Science.gov

Sample records for engineering structures iii

  1. Molecular beam epitaxy engineered III-V semiconductor structures for low-power optically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Device approaches are investigated for optically addressed SLMs based on molecular-beam epitaxy (MBE) engineered III-V materials and structures. Strong photooptic effects can be achieved in periodically delta-doped multiple-quantum-well structures, but are still insufficient for high-contrast modulation with only single- or double-pass absorption through active layers of practical thickness. The asymmetric Fabry-Perot cavity approach is employed to permit extinction of light due to interference of light reflected from the front and back surfaces of the cavity. This approach is realized with an all-MBE-grown structure consisting of GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror and the GaAs surface as the low reflectance mirror. High-contrast modulation is achieved using a low-power InGaAs/GaAs quantum well laser for the control signal.

  2. Aircraft engines. III

    SciTech Connect

    Mikkelson, D.C.; Reck, G.M.

    1988-01-01

    Prospective powerplant configuration advancements for tilt-rotor subsonic flight, supersonic commercial flight, and hypersonic flight are speculated upon, with a view to possibilities for the exploitation of novel materials and of such advanced fuels as liquid methane and hydrogen. Attention is given to the foldable tilt-rotor concept, which employs a hydraulic torque converter to engage the fan stage of the high-bypass turbofan engine used in forward flight after the tilt-rotor blades have been stowed, and several advanced cycles and turbomechanical configurations for cruise in the high supersonic regime and beyond, through the hypersonic regime, and into orbital velocity.

  3. NIF Title III engineering plan

    SciTech Connect

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  4. Structural Engineering: Overview

    NASA Technical Reports Server (NTRS)

    Castro, Edgar

    2011-01-01

    This slide presentation presents the work of the Structural Engineering Division of the Engineering Directorate. The work includes: providing technical expertise and leadership for the development, evaluation, and operation of structural, mechanical, and thermal spaceflight systems.

  5. Engineering design of ARIES-III

    SciTech Connect

    Sze, D.K.; Wong, C.; Cheng, E.

    1993-07-01

    An efficient organic cooled low activation ferritic steel first wall and shield has been designed for the D-{sup 3}He power reactor ARIES-III. The design allows removal of the large surface heat load without exceeding temperature and stress design limits. The structure is expected to last for the whole reactor life. The major concerns regarding using the organic coolant in fusion reactors have been greatly alleviated.

  6. Computational engine structural analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Johns, R. H.

    1986-01-01

    A significant research activity at the NASA Lewis Research Center is the computational simulation of complex multidisciplinary engine structural problems. This simulation is performed using computational engine structural analysis (CESA) which consists of integrated multidisciplinary computer codes in conjunction with computer post-processing for problem-specific application. A variety of the computational simulations of specific cases are described in some detail in this paper. These case studies include: (1) aeroelastic behavior of bladed rotors, (2) high velocity impact of fan blades, (3) blade-loss transient response, (4) rotor/stator/squeeze-film/bearing interaction, (5) blade-fragment/rotor-burst containment, and (6) structural behavior of advanced swept turboprops. These representative case studies are selected to demonstrate the breath of the problems analyzed and the role of the computer including post-processing and graphical display of voluminous output data.

  7. Computer Education for Engineers, Part III.

    ERIC Educational Resources Information Center

    McCullough, Earl S.; Lofy, Frank J.

    1989-01-01

    Reports the results of the third survey of computer use in engineering education conducted in the fall of 1987 in comparing with 1981 and 1984 results. Summarizes survey data on computer course credits, languages, equipment use, CAD/CAM instruction, faculty access, and computer graphics. (YP)

  8. Factor structure of the MCMI-III.

    PubMed

    Craig, R J; Bivens, A

    1998-02-01

    The factor structure of the Millon Clinical Multiaxial Inventory (Millon, 1994; MCMI-III) was assessed among 444 African American inpatient substance abusers and constitutes the first factor analysis of the MCMI-III. We found 3 main factors: General Maladjustment, Paranoid Behavior/Thinking With Detached Emotionality, and Antisocial Acting Out. These factors were essentially similar to previous findings of factor studies with the MCMI and MCMI-II across diverse populations. This factor invariance should lend credibility to the revised test and spur additional research into its psychometric properties. PMID:9615431

  9. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  10. Composite mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.

  11. Computational structural mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.

  12. Structural Characterization of Sm(III)(EDTMP).

    PubMed

    Yang, Y; Pushie, M J; Cooper, D M L; Doschak, M R

    2015-11-01

    Samarium-153 ethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid) ((153)Sm-EDTMP, or samarium lexidronam), also known by its registered trademark name Quadramet, is an approved therapeutic radiopharmaceutical used in the palliative treatment of painful bone metastases. Typically, patients with prostate, breast, or lung cancer are most likely to go on to require bone pain palliation treatment due to bone metastases. Sm(EDTMP) is a bone-seeking drug which accumulates on rapidly growing bone, thereby delivering a highly region-specific dose of radiation, chiefly through β particle emission. Even with its widespread clinical use, the structure of Sm(EDTMP) has not yet been characterized at atomic resolution, despite attempts to crystallize the complex. Herein, we prepared a 1:1 complex of the cold (stable isotope) of Sm(EDTMP) under alkaline conditions and then isolated and characterized the complex using conventional spectroscopic techniques, as well as with extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional structure calculations, using natural abundance Sm. We present the atomic resolution structure of [Sm(III)(EDTMP)-8H](5-) for the first time, supported by the EXAFS data and complementary spectroscopic techniques, which demonstrate that the samarium coordination environment in solution is in agreement with the structure that has long been conjectured. PMID:26437889

  13. Engine Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    McKnight, R. L.; Maffeo, R. J.; Schrantz, S.; Hartle, M. S.; Bechtel, G. S.; Lewis, K.; Ridgway, M.; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The report describes the technical effort to develop: (1) geometry recipes for nozzles, inlets, disks, frames, shafts, and ducts in finite element form, (2) component design tools for nozzles, inlets, disks, frames, shafts, and ducts which utilize the recipes and (3) an integrated design tool which combines the simulations of the nozzles, inlets, disks, frames, shafts, and ducts with the previously developed combustor, turbine blade, and turbine vane models for a total engine representation. These developments will be accomplished in cooperation and in conjunction with comparable efforts of NASA Glenn Research Center.

  14. Computational structural mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses the formulation and solution of structural mechanics problems and the development of integrated software systems to computationally simulate the performance, durability, and life of engine structures. It is structured to supplement, complement, and, whenever possible, replace costly experimental efforts. Specific objectives are to investigate unique advantages of parallel and multiprocessing for reformulating and solving structural mechanics and formulating and solving multidisciplinary mechanics and to develop integrated structural system computational simulators for predicting structural performance, evaluating newly developed methods, and identifying and prioritizing improved or missing methods.

  15. Computational structural mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1988-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses the formulation and solution of structural mechanics problems and the development of integrated software systems to computationally simulate the performance, durability, and life of engine structures. It is structured to supplement, complement, and, whenever possible, replace costly experimental efforts. Specific objectives are to investigate unique advantages of parallel and multiprocessing for reformulating and solving structural mechanics and formulating and solving multidisciplinary mechanics and to develop integrated structural system computational simulators for predicting structural performance, evaluating newly developed methods, and identifying and prioritizing improved or missing methods.

  16. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  17. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  18. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  19. Automotive Stirling Engine Mod I design review report. Volume III

    SciTech Connect

    Not Available

    1982-08-01

    This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)

  20. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    SciTech Connect

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  1. Molecular structures of unbound and transcribing RNA polymerase III

    PubMed Central

    Hoffmann, Niklas A.; Jakobi, Arjen J.; Moreno-Morcillo, Maria; Glatt, Sebastian; Kosinski, Jan; Hagen, Wim J. H.; Sachse, Carsten; Müller, Christoph W.

    2015-01-01

    Transcription of genes encoding small structured RNAs such as tRNAs, spliceosomal U6 snRNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. The cryo-EM structures of the S. cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, allow for the first time to build a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82/C34/C31 heterotrimer in close proximity to the stalk. The C53/C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets. PMID:26605533

  2. Energy band engineering using polarization induced interface charges in MOCVD grown III-nitride heterojunction devices

    NASA Astrophysics Data System (ADS)

    Tripathi, Neeraj

    2011-12-01

    Characteristics of III-nitride based heterojunction devices are greatly influenced by the presence of high density of polarization induced interface charges. Research undertaken in the current doctoral thesis demonstrates the effect of presence of one, three and six sheets of polarization induced charges in three different III-nitride based devices, namely in a photocathode, a high electron mobility transistor (HEMT) and a hyperspectral detector structure. Through a systematic set of experiments and theoretical modeling an in-depth study of the interaction between multiple sheets of polarization induced charges and their impact on energy band profile was undertaken. Various device designs were studied and optimized using device simulations. Subsequently device structures were grown using metallorganic chemical vapor deposition (MOCVD). Growth conditions for III-nitride epilayers were optimized for pressure, temperature and V/III ratio. Devices were fabricated using photolithography and e-beam evaporation. Novel GaN and GaN/AlGaN photocathode structures were developed. First demonstration of effective negative electron affinity (ENEA) in a GaN photocathode without the use of Cs was made. Effect of polarization induced surface charges on photoemission characteristics was successfully explained using simulated energy band diagrams. AlGaN/GaN/AlGaN/SiO2 based back barrier HEMT structures were developed in which bandgap, thin film thicknesses and polarization induced charge density were engineered to demonstrate Normally OFF operation along with the ability to engineer turn ON voltage of the device. Further, AlGaN based tunable hyperspectral detector pixel with 6-heterojunctions, for application in wavelength spectrometry from UV to IR part of the spectrum, was developed. The novel device design used in the hyperspectral detector utilized voltage tunable internal photoemission (IPE) barriers to measure the energy of the incident photon. Detailed IPE measurements were

  3. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  4. Harrier III-AV8B with a modern engine

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III; Wurts, J. M.

    1985-01-01

    The paper examines the application of a 26, 156-lb thrust engine (which is 30 percent more thrust than the short-lift dry rating on the F402-RR-406 Pegasus engine) to an AV-8B aircraft. This modern engine has 30 percent more thrust than the F402-RR-406 Pegasus engine with no increase in engine weight; the weight is assumed to be constant for both engines. The paper focuses on the benefit to the AV-8B in increasing short takeoff gross weight and vertical landing weight. A second comparison is made between the bigger engine with the existing thrust-versus-SFC curve, and a 10 percent lower SFC curve. The notion of a modern engine with 10 percent lower SFC and 30 percent more thrust for the same size and weight is presented as a hypothesis, and is not supported by discussing engine technology. There are no engine data or technical discussion as to how the modern engine is constructed or which manufacturer could build it. The performance estimates are generated by ACSYNT, a NASA developed computer code that is available to U.S. industry and has been reported on in a number of other publications.

  5. The Mathematical Disposition of Structural Engineers

    ERIC Educational Resources Information Center

    Gainsburg, Julie

    2007-01-01

    This ethnographic study investigated the mathematical disposition of engineers. Structural engineers in two firms were observed in everyday practice. Observation and interview data were analyzed to elucidate the role of mathematics in solving engineering problems and the engineers' perceptions of the status of mathematics relative to other…

  6. Structural and electronic properties of III-V bismuth compounds

    NASA Astrophysics Data System (ADS)

    Ferhat, M.; Zaoui, A.

    2006-03-01

    We have performed ab initio self-consistent calculations based on the full potential linear augmented plane-wave method with the generalized gradient approximation to investigate the structural and the electronic properties of the less known bismuth III-V compounds: BBi, AlBi, GaBi, and InBi. Ground state parameters are computed and compared with available theoretical and experimental works. The zinc-blende phase is found to be the most stable for BBi, AlBi, and GaBi, while InBi prefers the tetragonal PbO structure. The relativistic contraction of the 6s orbital of Bi has strong effect on the band structure of III-Bi compounds, which exhibits some features that differ considerably from those of typical III-V semiconductors. In particular, we found an inverted band gap, which reflects a semimetallic character of these systems. Their bonding nature is analyzed in terms of valence charge density transfer, showing three different natures of the bond. Besides, the calculated valence charge density for BBi shows an anomalous behavior characterized by a charge transfer toward the cation B atom, while the others III-Bi behave as the typical III-V compounds with a small charge transfer to the anion bismuth atom.

  7. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  8. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  9. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  10. Structure of internal combustion engine

    SciTech Connect

    Nakamura, N.; Endo, H.; Oshio, S.; Ebisudani, T.; Ito, M.; Mizukami, T.; Kishimoto, M.

    1988-09-20

    This patent describes a structure of internal combustion engine, comprising a cylinder member formed with a cylinder which demarcates a combustion chamber in cooperation with a piston connected with a crankshaft, a crankcase provided in succession with the lower end of the cylinder member to accommodate the crankshaft, a valve actuating mechanism actuating valves provided in the combustion chamber in response to rotation of the crankshaft, at least a part of the valve actuating mechanism being accommodated in a rocker case provided on the upper end of the cylinder member, an oil return passage constituting means opening at one end into the rocker case, the other end being open into the crankcase at one side which is partitioned by a plane containing the cylinder axis of the cylinder member and the axis of the crankshaft and is occupied by a crank pin of the crankshaft when the piston rises, thereby constituting a passage for leading oil in the rocker case into the crankcase, and a restraining means provided in relation to the oil return passage constituting means so that an air flow around the axis of the crankshaft within the crankcase owing to the rotation of the crankshaft is restrained from entering into the passage through the opening of the other end.

  11. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  12. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field. PMID:26377655

  13. Synthesis and structural characterization of new dithiocarbamate complexes from Sb(III) and Bi(III)

    SciTech Connect

    Jamaluddin, Nur Amirah; Baba, Ibrahim

    2013-11-27

    Twenty new antimony and bismuth dithiocarbamate complexes which employed ten different type of amines have been successfully synthesized. The synthesized complexes with metal to dithiocarbamate ratio at 1:3. Elemental analysis of the complexes gave the general formula of MCl[S{sub 2}CNR’R”]{sub 2} where M = Sb(III), Bi(III); R’ = methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, benzyl; R” = ethanol, methyl, ethyl, propyl, isopropyl, cyclohexyl, benzyl. The complexes were analysed by IR and NMR spectroscopy. The crystal structure of five-coordinated antimony (III) complex have been determined by X-ray single crystal diffraction. Single crystal X-ray diffraction studies on SbCl[S{sub 2}CN(C{sub 4}H{sub 9})(C{sub 2}H{sub 5})]{sub 2} adopted a triclinic system with a space group P1 with a = 10.0141(8) Å, b = 10.1394(7) Å, c = 11.8665(9) Å, α = 67.960°, β =87.616°, γ = 80.172°.

  14. Synthesis and structural characterization of new dithiocarbamate complexes from Sb(III) and Bi(III)

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Nur Amirah; Baba, Ibrahim

    2013-11-01

    Twenty new antimony and bismuth dithiocarbamate complexes which employed ten different type of amines have been successfully synthesized. The synthesized complexes with metal to dithiocarbamate ratio at 1:3. Elemental analysis of the complexes gave the general formula of MCl[S2CNR'R"]2 where M = Sb(III), Bi(III); R' = methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, benzyl; R" = ethanol, methyl, ethyl, propyl, isopropyl, cyclohexyl, benzyl. The complexes were analysed by IR and NMR spectroscopy. The crystal structure of five-coordinated antimony (III) complex have been determined by X-ray single crystal diffraction. Single crystal X-ray diffraction studies on SbCl[S2CN(C4H9)(C2H5)]2 adopted a triclinic system with a space group P1 with a = 10.0141(8) Å, b = 10.1394(7) Å, c = 11.8665(9) Å, α = 67.960°, β =87.616°, γ = 80.172°.

  15. Structural tailoring of engine blades (STAEBL)

    NASA Technical Reports Server (NTRS)

    Platt, C. E.; Pratt, T. K.; Brown, K. W.

    1982-01-01

    A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.

  16. Interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates

    NASA Astrophysics Data System (ADS)

    He, Gang; Chen, Xiaoshuang; Sun, Zhaoqi

    2013-03-01

    Recently, III-V materials have been extensively studied as potential candidates for post-Si complementary metal-oxide-semiconductor (CMOS) channel materials. The main obstacle to implement III-V compound semiconductors for CMOS applications is the lack of high quality and thermodynamically stable insulators with low interface trap densities. Due to their excellent thermal stability and relatively high dielectric constants, Hf-based high-k gate dielectrics have been recently highlighted as the most promising high-k dielectrics for III-V-based devices. This paper provides an overview of interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates. We begin with a survey of methods developed for generating Hf-based high-k gate dielectrics. To address the impact of these hafnium based materials, their interfaces with GaAs as well as a variety of semiconductors are discussed. After that, the integration issues are highlighted, including the development of high-k deposition without Fermi level pinning, surface passivation and interface state, and integration of novel device structure with Si technology. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of Hf-based gate dielectrics on the current and future applications for nano-MOSFET devices.

  17. Probabilistic structural analysis methods of hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1989-01-01

    Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.

  18. Structure of Yellow Fever Virus Envelope Protein Domain III

    PubMed Central

    Volk, David E.; May, Fiona J.; Gandham, Sai H. A.; Anderson, Anjenique; Von Lindern, Jana J.; Beasley, David W. C.; Barrett, Alan D. T.; Gorenstein, David G.

    2009-01-01

    The structure of recombinant domain III of the envelope protein (rED3) of yellow fever virus (YFV), containing the major neutralization site, was determined using NMR spectroscopy. The amino acid sequence and structure of the YFV-rED3 shows differences from ED3s of other mosquito-borne flaviviruses; in particular, the partially surface-exposed BC loop where methionine-304 and valine-324 were identified as being critical for the structure of the loop. Variations in the structure and surface chemistry of ED3 between flaviviruses affect neutralization sites and may affect host cell receptor interactions and play a role in the observed variations in viral pathogenesis and tissue tropism. PMID:19818466

  19. Structural Properties of the Cr(III)-Fe(III) (Oxy)hydroxide Compositional Series: Insights for a Nanomaterial "Solid Solution"

    SciTech Connect

    Michel, Y.; Michel, F; Zhang, L; Harrington, R; Parise, J; Reeder, R

    2010-01-01

    Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of 27 {angstrom}. The Cr end member, with a coherent domain size of 10 {angstrom}, has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive structural

  20. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  1. Circular structure of the MCMI-III personality disorder scales.

    PubMed

    Strack, S; Choca, J P; Gurtman, M B

    2001-06-01

    Millon's (1987) circular model of personality disorders was examined in a large sample of psychiatric patients (N = 2,366) who completed the Millon Clinical Multiaxial Inventory-III (MCMI-III; Millon, 1997) as part of routine assessment after presentation for treatment. Principal components analyses were conducted to identify the first two dimensions in MCMI-III base rate scores, weighted and unweighted raw scores, and nonoverlapping scale scores. Similar analyses were made on these scores when acquiescence was partialled out. Circular plots of the scales were examined against Millon's hypothesized arrangement and the model was tested using confirmatory factor analysis. Results replicated those of Strack, Lorr, and Campbell (1990) with the MCMI-II. Millon's horizontal Impassive-Expressive dimension was recovered in both regular and residual scores but the vertical axis appeared to represent an Impulsivity-Compulsivity dimension rather than the Autonomous-Enmeshed continuum envisioned by Millon. Although scale order followed Millon's predictions for the most part, a number of departures from theoretical expectations were noted and none of the score sets yielded a good fit to the hypothetical structure. Millon's model appears to have promise as a circumplex that can encompass all of the personality disorders but changes are needed to rectify discrepancies between the theory and empirical findings. PMID:11406998

  2. Designing, engineering, and testing wood structures

    NASA Technical Reports Server (NTRS)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  3. 1,2,4-Diazaphospholide complexes of yttrium(iii), dysprosium(iii), erbium(iii), and europium(ii,iii): synthesis, X-ray structural characterization, and EPR analysis.

    PubMed

    Wang, Yongli; Guo, Wenzhen; Liu, Dongling; Yang, Ying; Zheng, Wenjun

    2016-01-21

    Several structurally characterized heteroleptic, charge-separated heterobimetallic, and polymeric alkali metal ate complexes of 1,2,4-diazaphospholide Y(iii), Dy(iii), Er(iii), Eu(iii), and Eu(ii) were prepared via the reaction of MCl3 and K[3,5-R2dp] in varied ratios at 200-220 °C (M = Y, Dy, Er, Eu; R = tBu, Ph). PMID:26666366

  4. The flexible pocketome engine for structural chemogenomics.

    PubMed

    Abagyan, Ruben; Kufareva, Irina

    2009-01-01

    Biological metabolites, substrates, cofactors, chemical probes, and drugs bind to flexible pockets in multiple biological macromolecules to exert their biological effect. The rapid growth of the structural databases and sequence data, including SNPs and disease-related genome modifications, complemented by the new cutting-edge 3D docking, scoring, and profiling methods has created a unique opportunity to develop a comprehensive structural map of interactions between any small molecule and biopolymers. Here we demonstrate that a comprehensive structural genomics engine can be built using multiple pocket conformations, experimentally determined or generated with a variety of modeling methods, and new efficient ensemble docking algorithms. In contrast to traditional ligand-activity-based engines trained on known chemical structures and their activities, the structural pocketome and docking engine will allow prediction of poses and activities for new, previously unknown, protein binding sites, and new, previously uncharacterized, chemical scaffolds. This de novo structure-based activity prediction engine may dramatically accelerate the discovery of potent and specific therapeutics with reduced side effects. PMID:19727619

  5. Large Hexadecametallic {Mn(III) -Ln(III) } Wheels: Synthesis, Structural, Magnetic, and Theoretical Characterization.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan

    2015-11-01

    The synthesis, gas sorption studies, magnetic properties, and theoretical studies of new molecular wheels of core type {Mn(III) 8 Ln(III) 8 } (Ln=Dy, Ho, Er, Y and Yb), using the ligand mdeaH2 , in the presence of ortho-toluic or benzoic acid are reported. From the seven wheels studied the {Mn8 Dy8 } and {Mn8 Y8 } analogues exhibit SMM behavior as determined from ac susceptibility experiments in a zero static magnetic field. From DFT calculations a S=16 ground state was determined for the {Mn8 Y8 } complex due to weak ferromagnetic Mn(III) -Mn(III) interactions. Ab initio CASSCF+RASSI-SO calculations on the {Mn8 Dy8 } wheel estimated the Mn(III) -Dy(III) exchange interaction as -0.1 cm(-1) . This weak exchange along with unfavorable single-ion anisotropy of Dy(III) /Mn(III) ions, however, led to the observation of SMM behavior with fast magnetic relaxation. The orientation of the g-anisotropy of the Dy(III) ions is found to be perpendicular to the plane of the wheel and this suggests the possibility of toroidal magnetic moments in the cluster. The {Mn8 Ln8 } clusters reported here are the largest heterometallic Mn(III) Ln(III) wheels and the largest {3d-4f} wheels to exhibit SMM behavior reported to date. PMID:26403264

  6. Probabilistic structural analysis methods of hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1989-01-01

    Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.

  7. Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase.

    PubMed

    Abe, Ikuro; Oguro, Satoshi; Utsumi, Yoriko; Sano, Yukie; Noguchi, Hiroshi

    2005-09-14

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides. PMID:16144421

  8. Teaching Structural Design in Civil Engineering Technology.

    ERIC Educational Resources Information Center

    Metwally, Ashraf

    This paper is a description of a college course in structural design, which in this case serves as the capstone of the program in Civil Engineering Technology at the College of Staten Island (New York). Fourteen weeks of class lecture topics, activities, and assignments are delineated. Coverage includes building codes, loads calculation,…

  9. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Engineer officer structure. 11.505 Section 11.505... OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure. The following diagram illustrates the engineering endorsement structure including cross over...

  10. 1,2,4-Diazaphospholide complexes of lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii): synthesis, X-ray structural characterization, and magnetic susceptibility studies.

    PubMed

    Zhao, Minggang; Wang, Lixia; Li, Pangpang; Ma, Jianping; Zheng, Wenjun

    2016-07-01

    A few heteroleptic, charge-separated heterobimetallic, and polymeric alkali metalate complexes of 1,2,4-diazaphospholide lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii) were simply prepared via the metathesis reaction of MCl3 (THF)m (m = 1-2) and K[3,5-R2dp] ([3,5-R2dp](-) = 3,5-di-substituent-1,2,4-diazaphospholide; R = tBu, Ph) in a varied ratio (1 : 3, 1 : 4, and 1 : 5, respectively) at room temperature in tetrahydrofuran. All the complexes were fully characterized by (1)H, (13)C{(1)H}, (31)P{(1)H}, IR, and X-ray single crystal diffraction analysis despite their paramagnetism (excluding La(iii) complexes). The structures of the complexes were found to feature varied coordination modes. The magnetic properties of several compounds were studied by magnetic susceptibility, and the complexes presented the magnetic moments close to or lower than the theoretical values for the free ions in the trivalent oxidation states (Pr(3+), Nd(3+)). PMID:27326667

  11. Oscillator Strengths for Fine-Structure Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1997-01-01

    Oscillator strengths and transition probabilities for transitions among the fine-structure levels of the terms belonging to the 3s(sup 2)3p(sup 2), 3s3p(sup 3), 3s(sup 2)3p3d, 3s(sup 2)3p4s, 3s(sup 2)3p4p, and 3s(sup 2)3p4d configurations of S III are calculated using extensive configuration-interaction wave functions. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the experimental values. The present results are compared with other available calculations and experiments.

  12. Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil

    SciTech Connect

    Scharf, Curtis R.; Miller, Mark E.

    2003-08-30

    The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.

  13. Balancer structure for three-cylinder engines

    SciTech Connect

    Suzuki, T.

    1986-01-21

    This patent describes a balancer structure for a three-cylinder in-line engine. The in-line engine is indicated in the patent as having a crankshaft having crank arms configured at angles of 120/sup 0/ with respect to each other and operatively connected to a piston assembly within each of the cylinders. This crankshaft and assembly, which serves as a balancer structure as one of its applications, is further characterized in the patent as consisting of a number of component parts. The first component described is a single countershaft adjacent and parallel to the crankshaft. It is specified in the patent that this countershaft must rotate at the same speed as the crankshaft but in an opposite direction in order to fulfill its role in the balancer structure. The patent also details an element of the balancer structure which consists of a means utilizing counterweights mounted on the crankshaft at the first and third cylinder positions. These weights are indicated as partially balancing the inertia forces of reciprocating masses and the entire inertia forces of rotating masses present in the described engine. The required position of these counterweights is indicated as being a location more than 90/sup 0/ from the crank arm for the corresponding cylinder and perpendicular to the second cylinder crank arm. The last component described consists of two balancers mounted on both ends of the countershaft which balance the remainder of the inertia forces of reciprocating masses and the inertia of the crankshaft about axes perpendicular to itself.

  14. The Structure and Function of Type III Secretion Systems

    PubMed Central

    Notti, Ryan Q.; Stebbins, C. Erec

    2015-01-01

    ARTICLE SUMMARY Type III secretion systems (T3SS) afford gram-negative bacteria a most intimate means of altering the biology of their eukaryotic hosts — the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe “injectisomes,” which form a conduit across the three plasma membranes, peptidoglycan layer and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the post-translational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS. PMID:26999392

  15. Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans.

    PubMed

    Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin

    2015-08-01

    While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity. PMID:26172070

  16. Gallium(III) Tetraphenylporphyrinates Containing Hydrosulfide and Thiolate Ligands: Structural Models for Sulfur-Bound Iron(III) Hemes.

    PubMed

    Meininger, Daniel J; Chee-Garza, Max; Arman, Hadi D; Tonzetich, Zachary J

    2016-03-01

    Gallium(III) tetraphenylporphyrinates (TPP) containing anionic sulfur ligands have been prepared and characterized in the solid state and solution. The complexes serve as structural models for iron(III) heme sites containing sulfur coordination that otherwise prove challenging to synthesize due to the propensity for reduction to iron(II). The compounds prepared include the first well-characterized example of a trivalent metalloporphyrinate containing a terminal hydrosulfide ligand, [Ga(SH)(TPP)], as well as [Ga(SEt)(TPP)], [Ga(SPh)(TPP)], and [Ga(SSi(i)Pr3)(TPP)]. The stability of these compounds toward reduction has permitted an investigation of their solid-state structures and electrochemistry. The structural features and reaction chemistry of the complexes in relation to their iron(III) analogs is discussed. PMID:26872092

  17. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    NASA Technical Reports Server (NTRS)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  18. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    NASA Astrophysics Data System (ADS)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  19. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  20. Ion mixing of III-V compound semiconductor layered structures

    SciTech Connect

    Xia, W.; Pappert, S.A.; Zhu, B.; Clawson, A.R.; Yu, P.K.L.; Lau, S.S. ); Poker, D.B.; White, C.W. ); Schwarz, S.A. )

    1992-03-15

    Compositional disordering of III-V compound superlattice structures has received considerable attention recently due to its potential application for photonic devices. The conventional method to induce compositional disorder in a layered structure is to implant a moderate dose of impurity ions ({similar to}10{sup 15}/cm{sup 2}) into the structure at room temperature, followed by a high-temperature annealing step (this process is referred to as IA here). Ion irradiation at room temperature alone does not cause any significant intermixing of layers. The subsequent high-temperature annealing step tends to restrict device processing flexibility. Ion mixing (IM) is capable of enhancing compositional disordering of layers at a rate which increases exponentially with the ion irradiation temperature. As a processing technique to planarize devices, ion mixing appears to be an attractive technology. In this work, we investigate compositional disordering in the AlGaAs/GaAs and the InGaAs/InP systems using ion mixing. We found that the ion mixing behavior of these two systems shows a thermally activated regime as well as an athermal regime, similar to that observed for metal-metal and metal-semiconductor systems. Ion mixing is observed to induce compositional disordering at significantly lower temperatures than that for the IA process. We have compared the two processes in terms of five parameters: (1) irradiation temperature, (2) dose dependence, (3) dose rate dependence, (4) annealing, and (5) ion dependence (including electrical effects and mass dependence). We found that the IM process is more efficient in utilizing the defects generated by ion irradiation to cause disordering. Both the physical mechanism of ion mixing and possible device implications will be discussed.

  1. Fatigue Reliability of Gas Turbine Engine Structures

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Mahadevan, Sankaran; Tryon, Robert G.

    1997-01-01

    The results of an investigation are described for fatigue reliability in engine structures. The description consists of two parts. Part 1 is for method development. Part 2 is a specific case study. In Part 1, the essential concepts and practical approaches to damage tolerance design in the gas turbine industry are summarized. These have evolved over the years in response to flight safety certification requirements. The effect of Non-Destructive Evaluation (NDE) methods on these methods is also reviewed. Assessment methods based on probabilistic fracture mechanics, with regard to both crack initiation and crack growth, are outlined. Limit state modeling techniques from structural reliability theory are shown to be appropriate for application to this problem, for both individual failure mode and system-level assessment. In Part 2, the results of a case study for the high pressure turbine of a turboprop engine are described. The response surface approach is used to construct a fatigue performance function. This performance function is used with the First Order Reliability Method (FORM) to determine the probability of failure and the sensitivity of the fatigue life to the engine parameters for the first stage disk rim of the two stage turbine. A hybrid combination of regression and Monte Carlo simulation is to use incorporate time dependent random variables. System reliability is used to determine the system probability of failure, and the sensitivity of the system fatigue life to the engine parameters of the high pressure turbine. 'ne variation in the primary hot gas and secondary cooling air, the uncertainty of the complex mission loading, and the scatter in the material data are considered.

  2. Molecular structure, photophysical and thermal properties of samarium (III) complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Singh, Udai P.

    2008-03-01

    Some 8-coordinated samarium (III) complexes ( 1- 4) having bipy (2,2'-bipyridine), terpy (2,2':6',2″-terpyridine), phen (1,10-phenanthroline) and tp [hydrotris (pyrazol-1-yl) borate] as supporting ligands have been synthesized and structurally characterized by different techniques including X-ray crystallography. The X-ray studies demonstrated that the complexes 1, 2 and 4 crystallized in triclinic space group P1¯ with cell dimensions a = 8.5640(2) Å, b = 8.8696(2) Å, c = 15.8608(4) Å for 1; a = 7.2113(9) Å, b = 11.0737(14) Å, c = 13.6289(18) Å for 2; a = 12.440(3) Å, b = 12.874(3) Å, c = 17.822(4) Å for 4, whereas the complex 3 crystallized in the monoclinic space group P2 1/ c with cell dimensions a = 9.472(3) Å, b = 17.092(5) Å, c = 14.516(5) Å. The IR study suggested that the azide is coordinated in 1, 3-bridging mode in complex 4. The photophysical properties of above complexes have been studied with ultraviolet absorption and emission spectral studies. Thermogravimetric analyses suggested that all these complexes undergo the complete decomposition to form the thermally stable samarium oxide (Sm 2O 3).

  3. Dynamic and Structural Gas Turbine Engine Modeling

    NASA Technical Reports Server (NTRS)

    Turso, James A.

    2003-01-01

    Model the interactions between the structural dynamics and the performance dynamics of a gas turbine engine. Generally these two aspects are considered separate, unrelated phenomena and are studied independently. For diagnostic purposes, it is desirable to bring together as much information as possible, and that involves understanding how performance is affected by structural dynamics (if it is) and vice versa. This can involve the relationship between thrust response and the excitation of structural modes, for instance. The job will involve investigating and characterizing these dynamical relationships, generating a model that incorporates them, and suggesting and/or developing diagnostic and prognostic techniques that can be incorporated in a data fusion system. If no coupling is found, at the least a vibration model should be generated that can be used for diagnostics and prognostics related to blade loss, for instance.

  4. Engineering and building RF structures - the works

    SciTech Connect

    Schrage, D. L.

    2004-01-01

    The translation of the physics designs of linear accelerators into engineering and manufacturing requirements is discussed. The stages of conceptual design, prototyping, final design, construction, and installation are described for both superconducting (LANL {beta} = 0.175 Spoke Cavity) and normal-conducting (APT/LEDA 6.7 MeV RFQ) accelerators. An overview of codes which have linked accelerator cavity and thermal/structural analysis modules is provided. The linked RF/thermal/CFD/structural codes do work. Workers at laboratories throughout the world have been successful in predicting the thermal and structural performance of accelerator cavities using these codes. Use of these codes allows accurate prediction of resonant frequencies, Lorentz force de-tuning, tuning sensitivities and mechanical resonant frequencies. Most important, these codes allow cost-effective optimization of the cavity geometry and, for superconducting cavities, the location and shape of external stiffeners.

  5. Structure and magnetic properties of an unusual homoleptic iron(III) thiocyanate dimer.

    PubMed

    Dinsdale, D R; Lough, A J; Lemaire, M T

    2015-06-28

    We describe the structural and variable temperature magnetic susceptibility properties of an unusual homoleptic bimetallic iron(III) thiocyanate tetraanion. This work represents the first structurally characterized bis(μ-1,3-thiocyanato) dimer of iron(III). A weak antiferromagnetic exchange interaction is observed between the two iron(III) ions, which is supported by broken symmetry density functional theory (DFT) calculations. PMID:25996241

  6. Solvation structure and thermodynamics for Pr(III), Nd(III) and Dy(III) complexes in ionic liquids evaluated by Raman spectroscopy and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kuribara, Keita; Matsumiya, Masahiko; Tsunashima, Katsuhiko

    2016-12-01

    package. The bonding energy, ΔEb, was calculated as ΔEb = Etot(cluster) - Etot(RE3+) - nEtot([TFSA]-), and ΔEb ([Pr(III)(cis-TFSA)5]2-), ΔEb([Nd(III)(cis-TFSA)5]2-), and ΔEb([Dy(III)(cis-TFSA)5]2-) were calculated to be -4238.6 ± 6.8, -4362.3 ± 8.2, and -4284.2 ± 7.4 kJ mol-1, respectively. This series of structural results allows us to conclude that [Dy(III)(cis-TFSA)5]2- clusters are more stable state than the [Pr(III)(cis-TFSA)5]2- clusters in [P2225][TFSA]. Furthermore, the average atomic charges and the bond distances of these clusters were consistent with the thermodynamic properties.

  7. 14 CFR 33.23 - Engine mounting attachments and structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.23 Engine mounting attachments and structure. (a) The maximum allowable limit and ultimate loads for engine mounting... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine mounting attachments and...

  8. Band structure engineering in organic semiconductors.

    PubMed

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-17

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043

  9. Structural Engineering Managers - Innovation Challenges for their Skills

    NASA Astrophysics Data System (ADS)

    Linkeschová, D.; Tichá, A.

    2015-11-01

    The profession of a structural engineer is highly responsible, because the consequences of a structural engineer's errors result not only in economic damage to the property and often irreversible damage to the environment, they can also lead to direct loss of lives. In the current turbulent, dynamically developing society the managerial methods of structural engineers should not stagnate at the level of the last century applications. This paper deals with the challenges which the ongoing century poses to structural engineers and managers. It compares the results of research regarding the current state of managerial skills of structural engineers in Czech building companies to the defined skills of the 21st century's managers according to the global research programme ITL Research and according to the Vision for the Future of Structural Engineering, drawn up by Structural Engineering Institute - SEI ASCE.

  10. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III

    SciTech Connect

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-03-01

    This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report

  11. Crystal structures of two engineered thiol trypsins.

    PubMed

    McGrath, M E; Wilke, M E; Higaki, J N; Craik, C S; Fletterick, R J

    1989-11-28

    We have determined the three-dimensional structures of engineered rat trypsins which mimic the active sites of two classes of cysteine proteases. The catalytic serine was replaced with cysteine (S195C) to test the ability of sulfur to function as a nucleophile in a serine protease environment. This variant mimics the cysteine trypsin class of thiol proteases. An additional mutation of the active site aspartate to an asparagine (D102N) created the catalytic triad of the papain-type cysteine proteases. Rat trypsins S195C and D102N,S195C were solved to 2.5 and 2.0 A, respectively. The refined structures were analyzed to determine the structural basis for the 10(6)-fold loss of activity of trypsin S195C and the 10(8)-fold loss of activity of trypsin D102N,S195C, relative to rat trypsin. The active site thiols were found in a reduced state in contrast to the oxidized thiols found in previous thiol protease structures. These are the first reported structures of serine proteases with the catalytic centers of sulfhydryl proteases. Structure analysis revealed only subtle global changes in enzyme conformation. The substrate binding pocket is unaltered, and active site amino acid 102 forms hydrogen bonds to H57 and S214 as well as to the backbone amides of A56 and H57. In trypsin S195C, D102 is a hydrogen-bond acceptor for H57 which allows the other imidazole nitrogen to function as a base during catalysis. In trypsin D102N,S195C, the asparagine at position 102 is a hydrogen-bond donor to H57 which places a proton on the imidazole nitrogen proximal to the nucleophile. This tautomer of H57 is unable to act as a base in catalysis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2611228

  12. Synthesis, structure and luminescence studies of Eu(III), Tb(III), Sm(III), Dy(III) cationic complexes with acetylacetone and bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane☆

    PubMed Central

    Gusev, Alexey N.; Hasegawa, Miki; Shimizu, Tomohito; Fukawa, Tomonori; Sakurai, Shoya; Nishchymenko, Galyna A.; Shul’gin, Victor F.; Meshkova, Svetlana B.; Linert, Wolfgang

    2013-01-01

    Studies concerning synthesis, structure and luminescence of eight-coordinate Eu, Tb, Sm and Dy complexes of the type [Ln(acac)2(L)]Cl (Hacac = pentanedione-2,4 and L = bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane) are reported in detail. The obtained complexes were investigated by various means including elemental- and thermogravimetric analysis, IR- and electron transition spectroscopy. The structure of the Tb complex was determined by single-crystal X-ray crystallography: Tb is eight-coordinate, and L acting only as a tetradentate chelate together with two bidentate acac ligands. Photophysical studies of the complexes were carried out. The Tb(III) and Eu(III) complexes show strong emissions both in solid state and solution. The intensity of the luminescence of Dy(III) and Sm(III) are relatively weak. The factors determining the intensity of the photoluminescence are discussed. PMID:24068839

  13. Investigating the Structure of the WJ-III Cognitive at School Age

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.

    2013-01-01

    During its development, the Woodcock-Johnson, Third Edition Cognitive (WJ-III Cognitive; McGrew & Woodcock, 2001) was never subjected to structural analysis using exploratory and higher order factor analyses. Instead, confirmatory factor analyses were conducted on separate sets of WJ-III correlation matrices, yielding a seven-factor model across…

  14. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    SciTech Connect

    Chumakov, Yu. M. Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-15

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH){sub 2}]{sup +} cations, chloride ions, and molecules of crystallization water are linked together by a similar network.

  15. Effect of III-V on insulator structure on quantum well intermixing

    NASA Astrophysics Data System (ADS)

    Takashima, Seiya; Ikku, Yuki; Takenaka, Mitsuru; Takagi, Shinichi

    2016-04-01

    To achieve the monolithic active/passive integration on the III-V CMOS photonics platform, quantum well intermixing (QWI) on III-V on insulator (III-V-OI) is studied for fabricating multi-bandgap III-V-OI wafers. By optimizing the QWI condition for a 250-nm-thick III-V layer, which contains a five-layer InGaAsP-based multi-quantum well (MQW) with 80-nm-thick indium phosphide (InP) cladding layers, we have successfully achieved a photoluminescence (PL) peak shift of over 100 nm on the III-V-OI wafer. We have also found that the progress of QWI on the III-V-OI wafer is slower than that on the InP bulk wafer regardless of the buried oxide (BOX) thickness, bonding interface materials, and handle wafers. We have also found that the progress of QWI on the III-V-OI wafer is slower than that on the InP bulk wafer regardless of the buried oxide (BOX) thickness, bonding interface materials, and bulk support wafers on which the III-V-OI structure is formed (handle wafers). By comparing between the measured PL shift and simulated diffusions of phosphorus vacancies and interstitials during QWI, we have found that the slow QWI progress in the III-V-OI wafer is probably attributed to the enhanced recombination of vacancies and interstitials by the diffusion blocking of vacancies and interstitials at the BOX interface.

  16. Using Images To Teach the Beginnings of Structural Engineering.

    ERIC Educational Resources Information Center

    Lindenberg, Henrique; Arevalo, Luis Alberto Tello

    Aiming at turning theory of structures into a captivating subject to civil engineering students and at helping them understand the link between the mathematical models and the real structures, a new experience is underway at the Department of Structural and Foundation Engineering of Excola Politecnica da Universidada de Sao Paulo: transparencies…

  17. Balancer structure for three-cylinder engines

    SciTech Connect

    Suzuki, T.

    1986-02-11

    This patent describes a balancer structure for a three-cylinder in-line engine having aligned three cylinders, a crankshaft having crank arms disposed at angles of 120/sup 0/ with respect to each other and operatively connected to the cylinders, respectively. This structure consists of: 1.) a single countershaft adjacent and parallel to and rotated at the same speed as the crankshaft but in the opposite direction; 2.) a counterweight is securely mounted on the crankshaft only at positions corresponding to the first and third cylinders for balancing a part of inertia force of reciprocating mases and the entire inertia force of rotating masses; 3.) at least one second counterweight securely mounted on the crankshaft substantially opposite to the crank arm corresponding to the second cylinder for balancing another part of the inertia force of the reciprocating masses; 4.) at least two balancers securely mounted on the countershaft at both ends for the balancing of the remainder of the inertia force of the reciprocating masses and a couple of inertia of the crankshaft about an axis perpendicular to the crankshaft.

  18. Structural Basis for Substrate Binding and the Catalytic Mechanism of Type III Pantothenate Kinase

    SciTech Connect

    Yang, Kun; Strauss, Erick; Huerta, Carlos; Zhang, Hong

    2008-07-15

    Pantothenate kinase (PanK) catalyzes the first step of the universal five-step coenzyme A (CoA) biosynthetic pathway. The recently characterized type III PanK (PanK-III, encoded by the coaX gene) is distinct in sequence, structure and enzymatic properties from both the long-known bacterial type I PanK (PanK-I, exemplified by the Escherichia coli CoaA protein) and the predominantly eukaryotic type II PanK (PanK-II). PanK-III enzymes have an unusually high K{sub m} for ATP, are resistant to feedback inhibition by CoA, and are unable to utilize the N-alkylpantothenamide family of pantothenate analogues as alternative substrates, thus making type III PanK ineffective in generating CoA analogues as antimetabolites in vivo. Previously, we reported the crystal structure of the PanK-III from Thermotoga maritima and identified it as a member of the 'acetate and sugar kinase/heat shock protein 70/actin' (ASKHA) superfamily. Here we report the crystal structures of the same PanK-III in complex with one of its substrates (pantothenate), its product (phosphopantothenate) as well as a ternary complex structure of PanK-III with pantothenate and ADP. These results are combined with isothermal titration calorimetry experiments to present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes for both ATP and pantothenate substrates, and suggests that these differences may be exploited in the development of new inhibitors specifically targeting PanK-III.

  19. Hard magnetism in structurally engineered silica nanocomposite.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I

    2016-09-21

    Creation of structural complexity by simple experimental control will be an attractive approach for the preparation of nanomaterials, as a classical bottom-up method is supplemented by a more efficient and more direct artificial engineering method. In this study, structural manipulation of MCM-41 type mesoporous silica is investigated by generating and imbedding hard magnetic CoFe2O4 nanoparticles into mesoporous silica. Depending on the heating rate and target temperature, mesoporous silica undergoes a transformation in shape to form hollow silica, framed silica with interior voids, or melted silica with intact mesostructures. Magnetism is governed by the major CoFe2O4 phase, and it is affected by antiferromagnetic hematite (α-Fe2O3) and olivine-type cobalt silicate (Co2SiO4), as seen in its paramagnetic behavior at the annealing temperature of 430 °C. The early formation of Co2SiO4 than what is usually observed implies the effect of the partial substitution of Fe in the sites of Co. Under slow heating (2.5 °C min(-1)) mesostructures are preserved, but with significantly smaller mesopores (d100 = 1.5 nm). In addition, nonstoichiometric CoxFe1-xO with metal vacancies at 600 °C, and spinel Co3O4 at 700 °C accompany major CoFe2O4. The amorphous nature of silica matrix is thought to contribute significantly to these structurally diverse and rich phases, enabled by off-stoichiometry between Si and O, and accelerated by the diffusion of metal cations into SiO4 polyhedra at an elevated temperature. PMID:27537252

  20. Effects of Humidity on Non-Hermetically Packaged III-V Structures and Devices

    NASA Technical Reports Server (NTRS)

    Leon, R.; Martin, S.; Lee, T.; Okuno, J.; Ruiz, R.; Gauldin, R.; Gaidis, M.; Smith, R.

    1999-01-01

    High humidity and temperature test (known as 85/85 tests) were performed on various III-V devices and structures to determine environmental effects in non-hermetically packaged GaAs membrane mixer diodes.

  1. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer...

  2. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer...

  3. 46 CFR 11.505 - Engineer officer structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer...

  4. Electrical properties of nanofibers and structural characterization of DNA-Au(III) complexes.

    PubMed

    Kwon, Young-Wan; Lee, Chang Hoon; Jin, Jung-Il; Hwang, Jong Seung; Hwang, Sung Woo

    2014-05-23

    In order to realize deoxyribonucleic acid (DNA)-based molecular electronics, chemical modifications of DNA are needed to improve electrical conductivity. We developed a novel method utilizing the incorporation of Au(III) ions into DNA bases to alter their electronic properties. When Au(III) ions were incorporated proportionally into DNA bases, conductance increased up to an Au(III) content of 0.42 Au(III) ion/nucleotide. Surprisingly, electron paramagnetic resonance signals of Au(II) ions were detected at g ∼1.98, and the calculated spin number of Au(II) ions ranged from ∼10(13) to ∼10(15). The structural deformation of the DNA helix occurred when complexed with Au(III); simultaneously, the conductance of DNA-Au(III) complexes decreased when the content of Au(III) was higher than 0.42 atom/nucleotide. This observation implies that the maintenance of helical structure in the Au(III) doped state of DNA molecules is very important to the enhancement of the carrier mobility of DNA. PMID:24786616

  5. Balancer structure for three-cylinder engines

    SciTech Connect

    Suzuki, T.

    1987-04-21

    This patent describes a balancer structure for a three-cylinder in-line engine having three cylinders, the latter comprising a first and third cylinder and a second cylinder disposed between the first and third cylinders, a crankshaft having crank arms disposed at angles of 120/sup 0/ with respect to each other and operatively connected to a piston assembly within each of the cylinders, respectively, consisting of: a single crankshaft adjacent and parallel to and rotated at the same speed as the crankshaft but in the opposite direction, means comprising first counterweights securely mounted on the crankshaft only at positions thereof corresponding to the first and third cylinders for balancing of a part of inertia forces of rotating masses and a part of inertia forces of reciprocating masses; means comprising at least one second counterweight securely mounted on the crankshaft substantially opposite to the crank arm corresponding to the second cylinder for balancing of the remainder of the inertia forces of rotating masses; at least two balancers respectively securely mounted on the countershaft at both ends respectively thereof for the balancing of the remainder of the inertia forces of reciprocating masses, and of the couple of inertia of the crankshaft about axes perpendicular to the crankshaft.

  6. Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator.

    PubMed

    Imada, Katsumi; Minamino, Tohru; Uchida, Yumiko; Kinoshita, Miki; Namba, Keiichi

    2016-03-29

    FliI and FliJ form the FliI6FliJ ATPase complex of the bacterial flagellar export apparatus, a member of the type III secretion system. The FliI6FliJ complex is structurally similar to the α3β3γ complex of F1-ATPase. The FliH homodimer binds to FliI to connect the ATPase complex to the flagellar base, but the details are unknown. Here we report the structure of the homodimer of a C-terminal fragment of FliH (FliHC2) in complex with FliI. FliHC2 shows an unusually asymmetric homodimeric structure that markedly resembles the peripheral stalk of the A/V-type ATPases. The FliHC2-FliI hexamer model reveals that the C-terminal domains of the FliI ATPase face the cell membrane in a way similar to the F/A/V-type ATPases. We discuss the mechanism of flagellar ATPase complex formation and a common origin shared by the type III secretion system and the F/A/V-type ATPases. PMID:26984495

  7. Engineering Property Prediction Tools for Tailored Polymer Composite Structures

    SciTech Connect

    Nguyen, Ba Nghiep; Foss, Peter; Wyzgoski, Michael; Trantina, Gerry; Kunc, Vlastimil; Schutte, Carol; Smith, Mark T.

    2009-12-23

    This report summarizes our FY 2009 research activities for the project titled:"Engineering Property Prediction Tools for Tailored Polymer Composite Structures." These activities include (i) the completion of the development of a fiber length attrition model for injection-molded long-fiber thermoplastics (LFTs), (ii) development of the a fatigue damage model for LFTs and its implementation in ABAQUS, (iii) development of an impact damage model for LFTs and its implementation in ABAQUS, (iv) development of characterization methods for fatigue testing, (v) characterization of creep and fatigue responses of glass-fiber/polyamide (PA6,6) and glass-fiber/polypropylene (PP), (vi) characterization of fiber length distribution along the flow length of glass/PA6,6 and glass-fiber/PP, and (vii) characterization of impact responses of glass-fiber/PA6,6. The fiber length attrition model accurately captures the fiber length distribution along the flow length of the studied glass-fiber/PP material. The fatigue damage model is able to predict the S-N and stiffness reduction data which are valuable to the fatigue design of LFTs. The impact damage model correctly captures damage accumulation observed in experiments of glass-fiber/PA6,6 plaques.Further work includes validations of these models for representative LFT materials and a complex LFT part.

  8. 1. Photographic copy of engineering drawing showing structure of Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of engineering drawing showing structure of Test Stand 'B' (4215/E-16), also known as the 'Short Snorter.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Structural Addition - Bldg. E-12, Edwards Test Station,' drawing no. E12/1-1, 8 August 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA

  9. The role of a metastable RNA secondary structure in hepatitis delta virus genotype III RNA editing

    PubMed Central

    Linnstaedt, Sarah D.; Kasprzak, Wojciech K.; Shapiro, Bruce A.; Casey, John L.

    2006-01-01

    RNA editing plays a critical role in the life cycle of hepatitis delta virus (HDV). The host editing enzyme ADAR1 recognizes specific RNA secondary structure features around the amber/W site in the HDV antigenome and deaminates the amber/W adenosine. A previous report suggested that a branched secondary structure is necessary for editing in HDV genotype III. This branched structure, which is distinct from the characteristic unbranched rod structure required for HDV replication, was only partially characterized, and knowledge concerning its formation and stability was limited. Here, we examine the secondary structures, conformational dynamics, and amber/W site editing of HDV genotype III RNA using a miniaturized HDV genotype III RNA in vitro. Computational analysis of this RNA using the MPGAfold algorithm indicated that the RNA has a tendency to form both metastable and stable unbranched secondary structures. Moreover, native polyacrylamide gel electrophoresis demonstrated that this RNA forms both branched and unbranched rod structures when transcribed in vitro. As predicted, the branched structure is a metastable structure that converts readily to the unbranched rod structure. Only branched RNA was edited at the amber/W site by ADAR1 in vitro. The structural heterogeneity of HDV genotype III RNA is significant because not only are both conformations of the RNA functionally important for viral replication, but the ratio of the two forms could modulate editing by determining the amount of substrate RNA available for modification. PMID:16790843

  10. Predicted band structures of III-V semiconductors in the wurtzite phase

    SciTech Connect

    De, A.; Pryor, Craig E.

    2010-04-15

    While non-nitride III-V semiconductors typically have a zinc-blende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier ab initio calculations, and where experimental results are available (InP, InAs, and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may facilitate the development of spin-based devices.

  11. Novel Fe (III) heterochelates: Synthesis, structural features and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Modi, C. K.; Jani, D. H.; Patel, H. S.; Pandya, H. M.

    2010-04-01

    Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H 2SB n) and their Fe (III) heterochelates of the type [Fe(SB n)(L)(H 2O)]· mH 2O [H 2SB n = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = -CH 3, m = 4 ( H2SB1); -C 6H 5, m = 2 ( H2SB2); -CH 2-CH 3, m = 3 ( H2SB3); -CH 2-CH 2-CH 3, m = 1.5 ( H2SB4); -CH 2-C 6H 5, m = 1.5 ( H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction ( n), energy of activation ( Ea), entropy ( S*), pre-exponential factor ( A), enthalpy ( H*) and Gibbs free energy ( G*) have been reported.

  12. Structural Properties of the Cr(III)-Fe(III) (Oxy)Hydroxide Compositional Series: Insights for a Nanomaterial “Solid Solution”

    SciTech Connect

    Tang, Y.; Zhang, L.; Michel, F.M.; Harrington, R.; Parise, J.B.; Reeder, R.J.

    2010-05-28

    Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of {approx}27 {angstrom}. The Cr end member, with a coherent domain size of {approx}10 {angstrom}, has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive

  13. High-performance computing in structural mechanics and engineering

    SciTech Connect

    Adeli, H.; Kamat, M.P.; Kulkarni, G.; Vanluchene, R.D. Georgia Inst. of Technology, Atlanta Montana State Univ., Bozeman )

    1993-07-01

    Recent advances in computer hardware and software have made multiprocessing a viable and attractive technology. This paper reviews high-performance computing methods in structural mechanics and engineering through the use of a new generation of multiprocessor computers. The paper presents an overview of vector pipelining, performance metrics for parallel and vector computers, programming languages, and general programming considerations. Recent developments in the application of concurrent processing techniques to the solution of structural mechanics and engineering problems are reviewed, with special emphasis on linear structural analysis, nonlinear structural analysis, transient structural analysis, dynamics of multibody flexible systems, and structural optimization. 64 refs.

  14. Flight Investigation of the Cooling Characteristics of a Two-row Radial Engine Installation III : Engine Temperature Distribution

    NASA Technical Reports Server (NTRS)

    Rennak, Robert M; Messing, Wesley E; Morgan, James E

    1946-01-01

    The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)

  15. (Porphyrinato)bis(phthalocyaninato)dilanthanide(III) complexes presenting a sandwich triple-decker-like structure

    SciTech Connect

    Moussavi, M.; De Cian, A.; Fischer, J.; Weiss, R.

    1986-06-18

    Bis(phthalocyaninato)lanthanide(III) derivatives presenting a sandwich-type structure have been known for many years. These complexes are still intensively studied due to their semi-conductor and electrochromic properties. The synthesis and properties of bis(porphyrinato) and tris(porphyrinato)lanthanide(III) derivatives have also been reported. X-ray structural studies have shown that bis(porphyrinato) complexes have geometries that are similar to those displayed by the LnPc/sub 2/ complexes (Ln = lanthanide; Pc = phthalocyanine) whereas the tris(porphyrinato) derivatives present structures in which two lanthanide(III) metal cations are sandwiched between three macrocyclic rings in triple-decker-like geometry. Structural, magnetic, and spectroscopic properties of the green form of lutetium(III) bis(phthalocyanate) have shown that this complex is in a nonprotonated, one-electron-oxidized ligand form, Ln (Pc/sup 2 -/) (Pc..pi..). In such a molecule, the unpaired spin could be either located on one phthalocyanine ring or delocalized over both rings. In order to force the localization of the unpaired spin on one ring, the authors have tried to synthesize a dissymmetric mixed-ligand, porphyrin (Por) phthalocyanine (Pc), lanthanide sandwich Ln(Por)(Pc). However, under the conditions used, the authors obtained dilanthanide sandwich-triple-decker-like complexes. (Por(Ln)Pc(Ln)Pc) in which the two metal cations are sandwiched between three macrocyclic rings. They report the synthesis and spectral properties of such derivatives obtained with Ln = Nd(III), Eu(III), and Gd(III) and with meso-tetrakis(4-methoxyphenyl) porphyrin (H/sub 2/T(4-OCH/sub 3/)PP) and phthalocyanine (H/sub 2/Pc). The X-ray structure of the neodymim complex is also reported.

  16. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III

    PubMed Central

    Calin-Jageman, Irina; Nicholson, Allen W.

    2003-01-01

    Members of the ribonuclease III superfamily of double-strand-specific endoribonucleases participate in diverse RNA maturation and decay pathways. Ribonuclease III of the gram-negative bacterium Escherichia coli processes rRNA and mRNA precursors, and its catalytic action can regulate gene expression by controlling mRNA translation and stability. It has been proposed that E.coli RNase III can function in a non-catalytic manner, by binding RNA without cleaving phosphodiesters. However, there has been no direct evidence for this mode of action. We describe here an RNA, derived from the T7 phage R1.1 RNase III substrate, that is resistant to cleavage in vitro by E.coli RNase III but retains comparable binding affinity. R1.1[CL3B] RNA is recognized by RNase III in the same manner as R1.1 RNA, as revealed by the similar inhibitory effects of a specific mutation in both substrates. Structure-probing assays and Mfold analysis indicate that R1.1[CL3B] RNA possesses a bulge– helix–bulge motif in place of the R1.1 asymmetric internal loop. The presence of both bulges is required for uncoupling. The bulge–helix–bulge motif acts as a ‘catalytic’ antideterminant, which is distinct from recognition antideterminants, which inhibit RNase III binding. PMID:12711683

  17. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    SciTech Connect

    Suzuki, Tatsuo

    2015-11-23

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor, while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.

  18. Structure and activity of the anticaking agent iron(iii) meso-tartrate.

    PubMed

    Bode, Arno A C; Granneman, Sanne J C; Feiters, Martin C; Verwer, Paul; Jiang, Shanfeng; Meijer, Jan A M; van Enckevort, Willem J P; Vlieg, Elias

    2016-04-12

    Iron(iii) meso-tartrate, a metal-organic complex, is a new anticaking agent for sodium chloride. A molecular structure in solution is proposed, based on a combination of experimental and molecular modelling results. We show that the active complex is a binuclear iron(iii) complex with two bridging meso-tartrate ligands. The iron atoms are antiferromagnetically coupled, resulting in a reduced paramagnetic nature of the solution. In solution, a water molecule coordinates to each iron atom as a sixth ligand, resulting in an octahedral symmetry around each iron atom. When the water molecule is removed, a flat and charged site is exposed, matching the charge distribution of the {100} sodium chloride crystal surface. This charge distribution is also found in the iron(iii) citrate complex, another anticaking agent. This gives a possible adsorption geometry on the crystal surface, which in turn explains the anticaking activity of the iron(iii) meso-tartrate complex. PMID:26974191

  19. Structure of complexes of nickel(III) with dithioligands

    SciTech Connect

    Larin, G.M.; Zvereva, G.A.

    1987-03-01

    The authors investigated the interaction of tetraethylthiuram disulfide (TETD) with nickel(II) bis-diethyldithio-phosphate Ni(dtp)/sub 2/, which, like Ni(dtc)/sub 2/, is a low-spin planoquadratic bis-dithiocomplex. However, in the oxidation of Ni(dtp)/sub 2/, they might expect the appearance of a supplementary hyperfine structure (SHFS) in the ESR spectra from the phosphorus atoms contained in the NiS/sub 2/P metallocycle, which substantially facilitates the interpretation of the observed spectra and, as a result, gives a clear idea of the composition and structure of the compounds studied. The interaction of Ni(dtp)/sub 2/ with TETD was investigated by the ESR method in dry redistilled toluene in air and in an inert atmosphere.

  20. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  1. Elucidation of the Fe(III) Gallate Structure in Historical Iron Gall Ink.

    PubMed

    Ponce, Aldo; Brostoff, Lynn B; Gibbons, Sarah K; Zavalij, Peter; Viragh, Carol; Hooper, Joseph; Alnemrat, Sufian; Gaskell, Karen J; Eichhorn, Bryan

    2016-05-17

    Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited. PMID:27058399

  2. Electronic structure of III-V zinc-blende semiconductors from first principles

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Yin, Haitao; Cao, Ronggen; Zahid, Ferdows; Zhu, Yu; Liu, Lei; Wang, Jian; Guo, Hong

    2013-06-01

    For analyzing quantum transport in semiconductor devices, accurate electronic structures are critical for quantitative predictions. Here we report theoretical analysis of electronic structures of all III-V zinc-blende semiconductor compounds. Our calculations are from density functional theory with the semilocal exchange proposed recently [Tran and Blaha, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.226401 102, 226401 (2009)], within the linear muffin tin orbital scheme. The calculated band gaps and effective masses are compared to experimental data and good quantitative agreement is obtained. Using the theoretical scheme presented here, quantum transport in nanostructures of III-V compounds can be confidently predicted.

  3. Synthesis, crystal structure and magnetic properties of a novel heterobimetallic rhenium(IV)-dysprosium(III) chain.

    PubMed

    Pejo, Carolina; Guedes, Guilherme P; Novak, Miguel A; Speziali, Nivaldo L; Chiozzone, Raúl; Julve, Miguel; Lloret, Francesc; Vaz, Maria G F; González, Ricardo

    2015-06-01

    The use of the mononuclear rhenium(IV) precursor [ReBr5 (H2 pydc)](-) (H2 pydc=3,5-pyridinedicarboxylic acid) as a metalloligand towards dysprosium(III) afforded the first heterobimetallic Re(IV) -Dy(III) complex. Crystal structures and static and dynamic magnetic properties of both rhenium-containing species are reported herein. The 5d-4f compound shows an extended 1D structure and the AC magnetic measurements reveal frequency dependence at low temperature suggesting slow relaxation of the magnetization. PMID:25916407

  4. System structural test results - Six PODS III supports. [Passive Orbital Disconnect Struts

    NASA Technical Reports Server (NTRS)

    Parmley, Richard T.; Kittel, Peter

    1986-01-01

    Passive orbital disconnect struts can potentially reduce the support conductance a factor of 10 over state-of-the-art tension band nondisconnect supports and cut helium dewar weights in half for the same lifetime. A series of thermal and structural tests were performed to verify that this performance improvement is real. Structural tests on a PODS-III support system (consisting of six struts) is reported here. The results show the predicted performance improvements can be achieved and the PODS-III supports are ready for flight applications. For large tankage systems requiring higher side load capability, a PODS-IV version is currently being developed.

  5. Information and telecommunication system for monitoring of hydraulic engineering structures

    NASA Astrophysics Data System (ADS)

    Pavlycheva, Nadezhda K.; Akhmetgaleeva, Railia R.; Muslimov, Eduard R.; Murav'eva, Elena V.; Peplov, Artem A.; Sibgatulina, Dina S.

    2016-03-01

    In this article, we present the information and telecommunications system that allows to carry out real-time monitoring of the quality and quantity of hydraulic engineering structures in order to reduce the risk of emergencies caused by environmental damage.

  6. Type III polyketide synthase repertoire in Zingiberaceae: computational insights into the sequence, structure and evolution.

    PubMed

    Mallika, Vijayanathan; Aiswarya, Girija; Gincy, Paily Thottathil; Remakanthan, Appukuttan; Soniya, Eppurathu Vasudevan

    2016-07-01

    Zingiberaceae or 'ginger family' is the largest family in the order 'Zingiberales' with more than 1300 species in 52 genera, which are mostly distributed throughout Asia, tropical Africa and the native regions of America with their maximum diversity in Southeast Asia. Many of the members are important spice, medicinal or ornamental plants including ginger, turmeric, cardamom and kaempferia. These plants are distinguished for the highly valuable metabolic products, which are synthesised through phenylpropanoid pathway, where type III polyketide synthase is the key enzyme. In our present study, we used sequence, structural and evolutionary approaches to scrutinise the type III polyketide synthase (PKS) repertoire encoded in the Zingiberaceae family. Highly conserved amino acid residues in the sequence alignment and phylogram suggested strong relationships between the type III PKS members of Zingiberaceae. Sequence and structural level investigation of type III PKSs showed a small number of variations in the substrate binding pocket, leading to functional divergence among these PKS members. Molecular evolutionary studies indicate that type III PKSs within Zingiberaceae evolved under strong purifying selection pressure, and positive selections were rarely detected in the family. Structural modelling and protein-small molecule interaction studies on Zingiber officinale PKS 'a representative from Zingiberaceae' suggested that the protein is comparatively stable without much disorder and exhibited wide substrate acceptance. PMID:27138283

  7. Aero/structural tailoring of engine blades (AERO/STAEBL)

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1988-01-01

    This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases.

  8. Effective band structure of random III-V alloys

    NASA Astrophysics Data System (ADS)

    Popescu, Voicu; Zunger, Alex

    2010-03-01

    Random substitutional alloys have no long range order (LRO) or translational symmetry so rigorously speaking they have no E(k) band structure or manifestations thereof. Yet, many experiments on alloys are interpreted using the language of band theory, e.g. inferring Van Hove singularities, band dispersion and effective masses. Many standard alloy theories (VCA- or CPA-based) have the LRO imposed on the alloy Hamiltonian, assuming only on-site disorder, so they can not be used to judge the extent of LRO that really exists. We adopt the opposite way, by using large (thousand atom) randomly generated supercells in which chemically identical alloy atoms are allowed to have different local environments (a polymorphous representation). This then drives site-dependent atomic relaxation as well as potential fluctuations. The eigenstates from such supercells are then mapped onto the Brillouin zone (BZ) of the primitive cell, producing effective band dispersion. Results for (In,Ga)X show band-like behaviour only near the centre and faces of the BZ but rapidly lose such characteristics away from γ or for higher bands. We further analyse the effects of stoichiometry variation, internal relaxation, and short-range order on the alloy band structure.

  9. Parameter identification of civil engineering structures

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  10. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  11. Structure and electrical characterization of gallium arsenide nanowires with different V/III ratio growth parameters

    SciTech Connect

    Muhammad, R.; Ahamad, R.; Ibrahim, Z.; Othaman, Z.

    2014-03-05

    Gallium arsenide (GaAs) nanowires were grown vertically on GaAs(111)B substrate by gold-assisted using metal-organic chemical vapour deposition. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and conductivity atomic force microscopy (CAFM) analysis were carried out to investigate the effects of V/III ratio on structural properties and current-voltage changes in the wires. Results show that GaAs NWs grow preferably in the wurtzite crystal structure than zinc blende crystal structure with increasing V/III ratio. Additionally, CAFM studies have revealed that zincblende nanowires indicate ohmic characteristic compared to oscillation current occurred for wurtzite structures. The GaAs NWs with high quality structures are needed in solar cells technology for trapping energy that directly converts of sunlight into electricity with maximum capacity.

  12. Spectroscopic and structural investigations of iron(III) isothiocyanates. A comparative theoretical and experimental study.

    PubMed

    Elijošiutė, Erika; Eicher-Lorka, Olegas; Griškonis, Egidijus; Kuodis, Zenonas; Jankūnaitė, Dalia; Denafas, Gintaras

    2014-08-14

    A combined experimental and theoretical study on the molecular structure and vibrational spectra of [Fe(NCS)](2+) complex in the aqueous solution at the pH∼2 ± 0.1 have been performed. Experimental Raman spectra of the iron(III) isothiocyanate with higher coordination number in the acidic aqueous solution have been analyzed. Molecular modeling of the iron(III) monoisothiocyanate complex was accomplished by the density functional theory (DFT) method using B3LYP and PBE1PBE functionals. Theoretical vibrational spectra of the iron(III) monoisothiocyanate were interpreted by means of the potential energy distributions (PEDs). The influence of different solvation models and position of SO4(2)(-) ligand vs. NCS(-) ligand upon its geometry and vibrational frequencies have been evaluated. The effect of H2O/D2O isotopic substitution on the experimental and calculated Raman spectra of iron(III) isothiocyanates has been examined. Procedures of Raman spectra subtraction have been applied for the extractions of weak and/or obscured Raman signals. As a result, the presence of bound SO4(2)(-) ion and water molecules in the first coordination sphere in the acidic aqueous iron(III) isothiocyanate solution was confirmed. The vibrational assignments for the investigated iron(III) isothiocyanates were proposed here for the first time. PMID:24721282

  13. A NdIII enantiomeric pair: Synthesis, crystal structures and near-infrared luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Feng-Cai; Li, Xi-Li; Hu, Ming; Zhang, Xue-Li; Chen, Conghui; Zhu, Cancan

    2016-08-01

    Based on enantiopure bis-bidentate N-donor ligands (-)/(+)-2,5-bis(4,5-pinene- 2-pyridyl)pyrazine (LR/LS), a new pair of NdIII enantiomers with the formula Nd(dbm)3LR/S·2H2O (R-1 and S-1 being the isomers containing the LR and LS ligands, respectively, and dbm = dibenzoylmethanate) have been isolated and characterized by X-ray crystallography and spectroscopic methods. Notably, unlike our previously reported homodinuclear EuIII and DyIII complexes based on the identical ligands (LR and LS), the dinuclear NdIII congener have not been obtained by controlling the ligand-to-metal ratio as expected, the reason of which was elucidated in this work. The crystal structure analyses of R-1 and S-1 reveal that they are mononuclear NdIII complexes and crystallize in chiral space group P212121 of the orthorhombic system. Circular dichroic (CD) spectra confirmed their chiroptical activities and enantiomeric nature. The photoluminescence investigations showed that they display characteristic near-infrared (NIR) emissions of the NdIII ions with notable emitting lifetime value.

  14. Structural Probability Concepts Adapted to Electrical Engineering

    NASA Technical Reports Server (NTRS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-01-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  15. Decontamination and Decommissioning of the SPERT-II and SPERT-III reactors at the Idaho National Engineering Laboratory

    SciTech Connect

    Hine, R.E.

    1981-02-01

    This report describes the Decontamination and Decommissioning (D and D) of the SPERT-II and SPERT-III reactor facilities performed during the period June through September 1980 at the Idaho National Engineering Laboratory. It includes a detailed description of the D and D accomplished and the post-D and D condition of the reactor facilities. The report also serves to document the radiological condition of the facilities after D and D, the waste volume generated and its disposition, and the project cost and schedule.

  16. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine

    PubMed Central

    David, Renald

    2015-01-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)]n, was prepared under hydro­thermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetra­hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa­hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra­hedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)]. PMID:26870399

  17. Computer applications for engineering/structural analysis

    NASA Astrophysics Data System (ADS)

    Zaslawsky, M.; Samaddar, S. K.

    1991-10-01

    Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequence of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.

  18. Computer applications for engineering/structural analysis

    SciTech Connect

    Zaslawsky, M.; Samaddar, S.K.

    1991-01-01

    Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.

  19. Structure elucidation of fungal beauveriolide III, a novel inhibitor of lipid droplet formation in mouse macrophages.

    PubMed

    Namatame, I; Tomoda, H; Tabata, N; Si, S; Omura, S

    1999-01-01

    The structure of fungal beauveriolide III, an inhibitor of lipid droplet formation in mouse macrophages, was elucidated to be cyclo-[(3S,4S)-3-hydroxy-4-methyloctanoyl-L-phenylalanyl-L-alanyl- D-allo-isoleucyl] by spectral analyses and chemical degradation. PMID:10092190

  20. Synthesis and Structure of Hexatungstochromate(III), [H3Cr(III)W6O24]6-.

    PubMed

    Liu, Wenjing; Lin, Zhengguo; Bassil, Bassem S; Al-Oweini, Rami; Kortz, Ulrich

    2015-01-01

    The hexatungstochromate(III) [H(3)Cr(III)W(6)O(24)](6-) (1) was synthesized in aqueous, basic medium by simple reaction of chromium(III) nitrate nonahydrate and sodium tungstate dihydrate in a 1:6 ratio. Polyanion 1 represents the first Anderson-Evans type heteropolytungstate with a trivalent hetero element. The sodium salt of 1 with the formula Na(6)[H(3)Cr(III)W(6)O(24)]·22H(2)O (1a) was fully characterized in the solid state by single crystal XRD, FT-IR spectroscopy, and thermogravimetric analysis. PMID:26507761

  1. Developing a "highway code" to steer the structural and electronic properties of Fe(III)/Dy(III) coordination clusters.

    PubMed

    Chen, Sihuai; Mereacre, Valeriu; Prodius, Denis; Kostakis, George E; Powell, Annie K

    2015-04-01

    In the recently established field of 3d/4f coordination cluster (CC) chemistry several burning questions still need to be addressed. It is clear that combining 3d and 4f metal ions within a coordination cluster core has the potential to lead to electronic structures that will be very difficult to describe but can also be extremely interesting. Furthermore, understanding why certain core topologies seem to be favored is difficult to predict. Here we show that the secondary coordination sphere provided by the ligands influences the favored product, as demonstrated for the compound [Fe4Dy2(μ3-OH)2(n-bdea)4(C6H5CO2)8]·MeCN (1), which has a 2Fe:2Dy:2Fe core and was made using [Fe(III)3O(C6H5)CO2)(L)3](+) as starting material plus Dy(NO3)3 and N-n-butyl-diethanolamine (n-bdeaH2), compared with the compound made using a methyl meta-substituent (R) on the phenyl ring of the benzoate, [Fe(III)3O(C6H4Me)CO2)(L)3](+) as starting material, which resulted in the "square-in-square" compound [Fe4Dy4(μ3-OH)4(n-bdea)4(O2CC6H4CH3)12]·MeCN (2) when using ambient conditions. Changing reaction conditions from ambient to solvothermal leads to "double-propeller" compounds [Fe4Dy4(μ4-O)3(n-bdea)3(C6H5CO2)12]·13MeCN (3) and [Fe4Dy4(μ4-O)3(n-bdea)3(O2CC6H4CH3)12]·MeCN (4) forming with this core, resulting irrespective of the substitution on the iron benzoate starting material. Furthermore, compounds 1 and 2 can be transformed into compounds 3 and 4, respectively, using a solvothermal method. Thus, compounds 3 and 4 appear to be the thermodynamically most stable species. The factors steering the reactions toward these products are discussed. The electronic structures have been investigated using magnetic and Mössbauer studies. All compounds are cooperatively coupled 3d/4f systems, with compound 1 showing single-molecule magnet behavior. PMID:25748725

  2. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III.

    PubMed

    Foroughi, Leila M; Kang, You Na; Matzger, Adam J

    2011-09-01

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P2(1)2(1)2(1), with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 Å. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies. PMID:21904028

  3. Density Functional Theory of Structural and Electronic Properties of III-N Semiconductors

    SciTech Connect

    Guerel, H. Hakan; Akinci, Oezden; Uenlue, Hilmi

    2010-11-01

    In this wok, we present the density functional theory (DFT) calculations of cubic III-N based semiconductors by using the full potential linear augmented plane-wave method plus local orbitals as implemented in the WIEN2k code. Our aim is to predict the pressure effect on structural and electronic properties of III-N binaries and ternaries. Results are given for structural properties (e.g., lattice constant, elastic constants, bulk modulus, and its pressure derivative) and electronic properties (e.g., band structure, density of states, band gaps and band widths) of GaAs, GaN, AlN, and InN binaries and GaAsN ternaries. The proposed model uses GGA exchange-correlation potential to determine band gaps of semiconductors at {Gamma}, L and X high symmetry points of Brillouin zone. The results are found in good agreement with available experimental data for structural and electronic properties of these semiconductors.

  4. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.

  5. Enhanced non-radiative energy transfer in hybrid III-nitride structures

    SciTech Connect

    Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.

    2015-09-21

    The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces.

  6. Simultaneous analysis and design. [in structural engineering

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1985-01-01

    Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.

  7. Coil-winding fixture for SLAC's Mark III detector (Engineering Materials)

    SciTech Connect

    Not Available

    1980-01-01

    The two drawings listed provide the construction information for the modification to a previously-used coil form. The second drawing provides the information for construction of the form's drive sprocket. This basic form and drive mechanism with appropriate modifications was used to wind coils for the Mark II, Mark III and TPC experiment magnets as used at SLAC.

  8. Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite.

    PubMed

    Shi, Bingjie; Liu, Kai; Wu, Lingling; Li, Weiqiang; Smeaton, Christina M; Beard, Brian L; Johnson, Clark M; Roden, Eric E; Van Cappellen, Philippe

    2016-08-16

    We report on stable Fe isotope fractionation during microbial and chemical reduction of structural Fe(III) in nontronite NAu-1. (56)Fe/(54)Fe fractionation factors between aqueous Fe(II) and structural Fe(III) ranged from -1.2 to +0.8‰. Microbial (Shewanella oneidensis and Geobacter sulfurreducens) and chemical (dithionite) reduction experiments revealed a two-stage process. Stage 1 was characterized by rapid reduction of a finite Fe(III) pool along the edges of the clay particles, accompanied by a limited release to solution of Fe(II), which partially adsorbed onto basal planes. Stable Fe isotope compositions revealed that electron transfer and atom exchange (ETAE) occurred between edge-bound Fe(II) and octahedral (structural) Fe(III) within the clay lattice, as well as between aqueous Fe(II) and structural Fe(III) via a transient sorbed phase. The isotopic fractionation factors decreased with increasing extent of reduction as a result of the depletion of the finite bioavailable Fe(III) pool. During stage 2, microbial reduction was inhibited while chemical reduction continued. However, further ETAE between aqueous Fe(II) and structural Fe(III) was not observed. Our results imply that the pool of bioavailable Fe(III) is restricted to structural Fe sites located near the edges of the clay particles. Blockage of ETAE distinguishes Fe(III) reduction of layered clay minerals from that of Fe oxyhydroxides, where accumulation of structural Fe(II) is much more limited. PMID:27291525

  9. Structural Requirements for the Space Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2006-01-01

    In January 2004, the National Aeronautics and Space Administration (NASA) was given a vision for Space Exploration by President Bush, setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. As NASA gets ready to meet the vision set by President Bush, failures are not an option. Reliability of the propulsion engine systems will play an important role in establishing an overall safe and reliable operation of these new space systems. A new standard, NASA-STD-5012, Strength and Life Assessment for Space Propulsion System Engines, has been developed to provide structural requirements for assessment of the propulsion systems engine. This standard is a complement to the current NASA-wide standard NASA-STD-5001, Structural Design and Test Factors of Safety for Spaceflight Hardware, which excluded the requirement for the engine systems (rotatory structures) along with pressure vessels. As developed, this document builds on the heritage of the multiple industrial standards related to strength and life assessment of the structures. For assuring a safe and reliable operation of a product and/or mission, establishing a set of structural assessment requirements is a key ingredient. Hence, a concentrated effort was made to improve the requirements where there are known lessons learned during the design, test, and operation phases of the Space Shuttle Main Engine (SSME) and other engine development programs. Requirements delineated in this standard are also applicable for the reusable and/or human missions. It shall be noted that "reliability of a system cannot be tested and inspected but can only be achieved if it is first designed into a system." Hence, these strength and life assessment requirements for the space propulsion system engines shall be used along with other good engineering practices, requirements, and policies.

  10. Density functional theory studies of actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure, stability, and comparison with lanthanide(III) motexafins.

    PubMed

    Cao, Xiaoyan; Li, Quansong; Moritz, Anna; Xie, Zhizhong; Dolg, Michael; Chen, Xuebo; Fang, Weihai

    2006-04-17

    Newly developed relativistic energy-consistent 5f-in-core actinide pseudopotentials and corresponding (7s6p5d1f)/[5s4p3d1f] basis sets in the segmented contraction scheme, combined with density functional theory methods, have been used to study the molecular structure and chemical properties of selected actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure and stability are discussed, and a comparison to the lanthanide(III) motexafins (Ln-Motex2+, Ln = La, Gd, Lu) is made. The actinide element is found to reside above the mean N5 motexafin plane, and the larger the cation, the greater the observed out-of-plane displacement. It is concluded that the actinium(III), curium(III), and lawrencium(III) cations are tightly bound to the macrocyclic skeleton, yielding stable structures. However, the calculated metal-ligand gas-phase binding energy for An-Motex2+ is about 1-2 eV lower than that of Ln-Motex2+, implying a lower stability of An-Motex2+ compared to Ln-Motex2+. Results including solvent effects imply that Ac-Motex2+ is the most stable complex in aqueous solution and should be the best candidate for experimentalists to get stable actinide(III) motexafin complexes. PMID:16602805

  11. First structurally characterized mixed-halogen nickel(III) NCN-pincer complex

    NASA Astrophysics Data System (ADS)

    Kozhanov, Konstantin A.; Bubnov, Michael P.; Cherkasov, Vladimir K.; Fukin, Georgy K.; Vavilina, Nina N.; Efremova, Larisa Yu.; Abakumov, Gleb A.

    2009-03-01

    A square-pyramidal mixed-halogen nickel(III) NCN-pincer complex (PipeNCN)NiClBr (where PipeNCN = 2,6-bis(piperidinomethyl)phenyl) was structurally characterized. Bromine occupies apical position; pincer ligand and chlorine atom are in the basal plane. EPR detects that complex in solution exists as a mixture of two structural isomers with bromine or chlorine atoms in the top of pyramid.

  12. Crystal structure of the Yersinia type III secretion protein YscE

    SciTech Connect

    Phan, Jason; Austin, Brian P.; Waugh, David S.

    2010-12-06

    The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.

  13. The Structure-Mapping Engine: Algorithm and Examples.

    ERIC Educational Resources Information Center

    Falkenhainer, Brian; And Others

    This description of the Structure-Mapping Engine (SME), a flexible, cognitive simulation program for studying analogical processing which is based on Gentner's Structure-Mapping theory of analogy, points out that the SME provides a "tool kit" for constructing matching algorithms consistent with this theory. This report provides: (1) a review of…

  14. Dynamic response of heavy duty diesel engine structures

    SciTech Connect

    Anderton, D.; Ghazy, M.R.

    1987-01-01

    The paper describes an investigation to identify the sources of forces which cause the vibration of different parts of the engine structure in a turbocharged heavy duty diesel engine of 2 litres/cylinder capacity. The differences in vibration response at the main bearings and on the engine outer surfaces is shown. Results of overall dynamic stiffness measurements at the main bearings indicate that the oil film has a negligible effect on the behaviour of the major vibration response. A model is put forward for an absolute prediction of the engine outer surface vibration. The model can be seen as an alternative or complement to current F.E. techniques. A comparison between predicted and measured vibration on the crankcase is presented. Predicted vibration response spectra are used to show the relative contribution of liner and bearing forces to the overall crankcase and cylinder block vibration of the engine.

  15. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri

    NASA Astrophysics Data System (ADS)

    Liu, Deng; Dong, Hailiang; Bishop, Michael E.; Wang, Hongmei; Agrawal, Abinash; Tritschler, Sarah; Eberl, Dennis D.; Xie, Shucheng

    2011-02-01

    Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H 2/CO 2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H 2/CO 2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H 2/CO 2 as substrate, depending on nontronite concentration (5-10 g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H 2/CO 2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget.

  16. Situated learning methodologies and assessment in civil engineering structures education

    NASA Astrophysics Data System (ADS)

    Bertz, Michael Davis

    This thesis describes an overarching study of civil engineering undergraduate structural education through student performance in recalling and applying basic structural engineering knowledge, and the viability of alternative situated learning environments for more effectively supporting the learning of this knowledge. To properly ground this study, a thorough investigation of related work in assessment, cognitive science, educational technology, and design education was completed, with connections and applications to civil engineering education highlighted. The experimental work of the thesis is organized into three parts: an assessment of civil engineering undergraduates' fundamental structural engineering knowledge and abilities; the development and testing of a software support environment for situated learning, the Civil Engineering Learning Library (CELL); and, the implementation and evaluation of the design studio, a pedagogical model for situated learning in the classroom. The results of the assessment study indicate that civil engineering seniors (and also students earlier in the curriculum) have difficulty retaining and applying basic knowledge of structural behavior, especially doing so in a flexible fashion in design situations. The survey also suggests that visualization plays an important role in understanding structural behavior. Tests with the CELL system show that a cognitively-flexible multimedia environment can support structural learning, but were inconclusive about whether the computer-based system helped the students to learn better than conventional classroom lecture. Two trial implementations of the design studio indicate that the studio model can serve as a powerful situated learning environment, and that it can be scaled up to reasonable class sizes. Significant requirements are associated with this model, however, primarily in faculty involvement, but also in physical resources and student time. In addition to these conclusions about the

  17. Structure determination by multiple-wavelength anomalous dispersion (MAD) at the Pr L III edge

    PubMed Central

    Puehringer, Sandra; Hellmig, Michael; Liu, Sunbin; Weiss, Manfred S.; Wahl, Markus C.; Mueller, Uwe

    2012-01-01

    The use of longer X-ray wavelengths in macromolecular crystallography has grown significantly over the past few years. The main reason for this increased use of longer wavelengths has been to utilize the anomalous signal from sulfur, providing a means for the experimental phasing of native proteins. Here, another possible application of longer X-ray wavelengths is presented: MAD at the L III edges of various lanthanide compounds. A first experiment at the L III edge of Pr was conducted on HZB MX beamline BL14.2 and resulted in the successful structure determination of the C-terminal domain of a spliceosomal protein. This experiment demonstrates that L III edges of lanthanides constitute potentially attractive targets for long-wavelength MAD experiments. PMID:22869138

  18. RNA Polymerase III Advances: Structural and tRNA Functional Views.

    PubMed

    Arimbasseri, Aneeshkumar G; Maraia, Richard J

    2016-06-01

    RNA synthesis in eukaryotes is divided among three RNA polymerases (RNAPs). RNAP III transcribes hundreds of tRNA genes and fewer additional short RNA genes. We survey recent work on transcription by RNAP III including an atomic structure, mechanisms of action, interactions with chromatin and retroposons, and a conserved link between its activity and a tRNA modification that enhances mRNA decoding. Other new work suggests important mechanistic connections to oxidative stress, autoimmunity and cancer, embryonic stem cell pluripotency, and tissue-specific developmental effects. We consider that, for some of its complex functions, variation in RNAP III activity levels lead to nonuniform changes in tRNAs that can shift the translation profiles of key codon-biased mRNAs with resultant phenotypes or disease states. PMID:27068803

  19. Geometric and Electronic Structure of a Peroxomanganese(III) Complex Supported by a Scorpionate Ligand

    PubMed Central

    Colmer, Hannah E.; Geiger, Robert A.; Leto, Domenick F.; Wijeratne, Gayan B.; Day, Victor W.; Jackson, Timothy A.

    2014-01-01

    A monomeric MnII complex has been prepared with the facially-coordinating TpPh2 ligand, (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin MnII ion. Treatment of this MnII complex with excess KO2 at room temperature resulted in the formation of a MnIII-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the MnIII-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz2 MO that is the donor MO for this transition. PMID:25312785

  20. Structure and efficient luminescence upconversion of Ln(iii) aromatic N-oxide coordination polymers.

    PubMed

    Chong, Bowie S K; Moore, Evan G

    2016-08-14

    A series of lanthanide-based coordination polymers {[Yb1-xErx(4,4'-bpdo)3(H2O)2](CF3SO3)3}∞ were synthesised by solvent diffusion techniques, where 4,4'-bpdo = 4,4'-bipyridine-N,N'-dioxide, and using differing mole fractions of Yb(iii) and Er(iii) which were systematically varied (x = 0, 0.05, 0.20, 0.50 and 1). All of the materials obtained were characterised using elemental analyses, single-crystal X-ray diffraction (SXRD) and solid-state photoluminescence studies. Structurally, the coordination polymers crystallise as an isomorphous series of infinite 2D sheets, which contain two inner sphere water molecules, and are isostructural with a previously characterised homometallic Yb(iii) compound. In addition to the normal Near Infra-Red (NIR) luminescence, these compounds also demonstrate upconversion emission upon 980 nm excitation. Upconversion luminescence measurements reveal visible emission in the red, green, and blue regions corresponding to the (2)H11/2→(4)I15/2, (4)F9/2→(4)I15/2 and (2)H9/2→(4)I15/2 transitions of the Er(iii) cation upon two and three-photon excitation. We also observed weak emission from the Er(iii) cation in the UV region for the first time in a Ln-MOF based material. PMID:27411484

  1. Production of fine structures in type III solar radio bursts due to turbulent density profiles

    SciTech Connect

    Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo

    2014-07-20

    Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f{sub p} to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f{sub p} and 2 f{sub p} radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f{sub p} than 2 f{sub p} emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f{sub p} radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f{sub p} radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.

  2. Structures, performance, benefit, cost study. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Feder, E.

    1981-01-01

    Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.

  3. Polarization engineering and approaches for high-performance III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Arif, Ronald A.

    Light emitting diodes (LEDs) have been increasingly integrated into mainstream lighting. In all applications requiring single-colored light, LEDs have outperformed filtered incandescent lamps. However, there are two major challenges. First is the issue of cost. High-performance nitride-based white LEDs cost roughly two orders of magnitude more expensive than incandescent lamps. The second challenge is color rendering---quantified by Color Rendering Index (CRI). Today's nitride white light LEDs still rely on the mixing of blue light from blue InGaN LEDs and yellow phosphor, and the CRI is relatively low. The best white LEDs to date have a CRI of 70--80, in comparison to traditional lamps, which generally have a CRI close to 100, and able to represent the true color of an object. An ideal way to improve the CRI is by mixing the luminescence of primary color LEDs. However, in order to make this approach viable, all the LEDs have to be based on a single materials platform. AlInGaN is the only materials system to date with the potential to fulfill this, since the bandgap of this nitride compound (with varying amount of Al, In, and Ga) can be varied from UV to IR range. There is still a lot of room for improvement in the efficiencies of nitride blue and green LEDs, while nitride-based active region emitting in the red wavelength (lambda ˜ 650-nm) regime is not realizable yet. In this dissertation, methods to increase internal quantum efficiency by polarization field engineering have been proposed. Two novel structures based on (1) staggered InGaN QW and (2) type-II InGaN-GaNAs QW have been investigated. Staggered InGaN QWs have shown improvement in the photoluminescence, cathodoluminescence, and LED output power, which agree well with numerical model prediction. All materials and devices in this work have been designed, grown and fabricated in-house. For the LED fabrication, a method based on selective area epitaxy---which bypasses dry-etching---has been utilized. In

  4. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    PubMed

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates. PMID:22447901

  5. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  6. Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein.

    PubMed Central

    Chao, H.; Davies, P. L.; Sykes, B. D.; Sönnichsen, F. D.

    1993-01-01

    To help understand the structure/function relationships in antifreeze proteins (AFP), and to define the motifs required for ice binding, a Type III AFP suitable for two-dimensional (2D) NMR studies was produced in Escherichia coli. A synthetic gene for one of the Type III AFP isoforms was assembled in a T7 polymerase-directed expression vector. The 67-amino acid-long gene product differed from the natural AFP by inclusion of an N-terminal methionine but was indistinguishable in activity. The NMR spectra of this AFP were complicated by cis-trans proline isomerization from the C-terminal sequence YPPA. Substitution of this sequence by YAA eliminated isomer signals without altering the activity or structure of the mutant AFP. This variant (rQAE m1.1) was selected for sequential assignment and the secondary structure determination using 2D 1H NMR spectroscopy. Nine beta-strands are paired to form two triple-stranded antiparallel sheets and one double-stranded antiparallel sheet. Two further proline replacements, P29A and P33A, were made to delineate the role of conserved prolines in Type III AFP. These mutants were valuable in clarifying ambiguous NMR spectral assignments amongst the remaining six prolines of rQAE m1.1. In contrast to the replacement of the C-terminal prolyl residues, the exchange of P29 and P33 caused some structural changes and significantly decreased protein solubility and antifreeze activity. PMID:8401227

  7. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    NASA Astrophysics Data System (ADS)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  8. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    PubMed Central

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-01-01

    The vacuolar protein sorting 4 AAA–ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly. PMID:26632262

  9. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    NASA Astrophysics Data System (ADS)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-07-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  10. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    NASA Astrophysics Data System (ADS)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-05-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  12. ADVANCED COMBUSTION SYSTEMS FOR STATIONARY GAS TURBINE ENGINES: VOLUME III. COMBUSTOR VERIFICATION TESTING

    EPA Science Inventory

    The reports describe an exploratory development program to identify, evaluate, and demonstrate dry techniques for significantly reducing NOx from stationary gas turbine engines. Volume 3 describes the scaleup of the rich-burn/quick-quench (RB/QQ) model to a full-scale (25 MW) gas...

  13. Nontronite (NAu-1) Structure Associated with Microbial Fe(III) Reduction in Various Redox Conditions

    NASA Astrophysics Data System (ADS)

    Koo, T.; Kim, S.; Kim, J.

    2011-12-01

    Shewanella oneidensis MR-1 respires the structural Fe(III) of smectite and promotes illite formation in O2-free environment (Kostka et al., 1996, Kim et al., 2004). Since S. oneidensis is a facultative iron reducing bacterium, it is crucial to understand the structural changes induced by bio-reduction of structural Fe(III) in various redox conditions. Furthermore, the changes in cation exchange capacity (CEC) of bio-reduced nontronite upon the modification of mineral structure has not been extensively studied in terms of Fe-cycling. In this present study, we reported the evolution of nontronite structure at various time points in various redox conditions and corresponding CEC upon reduction and re-oxidation. S. oneidensis MR-1 was incubated in M1 medium with Na-lactate as the electron donor and Fe in nontronite (NAu-1) as the sole electron acceptor at pH 7 in anaerobic chamber for 3 hrs, 12 hrs, 1 day, 2 days, 4 days, 7 days, 14 days, and 21 days. O2 gas bubbling was then applied to the sample at each time point for 24 hours for re-oxidation. The triplet samples at each time point for both reduction and re-oxidation experiments were prepared. The extent of Fe(III) reduction measured by 1,10-phenanthroline method (Stucki and Anderson, 1981) indicated that the structural Fe(III) was reduced up to 8.8% of total Fe(III) within 21 days. XRD data with various treatments such as air dried, glycolated and lithium-saturated showed that K-nontronite may be formed because no discrete 10-Å illite peak was observed in Li-saturated sample upon glycolation. The CEC increased from 747 meg/kg to 1145 meg/kg during Fe(III) reduction and decreased to 954 meg/kg upon re-oxidation, supporting the possible formation of K-nontronite. The direct observation by electron microscopy verified the structural changes in nontonite in various redox conditions. The long-term experiment for 6 months, is in progress in anaerobic chamber, and results will be discussed. Kim, J. W., Dong, H., Seabaugh

  14. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  15. Structural and phylogenetic basis for the classification of group III phospholipase A2.

    PubMed

    Hariprasad, Gururao; Srinivasan, Alagiri; Singh, Reema

    2013-09-01

    Secretory phospholipase A2 (PLA2) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to liberate arachidonic acid, a precursor of eicosanoids, that are known mediators of inflammation. The group III PLA2 enzymes are present in a wide array of organisms across many species with completely different functions. A detailed understanding of the structure and evolutionary proximity amongst the enzymes was carried out for a meaningful classification of this group. Fifty protein sequences from different species of the group were considered for a detailed sequence, structural and phylogenetic studies. In addition to the conservation of calcium binding motif and the catalytic histidine, the sequences exhibit specific 'amino acid signatures'. Structural analysis reveals that these enzymes have a conserved globular structure with species specific variations seen at the active site, calcium binding loop, hydrophobic channel, the C-terminal domain and the quaternary conformational state. Character and distance based phylogenetic analysis of these sequences are in accordance with the structural features. The outcomes of the structural and phylogenetic analysis lays a convincing platform for the classification the group III PLA2s into (1A) venomous insects; (IB) non-venomous insects; (II) mammals; (IIIA) gila monsters; (IIIB) reptiles, amphibians, fishes, sea anemones and liver fluke, and (IV) scorpions. This classification also helps to understand structure-function relationship, enzyme-substrate specificity and designing of potent inhibitors against the drug target isoforms. PMID:23793742

  16. Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4_CROCu) and III-7 (MYX7_CROCu) isolated from the Crotalus durissus cumanensis venom.

    PubMed

    Ponce-Soto, Luis Alberto; Martins-de-Souza, Daniel; Marangoni, Sergio

    2010-07-01

    Two major crotamine isoforms (III-4 and III-7) were obtained combining two chromatographic steps on molecular exclusion chromatography (Sephadex G-75) and ion-exchange column (Protein Pack SP 5PW) of the rattlesnake Crotalus durissus cumanensis venom. The "in vivo" myotoxic effect of the venom, its "in vitro" cytotoxicity in myoblasts and myotubes (C2C12) and the neurotoxic and edema-forming activity were characterized. The molecular masses of the crotamine isoforms were 4907.94 Da (III-4) and 4985.02 Da (III-7) and, as determined by mass spectrometry, both contained six Cys residues. Enzymatic hydrolysis followed by de novo sequencing through tandem mass spectrometry was used to determine the primary structure of both isoforms. III-4 and III-7 isoforms presented a 42-amino acid residues sequence and showed high molecular amino acid sequence identity with other crotamine-like proteins from Crotalus durissus terrificus. In vivo, both crotamine isoforms induced myotoxicty and a systemic interleukin-6 response upon intramuscular injection. These new crotamine isoforms induced low cytotoxicity in skeletal muscle myoblasts and myotubes (C2C12) and both induced a facilitatory effect on neuromuscular transmission in young chick biventer cervicis preparation. Edema-forming activity was also analyzed by injection of the crotamine isoforms into the right paw, since both crotamine isoforms exert a strong pro-inflammatory effect. PMID:20206199

  17. STAEBL: Structural tailoring of engine blades, phase 2

    NASA Technical Reports Server (NTRS)

    Hirschbein, M. S.; Brown, K. W.

    1984-01-01

    The Structural Tailoring of Engine Blades (STAEBL) program was initiated at NASA Lewis Research Center in 1980 to introduce optimal structural tailoring into the design process for aircraft gas turbine engine blades. The standard procedure for blade design is highly iterative with the engineer directly providing most of the decisions that control the design process. The goal of the STAEBL program has been to develop an automated approach to generate structurally optimal blade designs. The program has evolved as a three-phase effort with the developmental work being performed contractually by Pratt & Whitney Aircraft. Phase 1 was intended as a proof of concept in which two fan blades were structurally tailored to meet a full set of structural design constraints while minimizing DOC+I (direct operating cost plus interest) for a representative aircraft. This phase was successfully completed and was reported in reference 1 and 2. Phase 2 has recently been completed and is the basis for this discussion. During this phase, three tasks were accomplished: (1) a nonproprietary structural tailoring computer code was developed; (2) a dedicated approximate finite-element analysis was developed; and (3) an approximate large-deflection analysis was developed to assess local foreign object damage. Phase 3 is just beginning and is designed to incorporated aerodynamic analyses directly into the structural tailoring system in order to relax current geometric constraints.

  18. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-01

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  19. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms. PMID:27250314

  20. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

    PubMed Central

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling. DOI: http://dx.doi.org/10.7554/eLife.12548.001 PMID:26670543

  1. Complex quantum networks as structured environments: engineering and probing

    PubMed Central

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-01-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125

  2. Complex quantum networks as structured environments: engineering and probing

    NASA Astrophysics Data System (ADS)

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-05-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.

  3. Complex quantum networks as structured environments: engineering and probing.

    PubMed

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-01-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125

  4. A New Degree Programme in Structural Engineering and Architecture.

    ERIC Educational Resources Information Center

    Davison, J. B.; Popovic, O.; Tyas, A.

    Structural engineers and architects are educated completely independently. Although both play a major part in designing and building a nation's infrastructure, they are not encouraged to fully understand the work of each other which can result in a lack of collaboration and co-operation, often to the detriment of a project. This divide between the…

  5. Abstraction and Concreteness in the Everyday Mathematics of Structural Engineers.

    ERIC Educational Resources Information Center

    Gainsburg, Julie

    The everyday mathematics processes of structural engineers were studied and analyzed in terms of abstraction. A main purpose of the study was to explore the degree to which the notion of a gap between school and everyday mathematics holds when the scope of practices considered "everyday" is extended. J. Lave (1988) promoted a methodology that…

  6. Engineering extracellular matrix structure in 3D multiphase tissues

    PubMed Central

    Gillette, Brian M.; Rossen, Ninna S.; Das, Nikkan; Leong, Debra; Wang, Meixin; Dugar, Arushi; Sia, Samuel K.

    2011-01-01

    In native tissues, microscale variations in the extracellular matrix (ECM) structure can drive different cellular behaviors. Although control over ECM structure could prove useful in tissue engineering and in studies of cellular behavior, isotropic 3D matrices poorly replicate variations in local microenvironments. In this paper, we demonstrate a method to engineer local variations in the density and size of collagen fibers throughout 3D tissues. The results showed that, in engineered multiphase tissues, the structures of collagen fibers in both the bulk ECM phases (as measured by mesh size and width of fibers) as well as at tissue interfaces (as measured by density of fibers and thickness of tissue interfaces) could be modulated by varying the collagen concentrations and gelling temperatures. As the method makes use of a previously published technique for tissue bonding, we also confirmed that significant adhesion strength at tissue interfaces was achieved under all conditions tested. Hence, this study demonstrates how collagen fiber structures can be engineered within all regions of a tightly integrated multiphase tissue scaffold by exploiting knowledge of collagen assembly. PMID:21840047

  7. Optical Engineering for Children--A Structured Approach

    ERIC Educational Resources Information Center

    McCarthy, John; Moore, R. A.

    2006-01-01

    The present paper focuses on the application of a structured template, maximum impact flow (MIF), in order to encourage young students in the area of optics and optical engineering. MIF introduces a template in terms of individual steps and linked functionality and is shown to fuse separate learning tools together into a cohesive unit.…

  8. CAL Packages for Civil Engineering Hydraulics and Structural Design.

    ERIC Educational Resources Information Center

    Moss, W. D.; And Others

    1979-01-01

    Describes computer assisted learning (CAL) packages written in FORTRAN IV and developed for use in a degree course in civil engineering dealing with hydraulics and structures. All are used in the interactive mode through a terminal with a keyboard and visual display unit. (Author/CMV)

  9. Appurtenance Influence on Type III Hanford Single-Shell Tank Structural Integrity

    SciTech Connect

    Sanborn, Scott E.; Larsen, Brian M.; Julyk, Larry J.; Johnson, Kenneth I.

    2012-02-26

    The interim stabilized Hanford Single Shell Tanks (SSTs) are currently undergoing a state of the art analysis to assess the structural integrity of the waste storage tanks, for cleanup and closure operations, considering their adverse thermal histories and an updated seismic hazard for the Hanford Site near Richland, Washington. The SSTs contain a variety of ancillary pits, piping, piping supports, risers, equipment, and penetrations known as appurtenances. These appurtenances may alter the structural response and ultimately could affect the structural integrity of the SSTs. An important challenge to the structural analysis of the SSTs is determining the impact of these appurtenances on structural integrity. To achieve this, the various appurtenances were reviewed and bounding appurtenance configurations for SST Types II and III tank designs were analyzed using finite element software. The bounding configurations for the Type II tanks considered four heavy offset pits with a central pit with and without a 36-inch diameter central post-construction penetration and four 42-inch diameter offset penetrations. The bounding configuration for the Type III tanks is a tank with two heavy offset pits and one heavy central pit. For each bounding configuration two finite element models are developed: a seismic analysis model and a thermal and operating loads analysis (TOLA) model. The TOLA models include a Type II or III thermal history, concrete cracking and thermal degradation, reinforcement yielding, and soil plasticity. Additionally, operating loads such as internal waste pressure and concentrated and distributed soil surface loads are applied to the TOLA model. The seismic model treats the tank concrete as linear elastic based on the present day degraded concrete properties. Also, in the seismic model the soil is treated as linear elastic while special techniques are used in the soil above the tank dome and along the tank wall to avoid soil arching and achieve the proper

  10. Electronic structure engineering of various structural phases of phosphorene.

    PubMed

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K

    2016-07-21

    We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vertical pressure induces metallization in the considered structures. The γ-P homo-bilayer structure showed the highest ultimate tensile strength (UTS ∼ 6.21 GPa) upon in-plane stretching. Upon application of a transverse electric field, the variation in the bandgap of hetero-bilayers was found to be strongly dependent on the polarity of the applied field which is attributed to the counterbalance between the external electric field and the internal field induced by different structural phases and heterogeneity in the arrangements of atoms of each surface of the hetero-bilayer system. Our results demonstrate that the electronic structures of the considered hetero- and homo-bilayers of phosphorene could be modified by biaxial strain, pressure and electric field to achieve the desired properties for future nano-electronic devices. PMID:27334095

  11. Hydrogen effects in dilute III-N-V alloys: From defect engineering to nanostructuring

    SciTech Connect

    Pettinari, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Trotta, R.

    2014-01-07

    The variation of the band gap energy of III-N-V semiconductors induced by hydrogen incorporation is the most striking effect that H produces in these materials. A special emphasis is given here to the combination of N-activity passivation by hydrogen with H diffusion kinetics in dilute nitrides. Secondary ion mass spectrometry shows an extremely steep (smaller than 5 nm/decade) forefront of the H diffusion profile in Ga(AsN) under appropriate hydrogenation conditions. This discovery prompts the opportunity for an in-plane nanostructuring of hydrogen incorporation and, hence, for a modulation of the material band gap energy at the nanoscale. The properties of quantum dots fabricated by a lithographically defined hydrogenation are presented, showing the zero-dimensional character of these novel nanostructures. Applicative prospects of this nanofabrication method are finally outlined.

  12. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-01

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  13. Engineering smooth muscle tissue with a predefined structure.

    PubMed

    Kim, B S; Mooney, D J

    1998-08-01

    Nonwoven meshes of polyglycolic acid (PGA) fibers are attractive synthetic extracellular matrices (ECMs) for tissue engineering and have been used to engineer many types of tissues. However, these synthetic ECMs lack structural stability and often cannot maintain their original structure during tissue development. This makes it difficult to design an engineered tissue with a predefined configuration and dimensions. In this study, we investigated the ability of PGA fiber-based matrices bonded at their fiber crosspoints with a secondary polymer, poly-L-lactic acid (PLLA), to resist cellular contractile forces and maintain their predefined structure during the process of smooth muscle (SM) tissue development in vitro. Physically bonded PGA matrices exhibited a 10- to 35-fold increase in the compressive modulus over unbonded PGA matrices, depending on the mass of PLLA utilized to bond the PGA matrices. In addition, the bonded PGA matrices degraded much more slowly than the unbonded matrices. The PLLA bonding of PGA matrices had no effect on the ability of cells to adhere to the matrices. After 7 weeks in culture, the bonded matrices maintained 101 +/- 4% of their initial volume and an approximate original shape while the unbonded matrices contracted to 5 +/- 1% of their initial volume with an extreme change in their shape. At this time the bonded PGA matrices had a high cellularity, with smooth muscle cells (SMCs) and ECM proteins produced by these cells (e.g., elastin) filling the pores between PGA fibers. This study demonstrated that physically bonded PGA fiber-based matrices allow the maintenance of the configuration and dimensions of the original matrices and the development of a new tissue in a predefined three-dimensional structure. This approach may be useful for engineering a variety of tissues of various structures and shapes, and our study demonstrates the importance of matching both the initial mechanical properties and the degradation rate of a matrix to

  14. Achirality in the low temperature structure and lattice modes of tris(acetylacetonate)iron(iii).

    PubMed

    Ellis, Thomas K; Kearley, Gordon J; Piltz, Ross O; Jayasooriya, Upali A; Stride, John A

    2016-05-10

    Tris(acetylacteonate) iron(iii) is a relatively ubiquitous mononuclear inorganic coordination complex. The bidentate nature of the three acetylacteonate ligands coordinating around a single centre inevitably leads to structural isomeric forms, however whether or not this relates to chirality in the solid state has been questioned in the literature. Variable temperature neutron diffraction data down to T = 3 K, highlights the dynamic nature of the ligand environment, including the motions of the hydrogen atoms. The Fourier transform of the molecular dynamics simulation based on the experimentally determined structure was shown to closely reproduce the low temperature vibrational density of states obtained using inelastic neutron scattering. PMID:27109447

  15. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export

    PubMed Central

    Minamino, Tohru; Morimoto, Yusuke V.; Hara, Noritaka; Aldridge, Phillip D.; Namba, Keiichi

    2016-01-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration. PMID:26943926

  16. Investigating the Structure of the WJ-III Cognitive in Early School Age through Two Exploratory Bifactor Analysis Procedures

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.

    2014-01-01

    Two exploratory bifactor methods (e.g., Schmid-Leiman [SL] and exploratory bifactor analysis [EBFA]) were used to investigate the structure of the Woodcock-Johnson III (WJ-III) Cognitive in early school age (age 6-8). The SL procedure is recognized by factor analysts as a preferred method for EBFA. Jennrich and Bentler recently developed an…

  17. Structural basis for ESCRT-III CHMP3 recruitment of AMSH.

    PubMed

    Solomons, Julianna; Sabin, Charles; Poudevigne, Emilie; Usami, Yoshiko; Hulsik, David Lutje; Macheboeuf, Pauline; Hartlieb, Bettina; Göttlinger, Heinrich; Weissenhorn, Winfried

    2011-08-10

    Endosomal sorting complexes required for transport (ESCRT) recognize ubiquitinated cargo and catalyze diverse budding processes including multivesicular body biogenesis, enveloped virus egress, and cytokinesis. We present the crystal structure of an N-terminal fragment of the deubiquitinating enzyme AMSH (AMSHΔC) in complex with the C-terminal region of ESCRT-III CHMP3 (CHMP3ΔN). AMSHΔC folds into an elongated 90 Å long helical assembly that includes an unusual MIT domain. CHMP3ΔN is unstructured in solution and helical in complex with AMSHΔC, revealing a novel MIT domain interacting motif (MIM) that does not overlap with the CHMP1-AMSH binding site. ITC and SPR measurements demonstrate an unusual high-affinity MIM-MIT interaction. Structural analysis suggests a regulatory role for the N-terminal helical segment of AMSHΔC and its destabilization leads to a loss of function during HIV-1 budding. Our results indicate a tight coupling of ESCRT-III CHMP3 and AMSH functions and provide insight into the regulation of ESCRT-III. PMID:21827950

  18. Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation

    PubMed Central

    Cowley, Ryan E.; DeYonker, Nathan J.; Eckert, Nathan A.; Cundari, Thomas R.; DeBeer, Serena; Bill, Eckhard; Ottenwaelder, Xavier; Flaschenriem, Christine; Holland, Patrick L.

    2010-01-01

    Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky β-diketiminate ligand; Ad = 1-adamantyl). This paper addresses: (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by 1H NMR and EPR spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or X-ray absorption (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 ± 0.01 Å) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron–RN3 intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an RN3 radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N2 loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide. PMID:20524625

  19. Structural tailoring of engine blades (STAEBL) theoretical manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This Theoretical Manual includes the theories included in the Structural Tailoring of Engine Blades (STAEBL) computer program which was developed to perform engine fan and compressor blade numerical optimizations. These blade optimizations seek a minimum weight or cost design that satisfies practical blade design constraints, by controlling one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  20. Structural tailoring of engine blades (STAEBL) user's manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  1. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  2. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei.

    PubMed

    Zhang, Lingling; Wang, Yu; Picking, Wendy L; Picking, William D; De Guzman, Roberto N

    2006-06-01

    Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens. PMID:16631790

  3. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  4. Making the CHARA Array, Part III: engineering decisions. to build or not to build

    NASA Astrophysics Data System (ADS)

    ten Brummelaar, Theo A.; McAlister, Harold A.; Ridgway, Stephen

    2014-07-01

    The CHARA Array has been a PI led, low budget, and low manpower operation, and has followed a fairly unconventional path in its development. In this, the third paper of a series of three, we discuss some of the engineering and design decisions made along the way, some right and some wrong, with a focus on the choice between in-house development and the purchase of pre-built, or sub-contracted, subsystems. Along with these issues we will also address a few parts of the system that we might have done differently given our current knowledge, and those that somehow turned out very well.

  5. Remodeling of tissue-engineered bone structures in vivo.

    PubMed

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L; Merkle, Hans P; Meinel, Lorenz

    2013-09-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  6. Remodeling of tissue-engineered bone structures in vivo

    PubMed Central

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J.; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L.; Merkle, Hans P.; Meinel, Lorenz

    2013-01-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106 – 212 μm), medium (212 – 300 μm) and large pore diameter ranges (300 – 425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter all implants integrated well, vascularization was advanced and, bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  7. Structural and functional characterization of a novel type-III dockerin from Ruminococcus flavefaciens.

    PubMed

    Karpol, Alon; Jobby, Maroor K; Slutzki, Michal; Noach, Ilit; Chitayat, Seth; Smith, Steven P; Bayer, Edward A

    2013-01-01

    Phylogenetic analysis of known dockerins in Ruminococcus flavefaciens revealed a novel subtype, type-III, in the scaffoldin proteins, ScaA, ScaB, ScaC and ScaE. In this study, we explored the Ca²⁺-binding properties of the type-III dockerin from the ScaA scaffoldin (ScaADoc) using a battery of structural and biophysical approaches including circular dichroism spectroscopy, isothermal titration calorimetry, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. Despite the lack of a second canonical Ca²⁺-binding loop, the behaviour of ScaADoc is similar with respect to other dockerin protein modules in terms of its responsiveness to Ca²⁺ and affinity for the cohesin from the ScaB scaffoldin. Our results highlight the robustness of dockerin modules and how their Ca²⁺-binding properties can be exploited in the construction of designer cellulosomes. PMID:23195689

  8. Correlational structure of the MCMI-III personality disorder scales and comparisons with other data sets.

    PubMed

    Dyce, J A; O'Connor, B P; Parkins, S Y; Janzen, H L

    1997-12-01

    We examine the correlational structure of the personality disorder (PD) scales from the MCMI-III (Millon, 1994) among 614 college students. The correlation matrix from our nonclinical sample was highly similar to the clinical sample matrices reported by Millon (1994). Further analyses revealed that the correlation matrices from a variety of MCMI data sets are generally similar to one another, but are only moderately similar to PD correlation matrices based on other assessment techniques. PD correlation matrices based on different assessment techniques are generally not very similar to one another. Two-, 3-, and 4-factor solutions for the MCMI-III PD scales are reported and provide a framework for integrating apparently conflicting findings from previous work. The 4-factor solution was most meaningful and was consistent with the 5-factor model of PD. PMID:9501485

  9. Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Jiang, Teng; Wang, Long; Zhang, Sui; Sun, Ping-Chuan; Ding, Chuan-Fan; Chu, Yan-Qiu; Zhou, Ping

    2011-10-01

    Curcumin has been recognized as a potential natural drug to treat the Alzheimer's disease (AD) by chelating baleful metal ions, scavenging radicals and preventing the amyloid β (Aβ) peptides from the aggregation. In this paper, Al(III)-curcumin complexes with Al(III) were synthesized and characterized by liquid-state 1H, 13C and 27Al nuclear magnetic resonance (NMR), mass spectroscopy (MS), ultraviolet spectroscopy (UV) and generalized 2D UV-UV correlation spectroscopy. In addition, the density functional theory (DFT)-based UV and chemical shift calculations were also performed to view insight into the structures and properties of curcumin and its complexes. It was revealed that curcumin could interact strongly with Al(III) ion, and form three types of complexes under different molar ratios of [Al(III)]/[curcumin], which would restrain the interaction of Al(III) with the Aβ peptide, reducing the toxicity effect of Al(III) on the peptide.

  10. Performance of J33 turbojet engine with shaft-power extraction III : turbine performance

    NASA Technical Reports Server (NTRS)

    Huppert, M C; Nettles, J C

    1949-01-01

    The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.

  11. Multiscale structural characterizations of mixed U(iv)-An(iii) oxalates (An(iii) = Pu or Am) combining XAS and XRD measurements.

    PubMed

    Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F

    2016-04-28

    Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters. PMID:26979820

  12. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  13. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  14. Metal transformable-volume structures for space engineering

    NASA Astrophysics Data System (ADS)

    Paton, Boris E.; Lobanov, Leonid M.; Volkov, Valentin S.

    2015-05-01

    The brief review of design solutions for existing transformable-volume structures (TVS) is given and main approaches are formulated for optimizing the metal transformable shell structures, allowing widening the sphere of their application in space engineering. Characterized are the methods, used for theoretical description of process of change in TVS shape, and also geometric parameters and properties of structural materials of thin shells allowing realization of their volume deforming at the maximum approach to the selected theoretical model. Technological aspects are described which are typical of the process of multi-sectional conical TVS design as applied to the conditions of its service under the effect of space environment factors (SEF).

  15. New cyanide-bridged Mn(III)-M(III) heterometallic dinuclear complexes constructed from [M(III)(AA)(CN)4]- building blocks (M = Cr and Fe): synthesis, crystal structures and magnetic properties.

    PubMed

    Nastase, Silviu; Maxim, Catalin; Andruh, Marius; Cano, Joan; Ruiz-Pérez, Catalina; Faus, Juan; Lloret, Francesc; Julve, Miguel

    2011-05-14

    interactions observed and also to analyze the dependence of the magnetic coupling on the structural parameters within the Mn(III)-N-C-M(III) motif in 1-3. PMID:21442115

  16. Cabin-fuselage-wing structural design concept with engine installation

    NASA Technical Reports Server (NTRS)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  17. III-V strain layer superlattice based band engineered avalanche photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ghosh, Sid

    2015-08-01

    Laser detection and ranging (LADAR)-based systems operating in the Near Infrared (NIR) and Short Wave Infrared (SWIR) have become popular optical sensors for remote sensing, medical, and environmental applications. Sophisticated laser-based radar and weapon systems used for long-range military and astronomical applications need to detect, recognize, and track a variety of targets under a wide spectrum of atmospheric conditions. Infrared APDs play an important role in LADAR systems by integrating the detection and gain stages in a single device. Robust silicon-APDs are limited to visible and very near infrared region (< 1 um), while InGaAs works well up to wavelengths of about 1.5um. Si APDs have low multiplication or excess noise but are limited to below 1um due very poor quantum efficiency above 0.8um. InGaAs and Ge APDs operate up to wavelengths of 1.5um but have poor multiplication or excess noise due to a low impact ionization coefficient ratio between electrons and holes. For the past several decades HgCdTe has been traditionally used in longer wavelength (> 3um) infrared photon detection applications. Recently, various research groups (including Ghosh et. al.) have reported SWIR and MWIR HgCdTe APDs on CdZnTe and Si substrates. However, HgCdTe APDs suffer from low breakdown fields due to material defects, and excess noise increases significantly at high electric fields. During the past decade, InAs/GaSb Strain Layer Superlattice (SLS) material system has emerged as a potential material for the entire infrared spectrum because of relatively easier growth, comparable absorption coefficients, lower tunneling currents and longer Auger lifetimes resulting in enhanced detectivities (D*). Band engineering in type II SLS allows us to engineer avalanche properties of electrons and holes. This is a great advantage over bulk InGaAs and HgCdTe APDs where engineering avalanche properties is not possible. The talk will discuss the evolution of superlattice based avalanche

  18. Electronic structure and v alence of Mn imputiries in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Schulthess, T. C.; Temmerman, W.; Szotek, Z.; Stocks, G. M.; Butler, W. H.

    2004-03-01

    Substitutional Mn impurities in III-V semiconductors can acquire either a divalent or a trivalent configuration. For example, it is generally accepted that Mn in GaAs is in a (d^5+h) configuration with five occupied Mn d-orbitals and a delocalized hole in the valence band. In contrast, Mn in GaN is believed to be in a d^4 configuration with a deep impurity state that has d-character. But there have recently been some discussions about the possibility of having some Mn ion in GaN assuming a divalent (d^5+h) type configuration. In order to achieve carrier induced ferromagnetism, the desired state of the Mn ions in III-V semiconductors is the (d^5+h) configuration. We have therefore performed ab-initio calculations of the Mn valence when it substitutes Ga in various III-V semiconductor hosts. We use the self-interaction corrected local spin density (SIC-LSD) method which is able to treat localized impurity orbitals properly. In particular we find that the method is capable of predicting the (d^5+h) state of Mn in GaAs. For Mn in GaP and GaN the calculations predict a trivalent d^4 state in the idealized system. The energy differences between d^4 and (d^5+h) configurations in GaP are, however, very small. Introduction of defects or donors doe change the valence of Mn in GaP, favoring the divalent state under certain circumstances. Work supported by the Defense Advanced Research Project Agency and by the Division of Materials Science and Engineering, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle LLC.

  19. Synthesis, reaction and structure of a series of chromium(III) complexes containing oxalate ligand

    NASA Astrophysics Data System (ADS)

    Chen, Xu-Fang; Liu, Li; Ma, Jian-Gong; Yi, Long; Cheng, Peng; Liao, Dai-Zheng; Yan, Shi-Ping; Jiang, Zong-Hui

    2005-08-01

    A series of chromium(III) complexes [Cr(bipy)(HC2O4)2]Cl·3H2O (1), [Cr(phen)(HC2O4)2]Cl·3H2O (2), [Cr(phen)2(C2O4)]ClO4 (3), [Cr2(bipy)4(C2O4)](SO4)·(bipy)0.5·H2O (4) and [Mn(phen)2(H2O)2]2[Cr(phen)(C2O4)2]3ClO4·14H2O (5) were synthesized (bipy=4,4‧-bipyridine, phen=1,10-phenanthroline), while the crystal structures of 1 and 3-5 have been determined by X-ray analysis. 1 and 3 are mononuclear complexes, 4 contains binuclear chromium(III) ions and 5 is a 3D supromolecule formed by complicated hydrogen bonding. 1-3 are potential molecular bricks of chromium(III) building blocks for synthesis heterometallic complexes. When we use these molecular bricks as ligands to react with other metal salts, unexpected complexes 4 and 5 are isolated in water solution. The synthesis conditions and reaction results are also discussed.

  20. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  1. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  2. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering.

    PubMed

    Shi, Xudong; Sun, Lei; Jiang, Jian; Zhang, Xiaolin; Ding, Wenjun; Gan, Zhihua

    2009-12-01

    Porous microspheres fabricated by biodegradable polymers show great potential as microcarriers for cell cultivation in tissue engineering. Herein biodegradable poly(DL-lactide) (PLA) was used to fabricate porous microspheres through a modified double emulsion solvent evaporation method. The influence of fabrication parameters, such as the stirring speed of the primary and secondary emulsion, the polymer concentration of the oil phase, and solvent type, as well as the post-hydrolysis treatment of the porous structure of the PLA microspheres are discussed. Good attachment and an active spread of MG-63 cells on the microspheres is observed, which indicates that the PLA microspheres with controllable porous structure are of great potential as cell delivery carriers for tissue engineering. PMID:19821453

  3. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  4. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  5. Electrical Characteristics and Interface Properties of III Nitride-Based Metal-Insulator-Semiconductor Structure

    SciTech Connect

    Mahyuddin, A.; Hassan, Z.; Yusof, Y.; Cheong, K. Y.

    2010-07-07

    In this work, III-Nitride based metal-insulator-semiconductor (MIS) structure has been studied using AlN/GaN heterostructures on Si (111) with AlN buffer layer grown by plasma-assisted molecular beam epitaxy (MBE). The structural and electrical characteristics of the films were studied through high resolution x-ray diffraction (HRXRD), capacitance-voltage (C-V) and current-voltage (I-V) measurements. The value of flat-band voltage was -0.7 V. A total fixed oxide charge density of 2.73x10{sup 11} cm{sup -2} was estimated. Terman's method was used to obtain the density of interface state in the MIS structure. The analysis showed low interface state density values of 3.66x10{sup 11} cm{sup -2} eV{sup -1}.

  6. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  7. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  8. Nitroxylcob(III)Alamin: Synthesis And X-Ray Structural Characterization

    SciTech Connect

    Hannibal, L.; Smith, C.A.; Jacobsen, D.W.; Brasch, N.E.

    2009-06-01

    The long-elusive crystal structure of nitrosylcobalamin (NOCbl) reveals that the Co-N-O angle is 117.4-121.4{sup o}; hence, NOCbl is best described as nitroxylcob(III)alamin in the solid state (see picture: Co purple, N blue, O red, P orange, C gray, H white). The length of the Co-N bond trans to the NO ligand is typical of those seen when strong {beta}-axial ligands are positioned trans to the 5,6-dimethylbenzimidazole group.

  9. Synthesis and crystal structure of Ru III-supported tungstoantimonate [Sb 2W 20Ru III2(H 2O) 2(dmso) 6O 68] 4-

    NASA Astrophysics Data System (ADS)

    Bi, Li-Hua; Li, Bao; Bi, Shuai; Wu, Li-Xin

    2009-06-01

    The first Ru III-supported tungstoantimonate [Ru II(bpy) 3] 2[Sb 2W 20Ru III2(H 2O) 2(dmso) 6O 68]·3dmso (bpy=bi-pyridine) ( 1a) has been successfully isolated as [Ru(bpy) 3] 2+ (Rubpy) salt by routine synthetic reaction in mixed solutions with dmso and water. Single-crystal X-ray analysis was carried out on 1a, which crystallizes in the triclinic system space group P-1 with a=16.804 (6), b=16.988 (6), c=17.666 (6) Å, α=107.397 (13)°, β=106.883 (13)°, γ=103.616 (12)°. V=4309 (3) Å 3, Z=1 with R1=0.0773. The compound 1a reveals the following features: (1) Rubpy is firstly used as an alternative ruthenium-source for the synthesis of Ru-substituted heteropolytungstate; (2) the structure of 1a consists of four Ru III-O-S(CH 3) 2 and two W-O-S(CH 3) 2 bonds resulting in an assembly with C2 symmetry; (3) the Ru III ions are linked to two dmso groups via two Ru III-O-S(CH 3) 2 bonds, which represents the other dmso-coordination mode to Ru III in POM chemistry. The cyclic voltammetry studies of 1a in dmso/H 2SO 4 (3/1 v/v) at pH 2.5 medium using the glassy carbon electrode as a working electrode show the respective electrochemical behaviors of the W-centers and the Ru-centers within 1a, which could be separated clearly. In addition, the compound 1a exhibits photoluminescence arising from π*- t2g ligand-to-metal transition of Rubpy.

  10. Engineered Biosynthesis of Plant Polyketides: Structure-Based and Precursor-Directed Approach

    NASA Astrophysics Data System (ADS)

    Abe, Ikuro

    Pentaketide chromone synthase (PCS) and octaketide synthase (OKS) are novel plant-specific type III polyketide synthases (PKSs) obtained from Aloe arborescens. Recombinant PCS expressed in Escherichia coli catalyzes iterative condensations of five molecules of malonyl-CoA to produce a pentaketide 5,7-dihydroxy-2-methylchromone, while recombinant OKS carries out sequential condensations of eight molecules of malonyl-CoA to yield octaketides SEK4 and SEK4b, the longest polyketides produced by the structurally simple type III PKS. The amino acid sequences of PCS and OKS are 91% identical, sharing 50-60% identity with those of other chalcone synthase (CHS) superfamily type III PKSs of plant origin. One of the most characteristic features is that the conserved active-site Thr197 of CHS (numbering in Medicago sativa CHS) is uniquely replaced with Met207 in PCS and with Gly207 in OKS, respectively. Site-directed mutagenesis and X-ray crystallographic analyses demonstrated that the chemically inert single residue lining the active-site cavity controls the polyketide chain length and the product specificity depending on the steric bulk of the side chain. On the basis of the crystal structures, an F80A/Y82A/M207G triple mutant of the pentaketide-producing PCS was constructed and shown to catalyze condensations of nine molecules of malonyl-CoA to produce an unnatural novel nonaketide naphthopyrone, whereas an N222G mutant of the octaketides-producing OKS yielded a decaketide benzophenone SEK15 from ten molecules of malonyl-CoA. On the other hand, the type III PKSs exhibited broad substrate specificities and catalytic potential. OKS accepted p-coumaroyl-CoA as a starter substrate to produce an unnatural novel C19 hexaketide stilbene and a C21 heptaketide chalcone. Remarkably, the C21 chalcone-forming activity was dramatically increased in the structure-guided OKS N222G mutant. In addition, OKS N222G mutant also yielded unnatural novel polyketides from phenylacetyl-CoA and

  11. Structural dynamic testing of the Engineering Test Satellite-IV

    NASA Astrophysics Data System (ADS)

    Shiraki, K.; Mitsuma, H.; Matsushita, T.; Izumi, H.

    The Engineering Test Satellite-IV (ETS-IV) was the first large scale spacecraft developed and launched successfully in Japan on a new N-II launch vehicle. This paper presents an approach taken for the structural development of the ETS-IV. Extensive structural tests were performed to demonstrate that the ETS-IV spacecraft meets all design requirements and will survive all critical environments. Details of the static load test, vibration tests, acoustic test, and pyrotechnic shock test were described. The test results were compared with analyses and measured flight data.

  12. Turbine blade structural dynamic analysis. [for space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Dickerson, E. O.

    1980-01-01

    The paper presents structural dynamic analysis and test results for the Space Shuttle Main Engine turbine blades. Athough these blades are designed to avoid coincidence of natural frequencies with harmonic excitation forces, the complexity of the turbine hardware, its nonlinearities and lack of information regarding the forcing function have led to fatigue failures. A comparison of single-blade analysis and test modal frequencies, shapes, and stresses is given; analysis techniques to describe the forcing function, compute dynamic responses, and incorporate the nonlinearities of Coulomb-friction dampers are presented. Recommendations are made for new research to improve forcing function computations and structural damping estimates used in the analysis.

  13. Harnessing natural product assembly lines: structure, promiscuity, and engineering.

    PubMed

    Ladner, Christopher C; Williams, Gavin J

    2016-03-01

    Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues. PMID:26527577

  14. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    SciTech Connect

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.; Metwalli, E.; Guo, S.; Mueller-Buschbaum, P.; Herzog, G.; Benecke, G.; Schwartzkopf, M.; Buffet, A.; Perlich, J.; Roth, S. V.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scattered intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.

  15. Structural integrity of engineering composite materials: a cracking good yarn

    PubMed Central

    Beaumont, Peter W. R.

    2016-01-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a ‘fracture safe design’ is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242293

  16. Crystal engineering with thioureas: A structure-based inquiry

    NASA Astrophysics Data System (ADS)

    Paisner, Kathryn A.

    2011-12-01

    Structural trends applicable to crystal engineering were studied in three classes of thiourea-based compounds. The aim of the study was to identify, predict, and ultimately design reliable single-molecule structural features, which could then be used to engineer crystals with desirable properties. In one class of compounds, this goal was achieved: N-alkyl and N-aryl derivatives of N,N'-bis(3-thioureidopropyl)piperazine adopted an identical conformation in the solid state, which resulted in near-identical crystal packing. A second class of closely related compounds, N-substituted tris(2-thioureidoethyl)amines, showed no such reliability in the solid state, likely because the parent structure lacked hydrogen-bonding functionalities sufficient to control intramolecular structure. In the third class of compounds that we studied, 1-benzoyl-3-(2-pyridyl)thioureas, substitution patterns were often predictive of molecular conformation; however, these intramolecular trends did not lead to recognizable crystal packing motifs. Nevertheless, certain physical properties observed in this last class of compounds---color, solubility, and often crystallinity---were conformer-specific, interestingly without any apparent relevance to crystal lattice structure. Solution-state and solid-state conformational trends in these 1-benzoyl-3-(2-pyridyl)thioureas have been documented, and speculations as to the source of color in one of the two observed conformations have been noted.

  17. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242293

  18. From Geometry to Diagnosis: Experiences of Geomatics in Structural Engineering

    NASA Astrophysics Data System (ADS)

    Riveiro, B.; Arias, P.; Armesto, J.; Caamaño, J. C.; Solla, M.

    2012-07-01

    Terrestrial photogrammetry and laser scanning are technologies that have been successfully used for metric surveying and 3D modelling in many different fields (archaeological and architectural documentation, industrial retrofitting, mining, structural monitoring, road surveying, etc.). In the case of structural applications, these techniques have been successfully applied to 3D modelling and sometimes monitoring; but they have not been sufficiently implemented to date, as routine tools in infrastructure management systems, in terms of automation of data processing and integration in the condition assessment procedures. In this context, this paper presents a series of experiences in the usage of terrestrial photogrammetry and laser scanning in the context of dimensional and structural evaluation of structures. These experiences are particularly focused on historical masonry structures, but modern prestressed concrete bridges are also investigated. The development of methodological procedures for data collection, and data integration in some cases, is tackled for each particular structure (with access limitations, geometrical configuration, range of measurement, etc.). The accurate geometrical information provided by both terrestrial techniques motivates the implementation of such results in the complex, and sometimes slightly approximated, geometric scene that is frequently used in structural analysis. In this sense, quantitative evaluating of the influence of real and accurate geometry in structural analysis results must be carried out. As main result in this paper, a series of experiences based on the usage of photogrammetric and laser scanning to structural engineering are presented.

  19. Microfabrication of hierarchical structures for engineered mechanical materials

    NASA Astrophysics Data System (ADS)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  20. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  1. Controlling the Structural and Functional Anisotropy of Engineered Cardiac Tissues

    PubMed Central

    Bursac, N

    2014-01-01

    The ability to control the degree of structural and functional anisotropy in 3D engineered cardiac tissues would have high utility for both in vitro studies of cardiac muscle physiology and pathology as well as potential tissue engineering therapies for myocardial infarction. Here, we applied a high aspect ratio soft lithography technique to generate network-like tissue patches seeded with neonatal rat cardiomyocytes. Fabricating longer elliptical pores within the patch networks increased the overall cardiomyocyte and extracellular matrix (ECM) alignment within the patch. Improved uniformity of cell and matrix alignment yielded an increase in anisotropy of action potential propagation and faster longitudinal conduction velocity (LCV). Cardiac tissue patches with a higher degree of cardiomyocyte alignment and electrical anisotropy also demonstrated greater isometric twitch forces. After two weeks of culture, specific measures of electrical and contractile function (LCV = 26.8 ± 0.8 cm/s, specific twitch force = 8.9 ± 1.1 mN/mm2 for the longest pores studied) were comparable to those of neonatal rat myocardium. We have thus described methodology for engineering of highly functional 3D engineered cardiac tissues with controllable degree of anisotropy. PMID:24717534

  2. Structure and Management of an Engineering Senior Design Course.

    PubMed

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry. PMID:27168053

  3. Synthesis and structural characterization of new bismuth (III) nano coordination polymer: A precursor to produce pure phase nano-sized bismuth (III) oxide

    NASA Astrophysics Data System (ADS)

    Hanifehpour, Younes; Mirtamizdoust, Babak; Hatami, Masoud; Khomami, Bamin; Joo, Sang Woo

    2015-07-01

    A novel bismuth (III) nano coordination polymer, {[Bi (pcih)(NO3)2]ṡMeOH}n (1), ("pcih" is the abbreviations of 2-pyridinecarbaldehyde isonicotinoylhydrazoneate) were synthesized by a sonochemical method. The new nano-structure was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction, elemental analyses and IR spectroscopy. Single crystalline material was obtained using a heat gradient applied to a solution of the reagents. Compound 1 was structurally characterized by single crystal X-ray diffraction. The determination of the structure by single crystal X-ray crystallography shows that the complex forms a zig-zag one dimensional polymer in the solid state and the coordination number of BiIII ions is seven, (BiN3O4), with three N-donor and one O-donor atoms from two "pcih" and three O-donors from nitrate anions. It has a hemidirected coordination sphere. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The chains interact with each other through π-π stacking interactions creating a 3D framework. After thermolysis of 1 at 230 °C with oleic acid, pure phase nano-sized bismuth (III) oxide was produced. The morphology and size of the prepared Bi2O3 samples were further observed using SEM.

  4. Structural, electrochemical and spectroelectrochemical study on the geometric and electronic structures of [(corrolato)Au(III)](n) (n = 0, +1, -1) complexes.

    PubMed

    Sinha, Woormileela; Sommer, Michael G; van der Meer, Margarethe; Plebst, Sebastian; Sarkar, Biprajit; Kar, Sanjib

    2016-02-21

    Synthesis of two new Au(III) corrole complexes with unsymmetrically substituted corrole ligands is presented here. The newly synthesized Au-compounds have been characterized by various spectroscopic techniques. The structural characterization of a representative Au(III) corrole has also been possible. Electrochemical, UV-vis-NIR/EPR spectroelectrochemical and DFT studies have been used to decipher the electronic structures of various electro-generated species. These are the first UV-vis-NIR/EPR spectroelectrochemical investigations on Au(III) corroles. Assignment of redox states of electro-generated Au(III) corroles is supported by DFT analysis. In contrast to the metal centered reduction reported in Au(III) porphyrins, one electron reduction in Au(III) corroles has been assigned to corrole centered on the basis of experimental and theoretical studies. Thus, the Au(III) corroles (not the analogous Au(III) porphyrin derivatives!) bear a truly redox inactive Au(III) center. Additionally, these Au-corrole complexes display NIR electrochromism, the origin of which is all on corrole-centered processes. PMID:26750146

  5. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  6. New insights into structure and luminescence of Eu(III) and Sm(III) complexes of the 3,4,3-LI(1,2-HOPO) ligand.

    PubMed

    Daumann, Lena J; Tatum, David S; Snyder, Benjamin E R; Ni, Chengbao; Law, Ga-lai; Solomon, Edward I; Raymond, Kenneth N

    2015-03-01

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M(III)L](-) (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with Eu(III) as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu(III) and Sm(III) complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements. PMID:25607882

  7. Syntheses and structural characterization of two new nanostructured Bi(III) supramolecular polymers via sonochemical method.

    PubMed

    Yan, Xiao-Wei; Haji-Hasani, Ensieh; Morsali, Ali

    2016-07-01

    Two new bismuth(III) coordination supramolecular polymers, {[Bi2(Hbpp)(bpp)(μ-I)2I6](Hbpp)·MeOH}n (1) and [Bi(Hbpp)(Br4)] (2), (bpp=1,3-di(pyridin-4-yl)propane) were prepared and were structurally characterized by single crystal X-ray diffraction. Single crystalline one-dimensional materials were prepared using a heat gradient applied a solution of the reagents using the branched tube method. The structural determination by single crystal X-ray crystallography shows that compounds 1 and 2 form monoclinic polymers with symmetry space group P21 in the solid state. These new nanostructured Bi(III) supramolecular compounds, {[Bi2(Hbpp)(bpp)(μ-I)2I6](Hbpp)·MeOH} (1) and [Bi(Hbpp)(Br4)] (2), were also synthesized by sonochemical method. The nanostructures were characterized by Field Emission-scanning electron microscopy (FE-SEM), powder X-ray diffraction (PXRD) and IR spectroscopy. PMID:26964932

  8. Structural engineering of three-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea

    2016-02-01

    Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.

  9. Effects of strain on the band structure of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Janotti, Anderson; Scheffler, Matthias; Van de Walle, Chris G.

    2014-09-01

    We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (202¯1), (303¯1), and (303¯1¯) orientations, our calculated deformation potentials have provided results for polarization ratios in good agreement with the experimental observations, providing further confidence in the accuracy of our values.

  10. Distinct Structural Elements Dictate the Specificity of the Type III Pentaketide Synthase from Neurospora crassa

    SciTech Connect

    Rubin-Pitel, Sheryl B.; Zhang, Houjin; Vu, Trang; Brunzelle, Joseph S.; Zhao, Huimin; Nair, Satish K.

    2009-01-15

    The fungal type III polyketide synthase 2'-oxoalkylresorcyclic acid synthase (ORAS) primes with a range of acyl-Coenzyme A thioesters (C{sub 4}--C{sub 20}) and extends using malonyl-Coenzyme A to produce pyrones, resorcinols, and resorcylic acids. To gain insight into this unusual substrate specificity and product profile, we have determined the crystal structures of ORAS to 1.75 {angstrom} resolution, the Phe-252{yields}Gly site-directed mutant to 2.1 {angstrom} resolution, and a binary conplex of ORAS with eicosanoic acid to 2.0 {angstrom} resolution. The structures reveal a distinct rearrangement of structural elements near the active site that allows accomodation of long-chain fatty acid esters and a reorientation of the gating mechanism that controls cyclization and polyketide chain length. The roles of these structural elements are further elucidated by characterization of various structure-based site-directed variants. These studies establish an unexpected plasticity to the PKS fold, unanticipated from structural studies of other members of this enzyme family.

  11. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  12. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  13. Crystal Structures and Coordination Behavior of Aqua- and Cyano-Co(III) Tetradehydrocorrins in the Heme Pocket of Myoglobin.

    PubMed

    Morita, Yoshitsugu; Oohora, Koji; Mizohata, Eiichi; Sawada, Akiyoshi; Kamachi, Takashi; Yoshizawa, Kazunari; Inoue, Tsuyoshi; Hayashi, Takashi

    2016-02-01

    Myoglobins reconstituted with aqua- and cyano-Co(III) tetradehydrocorrins, rMb(Co(III)(OH2)(TDHC)) and rMb(Co(III)(CN)(TDHC)), respectively, were prepared and investigated as models of a cobalamin-dependent enzyme. The former protein was obtained by oxidation of rMb(Co(II)(TDHC)) with K3[Fe(CN)6]. The cyanide-coordinated Co(III) species in the latter protein was prepared by ligand exchange of rMb(Co(III)(OH2)(TDHC)) with exogenous cyanide upon addition of KCN. The X-ray crystallographic study reveals the hexacoordinated structures of rMb(Co(III)(OH)(TDHC)) and rMb(Co(III)(CN)(TDHC)) at 1.20 and 1.40 Å resolution, respectively. The (13)C NMR chemical shifts of the cyanide in rMb(Co(III)(CN)(TDHC)) were determined to be 108.6 and 110.6 ppm. IR measurements show that the cyanide of rMb(Co(III)(CN)(TDHC)) has a stretching frequency peak at 2151 cm(-1) which is higher than that of cyanocobalamin. The (13)C NMR and IR measurements indicate weaker coordination of the cyanide to Co(III)(TDHC) relative to cobalamin, a vitamin B12 derivative. Thus, the extent of π-back-donation from the cobalt ion to the cyanide ion is lower in rMb(Co(III)(CN)(TDHC)). Furthermore, the pK(1/2) values of rMb(Co(III)(OH2)(TDHC)) and rMb(Co(III)(CN)(TDHC)) were determined by a pH titration experiment to be 3.2 and 5.5, respectively, indicating that the cyanide ligation weakens the Co-N(His93) bond. Theoretical calculations also demonstrate that the axial ligand exchange from water to cyanide elongates the Co-N(axial) bond with a decrease in the bond dissociation energy. Taken together, the cyano-Co(III) tetradehydrocorrin in myoglobin is appropriate for investigation as a structural analogue of methylcobalamin, a key intermediate in methionine synthase reaction. PMID:26760442

  14. Engineering hybrid Co-picene structures with variable spin coupling

    NASA Astrophysics Data System (ADS)

    Zhou, Chunsheng; Shan, Huan; Li, Bin; Zhao, Aidi; Wang, Bing

    2016-04-01

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  15. Structural Evaluation of Exo-Skeletal Engine Fan Blades

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Abumeri, Galib; Chamis, Christos C.

    2003-01-01

    The available computational simulation capability is used to demonstrate the structural viability of composite fan blades of innovative Exo-Skeletal Engine (ESE) developed at NASA Glenn Research Center for a subsonic mission. Full structural analysis and progressive damage evaluation of ESE composite fan blade is conducted through the NASA in-house computational simulation software system EST/BEST. The results of structural assessment indicate that longitudinal stresses acting on the blade are in compression. At a design speed of 2000 rpm, pressure and suction surface outer most ply stresses in longitudinal, transverse and shear direction are much lower than the corresponding composite ply strengths. Damage is initiated at 4870 rpm and blade fracture takes place at rotor speed of 7735 rpm. Damage volume is 51 percent. The progressive damage, buckling, stress and strength results indicate that the design at hand is very sound because of the factor of safety, damage tolerance, and buckling load of 6811 rpm.

  16. Structure-Based Functional Analyses of Domains II and III of Pseudorabies Virus Glycoprotein H

    PubMed Central

    Böhm, Sebastian W.; Eckroth, Elisa; Backovic, Marija; Klupp, Barbara G.; Rey, Felix A.; Fuchs, Walter

    2014-01-01

    ABSTRACT Enveloped viruses utilize membrane fusion for entry into, and release from, host cells. For entry, members of the Herpesviridae require at least three envelope glycoproteins: the homotrimeric gB and a heterodimer of gH and gL. The crystal structures of three gH homologues, including pseudorabies virus (PrV) gH, revealed four conserved domains. Domain II contains a planar β-sheet (“fence”) and a syntaxin-like bundle of three α-helices (SLB), similar to those found in eukaryotic fusion proteins, potentially executing an important role in gH function. To test this hypothesis, we introduced targeted mutations into the PrV gH gene, which either disrupt the helices of the SLB by introduction of proline residues or covalently join them by artificial intramolecular disulfide bonds between themselves, to the adjacent fence region, or to domain III. Disruption of either of the three α-helices of the SLB (A250P, V275P, V298P) severely affected gH function in in vitro fusion assays and replication of corresponding PrV mutants. Considerable defects in fusion activity of gH, as well as in penetration kinetics and cell-to-cell spread of PrV mutants, were also observed after disulfide linkage of two α-helices within the SLB (A284C-S291C) or between SLB and domain III (H251C-L432C), as well as by insertions of additional cysteine pairs linking fence, SLB, and domain III. In vitro fusion activity of mutated gH could be partly restored by reduction of the artificial disulfide bonds. Our results indicate that the structure and flexibility of the SLB are relevant for the function of PrV gH in membrane fusion. IMPORTANCE Mutational analysis based on crystal structures of proteins is a powerful tool to understand protein function. Here, we continued our study of pseudorabies virus gH, a part of the core fusion machinery of herpesviruses. We previously showed that the “flap” region in domain IV of PrV gH is important for its function. We now demonstrate that mutations

  17. Structural and phase transformation of A{sup III}B{sup V}(100) semiconductor surface in interaction with selenium

    SciTech Connect

    Bezryadin, N. N.; Kotov, G. I. Kuzubov, S. V.

    2015-03-15

    Surfaces of GaAs(100), InAs(100), and GaP(100) substrates thermally treated in selenium vapor have been investigated by transmission electron microscopy and electron probe X-ray microanalysis. Some specific features and regularities of the formation of A{sub 3}{sup III}B{sub 4}{sup VI} (100)c(2 × 2) surface phases and thin layers of gallium or indium selenides A{sub 2}{sup III}B{sub 3}{sup VI} (100) on surfaces of different A{sup III}B{sup V}(100) semiconductors are discussed within the vacancy model of surface atomic structure.

  18. Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase.

    PubMed

    Wang, X; Lu, Y

    1999-07-13

    The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely. PMID:10413489

  19. Perturbing the Copper(III)-Hydroxide Unit through Ligand Structural Variation.

    PubMed

    Dhar, Debanjan; Yee, Gereon M; Spaeth, Andrew D; Boyce, David W; Zhang, Hongtu; Dereli, Büsra; Cramer, Christopher J; Tolman, William B

    2016-01-13

    Two new ligand sets, (pipMe)LH2 and (NO2)LH2 ((pipMe)L = N,N'-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide, (NO2)L = N,N'-bis(2,6-diisopropyl-4-nitrophenyl)pyridine-2,6-dicarboxamide), are reported which are designed to perturb the overall electronics of the copper(III)-hydroxide core and the resulting effects on the thermodynamics and kinetics of its hydrogen-atom abstraction (HAT) reactions. Bond dissociation energies (BDEs) for the O-H bonds of the corresponding Cu(II)-OH2 complexes were measured that reveal that changes in the redox potential for the Cu(III)/Cu(II) couple are only partially offset by opposite changes in the pKa, leading to modest differences in BDE among the three compounds. The effects of these changes were further probed by evaluating the rates of HAT by the corresponding Cu(III)-hydroxide complexes from substrates with C-H bonds of variable strength. These studies revealed an overarching linear trend in the relationship between the log k (where k is the second-order rate constant) and the ΔH of reaction. Additional subtleties in measured rates arise, however, that are associated with variations in hydrogen-atom abstraction barrier heights and tunneling efficiencies over the temperature range from -80 to -20 °C, as inferred from measured kinetic isotope effects and corresponding electronic-structure-based transition-state theory calculations. PMID:26693733

  20. Dynamical structure of solar radio burst type III as evidence of energy of solar flares

    NASA Astrophysics Data System (ADS)

    Hamidi, Zety Sharizat Binti

    2013-11-01

    Observations of low frequency solar type III radio bursts associated with the ejection of plasma oscillations localized disturbance is due to excitation atoms in the plasma frequency incoherent radiations play a dominant role at the meter and decimeter wavelengths. Here, we report the results of the dynamical structure of solar flare type III that occurred on 9th March 2012 at National Space Centre, Sg Lang, Selangor, Malaysia by using the CALLISTO system. These bursts are associated with solar flare type M6 which suddenly ejected in the active region AR 1429 starting at 03:32 UT and ending at 05:00 UT with the peak at 04:12 UT. The observation showed an initial strong burst occurred due to strong signal at the beginning of the phase. We also found that both solar burst and flares tend to be a numerous on the same day and probability of chance coincidence is high. It is clearly seen that an impulsive lace burst was detected at 4:24 UT and it is more plausible that the energies are confined to the top of the loop when we compared with X-ray results. Associated with this event was type II with velocities 1285 km/s and type IV radio sweeps along with a full halo Coronal Mass Ejections (CMEs) first seen in SOHO/LASCO C2 imagery at 09/0426 Z. We concluded that the significance of study solar burst type III lies in the fact that the emission at decimetric wavelength comes from the role of magnetic field in active region that may provide the key to the energy release mechanism in a flare.

  1. Sub-band structure engineering for advanced CMOS channels

    NASA Astrophysics Data System (ADS)

    Takagi, Shin-ichi; Mizuno, T.; Tezuka, T.; Sugiyama, N.; Nakaharai, S.; Numata, T.; Koga, J.; Uchida, K.

    2005-05-01

    This paper reviews our recent studies of novel CMOS channels based on the concept of sub-band structure engineering. This device design concept can be realized as strained-Si channel MOSFETs, ultra-thin SOI MOSFETs and Ge-on-Insulator (GOI) MOSFETs. An important factor for the electron mobility enhancement is the introduction of larger sub-band energy splitting between the 2- and 4-fold valleys on a (1 0 0) surface, which can be obtained in strained-Si and ultra-thin body channels. The electrical properties of strained-Si MOSFETs are summarized with an emphasis on strained-SOI structures. Also, the importance of the precise control of ultra-thin SOI thickness is pointed out from the experimental results of the SOI thickness dependence of mobility. Furthermore, it is shown that the increase in the sub-band energy splitting can also be effective in obtaining higher current drive of n-channel MOSFETs under ballistic transport regime. This suggests that the current drive enhancement based on MOS channel engineering utilizing strain and ultra-thin body structures can be extended to ultra-short channel MOSFETs dominated by ballistic transport.

  2. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic

  3. STRUCTURE OF THE TYPE III PANTOTHENATE KINASE FROM Bacillus anthracis AT 2.0 Å RESOLUTION

    PubMed Central

    Nicely, Nathan I.; Parsonage, Derek; Paige, Carleitta; Newton, Gerald L.; Fahey, Robert C.; Leonardi, Roberta; Jackowski, Suzanne; Mallett, T. Conn; Claiborne, Al

    2008-01-01

    Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-11289]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 Å, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen. PMID:17323930

  4. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana.

    PubMed

    Welinder, Karen G; Justesen, Annemarie F; Kjaersgård, Inger V H; Jensen, Rikke B; Rasmussen, Søren K; Jespersen, Hans M; Duroux, Laurent

    2002-12-01

    Understanding peroxidase function in plants is complicated by the lack of substrate specificity, the high number of genes, their diversity in structure and our limited knowledge of peroxidase gene transcription and translation. In the present study we sequenced expressed sequence tags (ESTs) encoding novel heme-containing class III peroxidases from Arabidopsis thaliana and annotated 73 full-length genes identified in the genome. In total, transcripts of 58 of these genes have now been observed. The expression of individual peroxidase genes was assessed in organ-specific EST libraries and compared to the expression of 33 peroxidase genes which we analyzed in whole plants 3, 6, 15, 35 and 59 days after sowing. Expression was assessed in root, rosette leaf, stem, cauline leaf, flower bud and cell culture tissues using the gene-specific and highly sensitive reverse transcriptase-polymerase chain reaction (RT-PCR). We predicted that 71 genes could yield stable proteins folded similarly to horseradish peroxidase (HRP). The putative mature peroxidases derived from these genes showed 28-94% amino acid sequence identity and were all targeted to the endoplasmic reticulum by N-terminal signal peptides. In 20 peroxidases these signal peptides were followed by various N-terminal extensions of unknown function which are not present in HRP. Ten peroxidases showed a C-terminal extension indicating vacuolar targeting. We found that the majority of peroxidase genes were expressed in root. In total, class III peroxidases accounted for an impressive 2.2% of root ESTs. Rather few peroxidases showed organ specificity. Most importantly, genes expressed constitutively in all organs and genes with a preference for root represented structurally diverse peroxidases (< 70% sequence identity). Furthermore, genes appearing in tandem showed distinct expression profiles. The alignment of 73 Arabidopsis peroxidase sequences provides an easy access to the identification of orthologous peroxidases

  5. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    PubMed

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-01

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. PMID:26086996

  6. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  7. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  8. Direct synthesis of a {Co₆(III)Fe₆(III)} dodecanuclear complex, revealing an unprecedented molecular structure type.

    PubMed

    Chygorin, Eduard N; Kokozay, Vladimir N; Omelchenko, Irina V; Shishkin, Oleg V; Titiš, Ján; Boča, Roman; Nesterov, Dmytro S

    2015-06-28

    A novel heterometallic Co6Fe6 Schiff base complex, possessing an unprecedented {M12(μ-X)22} branched structure (according to the search via the Cambridge Structural Database), has been prepared using the "direct synthesis" approach and characterized by single crystal X-ray diffraction and magnetometry. PMID:25992842

  9. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  10. Structural homology between lymphocyte receptors for high endothelium and class III extracellular matrix receptor.

    PubMed Central

    Gallatin, W M; Wayner, E A; Hoffman, P A; St John, T; Butcher, E C; Carter, W G

    1989-01-01

    We have identified extensive structural homology between one type of heterotypic adhesion receptor (HAR) involved in lymphocyte interactions with high endothelium in lymphoid organs and a collagen-binding protein, termed class III extracellular matrix receptor (ECMRIII), expressed on most nucleated cell types. Both receptors have been described as heterogeneous 90-kDa transmembrane glycoproteins, referred to here as gp90. Monoclonal anti-HAR antibodies, Hermes-1 and Hutch-1, and monoclonal anti-ECMRIII antibodies, P1G12 and P3H9, were utilized to compare the two receptors. (i) All these monoclonal antibodies immunoprecipitated major gp90 components as well as uncharacterized additional higher molecular mass antigens of 120-200 kDa in human and macaque fibroblasts and peripheral blood mononuclear cells. (ii) Competitive binding analyses with the antibodies identified distinct epitopes present on gp90. (iii) Enzymatic and chemical digestions generated identical peptide fragments from all the antigens in human and macaque fibroblasts and peripheral blood mononuclear cells. (iv) Sequential immunoprecipitation with P1G12 followed by the other monoclonal antibodies indicated that all gp90 species reactive with Hermes-1 and Hutch-1 also expressed the P1G12 defined epitope. In reciprocal experiments, Hermes-1 and Hutch-1 immunoprecipitation did not completely remove all P1G12-reactive gp90 from cellular extracts. One inference from these data would be that gp90 is serologically heterogeneous, encompassing HARs as a major subset of this broadly expressed class of molecules. Images PMID:2471973

  11. The synthesis, structure, magnetic and luminescent properties of a new tetranuclear dysprosium (III) cluster

    SciTech Connect

    Chen, Yen-Han; Tsai, Yun-Fan; Lee, Gene-Hsian; Yang, En-Che

    2012-01-15

    The synthesis and characterization of [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} (1), a new tetranuclear dysprosium (III) complex, is described. The compound was characterized by its X-ray structure, magnetic properties as well as the luminescent spectra. The compound crystallizes in a P1-bar space group with a zig-zag linear form of geometry. The ac magnetic susceptibilities of the molecule indicate that it is a magnetic molecule with a slow magnetization relaxation. The molecule also exhibits an emission spectrum that was confirmed to be ligand based. These results indicate that this molecule has both a slow magnetization relaxation (that could be potentially a SMM) and luminescent properties. - Graphical Abstract: A new tetranuclear dysprosium (III) complex [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} is synthesized and reported in this paper. This molecule has luminescence and can potentially act as a SMM. Highlights: Black-Right-Pointing-Pointer A new designed ligand (dhampH{sub 5}) was syntheisized. Black-Right-Pointing-Pointer A new tetra-dysprosium cluster [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} was made. Black-Right-Pointing-Pointer Slow magnetization relaxation phenomenon was observed. Black-Right-Pointing-Pointer Ligand-based luminescence was observed.

  12. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Ohya, Shinobu; Nam Hai, Pham

    2014-03-01

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  13. Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system

    PubMed Central

    Deane, Janet E; Graham, Stephen C; Mitchell, Edward P; Flot, David; Johnson, Steven; Lea, Susan M

    2008-01-01

    The pathogenic bacterium Shigella flexneri uses a type III secretion system to inject virulence factors from the bacterial cytosol directly into host cells. The machinery that identifies secretion substrates and controls the export of extracellular components and effector proteins consists of several inner-membrane and cytoplasmic proteins. One of the inner membrane components, Spa40, belongs to a family of proteins proposed to regulate the switching of substrate specificity of the export apparatus. We show that Spa40 is cleaved within the strictly conserved amino acid sequence NPTH and substitution of the proposed autocatalytic residue abolishes cleavage. Here we also report the crystal structure of the cytoplasmic complex Spa40C and compare it with the recent structures of the homologues from Escherichia coli and Salmonella typhimurium. These structures reveal the tight association of the cleaved fragments and show that the conserved NPTH sequence lies on a loop which, when cleaved, swings away from the catalytic N257 residue, resulting in different surface features in this region. This structural rearrangement suggests a mechanism by which non-cleaving forms of these proteins interfere with correct substrate switching of the apparatus. PMID:18485071

  14. Crystal structure of new complexes of praseodymium(III) nitrate and ytterbium(III) nitrate with 2,2': 6,2''-terpyridine

    SciTech Connect

    Charushnikova, I. A. Auwer, C. Den

    2006-12-15

    The crystal structure of new complexes of praseodymium(III) and ytterbium(III) (elements from the initial and final parts of the lanthanide series), namely, [Pr(NO{sub 3}){sub 3} (Terpy)((CH{sub 3}){sub 2}CO)] (I) and [Yb(NO{sub 3}){sub 2}(Terpy)(H{sub 2}O){sub 2}]NO{sub 3} . 2H{sub 2}O (II), is investigated. The structure of compound I consists of [Pr(NO{sub 3}){sub 3}(Terpy)((CH{sub 3}){sub 2}CO)] neutral complexes. The coordination number of the praseodymium atom is 10. The coordination polyhedron of the praseodymium atom can be described as a distorted bicapped tetragonal antiprism. The structure of compound II is composed of [Yb(NO{sub 3}){sub 2}(Terpy)(H{sub 2}O){sub 2}]{sup +} cationic complexes, nitrate anions, and molecules of crystallization water. The structural components are joined together via a three-dimensional system of hydrogen bonds. The coordination polyhedron of the ytterbium atom can be represented as a distorted tricapped trigonal prism. The coordination number of the ytterbium atom is 9.

  15. Engineering NK Cells Modified With an EGFRvIII-specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting Glioblastoma.

    PubMed

    Müller, Nadja; Michen, Susanne; Tietze, Stefanie; Töpfer, Katrin; Schulte, Alexander; Lamszus, Katrin; Schmitz, Marc; Schackert, Gabriele; Pastan, Ira; Temme, Achim

    2015-06-01

    Natural killer (NK) cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK cell-resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. On the basis of the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an epidermal growth factor variant III (EGFRvIII)-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII glioblastoma cells in vitro and to established subcutaneous U87-MG tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared with NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared with the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor-engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy. PMID:25962108

  16. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma

    PubMed Central

    Müller, Nadja; Michen, Susanne; Tietze, Stefanie; Töpfer, Katrin; Schulte, Alexander; Lamszus, Katrin; Schmitz, Marc; Schackert, Gabriele; Pastan, Ira; Temme, Achim

    2015-01-01

    NK cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK-cell resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. Based on the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an EGFRvIII-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII+ glioblastoma cells in vitro and to established subcutaneous U87-MGEGFRvIII tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared to NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared to the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy. PMID:25962108

  17. Structure and Function of the Type III Secretion System of Pseudomonas aeruginosa

    PubMed Central

    Galle, Marlies; Carpentier, Isabelle; Beyaert, Rudi

    2012-01-01

    Pseudomonas aeruginosa is a dangerous pathogen particularly because it harbors multiple virulence factors. It causes several types of infection, including dermatitis, endocarditis, and infections of the urinary tract, eye, ear, bone, joints and, of particular interest, the respiratory tract. Patients with cystic fibrosis, who are extremely susceptible to Pseudomonas infections, have a bad prognosis and high mortality. An important virulence factor of P. aeruginosa, shared with many other gram-negative bacteria, is the type III secretion system, a hollow molecular needle that transfers effector toxins directly from the bacterium into the host cell cytosol. This complex macromolecular machine works in a highly regulated manner and can manipulate the host cell in many different ways. Here we review the current knowledge of the structure of the P. aeruginosa T3SS, as well as its function and recognition by the immune system. Furthermore, we describe recent progress in the development and use of therapeutic agents targeting the T3SS. PMID:23305368

  18. Crystal structure of tris-(ethyl-enedi-ammonium) hexasulfatopraseodymium(III) hexa-hydrate.

    PubMed

    Held, Peter

    2014-10-01

    In the title salt, (C2H10N2)3[Pr2(SO4)6]·6H2O, the Pr(III) cation is surrounded ninefold by five sulfate groups (two monodentate and three chelating) and by one water mol-ecule [range of Pr-O bond lengths 2.383 (3) to 2.582 (3) Å]. The [Pr(SO4)5(H2O)] groups are arranged in sheets parallel to (010). Two crystal water mol-ecules and two ethyl-enedi-ammonium cations (one with point group symmetry -1) connect the sheets via O-H⋯O and N-H⋯O hydrogen bonds from weak up to medium strength into a three-dimensional framework structure. PMID:25484661

  19. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    SciTech Connect

    Mehrabova, M. A. Madatov, R. S.

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smaller than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.

  20. Crystal structure of bis-(quinolin-1-ium) tetra-chlorido-ferrate(III) chloride.

    PubMed

    Boudjarda, Azzedine; Bouchouit, Karim; Arroudj, Samiha; Bouacida, Sofiane; Merazig, Hocine

    2015-12-01

    The asymmetric unit of the title hybrid compound, (C9H8N)[FeCl4]Cl, comprises a tetra-hedral tetra-chlorido-ferrate(III) anion, [FeCl4](-), a Cl(-) anion and two quinolinium cations. There are N-H⋯Cl hydrogen-bonding inter-actions between the protonated N atoms of the quinolinium cations and the chloride anion, which together with π-π stacking between adjacent quinolinium rings [centroid-to-centroid distances between C6 and C5N rings in adjacent stacked quinolinium cations of 3.609 (2) and 3.802 (2) Å] serve to hold the structure together. PMID:26870461

  1. Nonlinear constitutive theory for turbine engine structural analysis

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.

    1982-01-01

    A number of viscoplastic constitutive theories and a conventional constitutive theory are evaluated and compared in their ability to predict nonlinear stress-strain behavior in gas turbine engine components at elevated temperatures. Specific application of these theories is directed towards the structural analysis of combustor liners undergoing transient, cyclic, thermomechanical load histories. The combustor liner material considered in this study is Hastelloy X. The material constants for each of the theories (as a function of temperature) are obtained from existing, published experimental data. The viscoplastic theories and a conventional theory are incorporated into a general purpose, nonlinear, finite element computer program. Several numerical examples of combustor liner structural analysis using these theories are given to demonstrate their capabilities. Based on the numerical stress-strain results, the theories are evaluated and compared.

  2. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  3. STRUCTURAL ANALYSIS OF ALTERNATIVE COMPLEX III IN THE PHOTOSYNTHETIC ELECTRON TRANSFER CHAIN OF CHLOROFLEXUS AURANTIACUS

    PubMed Central

    Gao, Xinliu; Xin, Yueyong; Bell, Patrick D.; Wen, Jianzhong; Blankenship, Robert E.

    2010-01-01

    The green photosynthetic bacterium Chloroflexus aurantiacus, which belongs to the phylum of filamentous anoxygenic phototrophs, does not contain a cytochrome bc or bf type complex as is found in all other known groups of phototrophs. This suggests that a functional replacement exists to link the reaction center photochemistry to cyclic electron transfer as well as respiration. Earlier work identified a potential substitute of the cytochrome bc complex, now named alternative complex III (ACIII), which has been purified, identified and characterized from C. aurantiacus. ACIII functions as a menaquinol:auracyanin oxidoreductase in the photosynthetic electron transfer chain, and a related but distinct complex functions in respiratory electron flow to a terminal oxidase. In this work, we focus on elucidating the structure of the photosynthetic ACIII. We found that AC III is an integral-membrane protein complex of around 300 kDa that consists of 8 subunits of 7 different types. Among them, there are 4 metalloprotein subunits, including a 113 kDa iron-sulfur cluster-containing polypeptide, a 25 kDa penta-heme c-containing subunit and two 20 kDa mono-heme c-containing subunits in the form of a homodimer. A variety of analytical techniques were employed in determining the ACIII substructure, including HPLC combined with ESI-MS, metal analysis, potentiometric titration and intensity analysis of heme-staining SDS-PAGE. A preliminary structural model of the ACIII complex is proposed based on the analytical data and chemical cross-linking in tandem with mass analysis using MALDI-TOF, as well as transmembrane and transit peptide analysis. PMID:20614874

  4. Engineering structured light with Vogel spiral arrays of nanoparticles

    NASA Astrophysics Data System (ADS)

    Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca

    2013-03-01

    We present a general analytical model for light scattering by arbitrary Vogel spiral arrays of circular apertures uniformly illuminated at normal incidence. This model suffices to unveil the fundamental mathematical structure of their complex Fraunhofer diffraction patterns and enables the engineering of optical beams carrying multiple values of orbital angular momentum (OAM). By performing analytical Fourier-Hankel decomposition of spiral arrays and far field patterns, we rigorously demonstrate the ability to encode specific numerical sequences onto the OAM values of diffracted optical beams. In particular, we show that these OAM values are determined by the rational approximations of the continued fraction expansions of the irrational angles utilized to generate Vogel spirals. Finally, we experimentally demonstrate structured light carrying multiple values of OAM in the far-field scattering region of Vogel spiral arrays of metallic nanoparticles. Using Fourier-Hankel mode decomposition analysis and interferometric reconstruction of the complex amplitude of scattered waves, we show the ability to encode well-defined numerical sequences, determined by the aperiodic spiral geometry, into azimuthal OAM values, in excellent agreement with analytical scattering theory. The generation of sequences of OAM values by light scattering from engineered aperiodic surfaces is relevant to a number of device applications for secure optical communication, classical and quantum cryptography.

  5. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  6. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells

    PubMed Central

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B.; Victor, Aaron; Meisen, Walter H.; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E. Antonio; Glorioso III, Joseph C.; Kaur, Balveen; Caligiuri, Michael A.; Yu, Jianhua

    2015-01-01

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB. PMID:26155832

  7. The formation of Population III stars and their effect on cosmological structure in the early universe

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian William

    2005-11-01

    The first generation of stars to form in the universe have a profound impact on their environment. These stars are responsible for beginning the universe's transition from a "cosmic dark age" where no sources of visible light existed; to the bright universe seen today. Additionally, these stars were believed to be the first sources of all elements heavier than lithium, which strongly affected the ability of gas to cool and permanently changed how star formation occurred. In this dissertation I present results from numerical simulations of the formation of the first generation of stars to form in the universe ("Population III" stars) and their effects on later structure formation. I compare Enzo, the adaptive mesh refinement cosmology code used to perform all of the simulations in this work, to GADGET, a smoothed particle hydrodynamics cosmology code. Nearly identical results can be obtained when using two extremely different numerical methods, which helps to verify the correctness of both codes and strengthen the confidence of predictions made with these tools. I perform high dynamical range calculations of the formation of an ensemble of Population III stars, varying multiple simulation parameters, in a standard cold dark matter cosmology as well as with a soft ultraviolet background and in a generic warm dark matter cosmology. I find that the accretion rates of primordial protostars have been systematically overestimated by previously published work, which has profound implications for later structure formation and the reionization of the universe. Additionally, the presence of a soft ultraviolet background and warm dark matter serves to delay the onset of star formation. I propose limits on the possible mass of a warm dark matter particle. I also present results of simulations which demonstrate the effects of the HII regions and metal enrichment from Population III stars. It appears that HII regions from these stars may hasten the formation of later generations

  8. New Insights into Structure and Luminescence of EuIII and SmIII Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    PubMed Central

    2016-01-01

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [MIIIL]− (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the EuIII and SmIII complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements. PMID:25607882

  9. Iridium(III) amine complexes as high-stability structure-directing agents for the synthesis of metal phosphates

    SciTech Connect

    Williams, D.J.; Kruger, J.S.; McLeroy, A.F.; Wilkinson, A.P.; Hanson, J.C.

    1999-08-01

    Structure-directing agents based on iridium(III) complexes provide a hydrothermally robust alternative to the corresponding cobalt compounds. The slight size difference between Co(III) and Ir(III) does not dramatically influence the nature of the AlPO products that are obtained from hydrothermal synthesis using complexes based upon the ligands 1,2-diaminoethane and trans-1,2-diaminocyclohexane (chxn). However, the very slow ligand exchange kinetics of the Ir(III) complexes facilitate the use of increased hydrothermal synthesis temperatures when compared to the corresponding Co(III) complexes. For the two systems that they have examined, the use of Ir(III) allows the synthesis temperatures to be increased by {approximately} 40 C over the maximum that is viable for the corresponding cobalt complexes. This increase allowed us to prepare AlPO single crystals using Ir({+-}chxn){sub 3}{sup 3+}, whereas they authors could only obtain powders using the corresponding cobalt complexes. The use of iridium in place of cobalt increases the range of ligands that can be considered in constructing chelate complexes for use as structure-directing agents and may facilitate the preparation of different AlPO products from those found using cobalt complexes, as higher hydrothermal synthesis temperatures can be employed.

  10. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM). PMID:27250401

  11. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    SciTech Connect

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H.

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  12. Structural, Hirshfeld surface and spectroscopic studies of the noncentrosymmetric 1-ethylpiperazinediium pentachloroantimonate (III) monohydrate

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Zeller, M.; Jelsch, C.; Lefebvre, F.; Ben Nasr, Cherif

    2016-08-01

    1-Ethylpiperazinediium pentachloroantimonate (III) monohydrate, C6H16N2SbCl5·H2O, has been synthesized by the reaction of antimony trioxide (Sb2O3) and 1-ethylpiperazine in an aqueous solution of hydrochloric acid. The structure crystallizes in orthorhombic system, in the non-centrosymmetric space group Pca21 and consists of isolated [C6H16N2]2+ cations, square pyramidal [SbCl5]2- anions and lattice water molecules. Osbnd H⋯Cl hydrogen bonds link the [SbCl5]2- anions and water molecules to form double chains stretching along the [101] direction. The chains in turn are linked to the organic cations via Nsbnd H⋯Cl, Csbnd H⋯Cl, Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds to form a three-dimensional network. This structure presents an example of a general square pyramidal complex ion containing a stereo-chemically active lone pair of electrons. Solid state 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure, and vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and IR absorption bands. The interactions variability of the two independent cations and ten chloride atoms is analyzed via Hirshfeld surface analysis.

  13. Structure-activity relationship for Fe(III)-salen-like complexes as potent anticancer agents.

    PubMed

    Ghanbari, Zahra; Housaindokht, Mohammad R; Izadyar, Mohammad; Bozorgmehr, Mohammad R; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R; Matin, Maryam M; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R (2) train = 0.99, RMSE = 0.138, and Q (2) LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  14. Structure-Activity Relationship for Fe(III)-Salen-Like Complexes as Potent Anticancer Agents

    PubMed Central

    Ghanbari, Zahra; Housaindokht, Mohammad R.; Izadyar, Mohammad; Bozorgmehr, Mohammad R.; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R.; Matin, Maryam M.; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R2train = 0.99, RMSE = 0.138, and Q2LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  15. Structure of a bacterial type III secretion system in contact with a host membrane in situ

    NASA Astrophysics Data System (ADS)

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.

    2015-12-01

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking `pump-action' conformational changes that underpin effector injection.

  16. Structure of a bacterial type III secretion system in contact with a host membrane in situ

    PubMed Central

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.

    2015-01-01

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform–ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action' conformational changes that underpin effector injection. PMID:26656452

  17. Structural tailoring of SSME turbopump blades (SSME/STAEBL). [Structural Tailoring of Engine Blades

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Chamis, C. C.

    1986-01-01

    Computer structural optimization is applied to the design of Space Shuttle main engine turbopump blades. The optimization is implemented by the program SSME/STAEBL. A general description of this program is given. Design optimization studies for typical blade designs are presented.

  18. Assessment and economic analysis of the MOD III Stirling-engine driven chiller system. Final report, October 1989-July 1990

    SciTech Connect

    Moryl, J.

    1990-07-01

    The Stirling engine is an inherently clean and efficient engine. With the requirements for environmentally benign emissions and high energy efficiency, the Stirling engine is an attractive alternative to both internal combustion (IC) engines and electric motors. The study evaluated a Stirling-engine-driven chiller package. Technically, the Stirling engine is a good selection as a compressor drive, with inherently low vibrations, quiet operation, long life, and low maintenance. Exhaust emissions are below the projected 1995 stringent California standards. Economically, the Stirling-engine-driven chiller is a viable alternative to both IV-engine and electric-driven chillers, trading off slightly higher installed cost against lower total operating expenses. The penetration of a small portion of the projected near-term stationary engine market opportunity will provide the volume production basis to achieve competitively priced engines.

  19. Synthesis, characterization, X-ray structure and photoluminescence properties of two Ce(III) complexes derived from pentadentate ligands

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Akgün, Eyup; Ceyhan, Gökhan

    2015-12-01

    In this study, two new Ce(III) complexes [Ce(L1)(NO3)3]•H2O and [Ce(L2)(NO3)3]•H2O were synthesized and characterized by spectroscopic and analytical methods where L1 and L2 are pentadentate diimine ligands. Molecular structure of [Ce(L1)(NO3)3]•H2O was determined by single crystal X-ray diffraction study. The complex was found to crystallize as [Ce(L1)(NO3)3] H2O. In the complex, the ligand L1 coordinates to the Ce(III) ion with the N3O2 donor set and the Ce(III) ion sits within the cavity of acyclic ligand. The Ce(III) ion is 11-coordinated by three nitrogen atoms from the ligand and eight O atoms, six of which come from three nitrate ions, two from the ligand. In the structure of the complex, water molecules link molecules together to form a 3D hydrogen bond network. Thermal behavior of the Schiff base ligands and their Ce(III) complexes metal complexes were studied under nitrogen atmosphere in the temperature range of 20-800 °C. Thermal stability of the ligands increased upon complexation with Ce(III) ion. In the UV-Vis spectra of Ce(III) complexes, new absorption bands appeared at 340-450 nm and these new bands were attributed to metal-ligand (M-L) charge transitions. Photoluminescence properties of the ligands and their Ce(III) complexes were examined.

  20. Probabilistic structural analysis methods for improving Space Shuttle engine reliability

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1989-01-01

    Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.

  1. Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.

    2009-01-01

    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.

  2. Ab initio predictions of the stability and structural properties of zincblende (III,TM)V magnetic semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Caetano, C.; Pela, R. R.; Martini, S.; Marques, M.; Teles, L. K.

    2016-05-01

    First-principles calculations and statistical methods were combined to study electronic, magnetic, thermodynamic and structural properties of zincblende (III,Mn)V and (III,Cr)V magnetic semiconductor alloys, including both nitride and arsenide alloys. From phase diagrams it was observed that nitride alloys are much less stable than arsenide ones, although the former ones have more localized d-states at the Fermi level. It was observed that all alloys present an anisotropic behavior, with the strongest magnetic interaction in the < 110 > direction. The relationship between the structural properties of these alloys and their electronic and magnetic characteristics (i.e., their half-metallicity) was investigated.

  3. NMR solution structure of the theta subunit of DNA polymerase III from Escherichia coli.

    PubMed Central

    Keniry, M. A.; Berthon, H. A.; Yang, J. Y.; Miles, C. S.; Dixon, N. E.

    2000-01-01

    The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits (alpha, epsilon, and theta). The theta subunit is the smallest, but the least understood of the three. As a first step in a program aimed at understanding its function, the structure of the theta subunit has been determined by triple-resonance multidimensional NMR spectroscopy. Although only a small protein, theta was difficult to assign fully because approximately one-third of the protein is unstructured, and some sections of the remaining structured parts undergo intermediate intramolecular exchange. The secondary structure was deduced from the characteristic nuclear Overhauser effect patterns, the 3J(HN alpha) coupling constants and the consensus chemical shift index. The C-terminal third of the protein, which has many charged and hydrophilic amino acid residues, has no well-defined secondary structure and exists in a highly dynamic state. The N-terminal two-thirds has three helical segments (Gln10-Asp19, Glu38-Glu43, and His47-Glu54), one short extended segment (Pro34-Ala37), and a long loop (Ala20-Glu29), of which part may undergo intermediate conformational exchange. Solution of the three-dimensional structure by NMR techniques revealed that the helices fold in such a way that the surface of theta is bipolar, with one face of the protein containing most of the acidic residues and the other face containing most of the long chain basic residues. Preliminary chemical shift mapping experiments with a domain of the epsilon subunit have identified a loop region (Ala20-Glu29) in theta as the site of association with epsilon. PMID:10794414

  4. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III

    SciTech Connect

    Hlouchova, Klara; Barinka, Cyril; Konvalinka, Jan; Lubkowski, Jacek

    2009-10-23

    Glutamate carboxypeptidase III (GCPIII) is a metalloenzyme that belongs to the transferrin receptor/glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) superfamily. GCPIII has been studied mainly because of its evolutionary relationship to GCPII, an enzyme involved in a variety of neuropathologies and malignancies, such as glutamatergic neurotoxicity and prostate cancer. Given the potential functional and pharmacological overlap between GCPIII and GCPII, studies addressing the structural and physiological properties of GCPIII are crucial for obtaining a deeper understanding of the GCPII/GCPIII system. In the present study, we report high-resolution crystal structures of the human GCPIII ectodomain in a 'pseudo-unliganded' state and in a complex with: (a) L-glutamate (a product of hydrolysis); (b) a phosphapeptide transition state mimetic, namely (2S,3'S)-{l_brace}[(3'-amino-3'-carboxy-propyl)-hydroxyphosphinoyl]methyl{r_brace}-pentanedioic acid; and (c) quisqualic acid, a glutamate biostere. Our data reveal the overall fold and quaternary arrangement of the GCPIII molecule, define the architecture of the GCPIII substrate-binding cavity, and offer an experimental evidence for the presence of Zn{sup 2+} ions in the bimetallic active site. Furthermore, the structures allow us to detail interactions between the enzyme and its ligands and to characterize the functional flexibility of GCPIII, which is essential for substrate recognition. A comparison of these GCPIII structures with the equivalent GCPII complexes reveals differences in the organization of specificity pockets, in surface charge distribution, and in the occupancy of the co-catalytic zinc sites. The data presented here provide information that should prove to be essential for the structurally-aided design of GCPIII-specific inhibitors and might comprise guidelines for future comparative GCPII/GCPIII studies.

  5. Spectroscopic Survey Telescope design. III - Optical support structure and overall configuration

    NASA Astrophysics Data System (ADS)

    Ray, F. B.

    1990-07-01

    The Universities of Texas and Penn State are working together on an Arecibo-type optical telescope to be utilized in a semitransit mode for spectroscopic survey work. Its optics include a spherical primary mirror, a 2-element all-reflecting Gregorian spherical aberration corrector, and a series of optical fibers that will transmit light to a family of spectrographs. An optical support structure is being developed to permit position adjustment in azimuth only. During an azimuth position change, the instrument's entire weight is borne by steel rollers bearing on a circular crane rail of standard section, with support loads transmitted to the telescope base through pneumatic springs. Extensive application of various analytical procedures and computer-aided engineering tools has effectively allowed the detailed examination of several design iterations, thereby increasing the probability of success in the realized structure.

  6. Structural engineering masters level education framework of knowledge for the needs of initial professional practice

    NASA Astrophysics Data System (ADS)

    Balogh, Zsuzsa Enriko

    For at least the last decade, engineering, civil engineering, along with structural engineering as a profession within civil engineering, have and continue to face an emerging need for "Raising the Bar" of preparedness of young engineers seeking to become practicing professional engineers. The present consensus of the civil engineering profession is that the increasing need for broad and in-depth knowledge should require the young structural engineers to have at least a Masters-Level education. This study focuses on the Masters-Level preparedness in the structural engineering area within the civil engineering field. It follows much of the methodology used in the American Society of Civil Engineers (ASCE) Body of Knowledge determination for civil engineering and extends this type of study to better define the portion of the young engineers preparation beyond the undergraduate program for one specialty area of civil engineering. The objective of this research was to create a Framework of Knowledge for the young engineer which identifies and recognizes the needs of the profession, along with the profession's expectations of how those needs can be achieved in the graduate-level academic setting, in the practice environment, and through lifelong learning opportunities with an emphasis on the initial five years experience past completion of a Masters program in structural engineering. This study applied a modified Delphi method to obtain the critical information from members of the structural engineering profession. The results provide a Framework of Knowledge which will be useful to several groups seeking to better ensure the preparedness of the future young structural engineers at the Masters-Level.

  7. MoSi2-Base Structural Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Hebsur, Mohan G.

    1999-01-01

    The intermetallic compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity; and it is easily machined. Past research at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus.

  8. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    NASA Astrophysics Data System (ADS)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically

  9. Solution thermodynamics and structures of biscatecholamide complexes of Fe(III) and U(VI)

    SciTech Connect

    Gohdes, J.W.; Reilly, S.D.; Pecha, A.W.; Neu, M.P.

    1996-12-31

    We have studied the solution and solid-state complexes of a bis-catecholamide ligand, 2-LICAMS, with Fe(III) and U(VI). The first protonation constant was found to be pK{sub al} = 14.2(3) using {sup 1}H NMR titrations. Subsequent protonation constants were determined by potentiometric titration in 0.1 M TMAOTf at 25{degrees}C to be pK{sub a2} = 11.2(1), pK{sub 13} =6.5(1), pK{sub a4}= 5.9(1). Ligand-metal formation constants, {Beta}{sub mlh}, were found to be log {beta}{sub 110} = 31.4(2), log {beta}{sub 111} = 31.7(2), log {beta}{sub 112} = 34.9(2), and log {beta}11.1 = 18.0(1) for uranium(VI). To discriminate between monomeric or dimeric species models which both fit the potentiometric titration data, we isolated the hydroxide species and determined its single-crystal X-ray structure and EXAFS. The structure consists of a dimeric, bis-hydroxide bridged iron core which is spanned by two ligands. This study of solution equilibria indicates a higher stability for iron complexes of 2-LICAMS relative to uranyl complexes.

  10. Compositional and Structural Characterization by TEM of Lattice-Mismatched III-V Epilayers

    SciTech Connect

    Ahrenkiel, S. P.; Rathi, M.; Nesheim, R.; Zheng, N.; Vunnam, S.; Carapella, J. J.; Wanlass, M. W.

    2011-01-01

    We discuss compositional and structural transmission electron microscopy (TEM) characterization of lattice-mismatched (LMM) III-V epilayers grown on GaAs by metalorganic chemical vapor deposition (MOCVD), with possible applications in high-efficiency multijunction solar cells. In addition to the use of TEM imaging to survey layer thicknesses and defect morphology, our analysis emphasizes the particular methods of energy-dispersive X-ray spectrometry (EDX) and convergent-beam electron diffraction (CBED). Outlined here is a standards-based method for extracting compositions by EDX, which uses principal-component analysis (PCA) [1], combined with the zeta-factor approach of Watanabe and Williams [2]. A procedure is described that uses the coordinates of high-order Laue zone (HOLZ) lines, which are found in the bright-field disks of CBED patterns, to extract composition and strain parameters from embedded epilayers. The majority of the crystal growth for this work was performed at NREL, which has accommodated the development at SDSM&T of the characterization techniques described. However, epilayer deposition capability at SDSM&T has recently been achieved, using a home-built system, which is presently being used to examine new lattice-mismatched structures relevant to photovoltaic technology.

  11. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    SciTech Connect

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay time is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.

  12. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    DOE PAGESBeta

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay timemore » is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less

  13. Engineering the shape and structure of materials by fractal cut.

    PubMed

    Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J

    2014-12-01

    In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications. PMID:25422433

  14. Engineering the shape and structure of materials by fractal cut

    PubMed Central

    Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J.

    2014-01-01

    In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications. PMID:25422433

  15. Crankshaft structure of two-cycle internal combustion engine

    SciTech Connect

    Oyama, K.

    1986-11-18

    This patent describes a crankshaft structure in a two-cycle internal combustion engine comprising a crank web and a crank journal rotatably supported in a crank case by a bearing means. The crank web includes a supporting part having a central bore for receiving the crank journal press-fit therein. The supporting part has a reduced outer diameter portion disposed adjacent the bearing means supporting the crank journal and at an axial position overlying a press-fit part of the crank journal in the central bore of the crank web supporting part. The reduced outer diameter portion of the supporting part has a sealing member disposed on the outer periphery thereof.

  16. Crankshaft supporting structure for multicylinder internal combustion engines

    SciTech Connect

    Fukuo, K.; Ito, T.; Ichida, K.

    1988-03-08

    A crankshaft supporting structure in a multicylinder internal combustion engine is described including a bearing caps secured respectively to journal walls integral with a crankcase of a cylinder block, a crankshaft rotatably supported between the journal walls and the bearing caps, at least one counterweight on the crankshaft, and a bridge interconnecting the bearing caps. The bridge includes integral baffle plates extending between locations of the bearing caps and curved along a path of outer peripheral surfaces of each counterweight on the crankshaft. The bridge includes an oil supply gallery which extends substantially along a length of the bridge and generally parallel to the crankshaft and branch passages are provided in the bridge and the bearing caps extending from the gallery to a bearing hole defined by each journal wall and bearing cap.

  17. Crankshaft supporting structure for multicylinder internal combustion combustion engines

    SciTech Connect

    Fukuo, K.; Chosa, M.; Kazama, A.; Anno, N.; Kusakabe, Y.

    1988-06-28

    A crankshaft support structure is described for a multicylinder engine, comprising, a cylinder block of a lightweight material having a first coefficient of thermal expansion, the cylinder block extending longitudinally along the crankshaft and having a plurality of lateral extending and longitudinally spaced journal walls. Bearing caps of heavyweight material have a second coefficient of thermal expansion different from the first coefficient, a bearing cap mounted on each journal wall, the bearing caps and journal walls define bearing holes therebetween for supporting the crankshaft, a bridge of a lightweight material having a coefficient of thermal expansion which is substantially equal to the first coefficient, the bridge extending longitudinally over the bearing caps, and means mounting the bridge and bearing caps of the journal walls whereby the cylinder block and bridge undergo a substantially equal amount of thermal expansion and the bearing caps undergo a different amount of thermal expansion which is accommodated by the cylinder block and bridge.

  18. Applications of Substrate Integrated Waveguide (SIW) Structure in Microwave Engineering

    NASA Astrophysics Data System (ADS)

    Shen, Zhi

    This thesis is focused on some applications of the Substrate Integrated Waveguide (SIW) structure in microwave engineering. It is mainly divided into two parts, covering a dual-band high Q filter and a broadband high gain ring slot antenna, both of which are based on SIW resonators. This work indicates strong potential of SIW structure in communication system and discusses its unique advantages in detail. In the first part of the thesis, a dual-band high Q second order filter is designed to work at around 10 GHz and 14 GHz. SIW cavities are chosen in order to fulfill the low loss requirements. Two kinds of perturbation theories are applied in this structure to make two second order pass bands. Transmission lines of proper length are designed to connect the cavities together and make them work efficiently. In the second part of the thesis, a broadband high gain SIW ring slot antenna working at around 18 GHz is discussed. The bandwidth of the antenna is approximately 12.7% and the gain is around 7 dB. The cavity mode is properly chosen to reach the high antenna gain requirement. The working mechanism of its broadband property is discussed in detail to reach a reasonable argument.

  19. The Structure of Irisin Reveals a Novel Intersubunit β-Sheet Fibronectin Type III (FNIII) Dimer

    PubMed Central

    Schumacher, Maria A.; Chinnam, Nagababu; Ohashi, Tomoo; Shah, Riddhi Sanjay; Erickson, Harold P.

    2013-01-01

    Irisin was recently identified as a putative myokine that is induced by exercise. Studies suggest that it is produced by cleavage of the FNDC5 (fibronectin domain-containing protein 5) receptor; irisin corresponds to the extracellular receptor ectodomain. Data suggesting that irisin stimulates white-to-brown fat conversion have led to the hypothesis that it does so by binding an unknown receptor, thus functioning as a myokine. As brown fat promotes energy dissipation, myokines that elicit the transformation of white to brown fat have potentially profound benefits in the treatment of obesity and metabolic disorders. Understanding the molecular basis for such exercise-induced phenomena is thus of considerable interest. Moreover, FNDC5-like receptors are highly conserved and have been shown to be critical for neuronal development. However, the structural and molecular mechanisms utilized by these proteins are currently unknown. Here, we describe the crystal structure and biochemical characterization of the FNDC5 ectodomain, corresponding to the irisin myokine. The 2.28 Å structure shows that irisin consists of an N-terminal fibronectin III (FNIII)-like domain attached to a flexible C-terminal tail. Strikingly, the FNIII-like domain forms a continuous intersubunit β-sheet dimer, previously unobserved for any FNIII protein. Biochemical data confirm that irisin is a dimer and that dimerization is unaffected by glycosylation. This finding suggests a possible mechanism for receptor activation by the irisin domain as a preformed myokine dimer ligand or as a paracrine or autocrine dimerization module on FNDC5-like receptors. PMID:24114836

  20. Syntheses, crystal structures, and properties of three new lanthanum(III) vanadium iodates.

    PubMed

    Sun, Chuan-Fu; Hu, Ting; Xu, Xiang; Mao, Jiang-Gao

    2010-09-14

    Systematic explorations of new compounds in the La(3+)-V(4+)/V(5+)-iodate system led to three new lanthanum(III) vanadium iodates, namely, LaVO(IO(3))(5), LaV(2)O(6)(IO(3)), and LaVO(2)(IO(3))(4).H(2)O. LaVO(IO(3))(5) is isostructural with LaTiO(IO(3))(5) and its structure contains a 0D [VO(IO(3))(5)](3-) anionic unit composed of one VO(6) octahedron linked to five IO(3)(-) groups. Such 0D anionic units are separated by La(3+) ions. LaV(2)O(6)(IO(3)) exhibits a unique 3D framework composed of 1D [V(2)O(6)](2-) ladder like chains and 2D [La(IO(3))](2+) layers. LaVO(2)(IO(3))(4).H(2)O is isostructural with LnMoO(2)(IO(3))(4)(OH) (Ln = La, Nd, Sm, Eu) with a polar space group P2(1), its structure contains a novel 0D [VO(2)(IO(3))(4)](3-) anionic unit composed of one VO(6) octahedron linked with four IO(3)(-) groups and two terminal O(2-) anions. Such 0D anionic units are separated by La(3+) ions. The structure of LaVO(2)(IO(3))(4).H(2)O can also be described as the 8-MR channels of the 3D [La(IO(3))(4)](-) anion being filled by the VO(6) octahedra and lattice water molecules. LaVO(2)(IO(3))(4).H(2)O displays a weak SHG response of about 0.2 times that of KDP. Optical, thermal stability and magnetic susceptibility measurements as well as theoretical calculations have also been performed. PMID:20683532

  1. Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III.

    PubMed

    Kuo, C F; McRee, D E; Fisher, C L; O'Handley, S F; Cunningham, R P; Tainer, J A

    1992-10-16

    The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X6-Cys-X2-Cys-X5-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue beta-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu112 in the N-glycosylase mechanism and Lys120 in the beta-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms. PMID:1411536

  2. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    SciTech Connect

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V.

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may transition between

  3. Volatilization of Arsenic from Polluted Soil by Pseudomonas putida Engineered for Expression of the arsM Arsenic(III) S-Adenosine Methyltransferase Gene

    PubMed Central

    2015-01-01

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products. PMID:25122054

  4. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.

    PubMed

    Chen, Jian; Sun, Guo-Xin; Wang, Xiao-Xue; Lorenzo, Víctor de; Rosen, Barry P; Zhu, Yong-Guan

    2014-09-01

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products. PMID:25122054

  5. Structure-property relationships of nanoscale engineered perovskite oxides

    NASA Astrophysics Data System (ADS)

    Tian, Wei

    Recent advances in the synthesis of nanoscale customized structure have demonstrated that reactive molecular beam epitaxy (MBE) can be used to construct nanostructure of oxides with atomic control. The ability to engineer the structure and chemistry of oxides at the nanometer scale makes possible for the creation of new functional materials that can be designed to have exceptional properties. This thesis focused on understanding structure-property relationships of such nanoscale customized oxides utilizing state-of-the-art transmission electron microscopy (TEM). Epitaxial thin films of n = 1--5 members of Ruddlesden-Popper homologous series Srn+1Ti nO3n+1 were synthesized by reactive MBE. We investigated the structure and microstructure of these thin films by x-ray diffraction along with high-resolution transmission electron microscopy (HRTEM) in combination with computer image simulations. We found that the thin films of n = 1--3 members are nearly free of intergrowths, e.g. phase-pure, while n = 4 and 5 thin films contain noticeably more intergrowth defects and anti-phase boundaries in their perovskite sheets. We show that these results are consistent with what is known about the thermodynamics of Sr n+1TinO3 n+1 phases. We also investigated the atomic structure and interfacial structure of artificial PbTiO3/SrTiO3 and BaTiO3/SrTiO 3 superlattices grown by MBE both with and without digital compositional grading. Both of these systems form a solid solution over their entire composition range. Thus, these layered heterostructures are metastable. We demonstrated, however, that the thermodynamically metastable superlattices can be kinetically stabilized via layer-by-layer growth. In addition, we found that the interfaces between two constituents in the heterostructures are atomically-abrupt. The superlattice thin films were made fully coherent with the substrates, resulting in a homogeneous large strain in the BaTiO3 layers due to the lattice mismatch between BaTiO3

  6. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    NASA Astrophysics Data System (ADS)

    Marques, Lippy F.; Correa, Charlane C.; Ribeiro, Sidney J. L.; dos Santos, Molíria V.; Dutra, José Diogo L.; Freire, Ricardo O.; Machado, Flávia C.

    2015-07-01

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) {[Ln2(2,5-tdc)3(dmso)2]·H2O}n (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal - prismatic geometry. The 2,5-tdc2- ligands connect four Ln(III) centers, adopting (κ1-κ1)-(κ1-κ1)-μ4 coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes.

  7. Structural design of Stirling engine with free pistons

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  8. Resonance assignments and secondary structure prediction of the As(III) metallochaperone ArsD in solution

    PubMed Central

    Ye, Jun; He, Yanan; Skalicky, Jack; Rosen, Barry P.; Stemmler, Timothy L.

    2012-01-01

    ArsD is a metallochaperone that delivers As(III) to the ArsA ATPase, the catalytic subunit of the ArsAB pump encoded by the arsRDABC operon of Escherichia coli plasmid R773. Conserved ArsD cysteine residues (Cys12, Cys13 and Cys18) construct the As(III) binding site of the protein, however a global structural understanding of this arsenic binding remains unclear. We have obtained NMR assignments for ArsD as a starting point for probing structural changes on the protein that occur in response to metalloid binding and upon formation of a complex with ArsA. The predicted solution structure of ArsD is in agreement with recently published crystallographic structural results. PMID:21063813

  9. Development and fabrication of structural components for a scramjet engine

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1990-01-01

    A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.

  10. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  11. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  12. The structural and optical properties of type III human collagen biosynthetic corneal substitutes.

    PubMed

    Hayes, Sally; Lewis, Phillip; Islam, M Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M

    2015-10-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2-9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  13. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    PubMed Central

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  14. Structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    A series of gold-substituted perovskite superconductors Ba2Y(Cu/1-x/Aux)3O(7-delta)(x = 0-0.1) was synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A), but a 0.06 A c-axis expansion to 11.75 A was observed. Substituted gold was found to be trivalent by X-ray photoelectron spectroscopy. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c-axis expansion. The formal charge of the site remains trivalent, while remaining Cu in the chains is reduced to Cu(I), resulting in an oxygen stoichiometry of less than 7. Finally, no large effect on Tc is observed (Tc = 89 K for x = 0.10), in contrast to the effect of a number of other metal ion dopants. These results are discussed relative to the chemistry of Au(III) and to the use of the metal in structures containing gold and ceramic superconductors.

  15. Synthesis and structure of dinuclear complexes of terbium(III) with 4-acetalbispyrazolone

    SciTech Connect

    Luqin Yang; Rudong Yang

    1994-12-01

    Two novel dinuclear complexes of terbium(III) with 1,5-bis(1`-phenyl-3`-methyl-5`-pyrazolone-4`)-1,5- pentanedione (H{sub 2}L), Tb{sub 2}L{sub 3}{center_dot}6H{sub 2}, Tb{sub 2}L{sub 3}{center_dot}5DMF, have been synthesized. The crystal structure of Tb{sub 2}L{sub 3}{center_dot}5DMF was determined by X-ray diffraction methods. Crystals are triclinic, space group P{rvec 1} with a = 16.957(5), b = 17.877(7), c = 18.269(2){Angstrom}, a = 110.35(2), {beta} = 101.29(2), {gamma} = 111.02(2){degrees}, V = 4511(6){Angstrom}{sup 3}, Mr = 2010.76 Z = 2, Dx = 1.48 g cm{sup -3}, {mu} = 16.45 cm{sub -1} F(000) = 2,052, R = 0.058 with 6574 reflections used in refinement. In the complex, L acts as a bridging ligand and bonds two terbium atoms with its two {beta}-diketone groups. Each terbium ion bonds to two DMF solvent molecules. The coordination number of the two terbium ions is eight. The eight oxygen atoms around the terbium make a distorted square antiprismatic coordination polyhedron.

  16. (Nitro)Iron(III) Porphyrins. EPR Detection of a Transient Low-Spin Iron(III) Complex and Structural Characterization of an O Atom Transfer Product.

    PubMed

    Munro, Orde Q.; Scheidt, W. Robert

    1998-05-01

    The reaction of BF(3).OEt(2) with the bis(nitro) complex of iron(III) picket-fence porphyrin, [K(18C6)(OH(2))][Fe(TpivPP)(NO(2))(2)], leads to the formation of a transient porphyrin intermediate, assigned on the basis of its rhombic low-spin EPR spectrum as the five-coordinate N-bound mono(nitro) iron(III) derivative, [Fe(TpivPP)(NO(2))]. This species is reactive and readily undergoes oxygen atom transfer to form [Fe(III)(TpivPP)(NO(3))] and [Fe(II)(TpivPP)(NO)]. The reactions have been followed by EPR and IR spectroscopy. [Fe(TpivPP)(NO(2))] has a rhombic EPR spectrum (g = 2.60, 2.35, and 1.75) in chlorobenzene and CH(2)Cl(2) and is spectroscopically distinct from the bis(nitro) starting material (g = 2.70, 2.50, and 1.57). Oxidation of the nitrosyl species to [Fe(TpivPP)(NO(3))] proceeds via an intermediate assigned as [Fe(TpivPP)(NO(2))] on the basis of its EPR spectrum. The crystal structure of one of the reaction products, [Fe(TpivPP)(NO(3))], has been determined. The nitrate ion of [Fe(TpivPP)(NO(3))] is bound to the iron(III) ion in a "symmetric" bidentate fashion within the ligand-binding pocket of the porphyrin pickets. Individual Fe-O distances are 2.123(3) and 2.226(3) Å. The dihedral angle between the plane of the nitrate ion and the closest N(p)-Fe-N(p) plane is 10.0 degrees. The Fe-N(p) bonds (and trans N(p)-Fe-N(p) angles) perpendicular and parallel to the plane of the axial ligand average to 2.060(5) Å (154.84(9) degrees ) and 2.083(3) Å (146.14(9) degrees ), respectively. Crystal data for [Fe(TpivPP)(NO(3))]: a = 23.530(2) Å, b = 10.0822(5) Å, c = 48.748(3) Å, beta = 92.145(5) degrees, monoclinic, space group I2/a, V = 11556.4(14) Å(3), Z = 8, FeN(9)O(7)C(64)H(64), 8798 observed data, R(1) = 0.0606, wR(2) = 0.1313, all observations at 127(2) K. PMID:11670389

  17. Automated output-only dynamic identification of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Fabbrocino, G.

    2010-04-01

    Modal-based damage detection algorithms are well-known techniques for structural health assessment, but they are not commonly used due to the lack of automated modal identification and tracking procedures. Development of such procedures is not a trivial task since traditional modal identification requires extensive interaction from an expert user. Nevertheless, computational efforts have to be carefully considered. If fast on-line data processing is crucial for quickly varying in time systems (such as a rocket burning fuel), a number of vibration-based condition monitoring applications are performed at very different time scales, resulting in satisfactory time steps for on-line data analysis. Moreover, promising results in the field of automated modal identification have been recently achieved. In the present paper, a literature review on this topic is presented and recent developments concerning fully automated output-only modal identification procedures are described. Some case studies are also reported in order to validate the approach. They are characterized by different levels of complexity, in terms of mode coupling, dynamic interaction effects and level of vibration. Advantages and drawbacks of the proposed approach will be pointed out with reference to available experimental results. The final objective is the implementation of a fully automated system for vibration-based structural health monitoring of civil engineering structures and identification of adequate requirements about sensor number and layout, record duration and hardware characteristics able to ensure a reliable low-cost health assessment of constructions. Results of application of the proposed methodology to modal parameter estimation in operational conditions and during ground motions induced by the recent L'Aquila earthquake will be finally presented and discussed.

  18. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.

    PubMed

    Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi

    2012-08-01

    The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction. PMID:22735894

  19. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  20. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... COMMUTER CATEGORY AIRPLANES Design and Construction Fire Protection § 23.865 Fire protection of flight controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other...

  1. Solution structure of urotensin-II receptor extracellular loop III and characterization of its interaction with urotensin-II.

    PubMed

    Boivin, Stéphane; Ségalas-Milazzo, Isabelle; Guilhaudis, Laure; Oulyadi, Hassan; Fournier, Alain; Davoust, Daniel

    2008-05-01

    Urotensin-II (U-II) is a vasoactive hormone that acts through a G-protein-coupled receptor named UT. Recently, we have shown, using the surface plasmon resonance technology that human U-II (hU-II) interacts with the hUT(281-300) fragment, a segment containing the extracellular loop III (EC-III) and short extensions of the transmembrane domains VI and VII (TM-VI and TM-VII). To further investigate the interaction of UT receptor with U-II, we have determined the solution structure of hUT(281-300) by high-resolution NMR and molecular modeling and we have examined, also using NMR, the binding with hU-II at residue level. In the presence of dodecylphosphocholine micelles, hUT(281-300) exhibited a type III beta-turn (Q285-L288), followed by an -helical structure (A289-L299), the latter including a stretch of transmembrane helix VII. Upon addition of hU-II, significant chemical shift perturbations were observed for residues located just on the N-terminal side of the beta-turn (end of TM-VI/beginning of EC-III) and on one face of the -helix (end of EC-III/beginning of TM-VII). These data, in conjunction with intermolecular NOEs, suggest that the initiation site of EC-III, as well as the upstream portion of helix VII, would be involved in agonist binding and allow to propose points of interaction in the ligand-receptor complex. PMID:18423797

  2. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions.

    PubMed

    Musioł, Marta; Sikorska, Wanda; Adamus, Grazyna; Janeczek, Henryk; Richert, Jozef; Malinowski, Rafal; Jiang, Guozhan; Kowalczuk, Marek

    2016-06-01

    This paper presents a forensic engineering study on the biodegradation behaviour of prototype packaging thermoformed from PLA-extruded film and plain PLA film under industrial composting conditions. Hydrolytic degradation in water was conducted for reference. The effects of composting duration on changes in molar mass, glass transition temperature and degree of crystallinity of the polymeric material were monitored using gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The chemical structure of water soluble degradation products of the polymeric material was determined using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS). The results show that the biodegradation process is less dependent on the thermoforming process of PLA and more dependent on the composting/degradation conditions that are applied. The increase in the dispersity index, leading to the bimodal molar mass distribution profile, suggests an autocatalytic hydrolysis effect at the early stage of the composting process, during which the bulk hydrolysis mechanism dominantly operates. Both the prototype PLA-packaging and PLA rigid film samples were shown to have a gradual increase in opacity due to an increase in the degree of crystallinity. PMID:27103398

  3. Structure of the cytoplasmic domain of Yersinia pestis YscD, an essential component of the type III secretion system

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2012-09-17

    The Yersinia pestis YscD protein is an essential component of the type III secretion system. YscD consists of an N-terminal cytoplasmic domain (residues 1-121), a transmembrane linker (122-142) and a large periplasmic domain (143-419). Both the cytoplasmic and the periplasmic domains are required for the assembly of the type III secretion system. Here, the structure of the YscD cytoplasmic domain solved by SAD phasing is presented. Although the three-dimensional structure is similar to those of forkhead-associated (FHA) domains, comparison with the structures of canonical FHA domains revealed that the cytoplasmic domain of YscD lacks the conserved residues that are required for binding phosphothreonine and is therefore unlikely to function as a true FHA domain.

  4. Structure of the cytoplasmic domain of Yersinia pestis YscD, an essential component of the type III secretion system

    PubMed Central

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2012-01-01

    The Yersinia pestis YscD protein is an essential component of the type III secretion system. YscD consists of an N-terminal cytoplasmic domain (residues 1–121), a transmembrane linker (122–142) and a large periplasmic domain (143–419). Both the cytoplasmic and the periplasmic domains are required for the assembly of the type III secretion system. Here, the structure of the YscD cytoplasmic domain solved by SAD phasing is presented. Although the three-dimensional structure is similar to those of forkhead-associated (FHA) domains, comparison with the structures of canonical FHA domains revealed that the cytoplasmic domain of YscD lacks the conserved residues that are required for binding phosphothreonine and is therefore unlikely to function as a true FHA domain. PMID:22349221

  5. The Structural Basis for Partitioning of the XRCC1/DNA Ligase III-alpha BRCT-mediated Dimer Complexes

    SciTech Connect

    M Cuneo; S Gabel; J Krahn; M Ricker; R London

    2011-12-31

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  6. The structural basis for partitioning of the XRCC1/DNA ligase III-[alpha] BRCT-mediated dimer complexes

    SciTech Connect

    Cuneo, Matthew J.; Gabel, Scott A.; Krahn, Joseph M.; Ricker, Melissa A.; London, Robert E.

    2011-11-17

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  7. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and

  8. Crankshaft supporting structure for multicylinder internal combustion engines

    SciTech Connect

    Fukuo, K.; Chosa, M.

    1988-01-26

    A crankshaft supporting structure for a cylinder block of an internal combustion engine is described, comprising, journal walls extending laterally across the cylinder block and being longitudinally spaced along the crankshaft, a recess formed in each journal wall with inwardly and downwardly facing first mating surfaces at an upper extremity of the recess. The cylinder block has skirt portions extending downwardly from the recesses on each lateral end of the journal walls, a bearing cap mounted in the recess in each journal wall and having means cooperating with the journal wall for rotatably supporting the crankshaft, each bearing cap having outwardly and upwardly facing first mating surfaces for engaging the journal wall first mating surfaces, mating inwardly facing vertical surfaces on each skirt portion and outwardly facing vertical surfaces on each bearing cap, a longitudinally extending bridge, a pair of vertical bolts extending through the bridge and each bearing cap and threadedly engaging the journal wall, horizontal bolts extending through the skirt portions and threadedly engaging each lateral side of each bearing cap, and the bridge having a main oil gallery defined therein for passage of lubricating oil therethrough and communicating with lubricating oil passages formed through the bridge and the bearing caps for communicating oil to the crankshaft.

  9. Genetically engineered immunoglobulins reveal structural features controlling segmental flexibility.

    PubMed Central

    Schneider, W P; Wensel, T G; Stryer, L; Oi, V T

    1988-01-01

    We have carried out nanosecond fluorescence polarization studies of genetically engineered immunoglobulins to determine the structural features controlling their segmental flexibility. The proteins studied were hybrids of a relatively rigid isotype (mouse IgG1) and a relatively flexible one (mouse IgG2a). They have identical light chains and heavy chain variable regions and have the same combining sites for epsilon-dansyl-L-lysine, a fluorescent hapten. The fluorescence of the bound dansyl chromophore was excited at 348 nm with subnanosecond laser pulses, and the emission in the nanosecond time range was measured with a single-photon-counting apparatus. The emission anisotropy kinetics of the hybrid antibodies revealed that segmental flexibility is controlled by the heavy chain constant region 1 (CH1) as well as by the hinge. In contrast, the CH2 and CH3 domains did not influence segmental flexibility. The hinge and CH1 domains must be properly matched to allow facile movement of the Fab units. Studies of hybrids of IgG1 and IgG2a within CH1 showed that the loop formed by residues 131-139 is important in controlling segmental flexibility. X-ray crystallographic studies by others of human IgG1 have shown that this loop makes several van der Waals contacts with the hinge. Images PMID:3128789

  10. Optical coherent sensor for monitoring and measurement of engineering structures

    NASA Astrophysics Data System (ADS)

    Łukaszewski, Dariusz; Sałbut, Leszek; Dziuban, Jan A.

    2010-05-01

    Among many coherent optical methods one should distinguished Grating Interferometry (GI) which allows accurate in-plane displacement measurements and Digital Speckle Pattern Interferometry (DSPI) used for in-plane and out-of-plane measurements. Development of sensors based on both methods mentioned above as complementary ones will provide user universal group of sensors from which depending on measurement requirements such as measuring range, object surface profile and measurement conditions the most appropriate can be chosen. In-plane displacement measurements are of interested of different branches of industry - from micro (i.e.: characterization of MEMS or MOEMS) to civil engineering (i.e.: Structural Health Monitoring systems). In the paper the new optical coherent sensor for in-plane displacement and strain measurements is presented. The sensor combines GI and DSPI methods in one device which can be used for testing of objects with different types of surfaces. GI requires the specimen grating attached at the surface but provides very good measurement accuracy however DSPI can be applied for testing of objects with rough surfaces but due to higher noise gives lower accuracy. The sensor can work in three modes: as GI only, DSPI only and both GI and DSPI simultaneously. The third mode can by useful when the specimen grating is attached on the part of object under test only. In the paper the theoretical background of the sensor is presented. For confirmation of GI/DSPI sensor possibilities the specially designed demonstrator is described and the exemplary results obtained during its laboratory tests are shown. Successful application of proposed sensor is possible due to its miniaturization, simplicity of operation by user (compact structure and automation of measurement procedure) and low cost. The last mentioned condition will be possible due to low cost replication techniques with usage of silicon technology.

  11. Orthogonal higher order structure and confirmatory factor analysis of the French Wechsler Adult Intelligence Scale (WAIS-III).

    PubMed

    Golay, Philippe; Lecerf, Thierry

    2011-03-01

    According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a Schmid-Leiman orthogonalization transformation (SLT) to the standardization data published in the French technical manual for the WAIS-III. Results showed that the general factor accounted for 63% of the common variance and that the specific contributions of the 1st-order factors were weak (4.7%-15.9%). We also addressed this issue by using confirmatory factor analysis. Results indicated that the bifactor model (with 1st-order group and general factors) better fit the data than did the traditional higher order structure. Models based on the CHC framework were also tested. Results indicated that a higher order CHC model showed a better fit than did the classical 4-factor model; however, the WAIS bifactor structure was the most adequate. We recommend that users do not discount the Full Scale IQ when interpreting the index scores of the WAIS-III because the general factor accounts for the bulk of the common variance in the French WAIS-III. The 4 index scores cannot be considered to reflect only broad ability because they include a strong contribution of the general factor. PMID:21171782

  12. Structure and unfolding of the third type III domain from human fibronectin.

    PubMed

    Stine, Jessica M; Sun, Yizhi; Armstrong, Geoffrey; Bowler, Bruce E; Briknarová, Klára

    2015-11-10

    Fibronectin is a modular extracellular matrix protein that is essential for vertebrate development. The third type III domain (3FN3) in fibronectin interacts with other parts of fibronectin and with anastellin, a protein fragment that causes fibronectin aggregation. 3FN3 opens readily both as an isolated domain in solution and when part of fibronectin in stretched fibrils, and it was proposed that this opening is important for anastellin binding. We determined the structure of 3FN3 using nuclear magnetic resonance spectroscopy, and we investigated its stability, folding, and unfolding. Similar to most other FN3 domains, 3FN3 contains two antiparallel β-sheets that are composed of three (A, B, and E) and four (C, D, F, and G) β-strands, respectively, and are held together by a conserved hydrophobic interface. cis-trans isomerization of P847 at the end of β-strand C leads to observable conformational heterogeneity in 3FN3, with a cis peptide bond present in almost one-quarter of the molecules. The chemical stability of 3FN3 is relatively low, but the folding rate constant in the absence of denaturant is in the same range as those of other, more stable FN3 domains. Interestingly, the unfolding rate constant in the absence of denaturant is several orders of magnitude higher than the unfolding rate constants of other FN3 domains investigated to date. This unusually fast rate is comparable to the rate of binding of 3FN3 to anastellin at saturating anastellin concentrations, consistent with the model in which 3FN3 has to unfold to interact with anastellin. PMID:26517579

  13. Structural characterization of a family of cytochromes c{sub 7} involved in Fe(III) respiration by Geobacter sulfurreducens.

    SciTech Connect

    Pokkuluri, P. R.; Londer, Y. Y.; Yang, X.; Duke, N. E. C.; Erickson, J.; Orshonsky, V.; Johnson, G.; Schiffer, M.; Biosciences Division

    2010-02-01

    Periplasmic cytochromes c{sub 7} are important in electron transfer pathway(s) in Fe(III) respiration by Geobacter sulfurreducens. The genome of G. sulfurreducens encodes a family of five 10-kDa, three-heme cytochromes c{sub 7}. The sequence identity between the five proteins (designated PpcA, PpcB, PpcC, PpcD, and PpcE) varies between 45% and 77%. Here, we report the high-resolution structures of PpcC, PpcD, and PpcE determined by X-ray diffraction. This new information made it possible to compare the sequences and structures of the entire family. The triheme cores are largely conserved but are not identical. We observed changes, due to different crystal packing, in the relative positions of the hemes between two molecules in the crystal. The overall protein fold of the cytochromes is similar. The structure of PpcD differs most from that of the other homologs, which is not obvious from the sequence comparisons of the family. Interestingly, PpcD is the only cytochrome c{sub 7} within the family that has higher abundance when G. sulfurreducens is grown on insoluble Fe(III) oxide compared to ferric citrate. The structures have the highest degree of conservation around 'heme IV'; the protein surface around this heme is positively charged in all of the proteins, and therefore all cytochromes c{sub 7} could interact with similar molecules involving this region. The structures and surface characteristics of the proteins near the other two hemes, 'heme I' and 'heme III', differ within the family. The above observations suggest that each of the five cytochromes c{sub 7} could interact with its own redox partner via an interface involving the regions of heme I and/or heme III; this provides a possible rationalization for the existence of five similar proteins in G. sulfurreducens.

  14. A one-dimensional azido-bridged manganese(III) complex with bidentate Schiff base: Crystal structure and magnetic properties

    SciTech Connect

    Li Wei; Li Zongwei; Li Licun Liao Daizheng; Jiang Zonghui

    2007-10-15

    The synthesis, structural characterization, and magnetic behavior of a novel one-dimensional azido-bridged manganese(III) complex of formula [Mn(L){sub 2}N{sub 3}] (1) is reported, where HL is the bidentate Schiff base obtained from the condensation of salicylaldehyde with 4-methoxy aniline. Complex 1 crystallizes in the monoclinic system, space group P2{sub 1}/n, with a=11.743(4) A, b=24.986(9) A, c=13.081(5) A, {beta}=95.387(7){sup o} and Z=2. The complex is of one-dimensional chain structure with single end-to-end azido bridges and the manganese(III) ion has an elongated octahedral geometry. Magnetic studies show that the weak antiferromagnetic interaction is mediated by the single end-to-end azido bridge with the exchange parameter J=-5.84 cm{sup -1}. - Graphical abstract: A novel azido-bridged manganese(III) complex with bidentate Schiff base ligands has been prepared and characterized structurally and magnetically. The complex is of one-dimensional chain structure with single end-to-end azido bridges in axial positions. Two bidentate Schiff base ligands coordinate in the equatorial mode. The magnetic measurements show that the complex exhibits weak antiferromagnetic interaction.

  15. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls,...

  16. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  17. Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions

    NASA Astrophysics Data System (ADS)

    van Genuchten, Case M.; Peña, Jasquelin; Amrose, Susan E.; Gadgil, Ashok J.

    2014-02-01

    We apply Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and pair distribution function (PDF) analysis of high-energy X-ray scattering to investigate the effects of bivalent cation-oxyanion pairs on the structure of Fe(III) precipitates formed from the oxidation of Fe(II) generated by the electrolytic dissolution of Fe(0) electrodes. We found that Fe(II) oxidation in the presence of weakly adsorbing electrolytes (NaCl, CaCl2, MgCl2) leads to pseudo-lepidocrocite (Lp; γ-FeOOH), a poorly crystalline version of Lp with low sheet-stacking coherence. In the absence of bivalent cations, P and As(V) have similar uptake behavior, but different effects on the average Fe(III) precipitate structure: pseudo-Lp dominates in the presence of P, whereas a disordered ferrihydrite-like precipitate akin to hydrous ferric oxide (HFO) is the dominant phase that forms in the presence of As(V). Despite its lower affinity for Fe(III) precipitates, Si leads to Si-HFO in all conditions tested. The presence of 1 mM Ca2+ or Mg2+ enhances oxyanion uptake, destabilizes the colloidally stable oxyanion-bearing particle suspensions and, in some P and As(V) electrolytes, results in more crystalline precipitates. The trends in oxyanion uptake and Fe(III) precipitate structure in the presence of Ca2+/Mg2+ suggest a systematic decrease in the strength of bivalent cation:oxyanion interaction in the order of Ca2+ > Mg2+ and P > As(V) ≫ Si. Using the PDF technique, we identify the polyhedral linkages that contribute to the intermediate structures (>6 Å) of disordered, nanoscale oxyanion-bearing Fe(III) precipitate samples. Our results suggest that oxyanions present during Fe(III) polymerization bind to corner-sharing Fe surface sites leading to a precipitate surface deficient in corner-sharing Fe, whereas the edge- and corner-sharing Fe sites in the precipitate core likely remain intact.

  18. Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism.

    PubMed

    Uchida, Tatsuya; Yamasaki, Takayuki; Eto, Seiichiro; Sugawara, Hajime; Kurisu, Genji; Nakagawa, Atsushi; Kusunoki, Masami; Hatakeyama, Tomomitsu

    2004-08-27

    CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in lead at 1.7 A resolution. CEL-III consists of three distinct domains as follows: the N-terminal two carbohydrate-binding domains (1 and 2), which adopt beta-trefoil folds such as the B-chain of ricin and are members of the (QXW)(3) motif family; and domain 3, which is a novel fold composed of two alpha-helices and one beta-sandwich. CEL-III is the first Ca(2+)-dependent lectin structure with two beta-trefoil folds. Despite sharing the structure of the B-chain of ricin, CEL-III binds five Ca(2+) ions at five of the six subdomains in both domains 1 and 2. Considering the relatively high similarity among the five subdomains, they are putative binding sites for galactose-related carbohydrates, although it remains to be elucidated whether bound Ca(2+) is directly involved in interaction with carbohydrates. The paucity of hydrophobic interactions in the interfaces between the domains and biochemical data suggest that these domains rearrange upon carbohydrate binding in the erythrocyte membrane. This conformational change may be responsible for oligomerization of CEL-III molecules and hemolysis in the erythrocyte membranes. PMID:15194688

  19. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    PubMed

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed. PMID:27470468

  20. Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed III-V nanowires

    SciTech Connect

    Dubrovskii, V. G.

    2014-02-03

    We present a kinetic growth model having a particular emphasis on the influence of the group V element on the preferred crystal structure of Au-catalyzed III-V nanowires. The model circumvents the uncertainty in the group V contribution into the overall liquid chemical potential. We show why the nanowire elongation rate is limited by the group III transport, while the crystal structure depends on the effective group V to III imbalance. Within the model, we are able to explain some important structural trends in Au-catalyzed III-V nanowires. In particular, we show that high group V flux always favors wurtzite structure in molecular-beam epitaxy. This tendency could be inverted in vapor deposition techniques due to suppression of the group III diffusion at high group V flux.

  1. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly

    PubMed Central

    Shen, Qing-Tao; Schuh, Amber L.; Zheng, Yuqing; Quinney, Kyle; Wang, Lei; Hanna, Michael; Mitchell, Julie C.; Otegui, Marisa S.; Ahlquist, Paul; Cui, Qiang

    2014-01-01

    The scission of biological membranes is facilitated by a variety of protein complexes that bind and manipulate lipid bilayers. ESCRT-III (endosomal sorting complex required for transport III) filaments mediate membrane scission during the ostensibly disparate processes of multivesicular endosome biogenesis, cytokinesis, and retroviral budding. However, mechanisms by which ESCRT-III subunits assemble into a polymer remain unknown. Using cryogenic electron microscopy (cryo-EM), we found that the full-length ESCRT-III subunit Vps32/CHMP4B spontaneously forms single-stranded spiral filaments. The resolution afforded by two-dimensional cryo-EM combined with molecular dynamics simulations revealed that individual Vps32/CHMP4B monomers within a filament are flexible and able to accommodate a range of bending angles. In contrast, the interface between monomers is stable and refractory to changes in conformation. We additionally found that the carboxyl terminus of Vps32/CHMP4B plays a key role in restricting the lateral association of filaments. Our findings highlight new mechanisms by which ESCRT-III filaments assemble to generate a unique polymer capable of membrane remodeling in multiple cellular contexts. PMID:25202029

  2. River valley construction as hazard for engineering structure

    NASA Astrophysics Data System (ADS)

    Postolenko, Galina

    2010-05-01

    It is common knowledge that for designing of engineering structure at river valleys it is necessary to investigate base of dam rock with a view to find out the structure disposition and nature of bottom rocks. It is important with relation to structural and economic calculation. One object of that investigation is alluvium. At present due to achievement of large success in geomorphology it is known that river valleys are constructed very complex. They have buried alluvium. Buried alluvium one can find both in plain and mountain valleys. It differs by thickness, composition and age. Since the Quaternary geological body is local, it is very important to know its chronological successive rise and the regularity of its spatial disposal. The investigative base consists in the stratigraphic and genetic research of the mellow deposit. Earlier the chronological determination depended on the hypsometric criteria . Complex of geomorphologic, biostratigraphic, lithologic, and physical data established the history of relief development and the spatial distribution of different age and genetic homogeneous relief fragments and sediment. These data show that relief and correlative sediment are formed as a result of the complex cyclical, non-one-trend geomorphologic processes at the Quaternary period. The several stages of relief and sediment development are established at the Quaternary period. They differed in process intensity, character and duration. This is the cause that the morpholithogenetic results of these stages are different. These are different sizes of valleys deepening and increasing of the relief height amplitude at the instructive stage, the different correlative sediment capacity at the constructive stage of relief development. These indexes are so significant, that river terraces of something stages turned out buried by the alluvium those stages that have the smaller alluvium capacity. Consequences of such valleys development lie in

  3. Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways.

    PubMed

    Prugh, Laura R; Brashares, Justin S

    2012-05-01

    1. Ecosystem engineers impact communities by altering habitat conditions, but they can also have strong effects through consumptive, competitive and other non-engineering pathways. 2. Engineering effects can lead to fundamentally different community dynamics than non-engineering effects, but the relative strengths of these interactions are seldom quantified. 3. We combined structural equation modelling and exclosure experiments to partition the effects of a keystone engineer, the giant kangaroo rat (Dipodomys ingens), on plants, invertebrates and vertebrates in a semi-arid California grassland. 4. We separated the effects of burrow creation from kangaroo rat density and found that kangaroo rats increased the diversity and abundance of other species via both engineering and non-engineering pathways. 5. Engineering was the primary factor structuring plant and small mammal communities, whereas non-engineering effects structured invertebrate communities and increased lizard abundance. 6. These results highlight the importance of the non-engineering effects of ecosystem engineers and shed new light on the multiple pathways by which strong-interactors shape communities. PMID:22098534

  4. Crystal structures of type III{sub H} NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    SciTech Connect

    Kumar, S.M.; Pampa, K.J.; Manjula, M.; Hemantha Kumar, G.; Kunishima, Naoki; Lokanath, N.K.

    2014-08-15

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III{sub H} PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III{sub H} and such PGDHs structures having this type are reported for the first time.

  5. PROCEEDINGS OF THE STATIONARY SOURCE COMBUSTION SYMPOSIUM (3RD). VOLUME III. STATIONARY ENGINE AND INDUSTRIAL PROCESS COMBUSTION SYSTEMS

    EPA Science Inventory

    ;Contents: Stationary engines and industrial process combustion systems--(Application of advanced combustion modifications to industrial process equipment--process heater subscale tests, Pollutant emissions from 'dirty' low and medium - Btu gases, Some aspects of afterburner perf...

  6. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    SciTech Connect

    Marques, Lippy F.; Correa, Charlane C.; Ribeiro, Sidney J.L.; Santos, Molíria V. dos; Dutra, José Diogo L.; Freire, Ricardo O.; Machado, Flávia C.

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  7. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    SciTech Connect

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J.M.; Somers, Joseph

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.

  8. Lack of immunogenicity of ice structuring protein type III HPLC12 preparation administered by the oral route to human volunteers.

    PubMed

    Crevel, R W R; Cooper, K J; Poulsen, L K; Hummelshoj, L; Bindslev-Jensen, C; Burks, A W; Sampson, H A

    2007-01-01

    Before a novel protein can be used in foods, its potential allergenicity must be assessed. In this study, healthy volunteers consumed ice structuring protein (ISP) Type III preparation or a control material 5 days a week for a total of 8 weeks. General measures of health were recorded during the study, and the immunogenicity of the protein was assessed by monitoring the levels of IgG and IgE antibodies specific for ISP Type III. The participants remained in good health throughout the study and during the 4 week follow-up period. No IgG or IgE antibodies specific for ISP Type III were detected in the blood of the participants. Investigations of immunogenicity in man have not been previously applied in the context of safety evaluation and they do not form part of the regimens proposed for the evaluation of protein allergenicity. Consequently no standardised protocols exist for such studies, nor any background against which to interpret the results. Nevertheless, the absence of an immune response using a protocol which could have been expected to result in a response with a strongly immunogenic protein, confirms the conclusions of earlier published work, and attests to the lack of allergenicity of ISP Type III preparation. PMID:17027137

  9. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Ready, W. Jud; Vogel, Eric M.

    2016-01-01

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.

  10. Synthesis and Structural Characterization of a Series of Mn(III)-OR Complexes, Including a Water-Soluble Mn(III)-OH that Promotes Aerobic Hydrogen Atom Transfer

    PubMed Central

    Coggins, Michael K.; Brines, Lisa M.; Kovacs, Julie A.

    2013-01-01

    Hydrogen atom transfer reactions (HAT) are a class of proton-coupled electron transfer (PCET) reactions used in biology to promote substrate oxidation. The driving force for such reactions depend on both the oxidation potential of the catalyst and the pKa of the proton acceptor site. Both high-valent transition-metal oxo M(IV)=O (M= Fe, Mn) and lower-valent transition-metal hydroxo compounds M(III)–OH (M= Fe, Mn) have been shown to promote these reactions. Herein we describe the synthesis, structure and reactivity properties of a series of Mn(III)-OR compounds (R= pNO2Ph(5), Ph(6), Me(7), H(8)), some of which abstract H-atoms. The Mn(III)-OH complex 8 is water-soluble and represents a rare example of a stable mononuclear Mn(III)-OH. In water, the redox potential of 8 was found to be pH-dependent and the Pourbaix (Ep,c vs pH) diagram has a slope (52 mV/pH) that is indicative of the transfer a single proton with each electron (ie, PCET). The two compounds with the lowest oxidation potential, hydroxide and methoxide-bound 7 and 8 are found to oxidize TEMPOH, whereas the compounds with the highest oxidation potential, phenol-ligated 5 and 6, are shown to be unreactive. Hydroxide-bound 8 reacts with TEMPOH an order of magnitude faster than methoxide-bound 7. Kinetic data (kH/kD= 3.1 (8), kH/kD= 2.1 (7)) are consistent with concerted H-atom abstraction. The reactive species 8 can be aerobically regenerated in H2O, and at least 10 turnovers can be achieved without significant degradation of the “catalyst”. The linear correlation between redox potential and pH, obtained from the Pourbaix diagram, was used to calculate the BDFE= 74.0±0.5 kcal/mol for Mn(II)-OH2 in water, and in MeCN its BDFE was estimated to be (70.1 kcal/mol). The reduced protonated derivative of 8, [MnII(SMe2N4(tren))(H2O)]+ (9), was estimated to have a pKa of 21.2 in MeCN. The ability (7) and inability (5 and 6) of the other members of the series to abstract a H-atom from TEMPOH was used to

  11. Structural and thermochemical Aspects of (III-V)IV3 Material Assembly from First Principles

    NASA Astrophysics Data System (ADS)

    Chizmeshya, Andrew; Kouvetakis, John

    2014-03-01

    Alloys with (III-V)-(IV) compositions, including Si3(AlP), Si5-2y(AlP)y, Si3Al(As1-xNx), Si5-2yAl(P1-xNx)y and Ge5-2y(InP)y and have recently been synthesized as mono-crystalline films on Si substrates, using a synthesis route specifically designed to avoid phase separation between the III-V and IV constituents. Molecular ``building blocks'' containing group-V-centered III-V-IV3 cores, formed via interactions of group-III atoms and reactive silyly/germyl hydride precursors of desired composition (e.g, P(SiH3)3 , P(GeH3)3 , etc), assemble to form stable, covalent, diamond-like materials with the inherent tetrahedral symmetry and composition of the III-V-IV3 units. The resulting systems may provide access to a broad range of new semiconductor systems with extended optoelectronic properties, provided that the required molecular sources are available, the thermodynamic processes are viable, and the resulting alloy composition can be tuned to lattice-match the growth substrate. Molecular/solid-state simulations are used to identify promising synthetic pathways and guide the epitaxial creation of new (III-V)-(IV) materials. The thermodynamics of gas phase synthesis reactions, energetic stability of the alloys, and their epitaxial/chemical compatibility with the substrate are combined to form a global figure of merit. The latter corroborates the synthesis of known systems and predicts that formation of GaPSi3/Si(100), GaAsSi3/SiGe(100), AlPGe3/Ge(100) and InAsSi3/Ge(100) may also be favorable. Supported by NSF-DMR under SusChEM award #1309090.

  12. Crystal structure and solution species of Ce(III) and Ce(IV) formates: from mononuclear to hexanuclear complexes.

    PubMed

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C

    2013-10-21

    Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process. PMID:24090406

  13. Composition and structure of Fe(III)-precipitates formed by Fe(II) oxidation in water at near-neutral pH: Interdependent effects of phosphate, silicate and Ca

    NASA Astrophysics Data System (ADS)

    Senn, Anna-Caterina; Kaegi, Ralf; Hug, Stephan J.; Hering, Janet G.; Mangold, Stefan; Voegelin, Andreas

    2015-08-01

    We studied the interdependent effects of phosphate, silicate and Ca on the formation of Fe(III)-precipitates by oxidation of 0.5 mM Fe(II) in near-neutral bicarbonate-buffered aqueous solutions at concentrations relevant for natural water resources. Complementary results obtained by a suite of analytical techniques including X-ray absorption spectroscopy and transmission electron microscopy showed that the ratio of initially dissolved phosphate over Fe(II) ((P/Fe)init) had a major impact on precipitate formation. At (P/Fe)init above a critical ratio ((P/Fe)crit) of ∼0.5 in 8 mM NaHCO3 and ∼0.8 in 4 mM Ca(HCO3)2 electrolyte, Fe(II) oxidation led to exclusive formation of amorphous basic Fe(III)-phosphate or Ca-Fe(III)-phosphate ((Ca-)Fe(III)-phosphate) with maximum precipitate P/Fe ratios ((P/Fe)ppt) of ∼0.7 in Na and ∼1.1 in Ca electrolyte. Enhanced phosphate uptake in the presence of Ca was due to phosphate-Ca interactions coupled to Fe precipitation, mainly formation of mitridatite-like Ca-Fe(III)-phosphate polymers and Ca-phosphate polymers. At (P/Fe)init < (P/Fe)crit, in the absence of silicate, (Ca-)Fe(III)-phosphate precipitation was followed by the formation of poorly crystalline lepidocrocite and concomitant transformation of the (Ca-)Fe(III)-phosphate into a phosphate-rich ferrihydrite-type precipitate with a (P/Fe)ppt of ∼0.25. In the presence of 0.5 mM silicate, initially formed (Ca-)Fe(III)-phosphate nanoparticles became coated with silicate-rich ferrihydrite during continuing Fe(II) oxidation and only limited transformation of the (Ca-)Fe(III)-phosphate occurred. The results from this study indicate the complexity of Fe(III)-precipitate formation in the presence of interfering solutes and its consequences for precipitate structure and phosphate sequestration. The findings provide a solid basis for further studies of the reactivity of different Fe(III)-precipitate types and for the systematic assessment of their impact on Fe, phosphate and

  14. Engineering, construction, and operations in space - III: Space '92; Proceedings of the 3rd International Conference, Denver, CO, May 31-June 4, 1992. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z. (Editor); Sture, Stein (Editor); Miller, Russell J. (Editor)

    1992-01-01

    The present volume on engineering, construction, and operations in space discusses surface structures on the moon and Mars, surface equipment, construction, and transportation on the moon and Mars, in situ materials use and processing, and space energy. Attention is given to such orbital structures as LEO and the space station, space mining and excavation, space materials, space automation and robotics, and space life support systems. Topics addressed include lunar-based astronomy, space systems integration, terrestrial support for space functions, and space education. Also discussed are space plans, policy, and history, space science and engineering, geoengineering and space exploration, and the construction and development of a human habitat on Mars.

  15. Structured system engineering methodologies used to develop a nuclear thermal propulsion engine

    NASA Technical Reports Server (NTRS)

    Corban, R.; Wagner, R.

    1993-01-01

    To facilitate the development of a space nuclear thermal propulsion engine for manned flights to Mars, requirements must be established early in the technology development cycle. The long lead times for the acquisition of the engine system and nuclear test facilities demands that the engine system size, performance and safety goals be defined at the earliest possible time. These systems are highly complex and require a large multidisciplinary systems engineering team to develop and track requirements, and to ensure that the as-built system reflects the intent of the mission. A methodology has been devised which uses sophisticated computer tools to effectively develop and interpret functional requirements, and furnish these to the specification level for implementation.

  16. Advanced methods for 3-D inelastic structural analysis for hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    Three-dimensional Inelastic Analysis Methods are described. These methods were incorporated into a series of new computer codes embodying a progression of mathematical models (mechanics of materials, specialty finite element, boundary element) for streamlined analysis of hot engine structures such as: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (displacements, frequencies, amplitudes, buckling) structural behavior of the three respective components. The methods and the three computer codes, referred to as MOMM (Mechanics Of Materials Model), MHOST (MARC-Hot Section Technology), and BEST3D (Boundary Element Stress Technology), have been developed and are briefly described.

  17. Structure and membrane remodeling activity of ESCRT-III helical polymers

    DOE PAGESBeta

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; Skowyra, Michael L.; Saunders, Marissa G.; Naismith, Teresa V.; Colf, Leremy A.; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I.; et al

    2015-12-18

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecturemore » and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. In conclusion, our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.« less

  18. Structure and membrane remodeling activity of ESCRT-III helical polymers

    SciTech Connect

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; Skowyra, Michael L.; Saunders, Marissa G.; Naismith, Teresa V.; Colf, Leremy A.; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I.; Hanson, Phyllis I.; Frost, Adam

    2015-12-18

    The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. In conclusion, our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.

  19. Status of ASME Section III Task Group on Graphite Support Core Structures

    SciTech Connect

    Robert L. Bratton; Tim D. Burchell

    2005-08-01

    This report outlines the roadmap that the ASME Project Team on Graphite Core Supports is pursuing to establish design codes for unirradiated and irradiated graphite core components during its first year of operation. It discusses the deficiencies in the proposed Section III, Division 2, Subsection CE graphite design code and the different approaches the Project Team has taken to address those deficiencies.

  20. Structure and membrane remodeling activity of ESCRT-III helical polymers

    PubMed Central

    McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; Skowyra, Michael L.; Saunders, Marissa G.; Naismith, Teresa V.; Colf, Leremy A.; Afonine, Pavel; Arthur, Christopher; Sundquist, Wesley I.; Hanson, Phyllis I.; Frost, Adam

    2015-01-01

    The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 Å resolution cryo-EM reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, CHMP1B and IST1. The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecture, and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively-curved membranes in vitro and in vivo. Our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature. PMID:26634441

  1. Fundamentals of the Control of Gas-Turbine Power Plants for Aircraft. Part III Control of Jet Engines. Part 3; Control of Jet Engines

    NASA Technical Reports Server (NTRS)

    Kuehl, H.

    1947-01-01

    The basic principles of the control of TL ongincs are developed on .the basis of a quantitative investigation of the behavior of these behavior under various operating conditions with particular consideration of the simplifications pormissible in each case. Various possible means of control of jet engines are suggested and are illustrated by schematic designs.

  2. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6

    PubMed Central

    Niewoehner, Ole; Jinek, Martin

    2016-01-01

    Prokaryotic CRISPR–Cas systems provide an RNA-guided mechanism for genome defense against mobile genetic elements such as viruses and plasmids. In type III-A CRISPR–Cas systems, the RNA-guided multisubunit Csm effector complex targets both single-stranded RNAs and double-stranded DNAs. In addition to the Csm complex, efficient anti-plasmid immunity mediated by type III-A systems also requires the CRISPR-associated protein Csm6. Here we report the crystal structure of Csm6 from Thermus thermophilus and show that the protein is a ssRNA-specific endoribonuclease. The structure reveals a dimeric architecture generated by interactions involving the N-terminal CARF and C-terminal HEPN domains. HEPN domain dimerization leads to the formation of a composite ribonuclease active site. Consistently, mutations of invariant active site residues impair catalytic activity in vitro. We further show that the ribonuclease activity of Csm6 is conserved across orthologs, suggesting that it plays an important functional role in CRISPR–Cas systems. The dimer interface of the CARF domains features a conserved electropositive pocket that may function as a ligand-binding site for allosteric control of ribonuclease activity. Altogether, our work suggests that Csm6 proteins provide an auxiliary RNA-targeting interference mechanism in type III-A CRISPR–Cas systems that operates in conjunction with the RNA- and DNA-targeting endonuclease activities of the Csm effector complex. PMID:26763118

  3. Structure of macrophage colony stimulating factor bound to FMS: Diverse signaling assemblies of class III receptor tyrosine kinases

    SciTech Connect

    Chen, Xiaoyan; Liu, Heli; Focia, Pamela J.; Shim, Ann Hye-Ryong; He, Xiaolin

    2009-06-12

    Macrophage colony stimulating factor (M-CSF), through binding to its receptor FMS, a class III receptor tyrosine kinase (RTK), regulates the development and function of mononuclear phagocytes, and plays important roles in innate immunity, cancer and inflammation. We report a 2.4 {angstrom} crystal structure of M-CSF bound to the first 3 domains (D1-D3) of FMS. The ligand binding mode of FMS is surprisingly different from KIT, another class III RTK, in which the major ligand-binding domain of FMS, D2, uses the CD and EF loops, but not the {beta}-sheet on the opposite side of the Ig domain as in KIT, to bind ligand. Calorimetric data indicate that M-CSF cannot dimerize FMS without receptor-receptor interactions mediated by FMS domains D4 and D5. Consistently, the structure contains only 1 FMS-D1-D3 molecule bound to a M-CSF dimer, due to a weak, hydrophilic M-CSF:FMS interface, and probably a conformational change of the M-CSF dimer in which binding to the second site is rendered unfavorable by FMS binding at the first site. The partial, intermediate complex suggests that FMS may be activated in two steps, with the initial engagement step distinct from the subsequent dimerization/activation step. Hence, the formation of signaling class III RTK complexes can be diverse, engaging various modes of ligand recognition and various mechanistic steps for dimerizing and activating receptors.

  4. Structural and photophysical studies on gallium(III) 8-hydroxyquinoline-5-sulfonates. Does excited state decay involve ligand photolabilisation?

    PubMed

    Ramos, M Luísa; de Sousa, Andreia R E; Justino, Licínia L G; Fonseca, Sofia M; Geraldes, Carlos F G C; Burrows, Hugh D

    2013-03-14

    Multinuclear ((1)H, (13)C and (71)Ga) magnetic resonance spectroscopy (1D and 2D), DFT calculations and luminescence techniques have been used to study 8-hydroxyquinoline-5-sulfonate (8-HQS) and its complexes with Ga(III) in aqueous solutions. The study combines the high sensitivity of luminescence techniques and the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to obtain a complete understanding of the complexation between the Ga(3+) ion and 8-HQS, and how this influences the luminescence behaviour. A full speciation study has been performed on this system and three complexes detected, with (metal : ligand) 1 : 1, 1 : 2 and 1 : 3 stoichiometries, the results being consistent with those previously found for the system Al(III)-8-HQS. Complexation in these systems is relevant to their potential biomedical, sensing and optoelectronic applications. On binding to Ga(III), a marked increase is seen in the intensity of the 8-HQS fluorescence band, which is accompanied by changes in the absorption spectra. These support the use of 8-HQS as a sensitive fluorescent sensor to detect Ga(3+) metal ions in surface waters, biological fluids, etc., and its metal complexes as an emitting or charge transport layer in light emitting devices. However, the fluorescence quantum yield of the Ga(III)-8-HQS 1 : 3 complex is about 35% of that of the corresponding system with Al(III). Although this may be due in part to a heavy atom effect favouring S(1)→ T(1) intersystem crossing with Ga(3+), this does not agree with transient absorption measurements on the triplet state yield, which is lower with the Ga(III) system than with Al(III). Instead, it is suggested that photolabilisation of ligand exchange plays a major role in nonradiative decay of the excited state and that this is more efficient with the Ga(3+) complex. Based on these results, suggestions are made of ways of enhancing fluorescence

  5. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  6. Thermal and structural assessments of a ceramic wafer seal in hypersonic engine

    NASA Technical Reports Server (NTRS)

    Tong, Mike; Steinetz, Bruce

    1991-01-01

    The thermal and structural performances of a ceramic wafer seal in a simulated hypersonic engine environment are numerically assessed. The effects of aerodynamic heating, surface contact conductance between the seal and its adjacent surfaces, flow of purge coolant gases, and leakage of hot engine flow path gases on the seal temperature were investigated from the engine inlet back to the entrance region of the combustion chamber. Finite element structural analyses, coupled with Weibull failure analyses, were performed to determine the structural reliability of the wafer seal.

  7. Thermal and structural assessments of a ceramic wafer seal in hypersonic engines

    NASA Technical Reports Server (NTRS)

    Tong, Mike T.; Steinetz, Bruce M.

    1991-01-01

    The thermal and structural performances of a ceramic wafer seal in a simulated hypersonic engine environment are numerically assessed. The effects of aerodynamic heating, surface contact conductance between the seal and its adjacent surfaces, flow of purge coolant gases, and leakage of hot engine flow path gases on the seal temperature were investigated from the engine inlet back to the entrance region of the combustion chamber. Finite element structural analyses, coupled with Weibull failure analyses, were performed to determine the structural reliability of the wafer seal.

  8. Structural insights into the counterion effects on the manganese(iii) spin crossover system with hexadentate Schiff-base ligands.

    PubMed

    Wang, Shi; Xu, Wu-Tan; He, Wen-Rui; Takaishi, Shinya; Li, Yong-Hua; Yamashita, Masahiro; Huang, Wei

    2016-04-01

    A series of new salts [Mn(5-MeO-sal-N-1,5,8,12)]Y (Y = ClO4 for 1, Y = BF4 for 2, Y = NO3 for 3 and Y = CF3SO3 for 4) based on the six-coordinated mononuclear manganese(iii) Schiff-base complex cation [Mn(5-MeO-sal-N-1,5,8,12)](+), has been investigated to determine the impact of counter anion effects, intramolecular ligand distortion and intermolecular supramolecular structures on the spin crossover (SCO) behavior. The SCO in salt 1 has resulted in a crystallographic observation of the coexistence of high-spin (HS, S = 2) and low-spin (LS, S = 1) manganese(iii) complex cations in equal proportions around 100 K. At room temperature, the two crystallographically distinct manganese centers are both close to the complete HS state. Only one of the two slightly different units undergoes SCO in the temperature range 300-180 K, whereas the other remains in the HS state down to 20 K. For salts 2 and 3, crystal structural analysis indicates change in the anion from ClO4(-) to BF4(-) and NO3(-) was led to the close arrangement of the cations and the stacking between phenyl groups from the ligands. With CF3SO3(-) as the counterion, although the cations and the anions separate clearly in one direction, the close arrangement of cations in other directions precludes the spin transformation of the Mn(iii) cations. Magnetic measurements on 2-4 indicate that the manganese(iii) complex cations remain in the HS state in the temperature range 2-300 K. PMID:26927027

  9. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  10. Resonance vibrations in intake and exhaust pipes of in-line engines III : the inlet process of a four-stroke-cycle engine

    NASA Technical Reports Server (NTRS)

    Lutz, O

    1940-01-01

    Using a previously developed method, the boundary process of four-stroke-cycle engines are set up. The results deviate considerably from those obtained under the assumption that the velocity fluctuation is proportional to the cylinder piston motion. The deviation is less at the position of resonance frequencies. By the method developed, the effect of the resonance vibrations on the volumetric efficiency can be demonstrated.

  11. Electron impact excitation of the Ne II and Ne III fine structure levels

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Loch, S. D.; Pindzola, M. S.; Cumbee, R.; Stancil, P. C.; Ballance, C. P.; McLaughlin, B. M.

    2016-05-01

    Electron impact excitation cross sections and rate coefficients of the low lying levels of the Ne II and Ne III ions are of great interest in cool molecular environments including young stellar objects, photodissociation regions, active galactic nuclei, and X-ray dominated regions. We have carried out details computations for cross sections and rate coefficients using the Dirac R-matrix codes (DARC), the Breit-Pauli R-matrix codes (BP) and the Intermediate Coupling Frame Transformation (ICFT) codes, for both Ne II and Ne III. We also compare our results with previous calculations. We are primarily interested in rate coefficients in the temperature range below 1000 K, and the focus is on obtaining the most accurate rate coefficients for those temperatures. We present both a recommended set of effective collision strengths and an indication of the uncertainties on these values. Work at Auburn University and UGA partly supported by NASA Grant NNX15AE47G.

  12. Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4

    PubMed Central

    Alonso-García, Noelia; García-Rubio, Inés; Manso, José A.; Buey, Rubén M.; Urien, Hector; Sonnenberg, Arnoud; Jeschke, Gunnar; de Pereda, José M.

    2015-01-01

    Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3,4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2, and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron–electron resonance (DEER) complement each other to solve the structure of the FnIII-3,4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3,4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes. PMID:25849406

  13. The Class III Cyclobutane Pyrimidine Dimer Photolyase Structure Reveals a New Antenna Chromophore Binding Site and Alternative Photoreduction Pathways*

    PubMed Central

    Scheerer, Patrick; Zhang, Fan; Kalms, Jacqueline; von Stetten, David; Krauß, Norbert; Oberpichler, Inga; Lamparter, Tilman

    2015-01-01

    Photolyases are proteins with an FAD chromophore that repair UV-induced pyrimidine dimers on the DNA in a light-dependent manner. The cyclobutane pyrimidine dimer class III photolyases are structurally unknown but closely related to plant cryptochromes, which serve as blue-light photoreceptors. Here we present the crystal structure of a class III photolyase termed photolyase-related protein A (PhrA) of Agrobacterium tumefaciens at 1.67-Å resolution. PhrA contains 5,10-methenyltetrahydrofolate (MTHF) as an antenna chromophore with a unique binding site and mode. Two Trp residues play pivotal roles for stabilizing MTHF by a double π-stacking sandwich. Plant cryptochrome I forms a pocket at the same site that could accommodate MTHF or a similar molecule. The PhrA structure and mutant studies showed that electrons flow during FAD photoreduction proceeds via two Trp triads. The structural studies on PhrA give a clearer picture on the evolutionary transition from photolyase to photoreceptor. PMID:25784552

  14. Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center.

    PubMed

    Arakawa, Takatoshi; Kawano, Yoshiaki; Kataoka, Shingo; Katayama, Yoko; Kamiya, Nobuo; Yohda, Masafumi; Odaka, Masafumi

    2007-03-01

    Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt(III)-containing enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia. We determined the crystal structures of the apo- and native SCNases at a resolution of 2.0 A. SCNases in both forms had a conserved hetero-dodecameric structure, (alphabetagamma)(4). Four alphabetagamma hetero-trimers were structurally equivalent. One alphabetagamma hetero-trimer was composed of the core domain and the betaN domain, which was located at the center of the molecule and linked the hetero-trimers with novel quaternary interfaces. In both the apo- and native SCNases, the core domain was structurally conserved between those of iron and cobalt-types of nitrile hydratase (NHase). Native SCNase possessed the post-translationally modified cysteine ligands, gammaCys131-SO(2)H and gammaCys133-SOH like NHases. However, the low-spin cobalt(III) was found to be in the distorted square-pyramidal geometry, which had not been reported before in any protein. The size as well as the electrostatic properties of the substrate-binding pocket was totally different from NHases with respect to the charge distribution and the substrate accessibility, which rationally explains the differences in the substrate preference between SCNase and NHase. PMID:17222425

  15. Thio-, seleno- and telluro-ether complexes of aluminium(III) halides: synthesis, structures and properties.

    PubMed

    George, Kathryn; Jura, Marek; Levason, William; Light, Mark E; Reid, Gillian

    2014-03-01

    The reaction of AlCl3 with Me2E (E = S, Se or Te) or (n)Bu2E (E = Se or Te) in CH2Cl2 under rigorously anhydrous conditions gave the pseudo-tetrahedral complexes [AlCl3(R2E)]. The [AlX3(Me2E)] (X = Br or I, E = S; X = Br, E = Te) were made from toluene solution since attempted syntheses in CH2Cl2 resulted in substantial chloride incorporation. The synthesis of [(AlCl3)2{o-C6H4(CH2SEt)2}], in which the ligand bridges two tetrahedral aluminium centres, and of the six-coordinate trans-[AlX2{MeE(CH2)2EMe}2][AlX4] (X = Cl or Br, E = S, and X = Cl, E = Se) and cis-[AlI2{MeS(CH2)2SMe}2][AlI4] are reported. The tripodal thioether forms [AlCl3{MeC(CH2SMe)3}], which is a chain polymer with κ(2)-coordinated ligand and a tbp arrangement at Al(iii). Chalcogenoether macrocycle complexes [AlCl3([9]aneS3)], [AlCl2([14]aneS4)][AlCl4] and [AlCl2([16]aneSe4)] [AlCl4] are also described. All complexes were characterised by microanalysis, IR and multinuclear NMR ((1)H, (27)Al, (77)Se or (125)Te) spectroscopy as appropriate. In CH2Cl2 solution [AlCl3(Me2S)] with added Me2S forms [AlCl3(Me2S)2], and the [AlX2{MeS(CH2)2SMe}2][AlX4] exist as mixtures of cis and trans isomers which undergo rapid exchange at ambient temperatures. X-Ray crystal structures are reported for [AlCl3(Me2Se], [AlX3(Me2Te)] (X = Cl or Br), trans-[AlCl2{MeE(CH2)2EMe}2][AlCl4] (E = S or Se), cis-[AlI2{MeS(CH2)2SMe}2][AlI4], [AlCl3{MeC(CH2SMe)3}], and for the sulfonium salt [Me2SH][AlCl4]. The aluminium halide chalcogenoether chemistry is compared with the corresponding gallium and indium systems, and the relative Lewis acidities of the metals discussed. Attempts to use [AlCl3((n)Bu2E)] (E = Se or Te) as LPCVD reagents to form aluminium chalcogenide films were unsuccessful. PMID:24413529

  16. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  17. Structural study of the N,N'-dimethylpropyleneurea solvated lanthanoid(III) ions in solution and solid state with an analysis of the ionic radii of lanthanoid(III) ions.

    PubMed

    Lundberg, Daniel; Persson, Ingmar; Eriksson, Lars; D'Angelo, Paola; De Panfilis, Simone

    2010-05-17

    The structures of the N,N'-dimethylpropyleneurea (dmpu) solvated lanthanoid(III) ions have been studied in dmpu solution (La-Nd, Sm-Lu) and in solid iodide salts (La-Nd, Sm, Gd-Lu) by extended X-ray absorption fine structure (EXAFS), and single crystal X-ray diffraction (La, Pr, Nd, Gd, Tb, Er, Yb, and Lu); the EXAFS studies were performed on both K and L(III) absorption edges. Because of the space-demanding properties of dmpu upon coordination, dmpu solvated metal ions often show coordination numbers lower than those found in corresponding hydrates and solvates of oxygen donor solvents without steric requirements beyond the size of the donor atom. All lanthanoid(III) ions are seven-coordinate in solution, except lutetium(III) which is six-coordinated in regular octahedral fashion, whereas in the solid iodide salts the dmpu solvated lanthanoid(III) ions are all six-coordinate in regular octahedral fashion. A comparison of Ln-O bond lengths in a large number of lanthanoid(III) complexes with neutral oxygen donor ligands and different configurations shows that the metal ion-oxygen distance is specific for each coordination number with a narrow bond distance distribution. This also shows that the radius of the coordinated oxygen atom in these compounds can be assumed to be 1.34 A as proposed for coordinated water, while for ethers such as tetrahydrofuran (thf) it is somewhat larger. Using this atomic radius of oxygen in coordinated water molecules, we have calculated the ionic radii of the lanthanoid(III) ions in four- to nine-coordination and evaluated using the bond lengths reported for homo- and heteroleptic complexes in oxygen donor solvates in solution and solid state. This yields new and revised ionic radii which in some instances are significantly different from the ionic radii normally referenced in the literature, including interpolated values for the elusive promethium(III) ion. PMID:20397652

  18. Nonlinear Transient Analysis and Design of Complex Engineering Structures for Worst Case Accidents : Experience from Industrial and Military Applications

    NASA Astrophysics Data System (ADS)

    Ibrahimbegovic, Adnan; Brancherie, D.; Colliat, J.-B.; Davenne, L.; Dominguez, N.; Herve, G.; Villon, P.

    In this work we address some of the present threats posed to engineering structures in placing them under extreme loading conditions. The common ground for the problems studied herein from the viewpoint of structural integrity is their transient nature characterized by different time scales and the need to evaluate the consequence for a high level of uncertainty in quantifying the cause. The pertinent issues are studied in detail for three different model problems: i) the worstcase scenario of system functioning failure accident in a nuclear power plant causing the loss of cooling liquid, ii) the terrorist attacks brought explosion and impact of large aeroplane on a massive structure, iii) devastating fire and sustained high temperatures effects on massive cellular structures. By using these case studies, we discuss the issues related to multi-scale modelling of inelastic damage mechanisms for massive structures, as well as the issues pertaining to the time integration schemes in presence of different scales in time variation of different sub-problems brought by a particular nature of loading (both for a very short and a very long loading duration) and finally the issues related to model reduction seeking to provide an efficient and yet sufficiently reliable basis for parametric studies employed within the framework of a design procedure. Several numerical simulations are presented in order to further illustrate the approaches proposed herein. Concluding remarks are stated regarding the current and future research in this domain.

  19. Solution structure of Ln(III) complexes with macrocyclic ligands through theoretical evaluation of 1H NMR contact shifts.

    PubMed

    Rodríguez-Rodríguez, Aurora; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Botta, Mauro; Tripier, Raphaël; Platas-Iglesias, Carlos

    2012-12-17

    Herein, we present a new approach that combines DFT calculations and the analysis of Tb(III)-induced (1)H NMR shifts to quantitatively and accurately account for the contact contribution to the paramagnetic shift in Ln(III) complexes. Geometry optimizations of different Gd(III) complexes with macrocyclic ligands were carried out using the hybrid meta-GGA TPSSh functional and a 46 + 4f(7) effective core potential (ECP) for Gd. The complexes investigated include [Ln(Me-DODPA)](+) (H(2)Me-DODPA = 6,6'-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid, [Ln(DOTA)(H(2)O)](-) (H(4)DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), [Ln(DOTAM)(H(2)O)](3+) (DOTAM = 1,4,7,10- tetrakis[(carbamoyl)methyl]-1,4,7,10-tetraazacyclododecane), and related systems containing pyridyl units (Ln = Gd, Tb). Subsequent all-electron relativistic calculations based on the DKH2 approximation, or small-core ECP calculations, were used to compute the (1)H hyperfine coupling constants (HFCCs) at the ligand nuclei (A(iso) values). The calculated A(iso) values provided direct access to contact contributions to the (1)H NMR shifts of the corresponding Tb(III) complexes under the assumption that Gd and Tb complexes with a given ligand present similar HFCCs. These contact shifts were used to obtain the pseudocontact shifts, which encode structural information as they depend on the position of the nucleus with respect to the lanthanide ion. An excellent agreement was observed between the experimental and calculated pseudocontact shifts using the DFT-optimized geometries as structural models of the complexes in solution, which demonstrates that the computational approach used provides (i) good structural models for the complexes, (ii) accurate HFCCs at the ligand nuclei. The methodology presented in this work can be classified in the context of model-dependent methods, as it relies on the use of a specific molecular structure obtained from DFT

  20. Slave finite elements for nonlinear analysis of engine structures, volume 1

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1991-01-01

    A 336 degrees of freedom slave finite element processing capability to analyze engine structures under severe thermomechanical loading is presented. Description of the theoretical development and demonstration of that element is presented in this volume.

  1. Structure of the Type III Secretion Effector Protein ExoU in Complex with Its Chaperone SpcU

    PubMed Central

    Halavaty, Andrei S.; Borek, Dominika; Tyson, Gregory H.; Veesenmeyer, Jeff L.; Shuvalova, Ludmilla; Minasov, George; Otwinowski, Zbyszek

    2012-01-01

    Disease causing bacteria often manipulate host cells in a way that facilitates the infectious process. Many pathogenic gram-negative bacteria accomplish this by using type III secretion systems. In these complex secretion pathways, bacterial chaperones direct effector proteins to a needle-like secretion apparatus, which then delivers the effector protein into the host cell cytosol. The effector protein ExoU and its chaperone SpcU are components of the Pseudomonas aeruginosa type III secretion system. Secretion of ExoU has been associated with more severe infections in both humans and animal models. Here we describe the 1.92 Å X-ray structure of the ExoU–SpcU complex, a full-length type III effector in complex with its full-length cognate chaperone. Our crystallographic data allow a better understanding of the mechanism by which ExoU kills host cells and provides a foundation for future studies aimed at designing inhibitors of this potent toxin. PMID:23166655

  2. NASA Lewis Research Center/University Graduate Research Program on Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  3. Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3, 4 domains of integrin α6β4

    SciTech Connect

    Alonso-García, Noelia; García-Rubio, Inés; Buey, Rubén M.; Urien, Hector; Sonnenberg, Arnoud; Jeschke, Gunnar; Pereda, José M. de

    2015-04-01

    The structure of the FnIII-3, 4 region of integrin β4 was solved using a hybrid approach that combines crystallographic structures, SAXS, DEER and molecular modelling. The structure helps in understanding how integrin β4 might bind to other hemidesmosomal proteins and mediate signalling. Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3, 4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2, and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron–electron resonance (DEER) complement each other to solve the structure of the FnIII-3, 4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3, 4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes.

  4. Stress Engineering of Multi-pass Welds of Structural Steel to Enhance Structural Integrity

    NASA Astrophysics Data System (ADS)

    Ganguly, Supriyo; Sule, Jibrin; Yakubu, Mustapha Y.

    2016-05-01

    In multi-pass welding, the weld metal and the associated heat-affected zone are subjected to repeated thermal cycling from successive deposition of filler metals. The thermal straining results into multi-mode deformation of the weld metal which causes a variably distributed residual stress field through the thickness and across the weld of a multi-pass weldment. In addition to this, the as-welded fusion zone microstructure shows dendritic formation of grains and segregation of alloying element. This may result in formation of micro-corrosion cells and the problem would aggravate in case of highly alloyed materials. Local mechanical tensioning is an effective way of elimination of the weld tensile residual stress. It has been shown that application of cold rolling is capable not only of removing the residual stress, but depending on its magnitude it may also form beneficial compressive stress state. Multi-pass structural steel welds used as structural alloy in general engineering and structural applications. Such alloys are subjected to severe in-service degradation mechanisms e.g., corrosion and stress corrosion cracking. Welds and the locked-in residual stress in the welded area often initiate the defect which finally results in failure. In the present study, a multi-pass structural steel weld metal was first subjected to post-weld cold rolling which was followed by controlled heating by a fiber laser. Cold straining resulted in redistribution of the internal stress through the thickness and controlled laser processing helps in reforming of the grain structure. However, even with controlled laser, processing the residual stress is reinstated. Therefore, a strategy has been adopted to roll the metal post-laser processing so as to obtain a complete stress-free and recrystallized microstructure.

  5. Structural damage claims resulting from acoustic environments developed during static test firing of rocket engines

    NASA Technical Reports Server (NTRS)

    Guest, S. H.; Slone, R. M., Jr.

    1972-01-01

    During static testing of multi-million pound thrust rocket engines areas adjacent to the test site have been subjected to the noise generated by rocket engines. Structural damage claims and subjective complaints were filed by those who alleged that the noise levels were excessive. The statistical analysis of these claims and complaints which were filed during these rocket engine development programs led to the determination of a relationship between claims and overall sound pressure level. Community exposure criteria are then assessed based on what can be considered allowable acoustic environments from large rocket engines.

  6. Engineering approaches to illuminating brain structure and dynamics.

    PubMed

    Deisseroth, Karl; Schnitzer, Mark J

    2013-10-30

    Historical milestones in neuroscience have come in diverse forms, ranging from the resolution of specific biological mysteries via creative experimentation to broad technological advances allowing neuroscientists to ask new kinds of questions. The continuous development of tools is driven with a special necessity by the complexity, fragility, and inaccessibility of intact nervous systems, such that inventive technique development and application drawing upon engineering and the applied sciences has long been essential to neuroscience. Here we highlight recent technological directions in neuroscience spurred by progress in optical, electrical, mechanical, chemical, and biological engineering. These research areas are poised for rapid growth and will likely be central to the practice of neuroscience well into the future. PMID:24183010

  7. Cobalt(III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Chakkaravarthi, G

    2016-09-01

    Cobalt(III) complexes (1-3) such as [Co(acac)(bpy)(N3)2·H2O] 1, [Co(acac)(en)(N3)2] 2, and [Co(acac)(2-pic)(N3)2] 3 (where, acac=acetylacetone, bpy=2.2'-bipyridine, en=ethylenediamine, 2-pic=2-picolylamine and NaN3=sodium azide) were synthesized and characterized. The structure of complexes (1-3) has been determined by single crystal X-ray diffraction studies and the configuration around cobalt(III) ion was distorted octahedral coordination geometry. Density functional theory calculations were performed to examine the molecular geometry and frontier molecular orbital properties of complexes (1-3). DNA binding properties of the cobalt(III) complexes with calf thymus DNA (CT-DNA) were investigated by UV-visible absorption, fluorescence, circular dichroism spectroscopy and viscosity measurements. The docking studies showed the preferred orientation of sterically acceptable Co(III) complexes (1, 2) inside the DNA through the mode of intercalation, whereas complex 3 exhibited minor groove binding modes. The intrinsic binding constants Kb of complexes (1-3) with CT-DNA were in the following order 1>3>2. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) and gel electrophoresis assay demonstrated that the complexes (1-3) promote the cleavage of the pBR322 DNA in the presence of 3-mercaptopropionic acid (MPA) and cleavage process was found to proceed by singlet oxygen cleavage mechanism. Further, the in vitro cytotoxicity studies of complexes (1-3) were tested on human breast cancer cell line (MCF-7). PMID:27475779

  8. Comprehensive comparison and experimental validation of band-structure calculation methods in III-V semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Zerveas, George; Caruso, Enrico; Baccarani, Giorgio; Czornomaz, Lukas; Daix, Nicolas; Esseni, David; Gnani, Elena; Gnudi, Antonio; Grassi, Roberto; Luisier, Mathieu; Markussen, Troels; Osgnach, Patrik; Palestri, Pierpaolo; Schenk, Andreas; Selmi, Luca; Sousa, Marilyne; Stokbro, Kurt; Visciarelli, Michele

    2016-01-01

    We present and thoroughly compare band-structures computed with density functional theory, tight-binding, k · p and non-parabolic effective mass models. Parameter sets for the non-parabolic Γ, the L and X valleys and intervalley bandgaps are extracted for bulk InAs, GaAs and InGaAs. We then consider quantum-wells with thickness ranging from 3 nm to 10 nm and the bandgap dependence on film thickness is compared with experiments for In0.53Ga0.47 As quantum-wells. The impact of the band-structure on the drain current of nanoscale MOSFETs is simulated with ballistic transport models, the results provide a rigorous assessment of III-V semiconductor band structure calculation methods and calibrated band parameters for device simulations.

  9. Structural and spectroscopic studies of bis(2-amino-6-methylpyrimidinium-4-(1H)-one) aquapentachloridoindate(III) monohydrate

    NASA Astrophysics Data System (ADS)

    Nbili, W.; Kaabi, K.; Ferretti, V.; Lefebvre, F.; Ben Nasr, C.

    2015-11-01

    Physico-chemical properties of a new organic indate(III) (C5H8N3O)2[InCl5(H2O)].H2O are discussed on the basis of its X-ray crystal structure investigation. The asymmetric unit includes two independent 2-amino-6-methylpyrimidinium-4-(1H)-one cations, one aquapentachloridoindate dianion, and one crystallization water molecule. The InIII ion is in a slightly distorted octahedral coordination geometry. In the crystal structure, the dimeric species formed by two metal complexes and two water molecules are connected to the 2-amino-6-methylpyrimidin-4-1H)-one cations through N-H⋯Cl hydrogen bonds to build 2D sheets parallel to the (b, a + c) plane. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed attributions of NMR signals and of the IR bands.

  10. Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations

    SciTech Connect

    Leung, Kevin; Nenoff, Tina M.

    2012-08-21

    We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)-O pair correlation function exhibits a satellite peak at 2.15 A associated with the shorter U(IV)-(OH{sup -}) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.

  11. Structure and absorption of Co(III) azo complex dyes based on pyrrolinone esters: DFT and TD DFT study

    NASA Astrophysics Data System (ADS)

    Luňák, Stanislav; Aysha, Tarek; Lyčka, Antonín; Machalický, Oldřich; Hrdina, Radim

    2014-07-01

    The relation between structure and absorption of three symmetrical 2:1 octahedral Co(III) azo complexes was studied. Quantum chemical calculations based on density functional theory (DFT) relate well with E-azo configuration of ligands with coordinated nitrogen atoms coming solely from phenolic residues. DFT calculations estimate the mer stereoisomer as remarkably preferred with respect to any fac arrangement. Time dependent DFT calculations using B3LYP and CAM-B3LYP functionals were successfully used to interpret the absorption spectra in a visible range.

  12. Synthesis, crystal structure and magnetic properties of a novel tetranuclear oxo-bridged iron(III) butterfly

    NASA Astrophysics Data System (ADS)

    Arizaga, Livia; Gancheff, Jorge S.; Faccio, Ricardo; Cañón-Mancisidor, Walter; González, Ricardo; Kremer, Carlos; Chiozzone, Raúl

    2014-01-01

    A novel carboxylate/picolinate oxo-bridged iron(III) cluster, namely [Na2(H2O)8][Fe4(μ-O)2(O2CPh)7(pic)2]2·2H2O (1) where pic = picolinate, has been obtained by reacting "basic iron benzoate" [Fe3O(O2CPh)6(H2O)3](O2CPh) with sodium picolinate in acetonitrile. The compound has been characterized by elemental analysis and IR spectroscopy and its crystal structure has been determined by single-crystal X-ray diffraction.

  13. Engineered Minichromosomes in Plants: Structure, Function, and Applications.

    PubMed

    Graham, Nathaniel D; Cody, Jon P; Swyers, Nathan C; McCaw, Morgan E; Zhao, Changzeng; Birchler, James A

    2015-01-01

    Engineered minichromosomes are small chromosomes that contain a transgene and selectable marker, as well as all of the necessary components required for maintenance in an organism separately from the standard chromosome set. The separation from endogenous chromosomes makes engineered minichromosomes useful in the production of transgenic plants. Introducing transgenes to minichromosomes does not have the risk of insertion within a native gene; additionally, transgenes on minichromosomes can be transferred between lines without the movement of linked genes. Of the two methods proposed for creating engineered minichromosomes, telomere-mediated truncation is more reliable in plant systems. Additionally, many plants contain a supernumerary, or B chromosome, which is an excellent starting material for minichromosome creation. The use of site-specific recombination systems in minichromosomes can increase their utility, allowing for the addition or subtraction of transgenes in vivo. The creation of minichromosomes with binary bacterial artificial chromosome vectors provides the ability to introduce many transgenes at one time. Furthermore, coupling minichromosomes with haploid induction systems can facilitate transfer between lines. Minichromosomes can be introduced to a haploid-inducing line and crossed to target lines. Haploids of the target line that then contain a minichromosome can then be doubled. These homozygous lines will contain the transgene without the need for repeated introgressions. PMID:26315884

  14. Electronic Structure and Valence of Mn impurities in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Schulthess, Thomas C.

    2003-11-01

    Mn doped III-V semiconductors have recently become very popular materials since they are ferromagnetic at reasonably high temperatures and in some cases show carrier induced magnetism, where the Curie temperature can be altered by changes in the carrier concentration. It is expected that these materials will play an important role in Spintronics devices. Substitutional Mn impurities in III-V semiconductors can acquire either a divalent or a trivalent configuration. For example, it is generally accepted that Mn in GaAs is in a (d^5+h) configuration with five occupied Mn d-orbitals and a delocalized hole in the valence band. In contrast, Mn in GaN is believed to be in a d^4 configuration with a deep impurity state that has d-character. But there have recently been some discussions about the possibility of having some Mn ion in GaN assuming a divalent (d^5+h) type configuration. In order to achieve carrier induced ferromagnetism, the desired state of the Mn ions in III-V semiconductors is the (d^5+h) configuration. We have therefore performed ab-initio calculations of the Mn valence when it substitutes Ga in various III-V semiconductor hosts. We use the self-interaction corrected local spin density (SIC-LSD) method which is able to treat localized impurity orbitals properly. In particular we find that the method is capable of predicting the (d^5+h) state of Mn in GaAs. For Mn in GaP and GaN the calculations predict a trivalent d^4 state in the idealized system. The energy differences between d^4 and (d^5+h) configurations in GaP are, however, very small. Introduction of defects or donors does change the valence of Mn in GaP, favoring the divalent state under certain circumstances. Work done in collaboration with W. Temmerman and S. Szotek, Daresbury Laboratory, G. M. Stocks, ORNL, and W. H. Butler, MINT Center University of Alabama. This work supported by the Defense Advanced Research Agency and by DOE Office of Science trough ASCR/MICS and BES/DMSE under Contract No

  15. The structures of CyMe4-BTBP complexes of americium(iii) and europium(iii) in solvents used in solvent extraction, explaining their separation properties.

    PubMed

    Ekberg, Christian; Löfström-Engdahl, Elin; Aneheim, Emma; Foreman, Mark R StJ; Geist, Andreas; Lundberg, Daniel; Denecke, Melissa; Persson, Ingmar

    2015-11-14

    Separation of trivalent actinoid (An(iii)) and lanthanoid (Ln(iii)) ions is extremely challenging due to their similar ionic radii and chemical properties. Poly-aromatic nitrogen compounds acting as tetradentate chelating ligands to the metal ions in the extraction, have the ability to sufficiently separate An(iii) from Ln(iii). One of these compounds, 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzol[1,2,4]triazin-3-yl)[2,2]bipyridine, CyMe4-BTBP, has proven to be resistant towards acidic environments and strong radiation from radioactive decomposition. EXAFS studies of the dicomplexes of CyMe4-BTBP with americium(iii) and europium(iii) in nitrobenzene, cyclohexanone, 1-hexanol, 1-octanol and malonamide (DMDOHEMA) in 1-octanol have been carried out to get a deeper understanding of the parameters responsible for the separation. The predominating complexes independent of solvent used are [Am(CyMe4-BTBP)2(NO3)](2+) and [Eu(CyMe4-BTBP)2](3+), respectively, which are present as outer-sphere ion-pairs with nitrate ions in the studied solvents with low relative permittivity. The presence of a nitrate ion in the first coordination sphere of the americium(iii) complex compensates the charge density of the complex considerably in comparison when only outer-sphere ion-pairs are formed as for the [Eu(CyMe4-BTBP)2](3+) complex. The stability and solubility of a complex in a solvent with low relative permittivity increase with decreasing charge density. The [Am(CyMe4-BTBP)2(NO3)](2+) complex will therefore be increasingly soluble and stabilized over the [Eu(CyMe4-BTBP)2](3+) complex in solvents with decreasing relative permittivity of the solvent. The separation of americium(iii) from europium(iii) with CyMe4-BTBP as extraction agent will increase with decreasing relative permittivity of the solvent, and thereby also with decreasing solubility of CyMe4-BTBP. The choice of solvent is therefore a balance of a high separation factor and sufficient solubility of the CyMe4-BTBP

  16. Strain properties analysis and wireless collection system of PVDF for structural local health monitoring of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Wang, Yang; Dong, Weijie; Jin, Yajing; Ou, Jinping

    2009-07-01

    For large civil engineering structures and base establishments, for example, bridges, super-high buildings, long-span space structures, offshore platforms and pipe systems of water & gas supply, their lives are up to a few decades or centuries. Damaged by environmental loads, fatigue effects, corrosion effects and material aging, these structures experience inevitably such side effects as damage accumulation, resistance reduction and even accidents. The traditional civil structure is a kind of passive one, whose performance and status are unpredictable to a great extent, but the informatics' introduction breaks a new path to obtain the status of the structure, thus it is an important research direction to evaluate and improve reliability of civil structures by the use of monitoring and health diagnosis technique, and this also assures the security of service for civil engineering structures. Smart material structure, originated from the aerospace sector, has been a research hotspot in civil engineering, medicine, shipping, and so on. For structural health monitoring of civil engineering, the research about high-performance sensing unit of smart material structure is very important, and this will possibly push further the development and application of monitoring and health diagnosis techniques. At present, piezoelectric materials are one of the most widely used sensing materials among the research of smart material structures. As one of the piezoelectric materials, PVDF(Polyvinylidene Fluoride)film is widely considered for the advantages of low cost, good mechanical ability, high sensibility, the ability of being easily placed and resistance of corrosion. However, only a few studies exit about building a mature monitoring system using PVDF. In this paper, for the sake of using PVDF for sensing unit for structural local monitoring of civil engineering, the strain sensing properties of PVDF are studied in detail. Firstly, the operating mechanism of PVDF is analyzed

  17. Enhancement of Tb(III) -Cu(II) Single-Molecule Magnet Performance through Structural Modification.

    PubMed

    Heras Ojea, María José; Milway, Victoria A; Velmurugan, Gunasekaran; Thomas, Lynne H; Coles, Simon J; Wilson, Claire; Wernsdorfer, Wolfgang; Rajaraman, Gopalan; Murrie, Mark

    2016-08-26

    We report a series of 3d-4f complexes {Ln2 Cu3 (H3 L)2 Xn } (X=OAc(-) , Ln=Gd, Tb or X=NO3 (-) , Ln=Gd, Tb, Dy, Ho, Er) using the 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6 L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2 Cu3 (H3 L)2 Xn } complexes is seen by changing the auxiliary ligands (X=OAc(-) for NO3 (-) ). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear Tb(III) models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the Tb(III) coordination environment (C4v versus Cs ). PMID:27484259

  18. Influence of manganese incorporation on structure, surface and As(III)/As(V) removal capacity of iron oxy-hydroxides

    NASA Astrophysics Data System (ADS)

    Tresintsi, Sofia; Simeonidis, Konstantinos; Mitrakas, Manassis

    2013-04-01

    Iron oxy-hydroxides are well defined As(V) adsorbents dominating in water treatment market. The main drawback of these adsorbents, as well as of all commercial one, is their significantly low adsorption capacity for As(III). A breakthrough for improving As(III) adsorption of iron oxy-hydroxides may come by the MnO2incorporation. However, MnO2 decreases the total arsenic capacity proportionally to its percentage since its efficiency for As(V) is much lower than that of an iron oxy-hydroxide. It is concluded that an ideal adsorbent capable for high and simultaneous As(III) and As(V) removal should be consisted of a binary Fe(III)-Mn(IV) oxy-hydroxide both efficient for As(III) oxidation, due to Mn(IV) presence, and capture of As(V) due to a high positively surface charge density. This work studies the optimum parameters at the synthesis of single Fe and binary Fe/Mn oxy-hydroxides in a continuous flow kilogram-scale production reactor through the precipitation of FeSO4 in the pH range 3-12, under intense oxidative conditions using H2O2/KMnO4, that maximize arsenic adsorption. The evaluation of their efficiency was based on its As(III) and As(V) adsorption capacity (Q10-index) at equilibrium concentration equal to drinking water regulation limit (Ce= 10 μg/L) in NSF challenge water. The pH of synthesis was found to decisively affect, the structure, surface configuration and Q10-index. As a result, both single Fe and binary Fe/Mn oxy-hydroxides prepared at pH 4, which consist of schwertmannite and Mn(IV)-feroxyhyte respectively, were qualified according to their highest Q10-index of 13±0.5 μg As(V)/ mg for a residual arsenic concentration of 10 μg/L at an equilibrium pH 7. The high surface charge and the activation of an ion-exchange mechanism between SO42- adsorbed in the Stern layer and arsenate ions were found to significantly contribute to the increased adsorption capacity. The Q10-index for As(III) of Fe/Mn adsorbent at equilibrium pH 7 was 6.7 μg/mg, which

  19. Covalent Attachment to GaP(110) - Engineering the Chemical Functionalization of a III-V Semiconductor

    NASA Astrophysics Data System (ADS)

    Bradley, A. J.; Ugeda, M. M.; Liu, Wenjun; Yu, Min; Tilley, T. Don; Pérez, Rubén; Neaton, Jeffrey B.; Crommie, M. F.

    2014-03-01

    With its 2.3 eV bulk bandgap, relatively high conduction band edge, and low chemical reactivity, the (110) surface of GaP is an excellent candidate for many UV and visible light applications, such as photo-catalysis and light-induced chemical reduction. However, the reconstruction and resulting charge transfer of the surface makes it difficult to covalently attach the required molecules. Indeed, very little work has been done to understand either covalent functionalization or passivation of this surface. Here we report on a Staudinger-type, thermally-driven covalent attachment of perfluorophenyl azide (pfpa) to GaP(110). We have studied the adsorption of pfpa molecules by means of high-resolution scanning tunneling microscopy and spectroscopy in combination with first principles calculations. We show a progression from a physisorbed state at room temperature to a covalently attached state after exposure to slightly higher temperatures (~ 50°C). The developed approach is expected to be valid for various other functional groups attached to the azide, as well as other III-V semiconductors.

  20. Population Structure of a Hybrid Clonal Group of Methicillin-Resistant Staphylococcus aureus, ST239-MRSA-III

    PubMed Central

    Smyth, Davida S.; McDougal, Linda K.; Gran, Frode W.; Manoharan, Anand; Enright, Mark C.; Song, Jae-Hoon; de Lencastre, Herminia; Robinson, D. Ashley

    2010-01-01

    The methicillin-resistant Staphylococcus aureus (MRSA) clonal group known as ST239-MRSA-III is notable for its hybrid origin and for causing sustained hospital epidemics worldwide since the late 1970s. We studied the population structure of this MRSA clonal group using a sample of 111 isolates that were collected over 34 years from 29 countries. Genetic variation was assessed using typing methods and novel ascertainment methods, resulting in approximately 15 kb of sequence from 32 loci for all isolates. A single most parsimonious tree, free of homoplasy, partitioned 28 haplotypes into geographically-associated clades, including prominent European, Asian, and South American clades. The rate of evolution was estimated to be approximately 100× faster than standard estimates for bacteria, and dated the most recent common ancestor of these isolates to the mid-20th century. Associations were discovered between the ST239 phylogeny and the ccrB and dru loci of the methicillin resistance genetic element, SCCmec type III, but not with the accessory components of the element that are targeted by multiplex PCR subtyping tools. In summary, the evolutionary history of ST239 can be characterized by rapid clonal diversification that has left strong evidence of geographic and temporal population structure. SCCmec type III has remained linked to the ST239 chromosome during clonal diversification, but it has undergone homoplasious losses of accessory components. These results provide a population genetics framework for the precise identification of emerging ST239 variants, and invite a re-evaluation of the markers used for subtyping SCCmec. PMID:20062529

  1. The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III)

    NASA Astrophysics Data System (ADS)

    Villalobos, Mario; Escobar-Quiroz, Ingrid N.; Salazar-Camacho, Carlos

    2014-01-01

    Sorption and oxidation reactions in the environment may affect substantially the mobility of redox-sensitive toxic trace elements and compounds. Investigating the environmental factors that influence these reactions is crucial in understanding and predicting the geochemical fate of these environmental species, as well as to design appropriate engineered remediation schemes. Arsenic is a widespread contaminant of concern, especially in its oxidized forms, and Mn oxide minerals are some of the major contributors to its oxidation. The goal of this work was to investigate the influence of particle size and structural differences of environmentally-relevant Mn(IV) birnessites on the adsorption of As(V) and on the oxidation of As(III). An acid birnessite of 39 m2/g and a δ-MnO2 of 114 m2/g were used. Both birnessites sorbed a maximum Pb(II) of 0.3 Pb/Mn, indicating a significantly larger layer cationic vacancy content for acid birnessite, and a density of reactive edge sites for both of 12 sites/nm2. As(V) forms a bidentate bridging complex on singly-coordinated surface sites at the birnessite particle edges regardless of loading, pH, birnessite type, and presence of pre-sorbed metals(II). Maximum As(V) adsorption, under repulsive electrostatic pH conditions did not yield adsorption congruency behavior between both birnessites at constant pH, presumably because the increase in internal vacancy content causes negative electrostatic repulsion towards external As(V) oxyanion binding. At pH 4.5 As(III) oxidation on birnessites was fast and quantitative at As/Mn ratios of 0.3-0.33, the reaction being largely driven by the proton concentration. At pH 6 δ-MnO2 oxidized As(III) faster and to a higher extent than acid birnessite, at equal masses; but the reverse at equal total surface areas. The oxidation driving force (independently from protons) was higher at pH 6 than at pH 4.5 because of Mn(II) product removal by sorption to interlayer vacancies, which overcomes reactive

  2. A Study on Aircraft Structure and Jet Engine

    NASA Astrophysics Data System (ADS)

    Park, Gil Moon; Park, Hwan Kyu; Kim, Jong Il; Kim, Jin Won; Kim, Jin Heung; Lee, Moo Seok; Chung, Nak Kyu

    1985-12-01

    The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operation temperature. The purpose of this study is to provide the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition.

  3. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    SciTech Connect

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  4. Structural and magnetic properties of some lanthanide (Ln = Eu(iii), Gd(iii) and Nd(iii)) cyanoacetate polymers: field-induced slow magnetic relaxation in the Gd and Nd substitutions.

    PubMed

    Arauzo, A; Lazarescu, A; Shova, S; Bartolomé, E; Cases, R; Luzón, J; Bartolomé, J; Turta, C

    2014-08-28

    The lanthanide(iii) cyanoacetate complexes of the formula {[Ln2(CNCH2COO)6(H2O)4]·2H2O}n, where Ln = Eu (), Gd (), Nd (), have been prepared and characterized by X-ray diffraction analysis. Complexes and are isostructural and differ from the binding scheme of the neodymium compound , structurally described earlier. In all cases, the cyano group of the cyanoacetate ligand is not coordinated to the lanthanide cation. The carboxylic groups exhibit different binding modes: 2-bidentate-chelating, 2-bidentate and 2-tridentate-chelating bridging for and , and 4-bidentate and 2-tridentate-chelating bridging for the complex . The Eu compound shows field induced paramagnetism, as expected for a non-magnetic ground state with mixing from higher states. Combining the dc magnetization and luminescence measurements the spin-orbit coupling constant λ = 343 ± 4 cm(-1) was found, averaged over the two different sites for Eu in the lattice. In the Gd complex , a crystal field splitting of D/kB = -0.11 ± 0.01 K has been found for the S = 7/2 multiplet of the Gd(iii) ion. No slow relaxation at H = 0 is observed because the low anisotropy barrier allows fast spin reversal through classical processes. The application of an external magnetic field induces two slow relaxation processes. It is argued that the first relaxation rate is caused by the resonant phonon trapping (RPT) mechanism, while the second, slower relaxation rate is due to the lifting of the Kramers degeneracy on the ground state. For compound heat capacity and dc susceptibility measurements indicate that at very low temperatures the ground state Kramers doublet has strong single ion anisotropy. The energy to the next excited doublet ΔZFS/kB = 104 K has been calculated by ab initio calculation methods. The g* tensor has also been calculated, showing that it has predominant anisotropy along the z-axis, and there is an important transversal component. At H = 0 quantum tunnelling is an effective mechanism in producing a

  5. Introducing Students to Structural Dynamics and Earthquake Engineering

    ERIC Educational Resources Information Center

    Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel

    2010-01-01

    The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…

  6. Computer applications for engineering/structural analysis. Revision 1

    SciTech Connect

    Zaslawsky, M.; Samaddar, S.K.

    1991-12-31

    Analysts and organizations have a tendency to lock themselves into specific codes with the obvious consequences of not addressing the real problem and thus reaching the wrong conclusion. This paper discusses the role of the analyst in selecting computer codes. The participation and support of a computation division in modifying the source program, configuration management, and pre- and post-processing of codes are among the subjects discussed. Specific examples illustrating the computer code selection process are described in the following problem areas: soil structure interaction, structural analysis of nuclear reactors, analysis of waste tanks where fluid structure interaction is important, analysis of equipment, structure-structure interaction, analysis of the operation of the superconductor supercollider which includes friction and transient temperature, and 3D analysis of the 10-meter telescope being built in Hawaii. Validation and verification of computer codes and their impact on the selection process are also discussed.

  7. III-V semiconductor Quantum Well systems: Physics of Gallium Arsenide two-dimensional hole systems and engineering of mid-infrared Quantum Cascade lasers

    NASA Astrophysics Data System (ADS)

    Chiu, YenTing

    This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further

  8. Syntheses, crystal structures, and properties of six new lanthanide(III) transition metal tellurium(IV) oxyhalides with three types of structures.

    PubMed

    Shen, Yue-Ling; Mao, Jiang-Gao

    2005-07-25

    Solid-state reactions of lanthanide(III) oxide (and lanthanide(III) oxyhalide), transition metal halide (and transition metal oxide), and TeO(2) at high temperature lead to six new lanthanide transition metal tellurium(IV) oxyhalides with three different types of structures, namely, DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, ErCuTe(2)O(6)Br, Sm(2)Mn(Te(5)O(13))Cl(2), Dy(2)Cu(Te(5)O(13))Br(2), and Nd(4)Cu(TeO(3))(5)Cl(3). Compounds DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, and ErCuTe(2)O(6)Br are isostructural. The lanthanide(III) ion is eight-coordinated by eight oxygen atoms, and the copper(II) ion is five-coordinated by four oxygens and a halide anion in a distorted square pyramidal geometry. The interconnection of Ln(III) and Cu(II) ions by bridging tellurite anions results in a three-dimensional (3D) network with tunnels along the a-axis; the halide anion and the lone-pair electrons of the tellurium(IV) ions are oriented toward the cavities of the tunnels. Compounds Sm(2)Mn(Te(5)O(13))Cl(2) and Dy(2)Cu(Te(5)O(13))Br(2) are isostructural. The lanthanide(III) ions are eight-coordinated by eight oxygens, and the divalent transition metal ion is octahedrally coordinated by six oxygens. Two types of polymeric tellurium(IV) oxide anions are formed: Te(3)O(8)(4)(-) and Te(4)O(10)(4)(-). The interconnection of the lanthanide(III) and divalent transition metal ions by the above two types of polymeric tellurium(IV) oxide anions leads to a 3D network with long, narrow-shaped tunnels along the b-axis. The halide anions remain isolated and are located at the above tunnels. Nd(4)Cu(TeO(3))(5)Cl(3) features a different structure. All five of the Nd(III) ions are eight-coordinated (NdO(8) for Nd(1), Nd(2), Nd(4), and Nd(5) and NdO(7)Cl for Nd(3)), and the copper(I) ion is tetrahedrally coordinated by four chloride anions. The interconnection of Nd(III) ions by bridging tellurite anions resulted in a 3D network with large tunnels along the b-axis. The CuCl(4) tetrahedra are interconnected into

  9. Current developments in optical engineering III; Proceedings of the Meeting, San Diego, CA, Aug. 15, 16, 18, 1988

    SciTech Connect

    Fischer, R.E.; Smith, W.J.

    1989-01-01

    Topics discussed in this volume include diffraction, polarization, holography, lasers, tolerances, interferometry, and alignment. Papers are presented on a nanosensor based on diffraction, a chromatic aberration-free grating-lens pair, a study of the theory of optical stabilizing image, an active phase compensation system for fiber optic holography, and a holographic wide-angle lens detector for laser radiation. Attention is also given to spectral correlation of semiconductor lasers, a resonator design with an intracavity time-varying index gradient, optical test bed for control algorithms, an application of moire interferometry to a contact problem, and an interferometer for measuring thickness and spacing. Other papers are on a design of low-jitter sensitive beam expander; an automated fiber-alignment, fixing, and hermetic sealing system; testing of optical laser pattern encoders; and a hill-climbing wavefront correction system for large laser engineering.

  10. Immobilization of cobalt(III) Schiff base complexes onto Montmorillonite-K10: Synthesis, experimental and theoretical structural determination

    NASA Astrophysics Data System (ADS)

    Kianfar, Ali Hossein; Kamil Mahmood, Wan Ahmad; Dinari, Mohammad; Farrokhpour, Hossein; Enteshari, Majid; Azarian, Mohammad Hossein

    2015-02-01

    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen = bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, 1H NMR, 13C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.

  11. X-ray absorption study of octafluorodirhenate(III): EXAFS structures and resonance raman spectroscopy of octahalodirhenates

    SciTech Connect

    Conradson, S.D.; Sattelberger, A.P.; Woodruff, W.H.

    1988-02-17

    The structure, bonding, spectroscopy, and photophysics of transition-metal complexes containing quadruple metal-metal bonds are subjects of intense and general interest. For both historic and fundamental reasons, the octahalodirhenate(III) ions have become the paradigms of this field. Extensive spectroscopic and photophysical studies exist for the entire Re/sub 2/X/sub 8//sup 2 -/ series (X = F, Cl, Br, and I). However, while excellent structural data exist for X = Cl and Br, the structures of Re/sub 2/Fe/sub 8//sup 2 -/ and Re/sub 2/I/sub 8//sup 2 -/ have not been determined. These structures are essential for complete understanding of the bonding and physical and chemical behavior in these systems. Toward this end, the authors report structural features of Re/sub 2/F/sub 8//sup 2 -/ determined by extended X-ray absorption fine structure (EXAFS) spectroscopy. They also report X-ray absorption near-edge spectra (XANES); resonance Raman (RR) spectra have been determined previously by others and subsequently by the authors. They find that in Re/sub 2/F/sub 8//sup 2 -/ the Re-Re distance is 2.20 Angstrom and the Re-F distance is 1.95 A. Both of these distances are unexpected considering the corresponding stretching frequencies in the RR spectra.

  12. Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines

    NASA Technical Reports Server (NTRS)

    Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.

    2014-01-01

    Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.

  13. Bismuth-induced surface structure and morphology in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Duzik, Adam J.

    2015-04-01

    Bi is the largest group V element and has a number of advantages in III-V semiconductor properties, such as bandgap reduction, spin-orbit coupling, a preserved electron mobility over III-V-N materials, and nearly ideal surfactant properties resulting in a surface smoothing effect on GaAs. However, the mechanism for this behavior is not well understood. Insight on the mechanism is obtained through study of the Bi-terminated GaAs surface morphology and atomic reconstructions produced via molecular beam epitaxy (MBE). Experimental scanning tunneling microscopy (STM) characterization of the Bi/GaAs surface reveal disordered (1x3), (2x3), and (4x3) reconstructions, often sharing the same reflective high-energy electron diffraction (RHEED) patterns. Roughness on the micron length scale decreases as the step widen, attributed to the concurrent increase of opposite direction step edges on the nanometer length scale. Corresponding cluster expansion, density functional theory (DFT), and Monte Carlo simulations all point to the stability of the disordered (4x3) reconstruction at finite temperature as observed in experimental STM. The effects of incorporated Bi are determined through epitaxial GaSbBi growth on GaSb with various Ga:Sb:Bi flux ratios. Biphasic surface droplets are observed with sub-droplets, facets, and substrate etching. Despite the rough growth front, X-ray diffraction (XRD) and Rutherford backscatter (RBS) measurements show significant Bi incorporation of up to 12% into GaSb, along with a concurrent increase of background As concentration. This is attributed to a strain auto-compensation effect. Bi incorporation of up to 10% is observed for the highest Bi fluxes while maintaining low surface droplet density.

  14. Synthesis, structure, and spectral and electrochemical properties of chromium(III) tris-(8-hydroxyquinolinate).

    PubMed

    Freitas, Ana R; Silva, Mónica; Ramos, M Luísa; Justino, Licínia L G; Fonseca, Sofia M; Barsan, Madalina M; Brett, Christopher M A; Silva, M Ramos; Burrows, Hugh D

    2015-07-01

    The kinetically inert chromium(III) tris-(8-hydroxyquinolinate), Crq3, has been synthesized, crystallized from 90% methanol-water, and characterized by MALDI-TOF mass spectrometry, thermogravimetry, FTIR, NMR spectroscopy, and X-ray powder diffraction. It is formed as a methanol solvate, but the solvent can be removed by heating. Large paramagnetic shifts and spectral broadening in (1)H NMR spectra indicate electron delocalization between the metal and the ligand. DFT calculations show it is present as the meridional isomer, with the HOMO largely based on one of the metal 3d orbitals and the LUMO essentially localized on the ligands. Cyclic voltammetry (CV) in acetonitrile solutions shows four oxidation peaks and two, less intense reduction waves on the first scan. The HOMO energy determined from the first oxidation peak is fairly close to that obtained by DFT, in agreement with this being mainly metal based. Although the number of peaks decreases on subsequent CV scans, the complex shows markedly enhanced electrochemical stability compared with aluminium(III) tris-(8-hydroxyquinolinate). Solution UV/visible absorption and solid diffuse reflectance spectra have a weak, long wavelength band, assigned to the metal based d-d transition, in addition to the normal, ligand based bands seen in metal quinolates. The energy of the lowest energy band is identical to the HOMO-LUMO separation obtained by cyclic voltammetry, in agreement with the above description. The compound is only weakly luminescent, in contrast to many other metal quinolates, due to the lowest energy transition being metal rather than ligand based. The potential of this compound as an electron transporting/hole blocking layer in optoelectronic devices is indicated. PMID:26030802

  15. Integrating psychopathology and personality disorders conceptualized by the MMPI-2-RF and the MCMI-III: a structural validity study.

    PubMed

    van der Heijden, Paul T; Egger, Jos I M; Rossi, Gina M P; Derksen, Jan J L

    2012-01-01

    The Minnesota Multiphasic Personality Inventory-2-Restructured Form (Ben-Porath & Tellegen, 2008 ) Restructured Clinical scales and Higher Order scales were linked to the Millon Clinical Multiaxial Inventory-III (Millon, Millon, Davis, & Grossman, 2009 ) personality disorder scales and clinical syndrome scales in a Flemish/Dutch sample of psychiatric inpatients and outpatients, substance abuse patients, correctional inmates, and forensic psychiatric patients (N = 968). Structural validity of psychopathology and personality disorders as conceptualized by both instruments was investigated by means of principal component analysis. Results reveal a higher order structure with 4 dimensions (internalizing disorders, externalizing disorders, paranoid ideation/thought disturbance, and pathological introversion) that parallels earlier research on pathological personality dimensions as well as research linking pathological personality traits with mental disorders. Theoretical and clinical implications are considered. PMID:22338624

  16. Using structural modularity in cocrystals to engineer properties: elasticity.

    PubMed

    Saha, Subhankar; Desiraju, Gautam R

    2016-06-01

    Cocrystal formation of heterocyclic bases with halogenated aromatic acids increases the tendency for stacking and with this, an increase in structural isotropy occurs that leads to crystal elasticity. PMID:27228952

  17. Ca2+ and membrane binding to annexin 3 modulate the structure and dynamics of its N terminus and domain III

    PubMed Central

    Sopkova, Jana; Raguenes-Nicol, Céline; Vincent, Michel; Chevalier, Anne; Lewit-Bentley, Anita; Russo-Marie, Françoise; Gallay, Jacques

    2002-01-01

    Annexin 3 (ANX A3) represents ∼1% of the total protein of human neutrophils and promotes tight contact between membranes of isolated specific granules in vitro leading to their aggregation. Like for other annexins, the primary molecular events of the action of this protein is likely its binding to negatively charged phospholipid membranes in a Ca2+-dependent manner, via Ca2+-binding sites located on the convex side of the highly conserved core of the molecule. The conformation and dynamics of domain III can be affected by this process, as it was shown for other members of the family. The 20 amino-acid, N-terminal segment of the protein also could be affected and also might play a role in the modulation of its binding to the membranes. The structure and dynamics of these two regions were investigated by fluorescence of the two tryptophan residues of the protein (respectively, W190 in domain III and W5 in the N-terminal segment) in the wild type and in single-tryptophan mutants. By contrast to ANX A5, which shows a closed conformation and a buried W187 residue in the absence of Ca2+, domain III of ANX A3 exhibits an open conformation and a widely solvent-accessible W190 residue in the same conditions. This is in agreement with the three-dimensional structure of the ANX A3-E231A mutant lacking the bidentate Ca2+ ligand in domain III. Ca2+ in the millimolar concentration range provokes nevertheless a large mobility increase of the W190 residue, while interaction with the membranes reduces it slightly. In the N-terminal region, the W5 residue, inserted in the central pore of the protein, is weakly accessible to the solvent and less mobile than W190. Its amplitude of rotation increases upon binding of Ca2+ and returns to its original value when interacting with membranes. Ca2+ concentration for half binding of the W5A mutant to negatively charged membranes is ∼0.5 mM while it increases to ∼1 mM for the ANX A3 wild type and to ∼3 mM for the W190 ANX A3 mutant. In

  18. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges. PMID:24901707

  19. Crankshaft supporting and lubricating structure for multicylinder internal combustion engines

    SciTech Connect

    Anno, N.

    1987-04-14

    This patent describes a crankshaft supporting and lubricating device in a multicylinder internal combustion engine having bearing caps secured to journal walls of a cylinder block rotatably supporting a crankshaft between the bearing caps and the journal walls with a bridge interconnecting the bearing caps. The improvement described here comprises: the bearing caps and the bridge having branch oil passages defined therein for supplying lubricating oil to bearings of the crankshaft; the branch oil passages being deviated to one side from a cylinder axis passing through the center of the crankshaft; the bridge having a main gallery defined therein in communication with the branch oil passages and also deviated to the one side; and the bridge and one of the bearing caps having an oil passage defined therein on the one side and providing communication between the main gallery and a pressurized oil source.

  20. Engine structures modeling software system: Computer code. User's manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.

  1. Fluorescent naphthalene diols as bridging ligands in Ln(III) cluster chemistry: synthetic, structural, magnetic, and photophysical characterization of Ln(III)8 "Christmas stars".

    PubMed

    Alexandropoulos, Dimitris I; Fournet, Adeline; Cunha-Silva, Luís; Mowson, Andrew M; Bekiari, Vlasoula; Christou, George; Stamatatos, Theocharis C

    2014-06-01

    The initial employment of the fluorescent bridging ligand naphthalene-2,3-diol in 4f-metal coordination chemistry has provided access to a new family of Ln(III)8 clusters with a "Christmas-star" topology, single-molecule magnetism behavior, and ligand-centered emissions. PMID:24828892

  2. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design

    SciTech Connect

    Gilbreth, Ryan N.; Truong, Khue; Madu, Ikenna; Koide, Akiko; Wojcik, John B.; Li, Nan-Sheng; Piccirilli, Joseph A.; Chen, Yuan; Koide, Shohei

    2011-07-25

    Discriminating closely related molecules remains a major challenge in the engineering of binding proteins and inhibitors. Here we report the development of highly selective inhibitors of small ubiquitin-related modifier (SUMO) family proteins. SUMOylation is involved in the regulation of diverse cellular processes. Functional differences between two major SUMO isoforms in humans, SUMO1 and SUMO2/3, are thought to arise from distinct interactions mediated by each isoform with other proteins containing SUMO-interacting motifs (SIMs). However, the roles of such isoform-specific interactions are largely uncharacterized due in part to the difficulty in generating high-affinity, isoform-specific inhibitors of SUMO/SIM interactions. We first determined the crystal structure of a 'monobody,' a designed binding protein based on the fibronectin type III scaffold, bound to the yeast homolog of SUMO. This structure illustrated a mechanism by which monobodies bind to the highly conserved SIM-binding site while discriminating individual SUMO isoforms. Based on this structure, we designed a SUMO-targeted library from which we obtained monobodies that bound to the SIM-binding site of human SUMO1 with K{sub d} values of approximately 100 nM but bound to SUMO2 400 times more weakly. The monobodies inhibited SUMO1/SIM interactions and, unexpectedly, also inhibited SUMO1 conjugation. These high-affinity and isoform-specific inhibitors will enhance mechanistic and cellular investigations of SUMO biology.

  3. A new supramolecular compound of chrome(III): Synthesis, spectroscopic characterization, X-ray crystal structure, DFT, and solution studies

    NASA Astrophysics Data System (ADS)

    Eshtiagh-Hosseini, Hossein; Yousefi, Zakieh; Mirzaei, Masoud; Chen, Ya-Guang; Ali Beyramabadi, S.; Shokrollahi, Ardeshir; Aghaei, Roghayyeh

    2010-06-01

    A new supramolecular compound of Cr(III) atom was synthesized and characterized by using elemental analysis, FTIR spectroscopy, UV-vis, and single crystal X-ray diffraction method. The chemical formula and space group of the resulting compound is (2-apymH)[Cr(pydc) 2]·2H 2O ( 1) (pydc = 2,6-pyridinedicarboxylate, 2-apym = 2-aminopyrimidine) and P2 1/ c where the final R value is 0.0157 for 3896 reflections collected. The [Cr(pydc) 2] - anions and the (2-apymH) + moiety form a three-dimensional solid state structure by a variety of noncovalent interactions such as ion pairing and hydrogen bonds interactions. On the basis of crystallographic data, it can be seen that Cr(III) atom is six-coordinated by two (pydc) 2- groups. With respect to bond lengths and angles, it is observed that coordination sphere around Cr(III) atom is a distorted octahedral. Furthermore, DFT calculation and solution study have been completely performed on 1 where corresponding data showed that obtained results from DFT and solution studies have good agreement with X-ray crystallography results. The optimized geometry confirms that the C-O (bonded) bond length of (pydc) 2- ligand in its complex form has been increased compared with the free ligand. The evidence shows that C-O (bonded) is weakened upon formation of complex, while C dbnd O (free) converted to double bond. Anionic complex possesses 90 occupied molecular orbitals and 3 half-occupied ones (91-93). A comparison between the stoichiometry of the crystalline complex in pydcH 2-2-apym-Cr system and the results obtained from solution studies clearly revealed that the CrL 2QH is the most abundant species existing in aqueous solution possesses a stoichiometry similar to that of the complex which was obtained in the solid state.

  4. Multiple piece turbine engine airfoil with a structural spar

    DOEpatents

    Vance, Steven J.

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  5. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  6. Heat-stressed structural components in combustion-engine design

    NASA Technical Reports Server (NTRS)

    Kraemer, Otto

    1938-01-01

    Heated structural parts alter their shape. Anything which hinders free heat expansion will give rise to heat stresses. Design rules are thus obtained for the heated walls themselves as well as for the adjoining parts. An important guiding principle is that of designing the heat-conducting walls as thin as possible.

  7. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    SciTech Connect

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V.; Sardela, Mauro; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  8. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  9. Structure of the SSB-DNA polymerase III interface and its role in DNA replication

    SciTech Connect

    Marceau, Aimee H; Bahng, Soon; Massoni, Shawn C; George, Nicholas P; Sandler, Steven J; Marians, Kenneth J; Keck, James L

    2012-05-22

    Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.

  10. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    PubMed

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed. PMID:26712097

  11. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Sardela, Mauro; Zuo, Jianmin; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting; Braun, Paul V.

    2015-12-01

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1-xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  12. Structure and sequence of the gene for the largest subunit of trypanosomal RNA polymerase III.

    PubMed Central

    Köck, J; Evers, R; Cornelissen, A W

    1988-01-01

    As the first step in the analysis of the transcription process in the African trypanosome, Trypanosoma brucei, we have started to characterise the trypanosomal RNA polymerases. We have previously described the gene encoding the largest subunit of RNA polymerase II and found that two almost identical RNA polymerase II genes are encoded within the genome of T. brucei. Here we present the identification, cloning and sequence analysis of the gene encoding the largest subunit of RNA polymerase III. This gene contains a single open reading frame encoding a polypeptide with a Mr of 170 kD. In total, eight encoding a polypeptide with a Mr of 170 kD. In total, eight highly conserved regions with significant homology to those previously reported in other eukaryotic RNA polymerase largest subunits were identified. Some of these domains contain functional sites, which are conserved among all eukaryotic largest subunit genes analysed thus far. Since these domains make up a large part of each polypeptide, independent of the RNA polymerase class, these data strongly support the hypothesis that these domains provide a major part of the transcription machinery of the RNA polymerase complex. The additional domains which are uniquely present in the largest subunit of RNA polymerase I and II, respectively, two large hydrophylic insertions and a C-terminal extension, might be a determining factor in specific transcription of the gene classes. Images PMID:3174432

  13. Synthesis, crystal structure, and biological activities of two chiral mononuclear Mn((III)) complexes.

    PubMed

    Wang, Bi-Wei; Jiang, Lin; Shu, Si-Sheng; Li, Bo-Wen; Dong, Zhang; Gu, Wen; Liu, Xin; Tian, Jin-Lei

    2015-02-01

    Two new chiral mononuclear Mn((III)) complexes, [MnL((R)) Cl (C2 H5 OH)]•C2 H5 OH () and [MnL((S)) (CH3 OH)2 ]Cl•CH3 OH (), {H2 L = (R,R)-or (S,S)-N,N'-bis-(2-hydroxy-1-naphthalidehydene)-cyclohexanediamine} were synthesized and characterized by various physicochemical techniques. Bond valence sum (BVS) calculations and the Jahn-Teller effect indicate that the Mn centers are in a +3 oxidation state. The statuses of the two complexes in the solution were confirmed as a pair of enantiomers by electrospray ionization, mass spectrometry (ESI-MS) spectrum. The binding ability of the complexes with calf thymus CT-DNA was investigated by spectroscopic and viscosity measurements. Both of the complexes could interact with CT-DNA via an intercalative mode with the order of (R-enantiomer) > (S-enantiomer). Under the physiological conditions, the two compounds exhibit efficient DNA cleavage activities without any external agent, which also follows the order of R-enantiomer > S-enantiomer. Interestingly, the concentration-dependent DNA cleavage experiments indicate an optimal concentration of 17.5 μM. In addition, the interaction of the compounds with bovine serum albumin (BSA) was also investigated, which indicated that the complexes could quench the intrinsic fluorescence of BSA by a static quenching mechanism. PMID:25403736

  14. Crystal structure engineering for improved performance of emerging nanoscale devices

    NASA Astrophysics Data System (ADS)

    Chimalgi, Vinay Uday

    Recent advances in growth techniques and increasing number of experimental studies have made nanostructures grown along different crystallographic directions a reality. These new structures could not only benefit the electronic devices used in mainstream information technology but also show great promise for applications in lasers, solid-state lighting, near-field photolithography, free-space quantum cryptography, consumer displays, quantum computation, as well as diagnostic medicine and imaging. However, only few theoretical investigations have been performed on these structures due to the complex nature of the interplay of atomicity, structural fields, polarization, and quantum size-quantization, all strong function of the crystallographic direction. The objective of this work is mainly four-fold: (1) Integrate a computational framework employing a combination of fully atomistic valence force-field molecular mechanics and 20-band sp3s*d5-SO tight-binding based electronic band­structure models, and numerically investigate the effects of internal fields on the electronic and optical properties of zincblende InAs/GaAs quantum dots grown on (100), (110), and (111) orientated substrates. (2) Augment/extend the open source NEMO 3-D bandstructure simulator by incorporating a recently proposed first principles based model to gauge the importance of nonlinear piezoelectricity on the single-particle electronic states and interband optical transitions in emerging In(Ga)N/GaN disk-in-wire LED structures having c-plane and m-plane wurtzite crystal symmetry. (3) Coupling the NEMO 3-D software toolkit with a commercial TCAD simulator to determine the terminal electrical and optical characteristics of InGaN/GaN disk-in-wire LEDs; and (4) Finding an optimum crystallographic device for InGaN/GaN disk-in-wire LEDs to achieve improved internal quantum efficiency (IQE).

  15. Synthesis, characterization and crystal structure of diaquadi(2,2`-bipyridine)di(dichloroacetato)lanthanide (III) monodichloroacetato

    SciTech Connect

    Lu Weimin, Cheng Yiqiang, Dong Nan

    1995-05-01

    The title complexes, Diaquadi(2,2`-bipyridine)Di(Dichloroacetato)Lanthanide (III) Monodichloroacetato [Ln(CHCI{sub 2}COO){sub 2}(2,2`-bipy){sub 2}(H{sub 2}O){sub 2}]{sup +}(CHCI{sub 2}COO){sup -}(Ln=Dy, Ho, Tm, Er, Yb) were obtained and characterized. [Er(CHCI{sub 2}COOO){sub 2}(2,2`-bipy){sub 2} (H{sub 2}O){sub 2}]+(CHCI{sub 2}COO){sup -} crystallizes in the monoclinic space group P2{sub 1}/n with Z=4. Cell dimensions are a=15.886 (9), b=13.758(2), c=16.343(4) {angstrom}, {Beta}=113.31(3){degrees}, and the structure was refined to an R of 0.049 for 3415 observed reflections. The Er(III) ion exhibits a distorted, square antiprismatic configuration. Four N atoms of 2,2`-bipy and four O atoms from two dichloroacetato and two water ligands are coordinated. One dichloroacetato group lies outside the polyhedron and is connected with water ligands by hydrogen bonds.

  16. The effect of ligand substituent on crystal packing: Structural and theoretical studies of two Ga(III) supramolecular compounds

    NASA Astrophysics Data System (ADS)

    Soleimannejad, Janet; Nazarnia, Esfandiar

    2016-07-01

    A new Ga(III) supramolecular compound (4,4‧-bipyH2)[Ga(hpydc)2]2·7H2O (2) (where H2hpydc = 4-hydroxy-pyridine-2,6-dicarboxylic acid and 4,4‧-bipy = 4,4‧-bipyridine) was synthesized using the proton transfer reaction. Compound 2 was structurally characterized using single crystal X-ray diffraction, and it was shown that its asymmetric unit consists of two independent anionic Ga(III) complexes, one fully protonated 4,4‧-bipyridine and seven uncoordinated water molecules. In order to understand the effect of pyridine OH substituent on supramolecular interactions and crystal packing, compound 2 was compared with (bipyH2)[Ga(pydc)2]·(H2pydc)·4H2O (1) (where H2pydc = pyridine-2,6-dicarboxylic acid), that does not have an OH group on the pyridine ligand. The Density Functional Theory (DFT) and Natural Bond Orbital (NBO) calculations and also Atoms in Molecules (AIM) analysis were used to analyze the non-covalent interactions in both complexes. The calculation of non-covalent interactions' energy provides a useful means to investigate their effects in the crystal packing.

  17. The effect of ligand substituent on crystal packing: Structural and theoretical studies of two Ga(III) supramolecular compounds

    NASA Astrophysics Data System (ADS)

    Soleimannejad, Janet; Nazarnia, Esfandiar

    2016-07-01

    A new Ga(III) supramolecular compound (4,4‧-bipyH2)[Ga(hpydc)2]2·7H2O (2) (where H2hpydc = 4-hydroxy-pyridine-2,6-dicarboxylic acid and 4,4‧-bipy = 4,4‧-bipyridine) was synthesized using the proton transfer reaction. Compound 2 was structurally characterized using single crystal X-ray diffraction, and it was shown that its asymmetric unit consists of two independent anionic Ga(III) complexes, one fully protonated 4,4‧-bipyridine and seven uncoordinated water molecules. In order to understand the effect of pyridine OH substituent on supramolecular interactions and crystal packing, compound 2 was compared with (bipyH2)[Ga(pydc)2]·(H2pydc)·4H2O (1) (where H2pydc = pyridine-2,6-dicarboxylic acid), that does not have an OH group on the pyridine ligand. The Density Functional Theory (DFT) and Natural Bond Orbital (NBO) calculations and also Atoms in Molecules (AIM) analysis were used to analyze the non-covalent interactions in both complexes. The calculation of non-covalent interactions' energy provides a useful means to investigate their effects in the crystal packing.

  18. Emissive {Mn4(III)Ca} clusters with square pyramidal topologies: syntheses and structural, spectroscopic, and physicochemical characterization.

    PubMed

    Alaimo, Alysha A; Takahashi, Daisuke; Cunha-Silva, Luís; Christou, George; Stamatatos, Theocharis C

    2015-03-01

    The one-pot reactions between Mn(ClO4)2·6H2O, Ca(ClO4)2·4H2O, and the potentially tetradentate (N,O,O,O) chelating/bridging ligand salicylhydroxime (shiH3), resulting from the in situ metal ion-assisted amide-iminol tautomerism of salicylhydroxamic acid in the presence of various fluorescence carboxylate groups and base NEt3, afford a family of structurally similar {Mn4Ca} clusters with distorted square pyramidal topology. The reported complexes (NHEt3)2[Mn4Ca(L1)4(shi)4] (1), (NHEt3)2[Mn4Ca(L2)4(shi)4] (2), (NHEt3)5[Mn4Ca(L2)4(shi)4(shiH2)2](ClO4) (3), and (NHEt3)2[Mn4Ca(L3)4(shi)4] (4) contain a similar [Mn4Ca(μ-NO)4](10+) core of four Mn(III) atoms at the square base and a Ca(II) atom occupying the apical site. Peripheral ligation about the core is provided by four η(1):η(1):μ carboxylate groups of the anions of 2-naphthoic acid (L1(-)), 9-anthracenecarboxylic acid (L2(-)), and 1-pyrenecarboxylic acid (L3(-)). Solid-state direct current magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the 4 Mn(III) centers, which were primarily quantified by using a simple 1-J fit model to give S = 0 spin ground states with low-lying excited states close in energy to the ground state. Solution studies in solvent MeCN were carried out on all complexes and confirmed their structural integrity. Cyclic voltammetry studies showed a similar well-defined reversible oxidation and an irreversible reduction for all complexes, thus establishing their redox potency and electrochemical efficiency. Emission studies in solution proved the optical activity of all compounds, with the observed "blue" emission peaks attributed to the π-rich chromophores of the organic fluorescence ligands. The combined results demonstrate the ability of shiH3 and fluorescence carboxylates to yield new heterometallic Mn/Ca clusters with (i) the same Mn/Ca ratio as the oxygen-evolving complex of Photosystem II, (ii) structural stability in

  19. Crystal structures of a CTXphi pIII domain unbound and in complex with a Vibrio cholerae TolA domain reveal novel interaction interfaces.

    PubMed

    Ford, Christopher G; Kolappan, Subramaniapillai; Phan, Hanh T H; Waldor, Matthew K; Winther-Larsen, Hanne C; Craig, Lisa

    2012-10-19

    Vibrio cholerae colonize the small intestine where they secrete cholera toxin, an ADP-ribosylating enzyme that is responsible for the voluminous diarrhea characteristic of cholera disease. The genes encoding cholera toxin are located on the genome of the filamentous bacteriophage, CTXϕ, that integrates as a prophage into the V. cholerae chromosome. CTXϕ infection of V. cholerae requires the toxin-coregulated pilus and the periplasmic protein TolA. This infection process parallels that of Escherichia coli infection by the Ff family of filamentous coliphage. Here we demonstrate a direct interaction between the N-terminal domain of the CTXϕ minor coat protein pIII (pIII-N1) and the C-terminal domain of TolA (TolA-C) and present x-ray crystal structures of pIII-N1 alone and in complex with TolA-C. The structures of CTXϕ pIII-N1 and V. cholerae TolA-C are similar to coliphage pIII-N1 and E. coli TolA-C, respectively, yet these proteins bind via a distinct interface that in E. coli TolA corresponds to a colicin binding site. Our data suggest that the TolA binding site on pIII-N1 of CTXϕ is accessible in the native pIII protein. This contrasts with the Ff family phage, where the TolA binding site on pIII is blocked and requires a pilus-induced unfolding event to become exposed. We propose that CTXϕ pIII accesses the periplasmic TolA through retraction of toxin-coregulated pilus, which brings the phage through the outer membrane pilus secretin channel. These data help to explain the process by which CTXϕ converts a harmless marine microbe into a deadly human pathogen. PMID:22942280

  20. Bis-cyclometalated iridium(III) complexes bearing ancillary guanidinate ligands. Synthesis, structure, and highly efficient electroluminescence.

    PubMed

    Rai, Virendra Kumar; Nishiura, Masayoshi; Takimoto, Masanori; Zhao, Shanshan; Liu, Yu; Hou, Zhaomin

    2012-01-16

    We report the synthesis, structure, and photophysical and electroluminescent (EL) properties of a series of heteroleptic bis(pyridylphenyl)iridium(III) complexes with various ancillary guanidinate ligands. The reaction of the bis(pyridylphenyl)iridium(III) chloride [(ppy)(2)Ir(μ-Cl)](2) with the lithium salt of various guanidine ligands Li{(N(i)Pr)(2)C(NR(1)R(2))} at 80 °C gave in 60-80% yield the corresponding heteroleptic bis(pyridylphenyl)/guanidinate iridium(III) complexes having a general formula of [(ppy)(2)Ir{(N(i)Pr)(2)C(NR(1)R(2))}], where NR(1)R(2) = NPh(2) (1), N(C(6)H(4)(t)Bu-4)(2) (2), carbazolyl (3), 3,6-bis(tert-butyl)carbazolyl (4), N(C(6)H(4))(2)S (5), N(C(6)H(4))(2)O (6), indolyl (7), NEt(2) (8), N(i)Pr(2) (9), N(i)Bu(2) (10), and N(SiMe(3))(2) (11). These heteroleptic cyclometalated (C^N) iridium(III) complexes showed intense absorption bands in the UV region assignable to π-π* transitions and weaker metal-to-ligand charge-transfer transitions extending to the visible region. These complexes also showed intense emissions at room temperature. Their photoluminescence spectra were influenced to some extent by the ancillary guanidinate ligands, giving λ(max) values in the range of 528-560 nm with quantum yields (Φ) of 0.16-0.37 and lifetimes of 0.61-1.43 μs. Organic light-emitting diodes were fabricated by the use of these complexes as dopants in various concentrations (5-100%) in a N,N'-dicarbazolylbiphenyl host. High current efficiency (η(c); up to 137.4 cd/A) and power efficiency (η(p); up to 45.7 lm/W) were observed under appropriate conditions. Their high EL efficiency may result from efficient trapping and radiative relaxation of the excitons formed in the EL process. Because of the steric hindrance of the guanidinate ligands, no significant intermolecular interaction was observed in these complexes, thus leading to the reduction of self-quenching and triplet-triplet annihilation at high currents. The EL emission color could be changed

  1. Crystal form III of beta-cyclodextrin-ethanol inclusion complex: layer-type structure with dimeric motif.

    PubMed

    Aree, Thammarat; Chaichit, Narongsak

    2008-09-01

    The crystal form III of the beta-cyclodextrin (beta-CD)-ethanol inclusion complex [2(C(6)H(10)O(5))(7).1.5C(2)H(5)OH.19H(2)O] belongs to the triclinic space group P1 with unit cell constants: a=15.430(1), b=15.455(1), c=17.996(1)A, alpha=99.30(1) degrees , beta=113.18(1) degrees , gamma=103.04(1) degrees . beta-CD forms dimers comprising two identical monomers that adopt a 'round' conformation stabilized by intramolecular, interglucose O-3(n)cdots, three dots, centeredO-2(n+1) hydrogen bonds. The two beta-CD monomers of form III are isostructural to that of form I in the monoclinic space group P2(1) [Steiner, T.; Mason, S. A.; Saenger, W. J. Am. Chem. Soc.1991, 113, 5676-5687], but exhibit a striking difference from that of form II in the monoclinic space group C2 [Aree, T.; Chaichit, N. Carbohydr. Res.2003, 338, 1581-1589]. The small guest EtOH molecule orients differently in the large beta-CD cavity. In form III, two disordered EtOH molecules are embedded in the beta-CD-dimer cavity. A half occupied EtOH molecule (#1) is located above the O-4 plane of beta-CD #1, whereas another doubly disordered EtOH molecule (#2, #3) is situated at about the middle of the beta-CD-dimer cavity. The three EtOH sites are maintained in positions by making van der Waals contacts to each other and to the surrounding water sites and beta-CD O-3-H group. The EtOH molecules disordered (occupancy 0.3) above the beta-CD O-4 plane in form I and fully occupied beneath the O-4 plane in form II are strongly held in positions by hydrogen bonding with the surrounding water site and beta-CD O-6-H, O-3-H groups. Occurrence of the beta-CD dimer as a structural motif of channel-type packing (form II) and layer-type packing (form III) is attributed to the higher tendency for self aggregation under the moderate acidic conditions. At weak acidic conditions, beta-CD prefers a herringbone mode (form I). PMID:18490008

  2. Persian Basic Course: Supplement to Volume III. Structural Drills for Lessons 29-38.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    A supplement to volume three of a basic course in Persian is presented that is designed for use in the Defense Language Institute's intensive programs for native English speakers. This volume contains structural drills for lessons 29-38. (SW)

  3. Structural health monitoring on turbine engines using microwave blade tip clearance sensors

    NASA Astrophysics Data System (ADS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-04-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to the aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for possible use in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the same experiments with the sub-scale turbine engine disks.

  4. Structural Health Monitoring on Turbine Engines Using Microwave Blade Tip Clearance Sensors

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for use possible in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the experiments with the sub-scale turbine engine disks.

  5. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations

    SciTech Connect

    Burnett, M.N.; Johnson, C.K.

    1996-07-01

    This report describes a computer program for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study.

  6. Vaults. III. Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry.

    PubMed

    Kedersha, N L; Heuser, J E; Chugani, D C; Rome, L H

    1991-01-01

    The structure of rat liver vault ribonucleoprotein particles was examined using several different staining techniques in conjunction with EM and digestion with hydrolytic enzymes. Quantitative scanning transmission EM demonstrates that each vault particle has a total mass of 12.9 +/- 1 MD and contains two centers of mass, suggesting that each vault particle is a dimer. Freeze-etch reveals that each vault opens into delicate flower-like structures, in which eight rectangular petals are joined to a central ring, each by a thin hook. Vaults examined by negative stain and conventional transmission EM (CTEM) also reveal the flower-like structure. Trypsin treatment of vaults resulted exclusively in cleavage of the major vault protein (p104) and concurrently alters their structure as revealed by negative stain/CTEM, consistent with a localization of p104 to the flower petals. We propose a structural model that predicts the stoichiometry of vault proteins and RNA, defines vault dimer-monomer interactions, and describes two possible modes for unfolding of vaults into flowers. These highly dynamic structural variations are likely to play a role in vault function. PMID:1988458

  7. Structural, spectral, DFT, pH-metric and biological studies on Cr(III), Mn(II) and Fe(III) complexes of dithione heterocyclic thiosemicarbazide ligand

    NASA Astrophysics Data System (ADS)

    Abu El-Reash, Gaber M.; El-Gammal, Ola A.; El-Gamil, Mohammed M.

    2013-03-01

    Cr(III), Mn(II) and Fe(III) complexes derived from the quadruple potential dithione heterocyclic thiosemicarbazide ligand (H2PET) have been prepared and characterized by conventional techniques. The isolated complexes were assigned the formulae, [Cr(HPET)(H2O)2Cl2]·3H2O, [Mn(HPET)(H2O)Cl]2 and [Fe(HPET)(H2O)2Cl2]·H2O, respectively. IR data revealed that the ligand behaves as monobasic bidentate through (Cdbnd N)py and (Csbnd S) groups in both Cr(III) and Fe(III) complexes. In the binuclear Mn(II) complex, H2PET acts as NSNS monobasic tetradente via (Cdbnd N)py, (Csbnd S), (Cdbnd S) and the new azomethine, (Ndbnd C)* groups. An octahedral geometry for all complexes was proposed. The bond lengths, bond angles, HOMO, LUMO and dipole moment have been calculated by DFT using materials studio program to confirm the geometry of H2PET and its metal complexes. The ligand association constant and the stability constants of its complexes in addition to the thermodynamic parameters were calculated from pH metrically at 298, 308 and 318°K in 50% dioxane-water mixture, respectively. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods. Moreover, the anti-oxidant (using ABTS and DPPH methods), anti-hemolytic, and cytotoxic activities of the compounds have been tested.

  8. Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fernandez, Lucia Rubio; Vandenbussche, Guy; Roosens, Nancy; Govaerts, Cédric; Goormaghtigh, Erik; Verbruggen, Nathalie

    2012-09-01

    Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd(2+), Cu(2+), Zn(2+) and Pb(2+), with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions. PMID:22668884

  9. Recent advances in convectively cooled engine and airframe structures for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.; Shore, C. P.; Nowak, R. J.

    1978-01-01

    A hydrogen-cooled structure for a fixed-geometry, airframe-integrated scramjet is described. The thermal/structural problems, concepts, design features, and technological advances are applicable to a broad range of engines. Convectively cooled airframe structural concepts that have evolved from an extensive series of investigations, the technology developments that have led to these concepts, and the benefits that accrue from their use are discussed.

  10. Structure and Engineering of Francisella novicida Cas9

    PubMed Central

    Hirano, Hisato; Gootenberg, Jonathan S.; Horii, Takuro; Abudayyeh, Omar O.; Kimura, Mika; Hsu, Patrick D.; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2016-01-01

    Summary The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA, and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. Furthermore, we demonstrated that pre-assembled FnCas9 ribonucleoprotein complexes can be microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAMs, thus expanding the target space of the CRISPR-Cas9 toolbox. PMID:26875867

  11. Structure and Engineering of Francisella novicida Cas9.

    PubMed

    Hirano, Hisato; Gootenberg, Jonathan S; Horii, Takuro; Abudayyeh, Omar O; Kimura, Mika; Hsu, Patrick D; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2016-02-25

    The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5'-NGG-3' PAM, and used the structural information to create a variant that can recognize the more relaxed 5'-YG-3' PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5'-YG-3' PAM, thus expanding the target space of the CRISPR-Cas9 toolbox. PMID:26875867

  12. Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy

    SciTech Connect

    Chen, N; Jiang, D T; Cutler, J; Kotzer, T; Jia, Y F; Demopoulos, G P; Rowson, J W

    2009-12-01

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Fe K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 ± 0.02 Å and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 ± 0.02 Å and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 ± 0.03 Å and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 ± 0.03 Å and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 ± 0.03 Å and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic decrease in the

  13. Crystal structure of tris­(ethyl­enedi­ammonium) hexasulfatopraseodymium(III) hexa­hydrate

    PubMed Central

    Held, Peter

    2014-01-01

    In the title salt, (C2H10N2)3[Pr2(SO4)6]·6H2O, the PrIII cation is surrounded ninefold by five sulfate groups (two monodentate and three chelating) and by one water mol­ecule [range of Pr—O bond lengths 2.383 (3) to 2.582 (3) Å]. The [Pr(SO4)5(H2O)] groups are arranged in sheets parallel to (010). Two crystal water mol­ecules and two ethyl­enedi­ammonium cations (one with point group symmetry -1) connect the sheets via O—H⋯O and N—H⋯O hydrogen bonds from weak up to medium strength into a three-dimensional framework structure. PMID:25484661

  14. Crystal structure of [2,6-bis(adamantan-1-yl)-4-tert-butylphenolato-κO]dimethylaluminium(III)

    PubMed Central

    Wang, Lei; Yang, Li

    2014-01-01

    The title compound, [Al(CH3)2(C30H41O)] is synthesized by the reaction of 2,6-di-adamantyl-4-tert-butyl-phenol with Al(CH3)3 in a nitro­gen atmosphere. In the mol­ecule, the coordination geometry around the AlIII atom is slightly distorted C2O trigonal (the sum of the bond angles subtended at Al atom being 359.9°), which is rarely reported for organometallic aluminium compounds. The coordination plane is approximately perpendicular to the benzene ring [the dihedral angle = 87.73 (16)°]. There is no inter­molecular hydrogen bonding in the crystal structure. PMID:25484677

  15. Crystal structure of bis­(quinolin-1-ium) tetra­chlorido­ferrate(III) chloride

    PubMed Central

    Boudjarda, Azzedine; Bouchouit, Karim; Arroudj, Samiha; Bouacida, Sofiane; Merazig, Hocine

    2015-01-01

    The asymmetric unit of the title hybrid compound, (C9H8N)[FeCl4]Cl, comprises a tetra­hedral tetra­chlorido­ferrate(III) anion, [FeCl4]−, a Cl− anion and two quinolinium cations. There are N—H⋯Cl hydrogen-bonding inter­actions between the protonated N atoms of the quinolinium cations and the chloride anion, which together with π–π stacking between adjacent quinolinium rings [centroid-to-centroid distances between C6 and C5N rings in adjacent stacked quinolinium cations of 3.609 (2) and 3.802 (2) Å] serve to hold the structure together. PMID:26870461

  16. Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian

    2015-11-01

    The electronic structure of (group-III) metal-monochalcogenide monolayers exhibits many unusual features. Some, such as the unusually distorted upper valence-band dispersion we describe as a "caldera," are primarily the result of purely orbital interactions. Others, including spin splitting and wave-function spin mixing, are directly driven by spin-orbit coupling. We employ elementary group theory to explain the origin of these properties, and use a tight-binding model to calculate the phenomena enabled by them, such as the band-edge carrier effective g factors, optical absorption spectrum, conduction electron spin orientation, and a relaxation-induced upper-valence-band population inversion and spin polarization mechanism.

  17. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex.

    PubMed

    Tondnevis, Farzaneh; Weiss, Thomas M; Matsui, Tsutomu; Bloom, Linda B; McKenna, Robert

    2016-06-01

    Sliding clamps are opened and loaded onto primer template junctions by clamp loaders, and once loaded on DNA, confer processivity to replicative polymerases. Previously determined crystal structures of eukaryotic and T4 clamp loader-clamp complexes have captured the sliding clamps in either closed or only partially open interface conformations. In these solution structure studies, we have captured for the first time the clamp loader-sliding clamp complex from Escherichia coli using size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). The data suggests the sliding clamp is in an open conformation which is wide enough to permit duplex DNA binding. The data also provides information about spatial arrangement of the sliding clamp with respect to the clamp loader subunits and is compared to complex crystal structures determined from other organisms. PMID:26968362

  18. Quantum chemical study of the Fe(III)-desferrioxamine B siderophore complex—Electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Paul, K. W.; Sparks, D. L.; Kubicki, J. D.

    2009-01-01

    This study presents molecular orbital/density functional theory (MO/DFT) calculations of the electronic structure, vibrational frequencies, and equilibrium isotope fractionation factors for iron desferrioxamine B (Fe-DFO-B) complexes in aqueous solution. In general, there was good agreement between the predicted properties of Fe(III)-DFO-B and previously published experimental and theoretical results. The predicted fractionation factor for equilibrium between Fe(III)-DFO-B and Fe(III)-catecholate at 22 °C, 0.68 ± 0.25‰, was in good agreement with a previously measured isotopic difference between bacterial cells and solution during the bacterial-mediated dissolution of hornblende [Brantley S. L., Liermann L. and Bullen T. D. (2001) Fractionation of Fe isotopes by soil microbes and organic acids. Geology29, 535-538]. Conceptually, this agreement is consistent with the notion that Fe is first removed from mineral surfaces via complexation with small organic acids (e.g., oxalate), subsequently sequestered by DFO-B in solution, and ultimately delivered to bacterial cells by Fe(III)-DFO-B complexes. The ability of DFO-B to discriminate between Fe(III) and Fe(II)/Al(III) was investigated with Natural Bond Orbital (NBO) analysis and geometry calculations of each metal-DFO-B complex. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-O covalent bonding.

  19. Engine structures analysis software: Component Specific Modeling (COSMO)

    NASA Astrophysics Data System (ADS)

    McKnight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-08-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  20. Engine Structures Analysis Software: Component Specific Modeling (COSMO)

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-01-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  1. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?

    NASA Astrophysics Data System (ADS)

    Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.

    2015-12-01

    Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions

  2. MOVPE of III-N LED structures with short technological process

    NASA Astrophysics Data System (ADS)

    Lundin, W. V.; Davydov, D. V.; Zavarin, E. E.; Popov, M. G.; Sakharov, A. V.; Yakovlev, E. V.; Bazarevskii, D. S.; Talalaev, R. A.; Tsatsulnikov, A. F.; Mizerov, M. N.; Ustinov, V. M.

    2015-03-01

    The paper presents results on optimizing the MOVPE technology of light-emitting diode (LED) structures in a Dragon-125 system to accelerate the technological cycle. Due to the high growth rate of GaN layers and optimization of the initial GaN growth phase, the total duration of the epitaxial process is reduced from 4 h 45 min to 2 h 44 min. The LED diode structures grown by this technique compare well in quality with LEDs grown by the standard method in the commercially available AIX2000HT system.

  3. Cloning and Structure-Function Analyses of Quinolone- and Acridone-producing Novel Type III Polyketide Synthases from Citrus microcarpa*

    PubMed Central

    Mori, Takahiro; Shimokawa, Yoshihiko; Matsui, Takashi; Kinjo, Keishi; Kato, Ryohei; Noguchi, Hiroshi; Sugio, Shigetoshi; Morita, Hiroyuki; Abe, Ikuro

    2013-01-01

    Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56–60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the “single product” by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å3) is almost as large as that of M. sativa CHS (750 Å3), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å3) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases. PMID:23963450

  4. Nanoscale Engineering of Structures and Devices on Surfaces

    NASA Astrophysics Data System (ADS)

    Yitamben, Esmeralda

    2014-03-01

    The relentless increase in both density and speed that has characterized microelectronics, and now nanoelectronics, will require a new paradigm to continue beyond current technologies. One proposed such paradigm shift demands the ultimate control over the number and position of dopants in a device, which includes quantum information processing and variety of semiconductor device materials and architectures aimed at solving end-of-Moore's law issues. Such a work requires the development of a tool for the design of atomically precise devices on silicon and other surfaces, in hope of studying the effect of local interactions between atomic-scale structures, their microscopic behavior, and how quantum mechanical effects might influence nano-device behavior in very small structures. Demonstrations of remarkable 2D nanostructures down to single atom devices are reported here thanks to the development of scanning tunneling microscopy (STM) as an imaging and patterning tool. These include the formation of molecular chiral superstructures on metallic surfaces, as well as the atomic-scale depassivation of a hydrogen terminated surface with an STM, toward the incorporation of dopants in silicon. I will spend some time at the end, talking about my experience working at a national laboratory.

  5. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  6. Immobilization of cobalt(III) Schiff base complexes onto Montmorillonite-K10: Synthesis, experimental and theoretical structural determination.

    PubMed

    Kianfar, Ali Hossein; Kamil Mahmood, Wan Ahmad; Dinari, Mohammad; Farrokhpour, Hossein; Enteshari, Majid; Azarian, Mohammad Hossein

    2015-02-01

    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen=bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, (1)H NMR, (13)C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures. PMID:25459719

  7. Thermal-structural analyses of Space Shuttle Main Engine (SSME) hot section components

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Thompson, Robert L.

    1988-01-01

    Three dimensional nonlinear finite element heat transfer and structural analyses were performed for the first stage high pressure fuel turbopump (HPFTP) blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 and single crystal (SC) PWA-1480 material properties were used for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress strain histories were calculated by using the MARC finite element computer code. The structural response of an SSME turbine blade was assessed and a greater understanding of blade damage mechanisms, convective cooling effects, and thermal mechanical effects was gained.

  8. Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Gawrylowicz, H. T.

    1986-01-01

    NASA is conducting a program which will establish a technology base for the orderly evolution of reusable space propulsion systems. As part of that program, NASA initiated a Structural Integrity and Durability effort for advanced high-pressure oxygen-hydrogen rocket engine technology. That effort focuses on the development of: (1) accurate analytical models to describe flow fields; aerothermodynamic loads; structural responses; and fatigue/fracture, from which life prediction codes can be evolved; and (2) advanced instrumentation with capabilities to verify the codes in an SSME-like environment as well as the potential for future use as diagnostic sensors for real-time condition monitoring of critical engine components.

  9. Structure-Independent Proton Transport in Cerium(III) Phosphate Nanowires.

    PubMed

    Pusztai, Péter; Haspel, Henrik; Tóth, Ildikó Y; Tombácz, Etelka; László, Krisztina; Kukovecz, Ákos; Kónya, Zoltán

    2015-05-13

    Understanding of water-related electrical conduction is of utmost importance in applications that utilize solid-state proton conductors. However, in spite of the vast amount of theoretical and experimental work published in the literature, thus far its mechanism remained unsolved. In this study, the structure-related ambient temperature electrical conduction of one-dimensional hydrophilic nanostructures was investigated. Cerium phosphate nanowires with monoclinic and hexagonal crystal structures were synthesized via the hydrothermal and ambient temperature precipitation routes, and their structural and surface properties were examined by using high-resolution transmission electron microscopy, X-ray diffractometry, nitrogen and water sorption, temperature-programmed ammonia desorption, and potentiometric titration techniques. The relative humidity (RH)-dependent charge-transport processes of hexagonal and monoclinic nanowires were investigated by means of impedance spectroscopy and transient ionic current measurement techniques to gain insight into their atomistic level mechanism. Although considerable differences in RH-dependent conductivity were first found, the distinct characteristics collapsed into a master curve when specific surface area and acidity were taken into account, implying structure-independent proton conduction mechanism in both types of nanowires. PMID:25859883

  10. Electronic Structure of Pi Systems: Part III--Applications in Spectroscopy and Chemical Reactivity.

    ERIC Educational Resources Information Center

    Fox, Marye Anne; Matsen, F. A.

    1985-01-01

    Shows that electronic structure diagrams make more accurate predictions of spectral properties and chemical reactivity for simple pi systems than do either Huckel molecular orbital or valence bond theory alone. Topics addressed include absorption and photoelectron spectra, spin density distribution in radicals, and several problems regarding…

  11. Vibration-based health monitoring and model refinement of civil engineering structures

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.

    1997-10-01

    Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandia National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.

  12. Metallocarboranes structurally engineered for the reduction of carbon monoxide

    SciTech Connect

    Hawthorne, M.F.

    1982-01-01

    The research conducted in this initial period has involved the development and evaluation of various metallacarborane complexes as homogeneous catalysts for the transformation of carbon monoxide into useful chemical feedstocks. The discussions presented herein summarize our preliminary results in several areas of primary interest: (1) the evaluation of the activity of certain rhoda- and ruthenacarborane complexes as catalyst precursors for the water gas shift reaction; (2) the synthesis of heterobimetallic metallacarboranes which possess both early and late transition metal vertices, as well as those which contain main group elements such as aluminium and gallium, for the study of metal-metal cooperativity in the reduction of carbon monoxide; and (3) the preparation and screening of a series of rhodacarborane complexes as hydroformylation catalysts. We believe that the use of these species as catalysts precursors should offer distinct synthetic and practical advantages over simple metal carbonyl complexes in the catalytic reduction of CO. The ease of derivatization of the carboranyl moiety utilized in the synthesis of potential catalysts has provided a virtually unparalleled capability for molecular design. The catalyst precursors used in these studies have been shown to exhibit several novel structural features which include a structurally sensitive closo/exo-nido tautomerism, which appears to be a key feature in the ability of these species activate small molecules such as dihydrogen. While practical hydroformylation, water gas shift, and methanation catalysts based upon metallacarborane species have yet to be developed, many stoichiometric reactions important catalytic schemes have been observed, and rational methods for the modification of the chemical reactivity of existing compounds have been developed.

  13. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    NASA Astrophysics Data System (ADS)

    Najwa Anua, N.; Ahmed, R.; Shaari, A.; Saeed, M. A.; Haq, Bakhtiar Ul; Goumri-Said, Souraya

    2013-10-01

    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results.

  14. Angular Resolved X-Ray Absorption Near Edge Structure Investigation of Adsorbed Alkanethiol Monolayers on III-V(110) Surfaces

    NASA Astrophysics Data System (ADS)

    Chassé, T.; Zerulla, D.; Hallmeier, K. H.

    The structure of alkanethiol monolayers on III-V(110) surfaces was studied by analyzing the X-ray absorption near edge structure (XANES) of the carbon K edge. Pronounced absorption maxima were observed for special orientations of the polarization vector of the radiation as revealed from angular-dependent measurements, suggesting a rather well-defined molecular axis of the alkyl chains. From quantitative evaluations of these angular dependences the chains were found to be tilted from the normal towards the [001] direction of the (110) surfaces by 34° and 15° in the case of hexadecanethiol (HDT) adsorption on InP and GaP, respectively. The similarities as well as the differences in tilt angles between the substrates are dicussed in terms of constraints imposed by the surface structure and lattice constants as well as the space requirements of the van der Waals spheres of the adsorbed thiols. A unique feature observed on these monolayers is the nearly complete alignment of the alkyl chains with respect to the azimuthal orientation. We suggest that this adsorbate system represents the case of a single domain orientation within the organic monolayer.

  15. Novel phosphate halides BaMnIII[PO4]FCl and BaMnIII[PO4]F2: Effects of mixed halides on crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Pei, Da-Ting; Sun, Wei; Huang, Ya-Xi; Sun, Zhi-Mei; Pan, Yuanming; Mi, Jin-Xiao

    2016-02-01

    Two new phosphate halides BaMnIII[PO4]FCl (1) and BaMnIII[PO4]F2 (2), have been synthesized under hydrothermal conditions. Structural characterizations show that both new compounds adopt layered structures but with different polyhedral linkages. Introduction of Cl into Compound (1) results in isolated hemimorphic [MnO4FCl] octahedra, different from the chain of [MnO4F2]/[MnO2F4] octahedra in Compound (2). These compounds have significantly different molecular vibration modes and thermal stabilities. Magnetic measurements reveal that Compound (2) has larger antiferromagnetic interactions than Compound (1), because the former has strong interactions between Mn3+-Mn3+ ions within corner-shared Mn3+-octahedral chains whereas the latter only possesses isolated Mn3+-octahedra. Both compounds transform to a new orthorhombic compound BaMnII(PO4)F (3) after thermal decomposition.

  16. [U(III) {N(SiMe2 tBu)2 }3 ]: a structurally authenticated trigonal planar actinide complex.

    PubMed

    Goodwin, Conrad A P; Tuna, Floriana; McInnes, Eric J L; Liddle, Stephen T; McMaster, Jonathan; Vitorica-Yrezabal, Inigo J; Mills, David P

    2014-11-01

    We report the synthesis and characterization of the uranium(III) triamide complex [U(III) (N**)3 ] [1, N**=N(SiMe2 tBu)2 (-) ]. Surprisingly, complex 1 exhibits a trigonal planar geometry in the solid state, which is unprecedented for three-coordinate actinide complexes that have exclusively adopted trigonal pyramidal geometries to date. The characterization data for [U(III) (N**)3 ] were compared with the prototypical trigonal pyramidal uranium(III) triamide complex [U(III) (N")3 ] (N"=N(SiMe3 )2 (-) ), and taken together with theoretical calculations it was concluded that pyramidalization results in net stabilization for [U(III) (N")3 ], but this can be overcome with very sterically demanding ligands, such as N**. The planarity of 1 leads to favorable magnetic dynamics, which may be considered in the future design of U(III) single-molecule magnets. PMID:25241882

  17. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Earth Structures and Engineering Characterization of Ground Motion

    USGS Publications Warehouse

    Holzer, Thomas L.

    1998-01-01

    This chapter contains two papers that summarize the performance of engineered earth structures, dams and stabilized excavations in soil, and two papers that characterize for engineering purposes the attenuation of ground motion with distance during the Loma Prieta earthquake. Documenting the field performance of engineered structures and confirming empirically based predictions of ground motion are critical for safe and cost effective seismic design of future structures as well as the retrofitting of existing ones.

  18. Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells

    SciTech Connect

    Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T.

    2014-04-21

    A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.

  19. [How to measure structures, or new stereology: III. Stereology and electron microscopy].

    PubMed

    Mironov, A A; Beznusenko, G V; Sesorova, I S; Banin, V V

    2006-01-01

    This review describes modern stereological approaches and methods for estimation of subcellular structures dimensions. These estimators could be used for determination of number- and volume-weighted parameters of particle size. Very often they do not require the application of the disector at the first stage of sampling of images. Additionally, the modified version of the rotator for point counting is demonstrated, which significantly accelerates the morphometric procedure. PMID:17111667

  20. Hydrothermal synthesis and structural characterization of ammonium ion-templated lanthanide(III) carboxylate-phosphonates

    PubMed Central

    Ayi, Ayi A.; Kinnibrugh, Tiffany L.; Clearfield, Abraham

    2014-01-01

    Using N-(phosphonomethyl) iminodiacetic acid (H4PMIDA), as a complexing agent, two new complexes, (NH4)La(PMIDA)(H2O)•H2O, 1 and (NH4)Yb(PMIDA), 2 have been synthesized hydrothermally. In both compounds, the metal ions are trapped by a three five-membered chelate rings by the chelating PMIDA anions giving a tricapped trigonal prismatic LaO8N and monocapped trigonal prismatic YbO6N geometries for 1 and 2, respectively. The structure of 1 consists of La(PMIDA)(H2O) chelating units, linked together by the phosphonate oxygen atoms O1 and O3 to form a chain along the c-axis. The chains are then connected together by the bridging phosphonate oxygen O2 to form a 2D layered structure with alternating 4- and 8-membered apertures. The structure of 2 consists Yb(PMIDA) chelating units, which are connected by alternating bridging carboxylate and phosphonate groups along the [010] direction forming chains with a corrugated pattern. The third phosphonate oxygen bridges the chains together along the [001] direction to build the two-dimensional layer with 4- and 6-membered apertures in the bc-plane. Under excitation of 330 nm, compound 2 shows a broad emission band at λmax = 460 nm. This emission is essentially in the blue luminescent region, which corresponds to ligand centered fluorescence. PMID:25414845

  1. Transformations of galaxies - III. Encounter dynamics and tidal response as functions of galaxy structure

    NASA Astrophysics Data System (ADS)

    Barnes, Joshua E.

    2016-01-01

    Tidal interactions between disc galaxies depend on galaxy structure, but the details of this relationship are incompletely understood. I have constructed a three-parameter grid of bulge/disc/halo models broadly consistent with Λ cold dark matter, and simulated an extensive series of encounters using these models. Halo mass and extent strongly influence the dynamics of orbit evolution. In close encounters, the transfer of angular momentum mediated by the dynamical response of massive, extended haloes can reverse the direction of orbital motion of the central galaxies after their first passage. Tidal response is strongly correlated with the ratio ve/vc of escape to circular velocity within the participating discs. Moreover, the same ratio also correlates with the rate at which tidal tails are reaccreted by their galaxies of origin; consequently, merger remnants with `twin tails', such as NGC 7252, may prove hard to reproduce unless (ve/vc)2 ≲ 5.5. The tidal morphology of an interacting system can provide useful constraints on progenitor structure. In particular, encounters in which halo dynamics reverses orbital motion exhibit a distinctive morphology which may be recognized observationally. Detailed models attempting to reproduce observations of interacting galaxies should explore the likely range of progenitor structures along with other encounter parameters.

  2. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    NASA Astrophysics Data System (ADS)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  3. THE STRUCTURE AND PROCESS OF SCHOOL-COMMUNITY RELATIONS. VOLUME III, THE STRUCTURE OF SCHOOL-COMMUNITY RELATIONS.

    ERIC Educational Resources Information Center

    CARTER, RICHARD F.; AND OTHERS

    TO EVALUATE STRUCTURAL COMPONENTS OF SCHOOL-COMMUNITY RELATIONS, 860 VARIABLES WERE DEFINED FROM THE LITERATURE AND GROUPED INTO 26 DIVISIONS FOR ASSESSMENT AGAINST FOUR SUMMARY CRITERION VARIABLES--(1) ACQUIESCENCE, THE DEGREE TO WHICH VOTERS IN A SCHOOL DISTRICT VIEW FINANCIAL ISSUES FAVORABLY, (2) PARTICIPATION, THE DEGREE TO WHICH VOTERS…

  4. Intrinsic acidity of aluminum, chromium(III) and iron(III) {mu}{sub 3}-hydroxo functional groups from ab initio electronic structure calculations

    SciTech Connect

    Rustad, J.R.; Dixon, D.A.; Felmy, A.R.

    2000-05-01

    Density functional calculations are performed on M{sub 3}(OH){sub 7}(H{sub 2}O){sub 6}{sup 2+} and M{sub 3}O(OH){sub 6}(H{sub 2}O){sub 6}{sup +} clusters for M {double_bond} Al, Cr(III), and Fe(III), allowing determination of the relative acidities of the {mu}{sub 3}-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, {double_bond}Fe{sub 3}OH and {double_bond}Al{sub 3}OH groups have nearly the same intrinsic acidity, while {double_bond}Cr{sub 3}OH groups are significantly more acidic. The gas-phase acidity of the Fe{sub 3}OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. Acidities of aquo functional groups were also computed for Al and Cr. The {double_bond}AlOH{sub 2} site is more acidic than the {double_bond}Al{sub 3}OH site, whereas the {double_bond}Cr{sub 3}OH site is more acidic than the {double_bond}CrOH{sub 2} site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  5. Characterization of the Photophysical, Thermodynamic, and Structural Properties of the Terbium(III)-DREAM Complex.

    PubMed

    Gonzalez, Walter G; Ramos, Victoria; Diaz, Maurizio; Garabedian, Alyssa; Molano-Arevalo, Juan Camilo; Fernandez-Lima, Francisco; Miksovska, Jaroslava

    2016-03-29

    DREAM (also known as K(+) channel interacting protein 3 and calsenilin) is a calcium binding protein and an active modulator of KV4 channels in neuronal cells as well as a novel Ca(2+)-regulated transcriptional modulator. DREAM has also been associated with the regulation of Alzheimer's disease through the prevention of presenilin-2 fragmentation. Many interactions of DREAM with its binding partners (Kv4, calmodulin, DNA, and drugs) have been shown to be dependent on calcium. Therefore, understanding the structural changes induced by binding of metals to DREAM is essential for elucidating the mechanism of signal transduction and biological activity of this protein. Here, we show that the fluorescence emission and excitation spectra of the calcium luminescent analogue, Tb(3+), are enhanced upon binding to the EF-hands of DREAM due to a mechanism of energy transfer between Trp and Tb(3+). We also observe that unlike Tb(3+)-bound calmodulin, the luminescence lifetime of terbium bound to DREAM decays as a complex multiexponential (τaverage ∼ 1.8 ms) that is sensitive to perturbation of the protein structure and drug (NS5806) binding. Using isothermal calorimetry, we have determined that Tb(3+) binds to at least three sites with high affinity (Kd = 1.8 μM in the presence of Ca(2+)) and displaces bound Ca(2+) through an entropically driven mechanism (ΔH ∼ 12 kcal mol(-1), and TΔS ∼ 22 kcal mol(-1)). Furthermore, the hydrophobic probe 1,8-ANS shows that Tb(3+), like Ca(2+), triggers the exposure of a hydrophobic surface on DREAM, which modulates ligand binding. Analogous to Ca(2+) binding, Tb(3+) binding also induces the dimerization of DREAM. Secondary structural analyses using far-UV circular dichroism and trapped ion mobility spectrometry-mass spectrometry reveal that replacement of Ca(2+) with Tb(3+) preserves the folding state with minimal changes to the overall structure of DREAM. These findings pave the way for further investigation of the metal binding

  6. Photodetectors based on intersubband transitions using III-nitride superlattice structures.

    PubMed

    Hofstetter, Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Théron, Ricardo; Wu, Hong; Schaff, William J; Dawlaty, Jahan; George, Paul A; Eastman, Lester F; Rana, Farhan; Kandaswamy, Prem K; Leconte, Sylvain; Monroy, Eva

    2009-04-29

    We review our recent progress on the fabrication of near-infrared photodetectors based on intersubband transitions in AlN/GaN superlattice structures. Such devices were first demonstrated in 2003, and have since then seen a quite substantial development both in terms of detector responsivity and high speed operation. Nowadays, the most impressive results include characterization up to 3 GHz using a directly modulated semiconductor laser and up to 13.3 GHz using an ultra-short pulse solid state laser. PMID:21825412

  7. Structure of dimeric dysprosium (III) d-tartrate of 2:2 composition in aqueous solution

    SciTech Connect

    Chevela, V.V.; Vul`fson, S.G.; Sal`nikov, Yu.I.

    1994-12-20

    The molar constant of paramagnetic birefringence of dimeric dysprosium d-tartrate Dy{sub 2}(d-L){sup 2{minus}}{sub 2} (d-L{sup 4{minus}} is a deprotonated molecule of tartaric acid) was determined experimentally and by mathematical simulation. The structures of the ligand and hydrate environment in Dy{sub 2}(d-L){sup 2{minus}}{sub 2} were simulated by the molecular mechanics method (Dashevskii-Plyamovatyi model). Results consistent with the experimental data can be obtained only when coordination of Na{sup +} is taken into account. 6 refs., 4 figs., 8 tabs.

  8. Syntheses, crystal structures and characterizations of two new bismuth(III) arsenites

    SciTech Connect

    Liu Junhui; Kong Fang; Gai Yanli; Mao Jianggao

    2013-01-15

    Two new bismuth arsenites with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2), have been synthesized by the solid-state reactions. Compound 1 exhibits novel 2D bismuth arsenite layers with Bi{sub 4}O{sub 4} rings capped by oxide anions, which are further interconnected by Bi-Cl-Bi bridges into a 3D network. Compound 2 contains both arsenite and arsenate anions, its 3D structures are based on 1D bismuth arsenite and 1D bismuth arsenate chains both along b-axis, which are interconnected by oxide anions via Bi-O-Bi bridges, forming 1D tunnels of Bi{sub 4}As{sub 4} 8-membered rings (MRs) along b-axis, the lone pairs of the arsenite groups are orientated toward the centers of the above tunnels. Thermogravimetric analysis indicated that both compounds display high thermal stability. Optical property measurements revealed that they are wide band-gap semiconductors. Both compounds display broad green-light emission bands centered at 506 nm under excitation at 380 and 388 nm. - Graphical abstract: Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new compounds with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2). They represent the first examples of bismuth arsenates. Highlights: Black-Right-Pointing-Pointer Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new phases. Black-Right-Pointing-Pointer They represent the first examples of bismuth arsenites. Black-Right-Pointing-Pointer The two compounds exhibit two different structural types.

  9. Pyripyropenes, Novel ACAT inhibitors produced by Aspergillus fumigatus. III. Structure elucidation of pyripyropenes E to L.

    PubMed

    Tomoda, H; Tabata, N; Yang, D J; Takayanagi, H; Nishida, H; Omura, S; Kaneko, T

    1995-06-01

    Eight new pyripyropenes, E to L, were isolated from the culture broth of Aspergillus fumigatus FO-1289-2501 selected as a higher producer by NTG mutation. Structural elucidation indicated that all the pyripyropenes have the same pyridino-alpha-pyrone sesquiterpene core as pyripyropenes A to D. Among them, pyripyropene L showed the most potent inhibition against acyl-CoA: cholesterol acyltransferase (ACAT) activity with an IC50 value of 0.27 microM in rat liver microsomes. PMID:7622436

  10. Optical and Magneto-Optical Studies of Doped III -v Quantum Well Structures.

    NASA Astrophysics Data System (ADS)

    Fisher, Tracey Ann

    1992-01-01

    The main theme of this thesis is the optical study of strained semiconductor structures. This includes using photo-luminescence (PL) and photo-luminescence excitation (PLE), both with and without a magnetic field. The principal structures employed are a series of asymmetric modulation doped rm Al_{x}Ga_ {1-x}As-rm In_{y }Ga_{1-y}As-GaAs quantum wells (AMDQWs) in which a high density of electrons occupies up to two subbands (n = 1,2) in the strained In _{rm y}{Ga}_ {rm 1-y}As quantum well. Several interesting phenomena due principally to the high-electron density, are discussed (supported by self-consistent calculations). The first experimental evidence is reported for the indirect fundamental bandgap (in wave-vector space), developed when a magnetic field is applied parallel to the plane of the layers. The PL undergoes a large approximately quadratic shift. This is a consequence of the allowed transitions in an increasingly indirect gap band structure. Of particular interest is the Fermi Energy Edge Singularity (FEES) observed in AMDQWs with significant occupation of the second subband (n = 2). The FEES is a many body effect observed in PL and PLE as an excitonic enhancement near the Fermi energy (E_{rm F}). From the characteristic temperature dependent broadening and decrease of PLE peak height in a Schottky gated AMDQW, a minimum electron density in n = 2 of 0.4 x 10 ^{11} cm^{ -2} is established for the clear observation of FEES behaviour. In samples where E_ {rm F} is close to the subband separation E_2-E_1 magneto -oscillations in the PL intensity of E_2 , are observed; E_{21} is attributed to hybridisation of n = 1 electrons near E_{rm F}, with n = 2 states. It is shown that the E_{21 } oscillations can be accounted for in terms of oscillations in the occupation of n = 1 Landau level states near E_2. Other phenomena discussed include Resonant Polaron Coupling between occupied LLs and LO phonons. PL results are presented for a Double Barrier Resonant

  11. Improved Catenated Structures of Bovine Peroxiredoxin III F190L Reveal Details of Ring-Ring Interactions and a Novel Conformational State

    PubMed Central

    Cao, Zhenbo; McGow, Donna P.; Shepherd, Colin; Lindsay, J. Gordon

    2015-01-01

    Mitochondrial 2-cys peroxiredoxin III (PrxIII) is a key player in antioxidant defence reducing locally-generated H2O2 to H2O. A Phe to Leu (F190L) mutation in the C-terminal α-helix of PrxIII, mimicking that found in some bacteria and parasites, increases its resistance to hyperoxidation but has no obvious influence on peroxidase activity. Here we report on the oxidized and reduced crystal structures of bovine PrxIII F190L at 2.4 Å and 2.2 Å, respectively. Both structures exist as two-ring catenanes with their dodecameric rings inclined at 55o to each other, similar to that previously reported for PrxIII C168S. The new higher-resolution structures reveal details of the complex network of H-bonds stabilising the inter-toroid contacts. In addition, Arg123, the key conserved residue, that normally interacts with the catalytic cys (Cp, cys 47) is found in a distinct conformation extending away from the Cp while the characteristic Arg-Glu-Arg network, underpinning the active-site geometry also displays a distinctive arrangement, not observed previously. This novel active-site organisation may provide new insights into the dynamics of the large-scale conformational changes occurring between oxidized and reduced states. PMID:25906064

  12. Potential of geodetic surveying as a guide for civil engineers in monitoring structural deformations

    NASA Astrophysics Data System (ADS)

    Nassar, Mohamed M.; El-Maghraby, Mohamed F.

    1988-03-01

    In a previous research performed by the senior author, the causes and implications of the earth's crustal movements in the Egyptian territory have been investigated. The reason was the increasing tendency of erecting huge engineering constructions in Egypt, like dams, bridges, towers, tunnels, nuclear power stations,… etc.). Such constructions, of course, represent a major part in the national economy, and hence, their safety is essential for both economical purposes as well as human security. The objective of this paper is to study the potential and resolution of geodetic surveying techniques in detecting the horizontal and vertical movements of different types of engineering constructions. This aims to help civil engineers monitor structural deformations during and after construction using precise geodetic surveying techniques, in order to overcome and master any defects due to local crustal movements and/or erection systems. The most suitable surveying technique for each type of structure is treated and analyzed for optimum results.

  13. EVALUATION FOR JUDGMENT CRITERIA OF REPAIR ON CIVIL ENGINEERING STRUCTURE BY SUPPORT VECTOR MACHINE

    NASA Astrophysics Data System (ADS)

    Yuki, Kazunori; Kobayashi, Hiroki; Ohishi, Hiroyuki; Sugimoto, Hiroyuki; Iida, Takeshi; Furukawa, Kohei

    In this study, setting method for judgment criteria for repair of civil engineering structures is analyzed by the use of inspection and repair record of expansion joint of bridges with the Support Vector Machine. The Support Vector Machine is a technique used to apply for setting of risk degree of disasters on natural slopes. However it is needed that effective exclusion method of noise data has to be considered to apply for the analysis of the setting method. Therefore the noise data is excluded objectively in order that high confidence data can be extracted from the record. In this way setting the method can be developed. As a result of this study, it can be shown that the setting method by Support Vector Machine is effective as a tool for maintenance management plan of civil engineering structures since the method has a high integrity with evaluation by professional engineer.

  14. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase

    PubMed Central

    Tanabe, Maiko; Ishino, Yoshizumi; Nishida, Hirokazu

    2015-01-01

    DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures. PMID:26508902

  15. An overview of reliability assessment and control for design of civil engineering structures

    SciTech Connect

    Field, R.V. Jr.; Grigoriadis, K.M.; Bergman, L.A.; Skelton, R.E.

    1998-06-01

    Random variations, whether they occur in the input signal or the system parameters, are phenomena that occur in nearly all engineering systems of interest. As a result, nondeterministic modeling techniques must somehow account for these variations to ensure validity of the solution. As might be expected, this is a difficult proposition and the focus of many current research efforts. Controlling seismically excited structures is one pertinent application of nondeterministic analysis and is the subject of the work presented herein. This overview paper is organized into two sections. First, techniques to assess system reliability, in a context familiar to civil engineers, are discussed. Second, and as a consequence of the first, active control methods that ensure good performance in this random environment are presented. It is the hope of the authors that these discussions will ignite further interest in the area of reliability assessment and design of controlled civil engineering structures.

  16. Structural and thermodynamic properties of the CmIII ion solvated by water and methanol

    DOE PAGESBeta

    Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; Clark, Aurora E.

    2016-04-27

    The geometric and electronic structures of the 9-coordinate Cm3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shown tomore » be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less

  17. Structural and Thermodynamic Properties of the Cm(III) Ion Solvated by Water and Methanol.

    PubMed

    Kelley, Morgan P; Yang, Ping; Clark, Sue B; Clark, Aurora E

    2016-05-16

    The geometric and electronic structures of the 9-coordinate Cm(3+) ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller-Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion-solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion-solvent dissociation energy and the ion-solvent distance are shown to be dependent on the solvent-shell composition. This has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle. PMID:27120717

  18. Closed coronal structures. III - Comparison of static models with X-ray, EUV, and radio observations

    NASA Technical Reports Server (NTRS)

    Pallavicini, R.; Peres, G.; Serio, S.; Vaiana, G. S.; Golub, L.; Rosner, R.

    1981-01-01

    Numerical models of static coronal loops in energy balance are compared with high spatial resolution observations of extreme ultraviolet lines, broad-band X-ray emission, and interferometric observations at 2.8 cm of a solar active region. Difficulties of using scaling laws to test static models of coronal loops are reviewed. The theoretical model used for the comparison is summarized; the detailed X-ray, EUV, and microwave observations of the selected active region are presented; and the comparison of the model with the observations is performed. It is shown that simple static models with conductive flux vanishing at the loop base reproduce satisfactorily the observed properties in the upper portion of loop structures from compact, high-pressure loops in the core of the region to more extended, fainter loops and to large-scale loops interconnecting different active regions. Effects of changing loop parameters are investigated, and it is argued, that in contrast to the present approach, scaling laws cannot be used to discriminate between different static energy balance models. Some discrepancy is found between model predictions and observations for the lower sections of loop structures. Possible causes of the discrepancy are discussed.

  19. The topology of large-scale structure. III - Analysis of observations. [in universe

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  20. Novel nanohybrids of cobalt(III) Schiff base complexes and clay: Synthesis and structural determinations

    NASA Astrophysics Data System (ADS)

    Kianfar, Ali Hossein; Mahmood, Wan Ahmad Kamil; Dinari, Mohammad; Azarian, Mohammad Hossein; Khafri, Fatemeh Zare

    2014-06-01

    The [Co(Me2Salen)(PBu3)(OH2)]BF4 and [Co(Me2Salen)(PPh3)(Solv)]BF4, complexes were synthesized and characterized by FT-IR, UV-Vis, 1H NMR spectroscopy and elemental analysis techniques. The coordination geometry of [Co(Me2Salen)(PPh3)(H2O)]BF4 was determined by X-ray crystallography. It has been found that the complex is containing [Co(Me2Salen)(PPh3)(H2O)]BF4 and [Co(Me2Salen)(PPh3)(EtOH)]BF4 hexacoordinate species in the solid state. Cobalt atom exhibits a distorted octahedral geometry and the Me2Salen ligand has the N2O2 coordinated environment in the equatorial plane. The [Co(Me2Salen)(PPh3)(H2O)]BF4 complex shows a dimeric structure via hydrogen bonding between the phenolate oxygen and hydrogens of coordinated H2O molecule. These complexes were incorporated into Montmorillonite-K10 nanoclay. The modified clays were identified by FT-IR, XRD, EDX, TGA/DTA, SEM and TEM techniques. According to the XRD results of the new nanohybrid materials, the Schiff base complexes are intercalated in the interlayer spaces of the clay. SEM and TEM micrographs show that the resulting hybrid nanomaterials have layer structures. Also, TGA/DTG results show that the intercalation reaction was taken place successfully.