Science.gov

Sample records for engineering intracellular active

  1. Engineering intracellular active transport systems as in vivo biomolecular tools.

    SciTech Connect

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further

  2. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  3. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  4. Bio-mimetic surface engineering of plasmid-loaded nanoparticles for active intracellular trafficking by actin comet-tail motility.

    PubMed

    Ng, Chee Ping; Goodman, Thomas T; Park, In-Kyu; Pun, Suzie H

    2009-02-01

    Intracellular transport after endosomal escape presents one of the major barriers for efficient non-viral gene delivery because plasmid DNA and synthetic nanoparticulate carriers suffer from significantly restricted diffusion in the cytoplasm. We postulate that forces generated by actin polymerization, a mechanism used by several bacterial pathogens such as Listeria monocytogenes, can be harnessed to propel nanoparticles within the cytoplasm and thereby overcome diffusional limitations associated with gene transport in the cell cytoplasm. In this work, we synthesized and characterized plasmid DNA-containing nanoparticles modified with ActA protein, the single protein in L. monocytogenes responsible for activating actin polymerization and initiating actin comet-tail propulsion. The motility of the ActA-modified nanoparticles was assessed in Xenopus laevis cytoplasmic extract supplemented with fluorescently labeled actin. Nanoparticle motility was monitored using multi-color, time-lapse fluorescence microscopy for the formation of actin comet tails attached to the fluorescently labeled vehicle. We observed particle motility with velocities approximately 0.06 microm/s with anionic-charged plasmid carriers formed from either poly(lactic-co-glycolic acid) (PLGA) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, but interestingly not with cationic particles assembled by encapsulation of plasmid with either polyethylenimine (PEI) or 1,2-dioleoyl-3-trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/DOPE) lipids. Control particles coated with albumin instead of ActA also showed no motility. Taken together, we have demonstrated the feasibility of translating the comet-tail propulsion mechanism to synthetic drug carriers as a potential approach to overcome intracellular transport barriers, and also have identified appropriate gene delivery systems that can be employed for this mechanism. PMID:19046764

  5. Visualization of Intracellular Tyrosinase Activity in vitro

    PubMed Central

    Setty, Subba Rao Gangi

    2016-01-01

    Melanocytes produce the melanin pigments in melanosomes and these organelles protect the skin against harmful ultraviolet rays. Tyrosinase is the key cuproenzyme which initiates the pigment synthesis using its substrate amino acid tyrosine or L-DOPA (L-3, 4-dihydroxyphenylalanine). Moreover, the activity of tyrosinase directly correlates to the cellular pigmentation. Defects in tyrosinase transport to melanosomes or mutations in the enzyme or reduced intracellular copper levels results in loss of tyrosinase activity in melanosomes, commonly observed in albinism. Here, we described a method to detect the intracellular activity of tyrosinase in mouse melanocytes. This protocol will visualize the active tyrosinase present in the intracellular vesicles or organelles including melanosomes. PMID:27231711

  6. Intracellular Penetration and Activity of Gemifloxacin in Human Polymorphonuclear Leukocytes

    PubMed Central

    García, Isabel; Pascual, Alvaro; Ballesta, Sofía; Joyanes, Providencia; Perea, Evelio J.

    2000-01-01

    The intracellular penetration and activity of gemifloxacin in human polymorphonuclear leukocytes (PMN) were evaluated. Gemifloxacin reached intracellular concentrations eight times higher than extracellular concentrations. The uptake was rapid, reversible, and nonsaturable and was affected by environmental temperature, cell viability, and membrane stimuli. At therapeutic extracellular concentrations, gemifloxacin showed intracellular activity against Staphylococcus aureus. PMID:11036051

  7. Engineering intracellular biomineralization and biosensing by a magnetic protein

    PubMed Central

    Matsumoto, Yuri; Chen, Ritchie; Anikeeva, Polina; Jasanoff, Alan

    2015-01-01

    Remote measurement and manipulation of biological systems can be achieved using magnetic techniques, but a missing link is the availability of highly magnetic handles on cellular or molecular function. Here we address this need by using high-throughput genetic screening in yeast to select variants of the iron storage ferritin (Ft) that display enhanced iron accumulation under physiological conditions. Expression of Ft mutants selected from a library of 107 variants induces threefold greater cellular iron loading than mammalian heavy chain Ft, over fivefold higher contrast in magnetic resonance imaging, and robust retention on magnetic separation columns. Mechanistic studies of mutant Ft proteins indicate that improved magnetism arises in part from increased iron oxide nucleation efficiency. Molecular-level iron loading in engineered Ft enables detection of individual particles inside cells and facilitates creation of Ft-based intracellular magnetic devices. We demonstrate construction of a magnetic sensor actuated by gene expression in yeast. PMID:26522873

  8. Engineering intracellular biomineralization and biosensing by a magnetic protein.

    PubMed

    Matsumoto, Yuri; Chen, Ritchie; Anikeeva, Polina; Jasanoff, Alan

    2015-01-01

    Remote measurement and manipulation of biological systems can be achieved using magnetic techniques, but a missing link is the availability of highly magnetic handles on cellular or molecular function. Here we address this need by using high-throughput genetic screening in yeast to select variants of the iron storage ferritin (Ft) that display enhanced iron accumulation under physiological conditions. Expression of Ft mutants selected from a library of 10(7) variants induces threefold greater cellular iron loading than mammalian heavy chain Ft, over fivefold higher contrast in magnetic resonance imaging, and robust retention on magnetic separation columns. Mechanistic studies of mutant Ft proteins indicate that improved magnetism arises in part from increased iron oxide nucleation efficiency. Molecular-level iron loading in engineered Ft enables detection of individual particles inside cells and facilitates creation of Ft-based intracellular magnetic devices. We demonstrate construction of a magnetic sensor actuated by gene expression in yeast. PMID:26522873

  9. An active matter analysis of intracellular Active Transport

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Chen, Kejia; Bae, Sung Chul; Granick, Steve

    2012-02-01

    Tens of thousands of fluorescence-based trajectories at nm resolution have been analyzed, regarding active transport along microtubules in living cells. The following picture emerges. Directed motion to pre-determined locations is certainly an attractive idea, but cannot be pre-programmed as to do so would sacrifice adaptability. The polarity of microtubules is inadequate to identify these directions in cells, and no other mechanism is currently known. We conclude that molecular motors carry cargo through disordered intracellular microtubule networks in a statistical way, with loud cellular ``noise'' both in directionality and speed. Programmed random walks describe how local 1D active transport traverses crowded cellular space efficiently, rapidly, minimizing the energy waste that would result from redundant activity. The mechanism of statistical regulation is not yet understood, however.

  10. Visualization of Intracellular Pathways of Engineered Baculovirus in Mammalian Cells

    PubMed Central

    Liu, Yarong; Joo, Kye-Il; Lei, Yuning; Wang, Pin

    2014-01-01

    Baculoviruses are a promising gene delivery vector. They have the ability to express large transgenes in mammalian cells without displaying pathogenicity in humans; however, little is known about their transduction mechanisms in target cells. In this study, we use colocalization and live-cell imaging studies to elucidate the internalization and intracellular trafficking pathways of baculoviruses through direct visualization of VP39-GFP-labeled viral particles and various endocytic structures within target cells. Drug inhibition and confocal microscopy results suggested that baculoviruses enter the cells via clathrin-mediated endocytosis in a dynamin-dependent manner. Viral particles were shown to traffic through early endosomes, triggering a low-pH-dependent endosomal fusion process of viruses. Suppressed autophagy activity enhanced viral transduction and overexpression of autophagosomes reduced viral transduction, suggesting that autophagy is involved in degradation process of viral particles. Actin filaments were involved in the viral transduction, while microtubules negatively regulated viral transduction by facilitating the fusion of autophagosomes with lysosomes to form autolysosomes, where degradation of viral particles occurs. These results shed some light on the essential cellular factors limiting viral transduction, which can be used to improve the use of baculoviral vectors in cell and gene therapy. PMID:24457070

  11. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  12. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-01

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. PMID:26051479

  13. Utilizing Natural and Engineered Peroxiredoxins As Intracellular Peroxide Reporters.

    PubMed

    Van Laer, Koen; Dick, Tobias P

    2016-01-31

    It is increasingly apparent that nature evolved peroxiredoxins not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Here we ask whether the H2O2 sensing role of Prx can be exploited to develop probes that allow to monitor intracellular H2O2 levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular H2O2 concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of H2O2 levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redox-sensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for H2O2 probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular H2O2 homeostasis and Prx signaling. PMID:26810074

  14. Utilizing Natural and Engineered Peroxiredoxins As Intracellular Peroxide Reporters

    PubMed Central

    Van Laer, Koen; Dick, Tobias P.

    2016-01-01

    It is increasingly apparent that nature evolved peroxiredoxins not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Here we ask whether the H2O2 sensing role of Prx can be exploited to develop probes that allow to monitor intracellular H2O2 levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular H2O2 concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of H2O2 levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redox-sensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for H2O2 probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular H2O2 homeostasis and Prx signaling. PMID:26810074

  15. Engineered nonviral nanocarriers for intracellular gene delivery applications.

    PubMed

    Ojea-Jiménez, Isaac; Tort, Olivia; Lorenzo, Julia; Puntes, Victor F

    2012-10-01

    The efficient delivery of nucleic acids into mammalian cells is a central aspect of cell biology and of medical applications, including cancer therapy and tissue engineering. Non-viral chemical methods have been received with great interest for transfecting cells. However, further development of nanocarriers that are biocompatible, efficient and suitable for clinical applications is still required. In this paper, the different material platforms for gene delivery are comparatively addressed, and the mechanisms of interaction with biological systems are discussed carefully. PMID:22972254

  16. A mechanism of intracellular P2X receptor activation.

    PubMed

    Sivaramakrishnan, Venketesh; Fountain, Samuel J

    2012-08-17

    P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2X(A)R knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen. PMID:22736763

  17. Bacteriophage lambda cro mutations: effects on activity and intracellular degradation.

    PubMed Central

    Pakula, A A; Young, V B; Sauer, R T

    1986-01-01

    Following random mutagenesis of the bacteriophage lambda cro gene, we have isolated missense mutations that affect approximately half of the 66 residue positions of Cro. About two-thirds of the mutations change residues involved in the maintenance of Cro structure and stability. The corresponding mutant proteins are severely degraded in the cell but often have specific activities near that of wild-type Cro. The remaining mutations affect residues involved in DNA binding. These mutant proteins are present at moderately reduced intracellular levels, but their specific activities are much lower than that of wild type. Images PMID:2947238

  18. The effect of photoinitiators on intracellular AKT signaling pathway in tissue engineering application

    PubMed Central

    Xu, Leyuan; Sheybani, Natasha; Yeudall, W. Andrew; Yang, Hu

    2015-01-01

    Free-radical photopolymerization initiated by photoinitiators is an important method to make tissue engineering scaffolds. To advance understanding of photoinitiator cytocompatibility, we examined three photoinitiators including 2,2-dimethoxy-2-phenylacetophenone (DMPA), Irgacure 2959 (I-2959), and eosin Y photoinitiating system (EY) in terms of their effects on viability of HN4 cells and expression levels of intracellular AKT and its phosphorylated form p-AKT. Our results show that the photoinitiators and their UV-exposed counterparts affect intracellular AKT signaling, which can be used in conjunction with cell viability for cytocompatibility assessment of photoinitiators. PMID:25709809

  19. Structural rearrangement of the intracellular domains during AMPA receptor activation.

    PubMed

    Zachariassen, Linda G; Katchan, Ljudmila; Jensen, Anna G; Pickering, Darryl S; Plested, Andrew J R; Kristensen, Anders S

    2016-07-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated ion channels that mediate the majority of fast excitatory neurotransmission in the central nervous system. Despite recent advances in structural studies of AMPARs, information about the specific conformational changes that underlie receptor function is lacking. Here, we used single and dual insertion of GFP variants at various positions in AMPAR subunits to enable measurements of conformational changes using fluorescence resonance energy transfer (FRET) in live cells. We produced dual CFP/YFP-tagged GluA2 subunit constructs that had normal activity and displayed intrareceptor FRET. We used fluorescence lifetime imaging microscopy (FLIM) in live HEK293 cells to determine distinct steady-state FRET efficiencies in the presence of different ligands, suggesting a dynamic picture of the resting state. Patch-clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence changes within these intracellular domains, providing clues as to how posttranslational modifications and receptor function interact. PMID:27313205

  20. A tunable and reversible platform for the intracellular formation of genetically engineered protein microdomains.

    PubMed

    Pastuszka, Martha K; Janib, Siti M; Weitzhandler, Isaac; Okamoto, Curtis T; Hamm-Alvarez, Sarah; Mackay, J Andrew

    2012-11-12

    From mitochondria to the nuclear envelope, the controlled assembly of micro- and nanostructures is essential for life; however, the level at which we can deliberately engineer the assembly of microstructures within intracellular environments remains primitive. To overcome this obstacle, we present a platform to reversibly assemble genetically engineered protein microdomains (GEPMs) on the time scale of minutes within living cells. Biologically inspired from the human protein tropoelastin, these protein polymers form a secondary aqueous phase above a tunable transition temperature. This assembly process is easily manipulated to occur at or near physiological temperature by adjusting molecular weight and hydrophobicity. We fused protein polymers to green fluorescent protein (GFP) to visualize their behavior within the cytoplasm. While soluble, these polymers have a similar intracellular diffusion constant as cytosolic proteins at 7.4 μm(2)/s; however, above their phase transition temperature, the proteins form distinct microdomains (0.1-2 μm) with a reduced diffusion coefficient of 1.1 μm(2)/s. Microdomain assembly and disassembly are both rapid processes with half-lives of 3.8 and 1.0 min, respectively. Via selection of the protein polymer, the assembly temperature is tunable between 20 and 40 °C. This approach may be useful to control intracellular formation of genetically engineered proteins and protein complexes into concentrated microdomains. PMID:23088632

  1. Intracellular sensing of complement C3 activates cell autonomous immunity.

    PubMed

    Tam, Jerry C H; Bidgood, Susanna R; McEwan, William A; James, Leo C

    2014-09-01

    Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol. PMID:25190799

  2. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation.

    PubMed

    Dzamukova, Maria R; Naumenko, Ekaterina A; Lvov, Yuri M; Fakhrullin, Rawil F

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  3. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  4. Intracellular sensing of complement C3 activates cell autonomous immunity

    PubMed Central

    Tam, Jerry C.H.; Bidgood, Susanna R.; McEwan, William A.; James, Leo C.

    2014-01-01

    Pathogens traverse multiple barriers during infection including cell membranes. Here we show that during this transition pathogens carry covalently attached complement C3 into the cell, triggering immediate signalling and effector responses. Sensing of C3 in the cytosol activates MAVS-dependent signalling cascades and induces proinflammatory cytokine secretion. C3 also flags viruses for rapid proteasomal degradation, thereby preventing their replication. This system can detect both viral and bacterial pathogens but is antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral Rupintrivir inhibits 3C protease and prevents C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol. PMID:25190799

  5. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling.

    PubMed

    Hong, Qian; Ma, Zeng-Chun; Huang, Hao; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Zhang, Han-Ting; Gao, Yue

    2016-04-15

    Ferulic acid (FA) produces protective effects against cardiovascular dysfunctions. However, the mechanisms of FA is still not known. Here we examined the antithrombotic effects of FA and its potential mechanisms. Anticoagulation assays and platelet aggregation was evaluated in vitro and in vivo. Thromboxane B2 (TXB2), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate (cGMP) was determined using enzyme immunoassay kits. Nitric oxide (NO) production was measured using the Griess reaction. Protein expression was detected by Western blotting analysis. Oral administration of FA prevented death caused by pulmonary thrombosis and prolonged the tail bleeding and clotting time in mice,while, it did not alter the coagulation parameters, including the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). In addition, FA (50-200µM) dose-dependently inhibited platelet aggregation induced by various platelet agonists, including adenosine diphosphate (ADP), thrombin, collagen, arachidonic acid (AA), and U46619. Further, FA attenuated intracellular Ca(2)(+) mobilization and TXB2 production induced by the platelet agonists. FA increased the levels of cAMP and cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP) while decreased phospho-MAPK (mitogen-activated protein kinase) and phosphodiesterase (PDE) in washed rat platelets, VASP is a substrate of cyclic nucleotide and PDE is an enzyme family responsible for hydrolysis of cAMP/cGMP. These results suggest that antithrombotic activities of FA may be regulated by inhibition of platelet aggregation, rather than through inhibiting the release of thromboplastin or formation of thrombin. The mechanism of this action may involve activation of cAMP and cGMP signaling. PMID:26948317

  6. Intracellular mechanisms of hydroquinone toxicity on endotoxin-activated neutrophils.

    PubMed

    Hebeda, Cristina Bichels; Pinedo, Fernanda Júdice; Bolonheis, Simone Marques; Ferreira, Zulma F; Muscará, Marcelo Nicolas; Teixeira, Simone Aparecida; Farsky, Sandra Helena Poliselli

    2012-11-01

    Circulating neutrophils promptly react to different substances in the blood and orchestrate the beginning of the innate inflammatory response. We have shown that in vivo exposure to hydroquinone (HQ), the most oxidative compound of cigarette smoke and a toxic benzene metabolite, affects circulating neutrophils, making them unresponsive to a subsequent bacterial infection. In order to understand the action of toxic molecular mechanisms on neutrophil functions, in vitro HQ actions on pro-inflammatory mediator secretions evoked by Escherichia coli lipopolysaccharide (LPS) were investigated. Neutrophils from male Wistar rats were cultured with vehicle or HQ (5 or 10 μM; 2 h) and subsequently incubated with LPS (5 μg/ml; 18 h). Hydroquinone treatment impaired LPS-induced nitric oxide (NO), tumour necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 secretions by neutrophils. The toxic effect was not dependent on cell death, reduced expression of the LPS receptor or toll-like receptor-4 (TLR-4) or cell priming, as HQ did not induce reactive oxygen species generation or β(2)integrin membrane expression. The action of toxic mechanisms on cytokine secretion was dependent on reduced gene synthesis, which may be due to decreased nuclear factor κB (NF-κB) nuclear translocation. Conversely, this intracellular pathway was not involved in impaired NO production because HQ treatments only affected inducible nitric oxide synthase protein expression and activity, suggesting posttranscriptional and/or posttranslational mechanisms of action. Altogether, our data show that HQ alters the action of different LPS-activated pathways on neutrophils, which may contribute to the impaired triggering of the host innate immune reaction detected during in vivo HQ exposure. PMID:22717997

  7. Systematic analysis of intracellular mechanisms of propanol production in the engineered Thermobifida fusca B6 strain.

    PubMed

    Deng, Yu; Fisher, Adam B; Fong, Stephen S

    2015-10-01

    Thermobifida fusca is a moderately thermophilic actinobacterium naturally capable of utilizing lignocellulosic biomass. The B6 strain of T. fusca was previously engineered to produce 1-propanol directly on lignocellulosic biomass by expressing a bifunctional butyraldehyde/alcohol dehydrogenase (adhE2). To characterize the intracellular mechanisms related to the accumulation of 1-propanol, the engineered B6 and wild-type (WT) strains were systematically compared by analysis of the transcriptome and intracellular metabolome during exponential growth on glucose, cellobiose, and Avicel. Of the 18 known cellulases in T. fusca, 10 cellulase genes were transcriptionally expressed on all three substrates along with three hemicellulases. Transcriptomic analysis of cellodextrin and cellulose transport revealed that Tfu_0936 (multiple sugar transport system permease) was the key enzyme regulating the uptake of sugars in T. fusca. For both WT and B6 strains, it was found that growth in oxygen-limited conditions resulted in a blocked tricarboxylic acid (TCA) cycle caused by repressed expression of Tfu_1925 (aconitate hydratase). Further, the transcriptome suggested a pathway for synthesizing succinyl-CoA: oxaloacetate to malate (by malate dehydrogenase), malate to fumarate (by fumarate hydratase), and fumarate to succinate (by succinate dehydrogenase/fumarate reductase) which was ultimately converted to succinyl-CoA by succinyl-CoA synthetase. Both the transcriptome and the intracellular metabolome confirmed that 1-propanol was produced through succinyl-CoA, L-methylmalonyl-CoA, D-methylmalonyl-CoA, and propionyl-CoA in the B6 strain. PMID:26227414

  8. Engineering cells with intracellular agent-loaded microparticles to control cell phenotype.

    PubMed

    Ankrum, James A; Miranda, Oscar R; Ng, Kelvin S; Sarkar, Debanjan; Xu, Chenjie; Karp, Jeffrey M

    2014-02-01

    Cell therapies enable unprecedented treatment options to replace tissues, destroy tumors and facilitate regeneration. The greatest challenge facing cell therapy is the inability to control the fate and function of cells after transplantation. We have developed an approach to control cell phenotype in vitro and after transplantation by engineering cells with intracellular depots that continuously release phenotype-altering agents for days to weeks. The platform enables control of cells' secretome, viability, proliferation and differentiation, and the platform can be used to deliver drugs or other factors (e.g., dexamethasone, rhodamine and iron oxide) to the cell's microenvironment. The preparation, efficient internalization and intracellular stabilization of ∼1-μm drug-loaded microparticles are critical for establishing sustained control of cell phenotype. Herein we provide a protocol to generate and characterize micrometer-sized agent-doped poly(lactic-co-glycolic) acid (PLGA) particles by using a single-emulsion evaporation technique (7 h), to uniformly engineer cultured cells (15 h), to confirm particle internalization and to troubleshoot commonly experienced obstacles. PMID:24407352

  9. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  10. Engineering Salmonella as intracellular factory for effective killing of tumour cells.

    PubMed

    Camacho, Eva María; Mesa-Pereira, Beatriz; Medina, Carlos; Flores, Amando; Santero, Eduardo

    2016-01-01

    Salmonella have many desirable properties as antitumour-agent due to its ability to proliferate inside tumours and induce tumour regression. Additionally, this bacterium can be genetically engineered to deliver therapeutic proteins intratumourally. The main limitation of this approach is the efficient release of therapeutic molecules from intratumoural bacteria. Here we have developed an inducible autolysis system based in the lysis operon of the lambda phage that, in response to anhydrotetracycline, lysates Salmonella thus releasing its content. The system was combined with a salicylate cascade system that allows efficient production of therapeutic molecules in response to aspirin and with a sifA mutation that liberates bacteria from the vacuoles to a cytosolic location. The combination of these three elements makes this strain a putative powerful instrument in cancer treatment. We have used this engineered strain for the intracellular production and delivery of Cp53 peptide. The engineered strain is able to sequentially produce and release the cytotoxic peptide while proliferating inside tumour cells, thus inducing host cell death. Our results show that temporal separation of protein production from protein release is essential to efficiently kill tumour cells. The combined system is a further step in the engineering of more efficient bacteria for cancer therapy. PMID:27464652

  11. Engineering Salmonella as intracellular factory for effective killing of tumour cells

    PubMed Central

    Camacho, Eva María; Mesa-Pereira, Beatriz; Medina, Carlos; Flores, Amando; Santero, Eduardo

    2016-01-01

    Salmonella have many desirable properties as antitumour-agent due to its ability to proliferate inside tumours and induce tumour regression. Additionally, this bacterium can be genetically engineered to deliver therapeutic proteins intratumourally. The main limitation of this approach is the efficient release of therapeutic molecules from intratumoural bacteria. Here we have developed an inducible autolysis system based in the lysis operon of the lambda phage that, in response to anhydrotetracycline, lysates Salmonella thus releasing its content. The system was combined with a salicylate cascade system that allows efficient production of therapeutic molecules in response to aspirin and with a sifA mutation that liberates bacteria from the vacuoles to a cytosolic location. The combination of these three elements makes this strain a putative powerful instrument in cancer treatment. We have used this engineered strain for the intracellular production and delivery of Cp53 peptide. The engineered strain is able to sequentially produce and release the cytotoxic peptide while proliferating inside tumour cells, thus inducing host cell death. Our results show that temporal separation of protein production from protein release is essential to efficiently kill tumour cells. The combined system is a further step in the engineering of more efficient bacteria for cancer therapy. PMID:27464652

  12. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    PubMed

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae. PMID:26059511

  13. Modulation of Hydrogel Nanoparticle Intracellular Trafficking by Multivalent Surface Engineering with Tumor Targeting Peptide†

    PubMed Central

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Lee, Yong-Eun Koo; Philbert, Martin A.

    2013-01-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP’s binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the single F3 peptides. This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. PMID:24056573

  14. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide.

    PubMed

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A; Kopelman, Raoul

    2013-11-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. PMID:24056573

  15. Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model.

    PubMed

    Sandberg, Anne; Hessler, Jonas H R; Skov, Robert L; Blom, Jens; Frimodt-Møller, Niels

    2009-05-01

    Antibiotic treatment of Staphylococcus aureus infections is often problematic due to the slow response to therapy and the high frequency of infection recurrence. The intracellular persistence of staphylococci has been recognized and could offer a good explanation for these treatment difficulties. Knowledge of the interplay between intracellular antibiotic activity and the overall outcome of infection is therefore important. Several intracellular in vitro models have been developed, but few experimental animal models have been published. The mouse peritonitis/sepsis model was used as the basic in vivo model exploring a quantitative ex vivo extra- and intracellular differentiation assay. The intracellular presence of S. aureus was documented by electron microscopy. Five antibiotics, dicloxacillin, cefuroxime, gentamicin, azithromycin, and rifampin (rifampicin), were tested in the new in vivo model; and the model was able to distinguish between their extra- and intracellular effects. The intracellular effects of the five antibiotics could be ranked as follows as the mean change in the log(10) number of CFU/ml (Delta log(10) CFU/ml) between treated and untreated mice after 4 h of treatment: dicloxacillin (3.70 Delta log(10) CFU/ml) > cefuroxime (3.56 Delta log(10) CFU/ml) > rifampin (1.86 Delta log(10) CFU/ml) > gentamicin (0.61 Delta log(10) CFU/ml) > azithromycin (0.21 Delta log(10) CFU/ml). We could also show that the important factors during testing of intracellular activity in vivo are the size, number, and frequency of doses; the time of exposure; and the timing between the start of infection and treatment. A poor correlation between the intracellular accumulation of the antibiotics and the actual intracellular effect was found. This stresses the importance of performing experimental studies, like those with the new in vivo model described here, to measure actual intracellular activity instead of making predictions based on cellular pharmacokinetic and MICs. PMID

  16. Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity.

    PubMed

    Wen, Lingrong; You, Lijun; Yang, Xiaoman; Yang, Jiali; Chen, Feng; Jiang, Yueming; Yang, Bao

    2015-07-01

    Litchi leaf is a good resource for phenolics, which are good candidates for medicines. In this work, three phenolics were isolated from litchi leaf by column chromatography. Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy as secoisolariciresinol 9'-O-β-D-xyloside (1), 4,7,7',8',9,9'-hexahydroxy-3,3'-dimethoxy-8,4'-oxyneolignan (2), and cinnamtannin B1 (3). Cinnamtannin B1 showed better extra- and intracellular antioxidant activities than Compounds 1 and 2. The intracellular antioxidant activity of cinnamtannin B1 was related to the upregulation of endogenous antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase), and inhibition of ROS generation. Furthermore, cinnamtannin B1 exhibited strong antiproliferative effects against HepG2 and Siha cell lines with no significant cytotoxicities. In the case of the HepG2 cell line, cell cycle arrest and apoptosis induction were the underlying anticancer mechanisms of cinnamtannin B1. The results indicated that cinnamtannin B1 was a potent cancer cell proliferation inhibitor and a good intracellular antioxidant. PMID:25857215

  17. Pharmacology of the intracellular pathways activated by amyloid beta protein.

    PubMed

    Balleza-Tapia, Hugo; Peña, Fernando

    2009-06-01

    Alzheimer's disease (AD) is a late-life cognitive disorder associated, among other things, to the presence of extracellular aggregates of fibrillar amyloid beta protein (Abeta). However, there is growing evidence that early stages of AD may be due to neuronal network dysfunction produced by the actions of soluble forms of Abeta. Therefore, the development of new therapeutic strategies to treat AD, at least during its first stages, may be focused on preventing or reversing, the deleterious effects that soluble Abeta exerts on neuronal circuit function. In order to do so, it is necessary to elucidate the pathophysiological processes involved in Abeta-induced neuronal network dysfunction and the molecular processes underlying such dysfunction. Over the last decades, there has been extensive research about the molecular mechanisms involved in the effects of Abeta as well as possible neuroprotective strategies against such effects. Here we are going to review some of the intracellular pathways triggered by Abeta, which involve membrane receptors such as nicotinic-R, NMDA-R, integrins, TNF-R1, RAGE, FPRL and p75NTR and their intracellular mediators such as GSK3, PKC, PI3K, Akt, FAK, MAPK family, Src family and cdk5. Several of these pathways may constitute therapeutic targets for the treatment of the Abeta-induced neuronal network dysfunction which is, at least in part, the basis for cognitive dysfunction in AD. PMID:19519498

  18. Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations.

    PubMed

    Larue, Camille; Korboulewsky, Nathalie; Wang, Runying; Mévy, Jean-Philippe

    2010-10-01

    The aim of this study was to investigate the potential role of three macrophyte species (Iris pseudacorus, Typha latifolia and Phragmites australis) for detoxication of xenobiotics, and to study their variations with seasons or concentrations of sewage sludge from the food industry. For this purpose, some aspects of the green liver concept were explored through peroxidase measurements in three compartments in roots: intracellular, cell wall and extracellular. In addition, phenol concentrations were also measured in order to assess heavy metal detoxication potential. Enzyme activities and phenol concentrations were overall lower in winter according to the phenological stages and some sludge effects occurred. Results show that P. australis roots exuded and contained more peroxidase in all seasons: 17 U/g (1373 U/g protein), 0.8 U/g (613 U/g protein) and 4.8 U/g (1329 U/g protein) in intracellular compartments, cell wall and exudates, respectively. In contrast, the highest phenol concentration was found in I. pseudacorus roots: 3.58 mg eq. [corrected] gallic acid/g. Hence, in constructed wetlands, P. australis is suitable for organic waste water treatment, while I. pseudacorus should be used in the case of waters highly charged with heavy metals. PMID:20570142

  19. Intracellular disassembly and activity of pertussis toxin require interaction with ATP.

    PubMed

    Plaut, Roger D; Scanlon, Karen M; Taylor, Michael; Teter, Ken; Carbonetti, Nicholas H

    2016-08-01

    The active subunit (S1) of pertussis toxin (PT), a major virulence factor of Bordetella pertussis, ADP-ribosylates Gi proteins in the mammalian cell cytosol to inhibit GPCR signaling. The intracellular pathway of PT includes endocytosis and retrograde transport to the trans-Golgi network (TGN) and endoplasmic reticulum (ER). Subsequent translocation of S1 to the cytosol is presumably preceded by dissociation from the holotoxin. In vitro, such dissociation is stimulated by interaction of PT with ATP. To investigate the role of this interaction in cellular events, we engineered a form of PT (PTDM) with changes to two amino acids involved in the interaction with ATP. PTDM was reduced in (1) binding to ATP, (2) dissociability by interaction with ATP, (3) in vitro enzymatic activity and (4) cellular ADP-ribosylation activity. In cells treated with PTDM carrying target sequences for organelle-specific modifications, normal transport to the TGN and ER occurred, but N-glycosylation patterns of the S1 and S4 subunits were consistent with an inability of PTDM to dissociate in the ER. These results indicate a requirement for interaction with ATP for PT dissociation in the ER and cellular activity. They also indicate that the retrograde transport route is the cellular intoxication pathway for PT. PMID:27369899

  20. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation

    PubMed Central

    Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P.; Kemper, Claudia

    2013-01-01

    Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  1. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  2. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide

    NASA Astrophysics Data System (ADS)

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A.; Kopelman, Raoul

    2013-10-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. Electronic supplementary information (ESI) available: Effect of Potassium depletion on F3 peptide subcellular localization, MTT

  3. Gαi3-Dependent Inhibition of JNK Activity on Intracellular Membranes

    PubMed Central

    Bastin, Guillaume; Yang, Jin Ye; Heximer, Scott P.

    2015-01-01

    Heterotrimeric G-protein signaling has been shown to modulate a wide variety of intracellular signaling pathways, including the mitogen-activated protein kinase (MAPK) family. The activity of one MAPK family class, c-Jun N-terminal kinases (JNKs), has been traditionally linked to the activation of G-protein coupled receptors (GPCRs) at the plasma membrane. Using a unique set of G-protein signaling tools developed in our laboratory, we show that subcellular domain-specific JNK activity is inhibited by the activation of Gαi3, the Gαi isoform found predominantly within intracellular membranes, such as the endoplasmic reticulum (ER)–Golgi interface, and their associated vesicle pools. Regulators of intracellular Gαi3, including activator of G-protein signaling 3 (AGS3) and the regulator of G-protein signaling protein 4 (RGS4), have a marked impact on the regulation of JNK activity. Together, these data support the existence of unique intracellular signaling complexes that control JNK activity deep within the cell. This work highlights some of the cellular pathways that are regulated by these intracellular complexes and identifies potential strategies for their regulation in mammalian cells. PMID:26389115

  4. Cytokine Combination Therapy Prediction for Bone Remodeling in Tissue Engineering Based on the Intracellular Signaling Pathway

    PubMed Central

    Sun, Xiaoqiang; Su, Jing; Bao, Jiguang; Peng, Tao; Zhang, Le; Zhang, Yuanyuan; Yang, Yunzhi; Zhou, Xiaobo

    2012-01-01

    The long-term performance of tissue-engineered bone grafts is determined by a dynamic balance between bone regeneration and resorption. We proposed using embedded cytokine slow-releasing hydrogels to tune this balance toward a desirable final bone density. In this study we established a systems biology model, and quantitatively explored the combinatorial effects of delivered cytokines from hydrogels on final bone density. We hypothesized that: 1) bone regeneration was driven by transcription factors Runx2 and Osterix, which responded to released cytokines, such as Wnt, BMP2, and TGFβ, drove the development of osteoblast lineage, and contributed to bone mass generation; and 2) the osteoclast lineage, on the other hand, governed the bone resorption, and communications between these two lineages determined the dynamics of bone remodeling. In our model, Intracellular signaling pathways were represented by ordinary differential equations, while the intercellular communications and cellular population dynamics were modeled by stochastic differential equations. Effects of synergistic cytokine combinations were evaluated by Loewe index and Bliss index. Simulation results revealed that the Wnt/BMP2 combinations released from hydrogels showed best control of bone regeneration and synergistic effects, and suggested optimal dose ratios of given cytokine combinations released from hydrogels to most efficiently control the long-term bone remodeling. We revealed the characteristics of cytokine combinations of Wnt/BMP2 which could be used to guide the design of in vivo bone scaffolds and the clinical treatment of some diseases such as osteoporosis. PMID:22910219

  5. Jak2-Independent Activation of Stat3 by Intracellular Angiotensin II in Human Mesangial Cells.

    PubMed

    Singh, Rekha

    2011-01-01

    Ang II is shown to mediate the stimulatory effect of high glucose on TGF-b1 and extracellular matrix proteins in glomerular mesangial cells. Also inhibition of Ang II formation in cell media (extracellular) and lysates (intracellular) blocks high-glucose effects on TGF-b1 and matrix more effectively compared to inhibition of extracellular Ang II alone. To investigate whether intracellular Ang II can stimulate TGF-b1 and matrix independent of extracellular Ang II, cultured human mesangial cells were transfected with Ang II to increase intracellular Ang II levels and its effects on TGF-b1 and matrix proteins were determined. Prior to transfection, cells were treated with candesartan to block extracellular Ang II-induced responses via cell membrane AT1 receptors. Transfection of cells with Ang II resulted in increased levels of intracellular Ang II which was accompanied by increased production of TGF-b1, collagen IV, fibronectin, and cell proliferation as well. On further examination, intracellular Ang II was found to activate Stat3 transcription factor including increased Stat3 protein expression, tyrosine 705 phosphorylation, and DNA-binding activity. Treatment with AG-490, an inhibitor of Jak2, did not block intracellular Ang II-induced Stat3 phosphorylation at tyrosine 705 residue indicating a Jak2-independent mechanism used by intracellular Ang II for Stat3 phosphorylation. In contrast, extracellular Ang II-induced tyrosine 705 phosphorylation of Stat3 was inhibited by AG-490 confirming the presence of a Jak2-dependent pathway. These findings suggest that intracellular Ang II increases TGF-b1 and matrix in human mesangial cells and also activates Stat3 transcription factor without involvement of the extracellular Ang II signaling pathway. PMID:21915376

  6. A new dye uptake assay to test the activity of antibiotics against intracellular Francisella tularensis

    PubMed Central

    Sutera, Vivien; Caspar, Yvan; Boisset, Sandrine; Maurin, Max

    2014-01-01

    Francisella tularensis, a facultative intracellular bacterium, is the aetiological agent of tularaemia. Antibiotic treatment of this zoonosis is based on the administration of a fluoroquinolone or a tetracycline for cases with mild to moderate severity, whereas an aminoglycoside (streptomycin or gentamicin) is advocated for severe cases. However, treatment failures and relapses remain frequent, especially in patients suffering from chronic lymph node suppuration. Therefore, new treatment alternatives are needed. We have developed a dye uptake assay for determination of minimal inhibitory extracellular concentrations (MIECs) of antibiotics against intracellular F. tularensis, and validated the method by comparing the results obtained using a CFU-enumerating method. We also compared MIECs with MICs of the same compounds determined using a CLSI broth microdilution method. We tested the activity of 11 antibiotics against two clinical strains of F. tularensis subsp. holarctica isolated in France. Both strains displayed low MICs (≤1 μg/mL) to fluoroquinolones (ciprofloxacin, levofloxacin and moxifloxacin), gentamicin, doxycycline and rifampicin. Higher MICs (≥8 μg/mL) were found for carbapenems (imipenem and meropenem), daptomycin and linezolid. Erythromycin MICs were 4.0 and 16.0 μg/mL, respectively, for the two clinical strains. MIECs were almost the same with the two methods used. They were concordant with MICs, except for erythromycin and linezolid (respectively, four and eight times more active against intracellular F. tularensis) and gentamicin (four to eight times less active against intracellular F. tularensis). This study validated the dye uptake assay as a new tool for determination of the activity of a large panel of antibiotics against intracellular F. tularensis. This test confirmed the intracellular activity of first-line antibiotics used for tularaemia treatment, but also revealed significant activity of linezolid against intracellular F. tularensis

  7. CCK independently activates intracellular trypsinogen and NF-kappaB in rat pancreatic acinar cells.

    PubMed

    Han, B; Ji, B; Logsdon, C D

    2001-03-01

    In the cholecystokinin (CCK) hyperstimulation model of acute pancreatitis, two early intracellular events, activation of trypsinogen and activation of nuclear factor-kappaB (NF-kappaB), are thought to be important in the development of the disease. In this study, the relationship between these two events was investigated. NF-kappaB activity was monitored by using a DNA binding assay and mob-1 chemokine gene expression. Intracellular trypsin activity was measured by using a fluorogenic substrate. Protease inhibitors including FUT-175, Pefabloc, and E-64d prevented CCK stimulation of intracellular trypsinogen and NF-kappaB activation. Likewise, the NF-kappaB inhibitors pyrrolidine dithiocarbamate and N-acetyl-L-cysteine inhibited CCK stimulation of NF-kappaB and intracellular trypsinogen activation. These results suggested a possible codependency of these two events. However, CCK stimulated NF-kappaB activation in Chinese hamster ovary-CCK(A) cells, which do not express trypsinogen, indicating that trypsin is not necessary for CCK activation of NF-kappaB. Furthermore, adenovirus-mediated expression in acinar cells of active p65 subunits to stimulate NF-kappaB, or of inhibitory kappaB-alpha molecules to inhibit NF-kappaB, did not affect either basal or CCK-mediated trypsinogen activation. Thus trypsinogen and NF-kappaB activation are independent events stimulated by CCK. PMID:11171565

  8. Intracellular mechanochemical waves in an active poroelastic model.

    PubMed

    Radszuweit, Markus; Alonso, Sergio; Engel, Harald; Bär, Markus

    2013-03-29

    Many processes in living cells are controlled by biochemical substances regulating active stresses. The cytoplasm is an active material with both viscoelastic and liquid properties. We incorporate the active stress into a two-phase model of the cytoplasm which accounts for the spatiotemporal dynamics of the cytoskeleton and the cytosol. The cytoskeleton is described as a solid matrix that together with the cytosol as an interstitial fluid constitutes a poroelastic material. We find different forms of mechanochemical waves including traveling, standing, and rotating waves by employing linear stability analysis and numerical simulations in one and two spatial dimensions. PMID:23581377

  9. Intracellular localization of mevalonate-activating enzymes in plant cells

    PubMed Central

    Rogers, L. J.; Shah, S. P. J.; Goodwin, T. W.

    1966-01-01

    Mevalonate-activating enzymes are shown to be present in the chloroplasts of French-bean leaves. The chloroplast membrane is impermeable to mevalonic acid. Mevalonate-activating enzymes also appear to be found outside the chloroplast. These results support the view that terpenoid biosynthesis in the plant cell is controlled by a combination of enzyme segregation and specific membrane permeability. ImagesFig. 1.Fig. 2. PMID:5947149

  10. Engineering the Intracellular Micro- and Nano-environment via Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Peter

    Single cells, despite being the base unit of living organisms, possess a high degree of hierarchical structure and functional compartmentalization. This complexity exists for good reason: cells must respond efficiently and effectively to its surrounding environment by differentiating, moving, interacting, and more in order to survive or inhabit its role in the larger biological system. At the core of these responses is cellular decision-making. Cells process cues internally and externally from the environment and effect intracellular asymmetry in biochemistry and structure in order to carry out the proper biological responses. Functionalized magnetic particles have shown to be a powerful tool in interacting with biological matter, through either cell or biomolecule sorting, and the activation of biological processes. This dissertation reports on techniques utilizing manipulated magnetic nanoparticles (internalized by cells) to spatially and temporally localize intracellular cues, and examines the resulting asymmetry in biological processes generated by our methods. We first examine patterned micromagnetic elements as a simple strategy of rapidly manipulating magnetic nanoparticles throughout the intracellular space. Silicon or silicon dioxide substrates form the base for electroplated NiFe rods, which are repeated at varying size and pitch. A planarizing resin, initially SU-8, is used as the substrate layer for cellular adhesion. We demonstrate that through the manipulations of a simple external magnet, these micro-fabricated substrates can mediate rapid (under 2 s) and precise (submicron), reversible translation of magnetic nanoparticles through cellular space. Seeding cells on substrates composed of these elements allows simultaneous control of ensembles of nanoparticles over thousands of cells at a time. We believe such substrates could form the basis of magnetically based tools for the activation of biological matter. We further utilize these strategies to

  11. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection.

    PubMed

    Vural, Ali; Al-Khodor, Souhaila; Cheung, Gordon Y C; Shi, Chong-Shan; Srinivasan, Lalitha; McQuiston, Travis J; Hwang, Il-Young; Yeh, Anthony J; Blumer, Joe B; Briken, Volker; Williamson, Peter R; Otto, Michael; Fraser, Iain D C; Kehrl, John H

    2016-01-15

    Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens. PMID:26667172

  12. In Vitro and Intracellular Activities of Peptide Deformylase Inhibitor GSK1322322 against Legionella pneumophila Isolates

    PubMed Central

    Dubois, Jacques; Dubois, Maïtée; Martel, Jean-François; Aubart, Kelly

    2014-01-01

    GSK1322322, a novel peptide deformylase inhibitor currently in development as an oral and intravenous agent for the treatment of hospitalized community-acquired bacterial pneumonia, showed poor in vitro activity against a panel of 50 Legionella pneumophila strains, with MICs ranging from 1 to 16 μg/ml and an MIC90 of 16 μg/ml, but very potent intracellular activity, with the minimum extracellular concentrations capable of inhibiting intracellular proliferation (MIECs) ranging from 0.12 to 2 μg/ml and 98% of the strains being inhibited by concentrations of ≤1 μg/ml. PMID:25348534

  13. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    PubMed

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters. PMID:26192200

  14. Active Control of Engine Dynamics

    NASA Astrophysics Data System (ADS)

    2002-11-01

    Active control can alleviate design constraints and improve the response to operational requirements in gas turbines. The Course presented the state-of-the-art including experimental, theoretical knowledge and practical information. Topics treated: stability characteristics; active control approaches; robustness and fundamental limits; combustion systems processes; combustor dynamics; compression system dynamics models; diagnostics and control of compression instabilities; sensor and actuator architectures; R&D needs of future prospects. The course has shown that for combustion systems, as well as in actuator and sensor technologies the active control approach is a viable option even at full scale with potential for aero engines and air breathing missiles.

  15. Engineering of bacterial exotoxins for highly efficient and receptor-specific intracellular delivery of diverse cargos.

    PubMed

    Ryou, Jeong-Hyun; Sohn, Yoo-Kyoung; Hwang, Da-Eun; Park, Woo-Yong; Kim, Nury; Heo, Won-Do; Kim, Mi-Young; Kim, Hak-Sung

    2016-08-01

    The intracellular delivery of proteins with high efficiency in a receptor-specific manner is of great significance in molecular medicine and biotechnology, but remains a challenge. Herein, we present the development of a highly efficient and receptor-specific delivery platform for protein cargos by combining the receptor binding domain of Escherichia coli Shiga-like toxin and the translocation domain of Pseudomonas aeruginosa exotoxin A. We demonstrated the utility and efficiency of the delivery platform by showing a cytosolic delivery of diverse proteins both in vitro and in vivo in a receptor-specific manner. In particular, the delivery system was shown to be effective for targeting an intracellular protein and consequently suppressing the tumor growth in xenograft mice. The present platform can be widely used for intracellular delivery of diverse functional macromolecules with high efficiency in a receptor-specific manner. Biotechnol. Bioeng. 2016;113: 1639-1646. © 2016 Wiley Periodicals, Inc. PMID:26773973

  16. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators

    PubMed Central

    Akam, Eman A.; Chang, Tsuhen M.; Astashkin, Andrei V.

    2014-01-01

    Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species. PMID:25100578

  17. Tracking SERS-active nanoprobe intracellular uptake for chemical and biological sensing

    NASA Astrophysics Data System (ADS)

    Gregas, Molly K.; Yan, Fei; Scaffidi, Jonathan; Wang, Hsin-Neng; Khoury, Christopher; Zhang, Yan; Vo-Dinh, Tuan

    2007-09-01

    A critical aspect of the use of nanoprobes for intracellular studies in chemical and biological sensing involves a fundamental understanding of their uptake and trajectory in cells. In this study, we describe experiments using surface-enhanced Raman scattering (SERS) spectroscopy and mapping to track cellular uptake of plasmonics-active labeled nanoparticles. Three different Raman-active labels with positive, negative, and neutral charges were conjugated to silver colloidal nanoparticles with the aim of spatially and temporally profiling intracellular delivery and tracking of nanoprobes during uptake in single mammalian cells. 1-D Raman spectra and 2-D Raman mapping are used to identify and locate the probes via their SERS signal intensities. Because Raman spectroscopy is very specific for identification of chemical and molecular signatures, the development of functionalized plasmonics-active nanoprobes capable of exploring intracellular spaces and processes has the ability to provide specific information on the effects of biological and chemical pollutants in the intracellular environment. The results indicate that this technique will allow study of when, where, and how these substances affect cells and living organisms.

  18. Intracellular acidification is required for full activation of the sweet taste receptor by miraculin.

    PubMed

    Sanematsu, Keisuke; Kitagawa, Masayuki; Yoshida, Ryusuke; Nirasawa, Satoru; Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    Acidification of the glycoprotein, miraculin (MCL), induces sweet taste in humans, but not in mice. The sweet taste induced by MCL is more intense when acidification occurs with weak acids as opposed to strong acids. MCL interacts with the human sweet receptor subunit hTAS1R2, but the mechanisms by which the acidification of MCL activates the sweet taste receptor remain largely unexplored. The work reported here speaks directly to this activation by utilizing a sweet receptor TAS1R2 + TAS1R3 assay. In accordance with previous data, MCL-applied cells displayed a pH dependence with citric acid (weak acid) being right shifted to that with hydrochloric acid (strong acid). When histidine residues in both the intracellular and extracellular region of hTAS1R2 were exchanged for alanine, taste-modifying effect of MCL was reduced or abolished. Stronger intracellular acidification of HEK293 cells was induced by citric acid than by HCl and taste-modifying effect of MCL was proportional to intracellular pH regardless of types of acids. These results suggest that intracellular acidity is required for full activation of the sweet taste receptor by MCL. PMID:26960429

  19. Intracellular acidification is required for full activation of the sweet taste receptor by miraculin

    PubMed Central

    Sanematsu, Keisuke; Kitagawa, Masayuki; Yoshida, Ryusuke; Nirasawa, Satoru; Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    Acidification of the glycoprotein, miraculin (MCL), induces sweet taste in humans, but not in mice. The sweet taste induced by MCL is more intense when acidification occurs with weak acids as opposed to strong acids. MCL interacts with the human sweet receptor subunit hTAS1R2, but the mechanisms by which the acidification of MCL activates the sweet taste receptor remain largely unexplored. The work reported here speaks directly to this activation by utilizing a sweet receptor TAS1R2 + TAS1R3 assay. In accordance with previous data, MCL-applied cells displayed a pH dependence with citric acid (weak acid) being right shifted to that with hydrochloric acid (strong acid). When histidine residues in both the intracellular and extracellular region of hTAS1R2 were exchanged for alanine, taste-modifying effect of MCL was reduced or abolished. Stronger intracellular acidification of HEK293 cells was induced by citric acid than by HCl and taste-modifying effect of MCL was proportional to intracellular pH regardless of types of acids. These results suggest that intracellular acidity is required for full activation of the sweet taste receptor by MCL. PMID:26960429

  20. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators.

    PubMed

    Akam, Eman A; Chang, Tsuhen M; Astashkin, Andrei V; Tomat, Elisa

    2014-10-01

    Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species. PMID:25100578

  1. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors.

    PubMed

    Birkus, Gabriel; Bam, Rujuta A; Willkom, Madeleine; Frey, Christian R; Tsai, Luong; Stray, Kirsten M; Yant, Stephen R; Cihlar, Tomas

    2016-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4(+) T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  2. Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs

    PubMed Central

    Sasaki, Akira; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka

    2015-01-01

    Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools allow the study of spatiotemporal molecular dynamics. Here we performed spatiotemporal ccRICS analyses of fluorescent DNA and directly monitored the process of exogenous DNA degradation in living cell cytoplasm. Such direct monitors of DNA degradation allow us to determine the fate of the exogenous DNA in living cells. On comparing the process in living cells, our study shows that cytoplasmic nuclease activity differs between cell lines; therefore, we propose that the difference of nuclease activity in cytoplasm dictates a different resistance to exogenous DNA incorporation. New insight on efficient gene delivery can be provided with our study. PMID:26400011

  3. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil.

    PubMed

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Martinez Molina, Daniel; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-01-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513

  4. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  5. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    PubMed Central

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-01-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513

  6. Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs.

    PubMed

    Sasaki, Akira; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka

    2015-01-01

    Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools allow the study of spatiotemporal molecular dynamics. Here we performed spatiotemporal ccRICS analyses of fluorescent DNA and directly monitored the process of exogenous DNA degradation in living cell cytoplasm. Such direct monitors of DNA degradation allow us to determine the fate of the exogenous DNA in living cells. On comparing the process in living cells, our study shows that cytoplasmic nuclease activity differs between cell lines; therefore, we propose that the difference of nuclease activity in cytoplasm dictates a different resistance to exogenous DNA incorporation. New insight on efficient gene delivery can be provided with our study. PMID:26400011

  7. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    Intracellular water is an important pool of oxygen and hydrogen atoms for biosynthesis. Intracellular water is usually assumed to be isotopically identical to extracellular water, but an unexpected experimental result caused us to question this assumption. Heme O isolated from Escherichia coli cells grown in 95% H218O contained only a fraction of the theoretical value of labeled oxygen at a position where the O atom was known to be derived from water. In fact, fewer than half of the oxygen atoms were labeled. In an effort to explain this surprising result, we developed a method to determine the isotope ratios of intracellular water in cultured cells. The results of our experiments showed that during active growth, up to 70% of the oxygen atoms and 50% of the hydrogen atoms in the intracellular water of E. coli are generated during metabolism and can be isotopically distinct from extracellular water. The fraction of isotopically distinct atoms was substantially less in stationary phase and chilled cells, consistent with our hypothesis that less metabolically-generated water would be present in cells with lower metabolic activity. Our results were consistent with and explained the result of the heme O labeling experiment. Only about 40% of the O atoms on the heme O molecule were labeled because, presumably, only about 40% of the water inside the cells was 18O water that had diffused in from the culture medium. The rest of the intracellular water contained 16O atoms derived from either nutrients or atmospheric oxygen. To test whether we could also detect metabolically-derived hydrogen atoms in cellular constituents, we isolated fatty acids from log-phase and stationary phase E. coli and determined the H isotope ratios of individual fatty acids. The results of these experiments showed that environmental water contributed more H atoms to fatty acids isolated in stationary phase than to the same fatty acids isolated from log-phase cells. Stable isotope analyses of

  8. Plasma reciprocal pool specific activity predicts that of intracellular free leucine for protein synthesis

    SciTech Connect

    Horber, F.F.; Horber-Feyder, C.M.; Krayer, S.; Schwenk, W.F.; Haymond, M.W. )

    1989-09-01

    We previously proposed that, during the infusion of either labeled leucine or its alpha-ketoacid, alpha-ketoisocaproate (KIC), the plasma specific activity (SA) of the transaminated product of the infused tracer (reciprocal pool SA) may better reflect the intracellular leucine SA than the plasma SA of either infused tracer (primary pool SA). To test this hypothesis, 14 dogs were simultaneously infused intravenously with (3H)leucine and (14C)KIC, and blood and tissue compartments were sampled. The ratios of (3H)-leucine to (14C)leucine (3H)/(14C)leucine in mixed tissue proteins and in the intracellular space of striated muscle were the same as the ratio of the isotope infusion rates and similar, although slightly lower (P less than 0.01), than (3H)KIC/(14C)leucine SA (ratio of reciprocal pool SA) in plasma. Plasma (3H)KIC/(14C)leucine SA were essentially identical to the (3H)/(14C) of leucine in (1) mixed liver proteins, (2) intrahepatic free leucine, and (3) fibrin. The (3H)/(14C)leucine in mixed renal proteins and in the intracellular space of kidney and erythrocytes were similar to those of the venous plasma (3H)/(14C)leucine SA. The plasma (3H)KIC and (14C)leucine SA (the reciprocal pool SA) were similar to the SA of (3H)- and (14C)leucine in the intracellular space of all organs investigated with the exception of kidney. Therefore, in postabsorptive dogs, the plasma SA of the transaminated product of the infused labeled KIC or leucine is an excellent predictor of the intracellular leucine SA in all tissues investigated with the exception of kidney.

  9. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation

    PubMed Central

    Tillotson, Benjamin J.; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.

    2015-01-01

    The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870

  10. In vitro activity of artemisone and artemisinin derivatives against extracellular and intracellular Helicobacter pylori.

    PubMed

    Sisto, Francesca; Scaltrito, Maria Maddalena; Masia, Carla; Bonomi, Arianna; Coccè, Valentina; Marano, Giuseppe; Haynes, Richard K; Miani, Alessandro; Farronato, Giampietro; Taramelli, Donatella

    2016-07-01

    The in vitro activity of the new artemisinin derivative artemisone as well as other molecules of the same class against Helicobacter pylori and their effects when combined with standard antibiotics were evaluated. Since H. pylori can be internalised into gastric epithelial cells, the effects of artemisinin, dihydroartemisinin and artemisone against intracellular H. pylori were also investigated. Bacteriostatic [minimum inhibitory concentration (MIC)] and bactericidal [minimum bactericidal concentration (MBC)] activities were assessed against 24 clinical strains of H. pylori with different antibiotics susceptibilities. Artemisone showed MIC50 and MIC90 values of 0.25 mg/L and 0.5 mg/L, respectively, and an MBC50 value of 0.5 mg/L. Artemisone was synergistic with amoxicillin in 60% of strains, with clarithromycin in 40% and with metronidazole in 20%. There was no interaction between artemisone and omeprazole or bismuth citrate. Against intracellular H. pylori, only dihydroartemisinin at 2× MIC caused a 1 log10 CFU decrease after 18 h and 24 h of incubation. This is the first demonstration in vitro of the activity of artemisinin derivatives against intracellular H. pylori and indicates that artemisone has the potential to be efficacious for the treatment of H. pylori infection, especially in combination with antibiotics. PMID:27216383

  11. Active intracellular transport in metastatic cells studied by spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Ceballos, Silvia; Kandel, Mikhail; Sridharan, Shamira; Majeed, Hassaan; Monroy, Freddy; Popescu, Gabriel

    2015-11-01

    Spatiotemporal patterns of intracellular transport are very difficult to quantify and, consequently, continue to be insufficiently understood. While it is well documented that mass trafficking inside living cells consists of both random and deterministic motions, quantitative data over broad spatiotemporal scales are lacking. We studied the intracellular transport in live cells using spatial light interference microscopy, a high spatiotemporal resolution quantitative phase imaging tool. The results indicate that in the cytoplasm, the intracellular transport is mainly active (directed, deterministic), while inside the nucleus it is both active and passive (diffusive, random). Furthermore, we studied the behavior of the two-dimensional mass density over 30 h in HeLa cells and focused on the active component. We determined the standard deviation of the velocity distribution at the point of cell division for each cell and compared the standard deviation velocity inside the cytoplasm and the nucleus. We found that the velocity distribution in the cytoplasm is consistently broader than in the nucleus, suggesting mechanisms for faster transport in the cytosol versus the nucleus. Future studies will focus on improving phase measurements by applying a fluorescent tag to understand how particular proteins are transported inside the cell.

  12. Active intracellular transport in metastatic cells studied by spatial light interference microscopy.

    PubMed

    Ceballos, Silvia; Kandel, Mikhail; Sridharan, Shamira; Majeed, Hassaan; Monroy, Freddy; Popescu, Gabriel

    2015-01-01

    Spatiotemporal patterns of intracellular transport are very difficult to quantify and, consequently, continue to be insufficiently understood. While it is well documented that mass trafficking inside living cells consists of both random and deterministic motions, quantitative data over broad spatiotemporal scales are lacking. We studied the intracellular transport in live cells using spatial light interference microscopy, a high spatiotemporal resolution quantitative phase imaging tool. The results indicate that in the cytoplasm, the intracellular transport is mainly active (directed, deterministic), while inside the nucleus it is both active and passive (diffusive, random). Furthermore, we studied the behavior of the two-dimensional mass density over 30 h in HeLa cells and focused on the active component. We determined the standard deviation of the velocity distribution at the point of cell division for each cell and compared the standard deviation velocity inside the cytoplasm and the nucleus. We found that the velocity distribution in the cytoplasm is consistently broader than in the nucleus, suggesting mechanisms for faster transport in the cytosol versus the nucleus. Future studies will focus on improving phase measurements by applying a fluorescent tag to understand how particular proteins are transported inside the cell. PMID:26271006

  13. Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly.

    PubMed

    Klier, Michael; Jamali, Somayeh; Ames, Samantha; Schneider, Hans-Peter; Becker, Holger M; Deitmer, Joachim W

    2016-01-01

    Most carbonic anhydrases catalyse the reversible conversion of carbon dioxide to protons and bicarbonate, either as soluble cytosolic enzymes, in or at intracellular organelles, or at the extracellular face of the cell membrane as membrane-anchored proteins. Carbonic anhydrase isoform IX (CA IX), a membrane-bound enzyme with catalytic activity at the extracellular membrane surface, has come to prominence in recent years because of its association with hypoxic tissue, particularly tumours, often indicating poor prognosis. We have evaluated the catalytic activity of CA IX heterologously expressed in Xenopus laevis oocytes by measuring the amplitude and rate of cytosolic pH changes as well as pH changes at the outer membrane surface (pHs ) during addition and removal of 5% CO2 /25 mm HCO3-, and by mass spectrometry. Our results indicate both extracellular and intracellular catalytic activity of CA IX. Reduced rates of CO2 -dependent intracellular pH changes after knockdown of CA IX confirmed these findings in two breast cancer cell lines: MCF-7 and MDA-MB-231. Our results demonstrate a new function of CA IX that may be important in the search for therapeutic cancer drugs targeting CA IX. PMID:26470855

  14. Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus

    PubMed Central

    Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei

    1999-01-01

    We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199

  15. Intracellular NAD+ depletion enhances bortezomib-induced anti-myeloma activity

    PubMed Central

    Cagnetta, Antonia; Calimeri, Teresa; Acharya, Chirag; Fulciniti, Mariateresa; Tai, Yu-Tzu; Hideshima, Teru; Chauhan, Dharminder; Zhong, Mike Y.; Patrone, Franco; Nencioni, Alessio; Gobbi, Marco; Richardson, Paul; Munshi, Nikhil

    2013-01-01

    We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD+ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD+ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD+ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD+ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib. PMID:23823317

  16. Intracellular NAD⁺ depletion enhances bortezomib-induced anti-myeloma activity.

    PubMed

    Cagnetta, Antonia; Cea, Michele; Calimeri, Teresa; Acharya, Chirag; Fulciniti, Mariateresa; Tai, Yu-Tzu; Hideshima, Teru; Chauhan, Dharminder; Zhong, Mike Y; Patrone, Franco; Nencioni, Alessio; Gobbi, Marco; Richardson, Paul; Munshi, Nikhil; Anderson, Kenneth C

    2013-08-15

    We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib. PMID:23823317

  17. Activation of intracellular serine proteinase in Bacillus subtilis cells during sporulation.

    PubMed Central

    Burnett, T J; Shankweiler, G W; Hageman, J H

    1986-01-01

    Cells of Bacillus subtilis 168 (trpC2) growing and sporulating in a single chemically defined medium carried out intracellular protein degradation and increased their levels of intracellular serine protease-1 in a manner very similar to what had previously been reported for cells sporulating in nutrient broth. The results were interpreted to mean that these processes are intrinsic to sporulation rather than medium dependent. To determine the cause of these increases in specific activity of proteinases, we purified the protease, prepared rabbit immunoglobulins directed against it, and monitored changes in protease antigen levels by performing rocket immunoelectrophoresis. In cells sporulating in nutrient broth, the protease antigen levels increased about 7-fold, whereas the specific activity increased about 150-fold, for an activation of about 20-fold. In cells sporulating in the single chemically defined sporulation medium, the protease antigen increased about 10-fold, whereas the specific activity increased at least 400-fold, for an activation of about 40-fold. These results were interpreted to mean that a posttranslational event activated the protease in vivo; a previously described endogenous proteinase inhibitor was confirmed to be present in the strain used. Chloramphenicol added to the cultures inhibited both the increases in antigen levels and in the specific activity of the proteinase. PMID:3079745

  18. Intracellular alkalization causes pain sensation through activation of TRPA1 in mice

    PubMed Central

    Fujita, Fumitaka; Uchida, Kunitoshi; Moriyama, Tomoko; Shima, Asako; Shibasaki, Koji; Inada, Hitoshi; Sokabe, Takaaki; Tominaga, Makoto

    2008-01-01

    Vertebrate cells require a very narrow pH range for survival. Cells accordingly possess sensory and defense mechanisms for situations where the pH deviates from the viable range. Although the monitoring of acidic pH by sensory neurons has been attributed to several ion channels, including transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs), the mechanisms by which these cells detect alkaline pH are not well understood. Here, using Ca2+ imaging and patch-clamp recording, we showed that alkaline pH activated transient receptor potential cation channel, subfamily A, member 1 (TRPA1) and that activation of this ion channel was involved in nociception. In addition, intracellular alkalization activated TRPA1 at the whole-cell level, and single-channel openings were observed in the inside-out configuration, indicating that alkaline pH activated TRPA1 from the inside. Analyses of mutants suggested that the two N-terminal cysteine residues in TRPA1 were involved in activation by intracellular alkalization. Furthermore, intraplantar injection of ammonium chloride into the mouse hind paw caused pain-related behaviors that were not observed in TRPA1-deficient mice. These results suggest that alkaline pH causes pain sensation through activation of TRPA1 and may provide a molecular explanation for some of the human alkaline pH–related sensory disorders whose mechanisms are largely unknown. PMID:19033673

  19. Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation.

    PubMed

    Nomura, Johji; So, Alexander; Tamura, Mizuho; Busso, Nathalie

    2015-12-15

    Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation. PMID:26546608

  20. Bethlem myopathy and engineered collagen VI triple helical deletions prevent intracellular multimer assembly and protein secretion.

    PubMed

    Lamandé, S R; Shields, K A; Kornberg, A J; Shield, L K; Bateman, J F

    1999-07-30

    Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the autosomal dominant disorder, Bethlem myopathy. Although three different collagen VI structural mutations have previously been reported, the effect of these mutations on collagen VI assembly, structure, and function is currently unknown. We have characterized a new Bethlem myopathy mutation that results in skipping of COL6A1 exon 14 during pre-mRNA splicing and the deletion of 18 amino acids from the triple helical domain of the alpha1(VI) chain. Sequencing of genomic DNA identified a G to A transition in the +1 position of the splice donor site of intron 14 in one allele. The mutant alpha1(VI) chains associated intracellularly with alpha2(VI) and alpha3(VI) to form disulfide-bonded monomers, but further assembly into dimers and tetramers was prevented, and molecules containing the mutant chain were not secreted. This triple helical deletion thus resulted in production of half the normal amount of collagen VI. To further explore the biosynthetic consequences of collagen VI triple helical deletions, an alpha3(VI) cDNA expression construct containing a 202-amino acid deletion within the triple helix was produced and stably expressed in SaOS-2 cells. The transfected mutant alpha3(VI) chains associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, but dimers and tetramers did not form and the mutant-containing molecules were not secreted. Thus, deletions within the triple helical region of both the alpha1(VI) and alpha3(VI) chains can prevent intracellular dimer and tetramer assembly and secretion. These results provide the first evidence of the biosynthetic consequences of structural collagen VI mutations and suggest that functional protein haploinsufficiency may be a common pathogenic mechanism in Bethlem myopathy. PMID:10419498

  1. Intracellular activity of clinical concentrations of phenothiazines including thioridiazine against phagocytosed Staphylococcus aureus.

    PubMed

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Arroz, Maria Jorge; Amaral, Leonard

    2002-07-01

    The effect of thioridazine (TZ) was studied on the killing activity of human peripheral blood monocyte derived macrophages (HPBMDM) and of human macrophage cell line THP-1 at extracellular concentrations below those achievable clinically. These macrophages have nominal killing activity against bacteria and therefore, would not influence any activity that the compounds may have against intracellular localised Staphylococcus aureus. The results indicated that whereas TZ has an in vitro minimum inhibitory concentration (MIC) against the strains of S. aureus of 18, 0.1 mg/l of TZ in the medium completely inhibits the growth of S. aureus that has been phagocytosed by macrophages. The latter concentration was non-toxic to macrophages, did not cause cellular expression of activation marker CD69 nor induction of CD3+ T cell production of IFN-gamma, but blocked cellular proliferation and down-regulated the production of T cell-derived cytokines (IFN-gamma, IL-5). These results suggest that TZ induces intracellular bactericidal activities independent of the capacity to generate Type 1 responses against S. aureus. PMID:12127709

  2. Superoxide dismutase activity of Mycobacterium avium, M. intracellulare, and M. scrofulaceum.

    PubMed Central

    Mayer, B K; Falkinham, J O

    1986-01-01

    Superoxide dismutase (EC 1.15.1.1) (SOD) activity has been detected in crude cell extracts of representative strains of the Mycobacterium avium, M. intracellulare, and M. scrofulaceum (MAIS) group. Polyacrylamide gel electrophoresis demonstrated a single SOD activity band for each of the MAIS strains, though there were differences in mobility. All M. avium and M. intracellulare and two of five M. scrofulaceum strains demonstrated a single activity band of identical mobility (Rf = 0.83), while the SOD activity band for the three remaining M. scrofulaceum strains migrated farther (Rf = 0.85). The differences in mobility correlated with differences in sensitivity to NaN3 and H2O2. The SOD activities of the majority of the MAIS strains which displayed the slower-migrating activity band were inhibited 22 to 81% after 15 min of exposure to 5 mM H2O2, suggesting that both iron and manganese may be present in a single enzyme. The SOD activities of the three M. scrofulaceum strains which had the faster-migrating activity band were inhibited 100% after only 5 min of exposure to 5 mM H2O2 and exhibited greater sensitivity to 5 and 10 mM NaN3, characteristics of an iron-containing SOD. A concentration of 1 mM KCN did not cause inhibition of enzyme activity in any of the MAIS strains tested. Extracellular SOD activity was detected in four of six MAIS strains and was shown to be identical in mobility to the SOD activity of the crude extracts. Images PMID:3744555

  3. Nonlinear Dynamic Modeling of Synaptically Driven Single Hippocampal Neuron Intracellular Activity

    PubMed Central

    Song, Dong; Berger, Theodore W.

    2011-01-01

    A high-order nonlinear dynamic model of the input–output properties of single hippocampal CA1 pyramidal neurons was developed based on synaptically driven intracellular activity. The purpose of this study is to construct a model that: 1) can capture the nonlinear dynamics of both subthreshold activities [postsynaptic potentials (PSPs)] and suprathreshold activities (action potentials) in a single formalism; 2) is sufficiently general to be applied to any spike-input and spike-output neurons (point process input and point process output neural systems); and 3) is computationally efficient. The model consisted of three major components: 1) feedforward kernels (up to third order) that transform presynaptic action potentials into PSPs; 2) a constant threshold, above which action potentials are generated; and 3) a feedback kernel (first order) that describes spike-triggered after-potentials. The model was applied to CA1 pyramidal cells, as they were electrically stimulated with broadband Poisson random impulse trains through the Schaffer collaterals. The random impulse trains used here have physiological properties similar to spiking patterns observed in CA3 hippocampal neurons. PSPs and action potentials were recorded from the soma of CA1 pyramidal neurons using whole-cell patch-clamp recording. We evaluated the model performance separately with respect to PSP waveforms and the occurrence of spikes. The average normalized mean square error of PSP prediction is 14.4%. The average spike prediction error rate is 18.8%. In summary, although prediction errors still could be reduced, the model successfully captures the majority of high-order nonlinear dynamics of the single-neuron intracellular activity. The model captures the general biophysical processes with a small set of open parameters that are directly constrained by the intracellular recording, and thus, can be easily applied to any spike-input and spike-output neuron. PMID:21233041

  4. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    PubMed Central

    2012-01-01

    Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1) derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization. PMID:23092390

  5. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery.

    PubMed

    Wen, Huiyun; Dong, Chunyan; Dong, Haiqing; Shen, Aijun; Xia, Wenjuan; Cai, Xiaojun; Song, Yanyan; Li, Xuequan; Li, Yongyong; Shi, Donglu

    2012-03-12

    In biomedical applications, polyethylene glycol (PEG) functionalization has been a major approach to modify nanocarriers such as nano-graphene oxide for particular biological requirements. However, incorporation of a PEG shell poses a significant diffusion barrier that adversely affects the release of the loaded drugs. This study addresses this critical issue by employing a redox-responsive PEG detachment mechanism. A PEGylated nano-graphene oxide (NGO-SS-mPEG) with redox-responsive detachable PEG shell is developed that can rapidly release an encapsulated payload at tumor-relevant glutathione (GSH) levels. The PEG shell grafted onto NGO sheets gives the nanocomposite high physiological solubility and stability in circulation. It can selectively detach from NGO upon intracellular GSH stimulation. The surface-engineered structures are shown to accelerate the release of doxorubicin hydrochloride (DXR) from NGO-SS-mPEG 1.55 times faster than in the absence of GSH. Confocal microscopy shows clear evidence of NGO-SS-mPEG endocytosis in HeLa cells, mainly accumulated in cytoplasm. Furthermore, upon internalization of DXR-loaded NGO with a disulfide-linked PEG shell into HeLa cells, DXR is effectively released in the presence of an elevated GSH reducing environment, as observed in confocal microscopy and flow cytometric experiments. Importantly, inhibition of cell proliferation is directly correlated with increased intracellular GSH concentrations due to rapid DXR release. PMID:22228696

  6. Members of the Chloride Intracellular Ion Channel Protein Family Demonstrate Glutaredoxin-Like Enzymatic Activity

    PubMed Central

    Al Khamici, Heba; Brown, Louise J.; Hossain, Khondker R.; Hudson, Amanda L.; Sinclair-Burton, Alxcia A.; Ng, Jane Phui Mun; Daniel, Elizabeth L.; Hare, Joanna E.; Cornell, Bruce A.; Curmi, Paul M. G.; Davey, Mary W.; Valenzuela, Stella M.

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function. PMID:25581026

  7. Hepatitis C Virus Subgenomic Replicons Induce Endoplasmic Reticulum Stress Activating an Intracellular Signaling Pathway

    PubMed Central

    Tardif, Keith D.; Mori, Kazutoshi; Siddiqui, Aleem

    2002-01-01

    Hepatitis C virus (HCV) replicates from a ribonucleoprotein (RNP) complex that is associated with the endoplasmic reticulum (ER) membrane. The replication activities of the HCV subgenomic replicon are shown here to induce ER stress. In response to this stress, cells expressing HCV replicons induce the unfolded protein response (UPR), an ER-to-nucleus intracellular signaling pathway. The UPR is initiated by the proteolytic cleavage of a transmembrane protein, ATF6. The resulting cytoplasmic protein fragment of ATF6 functions as a transcription factor in the nucleus and activates selective genes required for an ER stress response. ATF6 activation leads to increased transcriptional levels of GRP78, an ER luminal chaperone protein. However, the overall level of GRP78 protein is decreased. While ER stress is also known to affect translational attenuation, cells expressing HCV replicons have lower levels of phosphorylation of the α subunit of eukaryotic initiation factor 2. Interestingly, cap-independent internal ribosome entry site-mediated translation directed by the 5′ noncoding region of HCV and GRP78 is activated in cells expressing HCV replicons. These studies provide insight into the effects of HCV replication on intracellular events and the mechanisms underlying liver pathogenesis. PMID:12097557

  8. AMP-activated Protein Kinase Suppresses Biosynthesis of Glucosylceramide by Reducing Intracellular Sugar Nucleotides*

    PubMed Central

    Ishibashi, Yohei; Hirabayashi, Yoshio

    2015-01-01

    The membrane glycolipid glucosylceramide (GlcCer) plays a critical role in cellular homeostasis. Its intracellular levels are thought to be tightly regulated. How cells regulate GlcCer levels remains to be clarified. AMP-activated protein kinase (AMPK), which is a crucial cellular energy sensor, regulates glucose and lipid metabolism to maintain energy homeostasis. Here, we investigated whether AMPK affects GlcCer metabolism. AMPK activators (5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and metformin) decreased intracellular GlcCer levels and synthase activity in mouse fibroblasts. AMPK inhibitors or AMPK siRNA reversed these effects, suggesting that GlcCer synthesis is negatively regulated by an AMPK-dependent mechanism. Although AMPK did not affect the phosphorylation or expression of GlcCer synthase, the amount of UDP-glucose, an activated form of glucose required for GlcCer synthesis, decreased under AMPK-activating conditions. Importantly, the UDP-glucose pyrophosphatase Nudt14, which degrades UDP-glucose, generating UMP and glucose 1-phosphate, was phosphorylated and activated by AMPK. On the other hand, suppression of Nudt14 by siRNA had little effect on UDP-glucose levels, indicating that mammalian cells have an alternative UDP-glucose pyrophosphatase that mainly contributes to the reduction of UDP-glucose under AMPK-activating conditions. Because AMPK activators are capable of reducing GlcCer levels in cells from Gaucher disease patients, our findings suggest that reducing GlcCer through AMPK activation may lead to a new strategy for treating diseases caused by abnormal accumulation of GlcCer. PMID:26048992

  9. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Otari, S. V.; Patil, R. M.; Ghosh, S. J.; Thorat, N. D.; Pawar, S. H.

    2015-02-01

    Intracellular synthesis of silver nanoparticles (AgNPs) using Rhodococcus spp. is demonstrated. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier trans-form infrared spectroscopy, and transmission electron microscopy. Transmission electron microscopy study of microorganisms' revealed synthesis of nanoparticle was occurring inside the cell, in the cytoplasm. AgNPs ranged from 5 to 50 nm. Formed nanoparticles were stable in the colloidal solution due to presence of proteins on the surface. AgNPs showed excellent bactericidal and bacteriostatic activity against pathogenic microorganisms.

  10. The Peptide Microarray-Based Resonance Light Scattering Assay for Sensitively Detecting Intracellular Kinase Activity.

    PubMed

    Li, Tao; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-01-01

    The peptide microarray technology is a robust, reliable, and efficient technique for large-scale determination of enzyme activities, and high-throughput profiling of substrate/inhibitor specificities of enzymes. Here, the activities of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) in different cell lysates have been detected by a peptide microarray-based resonance light scattering (RLS) assay with gold nanoparticle (GNP) probes. Highly sensitive detection of PKA activity in 0.1 μg total cell proteins of SHG-44 (human glioma cell) cell lysate (corresponding to 200 cells) is achieved by a selected peptide substrate. The experimental results also demonstrate that the RLS assay can be employed to evaluate the chemical regulation of intracellular kinase activity. PMID:26490469

  11. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and

  12. Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells.

    PubMed

    Zimmerman, Matthew C; Takapoo, Maysam; Jagadeesha, Dammanahalli K; Stanic, Bojana; Banfi, Botond; Bhalla, Ramesh C; Miller, Francis J

    2011-09-01

    Redox-dependent migration and proliferation of vascular smooth muscle cells (SMCs) are central events in the development of vascular proliferative diseases; however, the underlying intracellular signaling mechanisms are not fully understood. We tested the hypothesis that activation of Nox1 NADPH oxidase modulates intracellular calcium ([Ca(2+)](i)) levels. Using cultured SMCs from wild-type and Nox1 null mice, we confirmed that thrombin-dependent generation of reactive oxygen species requires Nox1. Thrombin rapidly increased [Ca(2+)](i), as measured by fura-2 fluorescence ratio imaging, in wild-type but not Nox1 null SMCs. The increase in [Ca(2+)](i) in wild-type SMCs was inhibited by antisense to Nox1 and restored by expression of Nox1 in Nox1 null SMCs. Investigation into potential mechanisms by which Nox1 modulates [Ca(2+)](i) showed that thrombin-induced inositol triphosphate generation and thapsigargin-induced intracellular calcium mobilization were similar in wild-type and Nox1 null SMCs. To examine the effects of Nox1 on Ca(2+) entry, cells were either bathed in Ca(2+)-free medium or exposed to dihydropyridines to block L-type Ca(2+) channel activity. Treatment with nifedipine or removal of extracellular Ca(2+) reduced the thrombin-mediated increase of [Ca(2+)](i) in wild-type SMCs, whereas the response in Nox1 null SMCs was unchanged. Sodium vanadate, an inhibitor of protein tyrosine phosphatases, restored the thrombin-induced increase of [Ca(2+)](i) in Nox1 null SMCs. Migration of SMCs was impaired with deficiency of Nox1 and restored with expression of Nox1 or the addition of sodium vanadate. In summary, we conclude that Nox1 NADPH oxidase modulates Ca(2+) mobilization in SMCs, in part through regulation of Ca(2+) influx, to thereby promote cell migration. PMID:21810651

  13. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.

    PubMed

    Zhao, Zhenghang; Gordan, Richard; Wen, Hairuo; Fefelova, Nadezhda; Zang, Wei-Jin; Xie, Lai-Hua

    2013-01-01

    Recent studies have suggested that mitochondria may play important roles in the Ca(2+) homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+) flux can regulate the generation of Ca(2+) waves (CaWs) and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+) (Cai (2+)) was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and CaWs were induced in the presence of high (4 mM) external Ca(2+) (Cao (2+)). The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) reversibly raised basal Cai (2+) levels even after depletion of SR Ca(2+) in the absence of Cao (2+) , suggesting Ca(2+) release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m ) and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m ) or Ru360 (a mitochondrial Ca(2+) uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+) uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+) release and uptake exquisitely control the local Ca(2+) level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis. PMID:24348912

  14. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  15. Acid phosphatase activity and intracellular collagen degradation by fibroblasts in vitro.

    PubMed

    Yajima, T

    1986-01-01

    Human gingival fibroblasts were cultured with collagen fibrils. The precise process of collagen phagocytosis and the relationship between acid phosphatase activity and intracellular degradation of collagen were investigated by cytochemical methods at the ultrastructural level. The collagen fibrils were first engulfed at one end by cellular processes, or the cell membrane wrapped itself around the middle of the fibrils. Collagen phagocytosis induced acid phosphatase activity in the fibroblast Golgi-endoplasmic reticulum-lysosome system. By application of the tracer lanthanum, deposits were observed in the intercellular spaces and along the fibrils being phagocytosed. At this stage, primary lysosomes were seen in close proximity to the collagen being engulfed, but no signs of fusion were observed. When the fibrils had been interiorized in whole or in part, they ultimately became enclosed within phagosomes, and no tracer was observed along the interiorized portion of the fibrils. Primary lysosomes then fused with these collagen-containing phagosomes to form phagolysosomes. Collagen degradation occurred within these bodies even though the end of a fibril might have protruded outside of the cell. These results suggest that selective and controlled phagocytosis of collagen and intracellular digestion of it may play a central role in the physiological remodeling and metabolic breakdown of the collagen of connective tissues. PMID:3742560

  16. Rotenone Decreases Intracellular Aldehyde Dehydrogenase Activity: Implications for the Pathogenesis of Parkinson Disease

    PubMed Central

    Goldstein, David S.; Sullivan, Patti; Cooney, Adele; Jinsmaa, Yunden; Kopin, Irwin J.; Sharabi, Yehonatan

    2015-01-01

    Repeated systemic administration of the mitochondrial complex I inhibitor rotenone produces a rodent model of Parkinson disease (PD). Mechanisms of relatively selective rotenone-induced damage to nigrostriatal dopaminergic neurons remain incompletely understood. According to the “catecholaldehyde hypothesis,” buildup of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to PD pathogenesis. Vesicular uptake blockade increases DOPAL levels, and DOPAL is detoxified mainly by aldehyde dehydrogenase (ALDH). We tested whether rotenone interferes with vesicular uptake and intracellular ALDH activity. Endogenous and F-labeled catechols were measured in PC12 cells incubated with rotenone (0-1000 nM, 180 minutes), without or with F-dopamine (2 μM) to track vesicular uptake and catecholamine metabolism. Rotenone dose-dependently increased DOPAL, F-DOPAL, and 3,4-dihydroxyphenylethanol (DOPET) levels while decreasing dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and the ratio of dopamine to the sum of its deaminated metabolites. In test tubes, rotenone did not affect conversion of DOPAL to DOPAC by ALDH when NAD+ was supplied, whereas the direct-acting ALDH inhibitor benomyl markedly increased DOPAL and decreased DOPAC concentrations in the reaction mixtures. We propose that rotenone builds up intracellular DOPAL by decreasing ALDH activity and attenuating vesicular sequestration of cytoplasmic catecholamines. The results provide a novel mechanism for selective rotenone-induced toxicity in dopaminergic neurons. PMID:25645689

  17. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  18. Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency

    SciTech Connect

    Lan, Ke; Murakami, Masanao; Choudhuri, Tathagata; Kuppers, Daniel A.; Robertson, Erle S. . E-mail: erle@mail.med.upenn.edu

    2006-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system. Previous studies have been shown that the replication and transcription activator (RTA) encoded by ORF50 activates it downstream genes and initiates viral lytic reactivation through functional interaction with RBP-J{kappa}, the major downstream effector of the Notch signaling pathway. This indicates that RTA can usurp the conserved Notch signaling pathway and mimic the activities of intracellular Notch1 to modulate gene expression. In this report, we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in KSHV latently infected pleural effusion lymphoma (PEL) cells. ICN activated the RTA promoter in a dose-dependent manner, and forced expression of ICN in latently infected KSHV-positive cells initiated full blown lytic replication with the production of infectious viral progeny. However, latency-associated nuclear antigen (LANA) which is predominantly expressed during latency can specifically down-modulate ICN-mediated transactivation of RTA and so control KSHV for lytic reactivation. These results demonstrate that LANA can inhibit viral lytic replication by antagonizing ICN function and suggest that LANA is a critical component of the regulatory control mechanism for switching between viral latent and lytic replication by directly interacting with effectors of the conserved cellular Notch1 pathway.

  19. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies

    PubMed Central

    Heikal, Ahmed A

    2010-01-01

    Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation–reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities. PMID:20406068

  20. Intracellular Potassium Activity in Guinea Pig Papillary Muscle during Prolonged Hypoxia

    PubMed Central

    Guarnieri, Thomas; Strauss, Harold C.

    1982-01-01

    During prolonged hypoxia, intracellular potassium concentration, [K]i has been reported to fall by 70% with a concomitant decrease in the calculated potassium equilibrium potential, EK. Nevertheless, resting membrane potential, Vm, declined only slightly. Because Vm depolarized very little in relation to the calculated EK, it was hypothesized that electrogenic Na-K pumping contributed up to 40 mV to Vm during prolonged hypoxia. To further test this hypothesis we studied what changes prolonged hypoxia makes in the thermodynamically active fraction of cellular potassium, intracellular potassium activity, αKi, and how change in αKi affects the relationship between Vm, EK and, by inference, the Na-K pump. Using double-barrel K-selective electrodes, Vm and αKi were measured in quiescent guinea pig right ventricular papillary muscles superfused for 8 h with hypoxic Tyrode's solution. Over the 8-h period both Vm and αKi decreased. However, the decline in Vm was paralleled by a decrease in the EK calculated from αKi. At no time was there hyperpolarization of Vm beyond EK. After 8 h the Na-K pump was inhibited by exposing the muscles to 0.1 mM ouabain. The onset of an increase in extracellular potassium activity, measured with a double-barrel electrode, was used to mark the amount of depolarization of Vm due solely to pump inhibition. After hypoxia, Vm depolarized 8.4±4.4 mV before extracellular potassium activity (αKe) increased. Thus, the decrease in αKi during hypoxia is much less than that reported for [K]i. The parallel decline in Vm and EK and the small depolarization of Vm with ouabain suggest that after prolonged hypoxia the Na-K pump continues to contribute to Vm, but the amount of this contribution is substantially less than previously reported. PMID:6276442

  1. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells.

    PubMed

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-12-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  2. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells

    PubMed Central

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-01-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  3. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  4. Intracellular Uptake: A Possible Mechanism for Silver Engineered Nanoparticle Toxicity to a Freshwater Alga Ochromonas danica

    PubMed Central

    Miao, Ai-Jun; Luo, Zhiping; Chen, Chi-Shuo; Chin, Wei-Chun; Santschi, Peter H.; Quigg, Antonietta

    2010-01-01

    The behavior and toxicity of silver engineered nanoparticles (Ag-ENs) to the mixotrophic freshwater alga Ochromonas danica were examined in the present study to determine whether any other mechanisms are involved in their algal toxicity besides Ag+ liberation outside the cells. Despite their good dispersability, the Ag-ENs were found to continuously aggregate and dissolve rapidly. When the initial nanoparticle concentration was lower than 10 µM, the total dissolved Ag+ concentration ([Ag+]T) in the suspending media reached its maximum after 1 d and then decreased suggesting that Ag+ release might be limited by the nanoparticle surface area under these conditions. Furthermore, Ag-EN dissolution extent remarkably increased in the presence of glutathione. In the Ag-EN toxicity experiment, glutathione was also used to eliminate the indirect effects of Ag+ that was released. However, remarkable toxicity was still observed although the free Ag+ concentration in the media was orders of magnitude lower than the non-observed effect concentration of Ag+ itself. Such inhibitive effects were mitigated when more glutathione was added, but could never be completely eliminated. Most importantly, we demonstrate, for the first time, that Ag-ENs can be taken in and accumulated inside the algal cells, where they exerted their toxic effects. Therefore, nanoparticle internalization may be an alternative pathway through which algal growth can be influenced. PMID:21203552

  5. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    PubMed Central

    Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Mezquita, Jovita; Mezquita, Cristóbal

    2014-01-01

    One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer. PMID:24709904

  6. Antioxidant and hepatoprotective activities of intracellular polysaccharide from Pleurotus eryngii SI-04.

    PubMed

    Zhang, Chen; Li, Shangshang; Zhang, Jianjun; Hu, Chunlong; Che, Gen; Zhou, Meng; Jia, Le

    2016-10-01

    In present study, the intracellular polysaccharide (IPS) and its two fractions of IPS-1 and IPS-2 were obtained and purified by DEAE-52 cellulose chromatography from Pleurotus eryngii SI-04 mycelia, and their hepatoprotective effects were also investigated. The results showed that the IPS-2 had superior hepatoprotective effects by increasing the serum enzyme activities and bilirubin (BIL) levels, decreasing the serum albumin (ALB) and triglyceride (TG) levels, improving the hepatic antioxidant status, and ameliorating the hepatic structure damage. Furthermore, the monosaccharide composition and main bond types were also analyzed. These conclusions demonstrated that the both IPS and its fractions might be suitable for functional foods and natural drugs in preventing the acute liver damage. PMID:27259648

  7. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola.

    PubMed

    Hao, Limin; Sheng, Zhicun; Lu, Jike; Tao, Ruyu; Jia, Shiru

    2016-05-01

    Fomitopsis pinicola (F. pinicola) is a kind of medicinal fungi, and few studies has been carried out on F. pinicola polysaccharides from liquid submerged cultivation. The characterization and antioxidant activities of extracellular polysaccharide (EPS) and intracellular polysaccharide (IPS) isolated from F. pinicola were investigated. The results showed that the molecular weight of EPS was 2.30×10(4)Da, and EPS was composed of mannose, rhamnose, xylose and galactose with the molar ratio of 0.1:1.0:0.3:0.5. The molecular weight of IPS was 4.07×10(5)Da, and the monosaccharide compositions included glucose, mannose, rhamnose, xylose and galactose with the molar ratio of 1.0:0.9:0.9:0.8:1.1. Antioxidant activities of both EPS and IPS including in vitro scavenging activities on 1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals, cellular protective effects on yeast cells from ultraviolet (UV) radiation and H2O2 oxidative damage were tested. Both EPS and IPS showed antioxidant activities in a dose dependent manner, and IPS had higher antioxidant activity than EPS. So EPS and IPS could be potential novel antioxidants for functional food. PMID:26876995

  8. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens.

    PubMed Central

    Wu, T C; Guarnieri, F G; Staveley-O'Carroll, K F; Viscidi, R P; Levitsky, H I; Hedrick, L; Cho, K R; August, J T; Pardoll, D M

    1995-01-01

    The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency. Images Fig. 2 Fig. 3 PMID:8524826

  9. GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated the dose-dependent glucagon-like peptide (GLP)-2 activation of intracellular signals associated with increased epithelial cell survival and proliferation in the neonatal intestine. Our current aim was to quantify the acute, temporal GLP-2 activation of these key intracellu...

  10. Identification of several intracellular carbohydrate-degrading activities from the halophilic archaeon Haloferax mediterranei.

    PubMed

    Pérez-Pomares, F; Díaz, S; Bautista, V; Pire, C; Bravo, G; Esclapez, J; Zafrilla, B; Bonete, María-José

    2009-07-01

    Three different amylolytic activities, designated AMY1, AMY2, and AMY3 were detected in the cytoplasm of the extreme halophilic archaeon Haloferax mediterranei grown in a starch containing medium. This organism had also been reported to excrete an alpha-amylase into the external medium in such conditions. The presence of these different enzymes which are also able to degrade starch may be related to the use of the available carbohydrates and maltodextrins, including the products obtained by the action of the extracellular amylase on starch that may be transported to the cytoplasm of the organism. The behavior of these intracellular hydrolytic enzymes on starch is reported here and compared with their extracellular counterpart. Two of these glycosidic activities (AMY1, AMY3) have also been purified and further characterized. As with other halophilic enzymes, they were salt dependent and displayed maximal activity at 3 M NaCl, and 50 degrees C. The purification steps and molecular masses have also been reported. The other activity (AMY2) was also detected in extracts from cells grown in media with glycerol instead of starch and in a yeast extract medium. This enzyme was able to degrade starch yielding small oligosaccharides and displayed similar halophilic behavior with salt requirement in the range 1.5-3 M NaCl. PMID:19396510

  11. Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint.

    PubMed

    Gabryelska, Marta Magdalena; Wyszko, Eliza; Szymański, Maciej; Popenda, Mariusz; Barciszewski, Jan

    2013-05-01

    Hammerhead ribozyme is a versatile tool for down-regulation of gene expression in vivo. Owing to its small size and high activity, it is used as a model for RNA structure-function relationship studies. In the present paper we describe a new extended hammerhead ribozyme HH-2 with a tertiary stabilizing motif constructed on the basis of the tetraloop receptor sequence. This ribozyme is very active in living cells, but shows low activity in vitro. To understand it, we analysed tertiary structure models of substrate-ribozyme complexes. We calculated six unique catalytic core geometry parameters as distances and angles between particular atoms that we call the ribozyme fingerprint. A flanking sequence and tertiary motif change the geometry of the general base, general acid, nucleophile and leaving group. We found almost complete correlation between these parameters and the decrease of target gene expression in the cells. The tertiary structure model calculations allow us to predict ribozyme intracellular activity. Our approach could be widely adapted to characterize catalytic properties of other RNAs. PMID:23418809

  12. Kinetic and sensitive analysis of tyrosinase activity using electron transfer complexes: in vitro and intracellular study.

    PubMed

    Zhu, Xianglong; Hu, Juan; Zhao, Zhenghuan; Sun, Mingjun; Chi, Xiaoqin; Wang, Xiaomin; Gao, Jinhao

    2015-02-18

    Tyrosinase is an important marker of human diseases such as the neurodegeneration associated with Parkinson's disease and melanoma. Sensitive detection of tyrosinase activity in vitro and inside cells is of great significance to medical diagnostics and skin disorder treatments. With unique photophysical properties, semiconductor quantum dots (QDs) are employed as photoluminescent platforms for various biosensing, in particular for the detection of enzyme activities. In this work, QDs are functionalized with tyrosine and zwitterionic molecules to construct a nanometer-scale scaffold (QD-Tyr conjugate), and this is used to test tyrosinase activity in vitro and inside cells. Tyrosinase oxidizes tyrosine to dopachrome and switches on the electron-transfer access, which relates to fluorescence quenching. High quenching efficiency is achieved by shortening the distance between the electron donors and acceptors, which is attributed to the small size of the conjugated tyrosine. Enzymatic process curves reveal the enhanced enzymatic activity on the conjugated nanoparticle substrate, which leads to highly sensitive detection of tyrosinase (as low as 1 nM). It is also demonstrated that QD-Tyr conjugates can sensitively probe intracellular tyrosinase in melanoma cells, which promises great potential in disease monitoring and medical diagnostics. PMID:25285706

  13. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release.

    PubMed

    Chen, Wei; Zhong, Ping; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2013-08-10

    Redox and pH dual-responsive biodegradable micelles were developed based on poly(ethylene glycol)-SS-poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate) (PEG-SS-PTMBPEC) copolymer and investigated for intracellular doxorubicin (DOX) release. PEG-SS-PTMBPEC copolymer with an Mn of 5.0-4.1kg/mol formed micellar particles with an average diameter of 140nm and a low polydispersity of 0.12. DOX was loaded into PEG-SS-PTMBPEC micelles with a decent drug loading content of 11.3wt.%. The in vitro release studies showed that under physiological conditions only ca. 24.5% DOX was released from DOX-loaded micelles in 21h. The release of DOX was significantly accelerated at pH5.0 or in the presence of 10mM glutathione (GSH) at pH7.4, in which 62.8% and 74.3% of DOX was released, respectively, in 21h. The drug release was further boosted under 10mM GSH and pH 5.0 conditions, with 94.2% of DOX released in 10h. Notably, DOX release was also facilitated by 2 or 4h incubation at pH 5.0 and then at pH 7.4 with 10mM GSH, which mimics the intracellular pathways of endocytosed micellar drugs. Confocal microscopy observation indicated that DOX was delivered and released into the nuclei of HeLa cells following 8h incubation with DOX-loaded PEG-SS-PTMBPEC micelles, while DOX was mainly located in the cytoplasm for reduction-insensitive PEG-PTMBPEC controls. MTT assays revealed that DOX-loaded PEG-SS-PTMBPEC micelles had higher anti-tumor activity than reduction-insensitive controls, with low IC50 of 0.75 and 0.60μg/mL for HeLa and RAW 264.7 cells, respectively, following 48h incubation. PEG-SS-PTMBPEC micelles displayed low cytotoxicity up to a concentration of 1.0mg/mL. These redox and pH dual-bioresponsive degradable micelles have appeared as a promising platform for targeted intracellular anticancer drug release. PMID:23306022

  14. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  15. Relationships among antibacterial activity, inhibition of DNA gyrase, and intracellular accumulation of 11 fluoroquinolones.

    PubMed Central

    Bazile, S; Moreau, N; Bouzard, D; Essiz, M

    1992-01-01

    A series of 11 fluoroquinolone antibacterial agents, including 8 newly synthesized molecules and 3 reference compounds (pefloxacin, ciprofloxacin, and sparfloxacin), were tested for their MICs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The intracellular accumulation of fluoroquinolones by these microorganisms was measured by centrifugation through silicone oil and a fluorescence assay. The minimal effective dose (MED) was determined for all agents in a supercoiling assay with E. coli DNA gyrase. The hydrophobicities of the quinolones were determined and expressed as the logarithm of the coefficient of distribution (log D) between 1-octanol and phosphate buffer (pH 7.2). No correlation was found between MICs and cell accumulation for the quinolones studied. A correlation was found between log D and accumulation by S. aureus (r = 0.71, n = 11), and an inverse correlation was found between log D and accumulation by E. coli (r = 0.73, n = 11) and P. aeruginosa (r = 0.64, n = 10). The correlation coefficients between MICs and MED for E. coli, which were 0.60, 0.64, and 0.74 (n = 11) for E. coli, P. aeruginosa, and S. aureus, respectively, rose to 0.85, 0.74, and 0.74 (n = 11) for the same microorganisms, respectively, when the accumulation of the drug by the cell was taken into account. It was concluded that the inhibitory activity against DNA gyrase remains the most important parameter for quinolone potency, but that intracellular accumulation must be taken into account, since, for a given organism, both parameters are under the control of the physicochemical properties of the quinolones. PMID:1336340

  16. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    PubMed Central

    Bhatter, Purva D.; Gupta, Pooja D.; Birdi, Tannaz J.

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797

  17. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays.

    PubMed

    Bhatter, Purva D; Gupta, Pooja D; Birdi, Tannaz J

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797

  18. Engineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect

    James C. Liao

    2012-05-22

    This project is a collaboration with F. R. Tabita of Ohio State. Our major goal is to understand the factors and regulatory mechanisms that influence hydrogen production. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Our part of the project was to develop a modeling technique to investigate the metabolic network in connection to hydrogen production and regulation. Organisms must balance the pathways that generate and consume reducing power in order to maintain redox homeostasis to achieve growth. Maintaining this homeostasis in the nonsulfur purple photosynthetic bacteria is a complex feat with many avenues that can lead to balance, as these organisms possess versatile metabolic capabilities including anoxygenic photosynthesis, aerobic or anaerobic respiration, and fermentation. Growth is achieved by using H{sub 2} as an electron donor and CO{sub 2} as a carbon source during photoautotrophic and chemoautotrophic growth, where CO{sub 2} is fixed via the Calvin-Benson-Bassham (CBB) cycle. Photoheterotrophic growth can also occur when alternative organic carbon compounds are utilized as both the carbon source and electron donor. Regardless of the growth mode, excess reducing equivalents generated as a result of oxidative processes, must be transferred to terminal electron acceptors, thus insuring that redox homeostasis is maintained in the cell. Possible terminal acceptors include O{sub 2}, CO{sub 2}, organic carbon, or various oxyanions. Cells possess regulatory mechanisms to balance the activity of the pathways which supply energy, such as photosynthesis, and those that consume energy, such as CO{sub 2} assimilation or N{sub 2} fixation. The major route for CO{sub 2} assimilation is the CBB

  19. Tissue Plasminogen Activator Alters Intracellular Sequestration of Zinc through Interaction with the Transporter ZIP4

    SciTech Connect

    Emmetsberger, Jaime; Mirrione, Martine M.; Zhou, Chun; Fernandez-Monreal, Monica; Siddiq, Mustafa M.; Ji, Kyungmin; Tsirka, Stella E.

    2010-09-17

    Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm. Tissue plasminogen activator (tPA), a secreted serine protease, is also proepileptic and excitotoxic. However, tPA counters zinc toxicity by promoting zinc import back into the neurons in a sequestered form that is nontoxic. Here, we identify the zinc influx transporter, ZIP4, as the pathway through which tPA mediates the zinc uptake. We show that ZIP4 is upregulated after excitotoxin stimulation of the mouse, male and female, hippocampus. ZIP4 physically interacts with tPA, correlating with an increased intracellular zinc influx and lysosomal sequestration. Changes in prosurvival signals support the idea that this sequestration results in neuroprotection. These experiments identify a mechanism via which neurons use tPA to efficiently neutralize the toxic effects of excessive concentrations of free zinc.

  20. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization.

    PubMed

    Bates, Ryan C; Fees, Colby P; Holland, William L; Winger, Courtney C; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J

    2014-02-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  1. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN).

    PubMed

    Luster, Brennon R; Urbano, Francisco J; Garcia-Rill, Edgar

    2016-06-01

    The pedunculopontine nucleus is a part of the reticular activating system, and is active during waking and REM sleep. Previous results showed that all PPN cells tested fired maximally at gamma frequencies when depolarized. This intrinsic membrane property was shown to be mediated by high-threshold N- and P/Q-type Ca(2+) channels. Recent studies show that the PPN contains three independent populations of neurons which can generate gamma band oscillations through only N-type channels, only P/Q-type channels, or both N- and P/Q-type channels. This study investigated the intracellular mechanisms modulating gamma band activity in each population of neurons. We performed in vitro patch-clamp recordings of PPN neurons from Sprague-Dawley rat pups, and applied 1-sec ramps to induce intrinsic membrane oscillations. Our results show that there are two pathways modulating gamma band activity in PPN neurons. We describe populations of neurons mediating gamma band activity through only N-type channels and the cAMP/PKA pathway (presumed "REM-on" neurons), through only P/Q-type channels and the CaMKII pathway (presumed "Wake-on" neurons), and a third population which can mediate gamma activity through both N-type channels and cAMP/PK and P/Q-type channels and CaMKII (presumed "Wake/REM-on" neurons). These novel results suggest that PPN gamma oscillations are modulated by two independent pathways related to different Ca(2+) channel types. PMID:27354537

  2. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization

    PubMed Central

    Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.

    2014-01-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  3. Protein tyrosine kinase activity is essential for Fc gamma receptor-mediated intracellular killing of Staphylococcus aureus by human monocytes.

    PubMed Central

    Zheng, L; Nibbering, P H; Zomerdijk, T P; van Furth, R

    1994-01-01

    Our previous study revealed that the intracellular killing of Staphylococcus aureus by human monocytes after cross-linking Fc gamma receptor I (Fc gamma RI) or Fc gamma RII is a phospholipase C (PLC)-dependent process. The aim of the present study was to investigate whether protein tyrosine kinase (PTK) activity plays a role in the Fc gamma R-mediated intracellular killing of bacteria and activation of PLC in these cells. The results showed that phagocytosis of bacteria by monocytes was not affected by the PTK inhibitors genistein and tyrphostin-47. The intracellular killing of S. aureus by monocytes after cross-linking Fc gamma RII or Fc gamma RII with anti-Fc gamma R monoclonal antibody and a bridging antibody or with human immunoglobulin G (IgG) was inhibited by these compounds in a dose-dependent fashion. The production of O2- by monocytes after stimulation with IgG or IgG-opsonized S. aureus was almost completely blocked by the PTK inhibitor. These results indicate that inhibition of PTK impairs the oxygen-dependent bactericidal mechanisms of monocytes. Genistein and tyrphostin-47, which do not affect the enzymatic activity of purified PLC, prevented activation of PLC after cross-linking Fc gamma RI or Fc gamma RII, measured as an increase in the intracellular inositol 1,4,5-trisphosphate concentration. Cross-linking Fc gamma RI or Fc gamma RII induced rapid tyrosine phosphorylation of several proteins in monocytes, one of which was identified as PLC-gamma 1, and the phosphorylation could be completely blocked by PTK inhibitors, leading to the conclusion that activation of PLC after cross-linking Fc gamma R in monocytes is regulated by PTK activity. Together, these results demonstrate that PTK activity is essential for the activation of PLC which is involved in the Fc gamma R-mediated intracellular killing of S. aureus by human monocytes. Images PMID:7927687

  4. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes.

    PubMed

    Fernández-Arenas, Elena; Bleck, Christopher K E; Nombela, César; Gil, Concha; Griffiths, Gareth; Diez-Orejas, Rosalía

    2009-04-01

    The intracellular trafficking/survival strategies of the opportunistic human pathogen Candida albicans are poorly understood. Here we investigated the infection of RAW264.7 macrophages with a virulent wild-type (WT) filamentous C. albicans strain and a hyphal signalling-defective mutant (efg1Delta/cph1Delta). A comparative analysis of the acquisition by phagosomes of actin, and of early/late endocytic organelles markers of the different fungal strains was performed and related to Candida's survival inside macrophages. Our results show that both fungal strains have evolved a similar mechanism to subvert the 'lysosomal' system, as seen by the inhibition of the phagosome fusion with compartments enriched in the lysobisphosphatidic acid and the vATPase, and thereby the acquisition of a low pH from the outset of infection. Besides, the virulent WT strain displayed additional specific survival strategies to prevent its targeting to compartmentsdisplaying late endosomal/lysosomal features, such as induction of active recycling out of phagosomes of the lysosomal membrane protein LAMP-1, the lysosomal protease cathepsin D and preinternalized colloidal gold. Finally, both virulent and efg1Delta/cph1Delta mutant fungal strains actively suppressed the production of macrophage nitric oxide (NO), although their cell wall extracts were potent inducers of NO. PMID:19134116

  5. α-Galactosidase-A Loaded-Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration.

    PubMed

    Cabrera, Ingrid; Abasolo, Ibane; Corchero, José L; Elizondo, Elisa; Gil, Pilar Rivera; Moreno, Evelyn; Faraudo, Jordi; Sala, Santi; Bueno, Dolores; González-Mira, Elisabet; Rivas, Merche; Melgarejo, Marta; Pulido, Daniel; Albericio, Fernando; Royo, Miriam; Villaverde, Antonio; García-Parajo, Maria F; Schwartz, Simó; Ventosa, Nora; Veciana, Jaume

    2016-04-01

    Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules, such as lipids, glycoproteins, and mucopolysaccharides. For instance, the lack of α-galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology. Enzyme replacement therapy, which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme. In this work, the unprecedented increased enzymatic activity and intracellular penetration achieved by the association of a human recombinant GLA to nanoliposomes functionalized with Arginine-Glycine-Aspartic acid (RGD) peptides is reported. Moreover, these new GLA loaded nanoliposomes lead to a higher efficacy in the reduction of the GLA substrate named globotriasylceramide in a cellular model of Fabry disease, than that achieved by the same concentration of the free enzyme. The preparation of these new liposomal formulations by DELOS-SUSP, based on the depressurization of a CO2 -expanded liquid organic solution, shows the great potential of this CO2 -based methodology for the one-step production of protein-nanoliposome conjugates as bioactive nanomaterials with therapeutic interest. PMID:26890358

  6. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking.

    PubMed

    Klinger, Stine C; Glerup, Simon; Raarup, Merete K; Mari, Muriel C; Nyegaard, Mette; Koster, Gerbrand; Prabakaran, Thaneas; Nilsson, Stefan K; Kjaergaard, Maj M; Bakke, Oddmund; Nykjær, Anders; Olivecrona, Gunilla; Petersen, Claus Munck; Nielsen, Morten S

    2011-04-01

    Many different tissues and cell types exhibit regulated secretion of lipoprotein lipase (LPL). However, the sorting of LPL in the trans Golgi network has not, hitherto, been understood in detail. Here, we characterize the role of SorLA (officially known as SorLA-1 or sortilin-related receptor) in the intracellular trafficking of LPL. We found that LPL bound to SorLA under neutral and acidic conditions, and in cells this binding mainly occurred in vesicular structures. SorLA expression changed the subcellular distribution of LPL so it became more concentrated in endosomes. From the endosomes, LPL was further routed to the lysosomes, which resulted in a degradation of newly synthesized LPL. Consequently, an 80% reduction of LPL activity was observed in cells that expressed SorLA. By analogy, SorLA regulated the vesicle-like localization of LPL in primary neuronal cells. Thus, LPL binds to SorLA in the biosynthetic pathway and is subsequently transported to endosomes. As a result of this SorLA mediated-transport, newly synthesized LPL can be routed into specialized vesicles and eventually sent to degradation, and its activity thereby regulated. PMID:21385844

  7. Influence of cucumariosides upon intracellular [Ca2+]i and lysosomal activity of macrophages.

    PubMed

    Agafonova, Irina G; Aminin, Dmitry L; Avilov, Sergey A; Stonik, Valentin A

    2003-11-19

    Biological effects of the triterpene glycosides, cucumariosides A(2)-2 and A(7)-1 from the edible sea cucumber Cucumaria japonica and their aglycones were investigated using embryos of the sea urchin Strongylocentrotus nudus and the BALB/C line mouse peritoneal macrophages. Cucumariosides were highly cytotoxic in a sea urchin embryo development test with EC(50) values of 0.3 and 1.98 microg/mL, respectively. The aglycone was completely lacking in cytotoxicity. In subtoxic concentrations (0.001-0.1 microg/mL), cucumarioside A(2)-2 showed more then 2-fold stimulation of lysosomal activity and induced a rapid short-term increase in cytosolic Ca(2+) content in mouse macrophages. The maximal stimulatory effect was detected after 1-2 h of cultivation of cells with this glycoside. Cucumarioside A(7)-1 demonstrated more weak effects and even slightly inhibited lysosomal activity, while the aglycone was completely ineffective. At the toxic concentration (1 microg/mL), cucumarioside A(2)-2 induced the sharp irreversable increase of intracellular Ca(2+) concentration. We suggested that cucumariosides, especially A(2)-2, may act as Ca(2+) agonists due to their membranolytic properties. PMID:14611158

  8. Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: a computational study.

    PubMed

    Ganguli, Piyali; Chowdhury, Saikat; Bhowmick, Rupa; Sarkar, Ram Rup

    2015-10-01

    Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell's functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical equations and simulated using the published time series microarray expression data as inputs. After validating the model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted, which shows significant variations among the proteins expression and the signalling routes through which the response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to study the changes in protein expression patterns and helps to predict variations in the cellular behaviour. PMID:26564978

  9. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways

    PubMed Central

    Lezhnina, Ksenia; Kovalchuk, Olga; Zhavoronkov, Alexander A.; Korzinkin, Mikhail B.; Zabolotneva, Anastasia A.; Shegay, Peter V.; Sokov, Dmitry G.; Gaifullin, Nurshat M.; Rusakov, Igor G.; Aliper, Alexander M.; Roumiantsev, Sergey A.; Alekseev, Boris Y.; Borisov, Nikolay M.; Buzdin, Anton A.

    2014-01-01

    We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression in 17 cancer and seven non-cancerous bladder tissue samples. These experiments were done in two independent laboratories located in Russia and Canada. We calculated pathway activation strength values for the investigated transcriptomes and identified signaling pathways that were regulated differently in bladder cancer (BC) tissues compared with normal controls. We found, for both experimental datasets, 44 signaling pathways that serve as excellent new biomarkers of BC, supported by high area under the curve (AUC) values. We conclude that the OncoFinder approach is highly efficient in finding new biomarkers for cancer. These markers are mathematical functions involving multiple gene products, which distinguishes them from “traditional” expression biomarkers that only assess concentrations of single genes. PMID:25296972

  10. Esterase Activity and Intracellular Localization in Reconstructed Human Epidermal Cultured Skin Models

    PubMed Central

    Katayanagi, Mishina; Hashimoto, Fumie

    2015-01-01

    Background Reconstructed human epidermal culture skin models have been developed for cosmetic and pharmaceutical research. Objective This study evaluated the total and carboxyl esterase activities (i.e., Km and Vmax, respectively) and localization in two reconstructed human epidermal culture skin models (LabCyte EPI-MODEL [Japan Tissue Engineering] and EpiDerm [MatTek/Kurabo]). The usefulness of the reconstruction cultured epidermis was also verified by comparison with human and rat epidermis. Methods Homogenized epidermal samples were fractioned by centrifugation. p-nitrophenyl acetate and 4-methylumbelliferyl acetate were used as substrates of total esterase and carboxyl esterase, respectively. Results Total and carboxyl esterase activities were present in the reconstructed human epidermal culture skin models and were localized in the cytosol. Moreover, the activities and localization were the same as those in human and rat epidermis. Conclusion LabCyte EPI-MODEL and EpiDerm are potentially useful for esterase activity prediction in human epidermis. PMID:26082583

  11. Leishmania major MPK7 Protein Kinase Activity Inhibits Intracellular Growth of the Pathogenic Amastigote Stage ▿

    PubMed Central

    Morales, Miguel A.; Pescher, Pascale; Späth, Gerald F.

    2010-01-01

    During the infectious cycle, protozoan parasites of the genus Leishmania undergo several adaptive differentiation steps that are induced by environmental factors and crucial for parasite infectivity. Genetic analyses of signaling proteins underlying Leishmania stage differentiation are often rendered difficult due to lethal null mutant phenotypes. Here we used a transgenic strategy to gain insight into the functions of the mitogen-activated Leishmania major protein kinases LmaMPK7 and LmaMPK10 in parasite virulence. We established L. major and Leishmania donovani lines expressing episomal green fluorescent protein (GFP)-LmaMPK7 and GFP-LmaMPK10 fusion proteins. The transgenic lines were normal in promastigote morphology, growth, and the ability to differentiate into metacyclic and amastigote stages. While parasites expressing GFP-LmaMPK10 showed normal infectivity by mouse footpad analysis and macrophage infection assays, GFP-LmaMPK7 transgenic parasites displayed a strong delay in lesion formation and reduced intracellular parasite growth. Significantly, the effects of GFP-LmaMPK7 on virulence and proliferation were due exclusively to protein kinase activity, as the overexpression of two kinase-dead mutants had no effect on parasite infectivity. GFP-LmaMPK7 transgenic L. donovani cells revealed a reversible, stage-specific growth defect in axenic amastigotes that was independent of cell death but linked to nonsynchronous growth arrest and a significant reduction of de novo protein biosynthesis. Our data suggest that LmaMPK7 protein kinase activity may be implicated in parasite growth control and thus relevant for the development of nonproliferating stages during the infectious cycle. PMID:19801421

  12. Nuclease Activity of Legionella pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells

    PubMed Central

    Gunderson, Felizza F.; Mallama, Celeste A.; Fairbairn, Stephanie G.

    2014-01-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts. PMID:25547789

  13. Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets

    PubMed Central

    Rocheleau, Jonathan V.; Walker, Glenn M.; Head, W. Steven; McGuinness, Owen P.; Piston, David W.

    2004-01-01

    The pancreatic islet is a functional microorgan involved in maintaining normoglycemia through regulated secretion of insulin and other hormones. Extracellular glucose stimulates insulin secretion from islet β cells through an increase in redox state, which can be measured by NAD(P)H autofluorescence. Glucose concentrations over ≈7 mM generate synchronous oscillations in β cell intracellular Ca2+ concentration ([Ca2+]i), which lead to pulsatile insulin secretion. Prevailing models assume that the pancreatic islet acts as a functional syncytium, and the whole islet [Ca2+]i response has been modeled in terms of islet bursting and pacemaker models. To test these models, we developed a microfluidic device capable of partially stimulating an islet, while allowing observation of the NAD(P)H and [Ca2+]i responses. We show that β cell [Ca2+]i oscillations occur only within regions stimulated with more than ≈6.6 mM glucose. Furthermore, we show that tolbutamide, an antagonist of the ATP-sensitive K+ channel, allows these oscillations to travel farther into the nonstimulated regions of the islet. Our approach shows that the extent of Ca2+ propagation across the islet depends on a delicate interaction between the degree of coupling and the extent of ATP-sensitive K+-channel activation and illustrates an experimental paradigm that will have utility for many other biological systems. PMID:15317941

  14. Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin.

    PubMed

    Yoncheva, Krassimira; Kamenova, Katya; Perperieva, Teodora; Hadjimitova, Vera; Donchev, Petar; Kaloyanov, Kaloyan; Konstantinov, Spiro; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar

    2015-07-25

    The aim of the present study was to develop curcumin loaded cationic polymeric micelles and to evaluate their loading, preservation of curcumin antioxidant activity and intracellular uptake ability. The micelles were prepared from a triblock copolymer consisting of poly(ϵ-caprolactone) and very short poly(2-(dimethylamino) ethyl methacrylate) segments (PDMAEMA9-PCL70-PDMAEMA9). The micelles showed monomodal size distribution, mean diameter of 145 nm, positive charge (+72 mV), critical micellar concentration around 0.05 g/l and encapsulation efficiency of 87%. The ability of the micellar curcumin to scavenge the ABTS radical and hypochlorite ions was higher than that of the free curcumin. Confocal microscopy revealed that the uptake of curcumin by chronic myeloid leukemia derived K-562 cells and human multiple myeloma cells U-266 was more intensive when curcumin was loaded into the micelles. These results correlated with the higher cytotoxicity of the micellar curcumin compared to free curcumin. Intraperitoneal treatment of Wistar rats indicated that PDMAEMA-PCL-PDMAEMA copolymer, comprising very short cationic chains, did not change the levels of malondialdehyde and glutathione in livers indicating an absence of oxidative stress. Thus, PDMAEMA-PCL-PDMAEMA triblock micelles could be considered efficient and safe platform for curcumin delivery. PMID:26026253

  15. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity.

    PubMed

    Pešić, Milica; Podolski-Renić, Ana; Stojković, Sonja; Matović, Branko; Zmejkoski, Danica; Kojić, Vesna; Bogdanović, Gordana; Pavićević, Aleksandra; Mojović, Miloš; Savić, Aleksandar; Milenković, Ivana; Kalauzi, Aleksandar; Radotić, Ksenija

    2015-05-01

    Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 μM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine. PMID

  16. The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis

    PubMed Central

    Park, Narae; Yamanaka, Kinrin; Tran, Dat; Chandrangsu, Pete; Akers, Johnny C.; de Leon, Jessica C.; Morrissette, Naomi S.; Selsted, Michael E.; Tan, Ming

    2009-01-01

    Objectives In the course of studies to identify novel treatment strategies against the pathogenic bacterium, Chlamydia, we tested the carrier peptide, Pep-1, for activity against an intracellular infection. Methods Using a cell culture model of Chlamydia trachomatis infection, the effect of Pep-1 was measured by incubating the peptide with extracellular chlamydiae prior to infection, or by adding Pep-1 to the medium at varying times after infection, and assaying for inhibition of inclusion formation. Results Pep-1 had a concentration-dependent effect on chlamydial growth with 100% inhibition of inclusion formation at 8 mg/L peptide. There was a window of susceptibility during the chlamydial developmental cycle with a maximal effect when treatment was begun within 12 h of infection. Pep-1 treatment caused a severe reduction in the production of infectious progeny even when started later, when the effect on inclusion formation was minimal. Furthermore, electron micrographs showed a paucity of progeny elementary bodies (EBs) in the inclusion. In contrast, pre-incubation of EBs with Pep-1 prior to infection did not affect inclusion formation. Taken together, these findings indicate that the antichlamydial effect was specific for the intracellular stage of chlamydial infection. By comparison, Pep-1 had no antimicrobial activity against Escherichia coli and Staphylococcus aureus or the obligate intracellular parasite, Toxoplasma gondii. Conclusions Pep-1 has antichlamydial activity by preventing intracellular chlamydial growth and replication but has no effect on extracellular chlamydiae. PMID:18957395

  17. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  18. Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation

    PubMed Central

    Paciello, Ida; Silipo, Alba; Lembo-Fazio, Luigi; Curcurù, Laura; Zumsteg, Anna; Noël, Gaëlle; Ciancarella, Valeria; Sturiale, Luisa; Molinaro, Antonio; Bernardini, Maria Lina

    2013-01-01

    LPS is a potent bacterial effector triggering the activation of the innate immune system following binding with the complex CD14, myeloid differentiation protein 2, and Toll-like receptor 4. The LPS of the enteropathogen Shigella flexneri is a hexa-acylated isoform possessing an optimal inflammatory activity. Symptoms of shigellosis are produced by severe inflammation caused by the invasion process of Shigella in colonic and rectal mucosa. Here we addressed the question of the role played by the Shigella LPS in eliciting a dysregulated inflammatory response of the host. We unveil that (i) Shigella is able to modify the LPS composition, e.g., the lipid A and core domains, during proliferation within epithelial cells; (ii) the LPS of intracellular bacteria (iLPS) and that of bacteria grown in laboratory medium differ in the number of acyl chains in lipid A, with iLPS being the hypoacylated; (iii) the immunopotential of iLPS is dramatically lower than that of bacteria grown in laboratory medium; (iv) both LPS forms mainly signal through the Toll-like receptor 4/myeloid differentiation primary response gene 88 pathway; (v) iLPS down-regulates the inflammasome-mediated release of IL-1β in Shigella-infected macrophages; and (vi) iLPS exhibits a reduced capacity to prime polymorfonuclear cells for an oxidative burst. We propose a working model whereby the two forms of LPS might govern different steps of the invasive process of Shigella. In the first phases, the bacteria, decorated with hypoacylated LPS, are able to lower the immune system surveillance, whereas, in the late phases, shigellae harboring immunopotent LPS are fully recognized by the immune system, which can then successfully resolve the infection. PMID:24167293

  19. Activation of Na-H exchange by intracellular lithium in barnacle muscle fibers.

    PubMed

    Davis, B A; Hogan, E M; Boron, W F

    1992-07-01

    We internally dialyzed single barnacle muscle fibers (BMF) for 90 min with a dialysis fluid (DF) containing no Na+ and either 0 or 100 mM Li+ and measured intracellular pH (pHi) with a microelectrode. During dialysis, the pH 8.0 artificial seawater (ASW) contained neither Na+ nor HCO3-. After we halted dialysis with a Li(+)-free/low-pH DF and allowed pHi to stabilize at approximately 6.8, adding 440 mM Na(+)-10 mM HCO3- to the ASW caused pHi to recover rapidly and stabilize at 7.32. In contrast, when the DF contained 100 mM Li+, pHi stabilized at 7.49. In fibers dialyzed to a pHi of approximately 7.2, Li+ stimulated a component of acid extrusion that was dependent on Na+ but not affected by SITS. Thus Li+ activates a Na(+)-dependent acid-extrusion mechanism other than the well characterized Na(+)-dependent Cl-HCO3 exchanger. To study the Li(+)-activated mechanism, we minimized Na(+)-dependent Cl-HCO3 exchange by raising pHDF to 7.35 and pretreated BMFs with SITS. We found that dialysis with Li+ elicits a Na(+)-dependent pHi increase that is largely blocked by amiloride, consistent with the hypothesis that Li+ activates a latent Na-H exchanger even at a normal pHi. In the absence of Li+, the Na-H exchanger is relatively inactive at pHi 7.35 (net acid-extrusion rate, Jnet = 9.5 microM/min) but modestly stimulated by reducing pHi to 6.8 (Jnet = 64 microM/min). In the presence of Li+, the Na-H exchanger is very active at pHi values of both 7.35 (Jnet = 141 microM/min) and 6.8 (Jnet = 168 microM/min). Thus Li+ alters the pHi sensitivity of the Na-H exchanger. Because the Na-H exchanger is only approximately 6% as active as the Na(+)-dependent Cl-HCO3 exchanger in the absence of Li+ at a pHi of approximately 6.8, we suggest that the major role of the Na-H exchanger may not be in pHi regulation but in another function such as cell-volume regulation. PMID:1322042

  20. Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity.

    PubMed

    Luo, Zhong; Hu, Yan; Cai, Kaiyong; Ding, Xingwei; Zhang, Quan; Li, Menghuan; Ma, Xing; Zhang, Beilu; Zeng, Yongfei; Li, Peizhou; Li, Jinghua; Liu, Junjie; Zhao, Yanli

    2014-09-01

    In this study, a type of intracellular redox-triggered hollow mesoporous silica nanoreservoirs (HMSNs) with tumor specificity was developed in order to deliver anticancer drug (i.e., doxorubicin (DOX)) to the target tumor cells with high therapeutic efficiency and reduced side effects. Firstly, adamantanamine was grafted onto the orifices of HMSNs using a redox-cleavable disulfide bond as an intermediate linker. Subsequently, a synthetic functional molecule, lactobionic acid-grafted-β-cyclodextrin (β-CD-LA), was immobilized on the surface of HMSNs through specific complexation with the adamantyl group, where β-CD served as an end-capper to keep the loaded drug within HMSNs. β-CD-LA on HMSNs could also act as a targeting agent towards tumor cells (i.e., HepG2 cells), since the lactose group in β-CD-LA is a specific ligand binding with the asialoglycoprotein receptor (ASGP-R) on HepG2 cells. In vitro studies demonstrated that DOX-loaded nanoreservoirs could be selectively endocytosed by HepG2 cells, releasing therapeutic DOX into cytoplasm and efficiently inducing the apoptosis and cell death. In vivo investigations further confirmed that DOX-loaded nanoreservoirs could permeate into the tumor sites and actively interact with tumor cells, which inhibited the tumor growth with the minimized side effect. On the whole, this drug delivery system exhibits a great potential as an efficient carrier for targeted tumor therapy in vitro and in vivo. PMID:24930850

  1. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling.

    PubMed

    Stephen, Terri-Leigh; Higgs, Nathalie F; Sheehan, David F; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I Lorena; Kittler, Josef T

    2015-12-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function. PMID:26631479

  2. Intracellular staining and detection of cytokines by fluorescence-activated flow cytometry.

    PubMed

    Freer, Giulia

    2014-01-01

    The detection of cytokines inside cells producing them has made a tremendous impact on the way immune reactivity is measured. Intracellular cytokine staining is the only immunological technique allowing determination of antigen-specific T cell function and phenotype at the same time; for this reason, it is one of the most popular methods to measure antigenicity in the evaluation of vaccine efficacy and in the study of infectious diseases. It is a flow cytometric technique based on staining of intracellular cytokines and cell markers (surface or cytoplasmic) with fluorescent antibodies after short term culture of stimulated immune cells in the presence of a protein secretion inhibitor, followed by fixation and permeabilization. Most experiments involve detection of five to ten different colors but many more can be detected by modern flow cytometers. Here, we discuss our experience using a standard protocol for intracellular cytokine staining. PMID:24908309

  3. Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89.

    PubMed

    Faletto, M B; Miller, W H; Garvey, E P; St Clair, M H; Daluge, S M; Good, S S

    1997-05-01

    The anabolism of 1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, a selective inhibitor of human immunodeficiency virus (HIV), was characterized in human T-lymphoblastoid CD4+ CEM cells. 1592U89 was ultimately anabolized to the triphosphate (TP) of the guanine analog (-)-carbovir (CBV), a potent inhibitor of HIV reverse transcriptase. However, less than 2% of intracellular 1592U89 was converted to CBV, an amount insufficient to account for the CBV-TP levels observed. 1592U89 was anabolized to its 5'-monophosphate (MP) by the recently characterized enzyme adenosine phosphotransferase, but neither its diphosphate (DP) nor its TP was detected. The MP, DP, and TP of CBV were found in cells incubated with either 1592U89 or CBV, with CBV-TP being the major phosphorylated species. We confirmed that CBV is phosphorylated by 5'-nucleotidase and that mycophenolic acid increased the formation of CBV-TP from CBV 75-fold. However, mycophenolic acid did not stimulate 1592U89 anabolism to CBV-TP. The adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) did not inhibit CBV-TP formation from CBV or 1592U89, whereas the adenylate deaminase inhibitor 2'-deoxycoformycin selectively inhibited 1592U89 anabolism to CBV-TP and reversed the antiviral activity of 1592U89. 1592U89-MP was not a substrate for adenylate deaminase but was a substrate for a distinct cytosolic deaminase that was inhibited by 2'-deoxycoformycin-5'-MP. Thus, 1592U89 is phosphorylated by adenosine phosphotransferase to 1592U89-MP, which is converted by a novel cytosolic enzyme to CBV-MP. CBV-MP is then further phosphorylated to CBV-TP by cellular kinases. This unique activation pathway enables 1592U89 to overcome the pharmacokinetic and toxicological deficiencies of CBV while maintaining potent and selective anti-HIV activity. PMID:9145876

  4. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  5. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module

    PubMed Central

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R.; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Do Heo, Won; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named ‘exosomes for protein loading via optically reversible protein–protein interactions' (EXPLORs). By integrating a reversible protein–protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  6. Efficient Intracellular Delivery of Molecules with High Cell Viability Using Nanosecond-Pulsed Laser-Activated Carbon Nanoparticles

    PubMed Central

    2015-01-01

    Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946

  7. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp.

    PubMed

    Acharyya, Saurabh; Sarkar, Prodipta; Saha, Dhira R; Patra, Amarendra; Ramamurthy, T; Bag, Prasanta K

    2015-08-01

    Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24  h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20  h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp. PMID:26272388

  8. Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells.

    PubMed

    Huang, R F; Huang, S M; Lin, B S; Wei, J S; Liu, T Z

    2001-05-11

    The cytotoxicity of homocysteine derivatives on chromosomal damage in somatic cells is not well established. The present study used reactive homocysteine derivative of homocysteine thiolactone (Hcy) to investigate its causal effect on apoptotic DNA injury in human promyeloid HL-60 cells. Our results demonstrated that Hcy induced cell death and features of apoptosis including increased phosphotidylserine exposure on the membrane surface, increased apoptotic cells with hypoploid DNA contents, and internucleosomal DNA fragmentation, all of which occurred in a time- and concentration-dependent manner. Hcy treatment also significantly increased intracellular reactive oxygen species H2O2, which coincided with the elimination of caspase 3 proenzyme levels and increased caspase 3 activity at the time of the appearance of apoptotic DNA fragmentation. Preincubation of Hcy-treated HL-60 cells with catalase completely scavenged intracellular H2O2, thus inhibiting caspase 3 activity and protecting cells from apoptotic DNA damage. In contrast, superoxide dismutase failed to inhibit Hcy-induced DNA damage. Taken together, these results demonstrate that Hcy exerted its genotoxic effects on HL-60 cells through an apoptotic pathway, which is mediated by the activation of caspase 3 activity induced by an increase in intracellular hydrogen peroxide. PMID:11432446

  9. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  10. Sandia Cognitive Runtime Engine with Active Memory

    Energy Science and Technology Software Center (ESTSC)

    2005-12-01

    The SCREAM (Sandia Cognitive Runtime Engine with Active memory) software implements a subset of a Cognitive Famework developed at Sandia National Laboratories. The software is implemented in the Umbra simulation and modular software framework, which is C++-based. SCREAM components include a Concept Instance Driver, Semantic Activation Network, Concept Database, Context Recognizer, Context Database, Episodic Memory, Egocentric Spatial Memory, Allocentric Spatial Memory, Comparator, and a Context to Abstract Action converter. At initialization, modules load the datamore » files that together specify all the components of a particular cognitive model, such as concept declarations, context declarations, spreading activation weights, and context/situation-cue-patterns.« less

  11. Sandia Cognitive Runtime Engine with Active Memory

    SciTech Connect

    Xavier, Patrick; Chen, Michael C.; Hart, Brian; Hart, Derek; Lippitt, Carl; Wolfenbarger, Paul; Waymire, Russel

    2005-12-01

    The SCREAM (Sandia Cognitive Runtime Engine with Active memory) software implements a subset of a Cognitive Famework developed at Sandia National Laboratories. The software is implemented in the Umbra simulation and modular software framework, which is C++-based. SCREAM components include a Concept Instance Driver, Semantic Activation Network, Concept Database, Context Recognizer, Context Database, Episodic Memory, Egocentric Spatial Memory, Allocentric Spatial Memory, Comparator, and a Context to Abstract Action converter. At initialization, modules load the data files that together specify all the components of a particular cognitive model, such as concept declarations, context declarations, spreading activation weights, and context/situation-cue-patterns.

  12. Calcium-dependent regulation of Rab activation and vesicle fusion by an intracellular P2X ion channel.

    PubMed

    Parkinson, Katie; Baines, Abigail E; Keller, Thomas; Gruenheit, Nicole; Bragg, Laricia; North, R Alan; Thompson, Christopher R L

    2014-01-01

    Rab GTPases play key roles in the delivery, docking and fusion of intracellular vesicles. However, the mechanism by which spatial and temporal regulation of Rab GTPase activity is controlled is poorly understood. Here we describe a mechanism by which localized calcium release through a vesicular ion channel controls Rab GTPase activity. We show that activation of P2XA, an intracellular ion channel localized to the Dictyostelium discoideum contractile vacuole system, results in calcium efflux required for downregulation of Rab11a activity and efficient vacuole fusion. Vacuole fusion and Rab11a downregulation require the activity of CnrF, an EF-hand-containing Rab GAP found in a complex with Rab11a and P2XA. CnrF Rab GAP activity for Rab11a is enhanced by the presence of calcium and the EF-hand domain. These findings suggest that P2XA activation results in vacuolar calcium release, which triggers activation of CnrF Rab GAP activity and subsequent downregulation of Rab11a to allow vacuole fusion. PMID:24335649

  13. Effect of prolonged depolarizations on twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres.

    PubMed Central

    Brill, D M; Fozzard, H A; Makielski, J C; Wasserstrom, J A

    1987-01-01

    1. Twitch tension and intracellular Na+ activity (aiNa) were measured in voltage-clamped sheep cardiac Purkinje fibres. aiNa was measured using Na+-sensitive micro-electrodes filled with the liquid ion exchange resin. ETH 227. The stimulus for contraction was a constant 200 ms depolarizing pulse to 0 mV from a holding potential of -80 mV delivered at 0.25 Hz. Prolonged test pulses for 1.8 s (post-pulses) were applied at the end of the stimulus pulse. The effects of post-pulses on twitch tension and aiNa were examined. 2. Post-pulses in the range of -40 mV reduced twitch tension below control force produced without post-pulse. Progressively more positive post-pulses to levels above 0 mV profoundly increased twitch tension, with a greater than 400% rise in tension at +50 to +60 mV compared to control tension. aiNa declined at positive post-pulse potentials by more than 2 mM at +30 to +40 mV. 3. Tetrodotoxin (100 microM) did not affect the post-pulse voltage-tension or voltage-aiNa relation. Ca2+ channel modulation with nitrendipine (1 microM) similarly did not alter the post-pulse voltage-tension relation. 4. Removal of extracellular Na+ eliminated the nadir in tension at post-pulses to -40 mV and the augmentation of tension at post-pulses above 0 mV. 5. We interpret these findings as evidence of voltage-sensitive Na-Ca exchange promoting net Ca2+ influx and net Na+ efflux during positive post-pulses. The unusual shape of the post-pulse voltage-tension relation curve can be accounted for by a charged-carrier model of electrogenic Na-Ca exchange. The inverse relation between aiNa and twitch tension probably reflects the combined effects of reduced aiNa leak and changes in Na+ and Ca2+ flux via voltage-sensitive Na-Ca exchange. PMID:2443661

  14. The intracellular calcium increase at fertilization in Urechis caupo oocytes: activation without waves.

    PubMed

    Stephano, J L; Gould, M C

    1997-11-01

    The intracellular Ca2+ (Cai) increase at fertilization of the marine worm Urechis caupo (Echiura) was studied with conventional and confocal epifluorescence microscopy in oocytes microinjected with calcium green dextran or dually labeled with the calcium-insensitive dye tetramethylrhodamine dextran. Calcium green fluorescence was also measured with a photomultiplier system while the oocyte membrane potential was recorded and manipulated. The results show that Cai rises simultaneously around the oocyte cortex and peaks slightly later in the nucleoplasm. The Cai rise coincides with the initiation of the fertilization potential and we conclude that it is due primarily to external Ca2+ entering through the voltage-gated Ca2+ action potential channels that open during the fertilization potential because: (1) current clamping the oocyte membrane potential to positive values in the absence of sperm produces a similar Cai increase, (2) external Ca2+ is required, (3) and the confocal images are consistent with this mechanism. External application of sperm acrosomal peptide (P23) also caused a Cai increase that was inhibited in the presence of CoCl2. Cai and pHi (measured with BCECF dextran) were manipulated in experiments employing microinjection of BAPTA (to chelate Cai), external application of NH4Cl (to increase pHi) and CoCl2 (to block Ca2+ channels), and fertilization of eggs in pH 7 seawater (Cai increase without pHi increase). The results showed that increases in both Cai and pHi are required for GVBD; neither alone is sufficient. However, although nuclear and cytoplasmic Ca2+ levels tended to parallel each other in oocytes fertilized at pH 7, and during the initial Cai response in oocytes fertilized at pH 8, there was a disproportionate fluorescence increase in the nucleoplasm of the latter prior to GVBD which could not be explained by any artifact we tested, suggesting there may be a selective increase in nuclear Ca2+ associated with GVBD. Finally

  15. Activation of caspase-dependent apoptosis by intracellular delivery of cytochrome c-based nanoparticles

    PubMed Central

    2014-01-01

    Background Cytochrome c is an essential mediator of apoptosis when it is released from the mitochondria to the cytoplasm. This process normally takes place in response to DNA damage, but in many cancer cells (i.e., cancer stem cells) it is disabled due to various mechanisms. However, it has been demonstrated that the targeted delivery of Cytochrome c directly to the cytoplasm of cancer cells selective initiates apoptosis in many cancer cells. In this work we designed a novel nano-sized smart Cytochrome c drug delivery system to induce apoptosis in cancer cells upon delivery. Results Cytochrome c was precipitated with a solvent-displacement method to obtain protein nanoparticles. The size of the Cytochrome c nanoparticles obtained was 100-300 nm in diameter depending on the conditions used, indicating good potential to passively target tumors by the Enhanced Permeability and Retention effect. The surface of Cytochrome c nanoparticles was decorated with poly (lactic-co-glycolic) acid-SH via the linker succinimidyl 3-(2-pyridyldithio) propionate to prevent premature dissolution during delivery. The linker connecting the polymer to the protein nanoparticle contained a disulfide bond thus allowing polymer shedding and subsequent Cytochrome c release under intracellular reducing conditions. A cell-free caspase-3 assay revealed more than 80% of relative caspase activation by Cytochrome c after nanoprecipitation and polymer modification when compared to native Cytochrome c. Incubation of HeLa cells with the Cytochrome c based-nanoparticles showed significant reduction in cell viability after 6 hours while native Cytochrome c showed none. Confocal microscopy confirmed the induction of apoptosis in HeLa cells when they were stained with 4’,6-diamidino-2-phenylindole and propidium iodide after incubation with the Cytochrome c-based nanoparticles. Conclusions Our results demonstrate that the coating with a hydrophobic polymer stabilizes Cytochrome c nanoparticles allowing

  16. Intracellular sodium activity and its regulation in guinea-pig atrial myocardium.

    PubMed Central

    Wang, G X; Schmied, R; Ebner, F; Korth, M

    1993-01-01

    1. Intracellular Na+ activity (aNai) and membrane resting potential were studied in quiescent guinea-pig atrial and papillary muscles by means of Na(+)-sensitive and conventional microelectrodes. The effects of the cardioactive steroid dihydroouabain (DHO) on aiNa, force of contraction and sarcolemmal Na+, K(+)-ATPase activity were also investigated. 2. In thirty atria and twenty-two papillary muscles, aNai amounted to 8.0 +/- 0.2 and 4.7 +/- 0.3 mM, respectively (mean +/- S.E.M.). When both tissues were from the same animal, with the same ion-sensitive microelectrode mean aNai values of 7.9 +/- 0.2 and 5.1 +/- 0.5 mM (P < 0.01) were obtained from eight atrial and eight papillary muscles, respectively. 3. Membrane resting potentials (Em) were significantly (P < 0.001) more negative in the papillary muscles (-83.5 +/- 0.7 mV; n = 8) than in the atrium (-78.1 +/- 0.5 mV; n = 8). Deviation of Em from EK (determined by K(+)-sensitive microelectrodes) was 3.0 +/- 0.2 mV in ventricular (P < 0.05) and 6.1 +/- 0.3 mV in atrial preparations (P < 0.05). 4. Inhibition of the Na+ pump by DHO increased aNai of the atrium within 10 min by 0.6 +/- 0.1 (n = 7), 1.3 +/- 0.1 (n = 5) and 3.2 +/- 0.2 mM (n = 5) at 5, 10 and 30 microM, respectively. In the papillary muscle, 10 microM DHO was without effect while aNai rose by 1.0 +/- 0.1 (n = 5) and 2.9 +/- 0.2 mM (n = 6) at 30 and 120 microM DHO. 5. Consistent with the aNai measurements, the potency of DHO to increase force of the isometric contraction was three times higher in atrium than in papillary muscle (stimulation frequency 0.2 Hz). 6. Hydrolytic activity of sarcolemmal Na+,K(+)-ATPase isolated from atria amounted to only one third of that detected in ventricles (0.07 +/- 0.01, n = 6, versus 0.2 +/- 0.01 mumol phosphate released min-1 (g tissue)-1, n = 5). The inhibitory potencies of DHO on sarcolemmal Na+,K(+)-ATPase preparations were found to be identical in the enzymes from either tissue. 7. It is concluded that a lower Na

  17. Plasma-activated medium-induced intracellular zinc liberation causes death of SH-SY5Y cells.

    PubMed

    Hara, Hirokazu; Taniguchi, Miko; Kobayashi, Mari; Kamiya, Tetsuro; Adachi, Tetsuo

    2015-10-15

    Plasma is an ionized gas consisting of ions, electrons, free radicals, neutral particles, and photons. Plasma-activated medium (PAM), which is prepared by the irradiation of cell-free medium with non-thermal atmospheric pressure plasma, induces cell death in various types of cancer cell. Since PAM contains reactive oxygen species (ROS), its anti-cancer effects are thought to be attributable to oxidative stress. Meanwhile, oxidative stress has been shown to induce the liberation of zinc (Zn(2+)) from intracellular Zn(2+) stores and to provoke Zn(2+)-dependent cell death. In this study, we thus examined whether Zn(2+) is involved in PAM-induced cell death using human neuroblastoma SH-SY5Y cells. Exposure to PAM triggered cell death in SH-SY5Y cells. The cell-permeable Zn(2+) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) protected against PAM-induced cell death. Zn(2+) imaging using the fluorescent Zn(2+) probe FluoZin-3 revealed that PAM elicited a rise of intracellular free Zn(2+). In addition, PAM stimulated PARP-1 activation, mitochondrial ROS generation, and the depletion of intracellular NAD(+) and ATP. These findings suggest that PAM-induced PARP-1 activation causes energy supply exhaustion. Moreover, TPEN suppressed all of these events elicited by PAM. Taken together, we demonstrated here that Zn(2+) released from intracellular Zn(2+) stores serves as a key mediator of PAM-induced cell death in SH-SY5Y cells. PMID:26319292

  18. Prostaglandin E2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages.

    PubMed

    Sokolowska, Milena; Chen, Li-Yuan; Liu, Yueqin; Martinez-Anton, Asuncion; Qi, Hai-Yan; Logun, Carolea; Alsaaty, Sara; Park, Yong Hwan; Kastner, Daniel L; Chae, Jae Jin; Shelhamer, James H

    2015-06-01

    PGE2 is a potent lipid mediator involved in maintaining homeostasis but also promotion of acute inflammation or immune suppression in chronic inflammation and cancer. Nucleotide-binding domain, leucine-rich repeat-containing protein (NLR)P3 inflammasome plays an important role in host defense. Uncontrolled activation of the NLRP3 inflammasome, owing to mutations in the NLRP3 gene, causes cryopyrin-associated periodic syndromes. In this study, we showed that NLRP3 inflammasome activation is inhibited by PGE2 in human primary monocyte-derived macrophages. This effect was mediated through PGE2 receptor subtype 4 (EP4) and an increase in intracellular cAMP, independently of protein kinase A or exchange protein directly activated by cAMP. A specific agonist of EP4 mimicked, whereas its antagonist or EP4 knockdown reversed, PGE2-mediated NLRP3 inhibition. PGE2 caused an increase in intracellular cAMP. Blockade of adenylate cyclase by its inhibitor reversed PGE2-mediated NLRP3 inhibition. Increase of intracellular cAMP by an activator of adenylate cyclase or an analog of cAMP, or a blockade of cAMP degradation by phosphodiesterase inhibitor decreased NLRP3 activation. Protein kinase A or exchange protein directly activated by cAMP agonists did not mimic, and their antagonists did not reverse, PGE2-mediated NLRP3 inhibition. Additionally, constitutive IL-1β secretion from LPS-primed PBMCs of cryopyrin-associated periodic fever syndromes patients was substantially reduced by high doses of PGE2. Moreover, blocking cytosolic phospholipase A2α by its inhibitor or small interfering RNA or inhibiting cyclooxygenase 2, resulting in inhibition of endogenous PGE2 production, caused an increase in NLRP3 inflammasome activation. Our results suggest that PGE2 might play a role in maintaining homeostasis during the resolution phase of inflammation and might serve as an autocrine and paracrine regulator. PMID:25917098

  19. Effects of chronic sleep deprivation on autonomic activity by examining heart rate variability, plasma catecholamine, and intracellular magnesium levels.

    PubMed

    Takase, Bonpei; Akima, Takashi; Satomura, Kimio; Ohsuzu, Fumitaka; Mastui, Takemi; Ishihara, Masayuki; Kurita, Akira

    2004-10-01

    Chronic sleep deprivation is associated with cardiovascular events. In addition, autonomic activity determined from the levels of the heart rate variability (HRV), plasma catecholamine, and intracellular magnesium (Mg) are important in the pathophysiology of cardiovascular events. This study therefore aimed to determine the effects of chronic sleep deprivation on autonomic activity by examining the HRV, plasma catecholamine, and intracellular magnesium levels. Thirty (30) healthy male college students ranging in age from 20 to 24 years of age (average 22 +/- 1 years; mean +/- SD) with no coronary risk factors such as hypertension, diabetes mellitus, hyperlipidemia or a family history of premature coronary artery disease (CAD) were included in the study. Over a 4-week period, the volunteers' plasma levels of epinephrine, norepinephrine, and erythrocyte-Mg were measured. The study was made during the 4 weeks before and immediately after college finals exams. HRV, obtained from 24-hour ambulatory ECG monitoring, included time and frequency domain indices. The HRV indices and erythrocyte-Mg decreased while norepinephrine increased during chronic sleep deprivation. It is concluded that chronic sleep deprivation causes an autonomic imbalance and decreases intracellular Mg, which could be associated with chronic sleep deprivation-induced cardiovascular events. PMID:15754837

  20. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: The case of the polyhydroxyalkanoates

    PubMed Central

    Martínez, Virginia; Herencias, Cristina; Jurkevitch, Edouard; Prieto, M. Auxiliadora

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered were polyhydroxyalkanoates (PHAs) produced naturally by Pseudomonas putida and Cupriavidus necator, or by recombinant Escherichia coli strains. B. bacteriovorus with a mutated PHA depolymerase gene to prevent the unwanted breakdown of the bio-product allowed the recovery of up to 80% of that accumulated by the prey bacteria, even at high biomass concentrations. This innovative downstream process highlights how B. bacteriovorus can be used as a novel, biological lytic agent for the inexpensive, industrial scale recovery of intracellular products from different Gram-negative prey cultures. PMID:27087466

  1. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: The case of the polyhydroxyalkanoates.

    PubMed

    Martínez, Virginia; Herencias, Cristina; Jurkevitch, Edouard; Prieto, M Auxiliadora

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered were polyhydroxyalkanoates (PHAs) produced naturally by Pseudomonas putida and Cupriavidus necator, or by recombinant Escherichia coli strains. B. bacteriovorus with a mutated PHA depolymerase gene to prevent the unwanted breakdown of the bio-product allowed the recovery of up to 80% of that accumulated by the prey bacteria, even at high biomass concentrations. This innovative downstream process highlights how B. bacteriovorus can be used as a novel, biological lytic agent for the inexpensive, industrial scale recovery of intracellular products from different Gram-negative prey cultures. PMID:27087466

  2. Proteomes of Host Cell Membranes Modified by Intracellular Activities of Salmonella enterica*

    PubMed Central

    Vorwerk, Stephanie; Krieger, Viktoria; Deiwick, Jörg; Hensel, Michael; Hansmeier, Nicole

    2015-01-01

    Intracellular pathogens need to establish a growth-stimulating host niche for survival and replication. A unique feature of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium is the creation of extensive membrane networks within its host. An understanding of the origin and function of these membranes is crucial for the development of new treatment strategies. However, the characterization of this compartment is very challenging, and only fragmentary knowledge of its composition and biogenesis exists. Here, we describe a new proteome-based approach to enrich and characterize Salmonella-modified membranes. Using a Salmonella mutant strain that does not form this unique membrane network as a reference, we identified a high-confidence set of host proteins associated with Salmonella-modified membranes. This comprehensive analysis allowed us to reconstruct the interactions of Salmonella with host membranes. For example, we noted that Salmonella redirects endoplasmic reticulum (ER) membrane trafficking to its intracellular niche, a finding that has not been described for Salmonella previously. Our system-wide approach therefore has the potential to rapidly close gaps in our knowledge of the infection process of intracellular pathogens and demonstrates a hitherto unrecognized complexity in the formation of Salmonella host niches. PMID:25348832

  3. Functionally Active T1-T1 Interfaces Revealed by the Accessibility of Intracellular Thiolate Groups in Kv4 Channels

    PubMed Central

    Wang, Guangyu; Shahidullah, Mohammad; Rocha, Carmen A.; Strang, Candace; Pfaffinger, Paul J.; Covarrubias, Manuel

    2005-01-01

    Gating of voltage-dependent K+ channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn2+ coordination. Also, added Zn2+ or a potent Zn2+ chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is ∼200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact α-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1–T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn2+ binding. PMID:15955876

  4. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    PubMed Central

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD) occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40%) were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs) against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4) expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival. PMID:27381289

  5. pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes.

    PubMed

    Marquis, H; Hager, E J

    2000-01-01

    Listeria monocytogenes grows in the cytosol of mammalian cells and spreads from cell to cell without exiting the intracellular milieu. During cell-cell spread, bacteria become transiently entrapped in double-membrane vacuoles. Escape from these vacuoles is mediated in part by a bacterial phospholipase C (PC-PLC), whose activation requires cleavage of an N-terminal peptide. PC-PLC activation occurs in the acidified vacuolar environment. In this study, the pH-dependent mechanism of PC-PLC activation was investigated by manipulating the intracellular pH of the host. PC-PLC secreted into infected cells was immunoprecipitated, and both forms of the protein were identified by SDS-PAGE fluorography. PC-PLC activation occurred at pH 7.0 and lower, but not at pH 7.3. Total amounts of PC-PLC secreted into infected cells increased several-fold over controls within 5 min of a decrease in intracellular pH, and the active form of PC-PLC was the most abundant species detected. Bacterial release of active PC-PLC was dependent on Mpl, a bacterial metalloprotease that processes the proform (proPC-PLC), and did not require de novo protein synthesis. The amount of proPC-PLC released in response to a decrease in pH was the same in wild-type and Mpl-minus-infected cells. Immunofluorescence detection of PC-PLC in infected cells was performed. When fixed and permeabilized infected cells were treated with a bacterial cell wall hydrolase, over 97% of wild-type and Mpl-minus bacteria stained positively for PC-PLC, in contrast to less than 5% in untreated cells. These results indicate that intracellular bacteria carry pools of proPC-PLC. Upon cell-cell spread, a decrease in vacuolar pH triggers Mpl activation of proPC-PLC, resulting in bacterial release of active PC-PLC. PMID:10652090

  6. Inflammatory muscle pain is dependent on the activation of kinin B1 and B2 receptors and intracellular kinase pathways

    PubMed Central

    Meotti, FC; Campos, R; da Silva, KABS; Paszcuk, AF; Costa, R; Calixto, JB

    2012-01-01

    BACKGROUND AND PURPOSE B1 and B2 kinin receptors are involved in pain transmission but they may have different roles in the muscle pain induced by intense exercise or inflammation. We investigated the contribution of each of these receptors, and the intracellular pathways involved, in the initial development and maintenance of the muscle pain associated with inflammation-induced tissue damage. EXPERIMENTAL APPROACH Mechanical hyperalgesia was measured using the Randall–Selitto apparatus after injecting 5% formalin solution into the gastrocnemius muscle in mice treated with selective antagonists for B1 or B2 receptors. The expression of kinin receptors and cytokines and the activation of intracellular kinases were monitored by real-time PCR and immunohistochemistry. KEY RESULTS The i.m. injection of formalin induced an overexpression of B1 and B2 receptors. This overexpression was associated with the mechanical hyperalgesia induced by formalin because treatment with B1 receptor antagonists (des-Arg9[Leu8]-BK, DALBK, and SSR240612) or B2 receptor antagonists (HOE 140 and FR173657) prevented the hyperalgesia. Formalin increased myeloperoxidase activity, and up-regulated TNF-α, IL-1β and IL-6 in gastrocnemius. Myeloperoxidase activity and TNF-α mRNA expression were inhibited by either DALBK or HOE 140, whereas IL-6 was inhibited only by HOE 140. The hyperalgesia induced by i.m. formalin was dependent on the activation of intracellular MAPKs p38, JNK and PKC. CONCLUSIONS AND IMPLICATIONS Inflammatory muscle pain involves a cascade of events that is dependent on the activation of PKC, p38 and JNK, and the synthesis of IL-1β, TNF-α and IL-6 associated with the up-regulation of both B1 and B2 kinin receptors. PMID:22220695

  7. Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation.

    PubMed

    Chai, Lujing; Zhou, Jin; Feng, Hui; Tang, Cong; Huang, Yuanyuan; Qian, Zhaosheng

    2015-10-28

    Sensitive assay of tyrosinase (TYR) activity is in urgent demand for both fundamental research and practical application, but the exploration of functional materials with good biocompatibility for its activity evaluation at the intracellular level is still challenging until now. In this work, we develop a convenient and real-time assay with high sensitivity for TYR activity/level monitoring and its inhibitor screening based on biocompatible dopamine functionalized carbon quantum dots (Dopa-CQDs). Dopamine with redox property was functionalized on the surface of carbon quantum dots to construct a Dopa-CQDs conjugate with strong bluish green fluorescence. When the dopamine moiety in Dopa-CQDs conjugate was oxidized to a dopaquinone derivative under specific catalysis of TYR, an intraparticle photoinduced electron transfer (PET) process between CQDs and dopaquinone moiety took place, and then the fluorescence of the conjugate could be quenched simultaneously. Quantitative evaluation of TYR activity was established in terms of the relationship between fluorescence quenching efficiency and TYR activity. The assay covered a broad linear range of up to 800 U/L with a low detection limit of 7.0 U/L. Arbutin, a typical inhibitor of TYR, was chosen as an example to assess its function of inhibitor screening, and positive results were observed that fluorescence quenching extent of the probe was reduced in the presence of arbutin. It is also demonstrated that Dopa-CQD conjugate possesses excellent biocompatibility, and can sensitively monitor intracellular tyrosinase level in melanoma cells and intracellular pH changes in living cells, which provides great potential in application of TYR/pH-associated disease monitoring and medical diagnostics. PMID:26440479

  8. Effects of intracellular K+ and Rb+ on gating of embryonic rat telencephalon Ca(2+)-activated K+ channels.

    PubMed

    Mienville, J M; Clay, J R

    1996-02-01

    We have investigated the effects of intracellular K+ and Rb+ on single-channel currents recorded from the large-conductance Ca(2+)-activated K+ (BK) channel of the embryonic rat telencephalon using the inside-out patch-clamp technique. Our novel observation concerns the effects of these ions on rapid flickering of channel openings. Specifically, flicker gating was voltage dependent, i.e., it was reduced by depolarization in the -60 to -10 mV range with equimolar concentrations of K+ ions (150 Ko+/150 Ki+). Removal of Ki+ resulted in significant flickering at all potentials in this voltage range. In other words, the voltage dependence of flicker gating was effectively eliminated by the removal of Ki+. This suggests that a K+ ion entering the channel from the intracellular medium binds, in a voltage-dependent manner, at a site that locks the flicker gate in its open position. No effects of changes in Ki+ were observed on the primary, voltage-dependent gate of the channel. The change in flickering did not cause a change in the mean burst duration, which indicates that the primary gate is stochastically independent of the flicker gate. Intracellular Rb+ can substitute for--and is even more effective than--Ki+ with regard to suppression of flickering. Substitution of Rbi+ for Ki+ also increased the mean burst duration for V > or = -30 mV. Both effects of Rbi+ were removed by membrane hyperpolarization. PMID:8789094

  9. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  10. Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1.

    PubMed

    Wassermann, Ruth; Gulen, Muhammet F; Sala, Claudia; Perin, Sonia Garcia; Lou, Ye; Rybniker, Jan; Schmid-Burgk, Jonathan L; Schmidt, Tobias; Hornung, Veit; Cole, Stewart T; Ablasser, Andrea

    2015-06-10

    Cytosolic detection of microbial products is essential for the initiation of an innate immune response against intracellular pathogens such as Mycobacterium tuberculosis (Mtb). During Mtb infection of macrophages, activation of cytosolic surveillance pathways is dependent on the mycobacterial ESX-1 secretion system and leads to type I interferon (IFN) and interleukin-1β (IL-1β) production. Whereas the inflammasome regulates IL-1β secretion, the receptor(s) responsible for the activation of type I IFNs has remained elusive. We demonstrate that the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) is essential for initiating an IFN response to Mtb infection. cGAS associates with Mtb DNA in the cytosol to stimulate cyclic GAMP (cGAMP) synthesis. Notably, activation of cGAS-dependent cytosolic host responses can be uncoupled from inflammasome activation by modulating the secretion of ESX-1 substrates. Our findings identify cGAS as an innate sensor of Mtb and provide insight into how ESX-1 controls the activation of specific intracellular recognition pathways. PMID:26048138

  11. An In Vivo Selection Identifies Listeria monocytogenes Genes Required to Sense the Intracellular Environment and Activate Virulence Factor Expression.

    PubMed

    Reniere, Michelle L; Whiteley, Aaron T; Portnoy, Daniel A

    2016-07-01

    Listeria monocytogenes is an environmental saprophyte and facultative intracellular bacterial pathogen with a well-defined life-cycle that involves escape from a phagosome, rapid cytosolic growth, and ActA-dependent cell-to-cell spread, all of which are dependent on the master transcriptional regulator PrfA. The environmental cues that lead to temporal and spatial control of L. monocytogenes virulence gene expression are poorly understood. In this study, we took advantage of the robust up-regulation of ActA that occurs intracellularly and expressed Cre recombinase from the actA promoter and 5' untranslated region in a strain in which loxP sites flanked essential genes, so that activation of actA led to bacterial death. Upon screening for transposon mutants that survived intracellularly, six genes were identified as necessary for ActA expression. Strikingly, most of the genes, including gshF, spxA1, yjbH, and ohrA, are predicted to play important roles in bacterial redox regulation. The mutants identified in the genetic selection fell into three broad categories: (1) those that failed to reach the cytosolic compartment; (2) mutants that entered the cytosol, but failed to activate the master virulence regulator PrfA; and (3) mutants that entered the cytosol and activated transcription of actA, but failed to synthesize it. The identification of mutants defective in vacuolar escape suggests that up-regulation of ActA occurs in the host cytosol and not the vacuole. Moreover, these results provide evidence for two non-redundant cytosolic cues; the first results in allosteric activation of PrfA via increased glutathione levels and transcriptional activation of actA while the second results in translational activation of actA and requires yjbH. Although the precise host cues have not yet been identified, we suggest that intracellular redox stress occurs as a consequence of both host and pathogen remodeling their metabolism upon infection. PMID:27414028

  12. An In Vivo Selection Identifies Listeria monocytogenes Genes Required to Sense the Intracellular Environment and Activate Virulence Factor Expression

    PubMed Central

    Portnoy, Daniel A.

    2016-01-01

    Listeria monocytogenes is an environmental saprophyte and facultative intracellular bacterial pathogen with a well-defined life-cycle that involves escape from a phagosome, rapid cytosolic growth, and ActA-dependent cell-to-cell spread, all of which are dependent on the master transcriptional regulator PrfA. The environmental cues that lead to temporal and spatial control of L. monocytogenes virulence gene expression are poorly understood. In this study, we took advantage of the robust up-regulation of ActA that occurs intracellularly and expressed Cre recombinase from the actA promoter and 5’ untranslated region in a strain in which loxP sites flanked essential genes, so that activation of actA led to bacterial death. Upon screening for transposon mutants that survived intracellularly, six genes were identified as necessary for ActA expression. Strikingly, most of the genes, including gshF, spxA1, yjbH, and ohrA, are predicted to play important roles in bacterial redox regulation. The mutants identified in the genetic selection fell into three broad categories: (1) those that failed to reach the cytosolic compartment; (2) mutants that entered the cytosol, but failed to activate the master virulence regulator PrfA; and (3) mutants that entered the cytosol and activated transcription of actA, but failed to synthesize it. The identification of mutants defective in vacuolar escape suggests that up-regulation of ActA occurs in the host cytosol and not the vacuole. Moreover, these results provide evidence for two non-redundant cytosolic cues; the first results in allosteric activation of PrfA via increased glutathione levels and transcriptional activation of actA while the second results in translational activation of actA and requires yjbH. Although the precise host cues have not yet been identified, we suggest that intracellular redox stress occurs as a consequence of both host and pathogen remodeling their metabolism upon infection. PMID:27414028

  13. A highly calcium-selective cation current activated by intracellular calcium release in MDCK cells.

    PubMed

    Delles, C; Haller, T; Dietl, P

    1995-08-01

    1. The whole-cell patch clamp technique and fluorescence microscopy with the Ca2+ indicators fura-2 and fluo-3 were used to measure the whole-cell current and the free intracellular Ca2+ concentration ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells. 2. In a Ca(2+)-free bath solution, thapsigargin (TG) caused a transient increase of [Ca2+]i. Subsequent addition of Ca2+ caused a long lasting elevation of [Ca2+]i. 3. In a Ca(2+)-free bath solution, extracellular application of TG, ATP or ionomycin, or intracellular application of inositol 1,4,5-trisphosphate (IP3), caused a small but significant inward current (Iin) and a transient outward Ca(2+)-dependent K+ current (IK(Ca)), consistent with intracellular Ca2+ release. Subsequent addition of Ca2+ induced a prominent Iin with a current density of -4.2 +/- 0.7 pA pF-1. This Iin was unaffected by inositol 1,3,4,5-tetrakisphosphate (IP4). 4. Na+ replacement by mannitol, N-methyl-D-glucamine+ (NMG+), aminomethylidin-trimethanol+ (Tris+) or choline+ reduced Iin by 54, 65, 52 and 56%, respectively. This indicates an apparent Ca2+ selectivity over Na+ of 26:1. Iin was, however, unaffected by replacing Cl- with gluconate- or by the K+ channel blocker charybdotoxin (CTX). 5. Iin was completely blocked by La3+ (IC50 = 0.77 microM). Consistently, La3+ completely reversed the TG-induced elevation of [Ca2+]i. SK&F 96365 (1-[3-(4-methoxyphenyl)-propoxyl]-1-(4-methoxy-phenyl)-ethyl-1H-im idazole) HCl did not inhibit the TG-induced Iin. It did, however, exhibit a biphasic effect on [Ca2+]i, consisting of an initial Ca2+ decay and a subsequent Ca2+ elevation. La3+ completely reversed the SK&F 96365-induced elevation of [Ca2+]i. 6. In the absence of Na+, Iin was dependent on the bath Ca2+ concentration (EC50 = 1.02 mM). Ca2+ replacement by Ba2+ or Mn2+ resulted in a reduction of Iin by 95 and 94%, respectively. 7. From these experiments we conclude that Ca2+ release from intracellular Ca2+ stores, induced by different independent

  14. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  15. Magneto-optical cellular chip model for intracellular orientational-dynamic-activity detection

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Iwasaka, M.; Kurita, S.; Owada, N.

    2012-04-01

    In the present study, a magneto-optical cellular chip model (MoCCM) was developed to detect intracellular dynamics in macromolecules by using magneto-optical effects. For the purpose of cell-measurement under strong static magnetic fields of up to 10 T, we constructed a cellular chip model, which was a thin glass plate with a well for a cell culture. A cell line of osteoblast MC3T3-E1 was incubated in the glass well, and the well, 0.3 mm in depth, was sealed by a cover glass when the MoCCM was set in a fiber optic system. An initial intensity change of the polarized light transmission, which dispersed perpendicular to the cell's attaching surface, was collected for 10 to 60 min, and then magnetic fields were applied parallel and perpendicular to the surface and light direction, respectively. The magnetic birefringence signals that originated from the magnetic orientation of intracellular molecules such as cytoskeletons apparently appeared when the magnetic fields were constant at 10 T. A statistical analysis with 15 experiments confirmed that the cellular components under 10 T magnetic fields caused a stronger alignment, which was transferred into polarizing light intensity that increased more than the case before exposure. Cellular conditions such as generation and cell density affected the magnetic birefringence signals.

  16. Intracellular Zn2+ accumulation enhances suppression of synaptic activity following spreading depolarization.

    PubMed

    Carter, Russell E; Seidel, Jessica L; Lindquist, Britta E; Sheline, Christian T; Shuttleworth, C William

    2013-06-01

    Spreading depolarization (SD) is a feed-forward wave that propagates slowly throughout brain tissue and recovery from SD involves substantial metabolic demand. Presynaptic Zn(2+) release and intracellular accumulation occurs with SD, and elevated intracellular Zn(2+) ([Zn(2+) ]i ) can impair cellular metabolism through multiple pathways. We tested here whether increased [Zn(2+) ]i could exacerbate the metabolic challenge of SD, induced by KCl, and delay recovery in acute murine hippocampal slices. [Zn(2+) ]i loading prior to SD, by transient ZnCl2 application with the Zn(2+) ionophore pyrithione (Zn/Pyr), delayed recovery of field excitatory post-synaptic potentials (fEPSPs) in a concentration-dependent manner, prolonged DC shifts, and significantly increased extracellular adenosine accumulation. These effects could be due to metabolic inhibition, occurring downstream of pyruvate utilization. Prolonged [Zn(2+) ]i accumulation prior to SD was required for effects on fEPSP recovery and consistent with this, endogenous synaptic Zn(2+) release during SD propagation did not delay recovery from SD. The effects of exogenous [Zn(2+) ]i loading were also lost in slices preconditioned with repetitive SDs, implying a rapid adaptation. Together, these results suggest that [Zn(2+) ]i loading prior to SD can provide significant additional challenge to brain tissue, and could contribute to deleterious effects of [Zn(2+) ]i accumulation in a range of brain injury models. PMID:23495967

  17. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  18. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs.

    PubMed

    Qiu, Yuan; Rojas, Elena; Murray, Richard A; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E

    2015-04-21

    Cerium Oxide nanoparticles (CeO(2-x) NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO(2-x) NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO(2-x) NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO(2-x) NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO(2-x) NPs. The brush coating does not prevent CeO(2-x) NPs from displaying antioxidant properties. PMID:25789459

  19. Intracellular Antioxidant Activity of Grape Skin Polyphenolic Extracts in Rat Superficial Colonocytes: In situ Detection by Confocal Fluorescence Microscopy

    PubMed Central

    Giordano, M. Elena; Ingrosso, Ilaria; Schettino, Trifone; Caricato, Roberto; Giovinazzo, Giovanna; Lionetto, M. Giulia

    2016-01-01

    Colon is exposed to a number of prooxidant conditions and several colon diseases are associated with increased levels of reactive species. Polyphenols are the most abundant antioxidants in the diet, but to date no information is available about their absorption and potential intracellular antioxidant activity on colon epithelial cells. The work was addressed to study the intracellular antioxidant activity of red grape polyphenolic extracts on rat colon epithelium experimentally exposed to prooxidant conditions. The experimental model chosen was represented by freshly isolated colon explants, which closely resemble the functional, and morphological characteristics of the epithelium in vivo. The study was carried out by in situ confocal microscopy observation on CM-H2DCFDA charged explants exposed to H2O2 (5, 10, and 15 min). The qualitative and quantitative polyphenolic composition of the extracts as well as their in vitro oxygen radical absorbing capacity (ORAC) was determined. The incubation of the explants with the polyphenolic extracts for 1 h produced a significant decrease of the H2O2 induced fluorescence. This effect was more pronounced following 15 min H2O2 exposure with respect to 5 min and it was also more evident for extracts obtained from mature grapes, which showed an increased ORAC value and qualitative peculiarities in the polyphenolic composition. The results demonstrated the ability of red grape polyphenols to cross the plasma membrane and exert a direct intracellular antioxidant activity in surface colonocytes, inducing a protection against pro-oxidant conditions. The changes in the polyphenol composition due to ripening process was reflected in a more effective antioxidant protection. PMID:27303304

  20. Intracellular Antioxidant Activity of Grape Skin Polyphenolic Extracts in Rat Superficial Colonocytes: In situ Detection by Confocal Fluorescence Microscopy.

    PubMed

    Giordano, M Elena; Ingrosso, Ilaria; Schettino, Trifone; Caricato, Roberto; Giovinazzo, Giovanna; Lionetto, M Giulia

    2016-01-01

    Colon is exposed to a number of prooxidant conditions and several colon diseases are associated with increased levels of reactive species. Polyphenols are the most abundant antioxidants in the diet, but to date no information is available about their absorption and potential intracellular antioxidant activity on colon epithelial cells. The work was addressed to study the intracellular antioxidant activity of red grape polyphenolic extracts on rat colon epithelium experimentally exposed to prooxidant conditions. The experimental model chosen was represented by freshly isolated colon explants, which closely resemble the functional, and morphological characteristics of the epithelium in vivo. The study was carried out by in situ confocal microscopy observation on CM-H2DCFDA charged explants exposed to H2O2 (5, 10, and 15 min). The qualitative and quantitative polyphenolic composition of the extracts as well as their in vitro oxygen radical absorbing capacity (ORAC) was determined. The incubation of the explants with the polyphenolic extracts for 1 h produced a significant decrease of the H2O2 induced fluorescence. This effect was more pronounced following 15 min H2O2 exposure with respect to 5 min and it was also more evident for extracts obtained from mature grapes, which showed an increased ORAC value and qualitative peculiarities in the polyphenolic composition. The results demonstrated the ability of red grape polyphenols to cross the plasma membrane and exert a direct intracellular antioxidant activity in surface colonocytes, inducing a protection against pro-oxidant conditions. The changes in the polyphenol composition due to ripening process was reflected in a more effective antioxidant protection. PMID:27303304

  1. Spatial and Temporal Regulation of Receptor Tyrosine Kinase Activation and Intracellular Signal Transduction.

    PubMed

    Bergeron, John J M; Di Guglielmo, Gianni M; Dahan, Sophie; Dominguez, Michel; Posner, Barry I

    2016-06-01

    Epidermal growth factor (EGF) and insulin receptor tyrosine kinases (RTKs) exemplify how receptor location is coupled to signal transduction. Extracellular binding of ligands to these RTKs triggers their concentration into vesicles that bud off from the cell surface to generate intracellular signaling endosomes. On the exposed cytosolic surface of these endosomes, RTK autophosphorylation selects the downstream signaling proteins and lipids to effect growth factor and polypeptide hormone action. This selection is followed by the recruitment of protein tyrosine phosphatases that inactivate the RTKs and deliver them by membrane fusion and fission to late endosomes. Coincidentally, proteinases inside the endosome cleave the EGF and insulin ligands. Subsequent inward budding of the endosomal membrane generates multivesicular endosomes. Fusion with lysosomes then results in RTK degradation and downregulation. Through the spatial positioning of RTKs in target cells for EGF and insulin action, the temporal extent of signaling, attenuation, and downregulation is regulated. PMID:27023845

  2. A novel exon in the human Ca2+-activated Cl- channel Ano1 imparts greater sensitivity to intracellular Ca2.

    PubMed

    Strege, Peter R; Bernard, Cheryl E; Mazzone, Amelia; Linden, David R; Beyder, Arthur; Gibbons, Simon J; Farrugia, Gianrico

    2015-11-01

    Anoctamin 1 (Ano1; TMEM16A) is a Ca(2+)-activated Cl(-) channel (CACC) expressed in interstitial cells of Cajal. The mechanisms by which Ca(2+) regulates Ano1 are incompletely understood. In the gastrointestinal tract, Ano1 is required for normal slow wave activity and is involved in regulating cell proliferation. Splice variants of Ano1 have varying electrophysiological properties and altered expression in disease states. Recently, we identified a transcript for human Ano1 containing a novel exon-"exon 0" upstream of and in frame with exon 1. The electrophysiological properties of this longer Ano1 isoform are unknown. Our aim was to determine the functional contribution of the newly identified exon to the Ca(2+) sensitivity and electrophysiological properties of Ano1. Constructs with [Ano1(+0)] or without [Ano1(-0)] the newly identified exon were transfected into human embryonic kidney-293 cells. Voltage-clamp electrophysiology was used to determine voltage- and time-dependent parameters of whole cell Cl(-) currents between isoforms with varying concentrations of intracellular Ca(2+), extracellular anions, or Cl(-) channel inhibitors. We found that exon 0 did not change voltage sensitivity and had no impact on the relative permeability of Ano1 to most anions. Ano1(+0) exhibited greater changes in current density but lesser changes in kinetics than Ano1(-0) in response to varying intracellular Ca(2+). The CACC inhibitor niflumic acid inhibited current with greater efficacy and higher potency against Ano1(+0) compared with Ano1(-0). Likewise, the Ano1 inhibitor T16Ainh-A01 reduced Ano1(+0) more than Ano1(-0). In conclusion, human Ano1 containing exon 0 imparts its Cl(-) current with greater sensitivity to intracellular Ca(2+) and CACC inhibitors. PMID:26359375

  3. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: An intracellular study

    PubMed Central

    Timofeev, Igor; Grenier, François; Steriade, Mircea

    2001-01-01

    Earlier extracellular recordings during natural sleep have shown that, during slow-wave sleep (SWS), neocortical neurons display long-lasting periods of silence, whereas they are tonically active and discharge at higher rates during waking and sleep with rapid eye movements (REMs). We analyzed the nature of long-lasting periods of neuronal silence in SWS and the changes in firing rates related to ocular movements during REM sleep and waking using intracellular recordings from electrophysiologically identified neocortical neurons in nonanesthetized and nonparalyzed cats. We found that the silent periods during SWS are associated with neuronal hyperpolarizations, which are due to a mixture of K+ currents and disfacilitation processes. Conventional fast-spiking neurons (presumably local inhibitory interneurons) increased their firing rates during REMs and eye movements in waking. During REMs, the firing rates of regular-spiking neurons from associative areas decreased and intracellular traces revealed numerous, short-lasting, low-amplitude inhibitory postsynaptic potentials (IPSPs), that were reversed after intracellular chloride infusion. In awake cats, regular-spiking neurons could either increase or decrease their firing rates during eye movements. The short-lasting IPSPs associated with eye movements were still present in waking; they preceded the spikes and affected their timing. We propose that there are two different forms of firing rate control: disfacilitation induces long-lasting periods of silence that occur spontaneously during SWS, whereas active inhibition, consisting of low-amplitude, short-lasting IPSPs, is prevalent during REMs and precisely controls the timing of action potentials in waking. PMID:11172052

  4. Active IR-applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.

    2002-06-01

    Applications of IR-thermography in civil engineering are not limited to the identification of heat losses in building envelopes. As it is well known from other areas of non-destructive testing, active IR-thermographic methods such as cooling down or lock-in thermography improves the results in many investigations. In civil engineering these techniques have not been used widely. Mostly thermography is used in a quasi-static manner. The interpretation of moisture measurements with thermography on surfaces can be very difficult due to several overlapping effects: emissivity changes due to composition, heat transfer through wet sections of the specimen, cooling through air flow or reflected spurious radiation sources. These effects can be reduced by selectively measuring the reflection in two wavelength windows, one on an absorption band of water and another in a reference band and then combining the results in a moisture index image. Cooling down thermography can be used to identify subsurface structural deficiencies. For building materials like concrete these measurements are performed on a much longer time scale than in flash lamp experiments. A quantitative analysis of the full cooling down process over several minutes can reliably identify defects at different depths. Experiments at BAM have shown, that active thermography is capabale of identifying structural deficiencies or moist areas in building materials much more reliable than quasi-static thermography.

  5. Rationally Engineering Phototherapy Modules of Eosin-Conjugated Responsive Polymeric Nanocarriers via Intracellular Endocytic pH Gradients.

    PubMed

    Liu, Guhuan; Hu, Jinming; Zhang, Guoying; Liu, Shiyong

    2015-07-15

    Spatiotemporal switching of respective phototherapy modes at the cellular level with minimum side effects and high therapeutic efficacy is a major challenge for cancer phototherapy. Herein we demonstrate how to address this issue by employing photosensitizer-conjugated pH-responsive block copolymers in combination with intracellular endocytic pH gradients. At neutral pH corresponding to extracellular and cytosol milieu, the copolymers self-assemble into micelles with prominently quenched fluorescence emission and low (1)O2 generation capability, favoring a highly efficient photothermal module. Under mildly acidic pH associated with endolysosomes, protonation-triggered micelle-to-unimer transition results in recovered emission and enhanced photodynamic (1)O2 efficiency, which synergistically actuates release of encapsulated drugs, endosomal escape, and photochemical internalization processes. PMID:25514473

  6. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  7. Identification of a Lambda Toxin-Negative Clostridium perfringens Strain that Processes and Activates Epsilon Prototoxin Intracellularly

    PubMed Central

    Harkness, Justine M.; Li, Jihong; McClane, Bruce A.

    2012-01-01

    Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation. PMID:22982043

  8. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells.

    PubMed

    Zhang, Yu; Tang, Yin; Sun, Shuai; Wang, Zhihua; Wu, Wenjun; Zhao, Xiaodong; Czajkowsky, Daniel M; Li, Yan; Tian, Jianhui; Xu, Ling; Wei, Wei; Deng, Yuliang; Shi, Qihui

    2015-10-01

    The high glucose uptake and activation of oncogenic signaling pathways in cancer cells has long made these features, together with the mutational spectrum, prime diagnostic targets of circulating tumor cells (CTCs). Further, an ability to characterize these properties at a single cell resolution is widely believed to be essential, as the known extensive heterogeneity in CTCs can obscure important correlations in data obtained from cell population-based methods. However, to date, it has not been possible to quantitatively measure metabolic, proteomic, and genetic data from a single CTC. Here we report a microchip-based approach that allows for the codetection of glucose uptake, intracellular functional proteins, and genetic mutations at the single-cell level from rare tumor cells. The microchip contains thousands of nanoliter grooves (nanowells) that isolate individual CTCs and allow for the assessment of their glucose uptake via imaging of a fluorescent glucose analog, quantification of a panel of intracellular signaling proteins using a miniaturized antibody barcode microarray, and retrieval of the individual cell nuclei for subsequent off-chip genome amplification and sequencing. This approach integrates molecular-scale information on the metabolic, proteomic, and genetic status of single cells and permits the inference of associations between genetic signatures, energy consumption, and phosphoproteins oncogenic signaling activities in CTCs isolated from blood samples of patients. Importantly, this microchip chip-based approach achieves this multidimensional molecular analysis with minimal cell loss (<20%), which is the bottleneck of the rare cell analysis. PMID:26378744

  9. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary.

    PubMed Central

    Clancy, R M; Levartovsky, D; Leszczynska-Piziak, J; Yegudin, J; Abramson, S B

    1994-01-01

    We performed experiments to determine whether nitric oxide promoted the formation of intracellular S-nitrosothiol adducts in human neutrophils. At concentrations sufficient to inhibit chemoattractant-induced superoxide anion production, nitric oxide caused a depletion of measurable intracellular glutathione as determined by both the monobromobimane HPLC method and the glutathione reductase recycling assay. The depletion of glutathione could be shown to be due to the formation of intracellular S-nitrosoglutathione as indicated by the ability of sodium borohydride treatment of cytosol to result in the complete recovery of measurable glutathione. The formation of intracellular S-nitrosylated compounds was confirmed by the capacity of cytosol derived from nitric oxide-treated cells to ADP-ribosylate glyceraldehyde-3-phosphate dehydrogenase. Depletion of intracellular glutathione was accompanied by a rapid and concomitant activation of the hexose monophosphate shunt (HMPS) following exposure to nitric oxide. Kinetic studies demonstrated that nitric oxide-dependent activation of the HMPS was reversible and paralleled nitric oxide-induced glutathione depletion. Synthetic preparations of S-nitrosoglutathione shared with nitric oxide the capacity to inhibit superoxide anion production and activate the HMPS. These data suggest that nitric oxide may regulate cellular functions via the formation of intracellular S-nitrosothiol adducts and the activation of the HMPS. Images PMID:8170969

  10. Synthesis, Antimalarial Activity, and Intracellular Targets of MEFAS, a New Hybrid Compound Derived from Mefloquine and Artesunate▿

    PubMed Central

    de Pilla Varotti, Fernando; Botelho, Ana Cristina C.; Andrade, Anderson Assunção; de Paula, Renata C.; Fagundes, Elaine M. S.; Valverde, Alessandra; Mayer, Lúcia M. U.; Mendonça, Jorge Souza; de Souza, Marcus V. N.; Boechat, Núbia; Krettli, Antoniana Ursine

    2008-01-01

    A new synthetic antimalarial drug, a salt derived from two antimalarial molecules, mefloquine (MQ) and artesunate (AS), here named MEFAS, has been tested for its pharmacological activity. Combinations of AS plus MQ hydrochloride are currently being used in areas with drug-resistant Plasmodium falciparum parasites; although AS clears parasitemia in shorter time periods than any other antimalarial drug, it does not cure infected patients; in addition, MQ causes side effects and is rather expensive, important problems considering that malaria affects mostly populations in poor countries. Here, we show that MEFAS is more effective than the combination of AS and MQ, tested in parallel at different mass proportions, against P. falciparum (chloroquine-resistant clone W2 and chloroquine-sensitive clone 3D7) in vitro and in mice infected with Plasmodium berghei, promoting cure of this infection. MEFAS tested against HepG2 hepatoma cells exhibited lower toxicity than the antimalarials AS and MQ alone or combined. Possible targets of MEFAS have been studied by confocal microscopy using fluorescent probes (Fluo-4 AM and BCECF-AM) in P. falciparum synchronous culture of W2-infected red blood cells. Dynamic images show that MEFAS exhibited intracellular action increasing cytoplasmic Ca2+ at 1.0 ng/ml. This effect was also observed in the presence of tapsigargin, an inhibitor of SERCA, suggesting an intracellular target distinct from the endoplasmic reticulum. Trophozoites loaded with BCECF-AM, when treated with MEFAS, were still able to mobilize protons from the digestive vacuole (DV), altering the pH gradient. However, in the presence of bafilomycin A1, an inhibitor of the H+ pump from acidic compartments of eukaryotic cells, MEFAS had no action on the DV. In conclusion, the endoplasmic reticulum and DV are intracellular targets for MEFAS in Plasmodium sp., suggesting two modes of action of this new salt. Our data support MEFAS as a candidate for treating human malaria. PMID

  11. Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase

    PubMed Central

    López-Fraga, M.; Fernández, R.; Albar, J.P.; Hahne, M.

    2001-01-01

    Tumor necrosis factor (TNF) ligand family members are synthesized as transmembrane proteins, and cleavage of the membrane-anchored proteins from the cell surface is frequently observed. The TNF-related ligands APRIL and BLyS and their cognate receptors BCMA/TACI form a two ligand/two receptor system that has been shown to participate in B- and T-cell stimulation. In contrast to BLyS, which is known to be cleaved from the cell surface, we found that APRIL is processed intracellularly by furin convertase. Blockage of protein transport from the endoplasmic reticulum to the Golgi apparatus by Brefeldin A treatment abrogated APRIL processing, whereas monensin, an inhibitor of post-Golgi transport, did not interfere with cleavage of APRIL, but blocked secretion of processed APRIL. Thus, APRIL shows a unique maturation pathway among the TNF ligand family members, as it not detectable as a membrane-anchored protein at the cell surface, but is processed in the Golgi apparatus prior to its secretion. PMID:11571266

  12. The adaptor protein CIN85 assembles intracellular signaling clusters for B cell activation.

    PubMed

    Kühn, Julius; Wong, Leo E; Pirkuliyeva, Sona; Schulz, Kathrin; Schwiegk, Claudia; Fünfgeld, Kevser Gencalp; Keppler, Selina; Batista, Facundo D; Urlaub, Henning; Habeck, Michael; Becker, Stefan; Griesinger, Christian; Wienands, Jürgen

    2016-01-01

    The adaptor molecule Cbl-interacting protein of 85 kD (CIN85) regulates signaling from a number of cell surface receptors, such as growth factor receptors and antigen receptors on lymphocytes. Because of its multidomain structure, CIN85 is thought to act as a classical adaptor protein that connects functionally distinct components of a given signaling pathway through diverse protein domains. However, we found that in B lymphocytes, CIN85 functions to oligomerize SLP-65, which is the central effector protein of the B cell receptor (BCR). Therefore, CIN85 trimerizes through a carboxyl-terminal, coiled-coil domain. The multiple Src homology 3 (SH3) domains of trimeric CIN85 molecules associated with multiple SLP-65 molecules, which recruited further CIN85 trimers, thereby perpetuating the oligomerization process. Formation of this oligomeric signaling complex in resting B cells rendered the cells poised for the efficient initiation of intracellular signaling upon BCR stimulation. Our data suggest that the functionality of signaling cascades does not rely solely on the qualitative linkage of their various components but requires a critical number of effectors to become concentrated in signaling complexes. PMID:27353366

  13. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity

    PubMed Central

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A.; Motamedi-Shad, Neda; Irving, James A.; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J.; Miranda, Elena; Lomas, David A.

    2015-01-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin.—Ordóñez, A., Pérez, J., Tan, L., Dickens, J. A., Motamedi-Shad, N., Irving, J. A., Haq, I., Ekeowa, U., Marciniak, S. J., Miranda, E., Lomas, D. A. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity. PMID:25757566

  14. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration

    SciTech Connect

    He, Huawei; Yang, Taehong; Terman, Jonathan R.; Zhang, Xuewu

    2010-01-20

    Plexin cell surface receptors bind to semaphorin ligands and transduce signals for regulating neuronal axon guidance. The intracellular region of plexins is essential for signaling and contains a R-Ras/M-Ras GTPase activating protein (GAP) domain that is divided into two segments by a Rho GTPase-binding domain (RBD). The regulation mechanisms for plexin remain elusive, although it is known that activation requires both binding of semaphorin to the extracellular region and a Rho-family GTPase (Rac1 or Rnd1) to the RBD. Here we report the crystal structure of the plexin A3 intracellular region. The structure shows that the N- and C-terminal portions of the GAP homologous regions together form a GAP domain with an overall fold similar to other Ras GAPs. However, the plexin GAP domain adopts a closed conformation and cannot accommodate R-Ras/M-Ras in its substrate-binding site, providing a structural basis for the autoinhibited state of plexins. A comparison with the plexin B1 RBD/Rnd1 complex structure suggests that Rnd1 binding alone does not induce a conformational change in plexin, explaining the requirement of both semaphorin and a Rho GTPase for activation. The structure also identifies an N-terminal segment that is important for regulation. Both the N-terminal segment and the RBD make extensive interactions with the GAP domain, suggesting the presence of an allosteric network connecting these three domains that integrates semaphorin and Rho GTPase signals to activate the GAP. The importance of these interactions in plexin signaling is shown by both cell-based and in vivo axon guidance assays.

  15. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens.

    PubMed

    Passalacqua, Karla D; Charbonneau, Marie-Eve; Donato, Nicholas J; Showalter, Hollis D; Sun, Duxin; Wen, Bo; He, Miao; Sun, Hanshi; O'Riordan, Mary X D; Wobus, Christiane E

    2016-07-01

    Due to the rise of antibiotic resistance and the small number of effective antiviral drugs, new approaches for treating infectious diseases are urgently needed. Identifying targets for host-based therapies represents an emerging strategy for drug discovery. The ubiquitin-proteasome system is a central mode of signaling in the eukaryotic cell and may be a promising target for therapies that bolster the host's ability to control infection. Deubiquitinase (DUB) enzymes are key regulators of the host inflammatory response, and we previously demonstrated that a selective DUB inhibitor and its derivative promote anti-infective activities in host cells. To find compounds with anti-infective efficacy but improved toxicity profiles, we tested a library of predominantly 2-cyano-3-acrylamide small-molecule DUB inhibitors for anti-infective activity in macrophages against two intracellular pathogens: murine norovirus (MNV) and Listeria monocytogenes We identified compound C6, which inhibited DUB activity in human and murine cells and reduced intracellular replication of both pathogens with minimal toxicity in cell culture. Treatment with C6 did not significantly affect the ability of macrophages to internalize virus, suggesting that the anti-infective activity interferes with postentry stages of the MNV life cycle. Metabolic stability and pharmacokinetic assays showed that C6 has a half-life in mouse liver microsomes of ∼20 min and has a half-life of approximately 4 h in mice when administered intravenously. Our results provide a framework for targeting the host ubiquitin system in the development of host-based therapies for infectious disease. Compound C6 represents a promising tool with which to elucidate the role of DUBs in the macrophage response to infection. PMID:27139470

  16. Liquid and solid-state Cl- -sensitive microelectrodes. Characteristics and application to intracellular Cl- activity in Balanus photoreceptor

    PubMed Central

    1977-01-01

    When intracellular chloride activity (aiCl) was monitored with chloride- sensitive liquid ion exchanges (CLIX) microelectrodes in Balanus photoreceptors, replacement of extracellular chloride (Cl0) by methanesulfonate or glutamate was followed by a rapid but incomplete loss of aiCl. When propionate was used as the extracellular anion substitute, CLIX electrodes detected an apparent gain in aiCl, while a newly designed Ag-AgCl wire-in glass microelectrode showed a loss of aiCl under the same conditions. This discrepancy in Cl- washout when propionate replaced Cl0 is explained by the differences in selectivity of CLIX and Ag-AgCl electrodes for native intracellular anions and for the extracellular anion substitute which also replaces Cli and interferes in the determination of aiCl. Both electrodes indicate that ECl approximately Em when the cells are bathed in normal barnacle saline, and both electrodes showed the rate of Cl washout (tau approximately 5 min) to be independent of Cli when Cl0 was replaced by glutamate. Details of Ag-AgCl microelectrode construction are presented. These electrodes were tested and found to be insensitive to the organic anion substitutes used in this study. Selectivity data of CLIX electrodes for several anions of biological interest are described. PMID:21223

  17. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    PubMed Central

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  18. Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity.

    PubMed

    Patil, Yogita; Amitay, Yasmine; Ohana, Patricia; Shmeeda, Hilary; Gabizon, Alberto

    2016-03-10

    Mitomycin C (MMC) is a powerful anti-bacterial, anti-fungal and anti-tumor antibiotic, often active against multidrug resistant cells. Despite a broad spectrum of antitumor activity, MMC clinical use is relatively limited due to its fast clearance and dose-limiting toxicity. To exploit the potential antitumor activity of MMC and reduce its toxicity we have previously developed a formulation of pegylated liposomes with a lipophilic prodrug of MMC (PL-MLP), activated by endogenous reducing agents which are abundant in the tumor cell environment in the form of different thiols. PL-MLP has minimal in vitro cytotoxicity unless reducing agents are added to the cell culture to activate the prodrug. In the present study, we hypothesized that targeting PL-MLP via folate receptors will facilitate intracellular activation of prodrug and enhance cytotoxic activity without added reducing agents. We grafted a lipophilic folate conjugate (folate-PEG(5000)-DSPE) to formulate folate targeted liposomes (FT-PL-MLP) and examined in vitro cell uptake and cytotoxic activity in cancer cell lines with high folate receptors (HiFR). 3H-cholesterol-hexadecyl ether (3H-Chol)-radiolabeled liposomes were prepared to study liposome-cell binding in parallel to cellular uptake of prodrug MLP. 3H-Chol and MLP cell uptake levels were 4-fold and 9-fold greater in KB HiFR cells when FT-PL-MLP is compared to non-targeted PL-MLP liposomes. The cytotoxic activity of FT-PL-MLP liposomes was significantly increased up to ~5-fold compared with PL-MLP liposomes in all tested HiFR expressing cell lines. The enhanced uptake and intracytoplasmic liposome delivery was confirmed by confocal fluorescence studies with Rhodamine-labeled liposomes. In vivo, no significant differences in pharmacokinetics and biodistribution were observed when PL-MLP was compared to FT-PL-MLP by the intravenous route. However, when liposomes were directly injected into the peritoneal cavity of mice with malignant ascites of J6456 Hi

  19. Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica.

    PubMed Central

    Ravdin, J I; Moreau, F; Sullivan, J A; Petri, W A; Mandell, G L

    1988-01-01

    Entamoeba histolytica adherence and destruction of host cells is required for in vivo pathogenicity; amebic in vitro adherence is mediated by a galactose- or N-acetyl-D-galactosamine-inhibitable surface lectin (Gal/GalNAc adherence lectin). Free intracellular Ca2+ concentration [( Ca2+]i) was measured in living amebae and target cells during amebic cytolysis of Chinese hamster ovary (CHO) cells and human polymorphonuclear neutrophils by utilizing the Ca2+ probe Fura-2 and computer-enhanced digitized microscopy. Motile E. histolytica trophozoites had oscillatory increases in [Ca2+]i in head or tail regions; however, there was no increase in regional or total amebic [Ca2+]i upon contact with a target CHO cell. Target CHO cells and polymorphonuclear neutrophils demonstrated marked irreversible increases in [Ca2+]i within 30 to 300 s following contact by an ameba (P less than 0.01); increased [Ca2+]i preceded the occurrence of nonspecific surface membrane permeability and death of the target cell. Target CHO cells contiguous on a monolayer to a cell contacted by an ameba experienced a rapid but reversible rise in [Ca2+]i (P less than 0.01) and were not killed. Galactose (40 mg/ml) totally abrogated the rise in target CHO cell [Ca2+]i that followed contact by amebae (P less than 0.01); immunoaffinity-purified amebic Gal/GalNAc adherence lectin (0.25 micrograms/ml) induced a rapid and reversible rise in CHO cell [Ca2+]i (P less than 0.01) which was inhibited by galactose. Amebic [Ca2+]i was not elevated following parasite adherence to target cells; a rapid and substantial rise in target cell [Ca2+]i occurred which was mediated, at least in part, by the Gal/GalNAc adherence lectin of the parasite and led to the death of target cells. Images PMID:2897335

  20. Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica.

    PubMed

    Ravdin, J I; Moreau, F; Sullivan, J A; Petri, W A; Mandell, G L

    1988-06-01

    Entamoeba histolytica adherence and destruction of host cells is required for in vivo pathogenicity; amebic in vitro adherence is mediated by a galactose- or N-acetyl-D-galactosamine-inhibitable surface lectin (Gal/GalNAc adherence lectin). Free intracellular Ca2+ concentration [( Ca2+]i) was measured in living amebae and target cells during amebic cytolysis of Chinese hamster ovary (CHO) cells and human polymorphonuclear neutrophils by utilizing the Ca2+ probe Fura-2 and computer-enhanced digitized microscopy. Motile E. histolytica trophozoites had oscillatory increases in [Ca2+]i in head or tail regions; however, there was no increase in regional or total amebic [Ca2+]i upon contact with a target CHO cell. Target CHO cells and polymorphonuclear neutrophils demonstrated marked irreversible increases in [Ca2+]i within 30 to 300 s following contact by an ameba (P less than 0.01); increased [Ca2+]i preceded the occurrence of nonspecific surface membrane permeability and death of the target cell. Target CHO cells contiguous on a monolayer to a cell contacted by an ameba experienced a rapid but reversible rise in [Ca2+]i (P less than 0.01) and were not killed. Galactose (40 mg/ml) totally abrogated the rise in target CHO cell [Ca2+]i that followed contact by amebae (P less than 0.01); immunoaffinity-purified amebic Gal/GalNAc adherence lectin (0.25 micrograms/ml) induced a rapid and reversible rise in CHO cell [Ca2+]i (P less than 0.01) which was inhibited by galactose. Amebic [Ca2+]i was not elevated following parasite adherence to target cells; a rapid and substantial rise in target cell [Ca2+]i occurred which was mediated, at least in part, by the Gal/GalNAc adherence lectin of the parasite and led to the death of target cells. PMID:2897335

  1. [Phagocytosis of Mycobacterium leprae down-regulates anti-microbial activity of murine macrophages against Mycobacterium intracellulare].

    PubMed

    Tatano, Yutaka; Sano, Chiaki; Emori, Masako; Saito, Hajime; Sato, Katsumasa; Shimizu, Toshiaki; Tomioka, Haruaki

    2012-09-01

    Patients with highly bacillated lepromatous leprosy (LL) essentially lack T cell-mediated immune responses specific to Mycobacterium leprae (ML) antigens, resulting in severely impaired host resistance to leprosy bacilli. Such type of immune unresponsiveness characteristic of LL patients is mainly attributable to markedly depressed T cell ability to activate/expand in response to ML antigens. In this study, we examined profiles of antimycobacterial activity of macrophages, which phagocytized leprosy bacilli, because there is another possibility that, in LL patients, host macrophages in the leprosy lesions are impaired in their antimicrobial activity due to their interaction with infected leprosy bacilli, particularly cellular events through binding with and/or internalization of the pathogens, thereby causing the reduction in host resistance to ML pathogens. The present study indicated the following. First, the anti-M. avium complex activity of murine peritoneal macrophages was significantly reduced when they had phagocytosed heat-killed leprosy bacilli. Second, infection of macrophages with leprosy bacilli did not affect macrophage-mediated suppressor activity against T cell proliferative response to Concanavalin A. These findings indicate that macrophage's intracellular signaling pathways that are up-regulated in response to phagocytosis of leprosy bacilli are linked to the signaling cascades participating in macrophage antimicrobial functions, but not cross-talk with those allowing the expression of macrophage's suppressor activity against T cell functions. PMID:23012845

  2. Engineering Challenges for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 10 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in engineering, technology development, and operations. This paper outlines a conceptual end-to-end debris removal operation, including launch, precision tracking, rendezvous, stabilization (of the tumbling targets), capture, and deorbit of the targets; and highlights major challenges associated with the operations. Pros and cons of several proposed removal techniques are also evaluated.

  3. Diquafosol promotes corneal epithelial healing via intracellular calcium-mediated ERK activation.

    PubMed

    Byun, Yong-Soo; Yoo, Young-Sik; Kwon, Ji-Young; Joo, Jong-Soo; Lim, Sung-A; Whang, Woong-Joo; Mok, Jee-Won; Choi, Jun-Sub; Joo, Choun-Ki

    2016-02-01

    Diquafosol is known as a purinergic P2Y2 receptor (P2Y2R) agonist that stimulates water and mucin secretion from conjunctival epithelial cells and goblet cells, leading to tear film stability in dry eye. However, its effect on corneal epithelial healing has not yet been elucidated. The aim of the present study was to evaluate the effect of diquafosol on corneal epithelial healing in vivo and on P2Y2R-related downstream signaling pathways in vitro. We administered 3% diquafosol ophthalmic solution on 3 mm-diameter epithelial defects made in rat corneas and assessed the wound closure over time. Corneal epithelial healing was significantly accelerated in diquafosol-treated eyes compared to control eyes at 12 and 24 h. During wound healing, P2Y2R staining appeared stronger in the re-epithelized margin near the wound defect. To evaluate whether diquafosol stimulates epidermal growth factor receptor/extracellular-signal-regulated kinase (EGFR/ERK)-related cell proliferation and migration, simian virus 40-transfected human corneal epithelial (THCE) cells were used for in vitro experiments. Cell proliferation was accelerated by diquafosol at concentrations from 20 to 200 μM during 48 h, but inhibited at concentrations over 2000 μM. The intracellular calcium ([Ca(2+)]i) elevation was measured in diquafosol (100 μM)-stimulated cells using Fluo-4/AM ([Ca(2+)]i indicator). [Ca(2+)]i elevation was observed in diquafosol-stimulated cells regardless of the presence of calcium in media, and suramin pretreatment inhibited the calcium response. The effect of diquafosol on phosphorylation of EGFR, ERK and Akt, and cell migration was determined by western blotting and in vitro cell migration assay. Diquafosol induced phosphorylation of EGFR at 2 min post-stimulation, and phosphorylation of ERK at 5 min post-stimulation. Phosphorylation of ERK was attenuated in cells pretreated with suramin or BAPTA/AM ([Ca(2+)]i chelator), and partially with AG1478 (EGFR inhibitor

  4. Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release.

    PubMed

    Chen, Wei; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2015-07-28

    It is still a major challenge for targeted cancer chemotherapy to design stable biodegradable micellar drug delivery systems which show a rapid and complete intracellular drug release. Here, reversibly core-crosslinked pH-responsive biodegradable micelles were developed based on poly(ethylene glycol)-poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate-co-pyridyl disulfide carbonate) [PEG-P(TMBPEC-co-PDSC)] copolymers and investigated for intracellular doxorubicin (DOX) release. PEG-P(TMBPEC-co-PDSC) copolymers formed micelles with a small size of 58.6nm were readily crosslinked by the addition of dithiothreitol (DTT). Notably, in vitro release studies showed that under physiological conditions only ca. 19.9% of DOX was released from the reversibly crosslinked micelles in 24h at a low micelle concentration of 40μg/mL. The release of DOX was accelerated at pH5.0 or in the presence of 10mM glutathione (GSH) at pH7.4, in which 64.2% and 44.1% of DOX was released, respectively, in 24h. The drug release was further boosted at pH5.0 and 10mM GSH, with 98.8% of DOX released in 12h. Moreover, DOX release was also facilitated by a 4h incubation at pH5.0 followed by incubation at pH7.4 with 10mM GSH. Confocal microscopy indicated that DOX was delivered and released into the nuclei of RAW 264.7 cells following a 12h incubation with DOX-loaded reversibly crosslinked micelles. MTT assays revealed that DOX-loaded reversibly crosslinked micelles had much higher antitumor activity than irreversibly crosslinked controls, with low IC50 values of 1.65 and 1.14μg/mL for HeLa and RAW 264.7 cells, respectively, following a 48h incubation. The blank crosslinked micelles had a low cytotoxicity of up to a concentration of 0.8mg/mL. These reversibly crosslinked pH-sensitive biodegradable micelles with superior extracellular stability but activated intracellular drug release provide a novel platform for tumor-targeting drug delivery. PMID:25987525

  5. Intracellular Aggregation of Polypeptides with Expanded Polyglutamine Domain Is Stimulated by Stress-Activated Kinase Mekk1

    PubMed Central

    Meriin, Anatoli B.; Mabuchi, Katsuhide; Gabai, Vladimir L.; Yaglom, Julia A.; Kazantsev, Alex; Sherman, Michael Y.

    2001-01-01

    Abnormal proteins, which escape chaperone-mediated refolding or proteasome-dependent degradation, aggregate and form inclusion bodies (IBs). In several neurodegenerative diseases, such IBs can be formed by proteins with expanded polyglutamine (polyQ) domains (e.g., huntingtin). This work studies the regulation of intracellular IB formation using an NH2-terminal fragment of huntingtin with expanded polyQ domain. We demonstrate that the active form of MEKK1, a protein kinase that regulates several stress-activated signaling cascades, stimulates formation of the IBs. This function of MEKK1 requires kinase activity, as the kinase-dead mutant of MEKK1 cannot stimulate this process. Exposure of cells to UV irradiation or cisplatin, both of which activate MEKK1, also augmented the formation of IBs. The polyQ-containing huntingtin fragment exists in cells in two distinct forms: (a) in a discrete soluble complex, and (b) in association with insoluble fraction. MEKK1 strongly stimulated recruitment of polyQ polypeptides into the particulate fraction. Notably, a large portion of the active form of MEKK1 was associated with the insoluble fraction, concentrating in discrete sites, and polyQ-containing IBs always colocalized with them. We suggest that MEKK1 is involved in a process of IB nucleation. MEKK1 also stimulated formation of IBs with two abnormal polypeptides lacking the polyQ domain, indicating that this kinase has a general effect on protein aggregation. PMID:11352944

  6. Platelet Activating Factor Enhances Synaptic Vesicle Exocytosis Via PKC, Elevated Intracellular Calcium, and Modulation of Synapsin 1 Dynamics and Phosphorylation

    PubMed Central

    Hammond, Jennetta W.; Lu, Shao-Ming; Gelbard, Harris A.

    2016-01-01

    Platelet activating factor (PAF) is an inflammatory phospholipid signaling molecule implicated in synaptic plasticity, learning and memory and neurotoxicity during neuroinflammation. However, little is known about the intracellular mechanisms mediating PAF’s physiological or pathological effects on synaptic facilitation. We show here that PAF receptors are localized at the synapse. Using fluorescent reporters of presynaptic activity we show that a non-hydrolysable analog of PAF (cPAF) enhances synaptic vesicle release from individual presynaptic boutons by increasing the size or release of the readily releasable pool and the exocytosis rate of the total recycling pool. cPAF also activates previously silent boutons resulting in vesicle release from a larger number of terminals. The underlying mechanism involves elevated calcium within presynaptic boutons and protein kinase C activation. Furthermore, cPAF increases synapsin I phosphorylation at sites 1 and 3, and increases dispersion of synapsin I from the presynaptic compartment during stimulation, freeing synaptic vesicles for subsequent release. These findings provide a conceptual framework for how PAF, regardless of its cellular origin, can modulate synapses during normal and pathologic synaptic activity. PMID:26778968

  7. Application of intracellular alkaline phosphatase activity measurement in detection of neutrophil adherence in vitro.

    PubMed

    Bednarska, Katarzyna; Klink, Magdalena; Sulowska, Zofia

    2006-01-01

    We have proposed the use of the fluorimetric method with 4-methylumbelliferyl phosphate (4-MUP) specific substrate for the alkaline phosphatase determination in the neutrophil adhesion assay. We provide evidence that the endogenous neutrophil alkaline phosphatase (NAP) activity evaluation is reliable to quantify neutrophil adhesion at a wide range of cell numbers (10(4)-10(6)). The results obtained by fluorimetric NAP activity test correlate to the results of adherence evaluated using the MTT reduction assay. The fluorimetric NAP activity test may be applied for resting as well as activated neutrophils without the risk of the activators interferences into the test. The alkaline phosphatase survey with the use of 4-MUP substrate is recommended herein as a sensitive, repeatable, simple, and reliable method of the neutrophil adherence determination in vitro. PMID:17047286

  8. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation

    PubMed Central

    Shannahan, Jonathan H; Podila, Ramakrishna; Brown, Jared M

    2015-01-01

    The inevitable adsorption of biomolecules on nanomaterials results in the formation of a protein corona (PC), which modifies the nanoparticle (NP)–cell interface resulting in modified uptake, activity, clearance, and toxicity. While the physicochemical properties of the NP govern the composition of PC, the formation of PC in turn alters the characteristics of the NP by imparting a new unique “biological” identity. To assess how the PC influences AgNP properties, intracellular modifications, and cellular responses, we utilized a combination of hyperspectral and toxicological analyses. AgNPs were coated with a complex PC (multiple proteins, eg, 10% fetal bovine serum) or a simple PC (single protein, eg, bovine serum albumin [BSA]) and evaluated by hyperspectral and dynamic light scattering for modifications in AgNP properties. Mouse macrophages were exposed to AgNPs with PCs and examined for differences in uptake, cytotoxicity, and cell activation. Hyperspectral imaging revealed intracellular modifications to AgNPs that were found to spectrally match alterations in AgNPs following incubation in lysosomal fluid. Addition of the PC influenced AgNP uptake and cytotoxicity; however, hydrodynamic size and surface charge did not contribute to these responses. Assessments of all endpoints demonstrated differences between complex and BSA PC, suggesting that these responses are not purely driven by the primary protein component of the complex PC (ie, BSA). Alterations in cellular–NP uptake/interactions may be driven through cell surface receptor recognition of protein constituents that make up the PC rather than the physicochemical differences in AgNPs. PMID:26508856

  9. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation.

    PubMed

    Shannahan, Jonathan H; Podila, Ramakrishna; Brown, Jared M

    2015-01-01

    The inevitable adsorption of biomolecules on nanomaterials results in the formation of a protein corona (PC), which modifies the nanoparticle (NP)-cell interface resulting in modified uptake, activity, clearance, and toxicity. While the physicochemical properties of the NP govern the composition of PC, the formation of PC in turn alters the characteristics of the NP by imparting a new unique "biological" identity. To assess how the PC influences AgNP properties, intracellular modifications, and cellular responses, we utilized a combination of hyperspectral and toxicological analyses. AgNPs were coated with a complex PC (multiple proteins, eg, 10% fetal bovine serum) or a simple PC (single protein, eg, bovine serum albumin [BSA]) and evaluated by hyperspectral and dynamic light scattering for modifications in AgNP properties. Mouse macrophages were exposed to AgNPs with PCs and examined for differences in uptake, cytotoxicity, and cell activation. Hyperspectral imaging revealed intracellular modifications to AgNPs that were found to spectrally match alterations in AgNPs following incubation in lysosomal fluid. Addition of the PC influenced AgNP uptake and cytotoxicity; however, hydrodynamic size and surface charge did not contribute to these responses. Assessments of all endpoints demonstrated differences between complex and BSA PC, suggesting that these responses are not purely driven by the primary protein component of the complex PC (ie, BSA). Alterations in cellular-NP uptake/interactions may be driven through cell surface receptor recognition of protein constituents that make up the PC rather than the physicochemical differences in AgNPs. PMID:26508856

  10. The role of reduced intracellular concentrations of active drugs in the lack of response to anticancer chemotherapy

    PubMed Central

    Marin, Jose JG; Monte, Maria J; Blazquez, Alba G; Macias, Rocio IR; Serrano, Maria A; Briz, Oscar

    2014-01-01

    A major difficulty in the treatment of cancers is the poor response of many tumors to pharmacological regimens. This situation can be accounted for by the existence of a variety of complex mechanisms of chemoresistance (MOCs), leading to reduced intracellular concentrations of active agents, changes in the molecular targets of the drugs, enhanced repair of drug-induced modifications in macromolecules, stimulation of anti-apoptotic mechanisms, and inhibition of pro-apoptotic mechanisms. The present review focuses on alterations in the expression and appearance of the genetic variants that affect the genes involved in reducing the amount of active agents inside tumor cells. These alterations can occur through two mechanisms: either by lowering uptake or enhancing efflux (so-called MOC-1a and MOC-1b, respectively), or by decreasing the activation of prodrugs or enhancing inactivation of active agents through their biotransformation (MOC-2). The development of chemosensitizers that are useful in implementing the pharmacological manipulation of these processes constitutes a challenge to modern pharmacology. Nevertheless, the important physiological roles of the most relevant genes involved in MOC-1a, MOC-1b, and MOC-2 make it difficult to prevent the side effects of chemosensitizers. A more attainable goal in this area of pharmacological enquiry is the identification of proteomic profiles that will permit oncologists to accurately predict a lack of response to a given regimen, which would be useful for adapting treatment to the personal situation of each patient. PMID:24317012

  11. The steroidal analog GW707 activates the SREBP pathway through disruption of intracellular cholesterol trafficking.

    PubMed

    Zhang, Jessie; Dudley-Rucker, Nicole; Crowley, Jan R; Lopez-Perez, Elvira; Issandou, Marc; Schaffer, Jean E; Ory, Daniel S

    2004-02-01

    Recently, a new class of lipid-lowering agents has been described that upregulate LDL receptor (LDLr) activity. These agents are proposed to activate sterol-regulated gene expression through binding to the sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). Here, we show that the steroidal LDLr upregulator, GW707, induces accumulation of lysosomal free cholesterol and inhibits LDL-stimulated cholesterol esterification, similar to that observed in U18666A-treated cells and in Niemann-Pick type C1 (NPC1) mutants. Moreover, we demonstrate that induction of the NPC-like phenotype by GW707 is independent of SCAP function. We find that treatment with GW707 does not increase SREBP-dependent gene expression above that observed in lipoprotein-starved cells. Rather, we show that the apparent increase in SREBP-dependent activity in GW707-treated cells is attributable to a failure to appropriately suppress sterol-regulated gene expression, as has been shown previously for U18666A-treated cells and NPC mutant fibroblasts. We further demonstrate that cells treated with either GW707 or U18666A fail to appropriately generate 27-hydroxycholesterol in response to LDL cholesterol. Taken together, these findings support a mechanism in which GW707 exerts its hypolipidemic effects through disruption of late endosomal/lysosomal sterol trafficking and subsequent stimulation of LDLr activity. PMID:14617742

  12. A peptide biosensor for detecting intracellular Abl kinase activity using MALDI-TOF MS

    PubMed Central

    Placzek, Ekaterina A.; Plebanek, Michael P.; Lipchik, Andrew M.; Kidd, Stephanie R.; Parker, Laurie L.

    2009-01-01

    Many cancers are characterized by changes in protein phosphorylation as a result of kinase dysregulation. Disruption of Abl kinase signaling through the Philadelphia chromosome (causing the Bcr-Abl mutation) in chronic myeloid leukemia (CML) has provided a paradigm for development of kinase inhibitor drugs such as the specific inhibitor imatinib (also known as STI571 or Gleevec). However, since patients are treated indefinitely with this drug to maintain remission, resistance is increasingly becoming an issue. While there are many ways to detect kinase activity, most lack the ability to ‘multiplex’ the analysis (to detect more than one substrate simultaneously). Here we report a novel biosensor for detecting Abl kinase activity and sensitivity to inhibitor in live, intact cells overexpressing a CML model Abl kinase construct. This straightforward methodology could eventually provide a new tool for detecting kinase activity and inhibitor drug response in cancer cells that overexpress oncogenic kinases. PMID:19818327

  13. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma

    PubMed Central

    Coelho, Raquel G.; Calaça, Isadora C.; Celestrini, Deborah M.; Correia-Carneiro, Ana Helena P.; Costa, Mauricio M.; Zancan, Patricia; Sola-Penna, Mauro

    2015-01-01

    Glycolytic enzymes, such as hexokinase and phosphofructokinase, have been reported to be upregulated in many cancer types. Here, we evaluated these two enzymes in 54 breast cancer samples collected from volunteers subjected to mastectomy, and the results were correlated with the prognosis markers commonly used. We found that both enzymes positively correlate with the major markers for invasiveness and aggressiveness. For invasiveness, the enzymes activities increase in parallel to the tumor size. Moreover, we found augmented activities for both enzymes when the samples were extirpated from patients presenting lymph node involvement or occurrence of metastasis. For aggressiveness, we stained the samples for the estrogen and progesterone receptors, HER-2, p53 and Ki-67. The enzyme activities positively correlated with all markers but Ki-67. Finally, we conclude that these enzymes are good markers for breast cancer prognosis. PMID:26320188

  14. Kinetics and activation energy of recrystallization of intracellular ice in mouse oocytes subjected to interrupted rapid cooling✧

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2009-01-01

    Intracellular ice formation (IIF) is almost invariably lethal. In most cases, it results from the too rapid cooling of cells to below −40°C, but in some cases it is manifested, not during cooling, but during warming when cell water that vitrified during cooling first devitrifies and then recrystallizes during warming. Recently, Mazur et al. [Cryobiol. 55 (2007) 158] dealt with one such case in mouse oocytes. It involved rapidly cooling the oocytes to −25°C, holding them 10 min, rapidly cooling them to −70°C, and warming them slowly until thawed. No IIF occurred during cooling but intracellular freezing, as evidenced by blackening of the cells, became detectable at −56°C during warming and was complete by −46°C. The present study differs in that the oocytes were warmed rapidly from −70°C to temperatures between −65°C and −50°C and held for 3 to 60 min. This permitted us to determine the rate of blackening as function of temperature. That in turn allowed us to calculate the activation energy (Ea) for the blackening process; namely, 27.5 kcal/mole. This translates to about a quadrupling of the blackening rate for every 5° rise in temperature. These data then allowed us to compute the degree of blackening as a function of temperature for oocytes warmed at rates ranging from 10 to 10,000°C/min. A 10-fold increase in warming rate increased the temperature at which a given degree of blackening occurred by 8°C. These findings have significant implications both for cryobiology and cryo-electron microscopy. PMID:18359013

  15. Permeabilization activated reduction in fluorescence: A novel method to measure kinetics of protein interactions with intracellular structures.

    PubMed

    Singh, Pali P; Hawthorne, Jenci L; Davis, Christie A; Quintero, Omar A

    2016-06-01

    Understanding kinetic information is fundamental in understanding biological function. Advanced imaging technologies have fostered the development of kinetic analyses in cells. We have developed Permeabilization Activated Reduction in Fluorescence (PARF) analysis for determination of apparent t1/2 and immobile fraction, describing the dissociation of a protein of interest from intracellular structures. To create conditions where dissociation events are observable, cells expressing a fluorescently-tagged protein are permeabilized with digitonin, diluting the unbound protein into the extracellular media. As the media volume is much larger than the cytosolic volume, the concentration of the unbound pool decreases drastically, shifting the system out of equilibrium, favoring dissociation events. Loss of bound protein is observed as loss of fluorescence from intracellular structures and can be fit to an exponential decay. We compared PARF dissociation kinetics with previously published equilibrium kinetics as determined by FRAP. PARF dissociation rates agreed with the equilibrium-based FRAP analysis predictions of the magnitude of those rates. When used to investigate binding kinetics of a panel of cytoskeletal proteins, PARF analysis revealed that filament stabilization resulted in slower fluorescence loss. Additionally, commonly used "general" F-actin labels display differences in kinetic properties, suggesting that not all fluorescently-tagged actin labels interact with the actin network in the same way. We also observed differential dissociation kinetics for GFP-VASP depending on which cellular structure was being labeled. These results demonstrate that PARF analysis of non-equilibrium systems reveals kinetic information without the infrastructure investment required for other quantitative approaches such as FRAP, photoactivation, or in vitro reconstitution assays. © 2016 Wiley Periodicals, Inc. PMID:27126922

  16. Activated protein kinase C binds to intracellular receptors in rat hepatocytes.

    PubMed Central

    Robles-Flores, M; García-Sáinz, J A

    1993-01-01

    The aim of this study was to identify in rat hepatocytes cellular polypeptides that bind protein kinase C (PKC) and may influence its activity and its compartmentation. At least seven proteins, with apparent M(r) values between 12,000 and 36,000, that behave like Receptors for Activated C-Kinase (RACKs) were found in the Triton-X-100-insoluble fraction of these cells; i.e. PKC bound to these polypeptides when it was in its active form. RACKS seem to be PKC substrates. Studies using isotype-specific PKC antibodies suggested some selectivity of RACKs, i.e. RACKs in the M(r) approximately 28,000-36,000 region bound PKC-alpha and PKC-beta in the presence of phosphatidylserine, diolein and Ca2+, whereas those of M(r) approximately 12,000-14,000 bound all isoforms studied, and, in contrast with the other RACKs, they did this even in the absence of Ca2+. Peptide I (KGDYEKILVALCGGN), which has a sequence suggested to be involved in the PKC-RACKs interaction [Mochly-Rosen, Khaner, Lopez and Smith (1991) J. Biol. Chem. 266, 14866-14868], inhibited PKC activity. Preincubation of RACKs with antisera directed against peptide I prevented PKC binding to them. The data suggest that peptide I blocks PKC binding to RACKs by two mechanisms: inhibition of PKC activity and competition with a putative binding site. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8257439

  17. Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways

    PubMed Central

    2010-01-01

    Background Nicotine plays an important role in cigarette-smoke-associated airway disease. The present study was designed to examine if nicotine could induce airway hyperresponsiveness through kinin receptors, and if so, explore the underlying mechanisms involved. Methods Murine tracheal segments were cultured for 1, 2 or 4 days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle (DMSO). Contractile responses induced by kinin B1 receptor agonist, des-Arg9-bradykinin, and B2 receptor agonist, bradykinin, were monitored with myographs. The B1 and B2 receptor mRNA expressions were semi-quantified using real-time PCR and their corresponding protein expressions assessed with confocal-microscopy-based immunohistochemistry. Various pharmacological inhibitors were used for studying intracellular signaling pathways. Results Four days of organ culture with nicotine concentration-dependently increased kinin B1 and B2 receptor-mediated airway contractions, without altering the kinin receptor-mediated relaxations. No such increase was seen at day 1 or day 2. The airway contractile responses to 5-HT, acetylcholine and endothelin receptor agonists remained unaffected by nicotine. Two different neuronal nicotinic receptor antagonists MG624 and hexamethonium blocked the nicotine-induced effects. The enhanced contractile responses were accompanied by increased mRNA and protein expression for both kinin receptors, suggesting the involvement of transcriptional mechanisms. Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment induced activation (phosphorylation) of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38. Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-induced effects on kinin receptor-mediated contractions and reverted the enhanced receptor mRNA expression. Administration of phosphodiesterase inhibitors (YM976 and theophylline

  18. Synergistic Myeloma Cell Death via Novel Intracellular Activation of Caspase-10-Dependent Apoptosis by Carfilzomib and Selinexor.

    PubMed

    Rosebeck, Shaun; Alonge, Mattina M; Kandarpa, Malathi; Mayampurath, Anoop; Volchenboum, Samuel L; Jasielec, Jagoda; Dytfeld, Dominik; Maxwell, Sean P; Kraftson, Stephanie J; McCauley, Dilara; Shacham, Sharon; Kauffman, Michael; Jakubowiak, Andrzej J

    2016-01-01

    Exportin1 (XPO1; also known as chromosome maintenance region 1, or CRM1) controls nucleo-cytoplasmic transport of most tumor suppressors and is overexpressed in many cancers, including multiple myeloma, functionally impairing tumor suppressive function via target mislocalization. Selective inhibitor of nuclear export (SINE) compounds block XPO1-mediated nuclear escape by disrupting cargo protein binding, leading to retention of tumor suppressors, induction of cancer cell death, and sensitization to other drugs. Combined treatment with the clinical stage SINE compound selinexor and the irreversible proteasome inhibitor (PI) carfilzomib induced synergistic cell death of myeloma cell lines and primary plasma cells derived from relapsing/refractory myeloma patients and completely impaired the growth of myeloma cell line-derived tumors in mice. Investigating the details of SINE/PI-induced cell death revealed (i) reduced Bcl-2 expression and cleavage and inactivation of Akt, two prosurvival regulators of apoptosis and autophagy; (ii) intracellular membrane-associated aggregation of active caspases, which depended on caspase-10 protease activity; and (iii) novel association of caspase-10 and autophagy-associated proteins p62 and LC3 II, which may prime activation of the caspase cascade. Overall, our findings provide novel mechanistic rationale behind the potent cell death induced by combining selinexor with carfilzomib and support their use in the treatment of relapsed/refractory myeloma and potentially other cancers. PMID:26637366

  19. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box Against Intracellular Leishmania major Amastigotes.

    PubMed

    Khraiwesh, Mozna; Leed, Susan; Roncal, Norma; Johnson, Jacob; Sciotti, Richard; Smith, Philip; Read, Lisa; Paris, Robert; Hudson, Thomas; Hickman, Mark; Grogl, Max

    2016-02-01

    Leishmaniasis is a complex tropical disease caused by kinetoplastid parasitic protozoa of the genus Leishmania and is transmitted by the sand fly insect vector. Cutaneous leishmaniasis (CL) is the most common form of this disease, and CL infections often result in serious skin lesions and scars. CL remains a public health problem in many endemic countries worldwide because of the absence of effective, safe, and cost-effective drugs for treatment. One of the strategies we chose to use to find novel chemical entities worthy of further development as antileishmanials involved screening synthetic and natural products libraries. In our study, we developed a Leishmania major intracellular amastigote assay that uses the activity of luciferase as a measure of parasite proliferation and used this assay to screen a collection of 400 compounds obtained from Medicines for Malaria Venture (MMV) for their antileishmanial activity. Our results showed that 14 compounds identified by MMV as antimalarial drugs have antileishmanial activity and can potentially be optimized for CL drug development. PMID:26503273

  20. Modeling and analysis of early events in T-lymphocyte antigen-activated intracellular-signaling pathways

    NASA Astrophysics Data System (ADS)

    Zheng, Yanan; Balakrishnan, Venkataramanan; Buzzard, Greg; Geahlen, Robert; Harrison, Marietta; Rundell, Ann

    2005-12-01

    The T-cell antigen-activated signaling pathway is a highly regulated intracellular biochemical system that is crucial for initiating an appropriate adaptive immune response. To improve the understanding of the complex regulatory mechanisms controlling the early events in T-cell signaling, a detailed mathematical model was developed that utilizes ordinary differential equations to describe chemical reactions of the signaling pathway. The model parameter values were constrained by experimental data on the activation of a specific signaling intermediate and indicated an initial rapid cascade of phosphorylation events followed by a comparatively slow signal downregulation. Nonlinear analysis of the model suggested that thresholding and bistability occur as a result of the embedded positive and negative feedback loops within the model. These nonlinear system properties may enhance the T-cell receptor specificity and provide sub-threshold noise filtering with switch-like behavior to ensure proper cell response. Additional analysis using a reduced second-order model led to further understanding of the observed system behavior. Moreover, the interactions between the positive and negative feedback loops enabled the model to exhibit, among a variety of other feasible dynamics, a sustained oscillation that corresponds to a stable limit cycle in the two-dimensional phase plane. Quantitative analysis in this paper has helped identify potential regulatory mechanisms in the early T-cell signaling events. This integrated approach provides a framework to quantify and discover the ensemble of interconnected T-cell antigen-activated signaling pathways from limited experimental data.

  1. Thyrotropin-releasing hormone activates KCa channels in gastric smooth muscle cells via intracellular Ca2+ release.

    PubMed

    Petkova-Kirova, P S; Lubomirov, L T; Gagov, H S; Kolev, V B; Duridanova, D B

    2001-03-01

    Thyrotropin-releasing hormone (TRH) is released in high concentrations into gastric juice, but its direct effect on gastric smooth muscles has not been studied yet. We undertook studies on TRH effect on gastric smooth muscle using contraction and patch clamp methods. TRH was found to inhibit both acetylcholine- and BaCl2-induced contractions of gastric strips. TRH, applied to single cells, inhibited the voltage-dependent Ca2+ currents and activated the whole-cell K+ currents. The TRH-induced changes in K+ currents and membrane potential were effectively abolished by inhibitors of either intracellular Ca2+ release channels or phospholipase C. Neither activators, nor blockers of protein kinase C could affect the action of TRH on K+ currents. In conclusion, TRH activates K+ channels via inositol-1,4,5-trisphosphate-induced release of Ca2+ in the direction to the plasma membrane, which in turn leads to stimulation of the Ca2+-sensitive K+ conductance, membrane hyperpolarization and relaxation. The data imply that TRH may act physiologically as a local modulator of gastric smooth muscle tone. PMID:11508821

  2. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box against Intracellular Leishmania major Amastigotes

    PubMed Central

    Khraiwesh, Mozna; Leed, Susan; Roncal, Norma; Johnson, Jacob; Sciotti, Richard; Smith, Philip; Read, Lisa; Paris, Robert; Hudson, Thomas; Hickman, Mark; Grogl, Max

    2016-01-01

    Leishmaniasis is a complex tropical disease caused by kinetoplastid parasitic protozoa of the genus Leishmania and is transmitted by the sand fly insect vector. Cutaneous leishmaniasis (CL) is the most common form of this disease, and CL infections often result in serious skin lesions and scars. CL remains a public health problem in many endemic countries worldwide because of the absence of effective, safe, and cost-effective drugs for treatment. One of the strategies we chose to use to find novel chemical entities worthy of further development as antileishmanials involved screening synthetic and natural products libraries. In our study, we developed a Leishmania major intracellular amastigote assay that uses the activity of luciferase as a measure of parasite proliferation and used this assay to screen a collection of 400 compounds obtained from Medicines for Malaria Venture (MMV) for their antileishmanial activity. Our results showed that 14 compounds identified by MMV as antimalarial drugs have antileishmanial activity and can potentially be optimized for CL drug development. PMID:26503273

  3. Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells.

    PubMed

    Krause, E; Pfeiffer, F; Schmid, A; Schulz, I

    1996-12-20

    Receptor-mediated Ca2+ release from inositol (1,4,5)-trisphosphate (IP3)-sensitive Ca2+ stores causes "capacitative calcium entry" in many cell types (Putney, J. W., Jr. (1986) Cell Calcium 7, 1-12; Putney, J. W., Jr. (1990) Cell Calcium 11, 611-624). We used patch-clamp and fluorescence techniques in isolated mouse pancreatic acinar cells to identify ion currents and cytosolic calcium concentrations under conditions in which intracellular Ca2+ stores were emptied. We found that depletion of Ca2+ stores activated a calcium-release-activated nonselective cation current (ICRANC) which did not discriminate between monovalent cations. ICRANC possessed a significant conductance for Ca2+ and Ba2+. It was not inhibited by La3+, Gd3+, Co2+, or Cd2+ but was completely abolished by flufenamic acid or genistein. In whole cell and cell-attached recordings, a 40-45 pS nonselective cation channel was identified which was activated by Ca2+ store depletion. Calcium entry as detected by single cell fluorescence measurements with fluo-3 or fura-2, showed the same pharmacological properties as ICRANC. We conclude that in mouse pancreatic acinar cells 40-45 pS nonselective cation channels serve as a pathway for capacitative Ca2+ entry. This entry pathway differs from the previously described ICRAC (Hoth, M., and Penner, R. (1992) Nature 355, 353-356) in its ion-selectivity, pharmacological profile, and single-channel conductance. PMID:8955076

  4. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    SciTech Connect

    Liu, Chun; Ge, Beihai; He, Chao; Zhang, Yi; Liu, Xiaowen; Liu, Kejian; Qian, Cuiping; Zhang, Yu; Peng, Wenzhong; Guo, Xiaomei

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.

  5. Engineering Design Activities and Conceptual Change in Middle School Science

    ERIC Educational Resources Information Center

    Schnittka, Christine G.

    2009-01-01

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…

  6. Fullerenol Nanoparticles with Structural Activity Induce Variable Intracellular Actin Filament Morphologies.

    PubMed

    Jin, Junjiang; Dong, Ying; Wang, Ying; Xia, Lin; Gu, Weihong; Bai, Xue; Chang, Yanan; Zhang, Mingyi; Chen, Kui; Li, Juan; Zhao, Lina; Xing, Gengmei

    2016-06-01

    Fullerenol nanoparticles are promising for various biological applications; many studies have shown that they induce variable and diverse biological effects including side effects. Separation and purification of two fractions of fullerenols has demonstrated that they have varied chemical structures on the surfaces of their carbon cages. Actin is an important structural protein that is able to transform functional structures under varied physiological conditions. We assessed the abilities of the two fractions of fullerenols to attach to actin and induce variable morphological features in actin filament structures. Specifically the fullerenol fraction with a surface electric charge of -1.913 ± 0.008q (x10(-6) C) has percentages of C-OH and C=O on the carbon cage of 16.14 ± 0.60 and 17.55 ± 0.69. These features allow it to form intermolecular hydrogen bonds with actin at a stoichiometric ratio of four fullerenols per actin subunit. Molecular simulations revealed these specific binding sites and binding modes in atomic details in the interaction between the active fullerenol and actin filament. Conversely, these interactions were not possible for the other fraction of fullerenol with that percentages of C-OH and C=O on the carbon cage were 15.59 ± 0.01 and 1.94 ± 0.11. Neither sample induced appreciable cytotoxicity or acute cell death. After entering cells, active fullerenol binding to actin induces variable morphological features and may transform ATP-actin to ADP-actin. These changes facilitate the binding of ADF/cofilin, allowing cofilin to sever actin filaments to form cofilin/actin/fullerenol rods. Our findings suggest that fullerenol with structural activity binding disturbs actin filament structure, which may inhibit locomotion of cell or induce chronic side effects in to cells. PMID:27319217

  7. Inhibition of intracellular proteolysis in muscle cultures by multiplication-stimulating activity

    NASA Technical Reports Server (NTRS)

    Janeczko, Richard A.; Etlinger, Joseph D.

    1984-01-01

    The effects of the insulin-like growth factor, multiplication-stimulating activity (MSA), on chick myotube cultures are studied. The results indicate that MSA is an effective anabolic agent regulating protein metabolism and amino acid uptake, but not sugar transport. Similar size effects on protein metabolism and amino acid uptake in serum-free media were observed in parallel studies with insulin, although insulin levels well in excess of the normal physiological range are required to produce significant effects. It is suggested that there is a generally low insulin sensitivity in cultured chick myotubes relative to adult tissues.

  8. Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells.

    PubMed

    Fierro, L; Parekh, A B

    2000-01-15

    1. Tight-seal whole-cell patch clamp experiments were performed to examine the ability of different intracellular Ca2+ mobilising agents to activate the Ca2+ release-activated Ca2+ current (ICRAC) in rat basophilic leukaemia (RBL-1) cells under conditions of weak cytoplasmic Ca2+ buffering. 2. Dialysis with a maximal concentration of inositol 1,4,5-trisphosphate (IP3) routinely failed to activate macroscopic ICRAC in low buffer (0.mM EGTA, BAPTA or dimethyl BAPTA), whereas it activated the current to its maximal extent in high buffer (10 mM EGTA). Dialysis with a poorly metabolisable analogue of IP3, with ionomycin, or with IP3 and ionomycin all failed to generate macroscopic ICRAC in low Ca2+ buffering conditions. 3. Dialysis with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump blocker thapsigargin was able to activate ICRAC even in the presence of low cytoplasmic Ca2+ buffering, albeit at a slow rate. Exposure to IP3 together with the SERCA blockers thapsigargin, thapsigargicin or cyclopiazonic acid rapidly activated ICRAC in low buffer. 4. Following activation of ICRAC by intracellular dialysis with IP3 and thapsigargin in low buffer, the current was very selective for Ca2+ (apparent KD of 1 mM) Sr2+ and Ba2+ were less effective charge carriers and Na+ was not conducted to any appreciable extent. The ionic selectivity of ICRAC was very similar in low or high intracellular Ca2+ buffer. 5. Fast Ca2+-dependent inactivation of ICRAC occurred at a similar rate and to a similar extent in low or high Ca2+ buffer. Ca2+-dependent inactivation is not the reason why macroscopic ICRAC cannot be seen under conditions of low cytoplasmic Ca2+ buffering. 6. ICRAC could be activated by combining IP3 with thapsigargin, even in the presence of 100 microM Ca2+ and the absence of any exogenous Ca2+ chelator, where ATP and glutamate represented the only Ca2+ buffers in the pipette solution. 7. Our results suggest that a threshold exists within the IP3-sensitive Ca2+ store

  9. Activity and intracellular location of estrogen receptors α and β in human bronchial epithelial cells

    PubMed Central

    Ivanova, Margarita M.; Mazhawidza, Williard; Dougherty, Susan M.; Minna, John D.; Klinge, Carolyn M.

    2009-01-01

    Gender differences in lung disease and cancer are well-established. We reported estrogenic transcriptional responses in lung adenocarcinoma cells from females but not males despite similar estrogen receptor (ER) expression. Here we tested the hypothesis that normal human bronchial epithelial cells (HBECs) show gender-independent estrogenic responses. We report that a small sample of HBECs express ~twice as much ERβ as ERα.ERα and ERβ were located in the cytoplasm, nucleus, and mitochondria. In contrast to lung adenocarcinoma cells, estradiol (E2) induced estrogen response element (ERE)-mediated luciferase reporter activity in transiently transfected HBECs regardless of donor gender. Overexpression of ERα-VP16 increased ERE-mediated transcriptional activity in all HBECs. E2 increased and 4-hydroxytamoxifen and ICI 182,780 inhibited HBEC proliferation and cyclin D1 expression in a cell line-specific manner. In conclusion, the response of HBECs to ER ligands is gender-independent suggesting that estrogenic sensitivity may be acquired during lung carcinogenesis. PMID:19433257

  10. [Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect].

    PubMed

    Pokrovskaia, M V; Pokrovskiĭ, V S; Aleksandrova, S S; Anisimova, N Iu; Adrianov, R M; Treshchalina, E M; Ponomarev, G V; Sokolov, N N

    2013-01-01

    The recombinant producer of Rhodospirillum rubrum L-asparaginase (RrA) was received and purification procedure of RrA was developed. It was shown that RrA has following biochemical and catalytic characteristics: K(m) for L-asn 0.22 MM, pH optimum 9.2; temperature optimum 54 degrees C; pI = 5.1 +/- 0.3; L-gln activity seems to be low-to-negligible. K562, DU145 and MDA-MB-231 cellular lines displayed significant sensitivity towards the enzyme (IC50 = 1.80; 9.19 and 34.62 ME/ml, respectively. In comparison with L-asparaginases from E. coli II type (EcA) and Erwinia carotovora (EwA) cytotoxicity of RrA seems to be higher than EwA, but lower than EcA. 10-fold i.p. RrA administration (4000 ME/kg per day) in L5178y bearing mice showed T/C = 172%. The received results show that RrA belongs to I type cellular L-asparaginases with low L-gln activity and the high antiproliferative effect. PMID:23789346

  11. Intracellular shunting of O2− contributes to charge compensation and preservation of neutrophil respiratory burst in the absence of voltage-gated proton channel activity

    PubMed Central

    Decleva, Eva; Menegazzi, Renzo; Fasolo, Alba; Defendi, Federica; Sebastianutto, Michele; Dri, Pietro

    2013-01-01

    Proton efflux via voltage-gated proton channels (Hv1) is considered to mediate the charge compensation necessary to preserve NADPH oxidase activity during the respiratory burst. Using the Hv1 inhibitor Zn2+, we found that the PMA-induced respiratory burst of human neutrophils is inhibited when assessed as extracellular production of O2− and H2O2, in accordance with literature studies, but, surprisingly, unaffected when measured as oxygen consumption or total (extracellular plus intracellular) H2O2 production. Furthermore, we show that inhibiting Hv1 with Zn2+ results in an increased production of intracellular ROS. Similar results, i.e. decreased extracellular and increased intracellular ROS production, were obtained using a human granulocyte-like cell line with severely impaired Hv1 expression. Acidic extracellular pH, which dampens proton efflux, also augmented intracellular production of H2O2. Zinc caused an increase in the rate but not in the extent of depolarization and cytosolic acidification indicating that mechanisms other than proton efflux take part in charge compensation. Our results suggest a hitherto unpredicted mechanism of charge compensation whereby, in the absence of proton efflux, part of O2− generated within gp91phox in the plasma membrane is shunted intracellularly down electrochemical gradient to dampen excessive depolarization. This would preserve NADPH oxidase activity under conditions such as the inflammatory exudate in which the acidic pH hinders charge compensation by proton efflux. PMID:23578765

  12. Calcium influx, but not intracellular calcium release, supports PACAP-mediated ERK activation in HEK PAC1 receptor cells.

    PubMed

    May, Victor; Clason, Todd A; Buttolph, Thomas R; Girard, Beatrice M; Parsons, Rodney L

    2014-11-01

    In HEK cells expressing GFP-tagged PAC1Hop1 receptors, PACAP augments ERK phosphorylation through two parallel pathways: one through PACAP/PAC1 receptor internalization/endosome MEK/ERK signaling and the other through PLC/DAG/PKC activation. We examined whether elevation of intracellular calcium ([Ca(2+)]i) was required for either of the PACAP/PAC1 receptor-mediated ERK activation mechanisms. The PACAP (25 nM)-induced elevation of [Ca(2+)]i was greater with cells maintained in Ca(2+)-containing than in Ca(2+)-deficient solution, suggesting that both calcium release from internal stores and calcium influx contributed to the rise in [Ca(2+)]i. A thapsigargin-induced increase in [Ca(2+)]i also was greater with calcium in the external solution. OAG, the cell permeable analogue of DAG, increased [Ca(2+)]i, but only in Ca(2+)-containing solution. Decreasing external calcium or depleting internal calcium stores did not block PACAP-induced PAC1 receptor internalization. Omission of calcium from the external solution, but not thapsigargin pretreatment, significantly blunted PACAP-stimulated ERK phosphorylation. The PKC inhibitor BimI decreased PACAP-mediated ERK activation in both Ca(2+)-containing or Ca(2+)-deficient solutions. In contrast, following Pitstop 2 pretreatment to block endocytic mechanisms, PACAP activated ERK only when calcium was present in the external solution. We conclude that the endosome signaling pathway is largely calcium-independent whereas calcium influx appears necessary for the PLC/DAG/PKC component of PACAP-induced ERK activation. PMID:24723666

  13. Effects of IFN-γ on intracellular trafficking and activity of macrophage NADPH oxidase flavocytochrome b558

    PubMed Central

    Casbon, Amy-Jo; Long, Matthew E.; Dunn, Kenneth W.; Allen, Lee-Ann H.; Dinauer, Mary C.

    2012-01-01

    Flavocytochrome b558, the catalytic core of the phagocyte NADPH oxidase (NOX2), mediates electron transfer from NADPH to molecular oxygen to generate superoxide, the precursor of highly ROS for host defense. Flavocytochrome b558 is an integral membrane heterodimer consisting of a large glycosylated subunit, gp91phox, and a smaller subunit, p22phox. We recently showed in murine macrophages that flavocytochrome b558 localizes to the PM and Rab11-positive recycling endosomes, whereas in primary hMDMs, gp91phox and p22phox reside in the PM and the ER. The antimicrobial activity of macrophages, including ROS production, is greatly enhanced by IFN-γ, but how this is achieved is incompletely understood. To further define the mechanisms by which IFN-γ enhances macrophage NADPH oxidase activity, we evaluated changes in flavocytochrome b558 expression and localization, along with NADPH oxidase activity, in IFN-γ stimulated RAW 264.7 cells and primary murine BMDMs and hMDMs. We found that enhanced capacity for ROS production is, in part, a result of increased protein expression of gp91phox and p22phox but also demonstrate that IFN-γ induced a shift in the predominant localization of gp91phox and p22phox from intracellular membrane compartments to the PM. Our results are the first to show that a cytokine can change the distribution of macrophage flavocytochrome b558 and provide a potential, new mechanism by which IFN-γ modulates macrophage antimicrobial activity. Altogether, our data suggest that the mechanisms by which IFN-γ regulates antimicrobial activity of macrophages are more complex than previously appreciated. PMID:22822009

  14. Relation of intracellular signal levels and promoter activities in the gal regulon of Escherichia coli.

    PubMed

    Krishna, Sandeep; Orosz, László; Sneppen, Kim; Adhya, Sankar; Semsey, Szabolcs

    2009-08-28

    Transcription of many genes is regulated by combinations of multiple signals. In Escherichia coli, combinatorial control is typical in the case of operons related to utilization of different sugars in the absence of glucose. To understand regulation of the transport and metabolic pathways in the galactose system, we measured activities of the six gal regulon promoters simultaneously, using an in vitro transcription system containing purified components. Input functions were computed on the basis of the experimental measurements. We observed four different shapes of input functions. From the results, we can conclude that the structure of the regulatory network is insufficient for the determination of signal integration. It is the actual structure of the promoter and regulatory region, the mechanism of transcription regulation, and the interplay between transcription factors that shape the input function to be suitable for adaptation. PMID:19559028

  15. The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus.

    PubMed

    Zhao, Huajie; Li, Shangshang; Zhang, Jianjun; Che, Gen; Zhou, Meng; Liu, Min; Zhang, Chen; Xu, Nuo; Lin, Lin; Liu, Yu; Jia, Le

    2016-10-20

    Two polysaccharides, EIPS and AIPS were obtained by the hydrolysis of IPS from Termitomyces albuminosus, and their pharmacological effects on blood lipid profiles metabolism and oxidative stress were investigated. The results demonstrated that EIPS was superior to IPS and AIPS on reducing hepatic lipid levels and preventing oxidative stress by improving serum enzyme activities (ALT, AST, and ALP), serum lipid levels (TC, TG, HDL-C, LDL-C and VLDL-C), hepatic lipid levels (TC and TG), and antioxidant status (SOD, GSH-Px, CAT, T-AOC, MDA, and LPO). These conclusions indicated that EIPS, AIPS and IPS might be suitable for functional foods and natural drugs on preventing the high-fat emulsion-induced hyperlipidemia. In addition, the monosaccharide compositions of IPS and its hydrolyzate were also processed. PMID:27474674

  16. Intracellular Signaling Molecules Activated by Epstein-Barr Virus for Induction of Interferon Regulatory Factor 7

    PubMed Central

    Zhang, Luwen; Wu, Lihong; Hong, Ke; Pagano, Joseph S.

    2001-01-01

    Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) is the principal oncogenic protein in the EBV transformation process. LMP-1 induces the expression of interferon regulatory factor 7 (IRF-7) and activates IRF-7 protein by phosphorylation and nuclear translocation. LMP-1 is an integral membrane protein with two regions in its C terminus that initiate signaling processes, the C-terminal activator regions 1 (CTAR-1) and CTAR-2. Here, genetic analysis of LMP-1 has determined that the PXQXT motif that governs the interaction between LMP-1 CTAR-1 and tumor necrosis factor receptor-associated factors (TRAFs) is needed to induce the expression of IRF-7. Mutations in the PXQXT motif in CTAR-1 that disrupt the interaction between LMP-1 and TRAFs abolished the induction of IRF-7. Also, dominant-negative mutants of TRAFs inhibited the induction of IRF-7 by CTAR-1. The last three amino acids (YYD) of CTAR-2 are also important for the induction of IRF-7. When both PXQXT and YYD were mutated (LMP-DM), the LMP-1 mutant failed to induce IRF-7. Also, LMP-DM blocked the induction of IRF-7 by wild-type LMP-1. These data strongly suggest that both CTAR-1 and CTAR-2 of LMP-1 independently induce the expression of IRF-7. In addition, NF-κB is involved in the induction of IRF-7. A superrepressor of IκB (sr-IκB) could block the induction of IRF-7 by LMP-1, and overexpression of NF-κB (p65 plus p50) could induce the expression of IRF-7. In addition, we have found that human IRF-7 is a stable protein, and sodium butyrate, a modifier of chromatin structure, induces IRF-7. PMID:11711629

  17. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed Central

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-01-01

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  18. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-04-15

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  19. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    PubMed

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  20. Flavonoids in Juglans regia L. Leaves and Evaluation of In Vitro Antioxidant Activity via Intracellular and Chemical Methods

    PubMed Central

    Zhao, Ming-Hui; Liu, Tao; Li, Rong

    2014-01-01

    Flavonoids are rich in Juglans regia L. leaves. They have potent antioxidant properties, which have been related to regulating immune function and enhancing anticancer activity. Herein, qualitative and quantitative determination of flavonoids from J. regia leaves was carried out using high performance liquid chromatography coupled with tandem mass spectrometry with electrospray ionization and negative ion detection (HPLC-ESI-MS/MS) by comparison of the retention times and mass spectral fragments with standard substances or related literatures. Seventeen compounds were identified and major components are quercetin-3-O-rhamnoside (453.11 μg/g, dry weight), quercetin-3-O-arabinoside (73.91 μg/g), quercetin-3-O-xyloside (70.04 μg/g), kaempferol-O-pentoside derivative (49.04 μg/g), quercetin-3-O-galactoside (48.61 μg/g), and kaempferol-O-pentoside (48.46 μg/g). The in vitro intracellular antioxidation indicated that flavonoids from J. regia leaves could reduce the reactive oxygen species (ROS) level in RAW264.7 cells and showed good radical scavenging activities. These results proved to be more related to the flavonoids that could be considered in the design of new formulations of dietary supplements or functional foods. PMID:25133218

  1. Inhibitory effect of interferon-gamma activated ovine umbilical vein endothelial cells on the intracellular replication of Toxoplasma gondii.

    PubMed

    Dimier, I H; Bout, D T

    1996-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is a major cause of abortion and neonatal mortality in sheep. In congenital toxoplasmosis, T gondii first invades the umbilical vein endothelial cells and are then disseminated throughout the fetus. Treatment of ovine umbilical vein endothelial cells with bovine recombinant gamma-interferon (IFN-gamma) blocked the growth of T gondii. Growth of the parasite was measured by 3H-uracil incorporation 18 h after the onset of the infection and by microscopic enumeration of parallel cultures. This assay revealed that when the cells were pretreated with IFN-gamma in concentrations ranging from 0.15-1,250 U/mL, a high degree of inhibition of T gondii replication was observed with the effect being dose-dependent. Maximum activation was achieved by incubating with 625 U/mL IFN-gamma and no activity was present at 0.15 U/mL. This technique could be of relevance as a first line of defense against congenital ovine Toxoplasma infection. Inhibition of T gondii replication is due to a different mechanism from that existing in mouse macrophages and human fibroblasts. L-Arginine-dependent production of reactive nitrogen and oxygen intermediates was not responsible for the inhibition of T gondii replication. Supplements of five amino acids were able to overcome the inhibition partially but significantly. The mechanism of the inhibition remains to be elucidated. PMID:8822620

  2. Aqueous solution behaviour and membrane disruptive activity of pH-responsive PEGylated pseudo-peptides and their intracellular distribution.

    PubMed

    Chen, Rongjun; Yue, Zhilian; Eccleston, Mark E; Slater, Nigel K H

    2008-11-01

    The effect of PEGylation on the aqueous solution properties and cell membrane disruptive activity of a pH-responsive pseudo-peptide, poly(l-lysine iso-phthalamide), has been investigated by dynamic light scattering, haemolysis and lactate dehydrogenase (LDH) assays. Intracellular trafficking of the polymers has been examined using confocal and fluorescence microscopy. With increasing degree of PEGylation, the modified polymers can form stabilised compact structures with reduced mean hydrodynamic diameters. Poly(l-lysine iso-phthalamide) with a low degree of PEGylation (17.4 wt%) retained pH-dependent solution behaviour and showed enhanced kinetic membrane disruptive activity compared to the parent polymer. It facilitated trafficking of endocytosed materials into the cytoplasm of HeLa cells. At levels of PEGylation in excess of 25.6 wt%, the modified polymers displayed a single particle size distribution unresponsive to pH, as well as a decrease in cell membrane lytic ability. The mechanism involved in membrane destabilisation was also investigated, and the potential applications of these modified polymers in drug delivery were discussed. PMID:18708250

  3. Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity.

    PubMed

    Kumar, Kota Arun; Garcia, Celia R S; Chandran, Vandana R; Van Rooijen, N; Zhou, Yingyao; Winzeler, Elizabeth; Nussenzweig, Victor

    2007-11-01

    Malaria sporozoites migrate through several cells prior to a productive invasion that involves the formation of a parasitophorous vacuole (PV) where sporozoites undergo transformation into Exo-erythorcytic forms (EEFs). The precise mechanism leading to sporozoite activation for invasion is unknown, but prior traversal of host cells is required. During cell migration sporozoites are exposed to large shifts in K(+) concentration. We report here that incubation of sporozoites to the intracellular K(+) concentration enhances 8-10 times the infectivity of Plasmodium berghei and 4-5 times the infectivity of Plasmodium yoelli sporozoites for a hepatocyte cell line, while simultaneously decreasing cell passage activity. The K(+) enhancing effect was time and concentration dependent, and was significantly decreased by K(+) channel inhibitors. Potassium-treated P. berghei sporozoites also showed enhanced numbers of EEFs in non-permissive cell lines. Treated sporozoites had reduced infectivity for mice, but infectivity was enhanced upon Kupffer cell depletion. Transcriptional analysis of K(+) treated and control sporozoites revealed a high degree of correlation in their levels of gene expression, indicating that the observed phenotypic changes are not due to radical changes in gene transcription. Only seven genes were upregulated by more than two-fold in K(+) treated sporozoites. The highest level was noted in PP2C, a phosphatase known to dephosphorylate the AKT potassium channel in plants. PMID:17714805

  4. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    SciTech Connect

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  5. Pseudomonas aeruginosa Triggers Macrophage Autophagy To Escape Intracellular Killing by Activation of the NLRP3 Inflammasome

    PubMed Central

    Deng, Qiuchan; Wang, Yi; Zhang, Yuanqing; Li, Meiyu; Li, Dandan; Huang, Xi; Wu, Yongjian; Pu, Jieying

    2015-01-01

    Assembly of the inflammasome has recently been identified to be a critical event in the initiation of inflammation. However, its role in bacterial killing remains unclear. Our study demonstrates that Pseudomonas aeruginosa infection induces the assembly of the NLRP3 inflammasome and the sequential secretion of caspase1 and interleukin-1β (IL-1β) in human macrophages. More importantly, activation of the NLRP3 inflammasome reduces the killing of P. aeruginosa in human macrophages, without affecting the generation of antimicrobial peptides, reactive oxygen species, and nitric oxide. In addition, our results demonstrate that P. aeruginosa infection increases the amount of the LC3-II protein and triggers the formation of autophagosomes in human macrophages. The P. aeruginosa-induced autophagy was enhanced by overexpression of NLRP3, ASC, or caspase1 but was reduced by knockdown of these core molecules of the NLRP3 inflammasome. Treatment with IL-1β enhanced autophagy in human macrophages. More importantly, IL-1β decreased the macrophage-mediated killing of P. aeruginosa, whereas knockdown of ATG7 or Beclin1 restored the IL-1β-mediated suppression of bacterial killing. Collectively, our study explores a novel mechanism employed by P. aeruginosa to escape from phagocyte killing and may provide a better understanding of the interaction between P. aeruginosa and host immune cells, including macrophages. PMID:26467446

  6. Engineering of chimeric catalase-Angiopep-2 for intracellular protection of brain endothelial cells against oxidative stress.

    PubMed

    Yainoy, Sakda; Houbloyfa, Patcharaporn; Eiamphungporn, Warawan; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2014-07-01

    Blood-brain barrier (BBB) disruption and brain microvascular endothelial cells (BMVECs) death caused by excessive production of hydrogen peroxide (H2O2) have been implicated in several neurological conditions. To overcome this problem, H2O2-degrading enzyme with ability to enter the BMVECs is required. In the present study, genetic fusion of gene encoding human catalase and gene encoding Angiopep-2 (AP2), a brain targeting peptide, was performed. The fusion protein was successfully expressed in Escherichia coli and purified to homogeneity. The protein retained heme content and specific enzymatic activity in the same order of magnitude as that of native enzyme. Study of the BMVECs internalization showed that 0.1μM of the fusion protein can enter the cell within 15min, while internalization of the native protein was not observed at this condition. In addition, treatment of the BMVECs with 20 units of the fusion protein for 30min showed protection against H2O2 up to 5.0mM, whereas this protective effect was not observed from treatment with the native protein. Therefore, construction of chimeric human catalase and AP2 provides an insight into the development of potential therapeutic antioxidant with ability to penetrate the BBB for protection against neurodegenerative disorders. PMID:24769213

  7. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway

    PubMed Central

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V.; Cubano, Luis A.; Inyushin, Mikhail; Skatchkov, Serguei N.; Eaton, Misty J.; Harrison, Jeffrey K.; Kucheryavykh, Lilia Y.

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  8. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway.

    PubMed

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V; Cubano, Luis A; Inyushin, Mikhail; Skatchkov, Serguei N; Eaton, Misty J; Harrison, Jeffrey K; Kucheryavykh, Lilia Y

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  9. The role of substrate specificity and metal binding in defining the activity and structure of an intracellular subtilisin.

    PubMed

    Gamble, Michael; Künze, Georg; Brancale, Andrea; Wilson, Keith S; Jones, D Dafydd

    2012-01-01

    The dimeric intracellular subtilisin proteases (ISPs) found throughout Gram-positive bacteria are a structurally distinct class of the subtilase family. Unlike the vast majority of subtilisin-like proteases, the ISPs function exclusively within the cell, contributing the majority of observed cellular proteolytic activity. Given that they are active within the cell, little is known about substrate specificity and the role of stress signals such as divalent metal ions in modulating ISP function. We demonstrate that both play roles in defining the proteolytic activity of Bacillus clausii ISP and propose the molecular basis of their effects. Enzyme kinetics reveal that one particular synthetic tetrapeptide substrate, Phe-Ala-Ala-Phe-pNA, is hydrolysed with a catalytic efficiency ∼100-fold higher than any other tested. Heat-denatured whole proteins were found to be better substrates for ISP than the native forms. Substrate binding simulations suggest that the S1, S2 and S4 sites form defined binding pockets. The deep S1 cavity and wide S4 site are fully occupied by the hydrophobic aromatic side-chains of Phe. Divalent metal ions, probably Ca(2+), are proposed to be important for ISP activity through structural changes. The presence of >0.01 mM EDTA inactivates ISP, with CD and SEC suggesting that the protein becomes less structured and potentially monomeric. Removal of Ca(2+) at sites close to the dimer interface and the S1 pocket are thought to be responsible for the effect. These studies provide a new insight into the potential physiological function of ISPs, by reconciling substrate specificity and divalent metal binding to associate ISP with the unfolded protein response under stress conditions. PMID:23650602

  10. Engineering and biochemical analysis of the bioconversion of methane into an intracellular polymer: poly. beta. -hydroxybutyrate (PHB)

    SciTech Connect

    Suk, J.S.

    1987-01-01

    The biochemistry of the methylotrophs was analyzed and theoretical yields for biomass and energy reserve products were calculated for methane and methanol on a few variations on the energy transduction pathways. Catabolic pathway was the dominant route of carbon utilization. NADH was the most important variable in determination of the yield. Growth of methylotrophs was experimentally investigated in fed batch, and continuous cultures, using methane and methanol. Choice of substrate had minor influence on the rates of growth or product synthesis. Under typical operating conditions, fed batch cultures accumulated approximately 50% of total dry weight as energy reserve materials. PHB accounted for 9% of the total dry weight during nitrogen limitation but reached 45% under oxygen limitation. Chemostat cultures exhibited an inverse relationship between biomass and dilution rate. Under nitrogen limitation, 26% of the dry weight was the highest proportion of PHB obtained. Similar values were obtained for sulfur and oxygen limitation. Shift oxygen limitation resulted in a rise in the rate of PHB synthesis, evidence of an active electron transport system. By maintaining the dissolved oxygen concentration at zero, PHB and Lipid biosynthetic pathways could be harnessed as metabolic shunts for the excess NADH production. Mixed substrate utilization was noted in fed batch fermentations for M. parvus but without concomitant biosynthesis. Uncoupling of energy metabolism, and biomass production was observed in fed-batch and continuous cultures during excess oxygen supply indicating that the catabolic pathway operated in excess of the required level. Models which describe the rates of nutrient utilization, and product formation were formulated.