway to transfer the ethanol production pathway from T. saccharolyticum to C. thermocellum One potential challenge in transferring metabolic pathways is the possibility of incompatible levels of nicotinamide cofactors. These cofactors (NAD(+), NADH, NADP(+) and NADPH) and their oxidation state are important in the context of microbial redox metabolism. In this study we directly measured the concentrations and reduced oxidized ratios of these cofactors in a number of strains of C. thermocellum and T. saccharolyticum by using acid/base extraction and enzymatic assays. We found that cofactor ratios are maintained in a fairly narrow range, regardless of the metabolic network modifications considered. We have found that the ratios are similar in both organisms, which is a relevant observation in the context of transferring the T. saccharolyticum ethanol production pathway to C. thermocellum. PMID:27190292

  8. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results

  9. Clostridium thermosaccharolyticum strain deficient in acetate production

    SciTech Connect

    Rothstein, D.M.

    1986-01-01

    A mutant of Clostridium thermosaccharolyticum that is blocked in acetate production was isolated after treatment with nitrosoguanidine and selection for fluoroacetate resistance. The mutant produced more ethanol than the parent strain did.

  10. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains.

    PubMed

    Collas, Florent; Kuit, Wouter; Clément, Benjamin; Marchal, Rémy; López-Contreras, Ana M; Monot, Frederic

    2012-01-01

    Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia. PMID:22909015

  11. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains

    PubMed Central

    2012-01-01

    Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia. PMID:22909015

  12. Draft Genome Sequences of Clostridium Strains Native to Colombia with the Potential To Produce Solvents

    PubMed Central

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana

    2015-01-01

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies. PMID:25999575

  13. Draft genome sequences of clostridium strains native to Colombia with the potential to produce solvents.

    PubMed

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana; Montoya Castaño, Dolly; Riaño-Pachón, Diego Mauricio

    2015-01-01

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies. PMID:25999575

  14. Secretome analysis of Clostridium difficile strains.

    PubMed

    Boetzkes, Alexander; Felkel, Katharina Wiebke; Zeiser, Johannes; Jochim, Nelli; Just, Ingo; Pich, Andreas

    2012-08-01

    Clostridium difficile causes infections ranging from mild C. difficile-associated diarrhea to severe pseudomembranous colitis. Since 2003 new hypervirulent C. difficile strains (PCR ribotype 027) emerged characterized by a dramatically increased mortality. The secretomes of the three C. difficile strains CDR20291, CD196, and CD630 were analyzed and compared. Proteins were separated and analyzed by means of SDS--PAGE and LC-MS. MS data were analyzed using Mascot and proteins were checked for export signals with SecretomeP and SignalP. LC-MS analysis revealed 158 different proteins in the supernatant of C. difficile. Most of the identified proteins originate from the cytoplasm. Thirty-two proteins in CDR20291, 36 in CD196 and 26 in CD630 were identified to be secreted by C. difficile strains. Those were mainly S-layer proteins, substrate-binding proteins of ABC-transporters, cell wall hydrolases, pilin and unknown hypothetical proteins. Toxin A and toxin B were identified after growth in brain heart infusion medium using immunological techniques. The ADP-ribosyltransferase-binding component protein, which is a part of the binary toxin CDT, was only identified in the hypervirulent ribotype 027 strains. Further proteins that are secreted specifically by hypervirulent strains were identified. PMID:22398929

  15. Antimicrobial susceptibility of Clostridium perfringens strains isolated from broiler chickens

    PubMed Central

    Silva, R. O. S.; Salvarani, F.M.; Assis, R.A.; Martins, N.R.S.; Pires, P.S.; Lobato, F.C.F.

    2009-01-01

    Clostridium perfringens is a normal inhabitant of the intestinal tract of chickens as well as a potential pathogen that causes necrotic enteritis and colangio hepatitis. The minimum inhibitory concentration (MIC) of seven different compounds used for therapy, growth promotion or prevention of coccidiosis was determined by agar dilution method for 55 C. perfringens strains isolated from the intestines of broiler chickens. All strains showed high susceptibility to penicillin, avilamycin, monensin and narasin. Only 7.3% of the strains showed an intermediated sensitivity to lincomycin, and 49 (89.1%) were considered susceptible. For tetracycline and bacitracin, 41.8% and 47.3% of strains, respectively, were considered resistant. PMID:24031355

  16. Antimicrobial susceptibility of Clostridium perfringens strains isolated from broiler chickens.

    PubMed

    Silva, R O S; Salvarani, F M; Assis, R A; Martins, N R S; Pires, P S; Lobato, F C F

    2009-04-01

    Clostridium perfringens is a normal inhabitant of the intestinal tract of chickens as well as a potential pathogen that causes necrotic enteritis and colangio hepatitis. The minimum inhibitory concentration (MIC) of seven different compounds used for therapy, growth promotion or prevention of coccidiosis was determined by agar dilution method for 55 C. perfringens strains isolated from the intestines of broiler chickens. All strains showed high susceptibility to penicillin, avilamycin, monensin and narasin. Only 7.3% of the strains showed an intermediated sensitivity to lincomycin, and 49 (89.1%) were considered susceptible. For tetracycline and bacitracin, 41.8% and 47.3% of strains, respectively, were considered resistant. PMID:24031355

  17. Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T

    PubMed Central

    Bruant, Guillaume; Lévesque, Marie-Josée; Peter, Chardeen; Guiot, Serge R.; Masson, Luke

    2010-01-01

    Increasing demand for the production of renewable fuels has recently generated a particular interest in microbial production of butanol. Anaerobic bacteria, such as Clostridium spp., can naturally convert carbohydrates into a variety of primary products, including alcohols like butanol. The genetics of microorganisms like Clostridium acetobutylicum have been well studied and their solvent-producing metabolic pathways characterized. In contrast, less is known about the genetics of Clostridium spp. capable of converting syngas or its individual components into solvents. In this study, the type of strain of a new solventogenic Clostridium species, C. carboxidivorans, was genetically characterized by genome sequencing. C. carboxidivorans strain P7T possessed a complete Wood-Ljungdahl pathway gene cluster, involving CO and CO2 fixation and conversion to acetyl-CoA. Moreover, with the exception of an acetone production pathway, all the genetic determinants of canonical ABE metabolic pathways for acetate, butyrate, ethanol and butanol production were present in the P7T chromosome. The functionality of these pathways was also confirmed by growth of P7T on CO and production of CO2 as well as volatile fatty acids (acetate and butyrate) and solvents (ethanol and butanol). P7T was also found to harbour a 19 Kbp plasmid, which did not include essential or butanol production related genes. This study has generated in depth knowledge of the P7T genome, which will be helpful in developing metabolic engineering strategies to improve C. carboxidivorans's natural capacity to produce potential biofuels from syngas. PMID:20885952

  18. Rabbit Ileal Loop Response to Strains of Clostridium perfringens1

    PubMed Central

    Duncan, Charles L.; Sugiyama, H.; Strong, Dorothy H.

    1968-01-01

    The ligated loop of the rabbit intestine was investigated as a possible experimental model for the study of Clostridium perfringens food poisoning. The method of preparation of the challenge inoculum was important in determining whether a given strain would provoke a response. When cultures were grown for 4 hr at 37 C in Skim Milk (Difco), 14 of 29 type A strains isolated from food-poisoning outbreaks consistently produced exudation of fluid and consequent dilation of the ileal segments. In contrast, 15 of the 18 strains derived from other sources failed to elicit a response. By use of different inoculum preparations, nearly all strains could be made to give at least an occasional positive loop reaction. Diarrhea was not obtained in rabbits by intraluminal injection into the normal ileum or by per os administration of the cultures. Lecithinase, purified and in concentrated culture supernatant fractions, failed to produce a response in the isolated ileal loops. Images PMID:4297020

  19. Traits of selected Clostridium strains for syngas fermentation to ethanol.

    PubMed

    Martin, Michael E; Richter, Hanno; Saha, Surya; Angenent, Largus T

    2016-03-01

    Syngas fermentation is an anaerobic bioprocess that could become industrially relevant as a biorefinery platform for sustainable production of fuels and chemicals. An important prerequisite for commercialization is adequate performance of the biocatalyst (i.e., sufficiently high production rate, titer, selectivity, yield, and stability of the fermentation). Here, we compared the performance of three potential candidate Clostridium strains in syngas-to-ethanol conversion: Clostridium ljungdahlii PETC, C. ljungdahlii ERI-2, and Clostridium autoethanogenum JA1-1. Experiments were conducted in a two-stage, continuously fed syngas-fermentation system that had been optimized for stable ethanol production. The two C. ljungdahlii strains performed similar to each other but different from C. autoethanogenum. When the pH value was lowered from 5.5 to 4.5 to induce solventogenesis, the cell-specific carbon monoxide and hydrogen consumption (similar rate for all strains at pH 5.5), severely decreased in JA1-1, but hardly in PETC and ERI-2. Ethanol production in strains PETC and ERI-2 remained relatively stable while the rate of acetate production decreased, resulting in a high ethanol/acetate ratio, but lower overall productivities. With JA1-1, lowering the pH severely lowered rates of both ethanol and acetate production; and as a consequence, no pronounced shift to solventogenesis was observed. The highest overall ethanol production rate of 0.301 g · L(-1)  · h(-1) was achieved with PETC at pH 4.5 with a corresponding 19 g/L (1.9% w/v) ethanol concentration and a 5.5:1 ethanol/acetate molar ratio. A comparison of the genes relevant for ethanol metabolism revealed differences between C. ljungdahlii and C. autoethanogenum that, however, did not conclusively explain the different phenotypes. PMID:26331212

  20. Biodegradation of trinitrotoluene (TNT) by a strain of Clostridium bifermentans

    SciTech Connect

    Shin, C.Y.; Crawford, D.L.

    1995-12-31

    A Clostridium capable of degrading 2,4,6-trinitrotoluene (TNT) cometabolically was isolated from a mixed culture obtained from a bioreactor fed TNT. This bacterium, identified as a strain of Clostridium bifermentans, and designated strain CYS-1, was able to degrade TNT via 4-amino-2,6-dinitrotoluene (4-ADNT) and 2,4-diamino-6-nitrotoluene (2,4-DANT) to aliphatic polar products which are now being identified and are assumed to be organic acids. CYS 1 cells are tolerant of TNT and capable of degrading it at starting concentrations of up to {ge}100 mg/L TNT. The number of cells inoculated and the availability of cosubstrate nutrients are significant factors influencing TNT degradation, as are TNT tolerance and survival of the cells at high TNT concentrations. In liquid media, at high TNT concentrations, TNT toxicity could be overcome by increasing the amount of inoculum and supplementing the culture with appropriate rich organic cosubstrates. Under these conditions, the reduction of 4-ADNT to 2,4-DANT occurred very fast, whereas the further degradation of 2,4-DANT proceeded more slowly.

  1. Draft Genome Sequences of 17 French Clostridium botulinum Group III Strains

    PubMed Central

    Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Mermoud, Isabelle; Desoutter, Denise; Fach, Patrick

    2015-01-01

    Animal botulism is mainly associated with Clostridium botulinum group III strains producing neurotoxin types C, C/D, D, and D/C. In this report, we present the draft genome sequences of fourteen strains of Clostridium botulinum producing type C/D and two strains producing type D/C isolated in France, and one strain producing type D/C that originated from New Caledonia. PMID:26430029

  2. Draft Genome Sequences of 17 French Clostridium botulinum Group III Strains.

    PubMed

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Mermoud, Isabelle; Desoutter, Denise; Fach, Patrick

    2015-01-01

    Animal botulism is mainly associated with Clostridium botulinum group III strains producing neurotoxin types C, C/D, D, and D/C. In this report, we present the draft genome sequences of fourteen strains of Clostridium botulinum producing type C/D and two strains producing type D/C isolated in France, and one strain producing type D/C that originated from New Caledonia. PMID:26430029

  3. CHARACTERISTICS OF CLOSTRIDIUM PERFRINGENS STRAINS ASSOCIATED WITH FOOD AND FOOD-BORNE DISEASE.

    PubMed

    HALL, H E; ANGELOTTI, R; LEWIS, K H; FOTER, M J

    1963-05-01

    Hall, Herbert E. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Robert Angelotti, Keith H. Lewis, and Milton J. Foter. Characteristics of Clostridium perfringens strains associated with food and food-borne disease. J. Bacteriol. 85:1094-1103. 1963.-A total of 83 strains of Clostridium perfringens-30 from England, Europe, and Asia, associated with food-poisoning outbreaks; 28 from the United States, associated with outbreaks or contaminated foods; and 25 from natural or pathological sources-have been studied to determine their serological relationships, sporulation and heat-resistance of spores, and their hemolytic activity on mammalian bloods. A comparison of the results obtained with these three groups of strains reveals that the Eurasian group is characterized by serological typability, poor sporulation with the production of heat-resistant spores, and a hemolytic activity limited to the production of partial hemolysis on horse, ox, and sheep bloods, whereas the strains from natural and pathological sources in this country are not serologically typable, sporulate well but the spores are not heat-resistant, and are hemolytically active, producing both partial and complete hemolysis on horse, ox, and sheep bloods. The American food-poisoning strains have a wide variety of characteristics. Some strains resemble the Eurasian in their serological typability and the production of heat-resistant spores, but sporulation and hemolytic activity are more like the strains from classical sources. On the basis of these data, it appears unlikely that C. perfringens food-poisoning outbreaks in the United States are restricted to strains meeting the criteria of classification described by British workers and that the isolation of large numbers of any strain of this organism from an incriminated food must be considered as having a possible bearing on the etiology of the outbreak. PMID:14044000

  4. Draft Genome Sequence of Clostridium sporogenes Strain UC9000 Isolated from Raw Milk

    PubMed Central

    La Torre, Angela; Zotta, Teresa; Orrù, Luigi; Lamontanara, Antonella; Cocconcelli, Pier Sandro

    2016-01-01

    Clostridium sporogenes is a causative agent of food spoilage and is often used as the nontoxigenic surrogate for Clostridium botulinum. Here, we described the draft genome sequence and annotation of C. sporogenes strain UC9000 isolated from raw milk. PMID:27081128

  5. NAP1 Strain Type Predicts Outcomes from Clostridium difficile Infection

    PubMed Central

    See, Isaac; Mu, Yi; Cohen, Jessica; Beldavs, Zintars G.; Winston, Lisa G.; Dumyati, Ghinwa; Holzbauer, Stacy; Dunn, John; Farley, Monica M.; Lyons, Carol; Johnston, Helen; Phipps, Erin; Perlmutter, Rebecca; Anderson, Lydia; Gerding, Dale N.; Lessa, Fernanda C.

    2015-01-01

    Background Studies conflict regarding the importance of the fluoroquinolone-resistant North American pulsed-field gel electrophoresis type 1 (NAP1) strain in Clostridium difficile infection (CDI) outcome. We describe strain types causing CDI and evaluate their association with patient outcomes. Methods CDI cases were identified from population-based surveillance. Multivariate regression models were used to evaluate the associations of strain type with severe disease (ileus, toxic megacolon, or pseudomembranous colitis within 5 days; or white blood cell count ≥15,000/mm3 within one day of positive test), severe outcome (intensive care unit admission after positive test, colectomy for C. difficile infection, or death within 30 days of positive test), and death within 14 days of positive test. Results Strain typing results were available for 2,057 cases. Severe disease occurred in 363 (17.7%) cases, severe outcome in 100 (4.9%), and death within 14 days in 56 (2.7%). The most common strain types were NAP1 (28.4%), NAP4 (10.2%) and NAP11 (9.1%). In unadjusted analysis, NAP1 was associated with greater odds of severe disease than other strains. After controlling for patient risk factors, healthcare exposure, and antibiotic use, NAP1 was associated with severe disease (adjusted odds ratio [aOR] 1.74, 95% confidence interval [CI], 1.36–2.22), severe outcome (aOR 1.66, 95% CI, 1.09–2.54), and death within 14 days (aOR 2.12, 95% CI, 1.22–3.68). Conclusion NAP1 was the most prevalent strain and a predictor of severe disease, severe outcome, and death. Strategies to reduce NAP1 prevalence, such as antibiotic stewardship to reduce fluoroquinolone use, might reduce CDI morbidity. PMID:24604900

  6. ClosTron-mediated engineering of Clostridium

    PubMed Central

    Kuehne, Sarah A.; Minton, Nigel P.

    2012-01-01

    Members of the genus Clostridium are of both medical and industrial importance. The molecular tools necessary to study and exploit their wide ranging physiological diversity through directed mutational analysis have until recently been lacking. The situation was transformed in the mid-2000s with the specific adaptation of intron re-targeting technology to the genus, through the development of the ClosTron. By making a handful of nucleotide changes to the group II intron encoding region, the intron can be directed to insert into almost any region within the genome. Through the use of a retrotransposition-activated marker (RAM), based on the ermB gene, successful insertion is selected on the basis of acquisition of resistance to erythromycin. The re-targeted region is designed using an online re-targeting algorithm (www.clostron.com), and then an order is placed with DNA2.0 for both the synthesis of the re-targeted region and its custom cloning into the ClosTron vector. Re-targeted ClosTrons are delivered ready for use in 10–14 days, allowing mutants to be isolated 5–7 days after receipt. Its availability has revolutionized clostridial molecular biology. PMID:22750794

  7. Genomic characterization of Italian Clostridium botulinum group I strains.

    PubMed

    Giordani, Francesco; Fillo, Silvia; Anselmo, Anna; Palozzi, Anna Maria; Fortunato, Antonella; Gentile, Bernardina; Azarnia Tehran, Domenico; Ciammaruconi, Andrea; Spagnolo, Ferdinando; Pittiglio, Valentina; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Lista, Florigio

    2015-12-01

    Clostridium botulinum is a gram-positive bacterium capable of producing the botulinum neurotoxin, a powerful poison that causes botulism, a severe neuroparalytic disease. Its genome has been sequenced entirely and its gene content has been analyzed. To date, 19 full genomes and 64 draft genomes are available. The geographical origin of these genomes is predominantly from the US. In the present study, 10 Italian genomes of C. botulinum group I were analyzed and compared with previously sequenced group I genomes, in order to genetically characterize the Italian population of C. botulinum group I and to investigate the phylogenetic relationships among different lineages. Using the suites of software ClonalFrame and ClonalOrigin to perform genomic analysis, we demonstrated that Italian C. botulinum group I population is phylogenetically heterogeneous encompassing different and distant lineages including overseas strains, too. Moreover, a high recombination rate was demonstrated in the evolution of C. botulinum group I species. Finally, genome sequencing of the strain 357 led us to identify a novel botulinum neurotoxin subtype, F8. PMID:26341861

  8. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Choi, Sung Jun; Im, Jung Ae; Song, Hyohak; Cho, Jung Hee; Seung, Do Young; Papoutsakis, E. Terry; Bennett, George N.

    2012-01-01

    Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adhB-593) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h. PMID:22210214

  9. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a.

    PubMed

    Rooney, Elise A; Rowe, Kenneth T; Guseva, Anna; Huntemann, Marcel; Han, James K; Chen, Amy; Kyrpides, Nikos C; Mavromatis, Konstantinos; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Liolios, Konstantinos; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Shapiro, Nicole; Woyke, Tanja; Lynd, Lee R; Izquierdo, Javier A

    2015-01-01

    Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain. PMID:26205857

  10. Draft Genome Sequence of Clostridium ultunense Strain BS (DSMZ 10521), Recovered from a Mixed Culture.

    PubMed

    Wei, Yongjun; Zhou, Haokui; Zhang, Lei; Zhang, Jun; Wang, Yuezhu; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2014-01-01

    Clostridium ultunense BS is the first isolated strain (type strain) of C. ultunense that was identified as a mesophilic syntrophic acetate-oxidizing bacterium (SAOB). Here, we report the draft genome sequence of this strain, which will help us to elucidate the mechanism of syntrophic acetate oxidization. PMID:24504003

  11. Draft Genome Sequence of Clostridium ultunense Strain BS (DSMZ 10521), Recovered from a Mixed Culture

    PubMed Central

    Wei, Yongjun; Zhou, Haokui; Zhang, Lei; Zhang, Jun; Wang, Yuezhu; Wang, Shengyue

    2014-01-01

    Clostridium ultunense BS is the first isolated strain (type strain) of C. ultunense that was identified as a mesophilic syntrophic acetate-oxidizing bacterium (SAOB). Here, we report the draft genome sequence of this strain, which will help us to elucidate the mechanism of syntrophic acetate oxidization. PMID:24504003

  12. Strain Engineering in Graphene

    NASA Astrophysics Data System (ADS)

    Castro Neto, Antonio

    2011-03-01

    Graphene is a unique example of a one atom thick metallic membrane. Hence, graphene brings together properties of soft and hard condensed matter systems. The elementary electronic excitations in graphene, the Dirac quasiparticles, couple in a singular way to structural distortions in the form of scalar and vector potentials. Therefore, graphene has an effective electrodynamics where structural deformations couple to the Dirac particles at equal footing to electric and magnetic fields. This so-called strain engineering of the electronic properties of graphene opens doors for a new paradigm in terms of electronic devices, where electronic properties can be manipulated at will using its membrane-like properties. I thank partial support from from DOE Grant DE-FG02-08ER46512 and ONR Grant MURI N00014-09-1-1063.

  13. Reannotation of the genome sequence of Clostridium difficile strain 630.

    PubMed

    Monot, Marc; Boursaux-Eude, Caroline; Thibonnier, Marie; Vallenet, David; Moszer, Ivan; Medigue, Claudine; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2011-08-01

    A regular update of genome annotations is a prerequisite step to help maintain the accuracy and relevance of the information they contain. Five years after the first publication of the complete genome sequence of Clostridium difficile strain 630, we manually reannotated each of the coding sequences (CDSs), using a high-level annotation platform. The functions of more than 500 genes annotated previously with putative functions were reannotated based on updated sequence similarities to proteins whose functions have been recently identified by experimental data from the literature. We also modified 222 CDS starts, detected 127 new CDSs and added the enzyme commission numbers, which were not supplied in the original annotation. In addition, an intensive project was undertaken to standardize the names of genes and gene products and thus harmonize as much as possible with the HAMAP project. The reannotation is stored in a relational database that will be available on the MicroScope web-based platform (https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?S_id=752&wwwpkgdb=a78e3466ad5db29aa8fe49e8812de8a7). The original submission stored in the (International Nucleotide Sequence Database Collaboration) INSDC nucleotide sequence databases was also updated. PMID:21349987

  14. Analysis of the pathogenicity locus in Clostridium difficile strains.

    PubMed

    Cohen, S H; Tang, Y J; Silva, J

    2000-02-01

    The genes for Clostridium difficile toxins A and B (tcdA and tcdB) are part of a 19.6-kb pathogenicity locus (PaLoc) that includes the genes tcdD, tcdE, and tcdC. To determine whether the C. difficile PaLoc is a stable and conserved genetic unit in toxigenic strains, a multiplex polymerase chain reaction was used to analyze 50 toxigenic, 39 nontoxigenic, and 2 toxin-defective isolates. The respective amplicons were identified for tcdA-E in the toxigenic isolates; these were absent in the nontoxigenic isolates. C. difficile P-829 lacked at least a fragment of tcdD, tcdB, tcdE, and tcdC, but tcdA was present. C. difficile 8864 had deletions in the tcdA and tcdC genes. These data suggest that the PaLoc is highly stable in toxigenic C. difficile, nontoxigenic isolates lack the unit, and isolates with a defective PaLoc can still cause clinical disease. Further studies are needed to define the role of individual genes in the pathogenesis of C. difficile-associated diarrhea. PMID:10669352

  15. Complete Genome Sequence of Clostridium sp. Strain DL-VIII, a Novel Solventogenic Clostridium Species Isolated from Anaerobic Sludge

    PubMed Central

    Taghavi, Safiyh; Izquierdo, Javier A.

    2013-01-01

    We report the genome sequence of Clostridium sp. strain DL-VIII, a novel Gram-positive, endospore-forming, solventogenic bacterium isolated from activated anaerobic sludge of a wastewater treatment plant. Aside from a complete sol operon, the 6,477,357-bp genome of DL-VIII reveals genes for several unique enzymes with applications in lignocellulose degradation, including two phenolic acid decarboxylases. PMID:23929491

  16. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellumto utilize hemicellulose and unpretreated plant material

    SciTech Connect

    Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna; Hahn, Michael G.; Lynd, Lee R.

    2014-11-18

    Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass, and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.

  17. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellumto utilize hemicellulose and unpretreated plant material

    DOE PAGESBeta

    Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna; Hahn, Michael G.; Lynd, Lee R.

    2014-11-18

    Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass,more » and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.« less

  18. Multidisciplinary Analysis of a Nontoxigenic Clostridium difficile Strain with Stable Resistance to Metronidazole

    PubMed Central

    Moura, Ines; Monot, Marc; Tani, Chiara; Barbanti, Fabrizio; Norais, Nathalie; Dupuy, Bruno; Bouza, Emilio; Mastrantonio, Paola

    2014-01-01

    Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress. PMID:24913157

  19. Multidisciplinary analysis of a nontoxigenic Clostridium difficile strain with stable resistance to metronidazole.

    PubMed

    Moura, Ines; Monot, Marc; Tani, Chiara; Spigaglia, Patrizia; Barbanti, Fabrizio; Norais, Nathalie; Dupuy, Bruno; Bouza, Emilio; Mastrantonio, Paola

    2014-08-01

    Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress. PMID:24913157

  20. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated Clostridium sp. strain RPT-4213 was found to produce butyrate under anaerobic conditions. Fermentations using Lactobacilli MRS Broth produced 9.47 g L-1 butyric acid from glucose (0.48 g/g glucose). However, the strain was not capable of utilizing five carbon sugars. To assess the a...

  1. Near-Complete Genome Sequence of Clostridium paradoxum Strain JW-YL-7

    PubMed Central

    Lancaster, W. Andrew; Utturkar, Sagar M.; Poole, Farris L.; Klingeman, Dawn M.; Elias, Dwayne A.

    2016-01-01

    Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data. PMID:27151784

  2. Near complete genome sequence of Clostridium paradoxum strain JW-YL-7

    DOE PAGESBeta

    Lancaster, Andrew; Utturkar, Sagar M.; Poole, Farris; Klingeman, Dawn Marie; Elias, Dwayne A.; Adams, Michael W. W.; Brown, Steven D.

    2016-05-05

    Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data.

  3. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium sp. strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...

  4. Diverse Temperate Bacteriophage Carriage in Clostridium difficile 027 Strains

    PubMed Central

    Nale, Janet Y.; Shan, Jinyu; Hickenbotham, Peter T.; Fawley, Warren N.; Wilcox, Mark H.; Clokie, Martha R. J.

    2012-01-01

    Background The hypervirulent Clostridium difficile ribotype 027 can be classified into subtypes, but it unknown if these differ in terms of severity of C. difficile infection (CDI). Genomic studies of C. difficile 027 strains have established that they are rich in mobile genetic elements including prophages. This study combined physiological studies, electron microscopy analysis and molecular biology to determine the potential role of temperate bacteriophages in disease and diversity of C. difficile 027. Methodology/Principal Findings We induced prophages from 91 clinical C. difficile 027 isolates and used transmission electron microscopy and pulsed-field gel electrophoresis to characterise the bacteriophages present. We established a correlation between phage morphology and subtype. Morphologically distinct tailed bacteriophages belonging to Myoviridae and Siphoviridae were identified in 63 and three isolates, respectively. Dual phage carriage was observed in four isolates. In addition, there were inducible phage tail-like particles (PT-LPs) in all isolates. The capacity of two antibiotics mitomycin C and norfloxacin to induce prophages was compared and it was shown that they induced specific prophages from C. difficile isolates. A PCR assay targeting the capsid gene of the myoviruses was designed to examine molecular diversity of C. difficile myoviruses. Phylogenetic analysis of the capsid gene sequences from eight ribotypes showed that all sequences found in the ribotype 027 isolates were identical and distinct from other C. difficile ribotypes and other bacteria species. Conclusion/Significance A diverse set of temperate bacteriophages are associated with C. difficile 027. The observed correlation between phage carriage and the subtypes suggests that temperate bacteriophages contribute to the diversity of C. difficile 027 and may play a role in severity of disease associated with this ribotype. The capsid gene can be used as a tool to identify C. difficile

  5. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy

    PubMed Central

    Weigand, Michael R.; Pena-Gonzalez, Angela; Shirey, Timothy B.; Broeker, Robin G.; Ishaq, Maliha K.; Konstantinidis, Konstantinos T.

    2015-01-01

    Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification. PMID:26048939

  6. Clostridium difficile strains from community-associated infections.

    PubMed

    Limbago, Brandi M; Long, Cherie M; Thompson, Angela D; Killgore, George E; Hannett, George E; Havill, Nancy L; Mickelson, Stephanie; Lathrop, Sarah; Jones, Timothy F; Park, Mahin M; Harriman, Kathleen H; Gould, L Hannah; McDonald, L Clifford; Angulo, Frederick J

    2009-09-01

    Clostridium difficile isolates from presumed community-associated infections (n = 92) were characterized by toxinotyping, pulsed-field gel electrophoresis, tcdC and cdtB PCR, and antimicrobial susceptibility. Nine toxinotypes (TOX) and 31 PFGE patterns were identified. TOX 0 (48, 52%), TOX III (18, 20%), and TOX V (9, 10%) were the most common; three isolates were nontoxigenic. PMID:19571021

  7. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    PubMed

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. PMID:27375261

  8. Complete Genome Sequence of the Solvent Producer Clostridium saccharoperbutylacetonicum Strain DSM 14923

    PubMed Central

    Poehlein, Anja; Krabben, Preben; Dürre, Peter

    2014-01-01

    Clostridium saccharoperbutylacetonicum strain DSM 14923 is known as a butanol-producing bacterium. Various organic compounds such as glucose, fructose, sucrose, mannose, and cellobiose are fermented. The genome consists of one chromosome and one circular megaplasmid. C. saccharoperbutylacetonicum was used in industrial fermentation processes to produce the solvents acetone, butanol, and ethanol. PMID:25323722

  9. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923)

    PubMed Central

    Clément, Benjamin; Lopes Ferreira, Nicolas

    2016-01-01

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain. PMID:26941139

  10. Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium.

    PubMed

    Manzoor, Shahid; Müller, Bettina; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2013-01-01

    Clostridium ultunense strain Esp belongs to the functional group of syntrophic acetate-oxidizing bacteria (SAOB), which have been identified as key organisms for efficient biogas production from protein-rich materials. Genome analysis and comparative genomics might aid us to define physiological features that are essential for maintaining this particular syntrophic lifestyle. PMID:23538905

  11. Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium

    PubMed Central

    Manzoor, Shahid; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2013-01-01

    Clostridium ultunense strain Esp belongs to the functional group of syntrophic acetate-oxidizing bacteria (SAOB), which have been identified as key organisms for efficient biogas production from protein-rich materials. Genome analysis and comparative genomics might aid us to define physiological features that are essential for maintaining this particular syntrophic lifestyle. PMID:23538905

  12. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    SciTech Connect

    Banerjee, A; Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2014-03-25

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.

  13. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    PubMed Central

    Ueki, Toshiyuki; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis. PMID:24509933

  14. Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3

    PubMed Central

    Xin, Fengxue; Wu, Yi-Rui

    2014-01-01

    Cellulose and hemicellulose constitute the major components in sustainable feedstocks which could be used as substrates for biofuel generation. However, following hydrolysis to monomer sugars, the solventogenic Clostridium will preferentially consume glucose due to transcriptional repression of xylose utilization genes. This is one of the major barriers in optimizing lignocellulosic hydrolysates that produce butanol. Unlike studies on existing bacteria, this study demonstrates that newly reported Clostridium sp. strain BOH3 is capable of fermenting 60 g/liter of xylose to 14.9 g/liter butanol, which is similar to the 14.5 g/liter butanol produced from 60 g/liter of glucose. More importantly, strain BOH3 consumes glucose and xylose simultaneously, which is shown by its capability for generating 11.7 g/liter butanol from a horticultural waste cellulosic hydrolysate containing 39.8 g/liter glucose and 20.5 g/liter xylose, as well as producing 11.9 g/liter butanol from another horticultural waste hemicellulosic hydrolysate containing 58.3 g/liter xylose and 5.9 g/liter glucose. The high-xylose-utilization capability of strain BOH3 is attributed to its high xylose-isomerase (0.97 U/mg protein) and xylulokinase (1.16 U/mg protein) activities compared to the low-xylose-utilizing solventogenic strains, such as Clostridium sp. strain G117. Interestingly, strain BOH3 was also found to produce riboflavin at 110.5 mg/liter from xylose and 76.8 mg/liter from glucose during the fermentation process. In summary, Clostridium sp. strain BOH3 is an attractive candidate for application in efficiently converting lignocellulosic hydrolysates to biofuels and other value-added products, such as riboflavin. PMID:24858088

  15. Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kim, Jung Yeon; Cheong, Nam Yong; Kim, Kyoung Heon

    2016-10-01

    In this study, metabolic target reactions for strain engineering were searched via intracellular coenzyme A (CoA) metabolite analysis. The metabolic reactions catalyzed by thiolase (AtoB) and aldehyde-alcohol dehydrogenase (AdhE1) were considered potential rate-limiting steps. In addition, CoA transferase (CtfAB) was highlighted as being important for the assimilation of organic acids, in order to achieve high butanol production. Based on this quantitative analysis, the BEKW_E1AB-atoB strain was constructed by overexpressing the thl (atoB), adhE1, and ctfAB genes in Clostridium acetobutylicum strain BEKW, which has the phosphotransacetylase (pta) and butyrate kinase (buk) genes knocked out. After 100h of continuous fermentation coupled with adsorptive ex situ butanol recovery, the concentrations found after considering desorption, yield, and productivity for the BEKW_E1AB-atoB strain were 55.7g/L, 0.38g/g, and 2.64g/L/h, respectively. The level of butanol production achieved (2.64g/L/h) represents the highest reported value obtained after adsorptive, long-term fermentation. PMID:27441828

  16. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes.

    PubMed

    Mazuet, Christelle; Legeay, Christine; Sautereau, Jean; Ma, Laurence; Bouchier, Christiane; Bouvet, Philippe; Popoff, Michel R

    2016-01-01

    In France, human botulism is mainly food-borne intoxication, whereas infant botulism is rare. A total of 99 group I and II Clostridium botulinum strains including 59 type A (12 historical isolates [1947-1961], 43 from France [1986-2013], 3 from other countries, and 1 collection strain), 31 type B (3 historical, 23 recent isolates, 4 from other countries, and 1 collection strain), and 9 type E (5 historical, 3 isolates, and 1 collection strain) were investigated by botulinum locus gene sequencing and multilocus sequence typing analysis. Historical C. botulinum A strains mainly belonged to subtype A1 and sequence type (ST) 1, whereas recent strains exhibited a wide genetic diversity: subtype A1 in orfX or ha locus, A1(B), A1(F), A2, A2b2, A5(B2') A5(B3'), as well as the recently identified A7 and A8 subtypes, and were distributed into 25 STs. Clostridium botulinum A1(B) was the most frequent subtype from food-borne botulism and food. Group I C. botulinum type B in France were mainly subtype B2 (14 out of 20 historical and recent strains) and were divided into 19 STs. Food-borne botulism resulting from ham consumption during the recent period was due to group II C. botulinum B4. Type E botulism is rare in France, 5 historical and 1 recent strains were subtype E3. A subtype E12 was recently identified from an unusual ham contamination. Clostridium botulinum strains from human botulism in France showed a wide genetic diversity and seems to result not from a single evolutionary lineage but from multiple and independent genetic rearrangements. PMID:27189984

  17. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes

    PubMed Central

    Mazuet, Christelle; Legeay, Christine; Sautereau, Jean; Ma, Laurence; Bouchier, Christiane; Bouvet, Philippe; Popoff, Michel R.

    2016-01-01

    In France, human botulism is mainly food-borne intoxication, whereas infant botulism is rare. A total of 99 group I and II Clostridium botulinum strains including 59 type A (12 historical isolates [1947–1961], 43 from France [1986–2013], 3 from other countries, and 1 collection strain), 31 type B (3 historical, 23 recent isolates, 4 from other countries, and 1 collection strain), and 9 type E (5 historical, 3 isolates, and 1 collection strain) were investigated by botulinum locus gene sequencing and multilocus sequence typing analysis. Historical C. botulinum A strains mainly belonged to subtype A1 and sequence type (ST) 1, whereas recent strains exhibited a wide genetic diversity: subtype A1 in orfX or ha locus, A1(B), A1(F), A2, A2b2, A5(B2′) A5(B3′), as well as the recently identified A7 and A8 subtypes, and were distributed into 25 STs. Clostridium botulinum A1(B) was the most frequent subtype from food-borne botulism and food. Group I C. botulinum type B in France were mainly subtype B2 (14 out of 20 historical and recent strains) and were divided into 19 STs. Food-borne botulism resulting from ham consumption during the recent period was due to group II C. botulinum B4. Type E botulism is rare in France, 5 historical and 1 recent strains were subtype E3. A subtype E12 was recently identified from an unusual ham contamination. Clostridium botulinum strains from human botulism in France showed a wide genetic diversity and seems to result not from a single evolutionary lineage but from multiple and independent genetic rearrangements. PMID:27189984

  18. Complete Genome Sequence of Clostridium septicum Strain CSUR P1044, Isolated from the Human Gut Microbiota.

    PubMed

    Benamar, Samia; Cassir, Nadim; Caputo, Aurélia; Cadoret, Frédéric; La Scola, Bernard

    2016-01-01

    Clostridium septicum is one of the first pathogenic anaerobes to be identified. Here, we announce the genome draft sequence of C. septicum strain CSUR P1044 isolated from the gut of a healthy adult. Its chromosome genome consists of 3.2 Mbp with a plasmid of 32 Kbp. C. septicum strain CSUR P1044 has a G+C content of 27.5%, and is composed of 3,125 protein-coding genes together with 103 RNA genes, including 22 rRNA genes. PMID:27609912

  19. Clostridium perfringens: Comparative effects of heat and osmotic stress on non-enterotoxigenic and enterotoxigenic strains.

    PubMed

    Abbona, Cinthia Carolina; Stagnitta, Patricia Virginia

    2016-06-01

    Clostridium perfringens isolates associated with food poisoning carries a chromosomal cpe gene, while non-foodborne human gastrointestinal disease isolates carry a plasmid cpe gene. The enterotoxigenic strains tested produced vegetative cells and spores with significantly higher resistance than non-enterotoxigenic strains. These results suggest that the vegetative cells and spores have a competitive advantage over non-enterotoxigenic strains. However, no explanation has been provided for the significant associations between chromosomal cpe genotypes with the high resistance, which could explain the strong relationship between chromosomal cpe isolates and C. perfringens type A food poisoning. Here, we analyse the action of physical and chemical agent on non-enterotoxigenic and enterotoxigenic regional strains. And this study tested the relationship between the sensitivities of spores and their levels SASPs (small acid soluble proteins) production in the same strains examined. PMID:27012900

  20. Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2

    SciTech Connect

    Brown, Steven D; Lamed, Raphael; Morag, Ely; Borovok, Ilya; Shoham, Yuval; Klingeman, Dawn Marie; Johnson, Courtney M; Yang, Zamin; Land, Miriam L; Utturkar, Sagar M; Keller, Martin; Bayer, Edward A

    2012-01-01

    Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain AD2 played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.

  1. Specific detection of toxigenic strains of Clostridium difficile in stool specimens.

    PubMed Central

    Gumerlock, P H; Tang, Y J; Weiss, J B; Silva, J

    1993-01-01

    Clostridium difficile is the infectious agent responsible for antibiotic-associated colitis. We report the use of the polymerase chain reaction technique to identify toxigenic strains of C. difficile in human stool specimens. A set of primers based on the nucleotide sequence of the toxin B gene, which amplified a 399-bp fragment from isolates producing toxin B, was designed. We examined 28 known toxigenic strains, which were all positive by this assay. DNAs from the nontoxigenic strains examined and from strains of Clostridium sordellii and C. bifermentans were not amplified with these primers. The sensitivity of this assay allowed us to identify as little as 10% toxigenic C. difficile cells in the presence of 90% nontoxigenic cells and to detect the toxin B gene in 1 pg of DNA from a toxigenic strain. DNAs extracted from 18 clinical stool specimens that were positive for toxin B by the tissue culture cytotoxicity assay were also positive by this assay. In addition, we detected toxin B sequences in DNA from 2 of 18 stool specimens that were negative for toxin B by the cytotoxicity assay. These two stool specimens were from patients who had a clinical pattern of colitis that was compatible with C. difficile causation. This rapid, sensitive assay will be useful for specific identification of toxigenic C. difficile and for revealing cases that are undetected by analysis of fecal samples for toxin B alone. Images PMID:8458943

  2. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies

    PubMed Central

    Andersen, Kasper Krogh; Strokappe, Nika M.; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart

    2015-01-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA− TcdB+ strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  3. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies.

    PubMed

    Andersen, Kasper Krogh; Strokappe, Nika M; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart; Marcotte, Harold

    2016-02-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA(-) TcdB(+) strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  4. Isolation and Characterization of Multiply Antibiotic-Resistant Clostridium perfringens Strains from Porcine Feces

    PubMed Central

    Rood, Julian I.; Maher, Eileen A.; Somers, Eileen B.; Campos, Elena; Duncan, Charles L.

    1978-01-01

    Multiply antibiotic-resistant strains of Clostridium perfringens were isolated from porcine feces. Strains that were resistant to tetracycline, erythromycin, clindamycin, and lincomycin were isolated, but no penicillin- or chloramphenicol-resistant strains were obtained. Typical minimal inhibitory concentrations for resistant strains were 16 to 64 μg of tetracycline per ml, 64 to >128 μg of erythromycin per ml, ≥128 μg of lincomycin per ml, and 16 to 128 μg of clindamycin per ml. Resistance to erythromycin was always associated with resistance to lincomycin and clindamycin. Minimal inhibitory concentrations were determined for 258 strains from six farms that used antibiotics in their feeds and 240 strains from five farms that did not use antibiotics. The results show that 77.9 and 22.7% of the strains from the former farms were resistant to tetracycline and erythromycin-clindamycin-lincomycin, respectively. The comparable data from the latter farms were 25.0 and 0.8%, respectively. Agarose gel electrophoresis failed to reveal a plasmid band that was common to the resistant strains but absent in the susceptible strains. Attempts to transfer tetracycline, erythromycin, and clindamycin resistance from one strain, CW459, were not successful. Antibiotic-susceptible mutants were not isolated from this strain, despite the use of a variety of curing agents. Images PMID:208463

  5. Synergistic Inactivation of Spores of Proteolytic Clostridium botulinum Strains by High Pressure and Heat Is Strain and Product Dependent▿

    PubMed Central

    Bull, M. K.; Olivier, S. A.; van Diepenbeek, R. J.; Kormelink, F.; Chapman, B.

    2009-01-01

    The combined high pressure and heat resistances of spores of five proteolytic Clostridium botulinum strains and of the nonpathogenic surrogate strain Clostridium sporogenes PA3679 were compared with their heat-only resistances on the basis of equivalent accumulated thermal lethality, expressed as equivalent minutes at a reference temperature of 105°C (F105°C). Comparisons were made with three model (i.e., diluted) products, namely, 30% (wt/wt) Bolognese sauce, 50% (wt/wt) cream sauce, and rice water agar. Pressure was determined to act synergistically with heat during high-pressure thermal (HPT) processing for C. botulinum FRRB 2802 (NCTC 7273) and C. botulinum FRRB 2804 (NCTC 3805 and 62A) in the Bolognese and cream sauces and for C. botulinum FRRB 2807 (213B) in the Bolognese sauce only. No synergy was observed for C. botulinum FRRB 2803 (NCTC 2916) or FRRB 2806 (62A) or C. sporogenes FRRB 2790 (NCTC 8594 and PA3679) in any of the model products. No significant protective effect of pressure against spore inactivation was determined for any Clostridium strain in any product. Because synergy was not consistently observed among strains of C. botulinum or among products, the prediction of inactivation of C. botulinum spores by HPT sterilization (HPTS) for the present must assume a complete lack of synergy. Therefore, any HPTS process for low-acid shelf-stable foods must be at least thermally equivalent to an F0 process of 2.8 min, in line with current good manufacturing practices. The results of this study suggest that the use of C. sporogenes PA3679 as a surrogate organism may risk overestimating inactivation of C. botulinum by HPT processing. PMID:19011055

  6. Clinical Utility of Laboratory Detection of Clostridium difficile Strain BI/NAP1/027.

    PubMed

    Kociolek, Larry K; Gerding, Dale N

    2016-01-01

    Clostridium difficile strain BI/NAP1/027 is associated with increased C. difficile infection (CDI) rates and severity, and the efficacy of some CDI therapies may be strain dependent. Although cultured C. difficile isolates can be reliably subtyped by various methods, the long turnaround times, high cost, and limited availability of strain typing preclude their routine use. Nucleic acid amplification tests identify BI/NAP1/027 rapidly from stool, but the emergence of closely related strains compromises test specificity. Although detection of epidemiologically significant pathogens is generally useful for infection control programs, specific data supporting use of rapid detection of BI/NAP1/027 as an infection control tool are still awaited. PMID:26511742

  7. Clinical Utility of Laboratory Detection of Clostridium difficile Strain BI/NAP1/027

    PubMed Central

    Gerding, Dale N.

    2015-01-01

    Clostridium difficile strain BI/NAP1/027 is associated with increased C. difficile infection (CDI) rates and severity, and the efficacy of some CDI therapies may be strain dependent. Although cultured C. difficile isolates can be reliably subtyped by various methods, the long turnaround times, high cost, and limited availability of strain typing preclude their routine use. Nucleic acid amplification tests identify BI/NAP1/027 rapidly from stool, but the emergence of closely related strains compromises test specificity. Although detection of epidemiologically significant pathogens is generally useful for infection control programs, specific data supporting use of rapid detection of BI/NAP1/027 as an infection control tool are still awaited. PMID:26511742

  8. Epidemic Clostridium difficile Strains Demonstrate Increased Competitive Fitness Compared to Nonepidemic Isolates

    PubMed Central

    Robinson, Catherine D.; Auchtung, Jennifer M.; Collins, James

    2014-01-01

    Clostridium difficile infection is the most common cause of severe cases of antibiotic-associated diarrhea (AAD) and is a significant health burden. Recent increases in the rate of C. difficile infection have paralleled the emergence of a specific phylogenetic clade of C. difficile strains (ribotype 027; North American pulsed-field electrophoresis 1 [NAP1]; restriction endonuclease analysis [REA] group BI). Initial reports indicated that ribotype 027 strains were associated with increased morbidity and mortality and might be hypervirulent. Although subsequent work has raised some doubt as to whether ribotype 027 strains are hypervirulent, the strains are considered epidemic isolates that have caused severe outbreaks across the globe. We hypothesized that one factor that could lead to the increased prevalence of ribotype 027 strains would be if these strains had increased competitive fitness compared to strains of other ribotypes. We developed a moderate-throughput in vitro model of C. difficile infection and used it to test competition between four ribotype 027 clinical isolates and clinical isolates of four other ribotypes (001, 002, 014, and 053). We found that ribotype 027 strains outcompeted the strains of other ribotypes. A similar competitive advantage was observed when two ribotype pairs were competed in a mouse model of C. difficile infection. Based upon these results, we conclude that one possible mechanism through which ribotype 027 strains have caused outbreaks worldwide is their increased ability to compete in the presence of a complex microbiota. PMID:24733099

  9. Distribution of Neuraminidase among Food-poisoning Strains of Clostridium perfringens

    PubMed Central

    Moss, C. Wayne; Schekter, Marcia A.; Cherry, William B.

    1967-01-01

    A survey was made to determine the distribution of the enzyme neuraminidase among 76 strains of Clostridium perfringens. Representative strains from each toxigenic type (A to F) and atypical C. perfringens type A food-poisoning strains of both American and English (Hobbs types) origin were tested. Both the American food-poisoning and nonfood-poisoning associated cultures consisted of both neuraminidase-positive and -negative strains. Furthermore, American strains which could not be differentiated from the original Hobbs cultures consisted of both neuraminidase-positive and -negative representatives. In contrast, the English (Hobbs) strains uniformly failed to produce an active intracellular or extracellular neuraminidase. No enzyme activity was detected in these strains when cultures were grown in different growth media, when grown in the presence of substrate (neuraminlactose), or upon extended incubation of enzyme preparations with substrate. With the exception of a type F strain, representative strains of the other toxigenic types (A to F) produced neuraminidase; 85% of the typical type A strains contained the enzyme. PMID:4292823

  10. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways

    SciTech Connect

    Van Der Veen, Douwe; Lo, Jonathan; Brown, Steven D; Johnson, Courtney M; Tschaplinski, Timothy J; Martin, Madhavi Z; Engle, Nancy L; Van den Berg, Robert A; Argyros, Aaron; Caiazza, Nicky; Guss, Adam M; Lynd, Lee R

    2013-01-01

    Clostridium thermocellum is a thermophilic, cellulolytic anaerobe that is a candidate microorganism for industrial biofuels production. Strains with mutations in genes associated with production of L-lactate (Dldh) and/or acetate (Dpta) were characterized to gain insight into the intracellular processes that convert cellobiose to ethanol and other fermentation end-products. Cellobiose-grown cultures of the Dldh strain had identical biomass accumulation, fermentation end-products, transcription profile, and intracellular metabolite concentrations compared to its parent strain (DSM1313 Dhpt Dspo0A). The Dpta-deficient strain grew slower and had 30 % lower final biomass concentration compared to the parent strain, yet produced 75% more ethanol. A Dldh Dpta double-mutant strain evolved for faster growth had a growth rate and ethanol yield comparable to the parent strain, whereas its biomass accumulation was comparable to Dpta. Free amino acids were secreted by all examined strains, with both Dpta strains secreting higher amounts of alanine, valine, isoleucine, proline, glutamine, and threonine. Valine concentration for Dldh Dpta reached 5 mM by the end of growth, or 2.7 % of the substrate carbon utilized. These secreted amino acid concentrations correlate with increased intracellular pyruvate concentrations, up to sixfold in the Dpta and 16-fold in the Dldh Dpta strain. We hypothesize that the deletions in fermentation end-product pathways result in an intracellular redox imbalance, which the organism attempts to relieve, in part by recycling NADP* through increased production of amino acids.

  11. Characterization of Clostridium thermocellum strains with disrupted fermentation end product pathways

    SciTech Connect

    Van Der Veen, Douwe; Lo, Jonathan; Brown, Steven D; Johnson, Courtney M; Tschaplinski, Timothy J; Martin, Madhavi Z; Engle, Nancy L; Argyros, Aaron; Van den Berg, Robert A; Caiazza, Nicky; Guss, Adam M; Lynd, Lee R

    2013-01-01

    Clostridium thermocellum is a thermophilic, cellulolytic anaerobe that is a candidate microorganism for industrial biofuels production. Strains with mutations in genes associated with production of Llactate ( ldh) and/or acetate ( pta) were characterized to gain insight into the intracellular processes that convert cellobiose to ethanol and other fermentation end products. Cellobiose-grown cultures of the ldh strain had identical biomass accumulation, fermentation end products, transcription profile and intracellular metabolite concentrations compared to its parent strain (DSM1313 hpt spo0A). The pta-deficient strain grew slower and had 30% lower final biomass concentration compared to the parent strain, yet produced 75% more ethanol. A ldh pta double mutant strain evolved for faster growth had growth rate and ethanol yield comparable to the parent strain, whereas its biomass accumulation was comparable to pta. Free amino acids were secreted by all examined strains, with both pta strains secreting higher amounts of alanine, valine, isoleucine, proline, glutamine, and threonine. Valine concentration for ldh pta reached 5 mM by the end of growth, or 2.7% of the substrate carbon utilized. These secreted amino acid concentrations correlate with increased intracellular pyruvate concentrations, up to 6-fold in the pta and 16-fold in the ldh pta strain. We hypothesize that the deletions in fermentation end product pathways result in an intracellular redox imbalance, which the organism attempts to relieve, in part by recycling NADP+ through increased production of amino acids.

  12. A recombinant Bacillus anthracis strain producing the Clostridium perfringens Ib component induces protection against iota toxins.

    PubMed Central

    Sirard, J C; Weber, M; Duflot, E; Popoff, M R; Mock, M

    1997-01-01

    The Bacillus anthracis toxinogenic Sterne strain is currently used as a live veterinary vaccine against anthrax. The capacity of a toxin-deficient derivative strain to produce a heterologous antigen by using the strong inducible promoter of the B. anthracis pag gene was investigated. The expression of the foreign gene ibp, encoding the Ib component of iota toxin from Clostridium perfringens, was analyzed. A pag-ibp fusion was introduced by allelic exchange into a toxin-deficient Sterne strain, thereby replacing the wild-type pag gene. This recombinant strain, called BAIB, was stable and secreted large quantities of Ib protein in induced culture conditions. Mice given injections of live BAIB spores developed an antibody response specific to the Ib protein. The pag-ibp fusion was therefore functional both in vitro and in vivo. Moreover, the immunized animals were protected against a challenge with C. perfringens iota toxin or with the homologous Clostridium spiroforme toxin. The protective immunity was mediated by neutralizing antibodies. In conclusion, B. anthracis is promising for the development of live veterinary vaccines. PMID:9169728

  13. The molecular-genetic analysis of Clostridium perfringens strains isolated from broilers on farms in Central Russia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the research was to perform phenotypic and molecular-genetic typing of Clostridium perfringens strains commonly spread on poultry farms in Central Russia. Samples of homogenized iliac and cecal contents from 760 broilers were assayed and 325 C. perfringens strains (42.8 %) were isol...

  14. Clostridium difficile infection: Early history, diagnosis and molecular strain typing methods.

    PubMed

    Rodriguez, C; Van Broeck, J; Taminiau, B; Delmée, M; Daube, G

    2016-08-01

    Recognised as the leading cause of nosocomial antibiotic-associated diarrhoea, the incidence of Clostridium difficile infection (CDI) remains high despite efforts to improve prevention and reduce the spread of the bacterium in healthcare settings. In the last decade, many studies have focused on the epidemiology and rapid diagnosis of CDI. In addition, different typing methods have been developed for epidemiological studies. This review explores the history of C. difficile and the current scope of the infection. The variety of available laboratory tests for CDI diagnosis and strain typing methods are also examined. PMID:27238460

  15. Susceptibility of Clostridium perfringens strains from broiler chickens to antibiotics and anticoccidials.

    PubMed

    Martel, A; Devriese, L A; Cauwerts, K; De Gussem, K; Decostere, A; Haesebrouck, F

    2004-02-01

    Clostridium perfringens strains isolated in 2002 from the intestines of broiler chickens from 31 different farms located in Belgium were tested for susceptibility to 12 antibiotics used for therapy, growth promotion or prevention of coccidiosis. All strains were uniformly sensitive to the ionophore antibiotics monensin, lasalocid, salinomycin, maduramycin and narasin. All were sensitive to avilamycin, tylosin and amoxicillin, while flavomycin (bambermycin) showed low or no activity. Chlortetracycline and oxytetracycline were active at very low concentrations, but low-level acquired resistance was detected in 66% of the strains investigated. Fifty percent of these strains carried the tetP(B) resistance gene, while the tet(Q) gene was detected in only one strain. One strain with high-level resistance against tetracyclines carried the tet(M) gene. Sixty-three percent of the strains showed low-level resistance to lincomycin. The lnu(A) and lnu(B) genes were each only found in one strain. Compared with a similar investigation carried out in 1980, an increase was seen in resistance percentages with lincomycin (63% against 49%) and a slight decrease with tetracycline (66% against 74%). PMID:14681061

  16. Draft Genome Sequence of Clostridium butyricum Strain NOR 33234, Isolated from an Elderly Patient with Diarrhea

    PubMed Central

    Kwok, Jamie S. L.; Ip, Margaret; Chan, Ting-Fung; Lam, Wai-Yip

    2014-01-01

    Clostridium butyricum is one of the species frequently present in patients’ stool samples. However, the identification of this species is sometimes difficult. Here, we present the draft genome of Clostridium butyricum NOR 33234, which was isolated from a patient with suspected Clostridium difficile infection-associated diarrhea and resembles Clostridium clostridioforme in biochemical tests. PMID:25540356

  17. Systemic colonization of clover (Trifolium repens) by Clostridium botulinum strain 2301

    PubMed Central

    Zeiller, Matthias; Rothballer, Michael; Iwobi, Azuka N.; Böhnel, Helge; Gessler, Frank; Hartmann, Anton; Schmid, Michael

    2015-01-01

    In recent years, cases of botulism in cattle and other farm animals and also in farmers increased dramatically. It was proposed, that these cases could be affiliated with the spreading of compost or other organic manures contaminated with Clostridium botulinum spores on farm land. Thus, soils and fodder plants and finally farm animals could be contaminated. Therefore, the colonization behavior and interaction of the botulinum neurotoxin (BoNT D) producing C. botulinum strain 2301 and the non-toxin producing Clostridium sporogenes strain 1739 were investigated on clover (Trifolium repens) in a field experiment as well as in phytochamber experiments applying axenic and additionally soil based systems under controlled conditions. Plants were harvested and divided into root and shoot parts for further DNA isolation and polymerase chain reaction (PCR) assays; subsamples were fixed for fluorescence in situ hybridization analysis in combination with confocal laser scanning microscopy. In addition, we observed significant differences in the growth behavior of clover plants when inoculated with clostridial spores, indicating a plant growth promoting effect. Inoculated plants showed an increased growth index (shoot size, wet and dry weight) and an enlarged root system induced by the systemic colonization of clover by C. botulinum strain 2301. To target C. botulinum and C. sporogenes, 16S rDNA directed primers were used and to specifically detect C. botulinum, BoNT D toxin genes targeted primers, using a multiplex PCR approach, were applied. Our results demonstrate an effective colonization of roots and shoots of clover by C. botulinum strain 2301 and C. sporogenes strain 1739. Detailed analysis of colonization behavior showed that C. botulinum can occur as individual cells, in cell clusters and in microcolonies within the rhizosphere, lateral roots and within the roots tissue of clover. PMID:26583010

  18. Recovery of a strain of Clostridium botulinum producing both neurotoxin A and neurotoxin B from canned macrobiotic food.

    PubMed

    Franciosa, G; Fenicia, L; Pourshaban, M; Aureli, P

    1997-03-01

    A rare strain of Clostridium botulinum subtype Ab was isolated from a canned macrobiotic food suspected of being linked to a fatal case of food-borne botulism. The strain was recovered and identified by conventional methods modified by the inclusion of a PCR assay (G. Franciosa, J.L. Ferreira, and C.L. Hatheway, J. Clin. Microbiol. 32:1911-1917, 1994). The titers of neurotoxins produced by the strain were evaluated by a mouse bioassay. PMID:9055430

  19. Recovery of a strain of Clostridium botulinum producing both neurotoxin A and neurotoxin B from canned macrobiotic food.

    PubMed Central

    Franciosa, G; Fenicia, L; Pourshaban, M; Aureli, P

    1997-01-01

    A rare strain of Clostridium botulinum subtype Ab was isolated from a canned macrobiotic food suspected of being linked to a fatal case of food-borne botulism. The strain was recovered and identified by conventional methods modified by the inclusion of a PCR assay (G. Franciosa, J.L. Ferreira, and C.L. Hatheway, J. Clin. Microbiol. 32:1911-1917, 1994). The titers of neurotoxins produced by the strain were evaluated by a mouse bioassay. PMID:9055430

  20. Investigation of toxin gene diversity and antimicrobial resistance of Clostridium difficile strains

    PubMed Central

    ZHU, SHANSHAN; ZHANG, HUAPING; ZHANG, XINSHENG; WANG, CHAO; FAN, GUANGMING; ZHANG, WEIFENG; SUN, GANG; CHEN, HUIHONG; ZHANG, LIMING; LI, ZHAOYUN

    2014-01-01

    The incidence of Clostridium difficile infection (CDI) has been previously reported in a number of studies. However, data collected from the Chinese population is limited. In the present study, the diversity of the toxin genes, tcdA and tcdB, of 57 Clostridium difficile (C. difficile) isolates from a Chinese population were investigated by polymerase chain reaction (PCR) (38 A+B+, 14 A-B+ and 5 A-B−). Quantitative PCR was used to check the expression of these two genes and it was found that the genes were not expressed by all the strains. The absence of tcdA or tcdB expression in certain strains could be due to the lower expression of tcdD and the higher expression of tcdC, which are positive and negative regulators for these two toxin genes, respectively. In addition, the antimicrobial susceptibilities of 57 isolates were investigated. Therefore, these data would aid in the future prevention of CDI outbreaks and improve the understanding of the infection. PMID:25054021

  1. Investigation of toxin gene diversity and antimicrobial resistance of Clostridium difficile strains.

    PubMed

    Zhu, Shanshan; Zhang, Huaping; Zhang, Xinsheng; Wang, Chao; Fan, Guangming; Zhang, Weifeng; Sun, Gang; Chen, Huihong; Zhang, Liming; Li, Zhaoyun

    2014-09-01

    The incidence of Clostridium difficile infection (CDI) has been previously reported in a number of studies. However, data collected from the Chinese population is limited. In the present study, the diversity of the toxin genes, tcdA and tcdB, of 57 Clostridium difficile (C. difficile) isolates from a Chinese population were investigated by polymerase chain reaction (PCR) (38 A(+)B(+), 14 A(-)B(+) and 5 A(-)B(-)). Quantitative PCR was used to check the expression of these two genes and it was found that the genes were not expressed by all the strains. The absence of tcdA or tcdB expression in certain strains could be due to the lower expression of tcdD and the higher expression of tcdC, which are positive and negative regulators for these two toxin genes, respectively. In addition, the antimicrobial susceptibilities of 57 isolates were investigated. Therefore, these data would aid in the future prevention of CDI outbreaks and improve the understanding of the infection. PMID:25054021

  2. Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006.

    PubMed

    Martin, H; Willey, B; Low, D E; Staempfli, H R; McGeer, A; Boerlin, P; Mulvey, M; Weese, J S

    2008-09-01

    Clostridium difficile is the bacterium most commonly surmised to cause antimicrobial- and hospital-associated diarrhea in developed countries worldwide, and such infections are thought to be increasing in frequency and severity. A laboratory-based study was carried out to characterize C. difficile strains isolated from persons in Ontario, Canada, during 2004 to 2006 according to toxin type (enterotoxin A, cytotoxin B, and binary toxin [CDT]), tcdC gene characterization, ribotyping, pulsed-field gel electrophoresis, and toxinotyping. Clostridium difficile was isolated from 1,080/1,152 (94%) samples from 21 diagnostic laboratories. Isolates with toxin profiles A(+) B(+) CDT(-), A(+) B(+) CDT(+), A(-) B(+) CDT(-), and A(-) B(+) CDT(+) accounted for 63%, 34%, 2.4%, and 0.6% of isolates, respectively. Alterations in tcdC were detected in six different ribotypes, including ribotype 027. A total of 39 different ribotypes were identified, with ribotype 027/North American pulsotype 1 (NAP1), an internationally recognized outbreak strain associated with severe disease, being the second most common ribotype (19% of isolates). Transient resistance to metronidazole was identified in 19 (1.8%) isolates. While a large number of ribotypes were found, a few predominated across the province. The high prevalence and wide distribution of ribotype 027/NAP1 are disconcerting in view of the severity of disease associated with it. PMID:18650360

  3. Clonal Spread of a Clostridium difficile Strain with a Complete Set of Toxin A, Toxin B, and Binary Toxin Genes among Polish Patients with Clostridium difficile-Associated Diarrhea

    PubMed Central

    Pituch, Hanna; Kreft, Deborah; Obuch-Woszczatyński, Piotr; Wultańska, Dorota; Meisel-Mikołajczyk, Felicja; Łuczak, Mirosław; van Belkum, Alex

    2005-01-01

    Clinically relevant Clostridium difficile strains usually produce toxins A and B. Some C. difficile strains can produce an additional binary toxin. We report clonality among five strains carrying all toxin genes from Polish patients with C. difficile-associated diarrhea. In another strain, possible recombination between binary toxin genes is documented. PMID:15635019

  4. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.

    PubMed

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-11-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed. PMID:21874277

  5. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  6. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  7. Identification and genetic characterization of Clostridium botulinum serotype A strains from commercially pasteurized carrot juice.

    PubMed

    Marshall, Kristin M; Nowaczyk, Louis; Raphael, Brian H; Skinner, Guy E; Rukma Reddy, N

    2014-12-01

    Clostridium botulinum is an important foodborne pathogen capable of forming heat resistant endospores and producing deadly botulinum neurotoxins (BoNTs). In 2006, C. botulinum was responsible for an international outbreak of botulism attributed to the consumption of commercially pasteurized carrot juice. The purpose of this study was to isolate and characterize strains of C. botulinum from the adulterated product. Carrot juice bottles retrieved from the manufacturing facility were analyzed for the presence of BoNT and BoNT-producing isolates using DIG-ELISA. Toxigenic isolates from the carrot juice were analyzed using pulsed-field gel electrophoresis (PFGE) and DNA microarray analysis to determine their genetic relatedness to the original outbreak strains CDC51348 and CDC51303. PFGE revealed that isolates CJ4-1 and CJ10-1 shared an identical pulsotype with strain CDC51303, whereas isolate CJ5-1 displayed a unique restriction banding pattern. DNA microarray analysis identified several phage related genes unique to strain CJ5-1, and Southern hybridization analysis of XhoI digested and nondigested DNA showed their chromosomal location, while a homolog to pCLI_A009 of plasmid pCLI of C. botulinum serotype Langeland F, was located on a small plasmid. The acquisition or loss of bacteriophages and other mobile genetic elements among C. botulinum strains has epidemiological and evolutionary implications. PMID:25084657

  8. [Life-threatening infections with a new strain of Clostridium difficile].

    PubMed

    Krausz, S; Bessems, M; Boermeester, M A; Kuijper, E J; Visser, C E; Speelman, P

    2005-09-17

    Three men, aged 39, 73, and 66 years, respectively, developed an infection with a new strain ofClostridium difficile, ribotype 027.C.difficile-associated diarrhoea (CDAD) occurred in two patients after multiple abdominal surgery and in the third patient one week after autologous haematopoietic cell transplantation. Within a few days, despite antibiotic therapy, all three patients developed severe (pseudomembranous) colitis with sepsis for which admission to the Intensive Care Unit was required. Two patients underwent (sub)total colectomy and received an intensive course of oral and/or rectal vancomycin. In all patients who develop diarrhoea in hospital, especially during or after treatment with antibiotics or chemotherapeutic agents, an infection with C. difficile ribotype 027 should be suspected. Recent outbreaks of this hypervirulent strain of C. difficile have been reported in Canada, the United States, United Kingdom, and The Netherlands. Demonstration of C. difficile toxin in faeces confirms the clinical suspicion of CDAD and ribotyping of the strain may reveal whether the 027 strain is present. For treatment of these 027 infections, vancomycin is preferred to metronidazole. After a severe course of colitis or in case of recurrence a 'tapering and pulse' course ofvancomycin can be prescribed; alternatively, treatment with bovine antibody-enriched whey may be considered. The introduction of this hypervirulent strain has led to reinforcement of the hygienic measures in accordance with the recommendations of the Dutch Working Party on Infection Prevention and a policy to deter the use of fluoroquinolones. PMID:16201595

  9. Phenotypic characterization of Clostridium botulinum strains isolated from infant botulism cases in Argentina.

    PubMed

    Sagua, M D; Lúquez, C; Barzola, C P; Bianco, M I; Fernández, R A

    2009-01-01

    Infant botulism is the most common form of human botulism; however, its transmission has not been completely explained yet. Some of the most recognized potential sources of Clostridium botulinum spores are the soil, dust, honey and medicinal herbs. In Argentina, 456 cases of infant botulism were reported between 1982 and 2007. C. botulinum type A was identified in 455 of these cases whereas type B was identified in just one case. However, in Argentina, types A, B, E, F, G, and Af have been isolated from environmental sources. It is not clearly known if strains isolated from infant botulism cases have different characteristics from strains isolated from other sources. During this study, 46 C. botulinum strains isolated from infant botulism cases and from environmental sources were typified according to phenotypic characteristics. Biochemical tests, antimicrobial activity, and haemagglutinin-negative botulinum neurotoxin production showed uniformity among all these strains. Despite the variability observed in the botulinum neurotoxin's binding to cellular receptors, no correlation was found between these patterns and the source of the botulinum neurotoxin. However, an apparent geographical clustering was observed, since strains isolated from Argentina had similar characteristics to those isolated from Italy and Japan, but different to those isolated from the United States. PMID:19831311

  10. Molecular characterization of Clostridium perfringens strains isolated from diseased turkeys in Italy.

    PubMed

    Giovanardi, Davide; Drigo, Ilenia; De Vidi, Beatrice; Agnoletti, Fabrizio; Viel, Laura; Capello, Katia; Berto, Giacomo; Bano, Luca

    2016-06-01

    One hundred and six Clostridium perfringens field strains, isolated from diseased turkeys in Italy between 2006 and 2015, were toxinotyped by polymerase chain reaction. Strains were derived from intestines (87), livers (17) and subcutaneous tissues (2). In addition to the four major toxins, strains were also screened for NetB toxin, enterotoxin and beta2 toxin encoding genes. The intestinal gross lesions of turkeys with enteric disorders were statistically studied with respect to the presence of C. perfringens beta2 toxin encoding gene and coccidia in the gut. All the isolates belonged to the toxinotype A and were netB negative. Enterotoxin (cpe) and beta2 toxin (cpb2) encoding genes were detected in two (2.63%) and 76 (71.69%) strains, respectively. Toxinotype results agree with the few published reports concerning the genetic characterization of C. perfringens of turkey origin. On the contrary, the presence of netB and cpb2 genes differs from the results of a previous study where these genes were detected respectively in 6.6% and in 0.5% of the tested strains. Necrotic enteritis in turkeys was not statistically correlated either to the presence of cpb2 gene, or to the synergistic effect operated by coccidia, even though a high percentage of birds with these protozoa in the gut showed necrotic enteritis lesions (64.29%). PMID:26950690

  11. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  12. Draft Genome Sequences of Two Clostridium botulinum Group II (Nonproteolytic) Type B Strains (DB-2 and KAPB-3).

    PubMed

    Petronella, Nicholas; Kenwell, Robyn; Pagotto, Franco; Pightling, Arthur W

    2014-01-01

    Clostridium botulinum is important for food safety and studies of neurotoxins associated with human botulism. We present the draft genome sequences of two strains belonging to group II type B: one collected from Pacific Ocean sediments (DB-2) and another obtained during a botulism outbreak (KAPB-3). PMID:25377702

  13. The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains

    PubMed Central

    2011-01-01

    Background Clostridium difficile is the major cause of antibiotic associated diarrhoea and in recent years its increased prevalence has been linked to the emergence of hypervirulent clones such as the PCR-ribotype 027. Characteristically, C. difficile infection (CDI) occurs after treatment with broad-spectrum antibiotics, which disrupt the normal gut microflora and allow C. difficile to flourish. One of the relatively unique features of C. difficile is its ability to ferment tyrosine to para-cresol via the intermediate para-hydroxyphenylacetate (p-HPA). P-cresol is a phenolic compound with bacteriostatic properties which C. difficile can tolerate and may provide the organism with a competitive advantage over other gut microflora, enabling it to proliferate and cause CDI. It has been proposed that the hpdBCA operon, rarely found in other gut microflora, encodes the enzymes responsible for the conversion of p-HPA to p-cresol. Results We show that the PCR-ribotype 027 strain R20291 quantitatively produced more p-cresol in-vitro and was significantly more tolerant to p-cresol than the sequenced strain 630 (PCR-ribotype 012). Tyrosine conversion to p-HPA was only observed under certain conditions. We constructed gene inactivation mutants in the hpdBCA operon in strains R20291 and 630Δerm which curtails their ability to produce p-cresol, confirming the role of these genes in p-cresol production. The mutants were equally able to tolerate p-cresol compared to the respective parent strains, suggesting that tolerance to p-cresol is not linked to its production. Conclusions C. difficile converts tyrosine to p-cresol, utilising the hpdBCA operon in C. difficile strains 630 and R20291. The hypervirulent strain R20291 exhibits increased production of and tolerance to p-cresol, which may be a contributory factor to the virulence of this strain and other hypervirulent PCR-ribotype 027 strains. PMID:21527013

  14. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    SciTech Connect

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  15. Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile.

    PubMed

    Vohra, Prerna; Poxton, Ian R

    2011-05-01

    Clostridium difficile is a major cause of nosocomial diarrhoea. The toxins that it produces (TcdA and TcdB) are responsible for the characteristic pathology of C. difficile infection (CDI), while its spores persist in the environment, causing its widespread transmission. Many different strains of C. difficile exist worldwide and the epidemiology of the strains is ever-changing: in Scotland, PCR ribotype 012 was once prevalent, but currently ribotypes 106, 001 and 027 are endemic. This study aimed to identify the differences among these ribotypes with respect to their growth, and toxin and spore production in vitro. It was observed that the hypervirulent ribotype 027 produces significantly more toxin than the other ribotypes in the exponential and stationary phases of growth. Further, the endemic strains produce significantly more toxins and spores than ribotype 012. Of note was the observation that tcdC expression did not decrease into the stationary phase of growth, implying that it may have a modulatory rather than repressive effect on toxin production. Further, the increased expression of tcdE in ribotype 027 suggests its importance in the release of the toxins. It can thus be concluded that several genotypic and phenotypic traits might synergistically contribute to the hypervirulence of ribotype 027. These observations might suggest a changing trend towards increased virulence in the strains currently responsible for CDI. PMID:21330434

  16. Screening of Bacteriocin-producing Enterococcus faecalis Strains for Antagonistic Activities against Clostridium perfringens

    PubMed Central

    Kim, So-Young

    2014-01-01

    This study was conducted to isolate and characterize bacteriocin-producing bacteria against Clostridium perfringens (C. perfringens) from domestic animals to determine their usefulness as probiotics. Bacteriocin-producing bacteria were isolated from pig feces by the spot-on-lawn method. A total of 1,370 bacterial stains were isolated, and six were tentatively selected after identifying the inhibitory activity against the pathogenic indicator C. perfringens KCTC 3269 and KCTC 5100. The selected strains were identified as Enterococcus faecalis (E. faecalis) by 16s rRNA sequencing. Most of the isolated bacterial strains were resistant to 0.5% bile salts for 48 h and remained viable after 2 h at pH 3.0. Some E. faecalis also showed strong inhibitory activity against Listeria monocytogenes KCTC 3569, KCTC 3586 and KCTC 3710. In the present study, we finally selected E. faecalis AP 216 and AP 45 strain based on probiotic selection criteria such as antimicrobial activity against C. perfringens and tolerance to acid and bile salts. The bacteriocins of E. faecalis AP 216 and AP 45 strains were highly thermostable, showing anticlostridial activities even after incubation at 121℃ for 15 min. These bacteriocinproducing bacteria and/or bacteriocins could be used in feed manufacturing as probiotics as an alternative to antibiotics in the livestock industry. PMID:26761495

  17. Genetically Diverse Clostridium difficile Strains Harboring Abundant Prophages in an Estuarine Environment

    PubMed Central

    Hargreaves, K. R.; Colvin, H. V.; Patel, K. V.; Clokie, J. J. P.

    2013-01-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in health care settings across the world. Despite its pathogenic capacity, it can be carried asymptomatically and has been found in terrestrial and marine ecosystems outside hospital environments. Little is known about these environmental strains, and few studies have been conducted on estuarine systems. Although prophage abundance and diversity are known to occur within clinical strains, prophage carriage within environmental strains of C. difficile has not previously been explored. In this study, we isolated C. difficile from sites sampled in two consecutive years in an English estuarine system. Isolates were characterized by PCR ribotype, antibiotic resistance, and motility. The prevalence and diversity of prophages were detected by transmission electron microscopy (TEM) and a phage-specific PCR assay. We show that a dynamic and diverse population of C. difficile exists within these sediments and that it includes isolates of ribotypes which are associated with severe clinical infections and those which are more frequently isolated from outside the hospital environment. Prophage carriage was found to be high (75%), demonstrating that phages play a role in the biology of these strains. PMID:23913427

  18. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review.

    PubMed

    Lacey, Jake A; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J

    2016-06-01

    The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease. PMID:26949841

  19. Strain engineering of graphene: a review

    NASA Astrophysics Data System (ADS)

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-01

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called ``straintronics''. In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected.

  20. Clostridium perfringens Type A Food Poisoning II. Response of the Rabbit Ileum as an Indication of Enteropathogenicity of Strains of Clostridium perfringens in Human Beings

    PubMed Central

    Strong, Dorothy H.; Duncan, Charles L.; Perna, Giuseppe

    1971-01-01

    The effect of feeding human beings individual strains of Clostridium perfringens or culture filtrates thereof was examined. The strains selected for challenge included both those which had previously been shown to produce fluid accumulation in the ligated ileum or overt diarrhea when injected into the nonligated ileum of the rabbit, or had produced both, and those which did not regularly produce these responses. Challenge doses prepared by allowing each strain to grow in beef stew for 3 hr at 46 C resulted in a 61% incidence of diarrhea when rabbit-positive cells were used. No diarrhea occurred among the subjects fed rabbit-negative strains prepared in a similar manner. The procedures employed in preparing the challenge dose appeared to influence the results obtained. When cell-free filtrates were fed, 4 of 15 persons consuming filtrates from rabbit-positive strains developed diarrhea. All subjects fed filtrates from rabbit-negative strains remained free from diarrhea. Serological tests were carried out to compare the identity of the strains of C. perfringens consumed by the subjects and those excreted in the feces. Heat resistance measured as D100 values varied greatly among the rabbit-positive strains. PMID:16557937

  1. Draft Genome Sequence of Bivalent Clostridium botulinum Strain IBCA10-7060, Encoding Botulinum Neurotoxin B and a New FA Mosaic Type.

    PubMed

    Gonzalez-Escalona, Narjol; Thirunavukkarasu, Nagarajan; Singh, Ajay; Toro, Magaly; Brown, Eric W; Zink, Donald; Rummel, Andreas; Sharma, Shashi K

    2014-01-01

    Here we report the genome sequence of a Clostridium botulinum strain IBCA10-7060 producing botulinum neurotoxin serotype B and a new toxin serotype. Multilocus sequence typing analysis revealed that this strain belongs to a new sequence type, and whole-genome single nucleotide polymorphism analysis showed that this strain clustered with strains in lineage 2 from group I. PMID:25502671

  2. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children

    PubMed Central

    Ling, Zongxin; Liu, Xia; Jia, Xiaoyun; Cheng, Yiwen; Luo, Yueqiu; Yuan, Li; Wang, Yuezhu; Zhao, Chunna; Guo, Shu; Li, Lanjuan; Xu, Xiwei; Xiang, Charlie

    2014-01-01

    Increasing evidence suggests that altered intestinal microbial composition and function result in an increased risk of Clostridium difficile-associated diarrhoea (CDAD); however, the specific changes of intestinal microbiota in children suffering from CDAD and their associations with C. difficile strain toxigenicity are poorly understood. High-throughput pyrosequencing showed that reduced faecal bacterial diversity and dramatic shifts of microbial composition were found in children with CDAD. The Firmicutes/Bacteroidetes ratio was increased significantly in patients with CDAD, which indicated that dysbiosis of faecal microbiota was closely associated with CDAD. C. difficile infection resulted in an increase in lactate-producing phylotypes, with a corresponding decrease in butyrate-producing bacteria. The decrease in butyrate and lactate buildup impaired intestinal colonisation resistance, which increased the susceptibility to C. difficile colonisation. Strains of C. difficile which were positive for both toxin A and toxin B reduced faecal bacterial diversity to a greater degree than strains that were only toxin B-positive, and were associated with unusually abundant Enterococcus, which implies that the C. difficile toxins have different impacts on the faecal microbiota of children. Greater understanding of the relationships between disruption of the normal faecal microbiota and colonisation with C. difficile that produces different toxins might lead to improved treatment. PMID:25501371

  3. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children

    NASA Astrophysics Data System (ADS)

    Ling, Zongxin; Liu, Xia; Jia, Xiaoyun; Cheng, Yiwen; Luo, Yueqiu; Yuan, Li; Wang, Yuezhu; Zhao, Chunna; Guo, Shu; Li, Lanjuan; Xu, Xiwei; Xiang, Charlie

    2014-12-01

    Increasing evidence suggests that altered intestinal microbial composition and function result in an increased risk of Clostridium difficile-associated diarrhoea (CDAD); however, the specific changes of intestinal microbiota in children suffering from CDAD and their associations with C. difficile strain toxigenicity are poorly understood. High-throughput pyrosequencing showed that reduced faecal bacterial diversity and dramatic shifts of microbial composition were found in children with CDAD. The Firmicutes/Bacteroidetes ratio was increased significantly in patients with CDAD, which indicated that dysbiosis of faecal microbiota was closely associated with CDAD. C. difficile infection resulted in an increase in lactate-producing phylotypes, with a corresponding decrease in butyrate-producing bacteria. The decrease in butyrate and lactate buildup impaired intestinal colonisation resistance, which increased the susceptibility to C. difficile colonisation. Strains of C. difficile which were positive for both toxin A and toxin B reduced faecal bacterial diversity to a greater degree than strains that were only toxin B-positive, and were associated with unusually abundant Enterococcus, which implies that the C. difficile toxins have different impacts on the faecal microbiota of children. Greater understanding of the relationships between disruption of the normal faecal microbiota and colonisation with C. difficile that produces different toxins might lead to improved treatment.

  4. Flagellin Diversity in Clostridium botulinum Groups I and II: a New Strategy for Strain Identification▿

    PubMed Central

    Paul, Catherine J.; Twine, Susan M.; Tam, Kevin J.; Mullen, James A.; Kelly, John F.; Austin, John W.; Logan, Susan M.

    2007-01-01

    Strains of Clostridium botulinum are traditionally identified by botulinum neurotoxin type; however, identification of an additional target for typing would improve differentiation. Isolation of flagellar filaments and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that C. botulinum produced multiple flagellin proteins. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis of in-gel tryptic digests identified peptides in all flagellin bands that matched two homologous tandem flagellin genes identified in the C. botulinum Hall A genome. Designated flaA1 and flaA2, these open reading frames encode the major structural flagellins of C. botulinum. Colony PCR and sequencing of flaA1/A2 variable regions classified 80 environmental and clinical strains into group I or group II and clustered isolates into 12 flagellar types. Flagellar type was distinct from neurotoxin type, and epidemiologically related isolates clustered together. Sequencing a larger PCR product, obtained during amplification of flaA1/A2 from type E strain Bennett identified a second flagellin gene, flaB. LC-MS analysis confirmed that flaB encoded a large type E-specific flagellin protein, and the predicted molecular mass for FlaB matched that observed by SDS-PAGE. In contrast, the molecular mass of FlaA was 2 to 12 kDa larger than the mass predicted by the flaA1/A2 sequence of a given strain, suggesting that FlaA is posttranslationally modified. While identification of FlaB, and the observation by SDS-PAGE of different masses of the FlaA proteins, showed the flagellin proteins of C. botulinum to be diverse, the presence of the flaA1/A2 gene in all strains examined facilitates single locus sequence typing of C. botulinum using the flagellin variable region. PMID:17351097

  5. Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117.

    PubMed

    Yan, Yu; Basu, Anindya; Li, Tinggang; He, Jianzhong

    2016-08-01

    Lignocellulosic biomass has great potential for use as a carbon source for the production of second-generation biofuels by solventogenic bacteria. Here we describe the production of butanol by a newly discovered wild-type Clostridium species strain G117 with xylan as the sole carbon source for fermentation. Strain G117 produced 0.86 ± 0.07 g/L butanol and 53.4 ± 0.05 mL hydrogen directly from 60 g/L xylan provided that had undergone no prior enzymatic hydrolysis. After process optimization, the amount of butanol produced from xylan was increased to 1.24 ± 0.37 g/L. In contrast to traditional acetone-butanol-ethanol (ABE) solventogenic fermentation, xylan supported fermentation in strain G117 and negligible amount of acetone was produced. The expression of genes normally associated with acetone production (adc and ctfB2) were down-regulated compared to xylose fed cultures. This lack of acetone production may greatly simplify downstream separation process. Moreover, higher amount of butanol (2.94 g/L) was produced from 16.99 g/L xylo-oligosaccharides, suggesting a major role for strain G117 in butanol production from xylan and its oligosaccharides. The unique ability of strain G117 to produce a considerable amount of butanol directly from xylan without producing undesirable fermentation byproducts opens the door to the possibility of cost-effective biofuels production in a single step. Biotechnol. Bioeng. 2016;113: 1702-1710. © 2016 Wiley Periodicals, Inc. PMID:26803924

  6. Structure and genetic content of the megaplasmids of neurotoxigenic clostridium butyricum type E strains from Italy.

    PubMed

    Iacobino, Angelo; Scalfaro, Concetta; Franciosa, Giovanna

    2013-01-01

    We determined the genetic maps of the megaplasmids of six neutoroxigenic Clostridium butyricum type E strains from Italy using molecular and bioinformatics techniques. The megaplasmids are circular, not linear as we had previously proposed. The differently-sized megaplasmids share a genetic region that includes structural, metabolic and regulatory genes. In addition, we found that a 168 kb genetic region is present only in the larger megaplasmids of two tested strains, whereas it is absent from the smaller megaplasmids of the four remaining strains. The genetic region unique to the larger megaplasmids contains, among other features, a locus for clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated (cas) genes, i.e. a bacterial adaptive immune system providing sequence-specific protection from invading genetic elements. Some CRISPR spacer sequences of the neurotoxigenic C. butyricum type E strains showed homology to prophage, phage and plasmid sequences from closely related clostridia species or from distant species, all sharing the intestinal habitat, suggesting that the CRISPR locus might be involved in the microorganism adaptation to the human or animal intestinal environment. Besides, we report here that each of four distinct CRISPR spacers partially matched DNA sequences of different prophages and phages, at identical nucleotide locations. This suggests that, at least in neurotoxigenic C. butyricum type E, the CRISPR locus is potentially able to recognize the same conserved DNA sequence of different invading genetic elements, besides targeting sequences unique to previously encountered invading DNA, as currently predicted for a CRISPR locus. Thus, the results of this study introduce the possibility that CRISPR loci can provide resistance to a wider range of invading DNA elements than previously appreciated. Whether it is more advantageous for the peculiar neurotoxigenic C. butyricum type E strains to maintain or to lose the

  7. Structure and Genetic Content of the Megaplasmids of Neurotoxigenic Clostridium butyricum Type E Strains from Italy

    PubMed Central

    Iacobino, Angelo; Scalfaro, Concetta; Franciosa, Giovanna

    2013-01-01

    We determined the genetic maps of the megaplasmids of six neutoroxigenic Clostridium butyricum type E strains from Italy using molecular and bioinformatics techniques. The megaplasmids are circular, not linear as we had previously proposed. The differently-sized megaplasmids share a genetic region that includes structural, metabolic and regulatory genes. In addition, we found that a 168 kb genetic region is present only in the larger megaplasmids of two tested strains, whereas it is absent from the smaller megaplasmids of the four remaining strains. The genetic region unique to the larger megaplasmids contains, among other features, a locus for clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated (cas) genes, i.e. a bacterial adaptive immune system providing sequence-specific protection from invading genetic elements. Some CRISPR spacer sequences of the neurotoxigenic C. butyricum type E strains showed homology to prophage, phage and plasmid sequences from closely related clostridia species or from distant species, all sharing the intestinal habitat, suggesting that the CRISPR locus might be involved in the microorganism adaptation to the human or animal intestinal environment. Besides, we report here that each of four distinct CRISPR spacers partially matched DNA sequences of different prophages and phages, at identical nucleotide locations. This suggests that, at least in neurotoxigenic C. butyricum type E, the CRISPR locus is potentially able to recognize the same conserved DNA sequence of different invading genetic elements, besides targeting sequences unique to previously encountered invading DNA, as currently predicted for a CRISPR locus. Thus, the results of this study introduce the possibility that CRISPR loci can provide resistance to a wider range of invading DNA elements than previously appreciated. Whether it is more advantageous for the peculiar neurotoxigenic C. butyricum type E strains to maintain or to lose the

  8. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.

    PubMed

    Bormann, Sebastian; Baer, Zachary C; Sreekumar, Sanil; Kuchenreuther, Jon M; Dean Toste, F; Blanch, Harvey W; Clark, Douglas S

    2014-09-01

    Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was

  9. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.

    PubMed

    Merrigan, Michelle; Venugopal, Anilrudh; Mallozzi, Michael; Roxas, Bryan; Viswanathan, V K; Johnson, Stuart; Gerding, Dale N; Vedantam, Gayatri

    2010-10-01

    Toxigenic Clostridium difficile strains produce two toxins (TcdA and TcdB) during the stationary phase of growth and are the leading cause of antibiotic-associated diarrhea. C. difficile isolates of the molecular type NAP1/027/BI have been associated with severe disease and hospital outbreaks worldwide. It has been suggested that these "hypervirulent" strains produce larger amounts of toxin and that a mutation in a putative negative regulator (TcdC) allows toxin production at all growth phases. To rigorously explore this possibility, we conducted a quantitative examination of the toxin production of multiple hypervirulent and nonhypervirulent C. difficile strains. Toxin gene (tcdA and tcdB) and toxin gene regulator (tcdR and tcdC) expression was also monitored. To obtain additional correlates for the hypervirulence phenotype, sporulation kinetics and efficiency were measured. In the exponential phase, low basal levels of tcdA, tcdB, and tcdR expression were evident in both hypervirulent and nonhypervirulent strains, but contrary to previous assumptions, toxin levels were below the detectable thresholds. While hypervirulent strains displayed robust toxin production during the stationary phase of growth, the amounts were not significantly different from those of the nonhypervirulent strains tested; further, total toxin amounts were directly proportional to tcdA, tcdB, and tcdR gene expression. Interestingly, tcdC expression did not diminish in stationary phase, suggesting that TcdC may have a modulatory rather than a strictly repressive role. Comparative genomic analyses of the closely related nonhypervirulent strains VPI 10463 (the highest toxin producer) and 630 (the lowest toxin producer) revealed polymorphisms in the tcdR ribosome binding site and the tcdR-tcdB intergenic region, suggesting that a mechanistic basis for increased toxin production in VPI 10463 could be increased TcdR translation and read-through transcription of the tcdA and tcdB genes

  10. Primary structure of O-linked carbohydrate chains in the cellulosome of different Clostridium thermocellum strains.

    PubMed

    Gerwig, G J; Kamerling, J P; Vliegenthart, J F; Morag, E; Lamed, R; Bayer, E A

    1991-02-26

    The cell-free forms of the multiple cellulase-containing protein complex (cellulosome), isolated from the cellulolytic bacterium Clostridium thermocellum strains YS, ATCC 27405 and LQRI, have a total carbohydrate content of 5-7% (by mass), consisting of O-linked oligosaccharide chains. The carbohydrate chains were liberated by alkaline-borohydride treatment and fractionated as oligosaccharide alditols via gel-permeation chromatography and HPLC. The fractions were investigated by 500-MHz 1H-NMR spectroscopy in combination with monosaccharide and methylation analysis and with fast-atom-bombardment mass spectrometry (FAB-MS). In addition to the previously described major oligosaccharide, (formula; see text) [Gerwig, G. J., de Waard, P., Kamerling, J. P., Vliegenthart, J. F. G., Morgenstern, E., Lamed, R. & Bayer, E. A. (1989) J. Biol. Chem. 264, 1027-1035], the following partial structures of this compound could be established: (formula; see text). Cell-free and cell-associated forms of the cellulosome of C. thermocellum, as determined for strain YS, have the same oligosaccharide pattern. Based on the oligosaccharide structures, a biosynthetic pathway is suggested. PMID:2001693

  11. Multiple-locus variable-number tandem repeat analysis for strain typing of Clostridium perfringens.

    PubMed

    Sawires, Youhanna S; Songer, J Glenn

    2005-10-01

    Clostridium perfringens is ubiquitous in the environment and causes diseases in man and animals, with syndromes ranging from enteritis, enterotoxemia, and sudden death to food poisoning and gas gangrene. Understanding the epidemiology of these infections and of the evolution of virulence in C. perfringens necessitate an efficient, time and cost effective strain typing method. Multiple-locus variable-number tandem repeat analysis (MLVA) has been applied to typing of other pathogens and we describe here the development of a MLVA scheme for C. perfringens. We characterized five variable tandem repeat (VNTR) loci, four of which are contained within protein encoding genes and screened 112 C. perfringens isolates to evaluate typability, reproducibility, and discriminatory power of the scheme. All the isolates were assigned a MLVA genotype and the technique has excellent reproducibility, with a numerical index of discrimination for the five VNTR loci of 0.995. Thus MLVA is an efficient tool for C. perfringens strain typing, and being PCR based makes it rapid, easy, and cost effective. In addition, it can be employed in epidemiological, ecological, and evolutionary investigations of the organism. PMID:16701582

  12. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain.

    PubMed

    O'Connor, Jennifer R; Johnson, Stuart; Gerding, Dale N

    2009-05-01

    Rates and severity of Clostridium difficile infection (CDI) in hospitals in North America and Europe have increased since 2000 and correlate with dissemination of an epidemic strain characterized by higher than usual toxin A and B production, the presence of a third toxin, binary toxin, and high-level resistance to fluoroquinolone antibiotics. The strain, which is restriction endonuclease analysis group BI, pulse-field gel electrophoresis type NAP1, and polymerase chain reaction ribotype 027, is designated BI/NAP1/027. How this strain has become so widely distributed geographically and produces such severe CDI is the subject of active investigation. The deletion at position 117 of the tcdC gene, a repressor of toxin A and B production, is one possible contributor to increased levels of the toxins. The role of binary toxin is unknown. Recent isolates of BI/NAP1/027 were found to be resistant to fluoroquinolones, which is likely to contribute to the dissemination of this strain. Other virulence factors such as increased sporulation and surface layer protein adherence are also under investigation. Infections caused by this organism are particularly frequent among elderly hospitalized patients, in whom the attributable 30-day mortality is greater than 5%. Major risk factors for BI/NAP1/027 infection include advanced age, hospitalization, and exposure to specific antimicrobials, especially fluoroquinolones and cephalosporins. When CDI is severe, vancomycin treatment is more effective than metronidazole; for mild disease either agent can be used. Control of hospital outbreaks caused by BI/NAP1/027 is difficult but possible through a combination of barrier precautions, environmental cleaning, and antimicrobial stewardship. PMID:19457419

  13. Isolation and Molecular Characterization of Clostridium difficile Strains from Patients and the Hospital Environment in Belarus

    PubMed Central

    Titov, Leonid; Lebedkova, Natalia; Shabanov, Alexander; Tang, Yajarayma J.; Cohen, Stuart H.; Silva, Joseph

    2000-01-01

    Toxigenic Clostridium difficile is the most common etiologic agent of hospital-acquired diarrhea in developed countries. The role of this pathogen in nosocomial diarrhea in Eastern Europe has not been clearly established. The goal of this study was to determine the prevalence of C. difficile in patients and the hospital environment in Belarus and to characterize these isolates as to the presence of toxin genes and their molecular type. C. difficile was isolated from 9 of 509 (1.8%) patients analyzed and recovered from 28 of 1,300 (2.1%) environmental sites cultured. A multiplex PCR assay was used to analyze the pathogenicity locus (PaLoc) of all isolates, and strain identity was determined by an arbitrarily primed PCR (AP-PCR). The targeted sequences for all the genes in the PaLoc were amplified in all C. difficile strains examined. A predominantly homogenous group of strains was found among these isolates, with five major AP-PCR groups being identified. Eighty-three percent of environmental isolates were classified into two groups, while patient isolates grouped into three AP-PCR types, two of which were also found in the hospital environment. Although no data on the role of C. difficile infection or epidemiology of C. difficile-associated diarrhea (CDAD) in this country exist, the isolation of toxigenic C. difficile from the hospital environment suggests that this pathogen may be responsible for cases of diarrhea of undiagnosed origin and validates our effort to further investigate the significance of CDAD in Eastern Europe. PMID:10699022

  14. New Role for Human α-Defensin 5 in the Fight against Hypervirulent Clostridium difficile Strains

    PubMed Central

    Baldan, Rossella; Bianchini, Valentina; Ossi, Cristina; Cichero, Paola; Cirillo, Daniela M.

    2014-01-01

    Clostridium difficile infection (CDI), one of the most common hospital-acquired infections, is increasing in incidence and severity with the emergence and diffusion of hypervirulent strains. CDI is precipitated by antibiotic treatment that destroys the equilibrium of the gut microbiota. Human α-defensin 5 (HD5), the most abundant enteric antimicrobial peptide, is a key regulator of gut microbiota homeostasis, yet it is still unknown if C. difficile, which successfully evades killing by other host microbicidal peptides, is susceptible to HD5. We evaluated, by means of viability assay, fluorescence-activated cell sorter (FACS) analysis, and electron microscopy, the antimicrobial activities of α-defensins 1 and 5 against a panel of C. difficile strains encompassing the most prevalent epidemic and hypervirulent PCR ribotypes in Europe (012, 014/020, 106, 018, 027, and 078). Here we show that (i) concentrations of HD5 within the intestinal physiological range produced massive C. difficile cell killing; (ii) HD5 bactericidal activity was mediated by membrane depolarization and bacterial fragmentation with a pattern of damage peculiar to C. difficile bacilli, compared to commensals like Escherichia coli and Enterococcus faecalis; and (iii) unexpectedly, hypervirulent ribotypes were among the most susceptible to both defensins. These results support the notion that HD5, naturally present at very high concentrations in the mucosa of the small intestine, could indeed control the very early steps of CDI by killing C. difficile bacilli at their germination site. As a consequence, HD5 can be regarded as a good candidate for the containment of hypervirulent C. difficile strains, and it could be exploited in the therapy of CDI and relapsing C. difficile-associated disease. PMID:25547793

  15. Identification of Novel Pathogenicity Loci in Clostridium perfringens Strains That Cause Avian Necrotic Enteritis

    PubMed Central

    Parreira, Valeria R.; Marri, Pradeep R.; Rosey, Everett L.; Gong, Joshua; Songer, J. Glenn; Vedantam, Gayatri; Prescott, John F.

    2010-01-01

    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes ∼85 and ∼70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne. PMID:20532244

  16. Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis.

    PubMed

    Lepp, Dion; Roxas, Bryan; Parreira, Valeria R; Marri, Pradeep R; Rosey, Everett L; Gong, Joshua; Songer, J Glenn; Vedantam, Gayatri; Prescott, John F

    2010-01-01

    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes approximately 85 and approximately 70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne. PMID:20532244

  17. In vitro activity of MCB3681 against Clostridium difficile strains.

    PubMed

    Rashid, Mamun-Ur; Dalhoff, Axel; Weintraub, Andrej; Nord, Carl Erik

    2014-08-01

    One hundred fourteen Clostridium difficile strains were collected from 67 patients and analyzed for the presence of C. difficile toxin B by the cell cytotoxoicity neutralization assay, genes for toxin A, toxin B, binary toxin and TcdC deletion by PCR. All strains were also PCR-ribotyped. The MICs of the isolates were determined against MCB3681 and nine other antimicrobial agents by the agar dilution method. All isolates were positive for toxin B as well as for toxin A and B genes. In addition, 13 isolates were positive for the binary toxin genes. Thirty-two different ribotypes were identified. No strain of ribotype 027 was found. All 114 isolates were sensitive to MCB3681 (0.008-0.5 mg/l), cadazolid (0.064-0.5 mg/l), fidaxomicin (0.008-0.125 mg/l), metronidazole (0.125-2 mg/l), vancomycin (0.125-1 mg/l) and tigecycline (0.032-0.25 mg/l). Three isolates were resistant to linezolid (8 mg/l), 12 isolates were resistant to moxifloxacin (8-32 mg/l), 87 isolates were resistant to clindamycin (8-256 mg/l) and 107 isolates were resistant to ciprofloxacin (8-256 mg/l). No association between toxins A, B and binary toxin, ribotypes and the sensitivity to MCB3681 could be found. MCB3681 has a potent in vitro activity against C. difficile. PMID:25016084

  18. Fulminant colitis from Clostridium difficile infection, the epidemic strain ribotype 027, in Japan.

    PubMed

    Nakamura, Itaru; Yamaguchi, Tetsuo; Tsukimori, Ayaka; Sato, Akihiro; Fukushima, Shinji; Mizuno, Yasutaka; Matsumoto, Tetsuya

    2014-06-01

    In December 2012, a 32-year-old woman with no previous medical history and no previous antibiotic treatment had a fever and diarrhea 2 days after a cesarean section in which cefazolin was used as a prophylactic antimicrobial agent. She was transferred to our hospital 5 days after the cesarean for severe colitis. A rapid test of stool for Clostridium difficile toxin A and B was positive. Although oral vancomycin (0.5-2.0 g/day) and intravenous immunoglobulin (5 g/day) were administered after her transfer, 7 days after admission emergency exploratory surgery was performed because of poor response to therapy. Bowel perforation was noted and a temporary colostomy was created without colectomy. Vancomycin (2.0 g/day) was administered via the colostomy, in addition to a vancomycin enema (2.0 g/day), oral metronidazole (1500 mg/day), and oral vancomycin (2.0 g/day). Three days after the operation, linezolid (1200 mg/day IV) was added. She was treated with antibiotics against C. difficile for a total of 18 days after the operation. The same strain was not isolated from other patients in the same ward. Microbiological analysis of the isolate revealed housekeeping gene (tpi), toxin A gene (tcdA), toxin B gene (tcdB), and binary toxin gene (cdtA and cdtB). DNA sequencing of tcdC revealed a base 117 deletion and contained an 18-bp tcdC deletion. PCR ribotyping showed ribotype 027 patterns. The MIC of moxifloxacin was >32 μg/ml, indicating resistance to fluoroquinolones. This isolate was considered as the epidemic strain. Our case of fulminant colitis is apparently the first case involving the epidemic strain ribotype 027 in Japan. PMID:24726377

  19. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants].

    PubMed

    Votava, M; Slitrová, B

    2009-02-01

    An important factor in the prevention of nosocomial outbreaks caused by Clostridium difficile ribotype 027 is the disinfection of a patient environment by reliable sporicidal disinfectants. Sporicidal activity of particular agents is tested on spores of Bacillus subtilis. Questions are brought up if the disinfectant which works on B. subtilis spores will be equally effective on the spores of C. difficile. Therefore we have compared the effects of five disinfectants available on the Czech market on the spores of collection strains of both microbes and on the spores of ten C. difficile field strains isolated from feces of hospitalized patients. The effective substances were: disinfectant No. 1 chloramine B, No. 2 chlorine dioxide, No. 3 formaldehyde and ethan-2-dion, No. 4 peracetic and acetic acids and hydrogen peroxide, No. 5 ethanol and propan-2-ol. The testing was performed using the dilution neutralization method according to (SN EN 13704, the agent reducing the number of spores by more than 3 orders was considered sporicidal. In addition to the standard time 60 min a 15-minutes exposition was used and the effect was tested also under the protein burden. Disinfectant No. 1 showed better effect on the C. difficile than B. subtilis spores, even in lower (1%) concentration. Similarly, the sensitivity of the C. difficile spores to disinfectants No. 2 and 3 was somewhat higher. The sporicidity of the disinfectant No. 4 was so high that it reduced the number of spores of all strains within 15 minutes by more than 4 orders; possible difference in the susceptibility of spores was not observed. Whereas the disinfectant No. 5 was not reliably effective on the spores of B. subtilis, surprisingly it showed the sporicidal effect on the spores of field C. difficile strains. We conclude that spores of field C. difficile strains in particular turned out to be more sensitive to disinfectants than the spores of the collection strain ofB. subtilis. Therefore B. subtilis remains

  20. Draft Genome Sequence of Clostridium sporogenes Strain UC9000 Isolated from Raw Milk.

    PubMed

    La Torre, Angela; Bassi, Daniela; Zotta, Teresa; Orrù, Luigi; Lamontanara, Antonella; Cocconcelli, Pier Sandro

    2016-01-01

    Clostridium sporogenesis a causative agent of food spoilage and is often used as the nontoxigenic surrogate forClostridium botulinum Here, we described the draft genome sequence and annotation ofC. sporogenesstrain UC9000 isolated from raw milk. PMID:27081128

  1. Isolation of a new butanol-producing Clostridium strain: high level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicum isolate.

    PubMed

    Berezina, Oksana V; Brandt, Agnieszka; Yarotsky, Sergey; Schwarz, Wolfgang H; Zverlov, Vladimir V

    2009-10-01

    New isolates of solventogenic bacteria exhibited high hemicellulolytic activity. They produced butanol and acetone with high selectivity for butanol (about 80% of butanol from the total solvent yield). Their 16S rDNA sequence was 99% identical to that of Clostridium saccharobutylicum. The genes responsible for the last steps of solventogenesis and encoding crotonase, butyryl-CoA dehydrogenase, electron-transport protein subunits A and B, 3-hydroxybutyryl-CoA dehydrogenase, alcohol dehydrogenase, CoA-transferase (subunits A and B), acetoacetate decarboxylase, and aldehyde dehydrogenase were identified in the new C. saccharobutylicum strain Ox29 and cloned into Escherichia coli. The genes for crotonase, butyryl-CoA dehydrogenase, electron-transport protein subunits A and B, and 3-hydroxybutyryl-CoA dehydrogenase composed the bcs-operon. A monocistronic operon containing the alcohol dehydrogenase gene was located downstream of the bcs-operon. Genes for aldehyde dehydrogenase, CoA-transferase (subunits A and B), and acetoacetate decarboxylase composed the sol-operon. The gene sequences and the gene order within the sol- and bcs-operons of C. saccharobutylicum Ox29 were most similar to those of Clostridium beijerinckii. The activity of some of the bcs-operon genes, expressed in heterologous E. coli, was determined. PMID:19674858

  2. Safety assessment of the Clostridium butyricum MIYAIRI 588® probiotic strain including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo.

    PubMed

    Isa, K; Oka, K; Beauchamp, N; Sato, M; Wada, K; Ohtani, K; Nakanishi, S; McCartney, E; Tanaka, M; Shimizu, T; Kamiya, S; Kruger, C; Takahashi, M

    2016-08-01

    Probiotics are live microorganisms ingested for the purpose of conferring a health benefit on the host. Development of new probiotics includes the need for safety evaluations that should consider factors such as pathogenicity, infectivity, virulence factors, toxicity, and metabolic activity. Clostridium butyricum MIYAIRI 588(®) (CBM 588(®)), an anaerobic spore-forming bacterium, has been developed as a probiotic for use by humans and food animals. Safety studies of this probiotic strain have been conducted and include assessment of antimicrobial sensitivity, documentation of the lack of Clostridium toxin genes, and evaluation of CBM 588(®) on reproductive and developmental toxicity in a rodent model. With the exception of aminoglycosides, to which anaerobes are intrinsically resistant, CBM 588(®) showed sensitivity to all antibiotic classes important in human and animal therapeutics. In addition, analysis of the CBM 588(®) genome established the absence of genes for encoding for α, β, or ε toxins and botulin neurotoxins types A, B, E, or F. There were no deleterious reproductive and developmental effects observed in mice associated with the administration of CBM 588(®) These data provide further support for the safety of CBM 588(®) for use as a probiotic in animals and humans. PMID:26437792

  3. [Progress on engineered strains for ethanol production].

    PubMed

    Wang, Fan-qiang; Xu, Ping

    2006-08-01

    With the 21 century's coming, the era of cheap oil is coming to the end. There has been an increasing worldwide interest in fuel ethanol. In the last two decades, lots of work has been done to develop strains for ethanol producing. Research progress on metabolic engineering of strains for fuel ethanol production is summarized, including genetically engineered Saccharomyces cerevisiae to utilize starch, pentose and cellulose, Zymomonas mobilis to ferment arabinose and xylose, Escherichia coli and Klebsiella oxytoca to introduce heterogenous ethanol production pathway. The aim of engineering these strains is to obtain an ideal microorganism which can converse the available carbon sources to ethanol rapidly and efficiently with high tolerance to ethanol and to inhibitory components in the cheap materials such as lignocellulose hydrolysate. The importance of fuel ethanol will be a stimulus to develop engineered hardy strains to utilize cheap materials for high ethanol concentration production. Since both Saccharomyces cerevisiae and Zymomonas mobilis are generally regarded as safe (GRAS), genetically engineered Saccharomyces cerevisiae which can utilize raw starch directly and recombinant Zymomonas mobilis which can ferment glucose, arabinose and xylose in the lignocellulose hydrolysate have potential application to industry in the near future. PMID:17037078

  4. Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB.

    PubMed Central

    Gälli, R; McCarty, P L

    1989-01-01

    Batch experiments were conducted to examine the effects of high concentrations of 1,1,1-trichloroethane (TCA) on the biotransformation of TCA by Clostridium sp. strain TCAIIB. The biotic dehalogenation of TCA to 1,1-dichloroethane by nongrowing cells was measured at 35 degrees C, and the data were used to obtain the kinetic parameters of the Monod relationship half-velocity coefficient Ks (31 microM) and the coefficient of maximum rate of TCA biotransformation (kTCA; 0.28 mumol per mg per day). The yield of biomass decreased with an increase in the TCA concentration, although TCA concentrations up to 750 microM did not completely inhibit bacterial growth. Also, kTCA was higher in the presence of high concentrations of TCA. A mathematical model based on a modified Monod equation was used to describe the biotransformation of TCA. The abiotic transformation of TCA to 1,1-dichloroethene was measured at 35 degrees C, and the first-order formation rate coefficient for 1,1-dichloroethene (ke) was determined to be 0.86 per year. PMID:2729986

  5. [Cellobiohydrolase from Clostridium thermocellum, synthesized by a recombinant E. coli strain].

    PubMed

    Mel'nik, M S; Rabinovich, M L; Voznyĭ, Ia V

    1991-10-01

    Clostridium thermocellum cellobiohydrolase was isolated in preparative amounts from the recombinant strain of E. coli K12 C600 carrying plasmid pCU 304 with a C. thermocellum chromosomal DNA insertion. The isolation procedure included chromatography on Ultrogel AcA 44, ion-exchange chromatography on DEAE-Sepharose CL-6B, rechromatography on Ultrogel and FPLC on Mono Q resulting in a 17.6% yield and 1530-fold purification. According to data from sodium dodecylsulfate polyacrylamide gel electrophoresis performed under nondenaturing conditions and analytical gel isoelectrofocusing, the enzyme preparation contains only one active protein band with Mr 56.2 +/- 1.0 kDa and pI 4.15. The enzyme does not reduce the viscosity of the CM-cellulose solution but forms reducing sugars from this soluble substrate. Cellobiose (93-97%) is the major component produced by the enzyme from crystalline and amorphous cellulose (specific activity 2.3 x 10(-3) and 2.8 x 10(-2) U/mg, respectively). The activity optimum of the enzyme is at pH 5.6, 60 degrees C. The half-inactivation time at 60 degrees C and 65 degrees C is 450 and 15.5 min, respectively. The action pattern of the enzyme on the low molecular fluorogenic cellooligosaccharides suggests that the enzyme pertains to typical cellobiohydrolases. PMID:1777519

  6. Biodiversity of Clostridium botulinum type E strains isolated from fish and fishery products.

    PubMed

    Hyytiä, E; Hielm, S; Björkroth, J; Korkeala, H

    1999-05-01

    The genetic biodiversity of Clostridium botulinum type E strains was studied by pulsed-field gel electrophoresis (PFGE) with two macrorestriction enzymes (SmaI-XmaI and XhoI) and by randomly amplified polymorphic DNA (RAPD) analysis with two primers (OPJ 6 and OPJ 13) to characterize 67 Finnish isolates from fresh fish and fishery products, 15 German isolates from farmed fish, and 10 isolates of North American or North Atlantic origin derived mainly from different types of seafood. The effects of fish species, processing, and geographical origin on the epidemiology of the isolates were evaluated. Cluster analysis based on macrorestriction profiles was performed to study the genetic relationships of the isolates. PFGE and RAPD analyses were combined and resulted in the identification of 62 different subtypes among the 92 type E isolates analyzed. High genetic biodiversity among the isolates was observed regardless of their source. Finnish and North American or North Atlantic isolates did not form distinctly discernible clusters, in contrast with the genetically homogeneous group of German isolates. On the other hand, indistinguishable or closely related genetic profiles among epidemiologically unrelated samples were detected. It was concluded that the high genetic variation was probably a result of a lack of strong selection factors that would influence the evolution of type E. The wide genetic biodiversity observed among type E isolates indicates the value of DNA-based typing methods as a tool in contamination studies in the food industry and in investigations of botulism outbreaks. PMID:10224001

  7. Biodiversity of Clostridium botulinum Type E Strains Isolated from Fish and Fishery Products

    PubMed Central

    Hyytiä, Eija; Hielm, Sebastian; Björkroth, Johanna; Korkeala, Hannu

    1999-01-01

    The genetic biodiversity of Clostridium botulinum type E strains was studied by pulsed-field gel electrophoresis (PFGE) with two macrorestriction enzymes (SmaI-XmaI and XhoI) and by randomly amplified polymorphic DNA (RAPD) analysis with two primers (OPJ 6 and OPJ 13) to characterize 67 Finnish isolates from fresh fish and fishery products, 15 German isolates from farmed fish, and 10 isolates of North American or North Atlantic origin derived mainly from different types of seafood. The effects of fish species, processing, and geographical origin on the epidemiology of the isolates were evaluated. Cluster analysis based on macrorestriction profiles was performed to study the genetic relationships of the isolates. PFGE and RAPD analyses were combined and resulted in the identification of 62 different subtypes among the 92 type E isolates analyzed. High genetic biodiversity among the isolates was observed regardless of their source. Finnish and North American or North Atlantic isolates did not form distinctly discernible clusters, in contrast with the genetically homogeneous group of German isolates. On the other hand, indistinguishable or closely related genetic profiles among epidemiologically unrelated samples were detected. It was concluded that the high genetic variation was probably a result of a lack of strong selection factors that would influence the evolution of type E. The wide genetic biodiversity observed among type E isolates indicates the value of DNA-based typing methods as a tool in contamination studies in the food industry and in investigations of botulism outbreaks. PMID:10224001

  8. Strain engineering of graphene: a review.

    PubMed

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-14

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called "straintronics". In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected. PMID:26796960

  9. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630

    PubMed Central

    Asojo, Oluwatoyin A.; Nelson, Sarah K.; Mootien, Sara; Lee, Yashang; Rezende, Wanderson C.; Hyman, Daniel A.; Matsumoto, Monica M.; Reiling, Scott; Kelleher, Alan; Ledizet, Michel; Koski, Raymond A.; Anthony, Karen G.

    2014-01-01

    Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudo­membranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5′-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of l- and d-alanine. Since d-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections. PMID:25004969

  10. Characterization of the extracellular cellulase from a mesophilic clostridium (strain C7).

    PubMed Central

    Cavedon, K; Leschine, S B; Canale-Parola, E

    1990-01-01

    An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides. Hydrolysis of cellulose or cellotetraose by the complex yielded cellobiose as the main product. Cellopentaose or cellohexaose was hydrolyzed by the complex to cellotriose or cellotetraose, respectively, in addition to cellobiose. Xylobiose was the main product of xylan hydrolysis, and xylobiose and xylotriose were the major products of xylooligosaccharide hydrolysis. Activity (Avicelase) resulting in hydrolysis of crystalline cellulose required Ca2+ and a reducing agent. The multiprotein complex had temperature optima for Avicelase, carboxymethylcellulase, and xylanase activities at 45, 55, and 55 degrees C, respectively, and pH optima at 5.6 to 5.8, 5.5, and 6.55, respectively. Electron microscopy of the 700,000-Mr enzyme complex revealed particles relatively uniform in size (12 to 15 nm wide) and apparently composed of subunit structures. Elution of strain C7 concentrated culture fluid from Sephacryl S-300 columns yielded an A280 peak in the 130,000-Mr region. Pooled fractions from the 130,000-Mr peak had carboxymethylcellulase activity but lacked Avicelase activity. Except for the inability to hydrolyze cellulose, the 130,000-Mr preparation had a substrate specificity identical to that of the 700,000-Mr protein complex. A comparison by immunoblotting techniques of proteins in the 130,000- and 700,000-Mr preparations, indicated that the two enzyme preparations had cross-reacting antigenic determinants. Images PMID:2376560

  11. Purification and characterization of thermostable glucose isomerase from Clostridium thermosulfurogenes and Thermoanaerobacter strain B6A.

    PubMed Central

    Lee, C Y; Zeikus, J G

    1991-01-01

    Glucose isomerases produced by Thermoanaerobacter strain B6A and Clostridium thermosulfurogenes strain 4B were purified 10-11-fold to homogeneity and their physicochemical and catalytic properties were determined. Both purified enzymes displayed very similar properties (native Mr 200,000, tetrameric subunit composition, and apparent pH optima 7.0-7.5). The enzymes were stable at pH 5.5-12.0, and maintained more than 90% activity after incubation at high temperature (85 degrees C) for 1 h in the presence of metal ions. The N-terminal amino acid sequences of both thermostable glucose isomerases were Met-Asn-Lys-Tyr-Phe-Glu-Asn and were not similar to that of the thermolabile Bacillus subtilis enzyme. The glucose isomerase from C. thermosulfurogenes and Thermoanaerobacter displayed pI values of 4.9 and 4.8, and their kcat. and Km values for D-glucose at 65 degrees C were 1040 and 1260 min-1 and 140 and 120 mM respectively. Both enzymes displayed higher kcat. and lower Km values for D-xylose than for D-glucose. The C. thermosulfurogenes enzyme required Co2+ or Mg2+ for thermal stability and glucose isomerase activity, and Mn2+ or these metals for xylose isomerase activity. Crystals of C. thermosulfurogenes glucose isomerase were formed at room temperature by the hanging-drop method using 16-18% poly(ethylene glycol) (PEG) 4000 in 0.1 M-citrate buffer. Images Fig. 1. Fig. 5. PMID:1996956

  12. Strain engineering water transport in graphene nanochannels.

    PubMed

    Xiong, Wei; Liu, Jefferson Zhe; Ma, Ming; Xu, Zhiping; Sheridan, John; Zheng, Quanshui

    2011-11-01

    Using equilibrium and nonequilibrium molecular dynamic simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nanochannels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nanochannel devices. PMID:22181520

  13. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp.

    PubMed Central

    2012-01-01

    Background Pure bacterial strains give better yields when producing H2 than mixed, natural communities. However the main drawback with the pure cultures is the need to perform the fermentations under sterile conditions. Therefore, H2 production using artificial co-cultures, composed of well characterized strains, is one of the directions currently undertaken in the field of biohydrogen research. Results Four pure Clostridium cultures, including C. butyricum CWBI1009, C. pasteurianum DSM525, C. beijerinckii DSM1820 and C. felsineum DSM749, and three different co-cultures composed of (1) C. pasteurianum and C. felsineum, (2) C. butyricum and C. felsineum, (3) C. butyricum and C. pasteurianum, were grown in 20 L batch bioreactors. In the first part of the study a strategy composed of three-culture sequences was developed to determine the optimal pH for H2 production (sequence 1); and the H2-producing potential of each pure strain and co-culture, during glucose (sequence 2) and starch (sequence 3) fermentations at the optimal pH. The best H2 yields were obtained for starch fermentations, and the highest yield of 2.91 mol H2/ mol hexose was reported for C. butyricum. By contrast, the biogas production rates were higher for glucose fermentations and the highest value of 1.5 L biogas/ h was observed for the co-culture (1). In general co-cultures produced H2 at higher rates than the pure Clostridium cultures, without negatively affecting the H2 yields. Interestingly, all the Clostridium strains and co-cultures were shown to utilize lactate (present in a starch-containing medium), and C. beijerinckii was able to re-consume formate producing additional H2. In the second part of the study the co-culture (3) was used to produce H2 during 13 days of glucose fermentation in a sequencing batch reactor (SBR). In addition, the species dynamics, as monitored by qPCR (quantitative real-time PCR), showed a stable coexistence of C. pasteurianum and C. butyricum during this

  14. Membrane vesicles of Clostridium perfringens Type A strains induce innate and adaptive immunity

    PubMed Central

    Jiang, Yanlong; Kong, Qingke; Roland, Kenneth L.; Curtiss, Roy

    2014-01-01

    Vesicle shedding from bacteria is a universal process in most Gram-negative bacteria and a few Gram-positive bacteria. In this report, we isolate extracellular membrane vesicles (MVs) from the supernatants of Gram-positive pathogen Clostridium perfringens (C. perfringens). We demonstrated vesicle production in a variety of virulent and nonvirulent type A strains. MVs did not contain alpha-toxin and NetB toxin demonstrated by negative reaction to specific antibody and absence of specific proteins identified by LC-MS/MS. C. perfringens MVs contained DNA components such as 16S ribosomal RNA gene (16S rRNA), alpha-toxin gene (plc) and the perfringolysin O gene (pfoA) demonstrated by PCR. We also identified a total of 431 proteins in vesicles by 1-D gel separation and LC-MS/MS analysis. In vitro studies demonstrated that vesicles could be internalized into murine macrophage RAW264.7 cells without direct cytotoxicity effects, causing release of inflammation cytokines including granulocyte colony stimulating factor (G-CSF), tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1), which could also be detected in mice injected with MVs through intraperitoneal (i.p.) route. Mice immunized with C. perfringens MVs produced high titer IgG, especially IgG1, antibodies against C. perfringens membrane proteins. However, this kind of antibody could not provide protection in mice following challenge, though it could slightly postpone the time of death. Our results indicate that release of MVs from C. perfringens could provide a previously unknown mechanism to induce release of inflammatory cytokines, especially TNF-α, these findings may contribute to a better understanding of the pathogenesis of C. perfringens infection. PMID:24631214

  15. Variant forms of the binary toxin CDT locus and tcdC gene in Clostridium difficile strains.

    PubMed

    Stare, Barbara Geric; Delmée, Michel; Rupnik, Maja

    2007-03-01

    Variability in the genes for toxin A, toxin B and other pathogenicity locus regions is well known and is the basis for the distribution of Clostridium difficile strains into variant toxinotypes. Previous data have indicated that some C. difficile strains have a non-functional truncated form of the binary toxin (CDT) locus. This study analysed variability in the CDT locus and the presence of deleted tcdC genes in C. difficile strains. A total of 146 strains were screened, including known variant toxinotypes and non-variant A+B+ (toxinotype 0) and A-B- C. difficile strains. In all of the strains studied, only two forms of the CDT locus were found: a full-length 4.3 kb fragment encoding the functional binary toxin or a truncated 2.3 kb fragment. Whilst the full-length CDT locus was found almost exclusively in variant toxinotypes, the truncated form was detected in 79% of toxinotype 0 strains. Non-toxinogenic A-B- strains with a truncated version were not found and only rarely possessed the full-length CDT locus (A-B-CDT+ strains). Four different forms of the tcdC gene were found; three represented deleted versions and typically were found in toxinotypes III-VII, XI, XIV-XVI and XXIV. PMID:17314362

  16. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  17. Relationship Between Bacterial Strain Type, Host Biomarkers, and Mortality in Clostridium difficile Infection

    PubMed Central

    Walker, A. Sarah; Eyre, David W.; Wyllie, David H.; Dingle, Kate E.; Griffiths, David; Shine, Brian; Oakley, Sarah; O'Connor, Lily; Finney, John; Vaughan, Alison; Crook, Derrick W.; Wilcox, Mark H.; Peto, Tim E. A.

    2013-01-01

    Background. Despite substantial interest in biomarkers, their impact on clinical outcomes and variation with bacterial strain has rarely been explored using integrated databases. Methods. From September 2006 to May 2011, strains isolated from Clostridium difficile toxin enzyme immunoassay (EIA)–positive fecal samples from Oxfordshire, United Kingdom (approximately 600 000 people) underwent multilocus sequence typing. Fourteen-day mortality and levels of 15 baseline biomarkers were compared between consecutive C. difficile infections (CDIs) from different clades/sequence types (STs) and EIA-negative controls using Cox and normal regression adjusted for demographic/clinical factors. Results. Fourteen-day mortality was 13% in 2222 adults with 2745 EIA-positive samples (median, 78 years) vs 5% in 20 722 adults with 27 550 EIA-negative samples (median, 74 years) (absolute attributable mortality, 7.7%; 95% CI, 6.4%–9.0%). Mortality was highest in clade 5 CDIs (25% [16 of 63]; polymerase chain reaction (PCR) ribotype 078/ST 11), then clade 2 (20% [111 of 560]; 99% PCR ribotype 027/ST 1) versus clade 1 (12% [137 of 1168]; adjusted P < .0001). Within clade 1, 14-day mortality was only 4% (3 of 84) in ST 44 (PCR ribotype 015) (adjusted P = .05 vs other clade 1). Mean baseline neutrophil counts also varied significantly by genotype: 12.4, 11.6, and 9.5 × 109 neutrophils/L for clades 5, 2 and 1, respectively, vs 7.0 × 109 neutrophils/L in EIA-negative controls (P < .0001) and 7.9 × 109 neutrophils/L in ST 44 (P = .08). There were strong associations between C. difficile-type-specific effects on mortality and neutrophil/white cell counts (rho = 0.48), C-reactive-protein (rho = 0.43), eosinophil counts (rho = −0.45), and serum albumin (rho = −0.47). Biomarkers predicted 30%–40% of clade-specific mortality differences. Conclusions. C. difficile genotype predicts mortality, and excess mortality correlates with genotype-specific changes in biomarkers, strongly

  18. Proteomic analysis to elucidate degeneration of Clostridium beijerinckii NCIMB 8052 and role of Ca(2+) in strain recovery from degeneration.

    PubMed

    Lv, Jia; Jiao, Shengyin; Du, Renjia; Zhang, Ruijuan; Zhang, Yan; Han, Bei

    2016-06-01

    Degeneration of solventogenic Clostridium strains is one of the major barriers in bio-butanol production. A degenerated Clostridium beijerinckii NCIMB 8052 strain (DG-8052) was obtained without any genetic manipulation. Supplementation of CaCO3 to fermentation medium could partially recover metabolism of DG-8052 by more than 50 % increase of cell growth and solvent production. This study investigated the protein expression profile of DG-8052 and its response to CaCO3 treatment. Compared with WT-8052, the lower expressed proteins were responsible for disruption of RNA secondary structures and DNA repair, sporulation, signal transduction, transcription regulation, and membrane transport in DG-8052. Interestingly, accompanied with the decreased glucose utilization and lower solvent production, there was a decreased level of sigma-54 modulation protein which may indicate that the level of sigma-54 activity may be associated with the observed strain degeneration. For the addition of CaCO3, proteomic and biochemical study results revealed that besides buffer capacity, Ca(2+) could stabilize heat shock proteins, increase DNA synthesis and replication, and enhance expression of solventogenic enzymes in DG-8052, which has a similar contribution in WT-8052. PMID:27021843

  19. Strain Types and Antimicrobial Resistance Patterns of Clostridium difficile Isolates from the United States, 2011 to 2013

    PubMed Central

    Goering, Richard V.; Whitmore, Joseph D.; Lynn, Ashley N. W.; Persing, David H.; Tenover, Fred C.

    2014-01-01

    We determined the PCR ribotypes and antimicrobial susceptibility patterns of 508 toxigenic Clostridium difficile isolates collected between 2011 and 2013 from 32 U.S. hospitals. Of the 29 PCR ribotypes identified, the 027 strain type was the most common (28.1%), although the rates varied by geographic region. Ribotype 014/020 isolates appear to be emerging. Clindamycin and moxifloxacin resistances (36.8% and 35.8%, respectively) were the most frequent resistance phenotypes observed. Reduced susceptibility to vancomycin was observed in 39.1% of 027 isolates. PMID:24752264

  20. Identification of a Lambda Toxin-Negative Clostridium perfringens Strain that Processes and Activates Epsilon Prototoxin Intracellularly

    PubMed Central

    Harkness, Justine M.; Li, Jihong; McClane, Bruce A.

    2012-01-01

    Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation. PMID:22982043

  1. Production and Characterization of Chemically Inactivated Genetically Engineered Clostridium difficile Toxoids.

    PubMed

    Vidunas, Eugene; Mathews, Antony; Weaver, Michele; Cai, Ping; Koh, Eun Hee; Patel-Brown, Sujata; Yuan, Hailey; Zheng, Zi-Rong; Carriere, Marjolaine; Johnson, J Erik; Lotvin, Jason; Moran, Justin

    2016-07-01

    A recombinant Clostridium difficile expression system was used to produce genetically engineered toxoids A and B as immunogens for a prophylactic vaccine against C. difficile-associated disease. Although all known enzymatic activities responsible for cytotoxicity were genetically abrogated, the toxoids exhibited residual cytotoxic activity as measured in an in vitro cell-based cytotoxicity assay. The residual cytotoxicity was eliminated by treating the toxoids with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. Mass spectrometry and amino acid analysis of the EDC-inactivated toxoids identified crosslinks, glycine adducts, and β-alanine adducts. Surface plasmon resonance analysis demonstrated that modifications resulting from the chemical treatment did not appreciably affect recognition of epitopes by both toxin A- and B-specific neutralizing monoclonal antibodies. Compared to formaldehyde-inactivated toxoids, the EDC/N-hydroxysuccinimide-inactivated toxoids exhibited superior stability in solution with respect to reversion of cytotoxic activity. PMID:27233688

  2. Genetic, physiological and nutritional studies on Clostridium strains isolated and screened for characteristics useful in enhanced oil recovery, with special reference to high salt tolerance

    SciTech Connect

    Grula, M.M.; Russell, H.H.

    1990-03-01

    This work is concerned with a group of microorganisms generally thought to have the highest potential for usefulness in microbial enhancement of oil recovery (MEOR), namely, fermentative species of the genus Clostridium. The report consists of two parts: (1) a study of the effects of various environmental factors (mainly chemical) on growth, gas production, sporulation, and spore germination of several strains of Clostridium in laboratory media; and (2) a study of the effects of core minerals and pore volume on solvent, acid, and gas production and refeedability (in cores) of similar freshly isolated Clostridium strains. In addition, the bacterial strains were characterized, and their basic nutritional requirements were determined. 15 refs., 27 figs., 37 tabs.

  3. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Shen, Xiaoning; Xu, Jiahui; Wang, Junzhi; Wang, Yanyan; Liu, Dong; Niu, Huanqing; Liang, Lei; Ying, Hanjie

    2016-07-10

    A mutant strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii M11, which exhibited ferulic acid tolerance up to 0.9g/L, was generated using atmospheric pressure glow discharge and high-throughput screening. Comparative genomic analysis revealed that this strain harbored a mutation of the Cbei_4693 gene, which encodes a hypothetical protein suspected to be an NADPH-dependent FMN reductase. After disrupting the Cbei_4693 gene in C. beijerinckii NCIMB 8052 using the ClosTron group II intron-based gene inactivation system, we obtained the Cbei_4693 gene inactivated mutant strain, C. beijerinckii 4693::int. Compared with C. beijerinckii NCIMB 8052, 6.23g/L of butanol was produced in P2 medium containing 0.5g/L of ferulic acid by 4693::int, and the ferulic acid tolerance was also significantly increased up to 0.8g/L. These data showed, for the first time, that the Cbei_4693 gene plays an important role in regulating ferulic acid tolerance in ABE fermentation by C. beijerinckii. PMID:27164255

  4. Genetic Diversity among Clostridium botulinum Strains Harboring bont/A2 and bont/A3 Genes

    PubMed Central

    Raphael, Brian H.; Joseph, Lavin A.; Meno, Sarah R.; Fernández, Rafael A.; Maslanka, Susan E.

    2012-01-01

    Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE. PMID:23042179

  5. Genetic diversity among Clostridium botulinum strains harboring bont/A2 and bont/A3 genes.

    PubMed

    Lúquez, Carolina; Raphael, Brian H; Joseph, Lavin A; Meno, Sarah R; Fernández, Rafael A; Maslanka, Susan E

    2012-12-01

    Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE. PMID:23042179

  6. Analysis of a unique Clostridium botulinum strain from the Southern hemisphere producing a novel type E botulinum neurotoxin subtype

    PubMed Central

    2012-01-01

    Background Clostridium botulinum strains that produce botulinum neurotoxin type E (BoNT/E) are most commonly isolated from botulism cases, marine environments, and animals in regions of high latitude in the Northern hemisphere. A strain of C. botulinum type E (CDC66177) was isolated from soil in Chubut, Argentina. Previous studies showed that the amino acid sequences of BoNT/E produced by various strains differ by < 6% and that the type E neurotoxin gene cluster inserts into the rarA operon. Results Genetic and mass spectral analysis demonstrated that the BoNT/E produced by CDC66177 is a novel toxin subtype (E9). Toxin gene sequencing indicated that BoNT/E9 differed by nearly 11% at the amino acid level compared to BoNT/E1. Mass spectrometric analysis of BoNT/E9 revealed that its endopeptidase substrate cleavage site was identical to other BoNT/E subtypes. Further analysis of this strain demonstrated that its 16S rRNA sequence clustered with other Group II C. botulinum (producing BoNT types B, E, and F) strains. Genomic DNA isolated from strain CDC66177 hybridized with fewer probes using a Group II C. botulinum subtyping microarray compared to other type E strains examined. Whole genome shotgun sequencing of strain CDC66177 revealed that while the toxin gene cluster inserted into the rarA operon similar to other type E strains, its overall genome content shared greater similarity with a Group II C. botulinum type B strain (17B). Conclusions These results expand our understanding of the global distribution of C. botulinum type E strains and suggest that the type E toxin gene cluster may be able to insert into C. botulinum strains with a more diverse genetic background than previously recognized. PMID:23113872

  7. Inhibitory effect of a copper-dipeptide complex on the establishment of a Clostridium perenne strain in the intestinal tract of gnotobiotic mice.

    PubMed Central

    Dubos, F; Pelissier, J P; Andrieux, C; Ducluzeau, R; Raibaud, P

    1985-01-01

    A semisynthetic diet fed to axenic mice was found to prevent the establishment of a Clostridium perenne strain in their intestinal tract. This inhibitory effect did not occur when axenic mice were preinoculated with a strain of Clostridium difficile. The inhibitory effect was related to the presence in the intestinal contents of axenic mice of both dietary copper and a dipeptide, aspartic-epsilon-lysine. When C. difficile was inoculated into axenic mice, the dipeptide disappeared from the digesta, and C. perenne became established even in the presence of high concentrations of copper. PMID:4091557

  8. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  9. Some Properties of Heat-Resistant and Heat-Sensitive Strains of Clostridium perfringens I. Heat Resistance and Toxigenicity1

    PubMed Central

    Weiss, Karl F.; Strong, Dorothy H.

    1967-01-01

    Heat resistance at 100 C (D-values), sporulating ratios, toxigenicity for mice, and lecithinase activity (as micrograms per milliliter of enzyme, ascertained by the lecithovitellin reaction) were determined for four strains of Clostridium perfringens. A definite inverse relationship between thermal resistance and toxigenicity was found. The D-values ranged from 17.6 for the most heat-resistant strain to 0.3 for the strain possessing the least heat resistance, with corresponding lecithinase activities from 25 to 133 μg/ml of enzyme. The sporulating ratios did not differ greatly between the strains. The heat stability of the toxin was greater at 100 C than at 75 C. There was a noticeable difference between the heat stabilities of the toxin in the culture fluids of the heat-sensitive and heat-resistant strains at pH 7.0 when the toxic filtrates were held at 100 C. At a holding temperature of 75 C, a similar but lesser difference was observed at pH 5.5. Heat resistance and lecithinase activity did not change when a substrain of the least heat-resistant parent strain was obtained through heat selection by a single transfer, or when the most heat-resistant strain was transferred serially 12 times. PMID:4289809

  10. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes

    PubMed Central

    Sebaihia, Mohammed; Peck, Michael W.; Minton, Nigel P.; Thomson, Nicholas R.; Holden, Matthew T.G.; Mitchell, Wilfrid J.; Carter, Andrew T.; Bentley, Stephen D.; Mason, David R.; Crossman, Lisa; Paul, Catherine J.; Ivens, Alasdair; Wells-Bennik, Marjon H.J.; Davis, Ian J.; Cerdeño-Tárraga, Ana M.; Churcher, Carol; Quail, Michael A.; Chillingworth, Tracey; Feltwell, Theresa; Fraser, Audrey; Goodhead, Ian; Hance, Zahra; Jagels, Kay; Larke, Natasha; Maddison, Mark; Moule, Sharon; Mungall, Karen; Norbertczak, Halina; Rabbinowitsch, Ester; Sanders, Mandy; Simmonds, Mark; White, Brian; Whithead, Sally; Parkhill, Julian

    2007-01-01

    Clostridium botulinum is a heterogeneous Gram-positive species that comprises four genetically and physiologically distinct groups of bacteria that share the ability to produce botulinum neurotoxin, the most poisonous toxin known to man, and the causative agent of botulism, a severe disease of humans and animals. We report here the complete genome sequence of a representative of Group I (proteolytic) C. botulinum (strain Hall A, ATCC 3502). The genome consists of a chromosome (3,886,916 bp) and a plasmid (16,344 bp), which carry 3650 and 19 predicted genes, respectively. Consistent with the proteolytic phenotype of this strain, the genome harbors a large number of genes encoding secreted proteases and enzymes involved in uptake and metabolism of amino acids. The genome also reveals a hitherto unknown ability of C. botulinum to degrade chitin. There is a significant lack of recently acquired DNA, indicating a stable genomic content, in strong contrast to the fluid genome of Clostridium difficile, which can form longer-term relationships with its host. Overall, the genome indicates that C. botulinum is adapted to a saprophytic lifestyle both in soil and aquatic environments. This pathogen relies on its toxin to rapidly kill a wide range of prey species, and to gain access to nutrient sources, it releases a large number of extracellular enzymes to soften and destroy rotting or decayed tissues. PMID:17519437

  11. Complete Genome Sequence of the Nonpathogenic Soil-Dwelling Bacterium Clostridium sporogenes Strain NCIMB 10696

    PubMed Central

    Kubiak, Aleksandra M.; Poehlein, Anja; Budd, Patrick; Kuehne, Sarah A.; Winzer, Klaus; Theys, Jan; Lambin, Philip; Daniel, Rolf

    2015-01-01

    Clostridium sporogenes is a harmless spore-forming anaerobe that is widely distributed in soil/water and in the intestines of humans and animals. It is extensively used as a safe model to test the suitability of new preservative methods by the food industry and has potential to deliver therapeutic agents to tumors. PMID:26294634

  12. Prevalence and pathogenicity of binary toxin–positive Clostridium difficile strains that do not produce toxins A and B

    PubMed Central

    Eckert, C.; Emirian, A.; Le Monnier, A.; Cathala, L.; De Montclos, H.; Goret, J.; Berger, P.; Petit, A.; De Chevigny, A.; Jean-Pierre, H.; Nebbad, B.; Camiade, S.; Meckenstock, R.; Lalande, V.; Marchandin, H.; Barbut, F.

    2014-01-01

    Clostridium difficile causes antibiotic-associated diarrhoea and pseudomembranous colitis. The main virulence factors of C. difficile are the toxins A (TcdA) and B (TcdB). A third toxin, called binary toxin (CDT), can be detected in 17% to 23% of strains, but its role in human disease has not been clearly defined. We report six independent cases of patients with diarrhoea suspected of having C. difficile infection due to strains from toxinotype XI/PCR ribotype 033 or 033-like, an unusual toxinotype/PCR ribotype positive for CDT but negative for TcdA and TcdB. Four patients were considered truly infected by clinicians and were specifically treated with oral metronidazole. One of the cases was identified during a prevalence study of A−B−CDT+ strains. In this study, we screened a French collection of 220 nontoxigenic strains and found only one (0.5%) toxinotype XI/PCR ribotype 033 or 033-like strain. The description of such strains raises the question of the role of binary toxin as a virulence factor and could have implications for laboratory diagnostics that currently rarely include testing for binary toxin. PMID:25755885

  13. Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B.

    PubMed

    Eckert, C; Emirian, A; Le Monnier, A; Cathala, L; De Montclos, H; Goret, J; Berger, P; Petit, A; De Chevigny, A; Jean-Pierre, H; Nebbad, B; Camiade, S; Meckenstock, R; Lalande, V; Marchandin, H; Barbut, F

    2015-01-01

    Clostridium difficile causes antibiotic-associated diarrhoea and pseudomembranous colitis. The main virulence factors of C. difficile are the toxins A (TcdA) and B (TcdB). A third toxin, called binary toxin (CDT), can be detected in 17% to 23% of strains, but its role in human disease has not been clearly defined. We report six independent cases of patients with diarrhoea suspected of having C. difficile infection due to strains from toxinotype XI/PCR ribotype 033 or 033-like, an unusual toxinotype/PCR ribotype positive for CDT but negative for TcdA and TcdB. Four patients were considered truly infected by clinicians and were specifically treated with oral metronidazole. One of the cases was identified during a prevalence study of A(-)B(-)CDT(+) strains. In this study, we screened a French collection of 220 nontoxigenic strains and found only one (0.5%) toxinotype XI/PCR ribotype 033 or 033-like strain. The description of such strains raises the question of the role of binary toxin as a virulence factor and could have implications for laboratory diagnostics that currently rarely include testing for binary toxin. PMID:25755885

  14. Effects of Megaplasmid Loss on Growth of Neurotoxigenic Clostridium butyricum Strains and Botulinum Neurotoxin Type E Expression.

    PubMed

    Scalfaro, Concetta; Iacobino, Angelo; Grande, Laura; Morabito, Stefano; Franciosa, Giovanna

    2016-01-01

    Clostridium butyricum strains that atypically produce the botulinum neurotoxin type E (BoNT/E) possess a megaplasmid of unknown functions in their genome. In this study, we cured two botulinum neurotoxigenic C. butyricum type E strains of their megaplasmids, and compared the obtained megaplasmid-cured strains to their respective wild-type parental strains. Our results showed that the megaplasmids do not confer beta-lactam resistance on the neurotoxigenic C. butyricum type E strains, although they carry several putative beta-lactamase genes. Instead, we found that the megaplasmids are essential for growth of the neurotoxigenic C. butyricum type E strains at the relatively low temperature of 15°C, and are also relevant for growth of strains under limiting pH and salinity conditions, as well as under favorable environmental conditions. Moreover, the presence of the megaplasmids was associated with increased transcript levels of the gene encoding BoNT/E in the C. butyricum type E strains, indicating that the megaplasmids likely contain transcriptional regulators. However, the levels of BoNT/E in the supernatants of the cured and uncured strains were similar after 24 and 48 h culture, suggesting that expression of BoNT/E in the C. butyricum type E strains is not ultimately controlled by the megaplasmids. Together, our results reveal that the C. butyricum type E megaplasmids exert pleiotropic effects on the growth of their microbial hosts under optimal and limiting environmental conditions, and also highlight the possibility of original regulatory mechanisms controlling the expression of BoNT/E. PMID:26941734

  15. Effects of Megaplasmid Loss on Growth of Neurotoxigenic Clostridium butyricum Strains and Botulinum Neurotoxin Type E Expression

    PubMed Central

    Scalfaro, Concetta; Iacobino, Angelo; Grande, Laura; Morabito, Stefano; Franciosa, Giovanna

    2016-01-01

    Clostridium butyricum strains that atypically produce the botulinum neurotoxin type E (BoNT/E) possess a megaplasmid of unknown functions in their genome. In this study, we cured two botulinum neurotoxigenic C. butyricum type E strains of their megaplasmids, and compared the obtained megaplasmid-cured strains to their respective wild-type parental strains. Our results showed that the megaplasmids do not confer beta-lactam resistance on the neurotoxigenic C. butyricum type E strains, although they carry several putative beta-lactamase genes. Instead, we found that the megaplasmids are essential for growth of the neurotoxigenic C. butyricum type E strains at the relatively low temperature of 15°C, and are also relevant for growth of strains under limiting pH and salinity conditions, as well as under favorable environmental conditions. Moreover, the presence of the megaplasmids was associated with increased transcript levels of the gene encoding BoNT/E in the C. butyricum type E strains, indicating that the megaplasmids likely contain transcriptional regulators. However, the levels of BoNT/E in the supernatants of the cured and uncured strains were similar after 24 and 48 h culture, suggesting that expression of BoNT/E in the C. butyricum type E strains is not ultimately controlled by the megaplasmids. Together, our results reveal that the C. butyricum type E megaplasmids exert pleiotropic effects on the growth of their microbial hosts under optimal and limiting environmental conditions, and also highlight the possibility of original regulatory mechanisms controlling the expression of BoNT/E. PMID:26941734

  16. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum. PMID:24605815

  17. Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain.

    PubMed

    Pellett, Sabine; Tepp, William H; Bradshaw, Marite; Kalb, Suzanne R; Dykes, Janet K; Lin, Guangyun; Nawrocki, Erin M; Pier, Christina L; Barr, John R; Maslanka, Susan E; Johnson, Eric A

    2016-01-01

    Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated "type H," has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 10(7) mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A

  18. Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain

    PubMed Central

    Pellett, Sabine; Tepp, William H.; Bradshaw, Marite; Kalb, Suzanne R.; Dykes, Janet K.; Lin, Guangyun; Nawrocki, Erin M.; Pier, Christina L.; Barr, John R.; Maslanka, Susan E.

    2016-01-01

    ABSTRACT Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated “type H,” has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 107 mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes

  19. Evaluation of the Cepheid Xpert Clostridium difficile Epi Assay for Diagnosis of Clostridium difficile Infection and Typing of the NAP1 Strain at a Cancer Hospital ▿

    PubMed Central

    Babady, N. Esther; Stiles, Jeffrey; Ruggiero, Phyllis; Khosa, Perminder; Huang, David; Shuptar, Susan; Kamboj, Mini; Kiehn, Timothy E.

    2010-01-01

    Clostridium difficile is the most common cause of health care-associated diarrhea. Accurate and rapid diagnosis is essential to improve patient outcome and prevent disease spread. We compared our two-step diagnostic algorithm, an enzyme immunoassay for glutamate dehydrogenase (GDH) followed by the cytotoxin neutralization test (CYT) with a turnaround time of 24 to 48 h, versus the Cepheid Xpert C. difficile Epi assay, a PCR-based assay with a turnaround time of <1 h. In the first phase of the study, only GDH-positive stool samples were tested by both CYT and Xpert PCR. Discordant results were resolved by toxigenic culture. In the second phase, all stool samples were tested by GDH and Xpert PCR. Only GDH-positive stools were further tested by CYT. Genotypic characterization of 45 Xpert PCR-positive stools was performed by sequencing of the tcdC gene and PCR ribotyping. In phase 1, the agreement between the GDH-CYT and the GDH-Xpert PCR was 72%. The sensitivities and specificities of GDH-CYT and GDH-Xpert PCR were 57% and 97% and 100% and 97%, respectively. In phase 2, the agreement between GDH-CYT and Xpert PCR alone was 95%. As in phase 1, sensitivity of the Xpert PCR was higher than that of the GDH-CYT. The correlation between PCR-ribotyping, sequencing, and Xpert PCR for detection of NAP1 strains was excellent (>90%). The excellent sensitivity and specificity and the rapid turnaround time of the Xpert PCR assay as well as its strain-typing capability make it an attractive option for diagnosis of C. difficile infection. PMID:20943860

  20. Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital.

    PubMed

    Babady, N Esther; Stiles, Jeffrey; Ruggiero, Phyllis; Khosa, Perminder; Huang, David; Shuptar, Susan; Kamboj, Mini; Kiehn, Timothy E

    2010-12-01

    Clostridium difficile is the most common cause of health care-associated diarrhea. Accurate and rapid diagnosis is essential to improve patient outcome and prevent disease spread. We compared our two-step diagnostic algorithm, an enzyme immunoassay for glutamate dehydrogenase (GDH) followed by the cytotoxin neutralization test (CYT) with a turnaround time of 24 to 48 h, versus the Cepheid Xpert C. difficile Epi assay, a PCR-based assay with a turnaround time of <1 h. In the first phase of the study, only GDH-positive stool samples were tested by both CYT and Xpert PCR. Discordant results were resolved by toxigenic culture. In the second phase, all stool samples were tested by GDH and Xpert PCR. Only GDH-positive stools were further tested by CYT. Genotypic characterization of 45 Xpert PCR-positive stools was performed by sequencing of the tcdC gene and PCR ribotyping. In phase 1, the agreement between the GDH-CYT and the GDH-Xpert PCR was 72%. The sensitivities and specificities of GDH-CYT and GDH-Xpert PCR were 57% and 97% and 100% and 97%, respectively. In phase 2, the agreement between GDH-CYT and Xpert PCR alone was 95%. As in phase 1, sensitivity of the Xpert PCR was higher than that of the GDH-CYT. The correlation between PCR-ribotyping, sequencing, and Xpert PCR for detection of NAP1 strains was excellent (>90%). The excellent sensitivity and specificity and the rapid turnaround time of the Xpert PCR assay as well as its strain-typing capability make it an attractive option for diagnosis of C. difficile infection. PMID:20943860

  1. Differentiation of group I and group II strains of Clostridium botulinum by focal plane array Fourier transform infrared spectroscopy.

    PubMed

    Kirkwood, Jonah; Ghetler, Andrew; Sedman, Jacqueline; Leclair, Daniel; Pagotto, Franco; Austin, John W; Ismail, Ashraf A

    2006-10-01

    A method was developed for whole-organism fingerprinting of Clostridium botulinum isolates by focal plane array Fourier transform infrared (FPA-FTIR) spectroscopy. A database of 150,000 infrared spectra of 44 strains of C. botulinum was acquired using a FPA-FTIR imaging spectrometer equipped with a 16 x 16 array detector to evaluate the ability of FTIR spectroscopy to differentiate the 44 strains. The database contained strains from C. botulinum groups I and II producing botulinum neurotoxin of serotypes A, B, E, and F. All strains were grown on each of three agar media (brain heart infusion, McClung Toabe agar base, and universal) prior to spectral acquisition. Given the dependence of the infrared spectra of microorganisms on the composition of the growth medium, the spectra were initially separated into three subsets corresponding to the three growth media employed. However, the replicate spectra of all strains, regardless of growth medium, were properly clustered by hierarchical cluster analysis based on differences in their infrared spectral profiles in three narrow spectral regions (1,428 to 1,412, 1,296 to 1,284, and 1,112 to 1,100 cm(-1)). The dendrogram generated from the FTIR data revealed complete separation between group I and group II strains. The spectral differences between group I and group II strains allowed accurate classification of C. botulinum strains at the group level in two blind validation studies (n = 40). These results demonstrate that FPA-FTIR spectroscopy has the potential for rapid discrimination of group I and group II C. botulinum strains in less than 3 min per sample. PMID:17066916

  2. Two-Component Systems Are Involved in the Regulation of Botulinum Neurotoxin Synthesis in Clostridium botulinum Type A Strain Hall

    PubMed Central

    Connan, Chloé; Brueggemann, Holger; Mazuet, Christelle; Raffestin, Stéphanie; Cayet, Nadège; Popoff, Michel R.

    2012-01-01

    Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs. PMID:22848632

  3. Deciphering Adaptation Strategies of the Epidemic Clostridium difficile 027 Strain during Infection through In Vivo Transcriptional Analysis

    PubMed Central

    Kansau, Imad; Barketi-Klai, Amira; Monot, Marc; Hoys, Sandra; Dupuy, Bruno; Janoir, Claire; Collignon, Anne

    2016-01-01

    Clostridium difficile is responsible for a wide spectrum of infection from asymptomatic carriage to severe, relapsing colitis. Since 2003, C. difficile infections have increased with a higher morbidity and mortality due to the emergence of epidemic and hypervirulent C. difficile strains such as those of the epidemic lineage 027/BI/NAP1. To decipher the hypervirulence and epidemicity of 027 strains, we analyzed gene expression profiles of the R20291 027 strain using a monoxenic mouse model during the first 38h of infection. A total of 741 genes were differentially expressed during the course of infection. They are mainly distributed in functional categories involved in host adaptation. Several genes of PTS and ABC transporters were significantly regulated during the infection, underlying the ability of strain R20291 to adapt its metabolism according to nutrient availability in the digestive tract. In this animal model, despite the early sporulation process, sporulation efficiency seems to indicate that growth of R20291 vegetative cells versus spores were favored during infection. The bacterial mechanisms associated to adaptability and flexibility within the gut environment, in addition to the virulence factor expression and antibiotic resistance, should contribute to the epidemicity and hypervirulence of the C. difficile 027 strains. PMID:27351947

  4. Acid phosphatase test proves superior to standard phenotypic identification procedure for Clostridium perfringens strains isolated from water

    PubMed Central

    Ryzinska-Paier, G.; Sommer, R.; Haider, J.M.; Knetsch, S.; Frick, C.; Kirschner, A.K.T.; Farnleitner, A.H.

    2011-01-01

    Clostridium perfringens is used as an indicator for persistent faecal pollution as well as to monitor the efficacy of water treatment processes. For these purposes, differentiation between C. perfringens and other Clostridia is essential and is routinely carried out by phenotypic standard tests as proposed in the ISO/CD 6461-2:2002 (ISO_LGMN: lactose fermentation, gelatine liquidation, motility and nitrate reduction). Because the ISO_LGMN procedure is time consuming and labour intensive, the acid phosphatase test was investigated as a possible and much more rapid alternative method for confirmation. The aim of our study was to evaluate and compare confirmation results obtained by these two phenotypic methods using genotypically identified strains, what to our knowledge has not been accomplished before. For this purpose, a species specific PCR method was selected based on the results received for type strains and genotypically characterised environmental strains. For the comparative investigation type strains as well as presumptive C. perfringens isolates from water and faeces samples were used. The acid phosphatase test revealed higher percentage (92%) of correctly identified environmental strains (n = 127) than the ISO_LGMN procedure (83%) and proved to be a sensitive and reliable confirmation method. PMID:21872622

  5. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains

    PubMed Central

    Park, Miseon

    2014-01-01

    Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria. PMID:25587280

  6. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains.

    PubMed

    Park, Miseon; Rafii, Fatemeh

    2014-01-01

    Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria. PMID:25587280

  7. Draft Genome Sequence of an Oxalate-Degrading Strain of Clostridium sporogenes from the Gastrointestinal Tract of the White-Throated Woodrat (Neotoma albigula).

    PubMed

    Oakeson, Kelly F; Miller, Aaron; Dale, Colin; Dearing, Denise

    2016-01-01

    The gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula. PMID:27198026

  8. Draft Genome Sequence of an Oxalate-Degrading Strain of Clostridium sporogenes from the Gastrointestinal Tract of the White-Throated Woodrat (Neotoma albigula)

    PubMed Central

    Miller, Aaron; Dale, Colin; Dearing, Denise

    2016-01-01

    The gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula. PMID:27198026

  9. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; Bordeleau, Eric; Burrus, Vincent

    2015-01-01

    ABSTRACT The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called “hypervirulent” epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the

  10. Genome Sequence of a Clostridium neonatale Strain Isolated in a Canadian Neonatal Intensive Care Unit

    PubMed Central

    Benamar, Samia; Cassir, Nadim

    2016-01-01

    Clostridium neonatale is a Gram-positive endospore-forming obligate anaerobe first isolated from the feces of premature neonates during an intensive care unit outbreak of necrotizing enterocolitis (NEC) in a Canadian neonatal intensive care unit. Here, we announce the genome draft sequence of this bacterium. It is composed of 4,710,818 bp and contains 4,169 protein-coding genes and 80 RNA genes, including 11 rRNA genes. PMID:26798088

  11. Comparison of Whole-Genome Sequencing and Molecular-Epidemiological Techniques for Clostridium difficile Strain Typing.

    PubMed

    Dominguez, Samuel R; Anderson, Lydia J; Kotter, Cassandra V; Littlehorn, Cynthia A; Arms, Lesley E; Dowell, Elaine; Todd, James K; Frank, Daniel N

    2016-09-01

    We analyzed in parallel 27 pediatric Clostridium difficile isolates by repetitive sequence-based polymerase chain reaction (RepPCR), pulsed-field gel electrophoresis (PFGE), and whole-genome next-generation sequencing. Next-generation sequencing distinguished 3 groups of isolates that were indistinguishable by RepPCR and 1 isolate that clustered in the same PFGE group as other isolates. PMID:26407257

  12. Perfrin, a novel bacteriocin associated with netB positive Clostridium perfringens strains from broilers with necrotic enteritis.

    PubMed

    Timbermont, Leen; De Smet, Lina; Van Nieuwerburgh, Filip; Parreira, Valeria R; Van Driessche, Gonzalez; Haesebrouck, Freddy; Ducatelle, Richard; Prescott, John; Deforce, Dieter; Devreese, Bart; Van Immerseel, Filip

    2014-01-01

    Necrotic enteritis in broiler chickens is associated with netB positive Clostridium perfringens type A strains. It is known that C. perfringens strains isolated from outbreaks of necrotic enteritis are more capable of secreting factors inhibiting growth of other C. perfringens strains than strains isolated from the gut of healthy chickens. This characteristic could lead to extensive and selective presence of a strain that contains the genetic make-up enabling to secrete toxins that cause gut lesions. This report describes the discovery, purification, characterization and recombinant expression of a novel bacteriocin, referred to as perfrin, produced by a necrotic enteritis-associated netB-positive C. perfringens strain. Perfrin is a 11.5 kDa C-terminal fragment of a 22.9 kDa protein and showed no sequence homology to any currently known bacteriocin. The 11.5 kDa fragment can be cloned into Escherichia coli, and expression yielded an active peptide. PCR detection of the gene showed its presence in 10 netB-positive C. perfringens strains of broiler origin, and not in other C. perfringens strains tested (isolated from broilers, cattle, sheep, pigs, and humans). Perfrin and NetB are not located on the same genetic element since NetB is plasmid-encoded and perfrin is not. The bacteriocin has bactericidal activity over a wide pH-range but is thermolabile and sensitive to proteolytic digestion (trypsin, proteinase K). C. perfringens bacteriocins, such as perfrin, can be considered as an additional factor involved in the pathogenesis of necrotic enteritis in broilers. PMID:24708344

  13. Perfrin, a novel bacteriocin associated with netB positive Clostridium perfringens strains from broilers with necrotic enteritis

    PubMed Central

    2014-01-01

    Necrotic enteritis in broiler chickens is associated with netB positive Clostridium perfringens type A strains. It is known that C. perfringens strains isolated from outbreaks of necrotic enteritis are more capable of secreting factors inhibiting growth of other C. perfringens strains than strains isolated from the gut of healthy chickens. This characteristic could lead to extensive and selective presence of a strain that contains the genetic make-up enabling to secrete toxins that cause gut lesions. This report describes the discovery, purification, characterization and recombinant expression of a novel bacteriocin, referred to as perfrin, produced by a necrotic enteritis-associated netB-positive C. perfringens strain. Perfrin is a 11.5 kDa C-terminal fragment of a 22.9 kDa protein and showed no sequence homology to any currently known bacteriocin. The 11.5 kDa fragment can be cloned into Escherichia coli, and expression yielded an active peptide. PCR detection of the gene showed its presence in 10 netB-positive C. perfringens strains of broiler origin, and not in other C. perfringens strains tested (isolated from broilers, cattle, sheep, pigs, and humans). Perfrin and NetB are not located on the same genetic element since NetB is plasmid-encoded and perfrin is not. The bacteriocin has bactericidal activity over a wide pH-range but is thermolabile and sensitive to proteolytic digestion (trypsin, proteinase K). C. perfringens bacteriocins, such as perfrin, can be considered as an additional factor involved in the pathogenesis of necrotic enteritis in broilers. PMID:24708344

  14. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-08-01

    A little stress or strain has been known to improve the performance of athletes, actors and of course nanomaterials alike. In fact strain in silicon is now a major engineering tool for improving the performance of devices, and is ubiquitously used in device design and fabrication. Strain engineering alters a material's band structure, a model of electron behaviour that describes how as atoms come together in a solid, their discrete electron orbitals overlap to ultimately give rise to bands of allowed energy levels. In a strained crystal lattice of silicon or silicon germanium the distance between atoms in the lattice is greater than usual and the bands of allowed energy levels change. This July marks 100 years since Bohr submitted his paper 'On the constitution of atoms and molecules' [1] where he describes the structure of the atom in terms of discrete allowed energy levels. The paper was a seminal contribution to the development of quantum mechanics and laid the initial theoretical precepts for band gap engineering in devices. In this issue Nrauda and a collaboration of researchers in Europe and Australia study the growth of defect-free SiGe islands on pre-patterned silicon [2]. They analyse the strain in the islands and determine at what point lattice dislocations set in with a view to informing implementation of strain engineering in devices. The effects of strain on band structure in silicon and germanium were already studied and reported in the 1950s [3, 4]. Since then the increasing focus on nanoscale materials and the hunger for control of electronic properties has prompted further study of strain effects. The increased surface area to volume ratio in nanostructures changes the strain behaviour with respect to bulk materials, and this can also be exploited for handling and fine tuning strain to manipulate material properties. It is perhaps no surprise that graphene, one of the most high-profile materials in current nanotechnology research, has attracted

  15. Competitiveness of a Genetically Engineered Strain of Trichoderma virens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intraspecific competitiveness of a genetically engineered strain of Trichoderma virens was assessed relative to the non-transformed, progenitor strain and an isogenic, auxotrophic strain using a replacement series design. The transformed strain was less fit, but appeared more competitive than t...

  16. The Gene CBO0515 from Clostridium botulinum Strain Hall A Encodes the Rare Enzyme N5-(Carboxyethyl) Ornithine Synthase, EC 1.5.1.24▿

    PubMed Central

    Thompson, John; Hill, Karen K.; Smith, Theresa J.; Pikis, Andreas

    2010-01-01

    Sequencing of the genome of Clostridium botulinum strain Hall A revealed a gene (CBO0515), whose putative amino acid sequence was suggestive of the rare enzyme N5-(1-carboxyethyl) ornithine synthase. To test this hypothesis, CBO0515 has been cloned, and the encoded polypeptide was purified and characterized. This unusual gene appears to be confined to proteolytic strains assigned to group 1 of C. botulinum. PMID:19933367

  17. Characterization of Clostridium difficile strains isolated from immunosuppressed inpatients in a hospital in Rio de Janeiro, Brazil.

    PubMed

    Balassiano, Ilana T; Miranda, Karla R; Boente, Renata F; Pauer, Heidi; Oliveira, Ivi Cristina M; Santos-Filho, Joaquim; Amorim, Efigênia L T; Caniné, Gerson A; Souza, Cristina F; Gomes, Mariza Z R; Ferreira, Eliane O; Brazier, Jon S; Domingues, Regina M C P

    2009-06-01

    The aim of this work was to identify and characterize Clostridium difficile strains from fecal and hospital environmental samples. C. difficile toxins were detected by ELISA in 28.5% of the analyzed samples. Four strains were isolated from immunosuppressed inpatients presenting antibiotic-associated diarrhea. All strains possessed tcdA and tcdB genes and did not present neither the cdtA and cdtB genes nor any significant deletions in the tcdC gene. PFGE and PCR-ribotyping analysis showed that two strains belonged to the same clonal type (ribotype 014) and the other two were grouped into ribotype 106, in spite of presenting a similar, but not identical genetic fingerprint. This report shows that for the first time ribotype 106 was found outside the United Kingdom. All isolates were equally sensitive to metronidazole. The ribotype 014 isolates were highly resistant to clindamycin, while the ribotype 106 isolates were resistant to all fluoroquinolones tested. This work reveals the spread of C. difficile in the hospital unit studied and the presence of three genetically related types, two of them presenting resistance to fluoroquinolones. PMID:19154793

  18. Multilocus variable-number of tandem repeat analysis (MLVA) for Clostridium tyrobutyricum strains isolated from cheese production environment.

    PubMed

    Nishihara, Masaharu; Takahashi, Hajime; Sudo, Tomoko; Kyoi, Daisuke; Kawahara, Toshio; Ikeuchi, Yoshihiro; Fujita, Takashi; Kuda, Takashi; Kimura, Bon; Yanahira, Shuichi

    2014-11-01

    Clostridium tyrobutyricum is a gram-positive spore-forming anaerobe that is considered as the main causative agent for late blowing in cheese due to butyric acid fermentation. In this study, multilocus variable-number of tandem repeat (VNTR) analysis (MLVA) for C. tyrobutyricum was developed to identify the source of contamination by C. tyrobutyricum spores in the cheese production environment. For each contig constructed from the results of a whole genome draft sequence of C. tyrobutyricum JCM11008(T) based on next-generation sequencing, VNTR loci that were effective for typing were searched using the Tandem Repeat Finder program. Five VNTR loci were amplified by polymerase chain reaction (PCR) to determine their number of repeats by sequencing, and MLVA was conducted. 25 strains of C. tyrobutyricum isolated from the environment, raw milk, and silage were classified into 18 MLVA types (DI=0.963). Of the C. tyrobutyricum strains isolated from raw milk, natural cheese, and blown processed cheese, strains with identical MLVA type were detected, which suggested that these strains might have shifted from natural cheese to blown processed cheese. MLVA could be an effective tool for monitoring contamination of natural cheese with C. tyrobutyricum in the processed cheese production environment because of its high discriminability, thereby allowing the analyst to trace the source of contamination. PMID:25190602

  19. Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding.

    PubMed

    Avberšek, Jana; Pirš, Tina; Pate, Mateja; Rupnik, Maja; Ocepek, Matjaž

    2014-08-01

    Diversity of Clostridium difficile in different age groups of goats (n = 109) and sheep (n = 105) was investigated. C. difficile was detected in 9.2% of goats and 5.7% of sheep. None of the adult animals were positive. Isolates belonged to four toxinotypes (0, V, XIa, XII), six PCR-ribotypes (010, 014/020, 045, 056, SLO 061, SLO 151) and six pulsotypes. PCR-ribotypes 010, 014/020, 045 and 056 were found previously in other animal species and humans in Slovenia. Additionally, three pulsotypes were indistinguishable from restriction patterns in our PFGE database of animal isolates. All strains were susceptible to metronidazol, vancomycin, moxifloxacin, and with the exception of a single non-toxigenic strain also to clindamycin and erythromycin. While all strains were resistant to ciprofloxacin and levofloxacin, oxacillin-resistance was observed only in strains of PCR-ribotype 045. This first study on C. difficile in small ruminants in Slovenia revealed the evidence of age-related shedding as the highest was demonstrated in neonatal goats and sheep aged up to 16 days. PMID:24960532

  20. Sequence Similarity of Clostridium difficile Strains by Analysis of Conserved Genes and Genome Content Is Reflected by Their Ribotype Affiliation

    PubMed Central

    Kurka, Hedwig; Ehrenreich, Armin; Ludwig, Wolfgang; Monot, Marc; Rupnik, Maja; Barbut, Frederic; Indra, Alexander; Dupuy, Bruno; Liebl, Wolfgang

    2014-01-01

    PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S–23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation. PMID:24482682

  1. Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation.

    PubMed

    Kurka, Hedwig; Ehrenreich, Armin; Ludwig, Wolfgang; Monot, Marc; Rupnik, Maja; Barbut, Frederic; Indra, Alexander; Dupuy, Bruno; Liebl, Wolfgang

    2014-01-01

    PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S-23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation. PMID:24482682

  2. Thermal inactivation of ileal loop-reactive Clostridium perfringens type A strains in phosphate buffer and beef gravy.

    PubMed Central

    Bradshaw, J G; Peeler, J T; Twedt, R M

    1977-01-01

    The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators. PMID:199113

  3. Strain Engineering of Phosphorene via Bending

    NASA Astrophysics Data System (ADS)

    Verma, Deepti; Dumitrica, Traian

    Phosphorene (PE) - the newly discovered 2D derivative of Phosphorus - has an inherent band gap and a high current on/off ratio. Manipulating strain in PE films - strain engineering (SE) - will offer the opportunity to further tailor its electronic properties. Using objective boundary conditions (OBC) coupled with density functional tight binding model (DFTB), we calculate bending rigidity of PE and its 2D allotropes by modeling bent PE as large diameter nanotubes (PNTs). OBCs not only allow for drastic reductions in the number of atoms in simulations but also enable simulations of chiral PNTs, which is impossible with periodic boundary conditions. At the same time, the method describes how bending influences the electronic structure. We establish a robust platform for achieving SE for anisotropic 2D films. Using results from our calculations and orthotropic thin shell model we develop equivalent continuum structure (ECS) for PE and its allotropes upon bending. The developed ECS can be used for performing finite element simulations of PE films on substrates.

  4. Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation.

    PubMed

    Kundiyana, Dimple K; Huhnke, Raymond L; Maddipati, Prasanth; Atiyeh, Hasan K; Wilkins, Mark R

    2010-12-01

    Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. To make this process more economical, the complexity of media should be reduced while using less costly components. In this study, the feasibility of incorporating cotton seed extract (CSE) as a media component for syngas fermentation to produce ethanol using Clostridium strain P11 was evaluated. A factorial experiment was conducted to screen and evaluate the effect of different media components, in relation to CSE, on ethanol production. Also, different CSE concentrations as well as the presence of MES buffer were tested to determine their effect on ethanol production. Bottle fermentations with media containing only 1.0 gL(-1) CSE produced more ethanol after 15 d (1.17 gL(-1)) than fermentation using any other media. Further bottle experiments showed that media containing only 0.5 gL(-1) CSE produced more ethanol after 15 days (2.67 gL(-1)) than a control media (0.6 gL(-1)) and media containing only 1.0 gL(-1) CSE (2.16 gL(-1)). Fermentations in 5- and 7.5-L stirred fermentors with 0.5 gL(-1) CSE media achieved ethanol concentrations similar to those observed in bottle studies. These results indicate that CSE can replace all the vitamin and mineral media components generally used for fermentation of syngas to ethanol by Clostridium strain P11, thereby improving the process economics. PMID:20696571

  5. Clostridium botulinum group I strain genotyping by 15-locus multilocus variable-number tandem-repeat analysis.

    PubMed

    Fillo, Silvia; Giordani, Francesco; Anniballi, Fabrizio; Gorgé, Olivier; Ramisse, Vincent; Vergnaud, Gilles; Riehm, Julia M; Scholz, Holger C; Splettstoesser, Wolf D; Kieboom, Jasper; Olsen, Jaran-Strand; Fenicia, Lucia; Lista, Florigio

    2011-12-01

    Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse. PMID:22012011

  6. Clostridium botulinum Group I Strain Genotyping by 15-Locus Multilocus Variable-Number Tandem-Repeat Analysis ▿ †

    PubMed Central

    Fillo, Silvia; Giordani, Francesco; Anniballi, Fabrizio; Gorgé, Olivier; Ramisse, Vincent; Vergnaud, Gilles; Riehm, Julia M.; Scholz, Holger C.; Splettstoesser, Wolf D.; Kieboom, Jasper; Olsen, Jaran-Strand; Fenicia, Lucia; Lista, Florigio

    2011-01-01

    Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse. PMID:22012011

  7. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering.

    PubMed

    Wischral, Daiana; Zhang, Jianzhi; Cheng, Chi; Lin, Meng; De Souza, Lucas Monteiro Galotti; Pessoa, Fernando L Pellegrini; Pereira, Nei; Yang, Shang-Tian

    2016-07-01

    1,3-Propanediol (1,3-PDO) production from crude glycerol, a byproduct from biodiesel manufacturing, by Clostridium beijerinckii DSM 791 was studied with corn steep liquor as an inexpensive nitrogen source replacing yeast extract in the fermentation medium. A stable, long-term 1,3-PDO production from glycerol was demonstrated with cells immobilized in a fibrous bed bioreactor operated in a repeated batch mode, which partially circumvented the 1,3-PDO inhibition problem. The strain was then engineered to overexpress Escherichia coli gldA encoding glycerol dehydrogenase (GDH) and dhaKLM encoding dihydroxyacetone kinase (DHAK), which increased 1,3-PDO productivity by 26.8-37.5% compared to the wild type, because of greatly increased specific growth rate (0.25-0.40h(-1) vs. 0.13-0.20h(-1) for the wild type). The engineered strain gave a high 1,3-PDO titer (26.1g/L), yield (0.55g/g) and productivity (0.99g/L·h) in fed-batch fermentation. Overexpressing GDH and DHAK was thus effective in increasing 1,3-PDO production from glycerol. PMID:27085150

  8. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes.

    PubMed

    Sirard, Stéphanie; Valiquette, Louis; Fortier, Louis-Charles

    2011-12-01

    Clostridium difficile strain NAP1/027 (North American pulsed-field gel electrophoresis [PFGE] type 1 and PCR ribotype 027 [R027]) has been associated with recent outbreaks in North America and Europe. It has been associated with more severe disease symptoms, higher mortality rates, and greater risk of relapse. This strain is thought to produce more toxins and sporulate to higher levels. However, recent studies suggest that this may not always be the case. The objective of our study was to assess, in a nonoutbreak situation, whether specific strains, such as NAP1/027, were associated with more severe disease symptoms, higher toxin production, and/or greater sporulation in vitro. We isolated and characterized C. difficile strains from 21 patients with mild to moderate, severe, or complicated symptoms of C. difficile infection (CDI). The isolates were characterized by different molecular typing methods, including PCR ribotyping, tandem repeat sequence typing (TRST), and sequencing of the tcdC gene. Fourteen isolates were of PCR ribotype 027 with deletions in tcdC, but no association with severity or clinical outcome was found. We show by immunodot blot detection of toxins with monoclonal antibodies that all R027 isolates produced more TcdA and TcdB than other strains. On the other hand, they consistently produced fewer spores than non-R027 isolates. Taken together, our data suggest that NAP1/027 isolates are not always associated with more severe disease, even though they may produce larger amounts of toxins. Our study also suggests that current assertions regarding the NAP1/027 may not apply to all isolates and that other factors may come into play. PMID:21956985

  9. Evaluation of Engineered Pichia stipitis Strains for Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the fermentation capabilities of five strains of Pichia stipitis that had been engineered for xylose fermentation to ethanol by USDA, ARS, National Center for Agricultural Utilization Research. The strains tested were P. stipitis WT-1-11, WT-1-2, 14-2-6, 22-1-1, and 22-1-12. Strains w...

  10. Characterization of Clostridium difficile Strains in British Columbia, Canada: A Shift from NAP1 Majority (2008) to Novel Strain Types (2013) in One Region

    PubMed Central

    Jassem, Agatha N.; Prystajecky, Natalie; Marra, Fawziah; Kibsey, Pamela; Tan, Kennard; Umlandt, Patricia; Janz, Loretta; Champagne, Sylvie; Gamage, Bruce; Golding, George R.; Mulvey, Michael R.; Henry, Bonnie

    2016-01-01

    Background. Clostridium difficile is a major cause of gastrointestinal illness. Epidemic NAP1 strains contain toxins A and B, a deletion in repressor tcdC, and a binary toxin. Objectives. To determine the molecular epidemiology of C. difficile in British Columbia and compare between two time points in one region. Methods. C. difficile isolates from hospital and community laboratories (2008) and one Island Health hospital laboratory (2013) were characterized by pulsed-field gel electrophoresis, PCR-ribotyping, toxin possession, tcdC genotype, and antimicrobial susceptibility. Results. In 2008, 42.7% of isolates had NAP1 designation. Hospital-collected isolates were associated with older patients and more NAP1 types. Unlike other isolates, most NAP1 isolates possessed binary toxin and a 19 bp loss in tcdC. All isolates were susceptible to metronidazole and vancomycin. A 2013 follow-up revealed a 28.9% decrease in NAP1 isolates and 20.0% increase in isolates without NAP designation in one region. Then, community-associated cases were seen in younger patients, while NAP types were evenly distributed. Isolates without NAP designation did not cluster with a PFGE pattern or ribotype. Conclusions. Evaluation of C. difficile infections within British Columbia revealed demographic associations, epidemiological shifts, and characteristics of strain types. Continuous surveillance of C. difficile will enable detection of emerging strains. PMID:27366181

  11. Conversion of acids to alcohols by Clostridium ragsdalei strain P11: Process optimization and biochemistry

    NASA Astrophysics Data System (ADS)

    Isom, Catherine E.

    Research focus was directed toward the development of a biocatalyst that can be used to produce commodity chemicals and transportation fuels from volatile fatty acids ubiquitous in waste biomass. Clostridium ragsdalei was introduced to serve as an exemplar carboxidotrophic acetogen that reduces VFAs to alcohols of the same carbon structure with only acetate and ethanol as by-products of the fermentation. This dissertation developed a better understanding of this process in C. ragsdalei and, in turn, other similar bacteria and to supported previous discoveries as they relate to carboxylate reduction in acetogens. Additionally, pure culture studies allowed for a more detailed understanding of the biochemical behavior response to different compounds without skewing the results due to the influence of other species.

  12. A penicillin- and metronidazole-resistant Clostridium botulinum strain responsible for an infant botulism case.

    PubMed

    Mazuet, C; Yoon, E-J; Boyer, S; Pignier, S; Blanc, T; Doehring, I; Meziane-Cherif, D; Dumant-Forest, C; Sautereau, J; Legeay, C; Bouvet, P; Bouchier, C; Quijano-Roy, S; Pestel-Caron, M; Courvalin, P; Popoff, M R

    2016-07-01

    The clinical course of a case of infant botulism was characterized by several relapses despite therapy with amoxicillin and metronidazole. Botulism was confirmed by identification of botulinum toxin and Clostridium botulinum in stools. A C. botulinum A2 strain resistant to penicillins and with heterogeneous resistance to metronidazole was isolated from stool samples up to 110 days after onset. Antibiotic susceptibility was tested by disc agar diffusion and MICs were determined by Etest. Whole genome sequencing allowed detection of a gene cluster composed of blaCBP for a novel penicillinase, blaI for a regulator, and blaR1 for a membrane-bound penicillin receptor in the chromosome of the C. botulinum isolate. The purified recombinant penicillinase was assayed. Resistance to β-lactams was in agreement with the kinetic parameters of the enzyme. In addition, the β-lactamase gene cluster was found in three C. botulinum genomes in databanks and in two of 62 genomes of our collection, all the strains belonging to group I C. botulinum. This is the first report of a C. botulinum isolate resistant to penicillins. This stresses the importance of antibiotic susceptibility testing for adequate therapy of botulism. PMID:27108966

  13. Comparative analysis of extractable proteins from Clostridium perfringens type A and type C strains showing varying degree of virulence.

    PubMed

    Dwivedi, Pratistha; Alam, Syed Imteyaz; Kumar, Om; Kumar, Ravi Bhushan

    2015-10-01

    The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat. PMID:26238688

  14. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats.

    PubMed

    Garcia, J P; Beingesser, J; Fisher, D J; Sayeed, S; McClane, B A; Posthaus, H; Uzal, F A

    2012-06-15

    Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch's postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis. PMID:22296994

  15. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats

    PubMed Central

    Garcia, J. P.; Beingesser, J.; Fisher, D. J.; Sayeed, S.; McClane, B. A.; Posthaus, H.; Uzal, F. A.

    2012-01-01

    Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch’s postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24 h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24 h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis. PMID:22296994

  16. Evaluation of the Cepheid Xpert C. difficile/Epi and Meridian Bioscience illumigene C. difficile Assays for Detecting Clostridium difficile Ribotype 033 Strains

    PubMed Central

    Androga, Grace O.; McGovern, Alan M.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.; Foster, Niki F.

    2014-01-01

    Clostridium difficile PCR ribotype 033 (RT033) is found in the gastrointestinal tracts of production animals and, occasionally, humans. The illumigene C. difficile assay (Meridian Bioscience, Inc.) failed to detect any of 52 C. difficile RT033 isolates, while all strains signaled positive for the binary toxin genes but were reported as negative for C. difficile by the Xpert C. difficile/Epi assay (Cepheid). PMID:25520452

  17. Strain Engineering of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  18. Clostridium perfringens

    PubMed Central

    Clifford, Walter J.; Anellis, Abe

    1971-01-01

    A biphasic culture medium suitable for cultivation and sporulation of Clostridium perfringens, C. botulinum, and C. sporogenes was devised. The medium designed for use in a disposable, compartmented, plastic film container contained peptones, yeast extract, minerals, an anion exchange resin, and glucose in 4% agar as the solid phase and (NH4)2SO4 and 0.1% agar as the liquid phase. With the biphasic system, it was not necessary to use active cultures as inocula. Growth was at least equal to that obtained in conventional media, and spore production of 9 out of 12 strains of C. perfringens equalled or usually exceeded that of conventional media. Images PMID:4332043

  19. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-08-01

    A little stress or strain has been known to improve the performance of athletes, actors and of course nanomaterials alike. In fact strain in silicon is now a major engineering tool for improving the performance of devices, and is ubiquitously used in device design and fabrication. Strain engineering alters a material's band structure, a model of electron behaviour that describes how as atoms come together in a solid, their discrete electron orbitals overlap to ultimately give rise to bands of allowed energy levels. In a strained crystal lattice of silicon or silicon germanium the distance between atoms in the lattice is greater than usual and the bands of allowed energy levels change. This July marks 100 years since Bohr submitted his paper 'On the constitution of atoms and molecules' [1] where he describes the structure of the atom in terms of discrete allowed energy levels. The paper was a seminal contribution to the development of quantum mechanics and laid the initial theoretical precepts for band gap engineering in devices. In this issue Nrauda and a collaboration of researchers in Europe and Australia study the growth of defect-free SiGe islands on pre-patterned silicon [2]. They analyse the strain in the islands and determine at what point lattice dislocations set in with a view to informing implementation of strain engineering in devices. The effects of strain on band structure in silicon and germanium were already studied and reported in the 1950s [3, 4]. Since then the increasing focus on nanoscale materials and the hunger for control of electronic properties has prompted further study of strain effects. The increased surface area to volume ratio in nanostructures changes the strain behaviour with respect to bulk materials, and this can also be exploited for handling and fine tuning strain to manipulate material properties. It is perhaps no surprise that graphene, one of the most high-profile materials in current nanotechnology research, has attracted

  20. In vitro activity of cadazolid against Clostridium difficile strains isolated from primary and recurrent infections in Stockholm, Sweden.

    PubMed

    Rashid, Mamun-Ur; Lozano, Helena Martinez; Weintraub, Andrej; Nord, Carl Erik

    2013-04-01

    One hundred thirty-three Clostridium difficile strains were collected from 71 patients and analyzed for the presence of C. difficile toxin B by the cell cytotoxicity neutralization assay, genes for toxin A, toxin B, binary toxin and TcdC deletion by PCR. All strains were also PCR-ribotyped and analyzed for sporulation frequency. The MICs of the isolates were determined against cadazolid and seven other antimicrobial agents by the agar dilution method. All isolates were positive for toxin B by the cell cytotoxicity neutralization assay. One hundred fourteen isolates were positive for toxin A and B and 16 isolates were positive for toxin A, toxin B and binary toxin by PCR. Three isolates were negative for toxin A but positive for toxin B. Thirty-three different ribotypes were identified. No strain of ribotype 027 was found. No differences in sporulation were noticed between the primary and recurrent isolates. All 133 isolates were sensitive to cadazolid (0.064-0.5 mg/l), fidaxomicin (0.008-0.125 mg/l), metronidazole (0.125-2 mg/l), vancomycin (0.125-1 mg/l) and tigecycline (0.032-0.25 mg/l). Three isolates were resistant to linezolid (8 mg/l), 15 isolates were resistant to moxifloxacin (8-32 mg/l) and 103 isolates were resistant to clindamycin (8-256 mg/l). No association between toxins A, B and binary toxin, ribotypes or the sporulation and the sensitivity to cadazolid could be found. Cadazolid has a potent in vitro activity against C. difficile. PMID:23454525

  1. CodY Is a Global Regulator of Virulence-Associated Properties for Clostridium perfringens Type D Strain CN3718

    PubMed Central

    Li, Jihong; Ma, Menglin; Sarker, Mahfuzur R.; McClane, Bruce A.

    2013-01-01

    ABSTRACT CodY is known to regulate various virulence properties in several Gram-positive bacteria but has not yet been studied in the important histotoxic and intestinal pathogen Clostridium perfringens. The present study prepared an isogenic codY-null mutant in C. perfringens type D strain CN3718 by insertional mutagenesis using the Targetron system. Western blot analysis indicated that, relative to wild-type CN3718 or a complementing strain, this isogenic codY mutant produces reduced levels of epsilon toxin (ETX). Using supernatants from cultures of the wild-type, codY-null mutant, and complementing strains, CodY regulation of ETX production was shown to have cytotoxic consequences for MDCK cells. The CodY regulatory effect on ETX production was specific, since the codY-null mutant still made wild-type levels of alpha-toxin and perfringolysin O. Sialidase activity measurements and sialidase Western blot analysis of supernatants from CN3718 and its isogenic derivatives showed that CodY represses overall exosialidase activity due to a reduced presence of NanH in culture supernatants. Inactivation of the codY gene significantly decreased the adherence of CN3718 vegetative cells or spores to host Caco-2 cells. Finally, the codY mutant showed increased spore formation under vegetative growth conditions, although germination of these spores was impaired. Overall, these results identify CodY as a global regulator of many C. perfringens virulence-associated properties. Furthermore, they establish that, via CodY, CN3718 coordinately regulates many virulence-associated properties likely needed for intestinal infection. PMID:24105766

  2. [Production of a vaccine against enterotoxemia from Clostridium perfringens strains isolated in the field].

    PubMed

    Cherfaoui, S; Kadra, B

    1992-01-01

    We have isolated eight strains of C. perfringens from cases of enterotoxaemia. Five of these strains have revealed themselves toxic with respective types (type "A":2, type "C":2, type "D":1). In order to produce anti-enterotoxaemia vaccine, we have proceeded at the cultivation in fermenter of isolated strains and reference strains CWA 35, CWC and CWD AF. At the end of fermentation, we have evaluated the two following parameters: obtained biomass, and toxin titers. With the two classes of strains we reached an important biomass but toxins titers relatively weak comparatively to that which is usually required. It will be necessary then, to demonstrate the immunogen value of the produced vaccines by testing their efficacity. PMID:1309137

  3. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov.

    PubMed

    Keis, S; Shaheen, R; Jones, D T

    2001-11-01

    On the basis of 16S rRNA gene sequencing and DNA-DNA reassociation, industrial solvent-producing clostridia have been assigned to four species. In this study, the phenotypic characteristics of Clostridium acetobutylicum, Clostridium beijerinckii, 'Clostridium saccharoperbutylacetonicum', and an unnamed Clostridium sp. represented by the strains NCP 262T and NRRL B643 are compared. In addition, a further 40 strains of solvent-producing clostridia have been classified by biotyping, DNA fingerprinting and 16S rRNA gene sequencing. These included 14 C. beijerinckii strains, two strains currently designated as 'Clostridium kaneboi' and 'Clostridium butanologenum', and 24 production strains used in the commercial acetone-butanol fermentation. All of the C. beijerinckii strains were confirmed to have been classified correctly. The 'C. kaneboi' and 'C. butanologenum' strains require reclassification as C. acetobutylicum and C. beijerinckii, respectively. The commercial production strains were found to belong either to C. beijerinckii or to the unnamed Clostridium sp. For the comparative phenotypic studies of the four species, representative strains were selected from each of the DNA-fingerprint subgroups within each species. These strains were analysed for their ability to utilize different carbohydrates, hydrolyse gelatin or aesculin, and produce indole, and were tested for the presence of catalase and urease. On the basis of these results, several phenotypic traits were found to be useful for differentiating between the four species. The descriptions of C. acetobutylicum and C. beijerinckii have been emended. The names Clostridium saccharoperbutylacetonicum sp. nov. [type strain = N1-4 (HMT) = ATCC 27021T] and Clostridium saccharobutylicum sp. nov. (type strain = DSM 13864T = ATCC BAA-117T) are proposed for the two new species. PMID:11760952

  4. Strain engineering in graphene by laser irradiation

    SciTech Connect

    Papasimakis, N.; Mailis, S.; Huang, C. C.; Al-Saab, F.; Hewak, D. W.; Luo, Z.; Shen, Z. X.

    2015-02-09

    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer.

  5. Evaluation of Media, Time and Temperature of Incubation, and Method of Enumeration of Several Strains of Clostridium perfringens Spores

    PubMed Central

    Clifford, Walter J.; Anellis, Abe; Ross, E. W.

    1974-01-01

    Two basal media, containing the ingredients found in common in both SPS (BBL) and TSN (BBL) media and in the previously described media of Schaedler et al. (1965) and Starr et al (1971), but minus antibiotics, were selected as the most suitable for the enumeration of Clostridium perfringens spores in a model system. These media were also used to study the influence of the presence of glucose, xylose, or ribose in various concentrations (0, 0.01, 0.1, and 1.0%) on colony morphology and spore recovery. As the sugar concentration in the basal agar medium increased, the colonies of all the test organisms also increased in size, and more of the black colonies became white in color. At the 1.0% sugar level, glucose permitted only white colony development, whereas the pentoses were completely inhibitory. Both pour plates and most-probable-number tubes were inoculated with the spores of several strains of C. perfringens and incubated at 20, 30, 37, and 45 C for 24, 48, and 72 h. Statistical analyses of the enumeration data indicated, at the 99% confidence level, that a Trypticase(BBL)-yeast extract-glucose-sulfite-iron agar gave maximal population estimates at 37 C in 72 h. PMID:4363558

  6. Clinical features of Clostridium difficile infection and molecular characterization of the isolated strains in a cohort of Danish hospitalized patients.

    PubMed

    Søes, L M; Brock, I; Persson, S; Simonsen, J; Pribil Olsen, K E; Kemp, M

    2012-02-01

    The purpose of this study was to compare clinical features of Clostridium difficile infection (CDI) to toxin gene profiles of the strains isolated from Danish hospitalized patients. C. difficile isolates were characterized by PCR based molecular typing methods including toxin gene profiling and analysis of deletions and truncating mutations in the toxin regulating gene tcdC. Clinical features were obtained by questionnaire. Thirty percent of the CDI cases were classified as community-acquired. Infection by C. difficile with genes encoding both toxin A, toxin B and the binary toxin was significantly associated with hospital-acquired/healthcare-associated CDI compared to community-acquired CDI. Significantly higher leukocyte counts and more severe clinical manifestations were observed in patients infected by C. difficile containing genes also encoding the binary toxin together with toxin A and B compared to patients infected by C. difficile harbouring only toxin A and B. In conclusion, infection by C. difficile harbouring genes encoding both toxin A, toxin B and the binary toxin were associated with hospital acquisition, higher leukocyte counts and severe clinical disease. PMID:21744281

  7. Distribution of Clostridium botulinum Type E Strains in Nunavik, Northern Quebec, Canada

    PubMed Central

    Leclair, Daniel; Farber, Jeffrey M.; Doidge, Bill; Blanchfield, Burke; Suppa, Sandy; Pagotto, Franco

    2013-01-01

    The distribution and levels of Clostridium botulinum type E were determined from field sites used by Inuit hunters for butchering seals along the coast of Nunavik. The incidence rates of C. botulinum type E in shoreline soil along the coast were 0, 50, and 87.5% among samples tested for the Hudson Strait, Hudson Bay, and Ungava Bay regions, respectively. Spores were detected in seawater or coastal rock surfaces from 17.6% of butchering sites, almost all of which were located in southern Ungava Bay. Concentrations of C. botulinum type E along the Ungava Bay coast were significantly higher than on the coasts of Hudson Strait and Hudson Bay, with the highest concentrations (270 to 1,800/kg of sample) found near butchering sites located along the mouths of large rivers. The Koksoak River contained high levels of C. botulinum type E, with the highest median concentration (270/kg) found in sediments of the marine portion of the river. C. botulinum type E was found in the intestinal contents (4.4%) and skins (1.4%) of seals. A high genetic biodiversity of C. botulinum type E isolates was observed among the 21 butchering sites and their surroundings along the Nunavik coastline, with 83% of isolates (44/53) yielding distinct pulsed-field gel electrophoresis genotypes. Multiple sources of C. botulinum type E may be involved in the contamination of seal meat during butchering in this region, but the risk of contamination appears to be much higher from environmental sources along the shoreline of southern Ungava Bay and the sediments of the Koksoak River. PMID:23160120

  8. Biaxial compressive strain engineering in graphene/boron nitride heterostructures.

    PubMed

    Pan, Wei; Xiao, Jianliang; Zhu, Junwei; Yu, Chenxi; Zhang, Gang; Ni, Zhenhua; Watanabe, K; Taniguchi, T; Shi, Yi; Wang, Xinran

    2012-01-01

    Strain engineered graphene has been predicted to show many interesting physics and device applications. Here we study biaxial compressive strain in graphene/hexagonal boron nitride heterostructures after thermal cycling to high temperatures likely due to their thermal expansion coefficient mismatch. The appearance of sub-micron self-supporting bubbles indicates that the strain is spatially inhomogeneous. Finite element modeling suggests that the strain is concentrated on the edges with regular nano-scale wrinkles, which could be a playground for strain engineering in graphene. Raman spectroscopy and mapping is employed to quantitatively probe the magnitude and distribution of strain. From the temperature-dependent shifts of Raman G and 2D peaks, we estimate the TEC of graphene from room temperature to above 1000K for the first time. PMID:23189242

  9. Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose

    PubMed Central

    2013-01-01

    Background Currently, the most promising microorganism used for the bio-production of butyric acid is Clostridium tyrobutyricum ATCC 25755T; however, it is unable to use sucrose as a sole carbon source. Consequently, a newly isolated strain, Bacillus sp. SGP1, that was found to produce a levansucrase enzyme, which hydrolyzes sucrose into fructose and glucose, was used in a co-culture with this strain, permitting C. tyrobutyricum ATCC 25755T to ferment sucrose to butyric acid. Results B. sp. SGP1 alone did not show any butyric acid production and the main metabolite produced was lactic acid. This allowed C. tyrobutyricum ATCC 25755T to utilize the monosaccharides resulting from the activity of levansucrase together with the lactic acid produced by B. sp. SGP1 to generate butyric acid, which was the main fermentative product within the co-culture. Furthermore, the final acetic acid concentration in the co-culture was significantly lower when compared with pure C. tyrobutyricum ATCC 25755T cultures grown on glucose. In fed-batch fermentations, the optimum conditions for the production of butyric acid were around pH 5.50 and a temperature of 37°C. Under these conditions, the final butyrate concentration was 34.2±1.8 g/L with yields of 0.35±0.03 g butyrate/g sucrose and maximum productivity of 0.3±0.04 g/L/h. Conclusions Using this co-culture, sucrose can be utilized as a carbon source for butyric acid production at a relatively high yield. In addition, this co-culture offers also the benefit of a greater selectivity, with butyric acid constituting 92.8% of the acids when the fermentation was terminated. PMID:23452443

  10. Sialidases Affect the Host Cell Adherence and Epsilon Toxin-Induced Cytotoxicity of Clostridium perfringens Type D Strain CN3718

    PubMed Central

    Li, Jihong; Sayeed, Sameera; Robertson, Susan; Chen, Jianming; McClane, Bruce A.

    2011-01-01

    Clostridium perfringens type B or D isolates, which cause enterotoxemias or enteritis in livestock, produce epsilon toxin (ETX). ETX is exceptionally potent, earning it a listing as a CDC class B select toxin. Most C. perfringens strains also express up to three different sialidases, although the possible contributions of those enzymes to type B or D pathogenesis remain unclear. Type D isolate CN3718 was found to carry two genes (nanI and nanJ) encoding secreted sialidases and one gene (nanH) encoding a cytoplasmic sialidase. Construction in CN3718 of single nanI, nanJ and nanH null mutants, as well as a nanI/nanJ double null mutant and a triple sialidase null mutant, identified NanI as the major secreted sialidase of this strain. Pretreating MDCK cells with NanI sialidase, or with culture supernatants of BMC206 (an isogenic CN3718 etx null mutant that still produces sialidases) enhanced the subsequent binding and cytotoxic effects of purified ETX. Complementation of BMC207 (an etx/nanH/nanI/nanJ null mutant) showed this effect is mainly attributable to NanI production. Contact between BMC206 and certain mammalian cells (e.g., enterocyte-like Caco-2 cells) resulted in more rapid sialidase production and this effect involved increased transcription of BMC206 nanI gene. BMC206 was shown to adhere to some (e.g. Caco-2 cells), but not all mammalian cells, and this effect was dependent upon sialidase, particularly NanI, expression. Finally, the sialidase activity of NanI (but not NanJ or NanH) could be enhanced by trypsin. Collectively these in vitro findings suggest that, during type D disease originating in the intestines, trypsin may activate NanI, which (in turn) could contribute to intestinal colonization by C. perfringens type D isolates and also increase ETX action. PMID:22174687

  11. Clostridium perfringens strains from bovine enterotoxemia cases are not superior in in vitro production of alpha toxin, perfringolysin O and proteolytic enzymes

    PubMed Central

    2014-01-01

    Background Bovine enterotoxemia is a major cause of mortality in veal calves. Predominantly veal calves of beef cattle breeds are affected and losses due to enterotoxemia may account for up to 20% of total mortality. Clostridium perfringens type A is considered to be the causative agent. Recently, alpha toxin and perfringolysin O have been proposed to play an essential role in the development of disease. However, other potential virulence factors also may play a role in the pathogenesis of bovine enterotoxemia. The aim of this study was to evaluate whether strains originating from bovine enterotoxemia cases were superior in in vitro production of virulence factors (alpha toxin, perfringolysin O, mucinase, collagenase) that are potentially involved in enterotoxemia. To approach this, a collection of strains originating from enterotoxemia cases was compared to bovine strains isolated from healthy animals and to strains isolated from other animal species. Results Strains originating from bovine enterotoxemia cases produced variable levels of alpha toxin and perfringolysin O that were not significantly different from levels produced by strains isolated from healthy calves and other animal species. All tested strains exhibited similar mucinolytic activity independent of the isolation source. A high variability in collagenase activity between strains could be observed, and no higher collagenase levels were produced in vitro by strains isolated from enterotoxemia cases. Conclusions Bovine enterotoxemia strains do not produce higher levels of alpha toxin, perfringolysin O, mucinase and collagenase, as compared to strains derived from healthy calves and other animal species in vitro. PMID:24479821

  12. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. PMID:27376498

  13. A MLST Clade 2 Clostridium difficile strain with a variant TcdB induces severe inflammatory and oxidative response associated with mucosal disruption.

    PubMed

    Costa, Cecília Leite; López-Ureña, Diana; de Oliveira Assis, Thiago; Ribeiro, Ronaldo A; Silva, Rodrigo Otávio Silveira; Rupnik, Maja; Wilcox, Mark H; de Carvalho, Alex Fiorini; do Carmo, Anderson Oliveira; Dias, Adriana Abalen Martins; de Carvalho, Cibele Barreto Mano; Chaves-Olarte, Esteban; Rodríguez, César; Quesada-Gómez, Carlos; de Castro Brito, Gerly Anne

    2016-08-01

    The epidemiology of Clostridium difficile infections is highly dynamic as new strains continue to emerge worldwide. Here we present a detailed analysis of a new C. difficile strain (ICC-45) recovered from a cancer patient in Brazil that died from severe diarrhea. A polyphasic approach assigned a new PCR-ribotype and PFGE macrorestriction pattern to strain ICC-45, which is toxigenic (tcdA(+), tcdB(+) and ctdB(+)) and classified as ST41 from MLST Clade 2 and toxinotype IXb. Strain ICC-45 encodes for a variant TcdB that induces a distinct CPE in agreement with its toxinotype. Unlike epidemic NAP1/027 strains, which are also classified to MLST Clade 2, strain ICC-45 is susceptible to fluoroquinolones and does not overproduce toxins TcdA and TcdB. However, supernatants from strain ICC-45 and a NAP1/027 strain produced similar expression of pro-inflammatory cytokines, epithelial damage, and oxidative stress response in the mouse ileal loop model. These results highlight inflammation and oxidative stress as common features in the pathogenesis of C. difficile Clade 2 strains. Finally, this work contributes to the description of differences in virulence among various C. difficile strains. PMID:27311833

  14. Nanoscale strain engineering of graphene and graphene-based devices

    NASA Astrophysics Data System (ADS)

    Yeh, N.-C.; Hsu, C.-C.; Teague, M. L.; Wang, J.-Q.; Boyd, D. A.; Chen, C.-C.

    2016-02-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

  15. Nanoscale strain engineering of graphene and graphene-based devices

    NASA Astrophysics Data System (ADS)

    Yeh, N.-C.; Hsu, C.-C.; Teague, M. L.; Wang, J.-Q.; Boyd, D. A.; Chen, C.-C.

    2016-06-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

  16. Strain engineering of Dirac cones in graphyne

    SciTech Connect

    Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra; Si, Mingsu

    2014-05-26

    6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.

  17. Comparison of restriction endonuclease analysis, ribotyping, and pulsed-field gel electrophoresis for molecular differentiation of Clostridium difficile strains.

    PubMed Central

    Kristjánsson, M; Samore, M H; Gerding, D N; DeGirolami, P C; Bettin, K M; Karchmer, A W; Arbeit, R D

    1994-01-01

    A combined clinical and molecular epidemiologic analysis of 46 strains of Clostridium difficile, including 16 nosocomial isolates from one ward (outbreak ward) plus 17 other nosocomial isolates and 13 community-acquired isolates, was performed. HindIII digests of total cellular DNA were analyzed by restriction enzyme analysis (REA) and ribotyping; SmaI digests were analyzed by pulsed-field gel electrophoresis (PFGE). Isolates were assigned to typing groups on the basis of the profiles detected; isolates with closely related profiles were assigned to subgroups. The 16 isolates from the outbreak ward were resolved by both REA and PFGE into five distinct groups; 13 isolates represented two REA groups and three PFGE groups and two isolates were resolved as distinct groups by both techniques. DNA obtained from one isolate was persistently partially degraded, precluding analysis by PFGE. Seventeen sporadic nosocomial isolates were resolved by REA and PFGE into comparable numbers of groups (i.e., nine groups) and subgroups (i.e., 15 and 14 subgroups, respectively), with two isolates not evaluable by PFGE. The 13 epidemiologically unrelated community-acquired isolates were assigned to 11 groups by REA and to 12 groups by PFGE. Overall, ribotyping identified only nine groups among the 46 isolates. We conclude that REA and PFGE have comparable discriminatory powers for epidemiologic typing of C. difficile isolates and that ribotyping is appreciably less discriminatory. For a few isolates, partial DNA degradation prevented analysis by PFGE but not by REA or ribotyping; the cause of the degradation is unknown. Images PMID:7989550

  18. The Sialidases of Clostridium perfringens Type D Strain CN3718 Differ in Their Properties and Sensitivities to Inhibitors

    PubMed Central

    Li, Jihong

    2014-01-01

    Clostridium perfringens causes histotoxic infections and diseases originating in animal or human intestines. A prolific toxin producer, this bacterium also produces numerous enzymes, including sialidases, that may facilitate infection. C. perfringens type D strain CN3718 carries genes encoding three sialidases, including two large secreted sialidases (named NanI and NanJ) and one small sialidase (named NanH) that has an intracellular location in log-phase cultures but is present in supernatants of death phase cultures. Using isogenic mutants of CN3718 that are capable of expressing only NanJ, NanI, or NanH, the current study characterized the properties and activities of each sialidase. The optimal temperature determined for NanJ or NanH enzymatic activity was 37°C or 43°C, respectively, while NanI activity increased until temperature reached 48°C. NanI activity was also the most resistant against higher temperatures. All three sialidases showed optimal activities at pH 5.5. Compared to NanJ or NanH, NanI contributed most to the sialidase activity in CN3718 culture supernatants, regardless of the substrate sialic acid linkage; NanI also released the most sialic acid from Caco-2 cells. Only NanI activity was enhanced by trypsin pretreatment and then only for substrates with an α-2,3- or α-2,6-sialic acid linkage. NanJ and NanI activities were more sensitive than NanH activity to two sialidase inhibitors (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid and siastatin B). The activities of the three sialidases were affected differently by several metal ions. These results indicated that each C. perfringens sialidase has distinct properties, which may allow these enzymes to play different roles depending upon environmental conditions. PMID:24375134

  19. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes.

    PubMed

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P; Pint, Cary L

    2016-01-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872

  20. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-06-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials.

  1. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    PubMed Central

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-01-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872

  2. Contributions of NanI Sialidase to Caco-2 Cell Adherence by Clostridium perfringens Type A and C Strains Causing Human Intestinal Disease

    PubMed Central

    Li, Jihong

    2014-01-01

    Previous studies showed that Clostridium perfringens type D animal disease strain CN3718 uses NanI sialidase for adhering to enterocyte-like Caco-2 cells. The current study analyzed whether NanI is similarly important when type A and C human intestinal disease strains attach to Caco-2 cells. A PCR survey determined that the nanI gene was absent from typical type A food poisoning (FP) strains carrying a chromosomal enterotoxin (CPE) gene or the genetically related type C Darmbrand (Db) strains. However, the nanI gene was present in type A strains from healthy humans, type A strains causing CPE-associated antibiotic-associated diarrhea (AAD) or sporadic diarrhea (SD), and type C Pig-Bel strains. Consistent with NanI sialidase being the major C. perfringens sialidase when produced, FP and Db strains had little supernatant sialidase activity compared to other type A or C human intestinal strains. All type A and C human intestinal strains bound to Caco-2 cells, but NanI-producing strains had higher attachment levels. When produced, NanI can contribute to host cell attachment of human intestinal disease strains, since a nanI null mutant constructed in type A SD strain F4969 had lower Caco-2 cell adhesion than wild-type F4969 or a complemented strain. Further supporting a role for NanI in host cell attachment, sialidase inhibitors reduced F4969 adhesion to Caco-2 cells. Collectively, these results suggest that NanI may contribute to the intestinal attachment and colonization needed for the chronic diarrhea of CPE-associated AAD and SD, but this sialidase appears to be dispensable for the acute pathogenesis of type A FP or type C enteritis necroticans. PMID:25135687

  3. Engineering E. coli strain for conversion of short chain fatty acids to bioalcohols

    PubMed Central

    2013-01-01

    Background Recent progress in production of various biofuel precursors and molecules, such as fatty acids, alcohols and alka(e)nes, is a significant step forward for replacing the fossil fuels with renewable fuels. A two-step process, where fatty acids from sugars are produced in the first step and then converted to corresponding biofuel molecules in the second step, seems more viable and attractive at this stage. We have engineered an Escherichia coli strain to take care of the second step for converting short chain fatty acids into corresponding alcohols by using butyrate kinase (Buk), phosphotransbutyrylase (Ptb) and aldehyde/alcohol dehydrogenase (AdhE2) from Clostridium acetobutylicum. Results The engineered E. coli was able to convert butyric acid and other short chain fatty acids of chain length C3 to C7 into corresponding alcohols and the efficiency of conversion varied with different E. coli strain type. Glycerol proved to be a better donor of ATP and electron as compared to glucose for converting butyric acid to butanol. The engineered E. coli was able to tolerate up to 100 mM butyric acid and produced butanol with the conversion rate close to 100% under anaerobic condition. Deletion of native genes, such as fumarate reductase (frdA) and alcohol dehydrogenase (adhE), responsible for side products succinate and ethanol, which act as electron sink and could compete with butyric acid uptake, did not improve the butanol production efficiency. Indigenous acyl-CoA synthetase (fadD) was found to play no role in the conversion of butyric acid to butanol. Engineered E. coli was cultivated in a bioreactor under controlled condition where 60 mM butanol was produced within 24 h of cultivation. A continuous bioreactor with the provision of cell recycling allowed the continuous production of butanol at the average productivity of 7.6 mmol/l/h until 240 h. Conclusions E. coli engineered with the pathway from C. acetobutylicum could efficiently convert butyric acid

  4. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain

    PubMed Central

    2014-01-01

    Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell

  5. Taxonomic identity of type E botulinum toxin-producing Clostridium butyricum strains by sequencing of a short 16S rDNA region.

    PubMed

    Pourshaban, Manoocheher; Franciosa, Giovanna; Fenicia, Lucia; Aureli, Paolo

    2002-08-27

    Several micro-organisms capable of producing botulinum neurotoxin type E, though phenotypically similar to Clostridium butyricum (a normally non-neurotoxigenic organism), have recently been isolated in Italy and China. Some of these micro-organisms had been implicated in food-borne botulism, a serious neuroparalytic disease. The taxonomic identity of the type E botulinum toxin-producing strains is confirmed here, through sequencing of a genus- and species-specific segment of the 16S rRNA gene. Confirmation leads to the conclusion that neurotoxigenic C. butyricum must be regarded as an emergent food-borne pathogen. PMID:12204382

  6. Biaxial Strain Engineering in Suspended MoS2

    NASA Astrophysics Data System (ADS)

    Lloyd, David; Liu, Xinghui; Cantley, Lauren; Koch, Eric; Yang, Guang; Boddeti, Narasimha; Dunn, Martin L.; Bunch, J. Scott; Bunch Team

    2015-03-01

    Monolayer MoS2 is a direct gap semiconductor and has attracted significant interest for its potential uses in electronics and optoelectronics. It has also been shown to have a highly strain-sensitive bandgap and can sustain strains of up to 11 percent, making it ideally suited for using strain engineering to tune it's electrical and optical properties. Herein, we fabricate pressurized MoS2 blisters using single and few layer MoS2 membranes suspended over cylindrical microcavities. By applying a pressure difference across the membrane and measuring the changes to it's photoluminescence spectrumwe study the effect of elastic biaxial strain engineering on the bandgap of MoS2.

  7. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    PubMed Central

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  8. Delay time and Hartman effect in strain engineered graphene

    SciTech Connect

    Chen, Xi Deng, Zhi-Yong; Ban, Yue

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  9. Strain engineered barium strontium titanate for tunable thin film resonators

    SciTech Connect

    Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  10. Association of tcdA+/tcdB+ Clostridium difficile Genotype with Emergence of Multidrug-Resistant Strains Conferring Metronidazole Resistant Phenotype

    PubMed Central

    Shayganmehr, Farahnaz-Sadat; Alebouyeh, Masoud; Azimirad, Masoumeh; Aslani, Mohammad Mehdi; Zali, Mohammad Reza

    2015-01-01

    Background: Reduced susceptibility of Clostridium difficile to antibiotics is problematic in clinical settings. There is new evidence indicating the cotransfer of toxin-encoding genes and conjugative transposons encoding resistance to antibiotics among different C. difficile strains. To analyze this association, in the current study, we evaluated the frequency of toxigenic C. difficile among the strains with different multidrug-resistant (MDR) profiles in Iran. Methods: Antimicrobial susceptibility patterns and minimal inhibitory concentrations (MIC) of the isolates were determined against metronidazole, imipenem, ceftazidime, amikacin, and ciprofloxacin by agar dilution method. The association of the resistance profiles and toxigenicity of the strains were studied by PCR targeting tcdA and tcdB genes. Results: Among 86 characterized strains, the highest and lowest resistance rates were related to ciprofloxacin (97%) and metronidazole (5%), respectively. The frequency of resistance to other antibiotics was as follow: imipenem (48%), ceftazidime (76%), and amikacin (76.5%). Among the resistant strains, double drug resistance and MDR phenotypes were detected in the frequencies of 10.4% and 66.2%, respectively. All of the metronidazole-resistant strains belonged to tcdA +/tcdB + genotype with triple or quintuple drug resistance phenotypes. MIC50 and MIC90 for this antibiotic was equally ≤ 8 μg/ml. Conclusion: These results proposed the association of tcdA +/tcdB + genotype of C. difficile and the emergence of resistance strains to broad-spectrum antibiotics and metronidazole. PMID:26048022

  11. 12 alpha-hydroxysteroid dehydrogenase from Clostridium group P, strain C 48-50. Production, purification and characterization.

    PubMed

    Braun, M; Lünsdorf, H; Bückmann, A F

    1991-03-14

    NADP(H)-dependent 12 alpha-hydroxysteroid dehydrogenase (HSDH) from Clostridium group P, strain C 48-50, is still expressed at unusual high level (approximately 1% of total protein) under cultivation conditions where the usual expensive brain/heart infusion complex medium is replaced by inexpensive technical grade yeast autolysate. An inexpensive anaerobic bioprocess for the production of HSDH was developed provisionally up to 900-1 scale (9000 U/l, 7 g HSDH, specific activity 1.0 U/mg crude protein, 55 U/g wet cells). By a simple two-step affinity chromatography procedure, easily adaptable to a large-scale operation, using columns of small dimensions of Sephacryl-S-400-Procion-orange-P-2R (5 cm x 28 cm) and Sephacryl-S-400-Procion-red-HE-7B (2.6 cm x 14 cm) approximately 140 mg (1.8 x 10(4) U), HSDH was purified to apparent homogeneity and concentrated directly from a crude cell extract (overall yield 53%, specific activity 128 U/mg). As confirmed by fast native and SDS/PAGE, isoelectric focussing and electron microscopy, HSDH has a molecular mass of approximately 105 kDa and consists of four flattened tetrahedrically arranged identical subunits (26 kDa). The enzyme exhibits a rather low isoelectric point of 4.6, a pH optimum of 8.5-9.5 and a temperature optimum of approximately 55 C for the oxidation of cholic acid. Inhibition by SH reagents and pyridoxal 5'-phosphate has been observed. Chelating agents have no inhibitory effect. The presence of NADP increases considerably the thermostability (t 1/2 4-10 d, 25 C; 2-5 d, 37 C). Steady-state kinetic analysis for both reaction directions indicated that the reaction proceeds through an ordered bi bi mechanism with NADP(H) binding first to the free enzyme. Km, Vmax [forward (Vf) and reverse reactions (Vr)] and the dissociation constants Kd for the binary complexes with NADP and NADPH were as follows. NADP, Km = 35 microns, Kd = 35 microns; cholic acid, Km = 72 microns, deoxycholic acid, Km = 45 microns, Vf = 160 U mg

  12. Draft Genome Sequence of Clostridium difficile Strain IT1118, an Epidemic Isolate Belonging to the Emerging PCR Ribotype 018

    PubMed Central

    Wasels, François; Barbanti, Fabrizio

    2016-01-01

    Clostridium difficile PCR ribotype 018 has emerged in Italy, South Korea, and Japan, causing severe infections and outbreaks. In this study, we sequenced the genome of IT1118, an Italian clinical isolate, to clarify the molecular features contributing to the success of this epidemic type. PMID:27445391

  13. Mechanical Control of Graphene on Engineered Pyramidal Strain Arrays.

    PubMed

    Gill, Stephen T; Hinnefeld, John H; Zhu, Shuze; Swanson, William J; Li, Teng; Mason, Nadya

    2015-06-23

    Strain can tune desirable electronic behavior in graphene, but there has been limited progress in controlling strain in graphene devices. In this paper, we study the mechanical response of graphene on substrates patterned with arrays of mesoscale pyramids. Using atomic force microscopy, we demonstrate that the morphology of graphene can be controlled from conformal to suspended depending on the arrangement of pyramids and the aspect ratio of the array. Nonuniform strains in graphene suspended across pyramids are revealed by Raman spectroscopy and supported by atomistic modeling, which also indicates strong pseudomagnetic fields in the graphene. Our results suggest that incorporating mesoscale pyramids in graphene devices is a viable route to achieving strain-engineering of graphene. PMID:25970764

  14. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain.

    PubMed

    Park, Soo-Dong; Lee, Joo-Young; Sim, Soo-Yeon; Kim, Younhee; Lee, Heung-Shick

    2007-07-01

    A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserine dehydrogenase by threonine and a deletion of the thrB gene (delta thrB) to abolish threonine synthesis. The constructed C. glutamicum MH20-22B/hom(FBR)/delta thrB strain accumulated 2.9 g/l of methionine by batch fermentation and showed resistance to methionine analogue ethionine at concentrations up to 30 mM. The growth of the strain was apparently impaired as a result of the accumulation of methionine biosynthetic intermediate, homocysteine. Production assays also revealed that the accumulation of methionine in the growth medium was transient and declined as the carbon source was depleted. During the period of methionine disappearance, the methionine biosynthetic genes were completely repressed in the engineered strains but not in the parental strain. After all, we have not only successfully constructed a methionine-producing C. glutamicum strain by genetic manipulation, but also revealed cellular constraints in attaining high yield and productivity. PMID:17604670

  15. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    SciTech Connect

    Clausen, Bjorn; Brown, Donald W; Tome, Carlos N; Balogh, Levente; Vogel, Sven C

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  16. Enhanced expression of recombinant beta toxin of Clostridium perfringens type B using a commercially available Escherichia coli strain.

    PubMed

    Bakhshi, Fatemah; Pilehchian Langroudi, Reza; Imani, Bahram Golestani

    2016-01-01

    Clostridium perfringens beta toxin is only produced by types B and C and plays an important role in many human and animal diseases, causing fatal conditions that originate in the intestines. We compared the expression of C. perfringens type B vaccine strain recombinant beta toxin gene in the Escherichia coli strains RosettaTM(DE3) and BL21(DE3). The beta toxin gene was extracted from pJETβ and ligated with pET22b(+). pET22β was transformed into E. coli strains BL21(DE3) and RosettaTM(DE3). Recombinant protein was expressed as a soluble protein after isopropyl β-D-1-thiogalactopyranoside (IPTG) induction in strain RosettaTM(DE3) but not in BL21(DE3). Expression was optimised by growing recombinant cells at 37 °C and at an induction of 0.5 mM, 1 mM, 1.5 mM IPTG. Expression was evaluated using sodium dodecyl sulfate Polyacrylamide gel electrophoresis (SDS-PAGE). The recombinant protein was purified via Ni-NTA and was analysed using western blot. We concluded that E. coli strain RosettaTM(DE3) can enhance the expression of C. perfringens recombinant beta toxin. PMID:27543150

  17. Rapid spread of Clostridium difficile NAP1/027/ST1 in Chile confirms the emergence of the epidemic strain in Latin America.

    PubMed

    Aguayo, C; Flores, R; Lévesque, S; Araya, P; Ulloa, S; Lagos, J; Hormazabal, J C; Tognarelli, J; Ibáñez, D; Pidal, P; Duery, O; Olivares, B; Fernández, J

    2015-10-01

    Clostridium difficile infection has gained importance in recent years as a result of the rapid spread of epidemic strains, including hypervirulent strains. This study reports the molecular epidemiology of C. difficile obtained from hospitalized patients in Chile. Seven hundred and nineteen isolates of toxigenic C. difficile from 45 hospitals across the country were characterized through toxin profile, pulsed-field gel electrophoresis (PFGE), and sequencing of the tcdC gene. In addition, polymerase chain reaction (PCR) ribotyping and multilocus sequence typing (MLST) were performed on a subset of selected strains. PFGE typing of 719 isolates of C. difficile produced 60 PFGE patterns (subtypes). Subtype 1 was predominant (79% of isolates) and related to the hypervirulent strain (NAP1). Subtype 1 showed 73% relatedness with nine other subtypes, which had a similar tcdC deletion. Subtype 1 corresponded to ribotype 027 and ST1. This report shows the wide dissemination of the hypervirulent strain NAP1/027/ST1 in Chile. PMID:25687254

  18. Understanding the Current State of Infection Prevention to Prevent Clostridium difficile Infection: A Human Factors and Systems Engineering Approach

    PubMed Central

    Yanke, Eric; Zellmer, Caroline; Van Hoof, Sarah; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2015-01-01

    Background Achieving and sustaining high levels of healthcare worker (HCW) compliance with contact isolation precautions is challenging. The aim of this study was to determine HCW work system barriers to, and facilitators of, adherence to contact isolation for patients with suspected or confirmed Clostridium difficile infection (CDI) using a human factors and systems engineering approach. Methods Prospective cohort study from September 2013 to November 2013 at a large academic medical center (hospital A) and an affiliated Veterans Administration (VA) hospital (hospital B). A human factors engineering (HFE) model for patient safety – the Systems Engineering Initiative for Patient Safety (SEIPS) model – was used to guide work system analysis and direct observation data collection. 288 observations were conducted. HCWs and visitors were assessed for compliance with all components of contact isolation precautions (hand hygiene, gowning, and gloving) before and after patient contact. Time required to complete contact isolation precautions was measured and adequacy of contact isolation supplies was assessed. Results Full compliance with contact isolation precautions was low at both hospitals: hospital A, 7%; hospital B, 22%. Lack of appropriate hand hygiene prior to room entry (Compliance: hospital A, 18%; hospital B, 29%) was the most common reason for lack of full compliance. More time was required for full compliance as compared to compliance with no components of contact isolation precautions before patient room entry, inside patient room, and after patient room exit (59.9 sec vs. 3.2 sec; P < .001; 507.3 sec vs. 149.7 sec; P = .006; 15.2 sec vs. 1.3 sec; P < .001). Compliance was lower when contact isolation supplies were inadequate (4% vs. 16%; P = .005). Conclusions Adherence to contact isolation precautions for CDI is a complex, time-consuming process. HFE analysis indicates multiple work system components serve as barriers and facilitators to full compliance

  19. Complete genome analysis of Clostridium bornimense strain M2/40(T): A new acidogenic Clostridium species isolated from a mesophilic two-phase laboratory-scale biogas reactor.

    PubMed

    Tomazetto, Geizecler; Hahnke, Sarah; Koeck, Daniela E; Wibberg, Daniel; Maus, Irena; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas

    2016-08-20

    Taxonomic and functional profiling based on metagenome analyses frequently revealed that members of the class Clostridia dominate biogas reactor communities and perform different essential metabolic pathways in the biogas fermentation process. Clostridium bornimense strain M2/40(T) was recently isolated from a mesophilic two-phase lab-scale biogas reactor continuously fed with maize silage and wheat straw. The genome of the strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding carbohydrate active enzyme production and fermentation of organic compounds for consolidated biofuel production from biomass. The C. bornimense M2/40(T) genome consists of a chromosome (2,917,864bp in size) containing 2613 protein coding sequences, and a 699,161bp chromid (secondary replicon) harboring 680 coding sequences. Both replicons feature very similar GC-contents of approximately 29%. The complex genome comprises three prophage regions, two CRISPR-cas systems and a putative cellulosomal gene cluster that is located on the second replicon (chromid) of the strain. The overexpressed glycosyl hydrolases (GH) CelK (GH9) and CelA (GH48) encoded in the cellulosomal gene cluster were shown to be active on the substrates xylan and xyloglucan whereas XghA (GH74) is highly active on xyloglucan. Reconstruction of fermentation pathways from genome sequence data revealed that strain M2/40(T) encodes all enzymes for hydrogen, acetate, formate, lactate, butyrate, and ethanol production, leading to the classification of the isolate as acidogenic bacterium. Phylogenetic analyses uncovered that the closest characterized relative of C. bornimense is C. cellulovorans. Comparative analyses of the C. bornimense and C. cellulovorans genomes revealed considerable rearrangements within their chromosomes suggesting that both species evolved separately for a relatively long period of time and adapted to specific tasks within microbial consortia responsible for

  20. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    SciTech Connect

    Bao, Guanhui; Dong, Hongjun; Zhu, Yan; Mao, Shaoming; Zhang, Tianrui; Zhang, Yanping; Chen, Zugen; Li, Yin

    2014-08-08

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.

  1. High temperature strain gage technology for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Fichtel, Edward J.; McDaniel, Amos D.

    1994-08-01

    This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.

  2. Semiconductor nanomembranes: a platform for new properties via strain engineering

    PubMed Central

    2012-01-01

    New phenomena arise in single-crystal semiconductors when these are fabricated in very thin sheets, with thickness at the nanometer scale. We review recent research on Si and Ge nanomembranes, including the use of elastic strain sharing, layer release, and transfer, that demonstrate new science and enable the fabrication of materials with unique properties. Strain engineering produces new strained forms of Si or Ge not possible in nature, new layered structures, defect-free SiGe sheets, and new electronic band structure and photonic properties. Through-membrane elastic interactions cause the double-sided ordering of epitaxially grown nanostressors on Si nanomembranes, resulting in a spatially and periodically varying strain field in the thin crystalline semiconductor sheet. The inherent influence of strain on the band structure creates band gap modulation, thereby creating effectively a single-element electronic superlattice. Conversely, large-enough externally applied strain can make Ge a direct-band gap semiconductor, giving promise for Group IV element light sources. PMID:23153167

  3. High temperature strain gage technology for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Fichtel, Edward J.; Mcdaniel, Amos D.

    1994-01-01

    This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.

  4. Clostridium geopurificans strain MJ1 sp. nov., a strictly anaerobic bacterium that grows via fermentation and reduces the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).

    PubMed

    Kwon, Man Jae; Wei, Na; Millerick, Kayleigh; Popovic, Jovan; Finneran, Kevin

    2014-06-01

    A fermentative, non-spore forming, motile, rod-shaped bacterium, designated strain MJ1(T), was isolated from an RDX contaminated aquifer at a live-fire training site in Northwest NJ, United States. On the basis of 16S rRNA gene sequencing and DNA base composition, strain MJ1(T) was assigned to the Firmicutes. The DNA G+C content was 42.8 mol%. Fermentative growth was supported by glucose and citrate in a defined basal medium. The bacterium is a strict anaerobe that grows between at pH 6.0 and pH 8.0 and 18 and 37 °C. The culture did not grow with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as the electron acceptor or mineralize RDX under these conditions. However, MJ1(T) transformed RDX into MNX, methylenedinitramine, formaldehyde, formate, ammonium, nitrous oxide, and nitrate. The nearest phylogenetic relative with a validly published name was Desulfotomaculum guttoideum (95 % similarity). However, MJ1(T) was also related to Clostridium celerecrescens DSM 5628 (95 %), Clostridium indolis DSM 755 (94 %), and Clostridium sphenoides DSM 632 (94 %). DNA:DNA hybridization with these strains was between 6.7 and 58.7 percent. The dominant cellular fatty acids (greater than 5 % of the total, which was 99.0 % recovery) were 16:0 fatty acid methyl ester (FAME) (32.12 %), 18:1cis 11 dimethyl acetal (DMA) (16.47 %), 16:1cis 9 DMA (10.28 %), 16:1cis 9 FAME (8.10 %), and 18:1cis 9 DMA (5.36 %). On the basis of morphological, physiological, and phylogenetic data, Clostridium geopurificans is proposed as a new species in genus Clostridium, with strain MJ1(T) as the type strain. PMID:24522483

  5. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. PMID:26971669

  6. MESSI: metabolic engineering target selection and best strain identification tool

    PubMed Central

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae’s ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae’s metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains’ natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels. Database URL: http://sbb.hku.hk/MESSI/ PMID:26255308

  7. Tunable thermoelectric transport in nanomeshes via elastic strain engineering

    SciTech Connect

    Piccione, Brian; Gianola, Daniel S.

    2015-03-16

    Recent experimental explorations of silicon nanomeshes have shown that the unique metastructures exhibit reduced thermal conductivity while preserving bulk electrical conductivity via feature sizes between relevant phonon and electron mean free paths, aiding in the continued promise that nanometer-scale engineering may further enhance thermoelectric behavior. Here, we introduce a strategy for tuning thermoelectric transport phenomena in semiconductor nanomeshes via heterogeneous elastic strain engineering, using silicon as a model material for demonstration of the concept. By combining analytical models for electron mobility in uniformly stressed silicon with finite element analysis of strained silicon nanomeshes in a lumped physical model, we show that the nonuniform and multiaxial strain fields defined by the nanomesh geometry give rise to spatially varying band shifts and warping, which in aggregate accelerate electron transport along directions of applied stress. This allows for global electrical conductivity and Seebeck enhancements beyond those of homogenous samples under equivalent far-field stresses, ultimately increasing thermoelectric power factor nearly 50% over unstrained samples. The proposed concept and structures—generic to a wide class of materials with large dynamic ranges of elastic strain in nanoscale volumes—may enable a new pathway for active and tunable control of transport properties relevant to waste heat scavenging and thermal management.

  8. Tunable thermoelectric transport in nanomeshes via elastic strain engineering

    NASA Astrophysics Data System (ADS)

    Piccione, Brian; Gianola, Daniel S.

    2015-03-01

    Recent experimental explorations of silicon nanomeshes have shown that the unique metastructures exhibit reduced thermal conductivity while preserving bulk electrical conductivity via feature sizes between relevant phonon and electron mean free paths, aiding in the continued promise that nanometer-scale engineering may further enhance thermoelectric behavior. Here, we introduce a strategy for tuning thermoelectric transport phenomena in semiconductor nanomeshes via heterogeneous elastic strain engineering, using silicon as a model material for demonstration of the concept. By combining analytical models for electron mobility in uniformly stressed silicon with finite element analysis of strained silicon nanomeshes in a lumped physical model, we show that the nonuniform and multiaxial strain fields defined by the nanomesh geometry give rise to spatially varying band shifts and warping, which in aggregate accelerate electron transport along directions of applied stress. This allows for global electrical conductivity and Seebeck enhancements beyond those of homogenous samples under equivalent far-field stresses, ultimately increasing thermoelectric power factor nearly 50% over unstrained samples. The proposed concept and structures—generic to a wide class of materials with large dynamic ranges of elastic strain in nanoscale volumes—may enable a new pathway for active and tunable control of transport properties relevant to waste heat scavenging and thermal management.

  9. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  10. Clostridium difficile infection among immunocompromised patients in Rio de Janeiro, Brazil and detection of moxifloxacin resistance in a ribotype 014 strain.

    PubMed

    Secco, Danielle Angst; Balassiano, Ilana Teruszkin; Boente, Renata Ferreira; Miranda, Karla Rodrigues; Brazier, Jon; Hall, Val; dos Santos-Filho, Joaquim; Lobo, Leandro Araujo; Nouér, Simone Aranha; Domingues, Regina Maria Cavalcanti Pilotto

    2014-08-01

    Clostridium difficile is a Gram-positive spore forming anaerobic bacterium, often associated with nosocomial diarrhea and pseudomembranous colitis. The acquisition of this organism occurs primarily in hospitals through accidental ingestion of spores, and its establishment and proliferation in the colon results from the removal of members of the normal intestinal flora during or after antibiotic therapy. In this study, stool samples from patients admitted to the University Hospital Clementino Fraga Filho (HUCCF/UFRJ) were screened for C. difficile toxins with an ELISA test and cultured with standard techniques for C. difficile isolation. A total of 74 stool samples were collected from patients undergoing antibiotic therapy between August 2009 and November 2010, only two (2.7%) were positive in the ELISA test and culture. A third isolate was obtained from a negative ELISA test sample. All cases of CDI were identified in patients with acute lymphoid or myeloid leukemia. Genotypic and phenotypic characterization showed that all strains carried toxins A and B genes, and belonged to PCR-ribotypes 014, 043 and 046. The isolated strains were sensitive to metronidazole and vancomycin, and resistant to ciprofloxacin and levofloxacin. Resistance to moxifloxacin, was present in the strain from PCR-ribotype 014, that showed an amino acid substitution in gyrB gene (Asp 426 → Asn). This is the first time that this mutation in a PCR-ribotype 014 strain has been described in Brazil. PMID:24907488