Science.gov

Sample records for enhanced anti-proliferative anti-inflammatory

  1. Anti-oxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial essential oils.

    PubMed

    Aazza, Smail; Lyoussi, Badiaa; Megías, Cristina; Cortés-Giraldo, Isabel; Vioque, Javier; Figueiredo, A Cristina; Miguel, Maria G

    2014-04-01

    Essential oils (EO) possess antimicrobial, anti-inflammatory, insect repellent, anti-cancer, and antioxidant properties, among others. In the present work, the antioxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial EOs (Citrus aurantium, C. limon, Cupressus sempervirens, Eucalyptus globulus, Foeniculum vulgare and Thymus vulgaris) were evaluated and compared with their main constituents. T. vulgaris EO showed the best free radicals scavenging capacity. This EO was also the most effective against lipid peroxidation along with C. limon and F. vulgare EOs. C. sempervirens EO was the most effective in scavenging NO free radicals, whereas C. limon EO showed the best chelating power. Not all of the major compounds of the EO were responsible for the whole activity of the EOs. T. vulgaris EO showed the best anti-proliferative activity against THP-1 cells in contrast to that of F. vulgare. The antioxidant and anti-inflammatory activities of the EOs were plant species dependent and not always attributable to the EOs main components. Nevertheless, the EOs anti-proliferative activities were more related to their main components, as with T. vulgaris, C. limon, E. globulus and C. sempervirens. PMID:24868891

  2. Anti-inflammatory and anti-proliferative activities of the wild edible cruciferous: Diplotaxis simplex.

    PubMed

    Jdir, Hamida; Khemakham, Bassem; Najjaa, Hanen; Chakroun, Mouna; Jridi, Mourad; Ben Arfa, Abdelkarim; Ben Ali, Yassine; Zouari, Nacim

    2016-10-01

    Context The present study deals with new biological properties of the wild edible Diplotaxis simplex (Viv.) Spreng (Brassicaceae). Objectives The current study evaluates the antioxidant, the anti-inflammatory and the anti-cancer properties of ethyl acetate and ethanol extracts from D. simplex flowers. Materials and methods The anti-proliferative activity of the extracts (10-70 μg/mL) was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) against human colon cancer cell line Caco-2. The anti-inflammatory potential was evaluated by the inhibitory effect of the extracts (1.5-7.5 mg/mL) on phospholipase A2 activity as well as on carrageenan-induced paw oedema in mice. Extracts (200 mg/kg) or indomethacin (50 mg/kg) as positive control were injected intraperitoneally for albino mice prior to the induction of the oedema by carrageenan. Antioxidant activities were investigated using various complementary methods. Results Flower extracts contained a high level of polyphenolics (17.10-52.70 mg GAE/g) and flavonoids (74.20-100.60 mg QE/g), which correlate with its appreciable antioxidant potential in β-carotene peroxidation (IC50 value: 12.50-27.10 μg/mL), DPPH(•) radical-scavenging (IC50 value: 0.20-0.40 mg/mL), Fe(3+ )reducing (EC50 value: 0.10-0.14 mg/mL) and Fe(2+ )chelating (IC50 value: 0.20-0.60 mg/mL) assays. These extracts were effective in inhibiting cancer cell growth (IC50 value: 62.0-63.25 μg/mL). Besides, the ethyl acetate extract inhibited phospholipase A2 activity (IC50 value: 2.97 mg/mL) and reduced the paw oedema in mice (from 0.38 ± 0.01 to 0.24 ± 0.01 cm), 4 h post-carrageenan challenge. Conclusion These data suggest that D. simplex may be useful as a candidate in the treatment of inflammation and the colon cancer. PMID:26916801

  3. Synthesis and Biological Evaluation of New Phthalazinone Derivatives as Anti-Inflammatory and Anti-Proliferative Agents.

    PubMed

    Hameed, Alhamzah Dh; Ovais, Syed; Yaseen, Raed; Rathore, Pooja; Samim, Mohammed; Singh, Surender; Sharma, Kalicharan; Akhtar, Mymona; Javed, Kalim

    2016-02-01

    The chemistry of phthalazine derivatives has been of increasing interest since many of these compounds have found many chemotherapeutic applications. So this study aims to synthesize a library of phthalazine derivatives and to investigate their anti-inflammatory and anti-proliferative activities. Sixteen new phthalazinone derivatives (2a-p) were synthesized and tested for their in vitro antiproliferative and in vivo anti-inflammatory activities. All the synthesized compounds were identified and characterized by IR, (1) H NMR, (13) C NMR spectroscopy, and MS. Two compounds, 2b and 2i, showed significant anti-inflammatory activity comparable with that of the standard drug etoricoxib in the carrageenan-induced rat paw edema model at 3 and 5 h, respectively. Three compounds (2h, 2j, and 2g) showed moderate sensitivity toward the renal cancer cell line UO-31. PMID:26725221

  4. Chinese herbal medicine (Tuhuai extract) exhibits topical anti-proliferative and anti-inflammatory activity in murine disease models.

    PubMed

    Man, Mao-Qiang; Shi, Yuejun; Man, Mona; Lee, Seung Hun; Demerjian, Marianne; Chang, Sandra; Feingold, Kenneth R; Elias, Peter M

    2008-08-01

    While psoriasis is one of the most common skin disorders in humans, effective, safe and inexpensive treatments are still largely unavailable. Chinese herbal medicine (CHM) has been used for centuries for treating psoriasis and several reports claim that systemic administration of one such CHM, Tuhuai, mainly composed of flos sophorae, smilax glabra roxb and licorice, is effective in psoriasis. However, the mechanisms by which this CHM improves psoriasis are not yet clear. Two universal features of psoriasis are epidermal hyperplasia and inflammation. Moreover, drugs that specifically inhibit epidermal hyperplasia and/or inflammation are widely used to treat psoriasis. Here, we investigated whether topical applications of Tuhuai extract exhibit anti-proliferative and anti-inflammatory activities in two murine models of inflammatory dermatoses. To assess Tuhuai's potential anti-proliferative effect, we disrupted epidermal barrier function twice-daily for 4 days in normal hairless mice followed by topical applications of either 1% Tuhuai extract or Vehicle to both flanks immediately after each barrier perturbation. Changes in epidermal proliferation and apoptosis were evaluated by immunohistochemistry and TUNEL staining. To assess the anti-inflammatory effects of Tuhuai, both irritant (phorbol ester) and acute allergic contact dermatitis (oxazolone) models were used. Whereas topical Tuhuai extract did not alter epidermal proliferation or induce irritation in normal skin, it both reduced epidermal hyperplasia in the epidermal hyperproliferative model, and reduced inflammation in both irritant and allergic contact dermatitis models. As topical Tuhuai extract exhibits anti-proliferative and anti-inflammatory properties in a variety of human models of inflammatory dermatoses, Tuhuai could provide an effective, relatively safe and inexpensive therapeutic alternative for the treatment of inflammatory dermatoses, including psoriasis. PMID:18341576

  5. Chemical Composition, Antioxidant, Anti-Inflammatory and Anti-Proliferative Activities of Essential Oils of Plants from Burkina Faso

    PubMed Central

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A.; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography–mass spectrometry and gas chromatography–flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  6. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    PubMed

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  7. Chemical composition, and anti-proliferative and anti-inflammatory effects of the leaf and wholeplant samples of diploid and tetraploid gynostemma pentaphyllum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf and whole-plant samples of the diploid and tetraploid Gynostemma pentaphyllum (GP)were investigated and compared for their chemical compositions, and their potential anti-proliferative and anti-inflammatory effects. The highest levels of total flavonoids and phenolics were observed in the diplo...

  8. In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects.

    PubMed

    Grimoud, Julien; Durand, Henri; de Souza, Sarah; Monsan, Pierre; Ouarné, Françoise; Theodorou, Vassilia; Roques, Christine

    2010-11-15

    There is emerging evidence of the efficiency of probiotic, prebiotic and synbiotic treatments in inflammatory bowel diseases (IBDs) and one of their long-term complications, colorectal cancer (CRC). In this study, various strains of probiotic lactic acid bacteria, prebiotic glucooligosaccharides (GOS) or a synbiotic combination of the two were screened for anti-inflammatory and anti-proliferative effects in different in vitro models in the context of such diseases. To mimic IBD response to Gram negative bacteria, HT-29 cells were sensitised to inflammatory response to lipopolysaccharide (LPS) by IFNγ which increased expression of TLR4, the LPS biosensor, and were then treated by probiotics, prebiotics and synbiotics. Secreted IL-8 and activated NF-κB were monitored as inflammation biomarkers. A selection of active strains were then subjected to a second inflammatory cell culture model consisting of inflammatory activated transgenic Caco-2 cells transfected by a reporter gene under the control of NF-κB inducible promoter. Quantification of reporter gene expression allowed us to demonstrate some probiotic inhibitory properties or to confirm such characteristics in two different models. Proliferation of cancerous HT-29 cells was monitored by XTT assay. Only three probiotic strains induced a proliferation decrease, but with a lack of reproducibility. Binary or ternary probiotic associations, complemented or not by prebiotic GOS, significantly decreased proliferation, especially with a synbiotic association of Bifidobacterium breve, Lactococcus lactis and oligoalternan, a GOS. This combination was selected for the following experiments. We showed the involvement of both bacterial and carbohydrate compounds of this synbiotic in the observed effect by dose range tests. We demonstrated that this decrease in proliferation may be due to an induction of a differentiated phenotype, as shown by the up-regulation of intestinal alkaline phosphatase, a biomarker of

  9. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    PubMed Central

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  10. Enhancement of anti-proliferative activities of Metformin, when combined with Celecoxib, without increasing DNA damage.

    PubMed

    Ullah, Asad; Ashraf, Muhammad; Javeed, Aqeel; Anjum, Aftab Ahmad; Attiq, Ali; Ali, Sarwat

    2016-07-01

    Pathophysiological changes in diabetes like hyperglycemia, oxidative stress, insulin resistance and compensatory hyperinsulinemia predispose cells to malignant transformation and damage DNA repair mechanism. This study was designed to explore the potential synergistic toxic effects of anti-diabetic drug (Metformin), and an analgesic drug (Celecoxib) at cellular level. MTT assay run on Vero cell line revealed that the combinations of Metformin and Celecoxib augment the anti-proliferative effects, whereas Single cell gel electrophoresis spotlighted that Metformin produce non-significant DNA damage with the threshold concentration of 400μg/ml in peripheral blood mononuclear cells (lymphocytes and monocytes), while Celecoxib produced significant (P<0.05) DNA damage (class III comets) above the concentration of 75μg/ml, however the DNA damage or DNA tail protrusions by combinations of both drugs were less than what was observed with Celecoxib alone. Metformin or Celecoxib did not appear mutagenic against any mutant strains (TA 100 and TA 98) but their combination exhibited slight mutagenicity at much higher concentration. The results obtained at concentrations higher than the therapeutic level of drugs and reflect that Metformin in combination with Celecoxib synergistically inhibits the cell proliferation in a concentration dependent pattern. Since, this increase in cytotoxicity did not confer an increase in DNA damage; this combination could be adopted to inhibit the growth of malignant cell without producing any genotoxic or mutagenic effects at cellular level. PMID:27327526

  11. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam. PMID:27178332

  12. Ibuprofen-arginine generates nitric oxide and has enhanced anti-inflammatory effects.

    PubMed

    De Palma, Clara; Di Paola, Rosanna; Perrotta, Cristiana; Mazzon, Emanuela; Cattaneo, Dario; Trabucchi, Emilio; Cuzzocrea, Salvatore; Clementi, Emilio

    2009-10-01

    Ibuprofen, a chiral non-steroidal anti-inflammatory drug chemically related to fenoprofen and naproxen, has moderate but definite anti-inflammatory, analgesic and antipyretic properties, with considerably less gastrointestinal adverse effect than other drugs in the same family. Currently available in the market are preparations in which bioavailability of ibuprofen is increased by salification with various salts. We have investigated the pharmacological properties of one such salt, ibuprofen-arginine, of biological interest because l-arginine acts as substrate of the nitric oxide (NO) synthesising enzymes. Using epithelial HeLa cells expressing the endothelial NO synthase we show that ibuprofen-arginine releases NO and that this NO protects against the cytotoxic apoptogenic effects of staurosporine. We also found that ibuprofen-arginine is endowed with enhanced anti-inflammatory effects with respect to ibuprofen, as shown by reduced hind paw oedema, neutrophil infiltration and chondrocyte apoptosis in collagen-induced mouse arthritis, a model of chronic inflammation. NO has pleiotropic beneficial effects that may contribute to limit inflammation and anti-inflammatory compounds able to release NO display higher efficacy than the parent drugs in defined clinical settings. Our results open the possibility that NO generation contributes to the enhanced anti-inflammatory effects of ibuprofen-arginine vs. ibuprofen, suggesting co-administration of anti-inflammatory drugs and arginine as an additional way to exploit the beneficial effects of NO. PMID:19539763

  13. Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles.

    PubMed

    Bernela, Manju; Ahuja, Munish; Thakur, Rajesh

    2016-06-01

    Bromelain-loaded katira gum nanoparticles were synthesized using 3 level optimization process and desirability approach. Nanoparticles of the optimized batch were characterized using particle size analysis, zeta potential, transmission electron microscopy and Fourier-transform infrared spectroscopy. Investigation of their in vivo anti-inflammatory activity by employing carrageenan induced rat-paw oedema method showed that encapsulation of bromelain in katira gum nanoparticles substantially enhanced its anti-inflammatory potential. This may be attributed to enhanced absorption owing to reduced particle size or to protection of bromelain from acid proteases. PMID:27083339

  14. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    PubMed

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  15. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  16. Ciprofloxacin decreases survival in HT-29 cells via the induction of TGF-β1 secretion and enhances the anti-proliferative effect of 5-fluorouracil

    PubMed Central

    Bourikas, Leonidas A; Kolios, George; Valatas, Vassilis; Notas, George; Drygiannakis, Ioannis; Pelagiadis, Iordanis; Manousou, Pinelopi; Klironomos, Stefanos; Mouzas, Ioannis A; Kouroumalis, Elias

    2009-01-01

    Background and purpose: Fluoroquinolones are potent anti-microbial agents with multiple effects on host cells and tissues. Previous studies have highlighted their pro-apoptotic effect on human cancer cells and an immunoregulatory role in animal models of inflammatory bowel disease. We examined the effect of ciprofloxacin on proliferation, cell cycle and apoptosis of HT-29 cells, a human colonic epithelial cell line sensitive to transforming growth factor (TGF)-β1-mediated growth inhibition and its role in TGF-β1 production. We also examined the effect of ciprofloxacin on proliferation of HT-29 cells in combination with 5-fluorouracil (5-FU), a well-established pro-apoptotic agent. Experimental approach: Using subconfluent cultures of HT-29 and Caco-2 cells, we studied the effect of ciprofloxacin, TGF-β1 and 5-FU on proliferation, apoptosis, necrosis and cell cycle. The effect of ciprofloxacin on TGF-β1 mRNA expression and production was studied in RNA extracts and cell culture supernatants respectively, using confluent cultures. Key results: Ciprofloxacin decreased proliferation of HT-29 cells in a concentration- and time-dependent manner. This was mediated by accumulation of HT-29 cells into the S-phase but without any effect on apoptosis or necrosis. Additionally, ciprofloxacin enhanced the antiproliferative effect of 5-FU. Interestingly, ciprofloxacin was found to up-regulate TGF-β1 production by HT-29 cells and its anti-proliferative effect was abolished when TGF-β1 was blocked. Confirming this mechanism further, ciprofloxacin had no effect on Caco-2, a human colonic epithelial cell line that lacks functional TGF-β1 receptors. Conclusions and implications: We demonstrate a novel anti-proliferative and immunoregulatory effect of ciprofloxacin on human intestinal epithelial cells mediated via TGF-β1. PMID:19371339

  17. Pressure-assisted electrokinetic supercharging for the enhancement of non-steroidal anti-inflammatory drugs.

    PubMed

    Meighan, Michelle M; Dawod, Mohamed; Guijt, Rosanne M; Hayes, Mark A; Breadmore, Michael C

    2011-09-23

    Electrokinetic supercharging (EKS) combines field-amplified sample injection with transient isotachophoresis (tITP) to create a powerful on-line preconcentration technique for capillary electrophoresis. In this work, EKS is enhanced with a positive pressure (pressure-assisted EKS, or PA-EKS) during injection to improve stacking of non-steroidal anti-inflammatory drugs (NSAIDs). Several parameters, including buffer composition and concentration, terminating electrolyte, organic modifier, and injection voltage and injection time of both terminating electrolyte and sample were optimized. Detection limits for seven NSAIDs were determined and an enhancement in sensitivity of almost 50,000-fold was obtained. The PA-EKS method has the potential to be a simple MS compatible preconcentration method to improve the sensitivity of CE. PMID:21855878

  18. Novel combination of sorafenib and biochanin-A synergistically enhances the anti-proliferative and pro-apoptotic effects on hepatocellular carcinoma cells

    PubMed Central

    Youssef , Mohieldin M.; Tolba, Mai F.; Badawy, Noha N.; Liu, Andrew W.; El-Ahwany, Eman; Khalifa, Amani E.; Zada, Suher; Abdel-Naim, Ashraf B.

    2016-01-01

    Sorafenib (SOR) is the first-line treatment for hepatocellular carcinoma (HCC). However, its use is hindered by the recently expressed safety concerns. One approach for reducing SOR toxicity is to use lower doses in combination with other less toxic agents. Biochanin-A (Bio-A), a promising isoflavone, showed selective toxicity to liver cancer cells. We postulated that combining SOR and Bio-A could be synergistically toxic towards HCC cells. We further evaluated the underlying mechanism. Cytotoxicity assay was performed to determine the IC50 of Bio-A and SOR in HepG2, SNU-449 and Huh-7 cells. Then, combination index in HepG2 was evaluated using Calcusyn showing that the concurrent treatment with lower concentrations of SOR and Bio-A synergistically inhibited cell growth. Our combination induced significant arrest in pre-G and G0/G1 cell cycle phases and decrease in cyclin D1 protein level. Concomitantly, SOR/Bio-A reduced Bcl-2/Bax ratio. Furthermore, this co-treatment significantly increased caspase-3 & -9 apoptotic markers, while decreased anti-apoptotic and proliferative markers; survivin and Ki-67, respectively. Active caspase-3 in HepG2, SNU-449 and Huh-7 confirmed our synergism hypothesis. This study introduces a novel combination, where Bio-A synergistically enhanced the anti-proliferative and apoptotic effects of SOR in HCC cells, which could serve as a potential effective regimen for treatment. PMID:27470322

  19. Novel combination of sorafenib and biochanin-A synergistically enhances the anti-proliferative and pro-apoptotic effects on hepatocellular carcinoma cells.

    PubMed

    Youssef, Mohieldin M; Tolba, Mai F; Badawy, Noha N; Liu, Andrew W; El-Ahwany, Eman; Khalifa, Amani E; Zada, Suher; Abdel-Naim, Ashraf B

    2016-01-01

    Sorafenib (SOR) is the first-line treatment for hepatocellular carcinoma (HCC). However, its use is hindered by the recently expressed safety concerns. One approach for reducing SOR toxicity is to use lower doses in combination with other less toxic agents. Biochanin-A (Bio-A), a promising isoflavone, showed selective toxicity to liver cancer cells. We postulated that combining SOR and Bio-A could be synergistically toxic towards HCC cells. We further evaluated the underlying mechanism. Cytotoxicity assay was performed to determine the IC50 of Bio-A and SOR in HepG2, SNU-449 and Huh-7 cells. Then, combination index in HepG2 was evaluated using Calcusyn showing that the concurrent treatment with lower concentrations of SOR and Bio-A synergistically inhibited cell growth. Our combination induced significant arrest in pre-G and G0/G1 cell cycle phases and decrease in cyclin D1 protein level. Concomitantly, SOR/Bio-A reduced Bcl-2/Bax ratio. Furthermore, this co-treatment significantly increased caspase-3 &-9 apoptotic markers, while decreased anti-apoptotic and proliferative markers; survivin and Ki-67, respectively. Active caspase-3 in HepG2, SNU-449 and Huh-7 confirmed our synergism hypothesis. This study introduces a novel combination, where Bio-A synergistically enhanced the anti-proliferative and apoptotic effects of SOR in HCC cells, which could serve as a potential effective regimen for treatment. PMID:27470322

  20. Erythromycin enhances the anti-inflammatory activity of budesonide in COPD rat model

    PubMed Central

    Miao, Lijun; Gao, Zengyan; Huang, Fengxiang; Huang, Shifu; Zhang, Ruixia; Ma, Dongbo; Wu, Qiuge; Li, Fang; Chen, Hongjie; Wang, Jing

    2015-01-01

    Glucocorticoids (GCs) have been widely applied to treat patients with chronic obstructive pulmonary disease (COPD). But the effect of GCs was not ideal. This study was to observe whether erythromycin could enhance the anti-inflammatory activity of budesonide in COPD model rats and to explore the mechanism involved. In this study, male Sprague-Dawley rats were divided into five groups: healthy control group (H group), COPD model group (C group), erythromycin group (E group), budesonide group (B group) and erythromycin + budesonide group (E+B group). The rats in groups of C, E, B and E+B were developed into COPD models. Different groups were given different drug interventions. The levels of 8-iso-PGF2α, IL-8, and TNF-α in BALF and serum were measured with ELISA. The protein expression levels of HDAC2, PI3K, and p-AKT in lung tissue were measured with Western-blot and immunohistochemistry. The levels of 8-iso-PGF2α, IL-8, and TNF-α in BALF and serum were lower in E+B group than those in B group and C group (all P<0.001).The protein expression level of HDAC2 was higher and PI3K and p-AKT were lower in E+B group than those in B group and C group (all P<0.001). Moreover, the expression levels of HDAC2 were negatively correlated with the levels of 8-iso-PGF2α, IL-8 and TNF-α both in serum and BALF and the expression levels of PI3K and p-AKT among the five groups, with all P<0.001. We conclude that erythromycin can enhance the anti-inflammatory activity of budesonide in COPD model rats, possibly through inhibiting the PI3K/AKT pathway and enhancing the activity of HDAC2. PMID:26885197

  1. Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses.

    PubMed

    Mohamad Shalan, Nor Aijratul Asikin; Mustapha, Noordin M; Mohamed, Suhaila

    2016-12-01

    Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery. PMID:27374554

  2. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity

    PubMed Central

    Washburn, Nathaniel; Schwab, Inessa; Ortiz, Daniel; Bhatnagar, Naveen; Lansing, Jonathan C.; Medeiros, Amy; Tyler, Steven; Mekala, Divya; Cochran, Edward; Sarvaiya, Hetal; Garofalo, Kevin; Meccariello, Robin; Meador, James W.; Rutitzky, Laura; Schultes, Birgit C.; Ling, Leona; Avery, William; Nimmerjahn, Falk; Manning, Anthony M.; Kaundinya, Ganesh V.; Bosques, Carlos J.

    2015-01-01

    Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc–sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity. PMID:25733881

  3. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel.

    PubMed

    Ahad, Abdul; Raish, Mohammad; Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad I; Alam, Mohd Aftab

    2014-06-01

    The aim of the current investigation is to develop nanoethosomes for transdermal meloxicam delivery. The ethosomes were prepared by varying the variables such as concentrations of phospholipids 90G, ethanol, and sonication time while entrapment efficiency, vesicle size and transdermal flux were the chosen responses. Results indicate that the nanoethosomes of meloxicam provides lesser vesicles size, better entrapment efficiency and improved flux for transdermal delivery as compared to rigid liposomes. The optimized formulation (MCEF-OPT) obtained was further evaluated for an in vivo anti-inflammatory activity in rats. Optimized nanoethosomal formulation with vesicles size of 142.3nm showed 78.25% entrapment efficiency and achieved transdermal flux of 10.42μg/cm(2)/h. Nanoethosomes proved to be significantly superior in terms of, amount of drug permeated into the skin, with an enhancement ratio of 3.77 when compared to rigid liposomes. In vivo pharmacodynamic study of carbopol(®) loaded nanoethosomal gel showed significant higher percent inhibition of rat paw edema compared with oral administration of meloxicam. Our results suggest that nanoethosomes are an efficient carrier for transdermal delivery of meloxicam. PMID:24657163

  4. Non-steroidal anti-inflammatory drug indometacin enhances endogenous remyelination.

    PubMed

    Preisner, Anna; Albrecht, Stefanie; Cui, Qiao-Ling; Hucke, Stephanie; Ghelman, Julia; Hartmann, Christine; Taketo, Makoto Mark; Antel, Jack; Klotz, Luisa; Kuhlmann, Tanja

    2015-08-01

    Multiple sclerosis is the most frequent demyelinating disease in the CNS that is characterized by inflammatory demyelinating lesions and axonal loss, the morphological correlate of permanent clinical disability. Remyelination does occur, but is limited especially in chronic disease stages. Despite effective immunomodulatory therapies that reduce the number of relapses the progressive disease phase cannot be prevented. Therefore, promotion of neuroprotective and repair mechanisms, such as remyelination, represents an attractive additional treatment strategy. A number of pathways have been identified that may contribute to impaired remyelination in MS lesions, among them the Wnt/β-catenin pathway. Here, we demonstrate that indometacin, a non-steroidal anti-inflammatory drug (NSAID) that has been also shown to modulate the Wnt/β-catenin pathway in colorectal cancer cells promotes differentiation of primary human and murine oligodendrocytes, myelination of cerebellar slice cultures and remyelination in cuprizone-induced demyelination. Our in vitro experiments using GSK3β inhibitors, luciferase reporter assays and oligodendrocytes expressing a mutant, dominant stable β-catenin indicate that the mechanism of action of indometacin depends on GSK3β activity and β-catenin phosphorylation. Indometacin might represent a promising treatment option to enhance endogenous remyelination in MS patients. PMID:25943886

  5. TOPICAL ANTIHISTAMINES DISPLAY POTENT ANTI-INFLAMMATORY ACTIVITY LINKED IN PART TO ENHANCED PERMEABILITY BARRIER FUNCTION

    PubMed Central

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis; Park, Kyungho; Roelandt, Truus; Oda, Yuko; Hupe, Melanie; Crumrine, Debra; Lee, Hae-Jin; Gschwandtner, Maria; Thyssen, Jacob P.; Trullas, Carles; Tschachler, Erwin; Feingold, Kenneth R.; Elias, Peter M.

    2012-01-01

    Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective, if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by: i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and ii) enhanced epidermal lipid synthesis and secretion. Since barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamine. In four immunologically-diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis), or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, while H1/2r antagonists improved inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly-systemic to a topical approach. PMID:23014339

  6. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    PubMed Central

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-01-01

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions. PMID:27331813

  7. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders. PMID:26494261

  8. Ultrasound-enhanced delivery of antibiotics and anti-inflammatory drugs into the eye.

    PubMed

    Nabili, Marjan; Patel, Hetal; Mahesh, Sankaranarayana P; Liu, Ji; Geist, Craig; Zderic, Vesna

    2013-04-01

    Delivery of sufficient amounts of therapeutic drugs into the eye is often a challenging task. In this study, ultrasound application (frequencies of 400 KHz to 1 MHz, intensities of 0.3-1.0 W/cm(2) and exposure duration of 5 min) was investigated to overcome the barrier properties of cornea, which is a typical route for topical administration of ophthalmic drugs. Permeability of ophthalmic drugs, tobramycin and dexamethasone and sodium fluorescein, a drug-mimicking compound, was studied in ultrasound- and sham-treated rabbit corneas in vitro using a standard diffusion cell setup. Light microscopy observations were used to determine ultrasound-induced structural changes in the cornea. For tobramycin, an increase in permeability for ultrasound- and sham-treated corneas was not statistically significant. Increase of 46%-126% and 32%-109% in corneal permeability was observed for sodium fluorescein and dexamethasone, respectively, with statistical significance (p < 0.05) achieved at all treatment parameter combinations (compared with sham treatments) except for 1-MHz ultrasound applications for dexamethasone experiments. This permeability increase was highest at 400 kHz and appeared to be higher at higher intensities applied. Histologic analysis showed structural changes that were limited to epithelial layers of cornea. In summary, ultrasound application provided enhancement of drug delivery, increasing the permeability of the cornea for the anti-inflammatory ocular drug dexamethasone. Future investigations are needed to determine the effectiveness and safety of this application in in vivo long-term survival studies. PMID:23415283

  9. A Novel Nanoparticle Drug Delivery System: The Anti-inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes

    PubMed Central

    Sun, Dongmei; Zhuang, Xiaoying; Xiang, Xiaoyu; Liu, Yuelong; Zhang, Shuangyin; Liu, Cunren; Barnes, Stephen; Grizzle, William; Miller, Donald; Zhang, Huang-Ge

    2010-01-01

    Monocyte-derived myeloid cells play vital roles in inflammation-related autoimmune/inflammatory diseases and cancers. Here, we report that exosomes can deliver anti-inflammatory agents, such as curcumin, to activated myeloid cells in vivo. This technology provides a means for anti-inflammatory drugs, such as curcumin, to target the inflammatory cells as well as to overcome unwanted off-target effects that limit their utility. Using exosomes as a delivery vehicle, we provide evidence that curcumin delivered by exosomes is more stable and more highly concentrated in the blood. We show that the target specificity is determined by exosomes, and the improvement of curcumin activity is achieved by directing curcumin to inflammatory cells associated with therapeutic, but not toxic, effects. Furthermore, we validate the therapeutic relevance of this technique in a lipopolysaccharide (LPS)-induced septic shock mouse model. We further show that exosomes, but not lipid alone, are required for the enhanced anti-inflammatory activity of curcumin. The specificity of using exosomes as a drug carrier creates opportunities for treatments of many inflammation-related diseases without significant side effects due to innocent bystander or off-target effects. PMID:20571541

  10. Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice

    PubMed Central

    Kang, Hee; Lee, Mi-Gi; Lee, Jae-Kang; Choi, Yong-Hyun; Choi, Yong-Seok

    2016-01-01

    Wheat bran is a rich source of dietary fiber, of which arabinoxylan is the most abundant non-starch polysaccharide. Arabinoxylan has been known to exert in vivo immunological activities. Based on prior findings, we pretreated wheat bran with enzymatic hydrolysis to increase the release of soluble arabinoxylan and investigated whether oral administration of wheat bran altered macrophage activity in a mouse model. After four weeks of treatment, we isolated peritoneal macrophages for phagocytic receptor analysis and lipopolysaccharide (LPS)-induced inflammatory changes. In the second experiment, mice given wheat bran were intraperitoneally stimulated with LPS and serum levels of pro- and anti-inflammatory cytokines were determined. The expression of SRA and CD36, and phagocytic activity increased (p < 0.05, respectively). Ex vivo stimulation of macrophages by LPS resulted in reduced surface expression of CD40 (p < 0.05) and decreased production of nitric oxide (p < 0.005), tumor necrosis factor (TNF)-α (p < 0.005), interleukin (IL)-6 (p < 0.01), and IL-12 (p < 0.05). Mice treated with wheat bran showed decreased levels of serum TNF-α and IL-6 (p < 0.05, respectively) and an increased level of serum anti-inflammatory IL-10 (p < 0.05) in response to intraperitoneal LPS. Enzymatically-processed wheat bran boosts macrophage phagocytic capacity possibly through up-regulation of scavenger receptors and confers anti-inflammatory effects, indicating its potential as an immuno-enhancing functional food. PMID:27043618

  11. Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells.

    PubMed

    Waghela, Bhargav N; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  12. Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana.

    PubMed

    Wu, S J; Tsai, J Y; Chang, S P; Lin, D L; Wang, S S; Huang, S N; Ng, L T

    2006-12-01

    Physalis peruviana L. (PP) is a medicinal herb widely used in folk medicine. In this study, supercritical carbon dioxide (SFE-CO2) method was employed to obtain three different PP extracts, namely SCEPP-0, SCEPP-4 and SCEPP-5. The total flavonoid and phenol concentrations, as well as antioxidant and anti-inflammatory activities of these extracts were analyzed and compared with aqueous and ethanolic PP extracts. Among all the extracts tested, SCEPP-5 demonstrated the highest total flavonoid (234.63+/-9.61 mg/g) and phenol (90.80+/-2.21 mg/g) contents. At concentrations 0.1-30 microg/ml, SCEPP-5 also demonstrated the strongest superoxide anion scavenging activity and xanthine oxidase inhibitory effect. At 30 microg/ml, SCEPP-5 significantly prevented lipopolysaccharide (LPS; 1 microg/ml)-induced cell cytotoxicity in murine macrophage (Raw 264.7) cells. At 10-50 microg/ml, it also significantly inhibited LPS-induced NO release and PGE2 formation in a dose-dependent pattern. SCEPP-5 at 30 microg/ml remarkably blocked the LPS induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Taken together, these results suggest that SCEPP-5, an extract of SFE-CO2, displayed the strongest antioxidant and anti-inflammatory activities as compared to other extracts. Its protection against LPS-induced inflammation could be through the inhibition of iNOS and COX-2 expression. PMID:16820275

  13. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    PubMed

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  14. Identification of a Novel Dehydroergosterol Enhancing Microglial Anti-Inflammatory Activity in a Dairy Product Fermented with Penicillium candidum

    PubMed Central

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  15. Self-assembling polymeric nanoparticles for enhanced intra-articular anti-inflammatory protein delivery

    NASA Astrophysics Data System (ADS)

    Whitmire, Rachel Elisabeth

    Osteoarthritis (OA) affects 26 million Americans, or approximately 14% of the adult population. The incidence of OA is predicted to dramatically increase in the next 20 years as the US grows older and the rate of obesity continues to increase. There are currently no clinical interventions that cure OA. Current biomaterial delivery systems exhibit several limitations. First, most drug-delivery particles are hydrophobic, which is not optimal for hydrophilic protein encapsulation. Second, hydrophobic particles, such as PLGA, could cause wear damage to the already-fragile OA cartilage structure. Additionally, these particles usually suffer from non-specific protein adsorption, which causes increased phagocytosis and can lead to increased inflammation. New therapies that increase the effectiveness of OA treatments or reverse OA disease progression will greatly decrease the economic costs and individual pain associated with this disease. The goal of this thesis was to develop a new drug-delivering material to deliver anti-inflammatory protein for treating OA. Our central hypothesis for this work is that a controlled release/presentation system will more effectively deliver anti-inflammatory protein therapies to the OA joint. The primary goal of this work was to synthesize a block copolymer that could self-assemble into injectable, sub-micron-scale particles and would allow an anti-inflammatory protein, IL-1ra, to be tethered to its surface for efficient protein delivery. The block copolymer incorporated an oligo-ethylene monomer for tissue compatibility and non-fouling behavior, a 4-nitrophenol group for efficient protein tethering, and cyclohexyl methacrylate, a hydrophobic monomer, for particle stability. We engineered the copolymer and tested it in both in vitro culture experiments and an in vivo model to evaluate protein retention in the knee joint. The rationale for this project was that the rational design and synthesis of a new drug- and protein

  16. Retention of Endogenous Viable Cells Enhances the Anti-Inflammatory Activity of Cryopreserved Amnion

    PubMed Central

    Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Uveges, Thomas E.; Jacobstein, Douglas A.; Danilkovitch, Alla

    2015-01-01

    Objective: Human amniotic membrane (hAM) has been used to treat wounds for more than 100 years. However, widespread use of fresh hAM has been limited due to its short shelf life and safety concerns. To overcome these concerns, different preservation methods have been introduced. The majority of these methods result in devitalized hAM (dev-hAM). Recently, we developed a cryopreservation method that retains all hAM components intact (int-hAM), including viable endogenous cells. To understand the advantages of retaining viable cells in preserved hAM, we compared the anti-inflammatory properties of int-hAM and dev-hAM. Approach: The tissue composition of int-hAM and dev-hAM was compared with fresh hAM through histology and cell viability analysis. We also evaluated the ability of int-hAM and dev-hAM to regulate tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and IL-10 release when co-cultured with immune cells; to produce prostaglandin E2 (PGE2) on TNF-α stimulation; and to inhibit proteases. Results: Int-hAM maintained the structural and cellular integrity of fresh hAM. Int-hAM had >80% cell viability post-thaw and remained viable for at least a week in culture. Viable cells were not detected in dev-hAM. Compared with dev-hAM, int-hAM showed significantly greater downregulation of TNF-α and IL-1α, upregulation of PGE2 and IL-10, and stronger inhibition of collagenase. Innovation and Conclusion: A new cryopreservation method has been developed to retain all native components of hAM. For the first time, we show that viable endogenous cells significantly augment the anti-inflammatory activity of cryopreserved hAM. PMID:26401419

  17. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    PubMed

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. PMID:26028561

  18. Release-active dilutions of diclofenac enhance anti-inflammatory effect of diclofenac in carrageenan-induced rat paw edema model.

    PubMed

    Sakat, Sachin S; Mani, Kamaraj; Demidchenko, Yulia O; Gorbunov, Evgeniy A; Tarasov, Sergey A; Mathur, Archna; Epstein, Oleg I

    2014-02-01

    The study was aimed to investigate the effect of technologically treated diclofenac (release-active dilutions of diclofenac (RAD of diclofenac)) on anti-inflammatory activity of diclofenac in carrageenan-induced rat paw edema model. Ninety male Wistar albino rats (6-8 weeks) divided into nine groups (n = 10) were used. Anti-inflammatory activity was assessed at 1, 2, 3, 4, and 6 h after subplantar injection of carrageenan (0.1 ml of a 1 % solution in normal saline). Diclofenac alone was studied at 5 and 20 mg/kg, RAD of diclofenac alone at 7.5 ml/kg and their combination at 5 and 7.5 ml/kg, respectively. Diclofenac reduced (p < 0.05 at least) paw edema at all time points. RAD of diclofenac enhanced (p < 0.05) anti-inflammatory effect of diclofenac (5 mg/kg) at 2, 4, and 6 h on concurrent and at 2 and 4 h on sequential administration. Moreover at 2 h, anti-inflammatory effect of combination treatment reached values comparable to those of diclofenac (20 mg/kg). In conclusion, RAD of diclofenac enhanced anti-inflammatory effect of diclofenac. PMID:24005897

  19. The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer's disease.

    PubMed

    Varnum, Megan M; Kiyota, Tomomi; Ingraham, Kaitlin L; Ikezu, Seiko; Ikezu, Tsuneya

    2015-11-01

    Cluster of Differentiation-200 (CD200) is an anti-inflammatory glycoprotein expressed in neurons, T cells, and B cells, and its receptor is expressed on glia. Both Alzheimer's disease patients and mouse models display age-related or amyloid-β peptide (Aβ)-induced reductions in CD200. The goal of this study was to determine if neuronal CD200 expression restores hippocampal neurogenesis and reduces Aβ in the amyloid precursor protein mouse model. Amyloid precursor protein and wild-type mice were injected at 6 months of age with an adeno-associated virus expressing CD200 into the hippocampus and sacrificed at 12 months. CD200 expression restored neural progenitor cell proliferation and differentiation in the subgranular and granular cell layers of the dentate gyrus and reduced diffuse but not thioflavin-S(+) plaques in the hippocampus. In vitro studies demonstrated that CD200-stimulated microglia increased neural differentiation of neural stem cells and enhanced axon elongation and dendrite number. CD200 also enhanced Aβ uptake by microglia. These data indicate that CD200 is capable of enhancing microglia-mediated Aβ clearance and neural differentiation and has potential as a therapeutic for Alzheimer's disease. PMID:26315370

  20. Anti-proliferative Activity of T-bet

    PubMed Central

    Oh, Yeon Ji; Shin, Ji Hyun; Won, Hee Yeon

    2015-01-01

    T-bet is a critical transcription factor that regulates differentiation of Th1 cells from CD4+ precursor cells. Since T-bet directly binds to the promoter of the IFN-γ gene and activates its transcription, T-bet deficiency impairs IFN-γ production in Th1 cells. Interestingly, T-bet-deficient Th cells also display substantially augmented the production of IL-2, a T cell growth factor. Exogenous expression of T-bet in T-bet deficient Th cells rescued the IFN-γ production and suppressed IL-2 expression. IFN-γ and IL-2 reciprocally regulate Th cell proliferation following TCR stimulation. Therefore, we examined the effect of T-bet on Th cell proliferation and found that T-bet deficiency significantly enhanced Th cell proliferation under non-skewing, Th1-skewing, and Th2-skewing conditions. By using IFN-γ-null mice to eliminate the anti-proliferative effect of IFN-γ, T-bet deficiency still enhanced Th cell proliferation under both Th1- and Th2-skewing conditions. Since the anti-proliferative activity of T-bet may be influenced by IL-2 suppression in Th cells, we examined whether T-bet modulates IL-2-independent cell proliferation in a non-T cell population. We demonstrated that T-bet expression induced by ecdysone treatment in human embryonic kidney (HEK) cells increased IFN-γ promoter activity in a dose dependent manner, and sustained T-bet expression considerably decreased cell proliferation in HEK cells. Although the molecular mechanisms underlying anti-proliferative activity of T-bet remain to be elucidated, T-bet may directly suppress cell proliferation in an IFN-γ- or an IL-2-independent manner. PMID:26330806

  1. Revascularization of pancreatic islet allografts is enhanced by α-1-antitrypsin under anti-inflammatory conditions.

    PubMed

    Bellacen, Keren; Kalay, Noa; Ozeri, Eyal; Shahaf, Galit; Lewis, Eli C

    2013-01-01

    Pancreatic islets are a highly vascularized entity, and their transplantation into diabetic individuals requires optimal revascularization. In addition, β-cells in islets are extremely sensitive to inflammation. α-1-Antitrypsin (AAT), a circulating serine-protease inhibitor that is available for clinical use as an affinity-purified human product, has been shown to protect islets from graft failure in mouse transplantation models and to achieve readily vascularized islet grafts. AAT is known to induce vascular endothelial growth factor (VEGF) expression and release, as well as protect from proteolytic cleavage of VEGF by elastase, promote viability of endothelial cells, and enhance migration of myocytes. Our aim was to examine whether AAT enhances vasculogenesis toward islet grafts. We employed Matrigel-islet plugs as means to introduce islets in an explantable isolated compartment and examined vessel formation, vessel maturation, and inflammatory profile of explants 9 days after implantation. Also, we examined primary epithelial cell grafts that were prepared from lungs of mice that are transgenic for human AAT. In addition, aortic ring sprouting assay was performed, and HUVEC tube formation assays were studied in the presence of AAT. Our findings indicate that islet grafts exhibit mature vessels in the presence of AAT, as demonstrated by morphology, as well as expression of endothelial CD31, smooth muscle actin (SMA), and von Willebrand factor (vWF). Epithelial cells that express human AAT achieved a similar positive outcome. Aortic ring sprouting was enhanced in AAT-treated cultures and also in cultures that contained primary epithelial cells from human AAT transgenic animals in the absence of added AAT. According to the tube formation assay, HUVECs exhibited superior responses in the presence of AAT. We conclude that vasculogenesis toward islet grafts is enhanced in the presence of AAT. Together with the remarkable safety profile of AAT, the study supports its

  2. Suppression of PRKAR1A expression enhances anti-proliferative and apoptotic effects of protein kinase inhibitors and chemotherapeutic drugs on cholangiocarcinoma cells.

    PubMed

    Loilome, Watcharin; Juntana, Sirinun; Pinitsoontorn, Chadamas; Namwat, Nisana; Tassaneeyakul, Wichittra; Yongvanit, Puangrat

    2012-01-01

    Suppression of protein kinase A regulatory subunit 1 alpha (PRKAR1A) has been proven to inhibit cholangiocarcinoma (CCA) cell growth and enhance apoptosis. In the present study, we aimed to determine synergistic and/or additive effects of chemotherapeutic agents, including protein kinase inhibitors (i.e. sorafenib, sunitinib, gefitinib, Met inhibitor) and conventional chemotherapeutic drugs (i.e. 5-fluorouracil, doxorubicin, paclitaxel, gemcitabine), in PRKARIA knockdown CCA cell lines. The results revealed that PRKAR1A suppressed CCA cell lines demonstrated enhanced sensitivity to some chemotherapeutic drugs when compared to control cells. Moreover, PRKAR1A knockdown in combination with either sorafenib or 5-fluorouracil increased apoptotic effects on CCA cell lines. Therefore, selective inhibition of PRKAR1A appears to enhance the growth inhibitory effects of chemotherapeutic drugs as well as induce apoptotic cell death. Our findings suggest that additional suppression of PRKAR1A expression may increase the efficacy of conventional CCA chemotherapeutic treatment. Clinical studies in CCA patients now need to be conducted. PMID:23480756

  3. Lipopolysaccharide-induced anti-inflammatory acute phase response is enhanced in spermidine/spermine N1-acetyltransferase (SSAT) overexpressing mice.

    PubMed

    Pirnes-Karhu, Sini; Sironen, Reijo; Alhonen, Leena; Uimari, Anne

    2012-02-01

    Bacterial lipopolysaccharide (LPS) is an effective activator of the components of innate immunity. It has been shown that polyamines and their metabolic enzymes affect the LPS-induced immune response by modulating both pro- and anti-inflammatory actions. On the other hand, LPS causes changes in cellular polyamine metabolism. In this study, the LPS-induced inflammatory response in spermidine/spermine N(1)-acetyltransferase overexpressing transgenic mice (SSAT mice) was analyzed. In liver and kidneys, LPS enhanced the activity of the polyamine biosynthetic enzyme ornithine decarboxylase and increased the intracellular putrescine content in both SSAT overexpressing and wild-type mice. In survival studies, the enhanced polyamine catabolism and concomitantly altered cellular polyamine pools in SSAT mice did not affect the LPS-induced mortality of these animals. However, in the acute phase of LPS-induced inflammatory response, the serum levels of proinflammatory cytokines interleukin-1β and interferon-γ were significantly reduced and, on the contrary, anti-inflammatory cytokine interleukin-10 was significantly increased in the sera of SSAT mice compared with the wild-type animals. In addition, hepatic acute-phase proteins C-reactive protein, haptoglobin and α(1)-acid glycoprotein were expressed in higher amounts in SSAT mice than in the wild-type animals. In summary, the study suggests that SSAT overexpression obtained in SSAT mice enhances the anti-inflammatory actions in the acute phase of LPS-induced immune response. PMID:21814792

  4. Mutually enhancing anti-inflammatory activities of dimethyl fumarate and NF-κB inhibitors--implications for dose-sparing combination therapies.

    PubMed

    Hund, Anna-Carina; Lockmann, Anike; Schön, Michael P

    2016-02-01

    Fumaric acid esters, dimethyl fumarate (DMF) in particular, have been established for the therapy of psoriasis and, more recently, multiple sclerosis. In the light of therapy-limiting dose-dependent side effects, such as gastrointestinal irritation, reducing the effective doses of FAE is a worthwhile goal. In search of strategies to maintain the anti-inflammatory activity of DMF at reduced concentrations, we found that NF-κB inhibition augmented key anti-inflammatory effects of DMF in two complementary experimental settings in vitro. At non-toxic concentrations, both proteasome inhibition with bortezomib as well as blocking NF-κB activation through KINK-1, a small molecule inhibitor of IKKβ-profoundly enhanced DMF-dependent inhibition of nuclear NF-κB translocation in TNFα-stimulated human endothelial cells. This resulted in significant and selective co-operative down-regulation of endothelial adhesion molecules crucial for leucocyte extravasation, namely E-selectin (CD62E), VCAM-1 (CD106) and ICAM-1 (CD54), on both mRNA and protein levels. Functionally, these molecular changes led to synergistically decreased rolling and firm adhesion of human lymphocytes on TNF-activated endothelial cells, as demonstrated in a dynamic flow chamber system. If our in vitro findings can be translated into clinical settings, it is conceivable that anti-inflammatory effects of DMF can be achieved with lower doses than currently used, thus potentially reducing unwanted side effects. PMID:26513635

  5. Enhanced anti-inflammatory potential of cinnamate-zinc layered hydroxide in lipopolysaccharide-stimulated RAW 264.7 macrophages

    PubMed Central

    Adewoyin, Malik; Mohsin, Sumaiyah Megat Nabil; Arulselvan, Palanisamy; Hussein, Mohd Zobir; Fakurazi, Sharida

    2015-01-01

    Background Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA. Methods In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined. Results Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only. Conclusion The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control. PMID:25995619

  6. Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model.

    PubMed

    Liu, Jun-Yan; Yang, Jun; Inceoglu, Bora; Qiu, Hong; Ulu, Arzu; Hwang, Sung-Hee; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2010-03-15

    Inflammation is a multi-staged process whose expansive phase is thought to be driven by acutely released arachidonic acid (AA) and its metabolites. Inhibition of cyclooxygenase (COX), lipoxygenase (LOX), or soluble epoxide hydrolase (sEH) is known to be anti-inflammatory. Inhibition of sEH stabilizes the cytochrome P450 (CYP450) products epoxyeicosatrienoic acids (EETs). Here we used a non-selective COX inhibitor aspirin, a 5-lipoxygenase activation protein (FLAP) inhibitor MK886, and a sEH inhibitor t-AUCB to selectively modulate the branches of AA metabolism in a lipopolysaccharide (LPS)-challenged murine model. We used metabolomic profiling to simultaneously monitor representative AA metabolites of each branch. In addition to the significant crosstalk among branches of the AA cascade during selective modulation of COX, LOX, or sEH, we demonstrated that co-administration of t-AUCB enhanced the anti-inflammatory effects of aspirin or MK886, which was evidenced by the observations that co-administration resulted in favorable eicosanoid profiles and better control of LPS-mediated hypotension as well as hepatic protein expression of COX-2 and 5-LOX. Targeted disruption of the sEH gene displayed a parallel profile to that produced by t-AUCB. These observations demonstrate a significant level of crosstalk among the three major branches of the AA cascade and that they are not simply parallel pathways. These data illustrate that inhibition of sEH by both pharmacological intervention and gene knockout enhances the anti-inflammatory effects of aspirin and MK886, suggesting the possibility of modulating multiple branches to achieve better therapeutic effects. PMID:19896470

  7. Topical Niosome Gel of Zingiber cassumunar Roxb. Extract for Anti-inflammatory Activity Enhanced Skin Permeation and Stability of Compound D.

    PubMed

    Priprem, Aroonsri; Janpim, Khwanhatai; Nualkaew, Somsak; Mahakunakorn, Pramote

    2016-06-01

    An extract of Zingiber cassumunar Roxb. (ZC) was encapsulated in niosomes of which a topical gel was formed. (E)-4-(3',4'-dimethoxyphenyl)but-3-en-1-ol or compound D detected by a gradient HPLC was employed as the marker and its degradation determined to follow zero-order kinetics. Niosomes significantly retarded thermal-accelerated decomposition of compound D in the gel (p < 0.05) but did not change the activation energy of compound D. Niosomes enhanced in vitro permeation rate of compound D from the gel. Topical applications of ZC noisome gel gave a faster change in tail flick latency than piroxicam gel and hydrocortisone cream (p < 0.05) while there were insignificant differences in anti-inflammatory activity up to 6 h using croton oil-induced ear edema model in mice (p > 0.05). Thus, encapsulation of ZC extract in niosomes enhanced chemical stability and skin permeation with comparable topical anti-inflammatory effects to steroid and NSAID. PMID:26292930

  8. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles.

    PubMed

    Bernela, Manju; Ahuja, Munish; Thakur, Rajesh

    2016-08-01

    Efforts were made to improve the bioavailability and efficacy of Glycyrrhizic acid, a triterpentine saponin obtained from Glycyrrhiza glabra, having several pharmacological properties, by its encapsulation in biocompatible biopolymeric nanoparticles. Polycationic chitosan and polyanionic gum katira were used to prepare nanoparticles by ionic complexation method. Glycyrrhizic acid was loaded into the nanoparticles and was then examined for change in its in vivo anti-inflammatory activity against carrageenan-induced rat hind paw inflammation. The effects of concentrations of glycyrrhizic acid, chitosan and katira gum, upon particle size and encapsulation efficiency of glycyrrhizic acid were studied with the help of response surface methodology employing 3-factor, 3-level central composite experimental design. Particle size and encapsulation efficiency of optimized nanoparticulate formulation were 175.8nm and 84.77%, respectively. Particles were observed in transmission electron microscopy to be spherical in shape and 80nm in size. FTIR analysis indicated electrostatic interactions between carboxyl groups of ammonium glycyrrhizinate and amino groups of chitosan. In vitro drug release studies indicated that glycyrrhizic acid was released from the nanoparticles following zero-order kinetics and that there was a sustained release of the drug with 90.71% of it being released over a 12h period, and that the mechanism of release of glycyrrhizic acid from the nanoparticles was a combination of diffusion and erosion of the polymer matrix. In-vivo anti inflammatory efficacy of glycyrrhizic acid clearly improved upon encapsulation in chitosan-katira gum nanoparticles, by overcoming the limited bioavailability of its other forms. PMID:27287555

  9. Anti-inflammatory Activity.

    PubMed

    2016-01-01

    Inflammation is the body's first response to infection or injury and is critical for both innate and adaptive immunity. It can be considered as part of the complex biological response of vascular tissues to harmful stimuli such as pathogens, damaged cells, or irritants. The search for natural compounds and phytoconstituents that are able to interfere with these mechanisms by preventing a prolonged inflammation could be useful for human health. Here, the anti-inflammatory properties of plant-based drugs are put together with both in vitro and acute (carrageenan, egg albumin and croton oil) and chronic (cotton pellet) in vivo models. PMID:26939273

  10. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    SciTech Connect

    Min, Kyung-Won; Zhang, Xiaobo; Imchen, Temjenmongla; Baek, Seung Joon

    2012-09-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  11. 21-NO-prednisolone is a novel nitric oxide-releasing derivative of prednisolone with enhanced anti-inflammatory properties

    PubMed Central

    Paul-Clark, Mark; Del Soldato, Piero; Fiorucci, Stefano; Flower, Roderick J; Perretti, Mauro

    2000-01-01

    Anti-inflammatory effects of a novel derivative of the glucocorticoid prednisolone were investigated. NCX-1015 (prednisolone 21-[(4′-nitrooxymethyl)benzoate]) incubation in human platelet-rich plasma produced a time (0–60 min) and concentration (3–300 μM) dependent release of nitrite, that was mirrored by accumulation of cyclic guanosine monophosphate in the human platelets. Intraperitoneal injection of NCX-1015 to mice (up to 27.7 μmol kg−1) produced nitrite accumulation in the peritoneal cavity maximal at 60 min. NCX-1015 dose-dependently induced the steroid sensitive cell surface marker CD163 in human peripheral blood mononuclear cells (PBMCs). NCX-1015 was more potent than prednisolone in inducing CD163. Similarly, lipopolysaccharide induced interleukin-1β release from these cells was inhibited by NCX-1015 with higher potency than prednisolone. In the zymosan peritonitis model, NCX-1015 was more active than prednisolone in suppressing neutrophil extravasation (ED50 of 5.5 and 25.8 μmol kg−1, respectively), nitrite accumulation (ED50 of 1.38 and 22.2 μmol kg−1, respectively) and release of the chemokine KC (ED50 of 5.5 and 27.7 μmol kg−1, respectively) as determined at the 4 h time-point. No differences were measured for the levels of interleukin-1β or prostaglandin E2. NCX-1015 administered orally was also found to be equally active. Co-administration of the nitric oxide donors NOC-18 ((z)-1-[(2-aminoethyl)-N-(2-aminoethyl)amino] diazen-1-ium-1, 2-diolate; 7.9 μmol kg−1) or sodium nitroprusside (13.8 μmol kg−1) with prednisolone resulted in an additive anti-migratory action. In a chronic model of granulomatous tissue inflammation, administration of NCX-1015 (13.9 μmol kg−1) from day 1 (i.e. after induction of inflammation) was more effective than prednisolone in reducing the granuloma dry weight, and this was associated to a lower anti-angiogenic effect. In conclusion we show that NCX-1015 is

  12. Enhanced Loading and Release of Non-Steroidal Anti-Inflammatory Drugs from Silica-Based Nanoparticle Carriers.

    PubMed

    Mohammadzadeh, Mostafa; Nourbakhsh, Mohammad Sadegh; Khodaverdi, Elham; Hadizadeh, Farzin; Omid Malayeri, Sina

    2016-09-01

    Silica nanoparticles can be potentially considered the carriers of controlled drug systems. In this research, non-steroidal anti-inflammatory drugs were used. Diclofenac sodium and piroxicam were loaded on the considered nanosilica using solvent evaporation method. To prove drug encapsulation on the nanosilica and its rate, infrared spectroscopy, X-ray diffraction, and BET were used, and after proving the existence of the drug in the nanosilica matrix and determining the amount of loading, dissolution test was performed in an environment similar to that of stomach and intestine in terms of pH. Drug loading percentage showed that over 90% of drugs were loaded on nanosilica. Dissolution tests in stomach pH environment showed the control samples (drug without SBA-15) released considerable amount of drugs (about 90%) within first 15 min, when it was about 10-20% for the matrixes. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples. It was indicated nanosilica has the ability of retaining the drugs in acidic pH and prevented their release. Furthermore, the drugs were released in a controlled manner in small intestine, which is the main absorption site. PMID:27062095

  13. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation.

    PubMed

    Machova Urdzikova, Lucia; Karova, Kristyna; Ruzicka, Jiri; Kloudova, Anna; Shannon, Craig; Dubisova, Jana; Murali, Raj; Kubinova, Sarka; Sykova, Eva; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2016-01-01

    Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9-T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. PMID:26729105

  14. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation

    PubMed Central

    Machova Urdzikova, Lucia; Karova, Kristyna; Ruzicka, Jiri; Kloudova, Anna; Shannon, Craig; Dubisova, Jana; Murali, Raj; Kubinova, Sarka; Sykova, Eva; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2015-01-01

    Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. PMID:26729105

  15. Discovery of nonsteroidal anti-inflammatory drug and anticancer drug enhancing reprogramming and induced pluripotent stem cell generation.

    PubMed

    Yang, Chao-Shun; Lopez, Claudia G; Rana, Tariq M

    2011-10-01

    Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF-specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti-inflammatory drug Nabumetone and the anticancer drug 4-hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis-driven approach provides an alternative to shot-gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. PMID:21898684

  16. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Prasanth, R.; Nair, Greshma; Girish, C. M.

    2011-10-01

    Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells.

  17. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition

    PubMed Central

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. PMID:26869786

  18. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO₂ nanotube layers fabricated by lyophilization following trehalose addition.

    PubMed

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. PMID:26869786

  19. Enhancement of skin penetration of nonsteroidal anti-inflammatory drugs from extemporaneously compounded topical-gel formulations.

    PubMed

    Goodwin, D A; Fuhrman, L C

    1999-01-01

    Ketoprofen and ibuprofen topical gels were compounded with decyl methyl sulfoxide and the terpenes d-limonene, (-)-menthone, terpinen-4-ol, and a-terpineol as penetration enhancers. Transdermal penetration profiles for both ketoprofen and ibuprofen were determined using full-thickness human skin, modified Franz diffusion cells and an isotonic (pH7.4) phosphate buffer solution. Human skin was used in these experiments to approximate the therapeutic use of these gels. Ibuprofen was found to have superior transdermal kinetics when compared to ketoprofen. Ibuprofen is a smaller and more lipophilic molecule than ketoprofen, which gives it better penetration properties. All enhancers tested significantly increased the penetration (except (-)-menthone) and skin retention (except terpinen-4-ol) of ketoprofen. None of the enhancers tested significantly increased the penetration or retention of ibuprofen. Despite the lack of enhancer activity, ibuprofen still demonstrated higher skin penetration and retention than enhanced delivery of ketoproen. The results of these studies suggest that the addition of penetration enhancers can significantly increase the amount of ketoprofen penetration, while enhancers demonstrated no significant increase (and can actually decrease) the amount of ibuprofen penetrating into and through the skin. PMID:23985822

  20. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells.

    PubMed

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed. PMID:26176704

  1. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells

    PubMed Central

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M. Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary’s bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary’s anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed. PMID:26176704

  2. Enhanced Neuroprotection of Acetyl-11-Keto-β-Boswellic Acid (AKBA)-Loaded O-Carboxymethyl Chitosan Nanoparticles Through Antioxidant and Anti-Inflammatory Pathways.

    PubMed

    Ding, Yi; Qiao, Youbei; Wang, Min; Zhang, Huinan; Li, Liang; Zhang, Yikai; Ge, Jie; Song, Ying; Li, Yuwen; Wen, Aidong

    2016-08-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a main active constituent from Boswellia serrata resin, is a novel candidate for therapy of cerebral ischemia-reperfusion (I/R) injury. Nevertheless, its poor solubility in aqueous solvent, bioavailability, and rapid clearance limit its curative efficacy. To enhance its potency, in our study, AKBA-loaded o-carboxymethyl chitosan nanoparticle (AKBA-NP) delivery system was synthesized. The transmission electron microscopy and transmission electron microscope images of AKBA-NPs suggested that particle size was 132 ± 18 nm, and particles were spherical in shape with smooth morphology. In pharmacokinetics study, AKBA-NPs apparently increases the area under the curve of plasma concentration-time and prolonged half-life compared with AKBA. The tissue distribution study confirmed that AKBA-NPs had a better brain delivery efficacy in comparison with AKBA. The results from our pharmacodynamic studies showed that AKBA-NPs possess better neuroprotection compared with AKBA in primary neurons with oxygen-glucose deprivation (OGD) model and in animals with middle cerebral artery occlusion (MCAO) model. Additionally, AKBA-NPs modulate antioxidant and anti-inflammatory pathways more effectively than AKBA by increasing nuclear erythroid 2-related factor 2 and heme oxygenase-1 expression, and by decreasing nuclear factor-kappa B and 5-lipoxygenase expression. Collectively, our results suggest that AKBA-NPs serve as a potent delivery vehicle for AKBA in cerebral ischemic therapy. PMID:26162321

  3. CLEFMA- An Anti-Proliferative Curcuminoid from Structure Activity Relationship Studies on 3,5-bis(benzylidene)-4-piperidones

    PubMed Central

    Lagisetty, Pallavi; Vilekar, Prachi; Sahoo, Kaustuv; Anant, Shrikant; Awasthi, Vibhudutta

    2010-01-01

    3,5-bis(benzylidene)-4-piperidones are being advanced as synthetic analogs of curcumin for anticancer and anti-inflammatory properties. We performed structure-activity relationship studies, by testing several synthesized 3,5-bis(benzylidene)-4-piperidones for anti-proliferative activity in lung adenocarcinoma H441 cells. Compared to the lead compound 1, or 3,5-bis(2-fluorobenzylidene)-4-piperidone, five compounds were found to be more potent (IC50 < 30 μM), and sixteen compounds possessed reduced cell-killing efficacy (IC50 > 50 μM). Based on the observations, we synthesized 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] (29 or CLEFMA) as a novel analog of 1. CLEFMA was evaluated for anti-proliferative activity in H441 cells, and was found to be several folds more potent than compound 1. We did not find apoptotic cell population in flow cytometry, and the absence of apoptosis was confirmed by the lack of caspase cleavage. The electron microscopy of H441cells indicated that CLEFMA and compound 1 induce autophagic cell death that was inhibited by specific autophagy inhibitor 3-methyladenine. The results suggest that the potent and novel curcuminoid, CLEFMA, offers an alternative mode of cell death in apoptosis-resistant cancers. PMID:20638855

  4. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    PubMed Central

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  5. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    PubMed

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  6. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis

    PubMed Central

    2010-01-01

    to enhance or prolong therapeutic efficacy and limit side-effects also in the therapy of rheumatoid arthritis. Depot and/or recirculation effects in plasma, inflamed joint, liver, and spleen may contribute to this superiority of liposomally encapsulated DxM-P. PMID:20642832

  7. Enhanced anti-inflammatory effects of DHA and quercetin in lipopolysaccharide-induced RAW264.7 macrophages by inhibiting NF-κB and MAPK activation.

    PubMed

    Si, Tian-Lei; Liu, Qi; Ren, Yu-Fei; Li, Hui; Xu, Xiao-Yun; Li, Er-Hu; Pan, Si-Yi; Zhang, Jiu-Liang; Wang, Ke-Xing

    2016-07-01

    The aim of the present study was to investigate the anti-inflammatory effects of docosahexaenoic acid (DHA) + quercetin (QE) used in combination. DHA and QE are natural compounds derived from various foods and have been demonstrated to exert anti‑inflammatory effects The protein mRNA expression involved in the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signalling pathway was analyzed by western blot analysis and reverse transcription-polymerase chain reaction methods respectively, other cytokines were detected by an enzyme‑linked immunosorbent assay kit. The results of the present study demonstrated that combined treatment of lipopolysaccharide (LPS)‑stimulated RAW264.7 cells with DHA + QE decreased the levels of pro‑inflammatory mediators to a greater extent than QE or DHA alone. Additionally, DHA + QE synergistically suppressed nitric oxide, prostaglandin E2 and cyclooxygenase-2 levels. Molecular‑level studies indicated that the DHA + QE combination can significantly inhibit the mRNA expression of NF‑κB subunits p50 and p65, extracellular signal‑regulated kinase (ERK) 1/2 and c‑JUN N‑terminal kinase (JNK) 1/2, which suggests that the NF‑κB signalling pathway is involved in the synergistic effects observed. Furthermore, western blot analysis demonstrated that DHA + QE synergistically inhibit the phosphorylation of p50, p65, ERK1/2 and JNK1/2. This finding indicates that the enhanced anti‑inflammatory effects of the combined compounds are achieved by suppressing NF‑κB and MAPK signalling in LPS‑stimulated RAW264.7 cells. The results of the present study suggest that DHA and QE in combination may be utilized as potent anti‑inflammatory compounds, with potential preventative or palliative effects on obesity, atherosclerosis and cardiovascular diseases. PMID:27176922

  8. Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

    PubMed Central

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

  9. Polish Natural Bee Honeys Are Anti-Proliferative and Anti-Metastatic Agents in Human Glioblastoma multiforme U87MG Cell Line

    PubMed Central

    Moskwa, Justyna; Borawska, Maria H.; Markiewicz-Zukowska, Renata; Puscion-Jakubik, Anna; Naliwajko, Sylwia K.; Socha, Katarzyna; Soroczynska, Jolanta

    2014-01-01

    Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9) expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content). The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation). We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively). Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors. PMID:24594866

  10. Plumbagin exhibits an anti-proliferative effect in human osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling

    PubMed Central

    Xue, Yuan-Liang; Meng, Xiang-Qi; Ma, Long-Jun; Yuan, Zhen

    2016-01-01

    Plumbagin, a naphthoquinone constituent of Plumbago zeylanica L. (Plumbaginaceae) is widely used in traditional Chinese medicine as an antifungal, antibacterial and anti-inflammatory agent. Plumbagin is known to exhibit proapoptotic, antiangiogenic and antimetastatic effects in cancer cells. The transcriptional co-factor four and a half LIM domains 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of gene expression, signal transduction and cell proliferation and differentiation, and also acts as a tumor suppressor or oncoprotein depending on the tissue microenvironment. The present study investigated the effect of plumbagin on FHL2 expression, Wnt/β-catenin signalling and its anti-proliferative activity in various human osteosarcoma cell lines, including SaOS2, MG63, HOS and U2OS. The cells were exposed to plumbagin and the expression of FHL2 was evaluated using western blot analysis. Furthermore, the anti-proliferative effect of plumbagin was evaluated using a 3-(4,5 dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, since FHL2 is involved in Wnt/β-catenin signaling, the effect of plumbagin on β-catenin and its primary target genes, including v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) and WNT1 inducible signaling pathway protein-1 (WISP-1), was evaluated using western blot analysis. It was observed that plumbagin suppressed the expression of FHL2 and exhibited significant anti-proliferative activity in osteosarcoma cells. It also attenuated Wnt/β-catenin signalling by downregulating β-catenin and its target genes, including c-Myc and WISP-1. In conclusion, plumbagin demonstrated anti-proliferative activity in osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling. PMID:27446400

  11. Potentiated clinoptilolite: artificially enhanced aluminosilicate reduces symptoms associated with endoscopically negative gastroesophageal reflux disease and nonsteroidal anti-inflammatory drug induced gastritis

    PubMed Central

    Potgieter, Wilna; Samuels, Caroline Selma; Snyman, Jacques Renè

    2014-01-01

    Purpose The cation exchanger, a potentiated clinoptilolite (Absorbatox™ 2.4D), is a synthetically enhanced aluminosilicate. The aim of this study was to evaluate the possible benefits of a potentiated clinoptilolite as a gastroprotective agent in reducing the severity of clinical symptoms and signs associated with 1) endoscopically negative gastroesophageal reflux disease (ENGORD) and 2) nonsteroidal anti-inflammatory drug (NSAID) medication. Methods and patients Two randomized, double-blind, placebo-controlled, pilot studies, the ENGORD and NSAID studies, were conducted. After initial negative gastroscopy, a total of 25 patients suffering from ENGORD were randomized to receive either placebo capsules or 750 mg Absorbatox twice daily for 14 days. The NSAID study recruited 23 healthy patients who received orally either 1,500 mg Absorbatox or placebo three times daily, plus 500 mg naproxen twice daily. Patients underwent gastroscopic evaluation of their stomach linings prior to and on day 14 of the study. Gastric biopsies were obtained and evaluated via the upgraded Sydney system, whereas visible gastric events and status of the gastric mucosa were evaluated via a 0–3 rating scale. During both studies, patients recorded gastric symptoms in a daily symptom diary. Results In the ENGORD study, patients who received the potentiated clinoptilolite reported a significant reduction (P≤0.05) in severity of symptoms including reduction in heartburn (44%), discomfort (54%), and pain (56%). Symptom-free days improved by 41% compared to the group who received placebo (not significant). This was over and above the benefits seen with the proton pump inhibitor. In the NSAID study, the reduction in gastric symptom severity was echoed in the group who received the potentiated clinoptilolite. Treatment with the potentiated clinoptilolite resulted in significant prevention (P≤0.05) of mucosal erosion severity as graded by the gastroenterologist. Conclusion Absorbatox is a

  12. Prednisolone- and sirolimus-eluting stent: Anti-inflammatory approach for inhibiting in-stent restenosis.

    PubMed

    Lee, So-Youn; Bae, In-Ho; Sung Park, Dae; Jang, Eun-Jae; Shim, Jae-Won; Lim, Kyung-Seob; Park, Jun-Kyu; Sim, Doo Sun; Jeong, Myung Ho

    2016-07-01

    Glucocorticoids are powerful anti-inflammatory, immunosuppressive, and anti-proliferative agents. The aim of this study was to evaluate the effectiveness of a prednisolone- (PDScs) and sirolimus-coated stent (SRLcs) in preventing artery vessel neointimal hyperplasia and inflammatory reactions in vitro and in vivo. PDS, a synthetic glucocorticoid, is a derivative of cortisol, which is used to treat a variety of inflammatory and autoimmune conditions. The stents were fabricated with PDS, SRL, or both agents using a layer-by-layer coating system (designated as PDScs, SRLcs, and PDSRLcs, respectively). The surface morphology of the PDScs showed an evenly dispersed and roughened shape, which was smoothened by the SRL coating. Half of the total drug amounts were released within seven days, followed by an additional release, which continued for up to 28 days. The proliferation of smooth muscle cells was inhibited in the SRLcs group (31.5 ± 4.08%), and this effect was enhanced by PDS addition (PDSRLcs, 46.8 ± 8.11%). Consistently, in the animal study, the restenosis rate was inhibited by the SRLcs and PDSRLcs (18.5 ± 6.23% and 14.5 ± 3.55%, respectively). Especially, fibrin expression and inflammation were suppressed in the PDS-containing group (PDScs, 0.6 ± 0.12 and 1.4 ± 0.33; PDSRLcs, 0.7 ± 0.48 and 1.7 ± 0.12, respectively) compared to PDS non-containing groups (BMS, 1.1 ± 0.12, and 1.8 ± 0.55; SRLcs, 1.6 ± 0.32 and 2.0 ± 0.62, respectively). Moreover, re-endothelialization was enhanced in the PDScs group as determined using immunohistochemistry with a cluster of differentiation (CD)-31 antibodies. These results suggest that the inhibitory effect of SRLcs on anti-restenosis can be accelerated by additional coating with PDS, which has promising properties as a bioactive compound with useful anti-inflammatory effects. PMID:26873634

  13. Bioassay-guided chemical study of the anti-inflammatory effect of Senna villosa (Miller) H.S. Irwin & Barneby (Leguminosae) in TPA-induced ear edema.

    PubMed

    Susunaga-Notario, Ana del Carmen; Pérez-Gutiérrez, Salud; Zavala-Sánchez, Miguel Angel; Almanza-Pérez, Julio Cesar; Gutiérrez-Carrillo, Atilano; Arrieta-Báez, Daniel; López-López, Ana Laura; Román-Ramos, Rubén; Flores-Sáenz, José Luis Eduardo; Alarcón-Aguilar, Francisco Javier

    2014-01-01

    Senna villosa (Miller) is a plant that grows in México. In traditional Mexican medicine, it is used topically to treat skin infections, pustules and eruptions and to heal wounds by scar formation. However, studies of its potential anti-inflammatory effects have not been performed. The aim of the present study was to determine the anti-inflammatory effect of extracts from the leaves of Senna villosa and to perform a bioassay-guided chemical study of the extract with major activity in a model of ear edema induced by 12-O-tetradecanoylphorbol 13-acetate (TPA). The results reveal that the chloroform extract from Senna villosa leaves has anti-inflammatory and anti-proliferative properties. Nine fractions were obtained from the bioassay-guided chemical study, including a white precipitate from fractions 2 and 3. Although none of the nine fractions presented anti-inflammatory activity, the white precipitate exhibited pharmacological activity. It was chemically characterized using mass spectrometry and infrared and nuclear magnetic resonance spectroscopy, resulting in a mixture of three aliphatic esters, which were identified as the principal constituents: hexyl tetradecanoate (C20H40O2), heptyl tetradecanoate (C21H42O2) and octyl tetradecanoate (C22H44O2). This research provides, for the first time, evidence of the anti-inflammatory and anti-proliferative properties of compounds isolated from Senna villosa. PMID:25029073

  14. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  15. Degradable magnesium-based implant materials with anti-inflammatory activity.

    PubMed

    Peng, Qiuming; Li, Kun; Han, Zengsheng; Wang, Erde; Xu, Zhigang; Liu, Riping; Tian, Yongjun

    2013-07-01

    The objective of this study was to prepare a new biodegradable Mg-based biomaterial, which provides good mechanical integrity in combination with anti-inflammatory function during the degradation process. The silver element was used, because it improved the mechanical properties as an effective grain refiner and it is also treated as a potential anti-inflammatory core. The new degradable Mg-Zn-Ag biomaterial was prepared by zone solidification technology and extrusion. The mechanical properties were mostly enhanced by fine grain strengthening. In addition, the alloys exhibited good cytocompatibility. The anti-inflammatory function of degradation products was identified by both interleukin-1α and nitric oxide modes. The anti-inflammatory impact was significantly associated with the concentration of silver ion. It was demonstrated that Mg-Zn-Ag system was a potential metallic stent with anti-inflammatory function, which can reduce the long-term dependence of anti-inflammatory drug after coronary stent implantation. PMID:23203562

  16. High Spinal Anesthesia Enhances Anti-Inflammatory Responses in Patients Undergoing Coronary Artery Bypass Graft Surgery and Aortic Valve Replacement: Randomized Pilot Study

    PubMed Central

    Lee, Trevor W. R.; Kowalski, Stephen; Falk, Kelsey; Maguire, Doug; Freed, Darren H.; HayGlass, Kent T.

    2016-01-01

    Background Cardiac surgery induces many physiologic changes including major inflammatory and sympathetic nervous system responses. Here, we conducted a single-centre pilot study to generate hypotheses on the potential immune impact of adding high spinal anaesthesia to general anaesthesia during cardiac surgery in adults. We hypothesized that this strategy, previously shown to blunt the sympathetic response and improve pain management, could reduce the undesirable systemic inflammatory responses caused by cardiac surgery. Methods This prospective randomized unblinded pilot study was conducted on 14 patients undergoing cardiac surgery for coronary artery bypass grafting and/or aortic valve replacement secondary to severe aortic stenosis. The primary outcome measures examined longitudinally were serum pro-inflammatory (IL-6, IL-1b, CCL2), anti-inflammatory (IL-10, TNF-RII, IL-1Ra), acute phase protein (CRP, PTX3) and cardiovascular risk (sST2) biomarkers. Results The kinetics of pro- and anti-inflammatory biomarker was determined following surgery. All pro-inflammatory and acute phase reactant biomarker responses induced by surgical stress were indistinguishable in intensity and duration between control groups and those who also received high spinal anaesthesia. Conversely, IL-10 levels were markedly elevated in both intensity and duration in the group receiving high spinal anesthesia (p = 0.005). Conclusions This hypothesis generating pilot study suggests that high spinal anesthesia can alter the net inflammatory response that results from cardiac surgery. In appropriately selected populations, this may add incremental benefit by dampening the net systemic inflammatory response during the week following surgery. Larger population studies, powered to assess immune, physiologic and clinical outcomes in both acute and longer term settings, will be required to better assess potential benefits of incorporating high spinal anesthesia. Trial Registration Clinical

  17. Enhanced therapeutic anti-inflammatory effect of betamethasone on topical administration with low-frequency, low-intensity (20 kHz, 100 mW/cm(2)) ultrasound exposure on carrageenan-induced arthritis in a mouse model.

    PubMed

    Cohen, Gadi; Natsheh, Hiba; Sunny, Youhan; Bawiec, Christopher R; Touitou, Elka; Lerman, Melissa A; Lazarovici, Philip; Lewin, Peter A

    2015-09-01

    The purpose of this work was to investigate whether low-frequency, low-intensity (20 kHz, <100 mW/cm(2), spatial-peak, temporal-peak intensity) ultrasound, delivered with a lightweight (<100 g), tether-free, fully wearable, battery-powered applicator, is capable of reducing inflammation in a mouse model of rheumatoid arthritis. The therapeutic, acute, anti-inflammatory effect was estimated from the relative swelling induced in mice hindlimb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near-infrared labeled 2-deoxyglucose. The outcome of the experiments indicated that the combination of ultrasound exposure and topical application of 0.1% (w/w) betamethasone gel resulted in statistically significantly (p < 0.05) enhanced anti-inflammatory activity in comparison with drug or ultrasound treatment alone. The present study underscores the potential benefits of low-frequency, low-intensity ultrasound-assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, tolerable low-frequency, low-intensity ultrasound-promoted non-invasive drug delivery. PMID:26003010

  18. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    PubMed

    Tiptiri-Kourpeti, Angeliki; Spyridopoulou, Katerina; Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9) CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9) CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  19. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells

    PubMed Central

    Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E.; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S.; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  20. Synthesis and Anti-Proliferative Effects of Quercetin Derivatives.

    PubMed

    Al-Jabban, Sami M R; Zhang, Xiaojie; Chen, Guanglin; Mekuria, Ermias Addo; Rakotondraibe, Liva Harinantenaina; Chen, Qiao-Hong

    2015-12-01

    Prostate cancer is the most common diagnosed invasive cancer in American men and is the second leading cause of cancer-related deaths. Although there are several therapies successful in treating early, localized stage prostate cancer, current treatment of advanced metastatic castration-resistant prostate cancer remains ineffective due to inevitable progression of resistance to first-line treatment with docetaxel. The natural product quercetin (3,3',4',5,7-pentahydroxyflavone), a flavonoid compound ubiquitous in dietary plants, possesses evidenced potential in treating advanced metastatic castration-resistant prostate cancer. However, its poor bioavailability and moderate potency hinder its advancement into clinical therapy. In order to engineer quercetin derivatives with improved potency and pharmacokinetic profiles for the treatment of advanced metastatic prostate cancer, we started this study with creating a small library of alkylated derivatives of quercetin for in vitro evaluation. The biological data and chemical reactivity of quercetin and its derivatives reported in literature directed us to design 3,4',7-O-trialkylquercetins as our first batch of targets. Consequently, nine 3,4',7-O-trialkylquercetins, together with four 3,7-O- dialkylquercetins, four 3,3',4',7-tetraalkylquercetins, and one 3,3',4'-O-trialkylquercetin, were prepared by one step O-alkylation of commercially available quercetin mediated by potassium carbonate. Their structures were determined by ID and 2D NMR data, and HRMS. Their anti-proliferative activities towards both androgen-refractory and androgen-sensitive prostate cancer cells were evaluated using WST-1 cell proliferation assay. The acquired structure-activity relationships indicate that 3,7-O-dialkylquercetins rather than 3,4',7-O-trialkylquercetins were much more potent than quercetin towards prostate cancer cells. PMID:26882678

  1. Enhancement of the 1-Octanol/Water Partition Coefficient of the Anti-Inflammatory Indomethacin in the Presence of Lidocaine and Other Local Anesthetics.

    PubMed

    Tateuchi, Ryo; Sagawa, Naoki; Shimada, Yohsuke; Goto, Satoru

    2015-07-30

    Side effects and excessive potentiation of drug efficacy caused by polypharmacy are becoming important social issues. The apparent partition coefficient of indomethacin (log P'IND) increases in the presence of lidocaine, and this is used as a physicochemical model for investigating polypharmacy. We examined the changes in log P'IND caused by clinically used local anesthetics-lidocaine, tetracaine, mepivacaine, bupivacaine, and dibucaine-and by structurally similar basic drugs-procainamide, imipramine, and diltiazem. The quantitative structure-activity relationship study of log P'IND showed that the partition coefficient values (log PLA) and the structural entropic terms (ΔSobs, log f) of the additives affect log P'IND. These results indicate that the local anesthetics and structurally similar drugs function as phase-transfer catalysts, increasing the membrane permeability of indomethacin via heterogeneous intermolecular association. Therefore, we expect that the potency of indomethacin, an acidic nonsteroidal anti-inflammatory drug, will be increased by concurrent administration of the other drugs. PMID:26121007

  2. A Mixed Flavonoid-Fish Oil Supplement Induces Immune-Enhancing and Anti-Inflammatory Transcriptomic Changes in Adult Obese and Overweight Women—A Randomized Controlled Trial

    PubMed Central

    Cialdella-Kam, Lynn; Nieman, David C.; Knab, Amy M.; Shanely, R. Andrew; Meaney, Mary Pat; Jin, Fuxia; Sha, Wei; Ghosh, Sujoy

    2016-01-01

    Flavonoids and fish oils have anti-inflammatory and immune-modulating influences. The purpose of this study was to determine if a mixed flavonoid-fish oil supplement (Q-Mix; 1000 mg quercetin, 400 mg isoquercetin, 120 mg epigallocatechin (EGCG) from green tea extract, 400 mg n3-PUFAs (omega-3 polyunsaturated fatty acid) (220 mg eicosapentaenoic acid (EPA) and 180 mg docosahexaenoic acid (DHA)) from fish oil, 1000 mg vitamin C, 40 mg niacinamide, and 800 µg folic acid) would reduce complications associated with obesity; that is, reduce inflammatory and oxidative stress markers and alter genomic profiles in overweight women. Overweight and obese women (n = 48; age = 40–70 years) were assigned to Q-Mix or placebo groups using randomized double-blinded placebo-controlled procedures. Overnight fasted blood samples were collected at 0 and 10 weeks and analyzed for cytokines, C-reactive protein (CRP), F2-isoprostanes, and whole-blood-derived mRNA, which was assessed using Affymetrix HuGene-1_1 ST arrays. Statistical analysis included two-way ANOVA models for blood analytes and gene expression and pathway and network enrichment methods for gene expression. Plasma levels increased with Q-Mix supplementation by 388% for quercetin, 95% for EPA, 18% for DHA, and 20% for docosapentaenoic acid (DPA). Q-Mix did not alter plasma levels for CRP (p = 0.268), F2-isoprostanes (p = 0.273), and cytokines (p > 0.05). Gene set enrichment analysis revealed upregulation of pathways in Q-Mix vs. placebo related to interferon-induced antiviral mechanism (false discovery rate, FDR < 0.001). Overrepresentation analysis further disclosed an inhibition of phagocytosis-related inflammatory pathways in Q-Mix vs. placebo. Thus, a 10-week Q-Mix supplementation elicited a significant rise in plasma quercetin, EPA, DHA, and DPA, as well as stimulated an antiviral and inflammation whole-blood transcriptomic response in overweight women. PMID:27187447

  3. A Mixed Flavonoid-Fish Oil Supplement Induces Immune-Enhancing and Anti-Inflammatory Transcriptomic Changes in Adult Obese and Overweight Women-A Randomized Controlled Trial.

    PubMed

    Cialdella-Kam, Lynn; Nieman, David C; Knab, Amy M; Shanely, R Andrew; Meaney, Mary Pat; Jin, Fuxia; Sha, Wei; Ghosh, Sujoy

    2016-01-01

    Flavonoids and fish oils have anti-inflammatory and immune-modulating influences. The purpose of this study was to determine if a mixed flavonoid-fish oil supplement (Q-Mix; 1000 mg quercetin, 400 mg isoquercetin, 120 mg epigallocatechin (EGCG) from green tea extract, 400 mg n3-PUFAs (omega-3 polyunsaturated fatty acid) (220 mg eicosapentaenoic acid (EPA) and 180 mg docosahexaenoic acid (DHA)) from fish oil, 1000 mg vitamin C, 40 mg niacinamide, and 800 µg folic acid) would reduce complications associated with obesity; that is, reduce inflammatory and oxidative stress markers and alter genomic profiles in overweight women. Overweight and obese women (n = 48; age = 40-70 years) were assigned to Q-Mix or placebo groups using randomized double-blinded placebo-controlled procedures. Overnight fasted blood samples were collected at 0 and 10 weeks and analyzed for cytokines, C-reactive protein (CRP), F₂-isoprostanes, and whole-blood-derived mRNA, which was assessed using Affymetrix HuGene-1_1 ST arrays. Statistical analysis included two-way ANOVA models for blood analytes and gene expression and pathway and network enrichment methods for gene expression. Plasma levels increased with Q-Mix supplementation by 388% for quercetin, 95% for EPA, 18% for DHA, and 20% for docosapentaenoic acid (DPA). Q-Mix did not alter plasma levels for CRP (p = 0.268), F2-isoprostanes (p = 0.273), and cytokines (p > 0.05). Gene set enrichment analysis revealed upregulation of pathways in Q-Mix vs. placebo related to interferon-induced antiviral mechanism (false discovery rate, FDR < 0.001). Overrepresentation analysis further disclosed an inhibition of phagocytosis-related inflammatory pathways in Q-Mix vs. placebo. Thus, a 10-week Q-Mix supplementation elicited a significant rise in plasma quercetin, EPA, DHA, and DPA, as well as stimulated an antiviral and inflammation whole-blood transcriptomic response in overweight women. PMID:27187447

  4. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  5. Anti-inflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells

    PubMed Central

    Imaoka, Akemi; Shima, Tatsuichiro; Kato, Kimitoshi; Mizuno, Shigeaki; Uehara, Toshiki; Matsumoto, Satoshi; Setoyama, Hiromi; Hara, Taeko; Umesaki, Yoshinori

    2008-01-01

    AIM: To determine the anti-inflammatory activity of probiotic Bifidobacteria in Bifidobacteria-fermented milk (BFM) which is effective against active ulcerative colitis (UC) and exacerbations of UC, and to explore the immunoregulatory mechanisms. METHODS: Peripheral blood mononuclear cells (PBMNC) from UC patients or HT-29 cells were co-cultured with heat-killed probiotic bacteria or culture supernatant of Bifidobacterium breve strain Yakult (BbrY) or Bifidobacterium bifidum strain Yakult (BbiY) to estimate the amount of IL-10 or IL-8 secreted. RESULTS: Both strains of probiotic Bifidobacteria contained in the BFM induced IL-10 production in PBMNC from UC patients, though BbrY was more effective than BbiY. Conditioned medium (CM) and DNA of both strains inhibited IL-8 secretion in HT-29 cells stimulated with TNF-α, whereas no such effect was observed with heat-killed bacteria. The inhibitory effect of CM derived from BbiY was greater than that of CM derived from BbrY. DNAs of the two strains had a comparable inhibitory activity against the secretion of IL-8. CM of BbiY induced a repression of IL-8 gene expression with a higher expression of IκB-ζ mRNA 4 h after culture of HT-29 cells compared to that in the absence of CM. CONCLUSION: Probiotic Bifidobacterium strains in BFM enhance IL-10 production in PBMNC and inhibit IL-8 secretion in intestinal epithelial cells, suggesting that BFM has anti-inflammatory effects against ulcerative colitis. PMID:18442197

  6. Enhancing of Women Functional Status with Metabolic Syndrome by Cardioprotective and Anti-Inflammatory Effects of Combined Aerobic and Resistance Training

    PubMed Central

    Alsamir Tibana, Ramires; da Cunha Nascimento, Dahan; Frade de Sousa, Nuno Manuel; de Souza, Vinicius Carolino; Durigan, João; Vieira, Amilton; Bottaro, Martim; de Toledo Nóbrega, Otávio; de Almeida, Jeeser Alves; Navalta, James Wilfred; Franco, Octavio Luiz; Prestes, Jonato

    2014-01-01

    These data describe the effects of combined aerobic plus resistance training (CT) with regards to risk factors of metabolic syndrome (MetS), quality of life, functional capacity, and pro- and anti-inflammatory cytokines in women with MetS. In this context, thirteen women (35.4±6.2 yr) completed 10 weeks of CT consisting of three weekly sessions of ∼60 min aerobic training (treadmill at 65–70% of reserve heart rate, 30 min) and resistance training (3 sets of 8–12 repetitions maximum for main muscle groups). Dependent variables were maximum chest press strength; isometric hand-grip strength; 30 s chair stand test; six minute walk test; body mass; body mass index; body adiposity index; waist circumference; systolic (SBP), diastolic and mean blood pressure (MBP); blood glucose; HDL-C; triglycerides; interleukins (IL) 6, 10 and 12, osteoprotegerin (OPG) and serum nitric oxide metabolite (NOx); quality of life (SF-36) and Z-Score of MetS. There was an improvement in muscle strength on chest press (p = 0.009), isometric hand-grip strength (p = 0.03) and 30 s chair stand (p = 0.007). There was a decrease in SBP (p = 0.049), MBP (p = 0.041), Z-Score of MetS (p = 0.046), OPG (0.42±0.26 to 0.38±0.19 ng/mL, p<0.05) and NOx (13.3±2.3 µmol/L to 9.1±2.3 µmol/L; p<0.0005). IL-10 displayed an increase (13.6±7.5 to 17.2±12.3 pg/mL, p<0.05) after 10 weeks of training. Combined training also increased the perception of physical capacity (p = 0.011). This study endorses CT as an efficient tool to improve blood pressure, functional capacity, quality of life and reduce blood markers of inflammation, which has a clinical relevance in the prevention and treatment of MetS. Trial Registration Brazilian Clinical Trials Registry (ReBec) - RBR-6gdyvz - http://www.ensaiosclinicos.gov.br/rg/?q=RBR-6gdyvz PMID:25379699

  7. Bioconverted Jeju Hallabong tangor (Citrus kiyomi × ponkan) peel extracts by cytolase enhance antioxidant and anti-inflammatory capacity in RAW 264.7 cells

    PubMed Central

    Chang, Yun-Hee; Seo, Jieun; Song, Eunju; Choi, Hyuk-Joon; Shim, Eugene; Lee, Okhee

    2016-01-01

    BACKGROUND/OBJECTIVES Citrus and its peels have been used in Asian folk medicine due to abundant flavonoids and usage of citrus peels, which are byproducts from juice and/or jam processing, may be a good strategy. Therefore, the aim of this study was to examine antioxidant and anti-inflammatory effects of bioconversion of Jeju Hallabong tangor (Citrus kiyomi × ponkan; CKP) peels with cytolase (CKP-C) in RAW 264.7 cells. MATERIALS/METHODS Glycosides of CKP were converted into aglycosides with cytolase treatment. RAW 264.7 cells were pre-treated with 0, 100, or 200 µg/ml of citrus peel extracts for 4 h, followed by stimulation with 1 µg/ml lipopolysaccharide (LPS) for 8 h. Cell viability, DPPH radical scavenging activity, nitric oxide (NO), and prostagladin E2 (PGE2) production were examined. Real time-PCR and western immunoblotting assay were performed for detection of mRNA and/or protein expression of pro-inflammatory mediators and cytokines, respectively. RESULTS HPLC analysis showed that treatment of CKP with cytolase resulted in decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycoside forms (naringenin and hesperetin). DPPH scavenging activities were observed in a dose-dependent manner for all of the citrus peel extracts and CKP-C was more potent than intact CKP. All of the citrus peel extracts decreased NO production by inducible nitric oxide synthase (iNOS) activity and PGE2 production by COX-2. Higher dose of CKP and all CKP-C groups significantly decreased mRNA and protein expression of LPS-stimulated iNOS. Only 200 µg/ml of CKP-C markedly decreased mRNA and protein expression of cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Both 100 and 200 µg/ml of CKP-C notably inhibited mRNA levels of interleukin-1β (IL-1β) and IL-6, whereas 200 µg/ml CKP-C significantly inhibited mRNA levels of TNF-α. CONCLUSIONS This result suggests that bioconversion of citrus peels with cytolase may enrich aglycoside flavanones

  8. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  9. Pharmacology in rehabilitation: nonsteroidal anti-inflammatory agents.

    PubMed

    Biederman, Ross E

    2005-06-01

    Nonsteroidal anti-inflammatory agents (NSAIDs) are the most commonly encountered over-the-counter (OTC) and prescription medications in physical therapy practice. Worldwide, over 73000000 prescriptions for nonsteroidal agents are written yearly. NSAIDs produce a wide range of beneficial effects to the physical therapy patient, enhancing the outcome of treatment. Helpful effects of NSAIDs include analgesia, antipyretic, anti-inflammatory, and antithrombotic properties. However, NSAIDs are also associated with frequent and significant side effects that are deleterious to treatment outcome, including delay in soft tissue and bone healing, renal and liver toxicity, hemorrhagic events, gastric irritation and ulceration, and central nervous system effects. Understanding of the pharmacological properties of these drugs, exemplified by aspirin, and the individual pharmacokinetics of specific preparations will help the therapist to screen patients for potential side effects, develop more effective plans of care, and, where allowed, effectively and safely prescribe NSAIDs. PMID:16001907

  10. Acetylsalicylic acid enhances the anti-inflammatory effect of fluoxetine through inhibition of NF-κB, p38-MAPK and ERK1/2 activation in lipopolysaccharide-induced BV-2 microglia cells.

    PubMed

    Yang, J M; Rui, B B; Chen, C; Chen, H; Xu, T J; Xu, W P; Wei, W

    2014-09-01

    The latest advancements in neurobiological research provide increasing evidence that inflammatory and neurodegenerative pathways play an important role in depression. According to the cytokine hypothesis, depression could be due to the increased production of pro-inflammatory cytokines by microglia activation. Thus, using the BV-2 microglial cell line, the aim of the present study was to investigate whether fluoxetine (FLX) or acetylsalicylic acid (ASA) could inhibit this microglia activation and could achieve better results in combination. Our results showed that FLX could attenuate lipopolysaccharide (LPS)-induced production of interleukin-1β (IL-1β), the expression of the indoleamine 2,3 dioxygenase (IDO) enzyme and the depletion of 5-HT. Moreover, FLX could inhibit phosphorylation of nuclear factor-κB (NF-κB) and phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the combined use with ASA could enhance these effects. Notably, the adjunctive agent ASA could also inhibit phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2). Taken together, our results suggest that FLX may have some anti-inflammatory effects by modulating microglia activation and that ASA served as an effective adjunctive agent by enhancing these therapeutic effects. PMID:24952332

  11. Anti-inflammatory guaiane-type sesquiterpenes from the fruits of Pittosporum undulatum.

    PubMed

    Mendes, Sofia A C; Mansoor, Tayyab A; Rodrigues, Ana; Armas, Jácome Bruges; Ferreira, Maria-José U

    2013-11-01

    Two unprecedented guaiane-type sesquiterpene glycosides (undulatumosides A and B) were isolated by bioassay-guided fractionation from the MeOH extract of Pittosporum undulatum fruits, along with six known compounds, including the guaiane isomers 5-guaien-11-ol and 4-guaien-11-ol. The structures of the compounds were established as 4-guaiene-11-O-β-d-(3'-angeloxy-6'-deoxy)-glucopyranoside and 1(5)-guaiene-11-O-β-d-(3'-angeloxy-6'-deoxy)-glucopyranoside by spectroscopic methods, including 1D and 2D homo- and heteronuclear NMR experiments (COSY, HSQC, HMBC and NOESY), and HR-mass spectrometry. P. undulatum is a highly invasive weed that often outcompetes other plants, yet its fruits have become a traditional anti-inflammatory medicine in Azores. Therefore, aiming to investigate the claimed properties, the in vitro anti-inflammatory activity of guaiane-type sesquiterpenes was evaluated by analyzing their inhibitory effects on chemical mediators released by the LPS activated RAW 264.7 murine macrophages cell line. In addition, the cytotoxicity of these compounds was also evaluated in this cell line. Undulatumoside A, 5-guaien-11-ol and 4-guaien-11-ol displayed anti-inflammatory activity with IC50 values of 16.4, 8.1 and 7.2μM, respectively, comparable to that of the positive control, indomethacin (IC50=18.2 μM), with no cytotoxic effects (IC50 ≥ 198 μM). Furthermore, the same set of compounds was also assessed for anti-proliferative activity in lung large cell carcinoma COR-L23 and amelanotic melanoma C32 cells. PMID:23899690

  12. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  13. Comparative anti-inflammatory efficacy of topical corticosteroids with low glaucoma-inducing potential.

    PubMed

    Leibowitz, H M; Ryan, W J; Kupferman, A

    1992-01-01

    Fluorometholone and clobetasone butyrate have been developed as ophthalmic corticosteroids because of their lesser potential to elevate intraocular pressure. Nevertheless, their primary use is the inhibition of an inflammatory response. Quantification of their anti-inflammatory effect in the rabbit cornea indicates that 0.1% fluorometholone and 0.1% clobetasone butyrate are effective, but weak, anti-inflammatory agents. An increase in concentration of fluorometholone to 0.25% failed to enhance its anti-inflammatory effectiveness significantly, while an increase in concentration of clobetasone butyrate to 0.5% did significantly increase its anti-inflammatory effect. As with all other corticosteroid bases studied to date, formulation of fluorometholone as an acetate derivative significantly increased its effectiveness, rendering it as effective as 1.0% prednisolone acetate, the most effective of commercially available ophthalmic corticosteroids. PMID:1731703

  14. Anti-inflammatory activity of cationic lipids.

    PubMed

    Filion, M C; Phillips, N C

    1997-10-01

    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  15. [Active ingredients in rhubarb with anti-proliferative effects on scar fibroblasts].

    PubMed

    Wang, Qian; Zhang, Nan-Nan; Li, Hong-Yan; Jiang, Min; Gao, Jie; Bai, Gang

    2012-12-01

    This study is to explore the active ingredients of traditional Chinese medicine rhubarb with antiproliferative activity on hypertrophic scar fibroblasts (HSF). Rhubarb was extracted with Soxhlet extraction method by different polar solvents. MTS method was used to screen rhubarb solvent extracts (25 microg x mL(-1)) with anti-proliferative activity on HSF, and flow cytometry was used to detect their influences on cell cycle. Then, the active ingredients were analyzed by HPLC. The components with high activity were identified by UPLC-Q/TOF and verified by HE staining. The results showed that the ethyl acetate extract of rhubarb had higher anti-proliferative activity (P < 0.01), increased significantly the proportion of cells in G0/G1 phase (P < 0.01), and reduced the proliferation index (PI) (P < 0.01). The main active ingredients were anthraquinones. The results of confirming experiment showed that emodin, rhein and gallic acid could inhibit cell proliferation in a dose-dependent manner. In conclusion, the ethyl acetate extract of rhubarb showed anti-proliferative activity on HSF, and the anti-proliferative ingredients might be anthraquinones. PMID:23460967

  16. Insulin-sensitizing and anti-proliferative effects of Argania spinosa seed extracts.

    PubMed

    Samane, Samira; Noël, Josette; Charrouf, Zoubida; Amarouch, Hamid; Haddad, Pierre Selim

    2006-09-01

    Argania spinosa is an evergreen tree endemic of southwestern Morocco. Many preparations have been used in traditional Moroccan medicine for centuries to treat several illnesses including diabetes. However, scientific evidence supporting these actions is lacking. Therefore, we prepared various extracts of the argan fruit, namely keel, cake and argan oil extracts, which we tested in the HTC hepatoma cell line for their potential to affect cellular insulin responses. Cell viability was measured by Trypan Blue exclusion and the response to insulin evaluated by the activation of the extracellular regulated kinase (ERK1/2), ERK kinase (MEK1/2) and protein kinase B (PKB/Akt) signaling components. None of the extracts demonstrated significant cytotoxic activity. Certain extracts demonstrated a bi-phasic effect on ERK1/2 activation; low doses of the extract slightly increased ERK1/2 activation in response to insulin, whereas higher doses completely abolished the response. In contrast, none of the extracts had any significant effect on MEK whereas only a cake saponin subfraction enhanced insulin-induced PKB/Akt activation. The specific action of argan oil extracts on ERK1/2 activation made us consider an anti-proliferative action. We have thus tested other transformed cell lines (HT-1080 and MSV-MDCK-INV cells) and found similar results. Inhibition of ERK1/2 activation was also associated with decreased DNA synthesis as evidenced by [(3)H]thymidine incorporation experiments. These results suggest that the products of Argania spinosa may provide a new therapeutic avenue against proliferative diseases. PMID:16951716

  17. Insulin-sensitizing and Anti-proliferative Effects of Argania spinosa Seed Extracts

    PubMed Central

    Samane, Samira; Noël, Josette; Charrouf, Zoubida; Amarouch, Hamid; Haddad, Pierre Selim

    2006-01-01

    Argania spinosa is an evergreen tree endemic of southwestern Morocco. Many preparations have been used in traditional Moroccan medicine for centuries to treat several illnesses including diabetes. However, scientific evidence supporting these actions is lacking. Therefore, we prepared various extracts of the argan fruit, namely keel, cake and argan oil extracts, which we tested in the HTC hepatoma cell line for their potential to affect cellular insulin responses. Cell viability was measured by Trypan Blue exclusion and the response to insulin evaluated by the activation of the extracellular regulated kinase (ERK1/2), ERK kinase (MEK1/2) and protein kinase B (PKB/Akt) signaling components. None of the extracts demonstrated significant cytotoxic activity. Certain extracts demonstrated a bi-phasic effect on ERK1/2 activation; low doses of the extract slightly increased ERK1/2 activation in response to insulin, whereas higher doses completely abolished the response. In contrast, none of the extracts had any significant effect on MEK whereas only a cake saponin subfraction enhanced insulin-induced PKB/Akt activation. The specific action of argan oil extracts on ERK1/2 activation made us consider an anti-proliferative action. We have thus tested other transformed cell lines (HT-1080 and MSV-MDCK-INV cells) and found similar results. Inhibition of ERK1/2 activation was also associated with decreased DNA synthesis as evidenced by [3H]thymidine incorporation experiments. These results suggest that the products of Argania spinosa may provide a new therapeutic avenue against proliferative diseases. PMID:16951716

  18. Reactive oxygen species induced by non-steroidal anti-inflammatory drugs enhance the effects of photodynamic therapy in gastric cancer cells

    PubMed Central

    Ito, Hiromu; Matsui, Hirofumi; Hirayama, Aki; Indo, Hiroko P.; Majima, Hideyuki J.; Hyodo, Ichinosuke

    2016-01-01

    Photodynamic therapy is useful for the treatment of cancer because it is minimally invasive for patients. Certain porphyrin compounds and their derivatives have been used as the photosensitizer because they accumulate specifically in cancerous tissues. However, the detailed mechanism of this phenomenon has not been clarified. We previously reported that a proton-coupled folate transporter, HCP1, transported porphyrins and that regulation of the protein was associated with cancer-specific reactive oxygen species from mitochondria (mitROS). Therefore, over-generation of mitROS could increase HCP1 expression and the effect of photodynamic therapy. We investigated whether pretreatment with indomethacin influenced photodynamic therapy by using a rat normal gastric mucosal cell line, RGM1, its cancer-like mutated cell line, RGK1, and a manganese superoxide dismutase (MnSOD)-overexpressing RGK cell line, RGK-MnSOD. Indomethacin promotes the generation of cellular mitROS by inhibiting the electron transport chain, and MnSOD scavenges the mitROS. We elucidated that indomethacin enhanced cancer-specific mitROS generation and increased HCP1 expression. Furthermore, RGK1 cells showed higher cellular incorporation of hematoporphyrin and better therapeutic effect with indomethacin treatment whereas RGK-MnSOD cells did not show a difference. Thus, we concluded that indomethacin improved the effect of photodynamic therapy by inducing increased mitROS generation in cancer cells. PMID:27257342

  19. Improving ex vivo skin permeation of non-steroidal anti-inflammatory drugs: enhancing extemporaneous transformation of liposomes into planar lipid bilayers.

    PubMed

    Vázquez-González, Martha L; Bernad, Rafael; Calpena, Ana C; Domènech, Oscar; Montero, M T; Hernández-Borrell, Jordi

    2014-01-30

    Transdermal delivery of active principles is a versatile method widely used in medicine. The main drawback for the transdermal route, however, is the low efficiency achieved in the absorption of many drugs, mostly due to the complexity of the skin barrier. To improve drug delivery through the skin, we prepared and characterized liposomes loaded with ibuprofen and designed pharmaceutical formulations based on the extemporaneous addition of penetration enhancer (PE) surfactants. Afterwards, permeation and release studies were carried out. According to the permeation studies, the ibuprofen liposomal formulation supplemented with PEs exhibited similar therapeutic effects, but at lower doses (20%) comparing with a commercial formulation used as a reference. Atomic force microscopy (AFM) was used to investigate the effect caused by PEs on the adsorption mechanism of liposomal formulations onto the skin. Non-fused liposomes, bilayers and multilayered lipid structures were observed. The transformation of vesicles into planar structures is proposed as a possible rationale for explaining the lower doses required when a liposome formulation is supplemented with surfactant PEs. PMID:24361268

  20. Enhanced rectal absorption and reduced local irritation of the anti-inflammatory drug ethyl 4-biphenylylacetate in rats by complexation with water-soluble beta-cyclodextrin derivatives and formulation as oleaginous suppository.

    PubMed

    Arima, H; Kondo, T; Irie, T; Uekama, K

    1992-11-01

    To improve the rectal delivery of ethyl 4-biphenylylacetate (EBA), a prodrug of the anti-inflammatory drug 4-biphenylylacetic acid (BPAA), the use of highly water-soluble 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CyD) was investigated and compared with the use of the parent beta-cyclodextrin (beta-CyD). Among the three beta-CyDs, HP-beta-CyD was best at improving the rectal bioavailability of EBA in rats after single and multiple administrations of oleaginous suppositories (Witepsol H-5) containing the complexes. To gain insight into the enhancing effect of beta-CyDs, the absorption behaviors of EBA (observed by monitoring BPAA as an active metabolite of EBA) and beta-CyDs themselves were examined in vitro, in situ, and in vivo. The in situ recirculation study revealed that the complexed form of EBA was less absorbable from the rectal lumen in the solution state, but this disadvantageous effect of beta-CyDs was compensated in part by the inhibition of the bioconversion of EBA to BPAA. When beta-CyDs were coadministered with EBA in vivo, however, rather high amounts of HP-beta-CyD (approximately 26% of dose) and DM-beta-CyD (approximately 21% of dose), compared with beta-CyD (approximately 5% of dose), were absorbed from the rat rectum. Thus, the enhancement of rectal absorption of EBA in vivo can be explained by the facts that the hydrophilic beta-CyDs increased the release rate of EBA from the vehicle and stabilized EBA in the rectal lumen and that the drug was partly absorbed in the form of the complex.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1447717

  1. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  2. Natural products and anti-inflammatory activity.

    PubMed

    Yuan, Gaofeng; Wahlqvist, Mark L; He, Guoqing; Yang, Min; Li, Duo

    2006-01-01

    The aim of this review paper was to summarise some commonly available natural products and their anti-inflammatory activity. We have collected data from MEDLINE, Current Contents and scientific journals, which included 92 publications. There are numerous natural products detailed in this literature; however we have summarized a few of the most commonly available and potent ones. In this paper, the natural products with anti-inflammatory activity including curcumin, parthenolide, cucurbitacins, 1,8-cineole, pseudopterosins, lyprinol, bromelain, flavonoids, saponins, marine sponge natural products and Boswellia serrata gum resin were reviewed. Natural products play a significant role in human health in relation to the prevention and treatment of inflammatory conditions. Further studies are being conducted to investigate the mechanism of action, metabolism, safety and long term side effect of these natural products, as well as interactions between these natural products with food and drug components. PMID:16672197

  3. The new nonsteroidal anti-inflammatory drugs.

    PubMed

    Scherbel, A L; Wilke, W S

    1981-10-01

    Most physicians regard to newer short-acting anti-inflammatory drugs as a substitute for aspirin because they are less toxic. Although these drugs cannot induce remissions of rheumatoid arthritis, they do afford symptomatic relief and exert both a moderate algesic and anti-inflammatory effect in conditions like osteoarthritis, gout, pseudogout, and a variety of musculoskeletal syndromes. The many adverse reactions and toxic effects associated with these drugs are probably related to the inhibition of prostaglandin synthetase, which in turn reduces the biosynthesis of prostaglandins in widespread areas of the body. Thus limited in number, these compounds cannot play an effective role in the body's defense mechanisms. Researchers postulate that this failure accounts for the gastrointestinal and renal lesions--as well as other, as yet unexplained toxic manifestations--noted in patients taking these drugs. For safety's sake, the newer anti-inflammatory drugs should be used with large doses of aspirin, other agents that inhibit prostaglandin synthetase, or drugs that are potentially nephro-toxic. PMID:6974117

  4. Anti-inflammatory properties of cryptolepine.

    PubMed

    Olajide, Olumayokun A; Ajayi, Abayomi M; Wright, Colin W

    2009-10-01

    Cryptolepine is the major alkaloid of the West African shrub, Cryptolepis sanguinolenta. Cryptolepine has been shown to inhibit nitric oxide production, and DNA binding of Nuclear Factor-kappa B following inflammatory stimuli in vitro. In order to validate the anti-inflammatory property of this compound in vivo, we investigated its effects on a number of animal models of inflammation. Cryptolepine (10-40 mg/kg i.p.) produced significant dose-dependent inhibition of the carrageenan-induced rat paw oedema, and carrageenan-induced pleurisy in rats. These effects were compared with those of the non-steroidal anti-inflammatory drug indomethacin (10 mg/kg). At doses of 10-40 mg/kg i.p., cryptolepine inhibited lipopolysaccharide (LPS)-induced microvascular permeability in mice in a dose-related fashion. Oral administration of up to 40 mg/kg of the compound for four consecutive days did not induce gastric lesion formation in rats. Analgesic activity was also exhibited by cryptolepine through a dose-related (10-40 mg/kg i.p.) inhibition of writhing induced by i.p. administration of acetic acid in mice. The results of this study reveal that cryptolepine possesses in vivo anti-inflammatory activity. PMID:19288476

  5. Synthesis and anti-proliferative activity of fluoro-substituted chalcones.

    PubMed

    Burmaoglu, Serdar; Algul, Oztekin; Anıl, Derya Aktas; Gobek, Arzu; Duran, Gulay Gulbol; Ersan, Ronak Haj; Duran, Nizami

    2016-07-01

    A series of novel fluoro-substituted chalcone derivatives have been synthesized. All synthesized compounds were characterized by (1)H nuclear magnetic resonance (NMR), (13)C NMR, and elemental analysis. Their anti-proliferative activities were evaluated against five cancer cells lines, namely, A549, A498, HeLa, A375, and HepG2 using the MTT method. Most of the compounds showed moderate to high activity with IC50 values in the range of 0.029-0.729μM. Of all the synthesized compounds, 10 and 19 exhibited the most potent anti-proliferative activities against cancer cells, and 10 was identified as the most promising compound. PMID:27217001

  6. Evaluation of the anti-proliferative and cytostatic effect of Citrus sinensis (orange) fruit juice

    PubMed Central

    Chinedu, Enegide; Arome, David; Ameh, Solomon F; Ameh, Gift E

    2014-01-01

    Aim: This work has been designed to evaluate the anti-proliferative and cytostatic effects of Citrus sinensis (orange) fruit juice on rapidly proliferating cells. Materials and Methods: The study was carried out on the seeds of Sorghum bicolor for 72 h. The mean radicle length (mm) of the seeds was taken at 48 and 72 h. Result: The result showed that when compared with the control, methotrexate, the standard drug showed a significant (P < 0.001) anti-proliferative effect throughout the experiment. The inhibition of the radicle growth was more after 72 h (87.42%). At a dose of 5% (v/v), the juice showed a slightly significant (P < 0.05) effect affect after 72 h; however, there was no significant effect at 48 h. The juice at doses of 10% and 20% (v/v) showed a highly significant (P < 0.001) anti-proliferative effect throughout the experiment; however, the percentage inhibitions were higher at 72 h. At 72 h, the percentage inhibition for juice at 10% (v/v) was 72.37% and at 20% (v/v) was 91.96%. The concentrations of 40% and 60% (v/v) showed cytostatic effects as no appreciable growth of the radicles of the seeds was observed throughout the experiment. The percentage inhibition for 40% (v/v) was 100% and 99.72% for 48 and 72 h, respectively, while that for the juice concentration of 60% (v/v) was 100% throughout the study. Conclusion: The experiment has shown that C. sinensis fruit juice has a potential for causing both anti-proliferative and cytostatic effects on fast proliferating cells and hence cancerous cells. PMID:25298937

  7. Anti-proliferative effect of pterostilbene on rat hepatoma cells in culture.

    PubMed

    Dewi, Novi Indriana; Yagasaki, Kazumi; Miura, Yutaka

    2015-08-01

    Pterostilbene, a methoxylated analogue of resveratrol, is a natural compound primarily found in blueberries and several types of grapes. However, little is known about the effect of pterostilbene on the proliferation of hepatoma cells and its modes of actions. This study was undertaken to characterize its ability to suppress the proliferation of hepatoma AH109A cells and the possible mechanism(s) involved. Pterostilbene showed a significant and dose-dependent effect on the anti-proliferative activity against AH109A cells. Pterostilbene exerted little or no effect on the proliferation of rat L6 myoblasts and rat skin fibroblasts. Pterostilbene-loaded rat sera could significantly inhibit the proliferation of AH109A cells, which suggests that pterostilbene could be absorbed through gastrointestinal tract and retain its anti-proliferative activity. Pterostilbene arrested the cell cycle of AH109A cells at G0/G1 phase and reduced the protein expression of cyclin-dependent kinase 4 and cyclin-dependent kinase 6 dose-dependently. We also found that pterostilbene could significantly increase the intracellular peroxide level of AH109A cells, which may be involved in its anti-proliferative activity. PMID:24985197

  8. Quinazolinones-Phenylquinoxaline hybrids with unsaturation/saturation linkers as novel anti-proliferative agents.

    PubMed

    Palem, Jyothsna Devi; Alugubelli, Gopi Reddy; Bantu, Rajashaker; Nagarapu, Lingaiah; Polepalli, Sowjanya; Jain, S Nishanth; Bathini, Raju; Manga, Vijjulatha

    2016-07-01

    A new series of novel quinazolinones with allylphenyl quinoxaline hybrids 9a-n were efficiently synthesized in good yields by the reaction of 3-allyl-2-methylquinazolin-4(3H)-one (5a-n) with bromophenyl)quinoxaline (8) utilizing Pd catalyzed Heck-cross coupling and evaluated for anti-proliferative activity against four cancer cell lines such as HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). Compounds 9a, 9e, 9g and 9h exhibited promising anti-proliferative activity with GI50 values ranging from 0.06 to 0.2μM against four cell lines, while compounds 9e and 9k showed significant activity against HeLa and MIAPACA cell lines and compounds 9b, 9d, 9h and 9j showed selective potency against IMR32 and MDA-MB-231 cell lines. This is the first report on the synthesis and in vitro anti-proliferative evaluation of E-2-(4-substituted)-3-(3-(4-(quinoxalin-2-yl)phenyl)allyl)quinazolin-4(3H)-ones (9a-n). Docking results indicate a sign of good correlation between experimental activity and calculated binding affinity (dock score), suggesting that these compounds could act as promising DNA intercalates. PMID:27209232

  9. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells.

    PubMed

    Pandiri, Indira; Chen, Yingqing; Joe, Yeonsoo; Kim, Hyo Jeong; Park, Jeongmin; Chung, Hun Taeg; Park, Jeong Woo

    2016-02-01

    Metformin, which is a drug commonly prescribed to treat type 2 diabetes, has anti-proliferative effects in cancer cells; however, the molecular mechanisms underlying this effect remain largely unknown. The aim is to investigate the role of tristetraprolin (TTP), an AU-rich element-binding protein, in anti-proliferative effects of metformin in cancer cells. p53 wild-type and p53 mutant breast cancer cells were treated with metformin, and expression of TTP and c-Myc was analyzed by semi-quantitative RT-PCR, Western blots, and promoter activity assay. Breast cancer cells were transfected with siRNA against TTP to inhibit TTP expression or c-Myc and, after metformin treatment, analyzed for cell proliferation by MTS assay. Metformin induces the expression of tristetraprolin (TTP) in breast cancer cells in a p53-independent manner. Importantly, inhibition of TTP abrogated the anti-proliferation effect of metformin. We observed that metformin decreased c-Myc levels, and ectopic expression of c-Myc blocked the effect of metformin on TTP expression and cell proliferation. Our data indicate that metformin induces TTP expression by reducing the expression of c-Myc, suggesting a new model whereby TTP acts as a mediator of metformin's anti-proliferative activity in cancer cells. PMID:26956973

  10. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.

    PubMed

    El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu

    2014-08-01

    Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents. PMID:24859059

  11. Anti-proliferative and apoptotic effects of Ziziphus Jujube on cervical and breast cancer cells

    PubMed Central

    Abedini, Mohammad Reza; Erfanian, Nafiseh; Nazem, Habibollah; Jamali, Sara; Hoshyar, Reyhane

    2016-01-01

    Objective: Ziziphus Jujube (Jujube) plant has exhibited numerous medicinal and pharmacological properties including antioxidant and anti-inflammatory effects. This study was carried out to investigate its anti-cancer and pro-apoptotic abilities in human cervical and breast cancer cells in vitro. Materials and Methods: The cervical OV2008 and breast MCF-7 cancer cells were incubated with different concentrations of Jujube aqueous extraction (0-3 mg/ml) for various times (0-72 h). Cell viability was assessed by Trypan Blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of two apoptosis-related genes in treated cells evaluated by quantitative Real Time -PCR analysis. Results: Jujube significantly inhibited cancer cell viability in a dose- and time- dependent manner. Herb-induced apoptosis was associated with enhanced expression of Bax and decreased Bcl2 gene leading eventually to a time-dependent six fold increase in the Bax/Bcl-2 ratio. Conclusion: These results indicated that Jujube may be a natural potential and promising agent to prevent or treat human cancers. PMID:27222827

  12. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    PubMed Central

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-01-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies. PMID:26584637

  13. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    NASA Astrophysics Data System (ADS)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  14. Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents.

    PubMed

    Zeng, Kui; Thompson, Karin Emmons; Yates, Charles R; Miller, Duane D

    2009-09-15

    Quinic acid (QA) esters found in hot water extracts of Uncaria tomentosa (a.k.a. cat's claw) exert anti-inflammatory activity through mechanisms involving inhibition of the pro-inflammatory transcription factor nuclear factor kappa B (NF-kappaB). Herein, we describe the synthesis and biological testing of novel QA derivatives. Inhibition of NF-kappaB was assessed using A549 (Type II alveolar epithelial-like) cells that stably express a secreted alkaline phosphatase (SEAP) reporter driven by an NF-kappaB response element. A549-NF-kappaB cells were stimulated with TNF-alpha (10 ng/mL) in the presence or absence of QA derivative for 18 hours followed by measurement of SEAP activity. Amide substitution at the carboxylic acid position yielded potent inhibitors of NF-kappaB. A variety of modifications to the amide substitution were tolerated with the N-propyl amide derivative being the most potent. Further examination of the SAR demonstrated that acetylation of the hydroxyl groups reduced NF-kappaB inhibitory activity. QA amide derivatives lacked anti-oxidant activity and were found to be neither anti-proliferative nor cytotoxic at concentrations up to 100 microM. In conclusion, we have discovered a novel series of non-toxic QA amides that potently inhibit NF-kappaB, despite their lack of anti-oxidant activity. Mechanistic studies and pre-clinical efficacy studies in various inflammatory animal models are on-going. PMID:19674895

  15. Anti-inflammatory activity of extracts from Conyza canadensis.

    PubMed

    Lenfeld, J; Motl, O; Trka, A

    1986-04-01

    The petroleum ether and ethanolic extract from the epigean part of Conyza canadensis exhibits a significant anti-inflammatory effect on rats with a carrageenin and formalin oedema. Eight sesquiterpenic hydrocarbons with the highest anti-inflammatory activity were found in the petroleum ether fraction (beta-santalene, beta-himachalene, cuparene, alpha-curcumene, gamma-cadinene and three other unidentified hydrocarbons). Of these substances, beta-himachalene was further studied and its anti-inflammatory activity was demonstrated. PMID:3725873

  16. Sesquiterpenes from Essential Oils and Anti-Inflammatory Activity.

    PubMed

    da Silveira e Sá, Rita de Cássia; Andrade, Luciana Nalone; de Sousa, Damião Pergentino

    2015-10-01

    This review is aimed at presenting relevant information on the therapeutic potential of essential oil sesquiterpenes with anti-inflammatory activity. The data reviewed provide a basis for seeking new anti-inflammatory drugs from natural products that do not exhibit the undesirable side effects often displayed by anti-inflammatory drugs. In this review the experimental models, possible mechanisms of action, and chemical structures of 12 sesquiterpenes are presented. PMID:26669122

  17. A RECOMBINANT IgG Fc THAT RECAPITULATES THE ANTI-INFLAMMATORY ACTIVITY OF IVIG

    PubMed Central

    Anthony, Robert M.; Nimmerjahn, Falk; Ashline, David J.; Reinhold, Vernon N.; Paulson, James C.; Ravetch, Jeffrey V.

    2008-01-01

    High doses of monomeric IgG purified from pooled human plasma confer anti-inflammatory activity for a wide variety of autoimmune diseases. The heterogeneity of IVIG, derived from its Fab specificity, IgG subclass distribution and variable glycosylation have confounded efforts to develop a recombinant substitute for this blood-derived product. Recent studies have demonstrated that this paradoxical anti-inflammatory activity of IgG is completely dependent on sialylation of the N-linked glycan of the IgG Fc fragment. Determining the precise glycan requirements for this anti-inflammatory activity allowed appropriate glycan engineering of an IgG1 Fc fragment, leading to the generation of a fully recombinant, sialylated IgG1 Fc with greatly enhanced potency. PMID:18420934

  18. In vitro anti-proliferative and antioxidant studies on Devil's Club Oplopanax horridus.

    PubMed

    Tai, Joseph; Cheung, Susan; Cheah, Stefanie; Chan, Edwin; Hasman, David

    2006-11-24

    Devil's Club, Oplopanax horridus (OH), is a widely used folk medicine in Alaska and British Columbia for treating a variety of ailments including arthritis, fever and diabetes. HPLC profiling shows that numerous compounds are present in the 70% ethanolic extract of OH dry root bark powder. OH extract inhibited K562, HL60, MCF7 and MDA-MB-468 cell growth with the 50% inhibition (IC(50)) estimated at 1/2700, 1/1700, 1/500 and 1/2500 dilutions, respectively. Non-cytotoxic concentrations (anti-proliferative effect while the rest showed antagonistic effect. Combination of OH extract at 1/4000 and 1/16,000 dilutions with 0.1 microM of CAM produced additive, anti-proliferative effects on K562 cells, as did 1/2000 and 1/1000 dilutions of OH combined with 2.5 nM of PTX on MCF7, and 1/4000 dilution of OH with 1 nM of PTX on MDA-MB-468 cells. Combination of 1/8000 and 1/4000 dilution of OH with 0.05 microM of CAM showed strong synergistic anti-proliferative effects on HL60 cells. At non-cytotoxic 1/4000 dilution, OH induced 13.1% of HL60 cells to differentiate into granulocytes but had no effect on monocyte/macrophage differentiation. A cell free hydroxyl radical scavenging assay estimated that OH at 1/100, 1/10 and 1/5 dilutions showed activities equivalent to 2.7, 15.7 and 25.6 microM of Trolox, respectively. At non-cytotoxic 1/4000 and 1/2000 dilutions, OH significantly reduced nitric oxide production by lipopolysaccharide activated RAW 264.7 cells (p<0.001). Our data show that the ethanolic extract of OH has anti-proliferative on several cancer cell lines, and has strong antioxidant activity. PMID:16814500

  19. Review of Anti-Inflammatory Herbal Medicines.

    PubMed

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  20. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  1. Corneal reepithelialization and anti-inflammatory agents.

    PubMed Central

    Srinivasan, B D

    1982-01-01

    These studies have demonstrated that nonsteroidal anti-inflammatory agents (cyclooxygenase and lipoxygenase inhibitors) can inhibit PMN arrival in the tear fluid following corneal injury but do not inhibit the reepithelialization either by corneal epithelial cells or by conjunctival epithelial cells. Therefore, they can be used safely in ocular inflammatory conditions even when corneal epithelial defects are present. Corticosteroids, on the other hand, inhibit reepithelialization by conjunctival epithelial cells and not by corneal epithelial cells in the doses tested. This inhibition does not occur with pretreatment prior to injury, suggesting that corticosteroids can be used clinically in conditions that have intact corneal epithelium without fear of slowing down wound healing should epithelial defects occur when not on steroid therapy. Furthermore, the steroid inhibition is temporary since there is a breakthrough in steroid inhibition with time, and occurs only if the steroids have been used shortly after deepithelialization. The steroid inhibition can be reversed by specific steroid antagonist, indicating that the steroid effect is mediated through specific receptors. An exciting and new hypothesis proposes that corticosteroids induce the formation of an inhibitory protein that inhibits the phospholipase enzyme to cause a block in arachidonic acid release from cell membranes. This mechanism of action may also be prevalent in the steroid effect on corneal reepithelialization, and experiments are under way to isolate this inhibitory protein from steroid-treated conjunctival epithelium. This isolation and pharmacologic characterization of this inhibitory protein is of obvious advantage to the field of ophthalmic therapeutics since this protein may have the anti-inflammatory potential of the steroids without their steroid sideeffects. Images FIGURE 3 a FIGURE 3 b PMID:6763806

  2. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages.

    PubMed

    Pi, Jiang; Cai, Huaihong; Yang, Fen; Jin, Hua; Liu, Jianxin; Yang, Peihui; Cai, Jiye

    2016-01-01

    A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs. PMID:26476923

  3. Synthesis and anti-proliferative activity of novel azazerumbone conjugates with chalcones.

    PubMed

    Truong, Vuong Van; Nam, Tran Duy; Hung, Truong Ngoc; Nga, Nguyen Thi; Quan, Pham Minh; Chinh, Luu Van; Jung, Sang-Hun

    2015-11-15

    The conjugation of azazerumbone ((3E,7E,11E)-5,5,8,12-tetramethylazacyclododeca-3,7,11-trien-2-one (7)) and 2,4-dihydroxychalcones was carried out for the preparation of novel target compounds 9a-g with 1-ethylene-4-methylene-1,2,3-triazole linker and 10a-f with propylene linker between amide nitrogen of azazerumbone and 4-hydroxy group of chalcone. The anti-proliferative activity of these compounds against the LU-1, Hep-G2, MCF-7 and SW480 human cancer cell lines were significantly improved compared to those of azazerumbone or zerumbone. The anti-proliferative activities of (3E,7E,11E)-1-((1-(2-(3-hydroxy-4-((E)-3-(3-methoxyphenyl)acryloyl)phenoxy)ethyl)-1H-1,2,3-triazol-4-yl)methyl)-5,5,8,12-tetramethyl azacyclododeca-3,7,11-trien-2-one (9b) and (3E,7E,11E)-1-(3-(4-((E)-3-(3,4,5-trimethoxyphenyl)acryloyl)phenoxy)propyl)-5,5,8,12-tetramethylazacyclododeca-3,7,11-trien-2-one (10d) are nearly comparable to those of ellipticine. PMID:26459207

  4. [Synthesis and anti-proliferative activity of fluoroquinolone (rhodanine unsaturated ketone) amide derivatives].

    PubMed

    Gao, Liu-zhou; Xie, Yu-suo; Yan, Qiang; Wu, Shu-min; Ni, Li-li; Zhao, Hui; Huang, Wen-long; Hu, Guo-qiang

    2015-08-01

    To discover novel antitumor rhodanine unsaturated ketones, a series of fluoroquinolone (rhodanine α, β-unsaturated ketone) amine derivatives (5a-5r) were designed and synthesized with fluoroquinolone amide scaffold as a carrier. The structures of eighteen title compounds were characterized by elemental analysis, 1H NMR and MS. The in vitro anti-proliferative activity against Hep-3B, Capan-1 and HL60 cells was evaluated by MTT assay. The results showed that the title compounds not only had more significant anti-proliferative activity against three tested cancer cell lines than that of the parent ciprofloxacin 1, but also exhibited the highest activity against Capan-1 cells. The SAR revealed that some compounds carrying aromatic heterocyclic rings or phenyl attached to an electron-withdrawing carboxyl or sulfonamide substituent were comparable to or better than comparison doxorubicin against Capan-1 cells. As such, it suggests that fluoroquinolone (rhodanine α, β-unsaturated ketone) amines are promising leads for the development of novel antitumor fluoroquinolones or rhodanine analogues. PMID:26669001

  5. Apoptotic and anti-proliferative effects of all-trans retinoic acid

    SciTech Connect

    Zamora, Monica; Ortega, Juan Alberto; Alana, Lide; Vinas, Octavi; Mampel, Teresa . E-mail: tmampel@ub.edu

    2006-06-10

    We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.

  6. Evidence of Anti-Proliferative Activities in Blue Mussel (Mytilus edulis) By-Products

    PubMed Central

    Beaulieu, Lucie; Thibodeau, Jacinthe; Bonnet, Claudie; Bryl, Piotr; Carbonneau, Marie-Elise

    2013-01-01

    Shellfish waste components contain significant levels of high quality protein and are therefore a potential source for biofunctional high-value peptides. The feasibility of applying a pilot scale enzymatic hydrolysis process to whole Mytilus edulis and, by fractionation, recover hydrolysates presenting a biological activity of interest, was evaluated. Fractions were tested on four immortalized cancerous cell lines: A549, BT549, HCT15 and PC3. The 50 kDa fraction, enriched in peptides, presented anti-proliferative activity with all cell lines and results suggest a bioactive molecule synergy within the fraction. At a protein concentration of 44 µg/mL, the 50 kDa fraction induced a mortality of 90% for PC3, 89% for A549, 85% for HCT15 and of 81% for BT549 cell lines. At the low protein concentration of only 11 µg/mL the 50 kDa fraction still entails a cell mortality of 76% for A549 and 87% for PC3 cell lines. The 50 kDa fraction contains 56% of proteins, 3% of lipids and 6% of minerals on a dry weight basis and the lowest levels detected of taurine and methionine and highest levels of threonine, proline and glycine amino acids. The enzymatic hydrolysis process suggests that Mytilus edulis by-products should be viewed as high-valued products with strong potential as anti-proliferative agent and promising active ingredients in functional foods. PMID:23535393

  7. Anti-proliferative activity of Fumaria vaillantii extracts on different cancer cell lines

    PubMed Central

    Tabrizi, Fatemeh Haji Abbas; Irian, Saeed; Amanzadeh, Amir; Heidarnejad, Fatemeh; Gudarzi, Hoda; Salimi, Mona

    2016-01-01

    Plant-derived natural products are known to have cancer chemo-preventive and chemo-therapeutic properties. Plant extracts or their active constituents are used as folk medicine in traditional therapies by 80% of the world population. The aim of the present study was to determine the anti-proliferative potential of Fumaria vaillantii extracts on three different cancer cell lines including malignant melanoma SKMEL-3, human breast adenocarcinoma MCF-7 and human myelogenous leukemia K562 as well as human gingival fibroblast (HGF) as normal cell line. Anti-proliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flowcytometry and annexin methods. Total phenolics and flavonoids were determined by Folin-Ciocalteu and aluminum chloride methods. Chloroform fraction had the lowest IC50 value at 72 h (0.1 μg/ml) in MCF-7 cells. Flowcytometry and annexin-V analysis indicated that the chloroform fraction induced necrosis in MCF-7 cells. In addition, the colorimetric methods showed that the methanolic fraction possessed the highest amount of total phenolics (33.03 ± 0.75 mg/g of dry powder) and flavonoids (10.5 ± 2.0 mg/g of dry powder). The collective data demonstrated that F. vaillantii chloroform fraction may contain effective compounds with chemo-therapeutic potential act through an apoptotic independent pathway. PMID:27168755

  8. Anti-proliferative effects of protein kinase C inhibitors in human keratinocytes.

    PubMed

    Hegemann, L; Bonnekoh, B; van Rooijen, L A; Mahrle, G

    1992-07-01

    Various lines of evidence indicate that protein kinase C, a key enzyme in transmembraneous signal transduction, is involved in the regulation of keratinocyte proliferation. In the present study we have investigated the effects of various structurally unrelated protein kinase C inhibitors on the proliferation of HaCa T cells, a non-tumorigenic human keratinocyte cell line. All protein kinase C inhibitors dose-dependently inhibited cell proliferation as assessed by the incorporation of radioactively labelled thymidine and amino acids as well as the increase in total protein content in keratinocytes. The potencies of the drugs to inhibit cell proliferation were strongly correlated to their inhibitory potency on purified protein kinase C, displaying a correlation coefficient of 0.97. Methotrexate, an anti-proliferative drug, was found not to inhibit protein kinase C. Therefore, our data provide evidence that protein kinase C is crucially involved in the regulation of keratinocyte proliferation but is not the only target of anti-proliferative drug action. PMID:1390454

  9. Anti-proliferative activities of sinigrin on carcinogen-induced hepatotoxicity in rats.

    PubMed

    Jie, Meng; Cheung, Wan Man; Yu, Vivian; Zhou, Yanling; Tong, Pak Ho; Ho, John W S

    2014-01-01

    Liver cancer is one of the leading causes of cancer death worldwide. A very high incidence of new liver cancer cases is diagnosed every year, and metastasis has been found to correlate to poor prognoses in humans. Better treatments for liver cancer are thus clearly needed. Sinigrin is one of the major ingredients present in Brassica nigra, which has been used in combination with other herbs for treatment of various diseases. The anti-proliferative activities of sinigrin were studied in a model of carcinogen-induced hepatotoxicity in rats. Rats were orally administered with sinigrin on a daily basis for three months before sacrifice. Sinigrin was found to significantly inhibit the proliferation of liver tumor cells; the number of surface tumors in the rat liver was dramatically reduced. Sinigrin induced apoptosis of liver cancer cells through up-regulation of p53 and down-regulation of Bcl-2 family members and caspases. Our findings indicated that the liver functions were gradually restored after treatment with sinigrin and that the agent did not cause liver toxicity. Cell cycle analysis indicated that sinigrin caused cell cycle arrest in G0/G1 phase. The results suggest that sinigrin exerts important anti-proliferative activities in carcinogen-induced hepatocarcinogenesis in rats, and highlight the potential of sinigrin as an anti-cancer agent for liver cancer. PMID:25329483

  10. Go Green: The Anti-Inflammatory Effects of Biliverdin Reductase

    PubMed Central

    Wegiel, Barbara; Otterbein, Leo E.

    2012-01-01

    Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced proinflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K–Akt-IL-10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor, and transcriptional regulator. PMID:22438844

  11. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  12. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity.

    PubMed

    Kontogianni, Vassiliki G; Tomic, Goran; Nikolic, Ivana; Nerantzaki, Alexandra A; Sayyad, Nisar; Stosic-Grujicic, Stanislava; Stojanovic, Ivana; Gerothanassis, Ioannis P; Tzakos, Andreas G

    2013-01-01

    The goal of this study was to monitor the anti-proliferative activity of Rosmarinus officinalis and Salvia officinalis extracts against cancer cells and to correlate this activity with their phytochemical profiles using liquid chromatography/diode array detection/electrospray ion trap tandem mass spectrometry (LC/DAD/ESI-MS(n)). For the quantitative estimation of triterpenic acids in the crude extracts an NMR based methodology was used and compared with the HPLC measurements, both applied for the first time, for the case of betulinic acid. Both extracts exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Importantly, these extracts potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced antioxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid and a higher concentration of carnosic acid in its phytochemical profile. PMID:23017402

  13. Melatonin in testes of infertile men: evidence for anti-proliferative and anti-oxidant effects on local macrophage and mast cell populations.

    PubMed

    Rossi, S P; Windschuettl, S; Matzkin, M E; Terradas, C; Ponzio, R; Puigdomenech, E; Levalle, O; Calandra, R S; Mayerhofer, A; Frungieri, M B

    2014-05-01

    Melatonin acting through the hypothalamus and pituitary regulates testicular function. In addition, direct actions of melatonin at the testicular level have been recently suggested. We have described that melatonin inhibits androgen production in hamster Leydig cells via melatonin subtype 1a (mel1a) receptors and the local corticotrophin-releasing hormone (CRH) system. The initial events of the melatonin/CRH signalling pathway have also been established. Melatonin and all components of the melatonergic/CRH system were also detected in Leydig cells of infertile men. This study attempted to search for additional targets of melatonin in the human testis, and to investigate the effects of melatonin on proliferation and the oxidative state in these novel target cells. To this aim, evaluation of human testicular biopsies of patients suffering from hypospermatogenesis or Sertoli cell only syndrome and cell culture studies were performed. Melatonergic receptors were found in macrophages (MACs) and mast cells (MCs) of the human testis. In biopsies of patients suffering idiopathic infertility, melatonin testicular concentrations were negatively correlated with MAC number per mm(2) and TNFα, IL1β and COX2 expression, but positively correlated with the expression of the anti-oxidant enzymes SOD1, peroxiredoxin 1 and catalase. Melatonin inhibited proliferation and the expression of pro-inflammatory cytokines and cyclooxygenase 2 (COX2) in both the human non-testicular THP-1 MAC cell line and primary cell cultures of hamster testicular MACs. In the human HMC-1 MC line, melatonin increased the expression of anti-oxidant enzymes and decreased reactive oxygen species (ROS) generation. The results reveal new testicular targets of melatonin and describe anti-proliferative and anti-inflammatory effects of this hormone on testicular MACs. Furthermore, melatonin might provide protective effects against oxidative stress in testicular MCs. PMID:24659586

  14. Improvement of bioavailability and anti-inflammatory potential of curcumin in combination with emu oil.

    PubMed

    Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna

    2014-12-01

    The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis. PMID:25028100

  15. Anti-Inflammatory Constituents from Bidens frondosa.

    PubMed

    Le, Jiamei; Lu, Wenquan; Xiong, Xiaojuan; Wu, Zhijun; Chen, Wansheng

    2015-01-01

    A new polyacetylene glucoside (3E,5E,11E)-tridecatriene-7,9-diyne-1,2,13-triol-2-O-β-D-glucopyranoside (1), a new phenylpropanoid glucoside 2'-butoxyethylconiferin (2), and a new flavonoid glycoside 8,3',4'-trihydroxyflavone-7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (3), have been isolated from Bidens frondosa together with fifty-three known compounds 4-56. The structures of these compounds were established by spectroscopic methods. mainly ESIMS, 1D- and 2D-NMR spectroscopic data. and comparison with literature data. Compounds 1-34, 36, 39, 43, 47, 51, and 52 were tested for inhibition of nuclear factor kappa B (NF-κB) in 293-NF-κB-luciferase report cell line induced by lipopolysaccharide (LPS), and compounds 1, 2, 3, 9, 15, 21, 24 and 51 were tested for the production of TNF-α, IL-1β, IL-6, IL-10 in RAW 264.7 macrophages induced by LPS. In conclusion, the isolated compounds 1, 2, 3, 9, 15, 21, 24 and 51 exhibited significant activity in anti-inflammatory activity assays. PMID:26473814

  16. NF-κB-targeted anti-inflammatory activity of Prunella vulgaris var. lilacina in macrophages RAW 264.7.

    PubMed

    Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A

    2013-01-01

    Prunella vulgaris var. lilacina, a herbal medicine, has long been used in Korea for the treatment of sore throat, and to alleviate fever and accelerate wound healing. Although the therapeutic effect of P. vulgaris var. lilacina is likely associated with anti-inflammatory activity, the precise underlying mechanisms are largely unknown. Here, we sought to elucidate the possible mechanisms of the anti-inflammatory activity. We have investigated the anti-inflammatory activity of the various solvent fractions (hexane, butanol, chloroform and water) from the ethanol extract of P. vulgaris var. lilacina in activated macrophages. The hexane fraction exhibited higher anti-inflammatory activities, inducing inhibition of nitric oxide and prostaglandin E2 production as well as inducible nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α mRNA expression in response to lipopolysaccharide stimulation. Moreover, the hexane fraction from P. vulgaris var. lilacina significantly inhibited the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the nuclear translocation of the NF-κB p50 and p65 subunits. These results indicate that P. vulgaris var. lilacina has an anti-inflammatory capacity in vitro, suggesting that it could be a potential source of natural anti-inflammatory agents. PMID:24177568

  17. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-06-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.

  18. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-01-01

    Background: Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. Methods: The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results: Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). Conclusion: These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies. PMID:26989740

  19. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk

    PubMed Central

    Aqil, Farrukh; Munagala, Radha; Vadhanam, Manicka V.; Kausar, Hina; Jeyabalan, Jeyaprakash; Schultz, David J.; Gupta, Ramesh C.

    2012-01-01

    Ellagitannins are the most abundant polyphenols in pomegranate (Punica granatum) husk and contribute greatly towards its biological properties. A pre-enriched pomegranate husk powder was extracted with water and then further purified by an Amberlite XAD-16 column. Punicalagin (PC) anomers were eluted using a gradient of methanol and water. Fractions eluted with 20% and 25% methanol yielded 1.08 g of light brown powder (purity > 97%) from a total of 40 g of extract. This fraction was identified as PC by HPLC-UV using reference compounds and confirmed by FTICR-MS analysis. PC (10–40 µM) was found to significantly inhibit oxidative DNA products, about 70% inhibition at 40 µM (p=0.0017), resulting from Cu2+-catalyzed redox cycling of 4-hydroxy-17β-estradiol as analyzed by 32P-postlabeling. Evidence of high antioxidant activity of PC was also obtained based on ORAC assay (1556±79 µmol of TE/g), as well as by 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)-, 2,2-diphenyl-1-picrylhydrazyl (DPPH)-, hydrogen peroxide (H2O2) scavenging and ferrous ion-chelating activities (IC50=1.1, 17.1, 24 and 45.4 µg/ml, respectively). Further, PC exhibited strong anti-proliferative activity against the human lung, breast and cervical cancer cell lines. Together, these data suggest that PC can be isolated in its purified form by simple column chromatography, inhibits oxidative DNA damage and possesses high anti-proliferative activity. PMID:23493479

  20. Buformin exhibits anti-proliferative and anti-invasive effects in endometrial cancer cells

    PubMed Central

    Kilgore, Joshua; Jackson, Amanda L; Clark, Leslie H; Guo, Hui; Zhang, Lu; Jones, Hannah M; Gilliam, Timothy P; Gehrig, Paola A; Zhou, Chunxiao; Bae-Jump, Victoria L

    2016-01-01

    Objective: Biguanides are anti-diabetic drugs that are thought to have anti-tumorigenic effects. Most pre-clinical studies have focused on metformin for cancer treatment and prevention; however, buformin may be potentially more potent than metformin. Given this, our goal was to evaluate the effects of buformin on cell growth, adhesion and invasion in endometrial cancer cell lines. Methods: The ECC-1 and Ishikawa endometrial cancer cell lines were used. Cell proliferation was assessed by MTT assay. Apoptosis and cell cycle analysis was performed by FITC Annexin V assay and propidium iodide staining, respectively. Adhesion was analyzed using the laminin adhesion assay. Invasion was assessed using the transwell invasion assay. The effects of buformin on the AMPK/mTOR pathway were determined by Western immunoblotting. Results: Buformin and metformin inhibited cell proliferation in a dose-dependent manner in both endometrial cancer cell lines. IC50s were 1.4-1.6 mM for metformin and 8-150 μM for buformin. Buformin induced cell cycle G1 phase arrest in the ECC-1 cells and G2 phase arrest in the Ishikawa cells. For both ECC-1 and Ishikawa cells, treatment with buformin resulted in induction of apoptosis, reduction in adhesion and invasion, activation of AMPK and inhibition of phosphorylated-S6. Buformin potentiated the anti-proliferative effects of paclitaxel in both cell lines. Conclusion: Buformin has significant anti-proliferative and anti-metastatic effects in endometrial cancer cells through modulation of the AMPK/mTOR pathway. IC50 values were lower for buformin than metformin, suggesting that buformin may be more potent for endometrial cancer treatment and worthy of further investigation. PMID:27398153

  1. Anti-inflammatory properties of quebecol and its derivatives.

    PubMed

    Cardinal, Sébastien; Azelmat, Jabrane; Grenier, Daniel; Voyer, Normand

    2016-01-15

    Herein we report our results on the anti-inflammatory activity of quebecol, a polyphenolic compound discovered in maple syrup. Bioassays demonstrated that quebecol has an anti-inflammatory effect on LPS-induced NF-κB activation and inhibits the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. We also prepared and tested precursors of quebecol and its derivatives corresponding to its substructures of interest, with the aim to study the structure-activity relationships. Comparing the results obtained for all tested compounds allowed the identification of the main moiety responsible for the anti-inflammatory activity of quebecol. PMID:26691759

  2. Inhibition of amyloidogenesis by non-steroidal anti-inflammatory drugs and their hybrid nitrates

    PubMed Central

    Schiefer, Isaac T.; Abdul-Hay, Samer; Wang, Huali; Vanni, Michael; Qin, Zhihui; Thatcher, Gregory R. J.

    2011-01-01

    Poor blood-brain barrier penetration of non-steroidal anti-inflammatory drugs (NSAIDs) has been blamed for the failure of the selective amyloid lowering agent (SALA) R-flurbiprofen in phase 3 clinical trials for Alzheimer’s disease (AD). NO-donor NSAIDs (NO-NSAIDs) provide an alternative, gastric-sparing approach to NSAID SALAs, which may improve bioavailability. NSAID analogs were studied for anti-inflammatory activity and for SALA activity in N2a neuronal cells transfected with human amyloid precursor protein (APP). Flurbiprofen (1) analogs were obtained with enhanced anti-inflammatory and anti-amyloidogenic properties compared to 1, however, esterification led to elevated Aβ1–42 levels. Hybrid nitrate prodrugs possessed superior anti-inflammatory activity and reduced toxicity relative to the parent NSAIDs, including clinical candidate, CHF5074. Although hybrid nitrates elevated Aβ1–42 at higher concentration, SALA activity was observed at low concentrations (≤ 1 µM): both Aβ1–42 and the ratio of Aβ1–42/Aβ1–40 were lowered. This biphasic SALA activity was attributed to the intact nitrate drug. For several compounds the selective modulation of amyloidogenesis was tested using an immunoprecipitation MALDI-TOF approach. These data support the development of NO-NSAIDs as an alternative approach towards a clinically useful SALA. PMID:21405086

  3. Anti-Inflammatory Activity of Delonix regia (Boj. Ex. Hook)

    PubMed Central

    Shewale, Vaishali D.; Deshmukh, Tushar A.; Patil, Liladhar S.; Patil, Vijay R.

    2012-01-01

    The present work was to evaluate the anti-inflammatory activity of Delonix regia leaves (Family: Caesalpiniaceae). The powder of Delonix regia leaves was subjected to extraction with ethanol in soxhlet extractor. The ethanol extract after preliminary phytochemical investigation showed the presence of sterols, triterpenoids, phenolic compounds and flavonoids. The anti-inflammatory activity was studied using carrageenan-induced rat paw edema and cotton pellet granuloma at a three different doses (100, 200, and 400 mg/kg b.w. p.o.) of ethanol extract. The ethanol extract of Delonix regia leaves was exhibited significant anti-inflammatory activity at the dose of 400 mg/kg in both models when compared with control group. Indomethacin (10 mg/kg b.w. p.o) was also shown significant anti-inflammatory activity in both models. PMID:22110490

  4. Anti-Inflammatory Activity of Chitooligosaccharides in Vivo

    PubMed Central

    Fernandes, João C.; Spindola, Humberto; de Sousa, Vanessa; Santos-Silva, Alice; Pintado, Manuela E.; Malcata, Francisco Xavier; Carvalho, João E.

    2010-01-01

    All the reports to date on the anti-inflammatory activity of chitooligosaccharides (COS) are mostly based on in vitro methods. In this work, the anti-inflammatory activity of two COS mixtures is characterized in vivo (using balb/c mice), following the carrageenan-induced paw edema method. This is a widely accepted animal model of acute inflammation to evaluate the anti-inflammatory effect of drugs. Our data suggest that COS possess anti-inflammatory activity, which is dependent on dose and, at higher doses, also on the molecular weight. A single dose of 500 mg/kg b.w. weight may be suitable to treat acute inflammation cases; however, further studies are needed to ascertain the effect upon longer inflammation periods as well as studies upon the bioavailability of these compounds. PMID:20631868

  5. Esculetin, a Coumarin Derivative, Exhibits Anti-proliferative and Pro-apoptotic Activity in G361 Human Malignant Melanoma

    PubMed Central

    Jeon, Young-Joo; Jang, Jeong-Yun; Shim, Jung-Hyun; Myung, Pyung Keun; Chae, Jung-Il

    2015-01-01

    Background: Although esculetin, a coumarin compound, is known to induce apoptosis in human cancer cells, the effects and molecular mechanisms on the apoptosis in human malignant melanoma (HMM) cells are not well understood yet. In this study, we investigated the anti-proliferative effects of esculetin on the G361 HMM cells. Methods: We analyzed the anti-proliferative effects and molecular mechanisms of esculetin on G361 cells by a 3-(4,5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, 4′,6-diamidino-2-phenylindole staining and Western blotting. Results: Esculetin exhibited significant anti-proliferative effects on the HMM cells in a dose-dependent manner. Interestingly, we found that esculetin induced nuclear shrinkage and fragmentation, typical apoptosis markers, by suppression of Sp1 transcription factor (Sp1). Notably, esculetin modulated Sp1 downstream target genes including p27, p21 and cyclin D1, resulted in activation of apoptosis signaling molecules such as caspase-3 and PARP in G361 HMM cells. Conclusions: Our results clearly demonstrated that esculetin induced apoptosis in the HMM cells by downregulating Sp1 protein levels. Thus, we suggest that esculetin may be a potential anti-proliferative agent that induces apoptotic cell death in G361 HMM cells. PMID:26151043

  6. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent.

    PubMed

    Sun, Lan-Di; Wang, Fu; Dai, Fang; Wang, Yi-Hua; Lin, Dong; Zhou, Bo

    2015-06-01

    Inflammation, especially chronic inflammation, is directly involvement in the pathogenesis of many diseases including cancer. An effective approach for managing inflammation is to employ chemicals to block activation of nuclear factor-κB (NF-κB), a key regulator for inflammatory processes. Piperlongumine (piplartine, PL), an electrophilic molecule isolated from Piper longum L., possesses excellent anti-cancer and anti-inflammatory properties. In this study, a new PL analogue (PL-0N) was designed by replacing nitrogen atom of lactam in PL with carbon atom to increase its electrophilicity and thus anti-inflammatory activity. It was found that PL-0N is more potent than the parent compound in suppressing lipopolysaccharide (LPS)-induced secretion of nitric oxide and prostaglandin E2 as well as expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW264.7 macrophages. Mechanistic investigation implies that PL-0N exerts anti-inflammatory activity through inhibition of LPS-induced NF-κB transduction pathway, down-regulation of LPS-induced MAPKs activation and impairment of proteasomal activity, but also enhancement of LPS-induced autophagy; the inhibition of NF-κB by PL-0N is achieved at various stages by: (i) preventing phosphorylation of IKKα/β, (ii) stabilizing the suppressor protein IκBα, (iii) interfering with the nuclear translocation of NF-κB, and (iv) inhibiting the DNA-binding of NF-κB. These data indicate that nitrogen-atom-lacking pattern is a successful strategy to improve anti-inflammatory property of PL, and that the novel molecule, PL-0N may be served as a promising lead for developing natural product-directed anti-inflammatory agents. PMID:25850000

  7. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins.

    PubMed

    Tubaro, Aurelia; Giangaspero, Anna; Sosa, Silvio; Negri, Roberto; Grassi, Gianpaolo; Casano, Salvatore; Della Loggia, Roberto; Appendino, Giovanni

    2010-10-01

    A selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids. PMID:20450962

  8. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  9. [Anti-inflammatory effects of methylprednisolone aceponate in animals].

    PubMed

    Ikoma, Y; Yamashita, M; Kamitani, K; Nakagawa, H

    1991-11-01

    In the case of dermal application of the drugs to croton oil-induced ear edema in rats and picryl chloride-induced delayed type hypersensitivity in mice, the anti-inflammatory effect of methylprednisolone aceponate (MPA) was slightly weaker than those of clobetasol 17-propionate and diflucortolone 21-valerate, but stronger than those of hydrocortisone 17-butyrate and hydrocortisone 17-butyrate 21-propionate. Betamethasone 17-valerate applied dermally was less and more effective than MPA to ear edema in rats and delayed type hypersensitivity in mice, respectively. The anti-inflammatory effect of MPA was weaker in subcutaneous administration than in topical application to the two inflammatory models. It was suggested that MPA has strong anti-inflammatory effects and weak systemic effects by topical application. Methylprednisolone 17-propionate (MP-17P) and methylprednisolone (MP), unesterified in only the C-21 position and in both the C-17 and 21 positions of MPA, respectively, showed weaker anti-inflammatory activities than MPA by topical application to croton oil-induced ear edema. The ratio of the anti-inflammatory effects by topical application to subcutaneous administration of MPA was higher than those of MP-17P and MP. The excellent characteristics of MPA as a dermal anti-inflammatory drug are suggested to be derived from di-esterification of MP, which has a weak activity intrinsically. PMID:1813371

  10. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  11. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  12. Bar adsorptive microextraction (BAμE) coated with mixed sorbent phases-Enhanced selectivity for the determination of non-steroidal anti-inflammatory drugs in real matrices in combination with capillary electrophoresis.

    PubMed

    Ahmad, S M; Almeida, C; Neng, N R; Nogueira, J M F

    2016-01-01

    The present work proposes the application of bar adsorptive microextraction coated with mixed sorbent phases (n-vinylpyrrolidone and divinylbenzene polymers with strong and weak anion exchangers), combined with liquid desorption followed by capillary electrophoresis with diode array detection (BAμE(PMIX)-LD/CE-DAD) for the determination of trace levels of non-steroidal anti-inflammatory drugs (NSAIDs: salicylic acid, mefenamic acid, diclofenac and naproxen as model compounds) in urine and water matrices. Assays performed on 25mL of water samples spiked at the 80.0μg/L level, yielded average recoveries between 86.6 and 104.% for all the NSAIDs under study using optimized experimental conditions. The proposed analytical methodology demonstrated suitable detection limits (0.3μg/L) and good linear dynamic ranges (2.5-320.0μg/L) with determination coefficients higher than 0.9981. By using the standard addition methodology, the present analytical approach was applied on urine and water samples, where good selectivity and sensitivity were achieved. The proposed method, which operated under the floating sampling technology, proved to be a suitable sorption-based static microextraction alternative for monitoring trace levels of NSAIDs in urine and water samples. The methodology showed to be easy to implement, demonstrating good reproducibility and robustness, allowing the possibility to choose the most selective sorbent, or mixed sorbent phases, according to the compounds of interest. PMID:26638036

  13. ΔNp63α represses anti-proliferative genes via H2A.Z deposition

    PubMed Central

    Gallant-Behm, Corrie L.; Ramsey, Matthew R.; Bensard, Claire L.; Nojek, Ignacio; Tran, Jack; Liu, Minghua; Ellisen, Leif W.; Espinosa, Joaquín M.

    2012-01-01

    ΔNp63α is a member of the p53 family of transcription factors that functions as an oncogene in squamous cell carcinomas (SCCs). Because ΔNp63α and p53 bind virtually identical DNA sequence motifs, it has been proposed that ΔNp63α functions as a dominant-negative inhibitor of p53 to promote proliferation and block apoptosis. However, most SCCs concurrently overexpress ΔNp63α and inactivate p53, suggesting the autonomous action of these oncogenic events. Here we report the discovery of a novel mechanism of transcriptional repression by ΔNp63α that reconciles these observations. We found that although both proteins bind the same genomic sites, they regulate largely nonoverlapping gene sets. Upon activation, p53 binds all enhancers regardless of ΔNp63α status but fails to transactivate genes repressed by ΔNp63α. We found that ΔNp63α associates with the SRCAP chromatin regulatory complex involved in H2A/H2A.Z exchange and mediates H2A.Z deposition at its target loci. Interestingly, knockdown of SRCAP subunits or H2A.Z leads to specific induction of ΔNp63α-repressed genes. We identified SAMD9L as a key anti-proliferative gene repressed by ΔNp63α and H2A.Z whose depletion suffices to reverse the arrest phenotype caused by ΔNp63α knockdown. Collectively, these results illuminate a molecular pathway contributing to the autonomous oncogenic effects of ΔNp63α. PMID:23019126

  14. Use of non-steroidal anti-inflammatory drugs in the treatment of pain in cancer

    PubMed Central

    Ventafridda, V.; Fochi, C.; De Conno, D.; Sganzerla, E.

    1980-01-01

    1 Prostaglandins may precipitate or exacerbate pain and they may be produced by several tumours. 2 Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostaglandin synthesis and may also inhibit bone metastases and enhance immune responses. 3 NSAIDs alone or in association with narcotics or psychotropics may not only afford the best pain relief in neoplastic disease, but also modify the progress of the tumour. 4 The effect of NSAIDs on the gastrointestinal tract is generally adverse. PMID:7002189

  15. Enhancement of antinociception by coadminstration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis

    PubMed Central

    2010-01-01

    Background Minocycline and a non-steroidal anti-inflammatory drug (NSAID) indomethacin, have anti-inflammatory activities and are both used in the management of rheumatoid arthritis. However, there are no reports on whether coadministration of these drugs could potentiate each other's activities in alleviating pain and weight bearing deficits during arthritis. Methods LPS was injected to BALB/c mice intraperitoneally (i.p.) to induce thermal hyperalgesia. The hot plate test was used to study thermal nociception in naïve BALB/c and C57BL/6 mice and BALB/c mice with LPS-induced thermal hyperalgesia and to evaluate antinociceptive effects of drugs administered i.p. Monoarthritis was induced by injection of LPS intra-articularly into the right hind (RH) limb ankle joint of C57BL/6 mice. Weight bearing changes and the effect of i.p. drug administration were analyzed in freely moving mice using the video-based CatWalk gait analysis system. Results In naïve mice indomethacin (5 to 50 mg/kg) had no significant activity, minocycline (25 to 100 mg/kg) produced hyperalgesia to thermal nociception, however, coadministration of minocycline 50 mg/kg with indomethacin 5 or 10 mg/kg produced significant antinociceptive effects in the hot plate test. A selective inhibitor of COX-1, FR122047 (10 mg/kg) and a selective COX-2 inhibitor, CAY10404 (10 mg/kg) had no significant antinociceptive activities to thermal nociception in naïve mice, however, coadministration of minocycline, with CAY10404 but not FR122047 produced significant antinociceptive effects. In mice with LPS-induced hyperalgesia vehicle, indomethacin (10 mg/kg) or minocycline (50 mg/kg) did not produce significant changes, however, coadministration of minocycline plus indomethacin resulted in antinociceptive activity. LPS-induced RH limb monoarthritis resulted in weight bearing (RH/left hind (LH) limb paw pressure ratios) and RH/LH print area ratios deficits. Treatment with indomethacin (1 mg/kg) or minocycline (50 mg

  16. Colonic anastomoses and non-steroidal anti-inflammatory drugs.

    PubMed

    Slim, K; Joris, J; Beloeil, H

    2016-08-01

    Nonsteroidal anti-inflammatory drugs (NSAID) play an important role in the treatment of post-operative pain, particularly in the context of enhanced recovery after colorectal surgery. Several recent articles have suggested that NSAID may have a deleterious effect on colo-colic or colo-rectal anastomoses. The aim of this review is to analyze the evidence based on meta-analyses and cohort studies in the literature. A systematic review of clinical studies identified twelve studies including two meta-analyses and ten comparative cohort studies that included a large number of patients. The data in these studies are heterogeneous, often biased, and do not permit a formal recommendation based on a high level of evidence. The main conclusion of this review is that the balance of benefit vs. risk (analgesic effect/risk of anastomotic disruption) is acceptable; it appears (with a low level of evidence) that a prescription of NSAID for 48h after surgery may be recommended for elective colon surgery. Nevertheless, it is important to respect the specific contra-indications of NSAID and avoid post-operative NSAID use if there are risk factors for anastomotic leakage: advanced age, malnutrition, severe co-morbidities, intra-operative difficulties. PMID:27480526

  17. Antioxidant, antimicrobial and anti-proliferative activities of Solanum tuberosum L. var. Vitelotte.

    PubMed

    Bontempo, Paola; Carafa, Vincenzo; Grassi, Roberto; Basile, Adriana; Tenore, Gian Carlo; Formisano, Carmen; Rigano, Daniela; Altucci, Lucia

    2013-05-01

    Solanum tuberosum L. var. Vitelotte is a potato variety widely used for human consumption. The pigments responsible for its attractive color belong to the class of anthocyanins. The objectives of this study were to characterize and measure the concentration of anthocyanins in pigmented potatoes and to evaluate their antioxidant and antimicrobial activities and their anti-proliferative effects in solid and hematological cancer cell lines. Anthocyanins exert anti-bacterial activity against different bacterial strains and a slight activity against three fungal strains. The Gram-positive bacterium Staphylococcus aureus and the fungus Rhyzoctonia solani were the most affected microorganisms. Antioxidant activities were evaluated by DPPH and FRAP methods; the extract showed a higher reducing capability than anti-radical activity. Moreover, we found that in different cancer cell models the anthocyanins cause inhibition of proliferation and apoptosis in a dose dependent manner. These biological activities are likely due to the high content of malvidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside and petunidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside. PMID:23313609

  18. Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities.

    PubMed

    Sayari, Nadhem; Sila, Assaâd; Abdelmalek, Baha Eddine; Abdallah, Rihab Ben; Ellouz-Chaabouni, Semia; Bougatef, Ali; Balti, Rafik

    2016-06-01

    Chitin was recovered through enzymatic deproteinization of the Norway lobster (Nephrops norvegicus) processing by-products. The obtained chitin was characterized and converted into chitosan by N-deacetylation, the acid-soluble form of chitin. Chitosan samples were then characterized by Fourier transform infrared spectroscopy (FTIR) and 13 Cross polarization magic angle spinning nuclear magnetic resonance (CP/MAS)-NMR spectroscopy. The antimicrobial activity and anti-proliferative capacity of chitosan were evaluated. Antimicrobial activity assays indicated that prepared chitosan exhibited marked inhibitory activity against the bacterial and fungal strains tested. Further, cytotoxic effects of chitosan samples on human colon carcinoma cells HCT116 was evaluated using the MTT assay. Chitosan showed the antiproliferative capacity against the colon-cancer-cell HCT116 in a dose dependent manner with IC50 of 4.6mg/ml. Indeed, HCT116 cell proliferation was significantly inhibited (p<0.05) between 13.5 and 67.5% at 0.5-6mg/mL of chitosan after 24h of cell treatment. The chitosan showed high antitumor activity which seemed to be dependent on its characteristics such as acetylation degree. PMID:26920243

  19. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells.

    PubMed

    Chan, Yau Sang; Xia, Lixin; Ng, Tzi Bun

    2016-04-01

    A 60-kDa glucosamine binding lectin, white kidney bean lectin (WKBL), was purified from Phaseolus vulgaris cv. white kidney beans, by application of anion exchange chromatography on Q-Sepharose, affinity chromatography on Affi-gel blue gel, and FPLC-size exclusion on Superdex 75. The anti-proliferative activity of WKBL on HONE1 cells and HepG2 cells was stronger than the activity on MCF7 cells and WRL68 cells (IC50 values for a 48-h treatment with WKBL on HONE1 cells: 18.8 μM; HepG2 cells: 19.7 μM; MCF7 cells: 26.9 μM; and WRL68 cells: >80 μM). The activity could be reduced by addition of glucosamine, which occupies the binding sites of WKBL, indicating that carbohydrate binding is crucial for the activity. Annexin V-FITC and PI staining, JC-1 staining and Hoechst 33342 staining revealed that apoptosis was induced on WKBL-treated HONE1 cells and HepG2 cells, but not as obviously on MCF7 cells. Cell cycle analysis also showed a slight cell cycle arrest on HONE1 cells after WKBL treatment. Western blotting suggested that WKBL induced apoptosis of HONE1 cells occurred through the extrinsic apoptosis pathway, with detection of increased level of active caspase 3, 8 and 9. PMID:26769089

  20. Euphorbia mauritanica and Kedrostis hirtella extracts can induce anti-proliferative activities in lung cancer cells.

    PubMed

    Thafeni, Makhosazana A; Sayed, Yasien; Motadi, Lesetja R

    2012-12-01

    Cancer is a public health problem in the world accounting for most of the deaths. Currently, common treatment of cancer such as chemotherapy works by killing fast-growing cancer cells. Unfortunately, chemotherapy cannot tell the difference between cancer cells and fast-growing healthy cells, including red and white blood cells. As a result, one of the most serious potential side effects of some types of chemotherapy is a low white blood cell count that makes it unreliable (Parkin et al. [34]; Pauk et al. [3]). Even though intense research has been going on in recent years, successful therapeutic targets against this disease have been elusive. In this study, we evaluate the anti-proliferative activity of Euphorbia mauritanica and Kedrostis hirtella in lung cancer. In our assessment it was observed that E. mauritanica and K. hirtella were able to induce cell death at 5 μg/ml in A549 cells over 22 h and at 10 μg/ml over 24 h in the Lqr1 cell line. Molecular analysis of DNA fragmentation and Annexin V were used to examine the type of cell death induced by E. mauritanica and K. hirtella extracts. These results showed an increase in necrotic and apoptotic characteristics with both nuclear DNA fragmentation and smear. Therefore, these results suggest that E. mauritanica and K. hirtella may play a role in inducing cell death in lung cancer cells. However, further studies need to be conducted to ascertain these results. PMID:23086267

  1. Chronic Renal Transplant Rejection and Possible Anti-Proliferative Drug Targets.

    PubMed

    Bhatti, Adnan Bashir; Usman, Muhammad

    2015-01-01

    The global prevalence of renal transplants is increasing with time, and renal transplantation is the only definite treatment for end-stage renal disease. We have limited the acute and late acute rejection of kidney allografts, but the long-term survival of renal tissues still remains a difficult and unanswered question as most of the renal transplants undergo failure within a decade of their transplantation. Among various histopathological changes that signify chronic allograft nephropathy (CAN), tubular atrophy, fibrous thickening of the arteries, fibrosis of the kidney interstitium, and glomerulosclerosis are the most important. Moreover, these structural changes are followed by a decline in the kidney function as well. The underlying mechanism that triggers the long-term rejection of renal transplants involves both humoral and cell-mediated immunity. T cells, with their related cytokines, cause tissue damage. In addition, CD 20+ B cells and their antibodies play an important role in the long-term graft rejection. Other risk factors that predispose a recipient to long-term graft rejection include HLA-mismatching, acute episodes of graft rejection, mismatch in donor-recipient age, and smoking. The purpose of this review article is the analyze current literature and find different anti-proliferative agents that can suppress the immune system and can thus contribute to the long-term survival of renal transplants. The findings of this review paper can be helpful in understanding the long-term survival of renal transplants and various ways to improve it. PMID:26677426

  2. Chronic Renal Transplant Rejection and Possible Anti-Proliferative Drug Targets

    PubMed Central

    Usman, Muhammad

    2015-01-01

    The global prevalence of renal transplants is increasing with time, and renal transplantation is the only definite treatment for end-stage renal disease. We have limited the acute and late acute rejection of kidney allografts, but the long-term survival of renal tissues still remains a difficult and unanswered question as most of the renal transplants undergo failure within a decade of their transplantation. Among various histopathological changes that signify chronic allograft nephropathy (CAN), tubular atrophy, fibrous thickening of the arteries, fibrosis of the kidney interstitium, and glomerulosclerosis are the most important. Moreover, these structural changes are followed by a decline in the kidney function as well. The underlying mechanism that triggers the long-term rejection of renal transplants involves both humoral and cell-mediated immunity. T cells, with their related cytokines, cause tissue damage. In addition, CD 20+ B cells and their antibodies play an important role in the long-term graft rejection. Other risk factors that predispose a recipient to long-term graft rejection include HLA-mismatching, acute episodes of graft rejection, mismatch in donor-recipient age, and smoking. The purpose of this review article is the analyze current literature and find different anti-proliferative agents that can suppress the immune system and can thus contribute to the long-term survival of renal transplants. The findings of this review paper can be helpful in understanding the long-term survival of renal transplants and various ways to improve it. PMID:26677426

  3. Anti-proliferative and mutagenic activities of aqueous and methanol extracts of leaves from Pereskia bleo (Kunth) DC (Cactaceae).

    PubMed

    Er, Hui Meng; Cheng, En-Hsiang; Radhakrishnan, Ammu Kutty

    2007-09-25

    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in 4T1 cells and 300 microg/mL in NIH/3T3 cells, whereas the methanol extract did not show any notable anti-proliferative effect in these cell lines, at any of the concentrations tested. Under the sub-optimal condition, the aqueous extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in NIH/3T3 cells, whilst the methanol extract showed a significant (p<0.05) anti-proliferative effect at 200 microg/mL and 300 microg/mL in both cell lines. An upward trend of apoptosis was observed in both 4T1 and NIH/3T3 cells treated with increasing concentrations of the aqueous extract. The level of apoptosis observed at all the concentrations of the aqueous extract tested was consistently higher than necrosis. There was a significant (p<0.05) increase in the level of necrosis observed in the 4T1 cells treated with 300 microg/mL of the methanol extract. Generally, the level of necrosis was noted to be higher than that of apoptosis in the methanol extract-treated cells. The mutagenicity assay performed showed that in the absence of S-9 liver metabolic activation, the extract was not mutagenic up to the concentration of 165 microg/mL . However, in the presence of S-9 liver metabolic activation, the aqueous extract was mutagenic at all the concentrations tested. This study shows that both the aqueous and methanol extracts of the leaves from Pereskia bleo (Kunth) DC (Cactaceae) do not have appreciable anti-proliferative effect on

  4. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  5. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology

    PubMed Central

    Galvez-Llompart, María; Zanni, Riccardo; García-Domenech, Ramón

    2011-01-01

    One of the main pharmacological problems today in the treatment of chronic inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side effects. The natural products offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Computer-aided drug design has proved to be a very useful tool for discovering new drugs and, specifically, Molecular Topology has become a good technique for such a goal. A topological-mathematical model, obtained by linear discriminant analysis, has been developed for the search of new anti-inflammatory natural compounds. An external validation obtained with the remaining compounds (those not used in building up the model), has been carried out. Finally, a virtual screening on natural products was performed and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been previously described as anti-inflammatory in the literature. This can be seen as a plus in the model validation and as a reinforcement of the role of Molecular Topology as an efficient tool for the discovery of new anti-inflammatory natural compounds. PMID:22272145

  6. Anti-inflammatory and analgesic effects of Daphne retusa Hemsl.

    PubMed

    Hu, Xiaojia; Jin, Huizi; Xu, Wenzheng; Zhang, Wei; Liu, Xiaohua; Yan, Shikai; Chen, Ming; Li, Jianqiang; Zhang, Wei-dong

    2008-10-30

    Daphne retusa Hemsl. belongs to the genus Daphne, a member of Thymelaeaceae family. The barks and stems of Daphne retusa are used as a folkloric medicine 'Zhu Shi Ma' in Western China because of its effects of detumescence and acesodyne. In this paper, we investigate the anti-inflammatory and analgesic effects of the 75% ethanol extract of the stems and barks of Daphne retusa and different fractions partitioned with petroleum ether, methylene chloride, ethyl acetate and n-butanol, respectively. The anti-inflammatory effects were evaluated using xylene-induced ear oedema in mice and carrageenan-induced paw oedema in rats, while the acetic acid-induced writhing test and hot-plate test as models for evaluating the centrally and peripherally analgesic activity. The results showed the plant has significant anti-inflammatory and analgesic effects (P<0.05-0.01). Meanwhile, the result of the acute toxicity test at which the MTD was above 5g/kg indicates that the plant extract is relatively safe in, and/or non-toxic to, mice. The findings of these experimental animal studies indicate that the Daphne retusa ethanol extract possesses anti-inflammatory and analgesic properties, and thus provide pharmacological support to folkloric, ethnomedical uses of 'Zhu shima' in the treatment and/of management of anti-inflammatory and painful conditions in China. PMID:18692124

  7. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells.

    PubMed

    Sung, Nak Yoon; Kim, Seung Cheol; Kim, Yun Hwan; Kim, Gihyeon; Lee, Yunmi; Sung, Gi-Ho; Kim, Ji Hye; Yang, Woo Seok; Kim, Mi Seon; Baek, Kwang-Soo; Kim, Jong-Hoon; Cho, Jae Youl

    2016-07-01

    It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells. PMID:27068261

  8. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells

    PubMed Central

    Sung, Nak Yoon; Kim, Seung Cheol; Kim, Yun Hwan; Kim, Gihyeon; Lee, Yunmi; Sung, Gi-Ho; Kim, Ji Hye; Yang, Woo Seok; Kim, Mi Seon; Baek, Kwang-Soo; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells. PMID:27068261

  9. Role of VDR in anti-proliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo

    PubMed Central

    Chung, Ivy; Han, Guangzhou; Seshadri, Mukund; Gillard, Bryan M.; Yu, Wei-dong; Foster, Barbara A.; Trump, Donald L.; Johnson, Candace S.

    2008-01-01

    Calcitriol (1, 25-dihydroxycholecalciferol), the major active form of vitamin D, is anti-proliferative in tumor cells and tumor-derived endothelial cells (TDEC). These actions of calcitriol are mediated at least in part by vitamin D receptor (VDR), which is expressed in many tissues including endothelial cells. To investigate the role of VDR in calcitriol effects on tumor vasculature, we established TRAMP-2 tumors subcutaneously into either VDR wild type (WT) or knockout (KO) mice. Within 30 days post inoculation, tumors in KO mice were larger than those in WT (P<0.001). TDEC from WT expressed VDR and were able to transactivate a reporter gene whereas TDEC from KO mice were not. Treatment with calcitriol resulted in growth inhibition in TDEC expressing VDR. However, TDEC from KO mice were relatively resistant, suggesting that calcitriol-mediated growth inhibition on TDEC is VDR-dependent. Further analysis of the TRAMP-C2 tumor sections revealed that the vessels in KO mice were enlarged and had less pericyte coverage compared to WT (P<0.001). Contrast-enhanced MRI demonstrated an increase in vascular volume of TRAMP tumors grown in VDR KO mice compared to WT mice (P<0.001) and FITC-dextran permeability assay suggested a higher extent of vascular leakage in tumors from KO mice. Using ELISA and Western blot analysis, there was an increase of HIF-1 alpha, VEGF, Ang1 and PDGF-BB levels observed in tumors from KO mice. These results indicate that calcitriol-mediated anti-proliferative effects on TDEC are VDR dependent and loss of VDR can lead to abnormal tumor angiogenesis. PMID:19141646

  10. Optimization and pharmacological validation of a leukocyte migration assay in zebrafish larvae for the rapid in vivo bioactivity analysis of anti-inflammatory secondary metabolites.

    PubMed

    Cordero-Maldonado, María Lorena; Siverio-Mota, Dany; Vicet-Muro, Liliana; Wilches-Arizábala, Isabel María; Esguerra, Camila V; de Witte, Peter A M; Crawford, Alexander D

    2013-01-01

    Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts. PMID:24124487

  11. Optimization and Pharmacological Validation of a Leukocyte Migration Assay in Zebrafish Larvae for the Rapid In Vivo Bioactivity Analysis of Anti-Inflammatory Secondary Metabolites

    PubMed Central

    Vicet-Muro, Liliana; Wilches-Arizábala, Isabel María; Esguerra, Camila V.; de Witte, Peter A. M.; Crawford, Alexander D.

    2013-01-01

    Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts. PMID:24124487

  12. Toll-like receptor-mediated anti-inflammatory action of glaucine and oxoglaucine.

    PubMed

    Remichkova, Mimi; Dimitrova, Petya; Philipov, Stefan; Ivanovska, Nina

    2009-10-01

    Two isochinoline alkaloids, glaucine and oxoglaucine were investigated for their suggested anti-inflammatory influence concerning nitric oxide and cytokine production. Mouse peritoneal macrophages were stimulated with different Toll-like receptor (TLR) ligands such as LPS for TLR4, zymosan for TLR2 and CpG for TLR9. The alkaloids inhibited TNF-alpha and IL-6 production induced by these ligands. In regard to IL-12 suppressive effect was registered in the case of CpG stimulation. Glaucine succeeded to enhance LPS and zymosan-induced IL-10 production. The reduction of pro-inflammatory cytokines and increase of anti-inflammatory IL-10 are indicative for their use in different acute and chronic inflammatory diseases. PMID:19481591

  13. New insights into insulin: The anti-inflammatory effect and its clinical relevance.

    PubMed

    Sun, Qiang; Li, Jia; Gao, Feng

    2014-04-15

    Hyperglycemia, a commonly exhibited metabolic disorder in critically ill patients, activates the body's inflammatory defense mechanism, causing the waterfall release of numerous inflammatory mediators and cytokines, and eventually leads to organ damage. As the only glucose-lowering hormone in the body, insulin not only alleviates the detrimental effects of hyperglycemia through its metabolic regulation, but also directly modulates inflammatory mediators and acts upon immune cells to enhance immunocompetence. In this sense, hyperglycemia is pro-inflammatory whereas insulin is anti-inflammatory. Therefore, during the past 50 years, insulin has not only been used in the treatment of diabetes, but has also been put into practical use in dealing with cardiovascular diseases and critical illnesses. This review summarizes the recent advances regarding the anti-inflammatory effects of insulin in both basic research and clinical trials, with the hope of aiding in the design of further experimental research and promoting effective insulin administration in clinical practice. PMID:24765237

  14. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111

  15. Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes.

    PubMed

    Ogmundsdóttir, H M; Zoëga, G M; Gissurarson, S R; Ingólfsdóttir, K

    1998-01-01

    microg mL(-1) for protolichesterinic acid and 30 microg mL(-1) for lobaric acid. We conclude that the anti-proliferative and cytotoxic effects observed might be related to the 5-lipoxygenase inhibitory activity of protolichesterinic acid and lobaric acid. These results open up the opportunity for future studies of these lichen metabolites with regard to their anti-tumour and anti-inflammatory properties. PMID:9504441

  16. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway.

    PubMed

    Wang, Hongsheng; Zhang, Leiming; Jiang, Na; Wang, Zhenhua; Chong, Yating; Fu, Fenghua

    2013-08-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2α (PGF2α), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-κB-mediated gene expression. The aim of this study was to determine the functions of NF-κB and PGF2α with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2α in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-κB with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-κB. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway. PMID:24137201

  17. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway

    PubMed Central

    WANG, HONGSHENG; ZHANG, LEIMING; JIANG, NA; WANG, ZHENHUA; CHONG, YATING; FU, FENGHUA

    2013-01-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2α (PGF2α), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-κB-mediated gene expression. The aim of this study was to determine the functions of NF-κB and PGF2α with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2α in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-κB with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-κB. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway. PMID:24137201

  18. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells.

    PubMed

    Goldsmith, Chloe D; Vuong, Quan V; Sadeqzadeh, Elham; Stathopoulos, Costas E; Roach, Paul D; Scarlett, Christopher J

    2015-01-01

    Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds; especially oleuropein. Oleuropein has been shown to exhibit anti-proliferative activity against a number of cancer types. However, they have not been tested against pancreatic cancer, the fifth leading cause of cancer related death in Western countries. Therefore, water, 50% ethanol and 50% methanol extracts of Corregiola and Frantoio variety Olea europaea L. leaves were investigated for their total phenolic compounds, total flavonoids and oleuropein content, antioxidant capacity and anti-proliferative activity against MiaPaCa-2 pancreatic cancer cells. The extracts only had slight differences in their phytochemical properties, and at 100 and 200 μg/mL, all decreased the viability of the pancreatic cancer cells relative to controls. At 50 μg/mL, the water extract from the Corregiola leaves exhibited the highest anti-proliferative activity with the effect possibly due to early eluting HPLC peaks. For this reason, olive leaf extracts warrant further investigation into their potential anti-pancreatic cancer benefits. PMID:26193251

  19. Kalanchosine dimalate, an anti-inflammatory salt from Kalanchoe brasiliensis.

    PubMed

    Costa, Sônia Soares; de Souza, Maria de Lourdes Mendes; Ibrahim, Tereza; de Melo, Giany Oliveira; de Almeida, Ana Paula; Guette, Catherine; Férézou, Jean-Pierre; Koatz, Vera Lucia G

    2006-05-01

    This report describes the isolation and characterization of kalanchosine dimalate (KMC), an anti-inflammatory salt from the fresh juice of the aerial parts of Kalanchoe brasiliensis. KMC comprises the new metabolite kalanchosine (1) and malic acid (2) in a 1:2 stoichiometric ratio. Kalanchosine (1), 3,6-diamino-4,5-dihydroxyoctanedioic acid, is the first naturally occurring dimeric bis(gamma-hydroxy-beta-amino acid) and is at least partially responsible for the anti-inflammatory properties of K. brasiliensis. PMID:16724848

  20. [Non-steroidal anti-inflammatory drugs in pregnancy].

    PubMed

    Valha, P; Zmrhal, J; Feyereisl, J

    2010-02-01

    Non-steroidal anti-inflammatory drugs, usually abbreviated to NSAIDs, are drugs with analgesic, antipyretic (lowering an elevated body temperature and relieving pain without impairing consciousness) and, in higher doses, with anti-inflammatory effects (reducing inflammation). As inhibitors of cyclooxygenase NSAIDs given during pregnancy have the potential to cause adverse maternal and fetal effects. Maternal effects include prolongation of pregnancy and labour, whereas constriction of the ductus arteriosus, renal dysfunction and haemostatic abnormalities can occur in the fetus and neonate. As weak acids, NSAIDs are excreted in small amounts into human breast milk with little risk for adverse effects in the suckling infant. PMID:20437842

  1. Gastrointestinal and Cardiovascular Risk of Nonsteroidal Anti-inflammatory Drugs

    PubMed Central

    Al-Saeed, Abdulwahed

    2011-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) confer a gastrointestinal (GI) side effect profile and concerns regarding adverse cardiovascular effects have emerged associated with considerable morbidity and mortality. NSAIDs are highly effective in treating pain and inflammation, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although they may increase cardiovascular adverse events. The selection of an appropriate analgesic or anti-inflammatory agent with or without gastroprotective therapy should be individualized. PMID:22253945

  2. Vasoconstrictor and the anti-inflammatory effects of 7 corticosteroids.

    PubMed

    Crijns, M B; Nater, J P; van Oostveen, F; van der Valk, P G

    1984-08-01

    The vasoconstrictor effect of 7 proprietary corticosteroid creams was compared with their effect on patches of allergic contact dermatitis provoked by patch testing in 20 subjects. A parallel between the blanching effect on the normal skin and the anti-inflammatory effect on the eczematous skin was generally found. A modified patch test method using the Finn chamber technique is described, which (with certain restrictions) offers an opportunity of studying the anti-inflammatory effect of corticosteroids on allergic dermatitis under standard conditions. PMID:6488765

  3. RHPS4 G-Quadruplex Ligand Induces Anti-Proliferative Effects in Brain Tumor Cells

    PubMed Central

    Lagah, Sunil; Tan, I-Li; Radhakrishnan, Priya; Hirst, Robert A.; Ward, Jennifer H.; O’Callaghan, Chris; Smith, Stuart J.; Stevens, Malcolm F. G.; Grundy, Richard G.; Rahman, Ruman

    2014-01-01

    Background Telomeric 3′ overhangs can fold into a four-stranded DNA structure termed G-quadruplex (G4), a formation which inhibits telomerase. As telomerase activation is crucial for telomere maintenance in most cancer cells, several classes of G4 ligands have been designed to directly disrupt telomeric structure. Methods We exposed brain tumor cells to the G4 ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) and investigated proliferation, cell cycle dynamics, telomere length, telomerase activity and activated c-Myc levels. Results Although all cell lines tested were sensitive to RHPS4, PFSK-1 central nervous system primitive neuroectodermal cells, DAOY medulloblastoma cells and U87 glioblastoma cells exhibited up to 30-fold increased sensitivity compared to KNS42 glioblastoma, C6 glioma and Res196 ependymoma cells. An increased proportion of S-phase cells were observed in medulloblastoma and high grade glioma cells whilst CNS PNET cells showed an increased proportion of G1-phase cells. RHPS4-induced phenotypes were concomitant with telomerase inhibition, manifested in a telomere length-independent manner and not associated with activated c-Myc levels. However, anti-proliferative effects were also observed in normal neural/endothelial cells in vitro and ex vivo. Conclusion This study warrants in vivo validation of RHPS4 and alternative G4 ligands as potential anti-cancer agents for brain tumors but highlights the consideration of dose-limiting tissue toxicities. PMID:24454961

  4. Binding, Antioxidant and Anti-proliferative Properties of Bioactive Compounds of Sweet Paprika (Capsicum annuum L.).

    PubMed

    Kim, Hong-Gi; Bae, Jong-Hyang; Jastrzebski, Zenon; Cherkas, Andriy; Heo, Buk-Gu; Gorinstein, Shela; Ku, Yang-Gyu

    2016-06-01

    The scope of this research was to determine the bioactive composition, antioxidant, binding, and anti-proliferative properties of red sweet paprika growing under artificial light. The amounts of carotenoids, chlorophyll, polyphenols, tannins, and flavonoids in red paprika (RP), cultivated in Korea, before and after light treatments under high pressure sodium (HPS) and lighting emitting plasma (LEP) lamps (RPControl, RPHPS, RPLEP), were analyzed in water (W) and ethanolic extracts (Et). Spectroscopic, radical scavenging assays, fluorescence and cytotoxicity measurements were applied. The results of this study showed that total chlorophyll and carotenes were the highest in RPHPS (10.50 ± 1.02 and 33.90 ± 3.26 μg/g dry weight (DW)). The strongest antioxidant capacity (μM TE/g DW) in a 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+)) assay was in RPControlEt (24.34 ± 2.36), in a ferric-reducing/antioxidant power (FRAP) assay in RPHPSW (27.08 ± 2.4) and in a cupric reducing antioxidant (CUPRAC) in RPLEPW (70.99 ± 7.11). The paprika ethanolic extracts showed lower values in their bioactivity than the water ones. The binding and cytotoxicity abilities of extracted polyphenols correlated with their amounts. LEP treatment is better for plant growth characteristics than other conventional treatments. The investigated paprika samples can be used as a source of antioxidants. PMID:27184000

  5. Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    PubMed Central

    Czajkowski, Rafal; Zegarska, Barbara; Kowaliszyn, Bogna; Pokrywczynska, Marta; Drewa, Tomasz

    2016-01-01

    Introduction Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC50, half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells. PMID:27605895

  6. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-01-01

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration. PMID:22828991

  7. Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages.

    PubMed

    Moore, Sherri M; Holt, Vivian V; Malpass, Lillie R; Hines, Ian N; Wheeler, Michael D

    2015-10-01

    The beginning stages of liver damage induced by various etiologies (i.e. high fat diet, alcohol consumption, toxin exposure) are characterized by abnormal accumulation of lipid in liver. Alterations in intracellular lipid transport, storage, and metabolism accompanied by cellular insult within the liver play an important role in the pathogenesis of liver disease, often involving a sustained inflammatory response. The intracellular lipid transporter, fatty acid binding protein 5 (FABP5), is highly expressed in macrophages and may play an important role in the hepatic inflammatory response after endotoxin exposure in mice. This study tested the hypothesis that FABP5 regulates macrophage response to LPS in male C57bl/6 (wild type) and FABP5 knockout mice, both in vitro and in vivo. Treatment with LPS revealed that loss of FABP5 enhances the number of hepatic F4/80(+) macrophages in the liver despite limited liver injury. Conversely, FABP5 knock out mice display higher mRNA levels of anti-inflammatory cytokines IL-10, arginase, YM-1, and Fizz-1 in liver compared to wild type mice. Bone marrow derived macrophages stimulated with inflammatory (LPS and IFN-γ) or anti-inflammatory (IL-4) mediators also showed significantly higher expression of anti-inflammatory/regulatory factors. These findings reveal a regulatory role of FABP5 in the acute inflammatory response to LPS-induced liver injury, which is consistent with the principle finding that FABP5 is a regulator of macrophage phenotype. Specifically, these findings demonstrate that loss of FABP5 promotes a more anti-inflammatory response. PMID:26105806

  8. Differential Anti-inflammatory Activity of HDAC Inhibitors in Human Macrophages and Rat Arthritis.

    PubMed

    Lohman, Rink-Jan; Iyer, Abishek; Fairlie, Thomas J; Cotterell, Adam; Gupta, Praveer; Reid, Robert C; Vesey, David A; Sweet, Matthew J; Fairlie, David P

    2016-02-01

    Vorinostat and other inhibitors of different histone deacetylase (HDAC) enzymes are currently being sought to modulate a variety of human conditions, including chronic inflammatory diseases. Some HDAC inhibitors are anti-inflammatory in rodent models of arthritis and colitis, usually at cytotoxic doses that may cause side effects. Here, we investigate the dose-dependent pro- and anti-inflammatory efficacy of two known inhibitors of multiple HDACs, vorinostat and BML281, in human macrophages and in a rat model of collagen-induced arthritis by monitoring effects on disease progression, histopathology, and immunohistochemistry. Both HDAC inhibitors differentially modulated lipopolysaccharide (LPS)-induced cytokine release from human macrophages, suppressing release of some inflammatory mediators (IL12p40, IL6) at low concentrations (<3 µM) but amplifying production of others (TNF, IL1β) at higher concentration (>3 μΜ). This trend translated in vivo to rat arthritis, with anti-inflammatory activity inversely correlating with dose. Both compounds were efficacious only at a low dose (1 mg⋅kg(-1)⋅day(-1) s.c.), whereas a higher dose (5 mg⋅kg(-1)⋅day(-1) s.c.) showed no positive effects on reducing pathology, even showing signs of exacerbating disease. These striking effects suggest a smaller therapeutic window than previously reported for HDAC inhibition in experimental arthritis. The findings support new investigations into repurposing HDAC inhibitors for anti-inflammatory therapeutic applications. However, HDAC inhibitors should be reinvestigated at lower, rather than higher, doses for enhanced efficacy in chronic diseases that require long-term treatment, with careful management of efficacy and long-term safety. PMID:26660228

  9. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    PubMed

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. PMID:27621596

  10. Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants.

    PubMed

    Khokhlova, Ekaterina V; Smeianov, Vladimir V; Efimov, Boris A; Kafarskaia, Lyudmila I; Pavlova, Svetlana I; Shkoporov, Andrei N

    2012-01-01

    Certain Bifidobacterium strains have been shown to inhibit inflammatory responses in intestinal epithelial cells. However, the precise mechanisms of these effects, including the chemical nature of the active compounds, remain to be elucidated. Here partial characterization of the anti-inflammatory properties of Bifidobacterium strains isolated from feces of healthy infants is reported. It was found that conditioned media (CM) of all strains studied are capable of attenuating tumor necrosis factor-α (TNF-α) and lipopolysaccharide- (LPS) induced inflammatory responses in the HT-29 cell line. In contrast, neither killed bifidobacterial cells, nor cell-free extracts showed such activities. Further investigations resulted in attribution of this activity to heat-stable, non-lipophilic compound(s) resistant to protease and nuclease treatments and of molecular weight less than 3 kDa. The anti-inflammatory effects were dose- and time-dependent and associated with inhibition of IκB phosphorylation and nuclear factor-κ light chain enhancer of activated B cells (NF-κB)-dependent promoter activation. The combined treatments of cells with CMs and either LPS or TNF-α, but not with CMs alone, resulted in upregulation of transforming growth factor-β1, IκBζ, and p21(CIP) mRNAs. Our data suggest certain species-specificities of the anti-inflammatory properties of bifidobacteria. This observation should prompt additional validation studies using larger set of strains and employing the tools of comparative genomics. PMID:22040047

  11. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing.

    PubMed

    Kempf, Tibor; Zarbock, Alexander; Vestweber, Dietmar; Wollert, Kai C

    2012-04-01

    The wound healing response after myocardial infarction (MI) involves a cascade of molecular and cellular events that lead to a replacement of the necrotic area with a collagen-rich scar. Clearance of necrotic debris by neutrophils, monocytes, and macrophages is a critical component of infarct healing; however, tight control and timely repression of this inflammatory response is important to prevent excessive tissue degradation leading to infarct expansion and heart failure. Genetic ablation or blockade of anti-inflammatory pathways tends to be detrimental after MI, whereas genetic ablation of pro-inflammatory pathways tends to be beneficial. Accordingly, therapies enhancing endogenous anti-inflammatory pathways or blocking endogenous pro-inflammatory pathways have been found to improve wound healing and to reduce the risk of heart failure in rodent models of acute MI. Besides their scavenger function, inflammatory cells promote healing by stimulating angiogenesis and granulation tissue formation via paracrine factors. Moreover, signaling mediators that are active in inflammatory cells may be active also in non-inflammatory cell types involved in infarct healing. Some anti-inflammatory interventions are therefore deleterious. However, interventions that carefully adjust the balance between the essential and detrimental facets of inflammation may provide new therapeutic opportunities for patients with large MIs who continue to be at risk of developing heart failure, despite modern reperfusion and anti-remodeling strategies. PMID:22228177

  12. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    PubMed Central

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin’ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. PMID:27621596

  13. Colitis caused by non-steroidal anti-inflammatory drugs.

    PubMed Central

    Ravi, S.; Keat, A. C.; Keat, E. C.

    1986-01-01

    Four cases of acute proctocolitis associated with non-steroidal anti-inflammatory drug therapy are presented. The drugs implicated were flufenamic acid, mefenamic acid, naproxen and ibuprofen. After resolution of symptoms and signs of proctocolitis three of the four patients were subsequently rechallenged with the implicated drug: in each there was a rapid relapse. PMID:3774712

  14. The Use of Nonsteroidal Anti-Inflammatory Drugs in Sports.

    ERIC Educational Resources Information Center

    Calabrese, Leonard H.; Rooney, Theodore W.

    1986-01-01

    Recent advances in the understanding of the mechanism of action and clinical pharmacology of the new nonsteroidal anti-inflammatory drugs (NSAIDs) can help practitioners decide which to use and how to administer them. Indications for and effects of NSAIDs are described. (MT)

  15. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  16. Glycosaminoglycan analogs as a novel anti-inflammatory strategy

    PubMed Central

    Severin, India C.; Soares, Adriano; Hantson, Jennifer; Teixeira, Mauro; Sachs, Daniela; Valognes, Delphine; Scheer, Alexander; Schwarz, Matthias K.; Wells, Timothy N. C.; Proudfoot, Amanda E. I.; Shaw, Jeffrey

    2012-01-01

    Heparin, a glycosaminoglycan (GAG), has both anti-inflammatory and anti-coagulant properties. The clinical use of heparin against inflammation, however, has been limited by concerns about increased bleeding. While the anti-coagulant activity of heparin is well understood, its anti-inflammatory properties are less so. Heparin is known to bind to certain cytokines, including chemokines, small proteins which mediate inflammation through their control of leukocyte migration and activation. Molecules which can interrupt the chemokine-GAG interaction without inhibiting coagulation could therefore, represent a new class of anti-inflammatory agents. In the present study, two approaches were undertaken, both focusing on the heparin-chemokine relationship. In the first, a structure based strategy was used: after an initial screening of potential small molecule binders using protein NMR on a target chemokine, binding molecules were optimized through structure-based design. In the second approach, commercially available short oligosaccharides were polysulfated. In vitro, these molecules prevented chemokine-GAG binding and chemokine receptor activation without disrupting coagulation. However, in vivo, these compounds caused variable results in a murine peritoneal recruitment assay, with a general increase of cell recruitment. In more disease specific models, such as antigen-induced arthritis and delayed-type hypersensitivity, an overall decrease in inflammation was noted, suggesting that the primary anti-inflammatory effect may also involve factors beyond the chemokine system. PMID:23087686

  17. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  18. The present status of anti-inflammatory agents in dermatology.

    PubMed

    Stüttgen, G

    1988-01-01

    Many classes of drugs exert anti-inflammatory activity through mechanisms which affect all or part of the inflammatory process. Some of these agents are beneficial in the practice of dermatology, while others, such as penicillamine, mast cell blockers and serotonin antagonists, find little or no application. Corticosteroids, for example, are nonspecific in their anti-inflammatory effects and remain a mainstay of therapy, despite their side effect profile. Other drugs, such as the non-steroidal anti-inflammatory agents or gold, can be used in the treatment of diseases associated with rheumatic or autoimmune states. Moreover, antihistamines play an important role in the control of itching, but are mainly indicated in controlling non-dermatological allergic sequelae. Interestingly, chloroquine and dapsone, which were originally developed for use in malaria prophylaxis and leprosy, respectively, have value in treating a wide range of dermatological conditions via mechanisms which include the inhibition of P-450 isoenzymes. In diseases characterised by disturbed cornification (e.g. psoriasis pustulosa), retinoids are of particular value. These drugs are thought to act by inhibition of collagenases, proteases and granulocyte migration. Undoubtedly, further investigation of drug classes such as oxygen radical controllers and immunomodulators will clarify their mechanisms and establish their therapeutic usefulness among the anti-inflammatory agents now available for dermatological use. PMID:3076131

  19. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents.

    PubMed

    Urbanska, Aleksandra Malgorzata; Zhang, Xiaoying; Prakash, Satya

    2015-07-01

    Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions

  20. Anti-inflammatory drug delivery from hyaluronic acid hydrogels.

    PubMed

    Hahn, Sei K; Jelacic, Sandra; Maier, Ronald V; Stayton, Patrick S; Hoffman, Allan S

    2004-01-01

    Two different types of hyaluronic acid (HA) hydrogels were synthesized by crosslinking HA with divinyl sulfone (DVS) and poly(ethylene glycol)-divinyl sulfone (VS-PEG-VS). Vitamin E succinate (VES), an anti-inflammatory drug, and bovine serum albumin (BSA), a model of anti-inflammatory protein drugs, were loaded into the gels and their release kinetics were measured in vitro. VES and BSA released with a burst from both HA hydrogels during the first few hours, and release continued gradually for several days. The rate of release from HA-VS-PEG-VS-HA hydrogels was faster than that from HA-DVS-HA hydrogels, presumably due to the lower crosslink density in the former. The anti-inflammatory action of released VES was tested by incubating peripheral blood mononuclear cells (PBMC) on HA hydrogels with and without VES in the gel. The number of cells adhering on HA hydrogels was very low compared to that on tissue culture polystyrene (TCPS), which might be one of the important advantages of using HA hydrogels for implant coatings or tissue engineering applications. ELISA test results showed that the tumor necrosis factor-alpha (TNF-alpha) concentration was very low in the supernatant of the wells containing the HA hydrogel with VES in contact with the activated macrophages compared to that without VES. This is probably the effect of the released VES reducing the production of anti-inflammatory cytokine, TNF-alpha. HA hydrogels containing anti-inflammatory drugs may have potential for use in tissue engineering and also as biocompatible coatings of implants. PMID:15503629

  1. Anti-proliferative activity and mechanism of action of titanocene dichloride.

    PubMed Central

    Christodoulou, C. V.; Eliopoulos, A. G.; Young, L. S.; Hodgkins, L.; Ferry, D. R.; Kerr, D. J.

    1998-01-01

    Development of resistance to cytotoxic agents is a major limitation to their clinical use. Novel compounds are synthesized with a view to develop non-cross-resistant, less toxic and more potent activity. The detection of the anti-tumour properties of the inorganic compound cisplatin stimulated a broad search for other metal-containing complexes. Titanocene dichloride was synthesized on this basis and has shown potent anti-neoplastic activity in experimental animals. We have examined the in vitro activity of titanocene dichloride in two pairs of platinum-sensitive and resistant human ovarian carcinoma cell lines, A2780/2780CP and CH1/CH1cisR, and in mutated p53- and bcl-2-transfected clones of A2780 cells. A time- and concentration-dependent anti-proliferative effect was observed in all cell lines treated with titanocene dichloride. The drug was found to significantly overcome platinum resistance in the 2780CP and the CH1 cisR cell lines and in the bcl-2 and the mutant p53 transfectants of A2780 cells. Titanocene dichloride induced a block in late S/early G2 phase of the cell cycle; however apoptotic cell death occurred from any phase of cycle. Titanium-DNA adducts were detected in A2780 cells treated with titanocene dichloride using atomic absorption spectrometry, suggesting that DNA may be a target for this drug. In agreement with this finding, p53 accumulated rapidly in drug-treated A2780 cells, indicative of a role for titanocene dichloride as a DNA-damaging agent. We have also performed studies to determine whether titanocene dichloride could demonstrate synergy with other cytotoxic agents in vitro. Isobologram analysis of cytotoxicity data obtained suggests that the combination of titanocene dichloride and 5-fluorouracil (5-FU) is synergistic. The potent in vivo anti-tumour activity of this compound, supported by the encouraging results from two phase I clinical trials, suggests that titanocene dichloride could be a promising novel chemotherapeutic agent

  2. Indole-3-ethylsulfamoylphenylacrylamides with Potent Anti-proliferative and Anti-angiogenic Activities.

    PubMed

    Mehndiratta, Samir; Pan, Shiow-Lin; Kumar, Sunil; Liou, Jing-Ping

    2016-01-01

    HDAC inhibition is emerging as a new strategy for cancer therapy. We previously reported that Nhydroxy- 3-{4-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide (9) demonstrated potent histone deacetylases (HDAC) inhibition and anti-inflammatory effects. This continuous study provides detailed structureactivity relationship (SAR) of novel indol-3-ethylsulfamoylphenylacrylamides as anti-cancer agents. These compounds are endowed with potent HDAC inhibitory activity, almost 2.5 folds to 42 folds better than suberanilohydroxamic acid (SAHA). Compounds 8, 10, 11 and 17 exhibited significant inhibitory effects on various cancer cell lines with GI50 values in the range of 0.02 to 0.35 μM which are 10-50 folds better than SAHA. In-vivo nude mice model indicated the anti-angiogenic potential of these acrylamides. This study has indicated the potential of 3-{4-[2-(1-Ethyl-2-methyl-1H-indol-3-yl)-ethyl-N-tert-butoxycarbonylsulfamoyl]-phenyl}-N-hydroxy-acrylamide (11, mean GI50 = 0.04 μM) as a lead molecule for further development as anti-cancer agent. PMID:26459769

  3. Anti-Inflammatory Strategies in Cartilage Repair

    PubMed Central

    Zhang, Ying; Pizzute, Tyler

    2014-01-01

    Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions. PMID:24846478

  4. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  5. In vitro antimicrobial and anti-proliferative activities of plant extracts from Spathodea campanulata, Ficus bubu, and Carica papaya.

    PubMed

    Mbosso Teinkela, Jean Emmanuel; Assob Nguedia, Jules Clément; Meyer, Franck; Vouffo Donfack, Erik; Lenta Ndjakou, Bruno; Ngouela, Silvère; Tsamo, Etienne; Adiogo, Dieudonné; Guy Blaise Azebaze, Anatole; Wintjens, René

    2016-06-01

    Context African medicinal plants represent a prominent source of new active substances. In this context, three plants were selected for biological investigations based on their traditional uses. Objective The antimicrobial and anti-proliferative features of three plants used for medicinal purpose were evaluated. Materials and methods The antimicrobial activities of methanol extracts of Ficus bubu Warb. (Moraceae) stem bark and leaves, of Spathodea campanulata P. Beauv. (Bignoniaceae) flowers, as well as those of Carica papaya Linn. (Caricaceae) latex, were determined using the microbroth dilution method against a set of bacteria and fungi pathogens including: Enterococcus faecalis, Staphylococcus aureus, S. saprophyticus, S. epidermididis, Escherichia coli, Klebsiella pneumonia, Salmonella typhimurium, Candida albicans, and Trichophyton rubrum. The tested concentrations of extracts ranged from 2500.0 to 2.4 μg/mL and MIC values were evaluated after 24 h incubation at 37 °C. Subsequently, MTT assay was used to estimate anti-proliferative activity of these methanol extracts and of F. bubu latex on three human cancer cell lines (U373 glioblastoma, A549 NSCLC, and SKMEL-28 melanoma). Results The methanol extract of F. bubu stem bark exhibited the highest antimicrobial activity against C. albicans with a MIC value of 9.8 μg/mL, while the F. bubu latex and the methanol extract of F. bubu leaves induced significant anti-proliferative activity against lung (IC50 values of 10 and 14 μg/mL, respectively) and glioma (IC50 values of 13 and 16 μg/mL, respectively) cancer cells. Conclusion These results indicate that effective drugs could be derived from the three studied plants. PMID:26799575

  6. The Role of MKP-1 in the Anti-Proliferative Effects of Glucocorticoids in Primary Rat Pre-Osteoblasts.

    PubMed

    Sanderson, Micheline; Sadie-Van Gijsen, Hanél; Hough, Stephen; Ferris, William F

    2015-01-01

    Glucocorticoid (GC)-induced osteoporosis has been attributed to a GC-induced suppression of pre-osteoblast proliferation. Our previous work identified a critical role for mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in mediating the anti-proliferative effects of GCs in immortalized pre-osteoblasts, but we subsequently found that MKP-1 null mice were not protected against the pathological effects of GCs on bone. In order to reconcile this discrepancy, we have assessed the effects of GCs on proliferation, activation of the MAPK ERK1/2 and MKP-1 expression in primary adipose-derived stromal cells (ADSCs) and ADSC-derived pre-osteoblasts (ADSC-OBs). ADSCs were isolated by means of collagenase digestion from adipose tissue biopsies harvested from adult male Wistar rats. ADSC-OBs were prepared by treating ADSCs with osteoblast differentiation media for 7 days. The effects of increasing concentrations of the GC dexamethasone on basal and mitogen-stimulated cell proliferation were quantified by tritiated thymidine incorporation. ERK1/2 activity was measured by Western blotting, while MKP-1 expression was quantified on both RNA and protein levels, using semi-quantitative real-time PCR and Western blotting, respectively. GCs were strongly anti-proliferative in both naïve ADSCs and ADSC-OBs, but had very little effect on mitogen-induced ERK1/2 activation and did not upregulate MKP-1 protein expression. These findings suggest that the anti-proliferative effects of GCs in primary ADSCs and ADSC-OBs in vitro do not require the inhibition of ERK1/2 activation by MKP-1, which is consistent with our in vivo findings in MKP-1 null mice. PMID:26263165

  7. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    SciTech Connect

    Lin, Tao; Meng, Lingjun; Tsai, Robert Y.L.

    2011-10-22

    Highlights: {yields} Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. {yields} Cell type-dependent synergy between MPA and anti-proliferative agents. {yields} The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. {yields} The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  8. The anti-proliferative effects of type I IFN involve STAT6-mediated regulation of SP1 and BCL6.

    PubMed

    Hsu, Yu-An; Huang, Chi-Chun; Kung, Yung-Jen; Lin, Hui-Ju; Chang, Ching-Yao; Lee, Kuan-Rong; Wan, Lei

    2016-06-01

    Type I IFN-induced STAT6 has been shown to have anti-proliferative effects in Daudi and B cells. IFN-sensitive (DS) and IFN-resistant (DR) subclones of Daudi cells were used to study the role of STAT6 in the anti-proliferative activities. Type I IFN significantly increased STAT6 mRNA and protein expression in DS but not DR cells. STAT6 knockdown significantly reduced the sensitivity to IFN in both cell lines. The molecular targets and functional importance of IFN-activated STAT6 were performed by chromatin immunoprecipitation-on-chip (ChIP-on-chip) experiments in type I IFN-treated Daudi cells. Two target genes (Sp1 and BCL6) were selected from the ChIP-on-chip data. IFN-induced STAT6 activation led to Sp1 upregulation and BCL6 downregulation in DS cells, with only minimal effects in DR cells. siRNA inhibition of STAT6 expression resulted in decreased Sp1 and BCL6 mRNA and protein levels in both DS and DR cells. IFN treatment did not increase Sp1 and BCL6 expression in a STAT2-deficient RST2 cell line, and this effect was mitigated by plasmid overexpression of STAT2, indicating that STAT2 is important for STAT6 activation. These results suggest that STAT6 plays an important role in regulating Sp1 and BCL6 through STAT2 to exert the anti-proliferative effects of type I IFN. PMID:26945968

  9. Two novel lectins from Parkia biglandulosa and Parkia roxburghii: isolation, physicochemical characterization, mitogenicity and anti-proliferative activity.

    PubMed

    Kaur, Navjot; Singh, Jatinder; Kamboj, Sukhdev Singh; Agrewala, Javed N; Kaur, Manpreet

    2005-08-01

    Two mannose/glucose specific seed lectins were isolated from Parkia biglandulosa and Parkia roxburghii and were characterized w.r.t various physicochemical properties. Unlike other Parkia lectins a comparison of native and subunit molecular mass showed that both Parkia lectins were heterotetramers. Parkia biglandulosa lectin was found to be T-cell mitogen as revealed by IL-2 bioassay. These lectins showed anti-proliferative effect on two murine macrophage cancer cell lines i.e. P 388DI (50%) and J774 (70%). In addition Parkia roxburghii also inhibited proliferation of HB98 (65.47%), a B-cell hybridoma cell line. PMID:16101401

  10. Constituents from Vigna vexillata and Their Anti-Inflammatory Activity

    PubMed Central

    Leu, Yann-Lii; Hwang, Tsong-Long; Kuo, Ping-Chung; Liou, Kun-Pei; Huang, Bow-Shin; Chen, Guo-Feng

    2012-01-01

    The seeds of Vigna genus are important food resources and there have already been many reports regarding their bioactivities. In our preliminary bioassay, the chloroform layer of methanol extracts of V. vexillata demonstrated significant anti-inflammatory bioactivity. Therefore, the present research is aimed to purify and identify the anti-inflammatory principles of V. vexillata. One new sterol (1) and two new isoflavones (2,3) were reported from the natural sources for the first time and their chemical structures were determined by the spectroscopic and mass spectrometric analyses. In addition, 37 known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. Among the isolates, daidzein (23), abscisic acid (25), and quercetin (40) displayed the most significant inhibition of superoxide anion generation and elastase release. PMID:22949828

  11. Anti-inflammatory properties of α- and γ-tocopherol

    PubMed Central

    Reiter, Elke; Jiang, Qing; Christen, Stephan

    2007-01-01

    Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (α, β, γ, δ) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, α-tocopherol (αT) and γ-tocopherol (γT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (γT-enriched) tocopherols seems to be more potent than supplementation with αT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with αT and thus warrants further investigation. PMID:17316780

  12. Anti-inflammatory effects of a Houttuynia cordata supercritical extract.

    PubMed

    Shin, Sunhee; Joo, Seong Soo; Jeon, Jeong Hee; Park, Dongsun; Jang, Min Jung; Kim, Tae Ook; Kim, Hyun Kyu; Hwang, Bang Yeon; Kim, Ki Yon; Kim, Yun Bae

    2010-09-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in a carrageenan-air pouch model. HSE (200 mg/kg, oral) suppressed exudation and albumin leakage, as well as inflammatory cell infiltration. Dexamethasone (2 mg/kg, i.p.) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content. HSE lowered tumor-necrosis factor (TNF)-alpha and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-alpha and NO, while indomethacin decreased TNF-alpha and PGE(2). The suppressive activity of HSE on NO and PGE(2) production was confirmed in RAW 264.7. These results demonstrate that HSE exerts anti-inflammatory effects by inhibiting both TNF-alpha-NO and cyclooxygenase II-PGE(2) pathways. PMID:20706037

  13. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats.

    PubMed

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  14. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    PubMed Central

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  15. Antibiotic and anti-inflammatory therapies for cystic fibrosis.

    PubMed

    Chmiel, James F; Konstan, Michael W; Elborn, J Stuart

    2013-10-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  16. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  17. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach

    PubMed Central

    Bosquesi, Priscila Longhin; Melo, Thais Regina Ferreira; Vizioli, Ednir Oliveira; dos Santos, Jean Leandro; Chung, Man Chin

    2011-01-01

    The design of new drugs with better physiochemical properties, adequate absorption, distribution, metabolism, and excretion, effective pharmacologic potency and lacking toxicity remains is a challenge. Inflammation is the initial trigger of several different diseases, such as Alzheimer's disease, asthma, atherosclerosis, colitis, rheumatoid arthritis, depression, cancer; and disorders such as obesity and sexual dysfunction. Although inflammation is not the direct cause of these disorders, inflammatory processes often increase related pain and suffering. New anti-inflammatory drugs developed using molecular hybridization techniques to obtain multiple-ligand drugs can act at one or multiple targets, allowing for synergic action and minimizing toxicity. This work is a review of new anti-inflammatory drugs developed using the molecular modification approach.

  18. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats

    PubMed Central

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  19. Anti-inflammatory and antipyretic effects of boldine.

    PubMed

    Backhouse, N; Delporte, C; Givernau, M; Cassels, B K; Valenzuela, A; Speisky, H

    1994-10-01

    Boldine, an antioxidant alkaloid isolated from Peumus boldus, exhibits a dose-dependent anti-inflammatory activity in the carrageenan-induced guinea pig paw edema test with an oral ED50 of 34 mg/kg. Boldine also reduces bacterial pyrogen-induced hyperthermia in rabbits to an extent which varied between 51% and 98% at a dose of 60 mg/kg p.o. In vitro studies carried out in rat aortal rings revealed that boldine is an effective inhibitor of prostaglandin biosynthesis, promoting 53% inhibition at 75 microM. The latter in vitro effect may be mechanistically linked to the anti-inflammatory and antipyretic effects of boldine exerted in vivo. PMID:7879695

  20. Semisynthesis of Derivatives of Oleanolic Acid from Syzygium aromaticum and Their Antinociceptive and Anti-Inflammatory Properties.

    PubMed

    Rali, Sibusiso; Oyedeji, Opeoluwa O; Aremu, Olukayode O; Oyedeji, Adebola O; Nkeh-Chungag, Benedicta N

    2016-01-01

    Oleanolic acid is a pentacyclic triterpenoid compound widely found in plants and well known for its medicinal properties. Oleanolic acid (OA) was isolated from the ethyl acetate extract of Syzygium aromaticum flower buds. Semisynthesis afforded both acetate and ester derivatives. The derived compounds were monitored with thin layer chromatography and confirmed with nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), Fourier infrared (FT-IR) spectroscopy, and melting point (Mp). All these compounds were evaluated for their analgesic and anti-inflammatory properties at a dose of 40 mg/kg. Significant analgesic and anti-inflammatory effects were noted for all OA-derived compounds. In the formalin-induced pain test, the derivatives showed better analgesic effects compared to their precursor, whereas, in the tale flick test, oleanolic acid proved to be superior in analgesic effects compared to all its derivatives with the exception of the acetyl derivative. Acute inflammatory tests showed that acetyl derivatives possessed better anti-inflammatory activity compared to the other compounds. In conclusion, semisynthesis of oleanolic acid yielded several derivatives with improved solubility and enhanced analgesic and anti-inflammatory properties. PMID:27382191

  1. Semisynthesis of Derivatives of Oleanolic Acid from Syzygium aromaticum and Their Antinociceptive and Anti-Inflammatory Properties

    PubMed Central

    Rali, Sibusiso; Aremu, Olukayode O.; Oyedeji, Adebola O.; Nkeh-Chungag, Benedicta N.

    2016-01-01

    Oleanolic acid is a pentacyclic triterpenoid compound widely found in plants and well known for its medicinal properties. Oleanolic acid (OA) was isolated from the ethyl acetate extract of Syzygium aromaticum flower buds. Semisynthesis afforded both acetate and ester derivatives. The derived compounds were monitored with thin layer chromatography and confirmed with nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), Fourier infrared (FT-IR) spectroscopy, and melting point (Mp). All these compounds were evaluated for their analgesic and anti-inflammatory properties at a dose of 40 mg/kg. Significant analgesic and anti-inflammatory effects were noted for all OA-derived compounds. In the formalin-induced pain test, the derivatives showed better analgesic effects compared to their precursor, whereas, in the tale flick test, oleanolic acid proved to be superior in analgesic effects compared to all its derivatives with the exception of the acetyl derivative. Acute inflammatory tests showed that acetyl derivatives possessed better anti-inflammatory activity compared to the other compounds. In conclusion, semisynthesis of oleanolic acid yielded several derivatives with improved solubility and enhanced analgesic and anti-inflammatory properties. PMID:27382191

  2. Photoelectron spectroscopy of non-steroidal anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; Chong, Delano P.; McGlynn, Sean P.

    2013-08-01

    The electronic structures of eight non-steroidal anti-inflammatory drugs (NSAIDs) had been studied by UV photoelectron spectroscopy (UPS) and high-level Green's function (GF) calculations. Our UPS data show that the electronic structure influences the measured biological activity of NSAID, but that it is not the dominating factor. The role of electronic structure needs to be considered in conjunction with other factors like steric properties of the COX active site and orientation of relevant residues in the same site.

  3. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention.

    PubMed

    Umar, Asad; Steele, Vernon E; Menter, David G; Hawk, Ernest T

    2016-02-01

    Various clinical and epidemiologic studies show that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase inhibitors (COXIBs) help prevent cancer. Since eicosanoid metabolism is the main inhibitory targets of these drugs the resulting molecular and biological impact is generally accepted. As our knowledge base and technology progress we are learning that additional targets may be involved. This review attempts to summarize these new developments in the field. PMID:26970125

  4. [Helicobacter pylori, nonsteroidal anti-inflammatory agents and gastroduodenal changes].

    PubMed

    Teixeira, A V

    1995-09-01

    The author discusses the possible interactions between non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori (Hp) which may play an important role in the unleashing of gastroduodenal lesions. To our knowledge, AINEs have no influence on the prevalence of infection by Hp and the latter does not seem to influence the development and intensity of the lesions caused by NSAIDs. PMID:7484272

  5. The Anti-Inflammatory Actions of Exercise Training

    PubMed Central

    Flynn, Michael G.; McFarlin, Brian K.; Markofski, Melissa M.

    2014-01-01

    The list of diseases with a known inflammatory etiology is growing. Cardiovascular disease, osteoporosis, diabetes, geriatric cachexia, and Alzheimer’s disease have all been shown to be linked to or exacerbated by aberrantly regulated inflammatory processes. Nevertheless, there is mounting evidence that those who are physically active, or who become physically active, have a reduction in biomarkers associated with chronic inflammation. There was strong early consensus that exercise-induced reductions in inflammation were explained by body mass index or body fatness, but recent studies provide support for the contention that exercise has body fat–independent anti-inflammatory effects. With few exceptions, the anti-inflammatory effects of exercise appear to occur regardless of age or the presence of chronic diseases. What remains unclear are the mechanisms by which exercise training induces these anti-inflammatory effects, but there are several intriguing possibilities, including release of endogenous products, such as heat shock proteins; selective reduction of visceral adipose tissue mass or reducing infiltration of adipocytes by macrophages; shift in immune cell phenotype; cross-tolerizing effects; or exercise-induced shifts in accessory proteins of toll-like receptor signaling. However, future research endeavors are likely to uncover additional potential mechanisms, and it could be some time before functional mechanisms are made clear. In summary, the potential anti-inflammatory influences of exercise training may provide a low-cost, readily available, and effective treatment for low-grade systemic inflammation and could contribute significantly to the positive effects of exercise training on chronic disease. PMID:25431545

  6. Clinical Management of Nonsteroidal Anti-inflammatory Drug Hypersensitivity

    PubMed Central

    2008-01-01

    Hypersensitivity diseases caused by nonsteroidal anti-inflammatory agents are relatively common in the population. This article summarizes the present understanding on the various allergic and nonallergic clinical pictures produced through hypersensitivity to these drugs using the pathogenic classification of hypersensitivity reactions recently proposed by the Nomenclature Committee of the World Allergy Organization to guide clinicians in the diagnosis and management of patients with these conditions. PMID:23283307

  7. Analgesic, diuretic, and anti-inflammatory principle from Scoparia dulcis.

    PubMed

    Ahmed, M; Shikha, H A; Sadhu, S K; Rahman, M T; Datta, B K

    2001-08-01

    Scoparinol, a diterpene, isolated from Scoparia dulcis showed significant analgesic (p < 0.001) and anti-inflammatory activity (p < 0.01) in animals. A sedative action of scoparinol was demonstrated by a marked potentiation of pentobarbital-induced sedation with a significant effect on both onset and duration of sleep (p < 0.05). Measurement of urine volume after administration of scoparinol indicated its significant diuretic action. PMID:11534346

  8. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata.

    PubMed

    Tuchinda, Patoomratana; Reutrakul, Vichai; Claeson, Per; Pongprayoon, Ubonwan; Sematong, Tuanta; Santisuk, Thawatchai; Taylor, Walter C

    2002-01-01

    The cyclohexenyl chalcone derivative [(-)-hydroxypanduratin A], together with the previously known panduratin A, sakuranetin, pinostrobin, pinocembrin, and dihydro-5,6-dehydrokawain were isolated from the chloroform extract of the red rhizome variety of Boesenbergia pandurata (Robx.) Schltr. [currently known as Boesenbergia rotunda (L.) Mansf., Kulturpfl.]. Their structures were assigned on the basis of their spectroscopic data. (-)-Hydroxypanduratin A and (-)-panduratin A showed significant topical anti-inflammatory activity in the assay of TPA-induced ear edema in rats. PMID:11809452

  9. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    PubMed

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (<300 μg/mL) dose-dependently inhibited LPS-induced NO production. Among them, the chloroform extract from G. lucidum was the most effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 μg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases. PMID:25271860

  10. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.

    PubMed

    Riça, Ingred G; Netto, Chaquip D; Rennó, Magdalena N; Abreu, Paula A; Costa, Paulo R R; da Silva, Alcides J M; Cavalcante, Moisés C M

    2016-09-15

    Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding. PMID:27492193

  11. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  12. Anti-inflammatory activities of selected synthetic homoisoflavanones.

    PubMed

    Shaikh, Mahidansha M; Kruger, Hendrik G; Bodenstein, Johannes; Smith, Peter; du Toit, Karen

    2012-01-01

    Four homoisoflavanones of the 3-benzylidene-4-chromanone type, some of which were previously isolated from Caesalpinia pulcherrima, were synthesised to determine their anti-inflammatory activity and cytotoxicity. A range of four different homoisoflavanones (compounds 4a-4d) were synthesised from the corresponding substituted phenols. ¹H- and ¹³C-NMR data together with high-resolution mass spectroscopy data were employed to elucidate the structures. Anti-inflammatory activity was determined in mice with acute croton oil-induced auricular dermatitis. In vitro cytotoxicity was tested against a Chinese hamster ovarian cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Compound 4a exhibited a tendency to inhibit oedema in a dose-dependent manner after 3 and 6 h of treatment. Compounds 4b-4d also inhibited oedema, although a clear dose-response relationship was not observed. Compounds 4a-4c were found to be less cytotoxic than compound 4d. Compound 4b was the least cytotoxic. Compounds 4a-4d exhibited anti-inflammatory activity and varying levels of cytotoxicity. PMID:21950651

  13. Structural characterization of anti-inflammatory Immunoglobulin G Fc proteins

    PubMed Central

    Ahmed, Alysia A.; Giddens, John; Pincetic, Andrew; Lomino, Joseph V.; Ravetch, Jeffrey V.; Wang, Lai-Xi; Bjorkman, Pamela J.

    2014-01-01

    Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of Intravenous Immunoglobulin G (IVIG) requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of IVIG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully di-sialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro- to anti-inflammatory activity of the Fc. PMID:25036289

  14. UV Filters, Ingredients with a Recognized Anti-Inflammatory Effect

    PubMed Central

    Couteau, Céline; Chauvet, Catherine; Paparis, Eva; Coiffard, Laurence

    2012-01-01

    Background To explain observed differences during SPF determination using either an in vivo or in vitro method, we hypothesized on the presence of ingredients having anti-inflammatory properties. Methodology/Principal Findings To research our hypothesis, we studied the 21 UV filters both available on the market and authorized by European regulations and subjected these filters to the phorbol-myristate-acetate test using mice. We then catalogued the 13 filters demonstrating a significant anti-inflammatory effect with edema inhibition percentages of more than 70%. The filters are: diethylhexyl butamido triazone (92%), benzophenone-5 and titanium dioxide (90%), benzophenone-3 (83%), octocrylène and isoamyl p-methoxycinnamate (82%), PEG-25 PABA and homosalate (80%), octyl triazone and phenylbenzimidazole sulfonic acid (78%), octyl dimethyl PABA (75%), bis-ethylhexyloxyphenol methoxyphenyl triazine and diethylamino hydroxybenzoyl hexylbenzoate (70%). These filters were tested at various concentrations, including their maximum authorized dose. We detected a dose-response relationship. Conclusions/Significance The anti-inflammatory effect of a sunscreen ingredient may affect the in vivo SPF value. PMID:23284607

  15. Anti-inflammatory activity and composition of Senecio salignus Kunth.

    PubMed

    González, Cuauhtemoc Pérez; Vega, Roberto Serrano; González-Chávez, Marco; Sánchez, Miguel Angel Zavala; Gutiérrez, Salud Pérez

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  16. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  17. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs.

    PubMed

    Talaat, Roba; El-Sayed, Waheba; Agwa, Hussein S; Gamal-Eldeen, Amira M; Moawia, Shaden; Zahran, Magdy A H

    2015-08-01

    Thalidomide has anti-inflammatory, immunomodulatory, and anti-angiogenic properties. It has been used to treat a variety of cancers and autoimmune diseases. This study aimed to characterize anti-inflammatory activities of novel thalidomide analogs by exploring their effects on splenocytes proliferation and macrophage functions and their antioxidant activity. MTT assay was used to assess the cytotoxic effect of thalidomide analogs against splenocytes. Tumor necrosis factor (TNF-α) and nuclear factor kappa B (NF-κB-P65) were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was estimated by colorimetric assay. Antioxidant activity was examined by ORAC assay. Our results demonstrated that thalidomide dithioate analog 2 and thalidomide dithiocarbamate analog 4 produced a slight increase in splenocyte proliferation compared with thalidomide. Thalidomide dithiocarbamate analog 1 is a potent inhibitor of TNF-α production, whereas thalidomide dithiocarbamate analog 5 is a potent inhibitor of both TNF-α and NO. Analog 2 has a pronounced inhibitory effect on NF-κB-P65 production level. All thalidomide analogs showed prooxidant activity against hydroxyl (OH) radical. Analog 1 and thalidomide dithioate analog 3 have prooxidant activity against peroxyl (ROO) radical in relation to thalidomide. On the other hand, analog 4 has a potent scavenging capacity against peroxyl (ROO) radical compared with thalidomide. Taken together, the results of this study suggest that thalidomide analogs might have valuable anti-inflammatory activities with more pronounced effect than thalidomide itself. PMID:26051520

  18. Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs.

    PubMed

    Potuckova, Eliska; Jansova, Hana; Machacek, Miloslav; Vavrova, Anna; Haskova, Pavlina; Tichotova, Lucie; Richardson, Vera; Kalinowski, Danuta S; Richardson, Des R; Simunek, Tomas

    2014-01-01

    Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechanisms of action. However, data regarding the potential interactions between iron chelators and established chemotherapeutics are lacking. Using estrogen receptor-positive MCF-7 breast cancer cells, we explored the combined anti-proliferative potential of four iron chelators, namely: desferrioxamine (DFO), salicylaldehyde isonicotinoyl hydrazone (SIH), (E)-N'-[1-(2-hydroxy-5-nitrophenyl)ethyliden] isonicotinoyl hydrazone (NHAPI), and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), plus six selected anti-neoplastic drugs. These six agents are used for breast cancer treatment and include: paclitaxel, 5-fluorouracil, doxorubicin, methotrexate, tamoxifen and 4-hydroperoxycyclophosphamide (an active metabolite of cyclophosphamide). Our quantitative chelator-drug analyses were designed according to the Chou-Talalay method for drug combination assessment. All combinations of these agents yielded concentration-dependent, anti-proliferative effects. The hydrophilic siderophore, DFO, imposed antagonism when used in combination with all six anti-tumor agents and this antagonistic effect increased with increasing dose. Conversely, synergistic interactions were observed with combinations of the lipophilic chelators, NHAPI or Dp44mT, with doxorubicin and also the combinations of SIH, NHAPI or Dp44mT with tamoxifen. The combination of Dp44mT with anti-neoplastic agents was further enhanced following formation of its redox-active iron and especially copper complexes. The most potent combinations of Dp44mT and NHAPI with tamoxifen were confirmed as synergistic using another estrogen receptor-expressing breast cancer cell line, T47D, but not estrogen receptor-negative MDA

  19. Anti-Inflammatory and Antioxidant Mechanism of Tangeretin in Activated Microglia.

    PubMed

    Lee, Yu Young; Lee, Eun-Jung; Park, Jin-Sun; Jang, Se-Eun; Kim, Dong-Hyun; Kim, Hee-Sun

    2016-06-01

    Tangeretin, a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, but further study is necessary for elucidating the detailed mechanisms of these effects. In this study, we examined the anti-inflammatory effect of tangeretin in lipopolysaccharide (LPS)-stimulated microglia. We first observed that tangeretin inhibited LPS-induced production of nitric oxide, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β, as well as LPS-induced mRNA expression of inducible nitric oxide synthases and cytokines. Additionally, we found that the activities, mRNA levels, and protein levels of matrix metalloproteinase (MMP)-3 and MMP-8 were inhibited, while the expression of tissue inhibitor of metalloproteinase-2 was enhanced by tangeretin in LPS-stimulated microglia. Further mechanistic study showed that tangeretin suppressed LPS-induced phosphorylation of mitogen-activated protein kinases and Akt. Also, tangeretin inhibited nuclear factor-κB by upregulating sirtuin 1 and 5'-adenosine monophosphate-activated protein kinase. We further demonstrated the antioxidant effect of tangeretin by showing that tangeretin inhibited reactive oxygen species production and p47(phox) phosphorylation, while enhancing the expression of heme oxygenase-1 and the DNA binding activity of nuclear factor-erythroid 2-related factor 2 to the antioxidant response element in LPS-stimulated microglia. Taken together, the results of the present study demonstrate that tangeretin possesses a potent anti-inflammatory and antioxidant effect in microglia. PMID:26899309

  20. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells.

    PubMed

    Chun, Sung Kook; Chung, Sooyoung; Kim, Hee-Dae; Lee, Ju Hyung; Jang, Jaebong; Kim, Jeongah; Kim, Doyeon; Son, Gi Hoon; Oh, Young J; Suh, Young-Ger; Lee, Cheol Soon; Kim, Kyungjin

    2015-11-13

    Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. PMID:26407844

  1. Proteomics Guided Discovery of Flavopeptins: Anti-Proliferative Aldehydes Synthesized by a Reductase Domain-Containing Nonribosomal Peptide Synthetase

    PubMed Central

    Chen, Yunqiu; McClure, Ryan A.; Zheng, Yupeng; Thomson, Regan J.; Kelleher, Neil L.

    2013-01-01

    Due to the importance of proteases in regulating cellular processes, the development of protease inhibitors has garnered great attention. Peptide-based aldehydes are a class of compounds that exhibit inhibitory activities against various proteases and proteasomes in the context of anti-proliferative treatments for cancer and other diseases. More than a dozen peptide-based natural products containing aldehydes have been discovered such as chymostatin, leupeptin, and fellutamide; however, the biosynthetic origin of the aldehyde functionality has yet to be elucidated. Herein we describe the discovery of a new group of lipopeptide aldehydes, the flavopeptins, and the corresponding biosynthetic pathway arising from an orphan gene cluster in Streptomyces sp. NRRL-F6652, a close relative of Streptomyces flavogriseus ATCC 33331. This research was initiated using a proteomics approach that screens for expressed enzymes involved in secondary metabolism in microorganisms. Flavopeptins are synthesized through a nonribosomal peptide synthetase containing a terminal NAD(P)H dependent reductase domain likely for the reductive release of the peptide with a C-terminal aldehyde. Solid phase peptide synthesis of several flavopeptin species and derivatives enabled structural verification and subsequent screening of biological activity. Flavopeptins exhibited submicromolar inhibition activities against cysteine proteases such as papain and calpain as well as the human 20S proteasome. They also showed anti-proliferative activities against multiple myeloma and lymphoma cell lines. PMID:23763305

  2. Isolation of lignans from Schisandra chinensis with anti-proliferative activity in human colorectal carcinoma: Structure-activity relationships.

    PubMed

    Gnabre, John; Unlu, Irem; Chang, Tso-Cheng; Lisseck, Paul; Bourne, Bryan; Scolnik, Ryan; Jacobsen, Neil E; Bates, Robert; Huang, Ru Chih

    2010-10-15

    Separate benzocyclooctadiene lignans were isolated from the berries of Schisandra chinensis in milligram quantities on analytical reverse phase (RP) HPLC by an automated repeat-injection method and shown to have anti-proliferative activity against human colorectal cancer cells. Structures of the compounds were determined by a combination of NMR and mass spectrometry. Stereospecific NMR assignments for gomisin-N and deoxyschisandrin, gave more complete and accurate data than previously reported, based on 600MHz 2D HSQC, DQF-COSY and HMBC data. Comparison of coupling constants and HMBC crosspeak intensities with calculated and X-ray crystal structures confirmed their stereochemistry and conformation. Analysis of structure-activity relationships revealed the importance of key structural determinants. The S-biphenyl configuration of gomisin N, the most active lignan, correlated with increased anti-proliferative activity, while the presence of a hydroxyl group at the C7 position reduced or abolished this activity. Increased activity was also observed when a methylenedioxy group was present between C12 and C13. The percent yield of the most active compounds relative to the starting plant materials was 0.0156% for deoxyschisandrin and 0.0173% for gomisin N. The results of these studies indicate that automated repeat-injection method of analytical HPLC may provide a superior alternative to the standard semi-preparative HPLC techniques for separation of complex mixtures. PMID:20810329

  3. In vitro antioxidant activities and anti-proliferative properties of the functional herb Abrus cantoniensis and its main alkaloid abrine.

    PubMed

    Yang, Mei; Al Zaharna, Mazen; Chen, Yu-Shan; Li, Li; Cheung, Hon-Yeung

    2014-09-01

    Abrus cantoniensis is a common and popular vegetative food consumed as beverage, soup and folk medicine in the tropical and subtropical areas of Asia. It has been claimed valuable for cleansing toxicants in the liver. However, the functional effects of A. cantoniensis have not yet been scientifically explored. This study comprehensively evaluated the in vitro antioxidant and anti-proliferative capacities of the herbal extract and the main alkaloid abrine. Abrine was qualitatively and quantitatively determined in methanol extract (ME) using HPLC-DAD and LC-MS/MS. The results showed that ME, ethyl acetate fraction (EF) and abrine exhibited comparable ABTS radical cation scavenging activities and reducing power to two commercial antioxidants (BHT and Trolox). The EF exerted strong cellular antioxidant activity and selective cytotoxicity against three cancer cell lines in a dose-dependent manner. Biological assays revealed that the EF induced cell cycle arrest at G2/M and apoptosis in MCF-7 and Hep3B cells after 48 h of treatment. Thus, A. cantoniensis exerted potent cellular antioxidant and anti-proliferative properties, highlighting why it has been traditionally used as a functional food. PMID:25059572

  4. Dieckol as a novel anti-proliferative and anti-angiogenic agent and computational anti-angiogenic activity evaluation.

    PubMed

    Li, Yong-Xin; Li, Yong; Je, Jae-Young; Kim, Se-Kwon

    2015-01-01

    In the current study it was found that dieckol isolated from edible brown algae, Ecklonia cava (EC), as potent anti-proliferative and anti-angiogenic agent. Vascular endothelial growth factor (VEGF) induced EA.hy926 cell proliferation was suppressed by dieckol treatment. Further, it showed a significant inhibition of cell migration via inhibiting the protein and gene expression levels of matrix metalloproteinases, MMP-2 and -9. The signaling cascade underlying these responses was found as the dieckol induced inhibition of mitogen-activated protein kinase (MAPK) signaling pathway molecules, ERK and p38. Docking calculations were carried out on AP-N, VEGFR-1, MMP-2, MMP-9, Akt and Erk2 proteins model. Collectively, these results demonstrate the effective anti-proliferative and anti-migratory activity of dieckol on VEGF induced EA.hy926 through MAPK molecular signaling pathways which could be effectively correlated to its potential as an anti-angiogenic candidate. Therefore, this study reveals the potential of dieckol to be used in the design of anti-angiogenic agents. PMID:25531264

  5. Anti-proliferative activity and cell cycle arrest induced by evodiamine on paclitaxel-sensitive and -resistant human ovarian cancer cells

    PubMed Central

    Zhong, Zhang-Feng; Tan, Wen; Wang, Sheng-Peng; Qiang, Wen-An; Wang, Yi-Tao

    2015-01-01

    Chemo-resistance is the main factor for poor prognosis in human ovarian epithelial cancer. Active constituents derived from Chinese medicine with anti-cancer potential might circumvent this obstacle. In our present study, evodiamine (EVO) derived from Evodia rutaecarpa (Juss.) Benth suppressed the proliferation of human epithelial ovarian cancer, A2780 and the related paclitaxel-resistant cell lines and did not cause cytotoxicity, as confirmed by the significant decline of clone formation and the representative alterations of CFDA-SE fluorescence. Meanwhile, EVO induced cell cycle arrest in a dose- and time-dependent manner. This disturbance might be mediated by the cooperation of Cyclin B1 and Cdc2, including the up-regulation of Cyclin B1, p27, and p21, and activation failure of Cdc2 and pRb. MAPK signaling pathway regulation also assisted in this process. Furthermore, chemo-sensitivity potential was enhanced as indicated in A2780/PTXR cells by the down-regulation of MDR-1 expression, accompanied by MDR-1 function suppression. Taken together, we confirmed initially that EVO exerted an anti-proliferative effect on human epithelial ovarian cancer cells, A2780/WT and A2780/PTXR, induced G2/M phase cell cycle arrest, and improved chemo-resistance. Overall, we found that EVO significantly suppressed malignant proliferation in human epithelial ovarian cancer, thus proving to be a potential anti-cancer agent in the future. PMID:26553648

  6. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids.

    PubMed

    Khan, M Akram; El-Khatib, Riyad; Rainsford, K D; Whitehouse, M W

    2012-02-01

    A variety of novel aromatic and heterocyclic aromatic curcuminoids were synthesised, characterised and their anti-inflammatory activities (AIA) determined in vivo. Some of these compounds also were tested for inflammatory mediator production. The AIA of the main representatives of these compounds were assessed by oral administration to female Wistar rats using (a) acute carrageenan-induced paw oedema, (b) chronic adjuvant arthritis (therapeutic mode), and (c) anti-pyretic activity assessed in the yeast pyrexia. Gastric ulceration was determined in pre-inflamed rats. Natural curcumin showed modest aspirin-like anti-inflammatory activity which was enhanced when co-administered with the PGE(1) analogue misoprostol as a synergist. In contrast, four novel curcuminoids (RK-97, RK-103, RK-104 and RK-106) in which the bis-methoxy-phenyl group of curcumin was replaced with bis-dimethoxybutenolidyl-(ascorbate), bis-naphthyl, and bis-furanyl derivatives, respectively, had potent activity in the anti-arthritic assay with little gastric or systemic toxicity, compared with the vehicle-treated controls. Of the curcuminoids the furan RK-106 was the only compound to inhibit production of TNFα and IL-1β in a monocytic cell-line THP-1 in vitro. The inactivity of RK-106 on the production of PGE(2) may be related to its absence of gastrotoxicity. None of the curcuminoids exhibited anti-pyretic activity and this may also be related to its insensitivity to PGE(2). Thus, these novel curcuminoids, such as RK-106, may warrant the development of new low gastro-toxic anti-inflammatory agents with selective inhibitory activity of cytokine inflammatory mediators. PMID:22172598

  7. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    PubMed

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent. PMID:26040724

  8. Improved dissolution and anti-inflammatory activity of ibuprofen-polyethylene glycol 8000 solid dispersion systems

    PubMed Central

    Ofokansi, Kenneth C.; Kenechukwu, Franklin C.; Ezugwu, Richard O.; Attama, Anthony A.

    2016-01-01

    Background: The purpose of this study was to develop ibuprofen (IB)-polyethylene glycol (PEG) 8000 solid dispersions (SDs) and investigate them for in vitro dissolution and in vivo anti-inflammatory activity. Materials and Methods: IB-PEG 8000 SDs were prepared by fusion method using varying combination ratios of IB and PEG 8000. Characterization based on surface morphology, particle size, absolute drug content, and Fourier transform infrared (FT-IR) spectroscopy was carried out on the SDs. The in vitro release of IB from the SDs was performed in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.4) without enzymes, whereas the anti-inflammatory activity was evaluated using egg albumin-induced rat paw edema model. Results: Greenish brown, discrete, and irregularly shaped SDs of mean particle size range 113.5 ± 2.5-252.5 ± 1.9 μm, which were stable over 3 months, were obtained. The drug content of the SDs ranged from 73.4 ± 2.9 % to 83.5 ± 2.7%. Although the drug content increased with increased concentration of PEG 8000 in the SDs, the mean particle size decreased with increased concentration of PEG 8000 in the SDs. The FT-IR results indicate no strong chemical interaction of IB and PEG 8000 in the SDs. There was marked increase in the dissolution rate of IB from the SDs (P < 0.05) as compared to pure IB and physical mixture. The dissolution was better in SIF than in SGF. The increased dissolution rate of IB may be due to the formation of microcrystals, increased wettability and dispersibility in PEG 8000. The SDs showed good anti-inflammatory properties achieving up to 90% edema inhibition at 6 h while the pure sample of IB had 77% edema inhibition at 6 h. Conclusion: SDs based on IB-PEG 8000 is a good approach to enhance the dissolution rate and anti-inflammatory activity of IB, thus, encouraging further development of the SDs. PMID:27606257

  9. Anti-Inflammatory and Antinociceptive Activities of Bufalin in Rodents

    PubMed Central

    Huang, Yang; Yin, Junqiang; Lin, Wenqian

    2014-01-01

    The aims of this study were to evaluate the anti-inflammatory and analgesic effects of bufalin, a major component of “Chan-su.” We used a carrageenan-induced paw edema model to assess the anti-inflammatory activity of this compound, and Western blot analysis detected NF-κB signaling during this effect. The antinociceptive activities were evaluated by acetic acid-induced writhing, formalin, and hot-plate tests; open-field test investigated effects on the central nervous system. Our data showed that bufalin (0.3 and 0.6 mg/kg, i.p.) potently decreased carrageenan-induced paw edema. Bufalin down regulated the expression levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) during these treatments. Further studies demonstrated that bufalin significantly inhibited the activation of NF-κB signaling. Bufalin also reduced acetic acid-induced writhing and the licking time in the formalin test and increased hot-plate reaction latencies. Naloxone pretreatment (2 mg/kg, i.p.) in the early phases of the formalin test and hot-plate test significantly attenuated the bufalin-induced antinociception effects, which suggests the involvement of the opioid system. A reduction in locomotion was not observed in the open-field test after bufalin administration. Taken together, bufalin treatment resulted in in vivo anti-inflammatory and analgesic effects, and bufalin may be a novel, potential drug for the treatment of inflammatory diseases. PMID:24719521

  10. Anti-inflammatory activity of Euphorbia aegyptiaca extract in rats

    PubMed Central

    Abo-dola, Marium A.; Lutfi, Mohamed F.

    2016-01-01

    Background There were no studies on the anti-inflammatory activity of Euphorbia aegyptiaca, though it is commonly used by Sudanese herbalists in the treatment of rheumatoid arthritis. Objectives To determine phytochemical constituents of Euphorbia aegyptiaca To investigate the anti-inflammatory activity of Euphorbia aegyptiaca in rats. Methodology Plant material was extracted by ethanol and phytochemical screening was done according to standard methods. The thickness of Albino rats’ paws were measured before injection of 0.1 ml of 1% formalin in the sub planter region and then, 1, 2, 3, 4 and 24 hours after oral dose of ethanolic extract of Euphorbia aegyptiaca at a rate of 400mg/kg, 800mg/kg, indomethacin (5mg/kg) and normal saline (5ml/kg). Edema inhibition percentage (EI%) and mean paw thickness (MPT) were measured in the different groups and compared using appropriate statistical methods. Results The phytochemical screening revealed the presence of saponins, cumarins, flavonoids, tannins, sterols, triterpenes, and absence of alkaloids, anthraquinones glycosides and cyanogenic glycosides. The mean of EI% of rats treated with indomethacin at a dose of 5 mg/kg over different time intervals (64.0%) was significantly lower compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (75.0%, P< 0.001), but higher compared to rats treated at higher dose of 400 mg/kg (57.4%, P< 0.001). In contrast, MPT of rats treated with indomethacin at a dose of 5 mg/kg (6.5±1.1 mm) was significantly higher compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (6.1±.7 mm, P< 0.001) as well as 400 mg/kg (5.9±.5, P< 0.001). Conclusion Euphorbia aegyptiaca ethanolic extract has a sustained dose-dependent anti-inflammatory activity. PMID:27004059